prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# -*- coding: utf-8 -*- """ Created on Fri Jan 24 16:19:24 2020 @author: Dominic """ from .GPy_wrapper import GPyWrapper_Classifier as GPC from . import GP_util import numpy as np import multiprocessing from ...main_utils.dict_util import Tuning_dict class GP_base(): def __init__(self,n,bound,origin,configs,GP_type=False): self.GP_type = GP_type self.n,self.bound,self.origin=n,np.array(bound),np.array(origin) self.c = Tuning_dict(configs) self.create_gp() def create_gp(self): l_p_mean, l_p_var = self.c.get('length_prior_mean','length_prior_var') n = self.n l_prior_mean = l_p_mean * np.ones(n) l_prior_var = (l_p_var**2) *
np.ones(n)
numpy.ones
# plotting import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns # numpy import numpy as np # scipy import scipy as sp import scipy.interpolate from scipy.special import erfinv, erf from scipy.stats import poisson as pss import scipy.fftpack import scipy.sparse # jit from numba import jit import ctypes import astropy import astropy as ap from astropy.convolution import convolve_fft, AiryDisk2DKernel import pickle # multiprocessing import multiprocessing as mp from copy import deepcopy # utilities import os, time, sys, glob, fnmatch, inspect, traceback, functools # HealPix import healpy as hp # ignore warnings if not in diagnostic mode import warnings #seterr(divide='raise', over='raise', invalid='raise') #seterr(all='raise') #seterr(under='ignore') #warnings.simplefilter('ignore') #np.set_printoptions(linewidth=180) #sns.set(context='poster', style='ticks', color_codes=True) import h5py # utilities # secondaries ## Symbolic Jacobian calculation #import sympy # tdpy import tdpy from tdpy.util import summgene # photometry related ### find the spectra of sources def retr_spec(gdat, flux, sind=None, curv=None, expc=None, sindcolr=None, elin=None, edisintp=None, sigm=None, gamm=None, spectype='powr', plot=False): if gdat.numbener == 1: spec = flux[None, :] else: if plot: meanener = gdat.meanpara.enerplot else: meanener = gdat.meanpara.ener if gmod.spectype == 'gaus': spec = 1. / edis[None, :] / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis[None, :])**2) if gmod.spectype == 'voig': args = (gdat.meanpara.ener[:, None] + 1j * gamm[None, :]) / np.sqrt(2.) / sigm[None, :] spec = 1. / sigm[None, :] / np.sqrt(2. * pi) * flux[None, :] * real(scipy.special.wofz(args)) if gmod.spectype == 'edis': edis = edisintp(elin)[None, :] spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'pvoi': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'lore': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'powr': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) if gmod.spectype == 'colr': if plot: spec = np.zeros((gdat.numbenerplot, flux.size)) else: spec = np.empty((gdat.numbener, flux.size)) for i in gdat.indxener: if i < gdat.indxenerpivt: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i]) elif i == gdat.indxenerpivt: spec[i, :] = flux else: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i-1]) if gmod.spectype == 'curv': spec = flux[None, :] * meanener[:, None]**(-sind[None, :] - gdat.factlogtenerpivt[:, None] * curv[None, :]) if gmod.spectype == 'expc': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) * np.exp(-(meanener - gdat.enerpivt)[:, None] / expc[None, :]) return spec ### find the surface brightness due to one point source def retr_sbrtpnts(gdat, lgal, bgal, spec, psfnintp, indxpixlelem): # calculate the distance to all pixels from each point source dist = retr_angldistunit(gdat, lgal, bgal, indxpixlelem) # interpolate the PSF onto the pixels if gdat.kernevaltype == 'ulip': psfntemp = psfnintp(dist) if gdat.kernevaltype == 'bspx': pass # scale by the PS spectrum sbrtpnts = spec[:, None, None] * psfntemp return sbrtpnts def retr_psfnwdth(gdat, psfn, frac): ''' Return the PSF width ''' wdth = np.zeros((gdat.numbener, gdat.numbevtt)) for i in gdat.indxener: for m in gdat.indxevtt: psfntemp = psfn[i, :, m] indxanglgood = np.argsort(psfntemp) intpwdth = max(frac * np.amax(psfntemp), np.amin(psfntemp)) if intpwdth >= np.amin(psfntemp[indxanglgood]) and intpwdth <= np.amax(psfntemp[indxanglgood]): wdthtemp = sp.interpolate.interp1d(psfntemp[indxanglgood], gdat.binspara.angl[indxanglgood], fill_value='extrapolate')(intpwdth) else: wdthtemp = 0. wdth[i, m] = wdthtemp return wdth # lensing-related def samp_lgalbgalfromtmpl(gdat, probtmpl): indxpixldraw = np.random.choice(gdat.indxpixl, p=probtmpl) lgal = gdat.lgalgrid[indxpixldraw] + randn(gdat.sizepixl) bgal = gdat.bgalgrid[indxpixldraw] + randn(gdat.sizepixl) return lgal, bgal ## custom random variables, pdfs, cdfs and icdfs ### probability distribution functions def retr_lprbpois(data, modl): lprb = data * np.log(modl) - modl - sp.special.gammaln(data + 1) return lprb ### probability density functions def pdfn_self(xdat, minm, maxm): pdfn = 1. / (maxm - minm) return pdfn def pdfn_expo(xdat, maxm, scal): if (xdat > maxm).any(): pdfn = 0. else: pdfn = 1. / scal / (1. - np.exp(-maxm / scal)) * np.exp(-xdat / scal) return pdfn def pdfn_dexp(xdat, maxm, scal): pdfn = 0.5 * pdfn_expo(np.fabs(xdat), maxm, scal) return pdfn def pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr): if np.isscalar(xdat): xdat = np.array([xdat]) faca = 1. / (brek**(sloplowr - slopuppr) * (brek**(1. - sloplowr) - minm**(1. - sloplowr)) / \ (1. - sloplowr) + (maxm**(1. - slopuppr) - brek**(1. - slopuppr)) / (1. - slopuppr)) facb = faca * brek**(sloplowr - slopuppr) / (1. - sloplowr) pdfn = np.empty_like(xdat) indxlowr = np.where(xdat <= brek)[0] indxuppr = np.where(xdat > brek)[0] if indxlowr.size > 0: pdfn[indxlowr] = faca * brek**(sloplowr - slopuppr) * xdat[indxlowr]**(-sloplowr) if indxuppr.size > 0: pdfn[indxuppr] = faca * xdat[indxuppr]**(-slopuppr) return pdfn def pdfn_powr(xdat, minm, maxm, slop): norm = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) pdfn = norm * xdat**(-slop) return pdfn def pdfn_logt(xdat, minm, maxm): pdfn = 1. / (np.log(maxm) - np.log(minm)) / xdat return pdfn def pdfn_igam(xdat, slop, cutf): pdfn = sp.stats.invgamma.pdf(xdat, slop - 1., scale=cutf) return pdfn def pdfn_lnor(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_gaus(xdat, mean, stdv): pdfn = 1. / np.sqrt(2. * pi) / stdv * np.exp(-0.5 * ((xdat - mean) / stdv)**2) return pdfn def pdfn_lgau(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_atan(para, minmpara, maxmpara): pdfn = 1. / (para**2 + 1.) / (np.arctan(maxmpara) - np.arctan(minmpara)) return pdfn def cdfn_paragenrscalbase(gdat, strgmodl, paragenrscalbase, thisindxparagenrbase): gmod = getattr(gdat, strgmodl) scalparagenrbase = gmod.scalpara.genrbase[thisindxparagenrbase] if scalparagenrbase == 'self' or scalparagenrbase == 'logt' or scalparagenrbase == 'atan': listminmparagenrscalbase = gmod.minmpara.genrbase[thisindxparagenrbase] factparagenrscalbase = gmod.factparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'self': paragenrscalbaseunit = cdfn_self(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'logt': paragenrscalbaseunit = cdfn_logt(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'atan': gmod.listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[thisindxparagenrbase] paragenrscalbaseunit = cdfn_atan(paragenrscalbase, listminmparagenrscalbase, gmod.listmaxmparagenrscalbase) elif scalparagenrbase == 'gaus' or scalparagenrbase == 'eerr': gmod.listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[thisindxparagenrbase] gmod.liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'eerr': gmod.cdfnlistminmparagenrscalbaseunit = gmod.cdfnlistminmparagenrscalbaseunit[thisindxparagenrbase] gmod.listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[thisindxparagenrbase] paragenrscalbaseunit = cdfn_eerr(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase, \ gmod.cdfnlistminmparagenrscalbaseunit, gmod.listparagenrscalbaseunitdiff) else: paragenrscalbaseunit = cdfn_gaus(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase) elif scalparagenrbase == 'pois': paragenrscalbaseunit = paragenrscalbase if gdat.booldiagmode: if paragenrscalbaseunit == 0: print('Warning. CDF is zero.') return paragenrscalbaseunit def icdf_paragenrscalfull(gdat, strgmodl, paragenrunitfull, indxparagenrfullelem): gmod = getattr(gdat, strgmodl) # tobechanged # temp -- change zeros to empty paragenrscalfull = np.zeros_like(paragenrunitfull) for scaltype in gdat.listscaltype: listindxparagenrbasescal = gmod.listindxparagenrbasescal[scaltype] if len(listindxparagenrbasescal) == 0: continue paragenrscalfull[listindxparagenrbasescal] = icdf_paragenrscalbase(gdat, strgmodl, paragenrunitfull[listindxparagenrbasescal], scaltype, listindxparagenrbasescal) if not np.isfinite(paragenrscalfull).all(): raise Exception('') if indxparagenrfullelem is not None: for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: indxparagenrfulltemp = indxparagenrfullelem[l][gmod.namepara.genrelem[l][g]] if indxparagenrfulltemp.size == 0: continue paragenrscalfull[indxparagenrfulltemp] = icdf_trap(gdat, strgmodl, paragenrunitfull[indxparagenrfulltemp], paragenrscalfull, \ gmod.listscalparagenrelem[l][g], gmod.namepara.genrelem[l][g], l) if gdat.booldiagmode: if not np.isfinite(paragenrscalfull[indxparagenrfulltemp]).all(): raise Exception('') if not np.isfinite(paragenrscalfull).all(): raise Exception('') return paragenrscalfull def icdf_paragenrscalbase(gdat, strgmodl, paragenrunitbase, scaltype, indxparagenrbasescal): gmod = getattr(gdat, strgmodl) if scaltype == 'self' or scaltype == 'logt' or scaltype == 'atan': minmparagenrscalbase = gmod.minmpara.genrbase[indxparagenrbasescal] factparagenrscalbase = gmod.factpara.genrbase[indxparagenrbasescal] if scaltype == 'self': paragenrscalbase = tdpy.icdf_self(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'logt': paragenrscalbase = tdpy.icdf_logt(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'atan': listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_atan(paragenrunitbase, minmparagenrscalbase, listmaxmparagenrscalbase) elif scaltype == 'gaus' or scaltype == 'eerr': listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[indxparagenrbasescal] liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[indxparagenrbasescal] if scaltype == 'eerr': cdfnminmparagenrscalbaseunit = gmod.cdfnminmparagenrscalbaseunit[indxparagenrbasescal] listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_eerr(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase, cdfnminmparagenrscalbaseunit, listparagenrscalbaseunitdiff) else: paragenrscalbase = tdpy.icdf_gaus(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase) elif scaltype == 'pois': paragenrscalbase = paragenrunitbase if gdat.booldiagmode: if not np.isfinite(paragenrscalbase).all(): print('scaltype') print(scaltype) print('paragenrscalbase') print(paragenrscalbase) print('type(paragenrscalbase)') print(type(paragenrscalbase)) print('paragenrscalbase.dtype') print(paragenrscalbase.dtype) raise Exception('') return paragenrscalbase def icdf_trap(gdat, strgmodl, cdfn, paragenrscalfull, scalcomp, nameparagenrelem, l): gmod = getattr(gdat, strgmodl) if scalcomp == 'self' or scalcomp == 'powr' or scalcomp == 'dpowslopbrek' or scalcomp == 'logt': minm = getattr(gmod.minmpara, nameparagenrelem) if scalcomp != 'self': maxm = getattr(gmod.maxmpara, nameparagenrelem) if scalcomp == 'powr': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio%spop%d' % (nameparagenrelem, l))] if gdat.booldiagmode: if not np.isfinite(slop): raise Exception('') if maxm < minm: raise Exception('') icdf = tdpy.icdf_powr(cdfn, minm, maxm, slop) if scalcomp == 'dpowslopbrek': distbrek = paragenrscalfull[getattr(gmod.indxpara, 'brekprio' + nameparagenrelem)[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + nameparagenrelem)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + nameparagenrelem)[l]] icdf = tdpy.icdf_dpow(cdfn, minm, maxm, distbrek, sloplowr, slopuppr) if scalcomp == 'expo': sexp = getattr(gmod, nameparagenrelem + 'distsexppop%d' % l) icdf = tdpy.icdf_expo(cdfn, maxm, sexp) if scalcomp == 'self': fact = getattr(gmod.factpara, nameparagenrelem) icdf = tdpy.icdf_self_fact(cdfn, minm, fact) if scalcomp == 'logt': icdf = tdpy.icdf_logt(cdfn, minm, fact) if scalcomp == 'dexp': scal = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] icdf = tdpy.icdf_dexp(cdfn, maxm, scal) if scalcomp == 'lnormeanstdv': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_lnor(cdfn, distmean, diststdv) if scalcomp == 'igam': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem)[l]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) icdf = tdpy.icdf_igam(cdfn, slop, cutf) if scalcomp == 'gaus': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_gaus(cdfn, distmean, diststdv) if gdat.booldiagmode: if not np.isfinite(icdf).all(): print('icdf') print(icdf) raise Exception('') return icdf def cdfn_trap(gdat, gdatmodi, strgmodl, icdf, indxpoplthis): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmod.listscalparagenrelem = gmod.listscalparagenrelem[indxpoplthis] cdfn = np.empty_like(icdf) for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[indxpoplthis]): if gmod.listscalparagenrelem[k] == 'self' or gmod.listscalparagenrelem[k] == 'dexp' or gmod.listscalparagenrelem[k] == 'expo' \ or gmod.listscalparagenrelem[k] == 'powr' or gmod.listscalparagenrelem[k] == 'dpowslopbrek': minm = getattr(gdat.fitt.minm, nameparagenrelem) if gmod.listscalparagenrelem[k] == 'powr': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) slop = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cdfn[k] = cdfn_powr(icdf[k], minm, maxm, slop) elif gmod.listscalparagenrelem[k] == 'dpowslopbrek': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) brek = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[indxpoplthis]] sloplowr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[indxpoplthis]] slopuppr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[indxpoplthis]] cdfn[k] = cdfn_dpow(icdf[k], minm, maxm, brek, sloplowr, slopuppr) else: fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) cdfn[k] = cdfn_self(icdf[k], minm, fact) if gmod.listscalparagenrelem[k] == 'lnormeanstdv': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_lnor(icdf[k], distmean, slop) if gmod.listscalparagenrelem[k] == 'igam': slop = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) cdfn[k] = cdfn_igam(icdf[k], slop, cutf) if gmod.listscalparagenrelem[k] == 'gaus': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_gaus(icdf[k], distmean, diststdv) return cdfn ### update sampler state def updt_stat(gdat, gdatmodi): if gdat.typeverb > 1: print('updt_stat()') # update the sample and the unit sample vectors gdatmodi.this.lpritotl = gdatmodi.next.lpritotl gdatmodi.this.lliktotl = gdatmodi.next.lliktotl gdatmodi.this.lpostotl = gdatmodi.next.lpostotl gdatmodi.this.paragenrscalfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrscalfull[gdatmodi.indxsampmodi]) gdatmodi.this.paragenrunitfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrunitfull[gdatmodi.indxsampmodi]) if gdatmodi.this.indxproptype > 0: gdatmodi.this.indxelemfull = deepcopy(gdatmodi.next.indxelemfull) gdatmodi.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdatmodi.this.indxelemfull, 'fitt') def initcompfromstat(gdat, gdatmodi, namerefr): for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): minm = getattr(gdat.fitt.minmpara, nameparagenrelem) maxm = getattr(gdat.fitt.maxmpara, nameparagenrelem) try: comp = getattr(gdat, namerefr + nameparagenrelem)[l][0, :] if gmod.listscalparagenrelem[l][g] == 'self' or gmod.listscalparagenrelem[l][g] == 'logt': fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) if gmod.listscalparagenrelem[l][g] == 'self': compunit = cdfn_self(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'logt': compunit = cdfn_logt(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'expo': scal = getattr(gdat.fitt, 'gangdistsexp') maxm = getattr(gdat.fitt.maxm, nameparagenrelem) compunit = cdfn_expo(icdf, maxm, scal) if gmod.listscalparagenrelem[l][g] == 'powr' or gmod.listscalparagenrelem[l][g] == 'igam': slop = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[l]] if gmod.listscalparagenrelem[l][g] == 'powr': compunit = cdfn_powr(comp, minm, maxm, slop) if gmod.listscalparagenrelem[l][g] == 'igam': cutf = getattr(gdat, 'cutf' + nameparagenrelem) compunit = cdfn_igam(comp, slop, cutf) if gmod.listscalparagenrelem[l][g] == 'dpowslopbrek': brek = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[l]] sloplowr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[l]] slopuppr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[l]] compunit = cdfn_powr(comp, minm, maxm, brek, sloplowr, slopuppr) if gmod.listscalparagenrelem[l][g] == 'gaus': distmean = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[l]] diststdv = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[l]] compunit = cdfn_gaus(comp, distmean, diststdv) except: if gdat.typeverb > 0: print('Initialization from the reference catalog failed for %s. Sampling randomly...' % nameparagenrelem) compunit = np.random.rand(gdatmodi.this.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int)) gdatmodi.this.paragenrunitfull[gdatmodi.this.indxparagenrfullelem[l][nameparagenrelem]] = compunit ### find the set of pixels in proximity to a position on the map def retr_indxpixlelemconc(gdat, strgmodl, dictelem, l): gmod = getattr(gdat, strgmodl) lgal = dictelem[l]['lgal'] bgal = dictelem[l]['bgal'] varbampl = dictelem[l][gmod.nameparagenrelemampl[l]] if gmod.typeelemspateval[l] == 'locl': listindxpixlelem = [[] for k in range(lgal.size)] for k in range(lgal.size): indxpixlpnts = retr_indxpixl(gdat, bgal[k], lgal[k]) indxfluxproxtemp = np.digitize(varbampl[k], gdat.binspara.prox) if indxfluxproxtemp > 0: indxfluxproxtemp -= 1 if indxfluxproxtemp == gdat.binspara.prox.size - 1: print('Warning! Index of the proximity pixel list overflew. Taking the largest list...') indxfluxproxtemp -= 1 indxpixlelem = gdat.indxpixlprox[indxfluxproxtemp][indxpixlpnts] if isinstance(indxpixlelem, int): indxpixlelem = gdat.indxpixl listindxpixlelem[k] = indxpixlelem listindxpixlelemconc = np.unique(np.concatenate(listindxpixlelem)) else: listindxpixlelemconc = gdat.indxpixl listindxpixlelem = gdat.indxpixl return listindxpixlelem, listindxpixlelemconc ### find the distance between two points on the map def retr_angldistunit(gdat, lgal, bgal, indxpixlelem, retranglcosi=False): if gdat.typepixl == 'heal': xdat, ydat, zaxi = retr_unit(lgal, bgal) anglcosi = gdat.xdatgrid[indxpixlelem] * xdat + gdat.ydatgrid[indxpixlelem] * ydat + gdat.zaxigrid[indxpixlelem] * zaxi if retranglcosi: return anglcosi else: angldist = np.arccos(anglcosi) return angldist else: angldist = np.sqrt((lgal - gdat.lgalgrid[indxpixlelem])**2 + (bgal - gdat.bgalgrid[indxpixlelem])**2) return angldist ### find the pixel index of a point on the map def retr_indxpixl(gdat, bgal, lgal): if gdat.typepixl == 'heal': indxpixl = gdat.pixlcnvt[hp.ang2pix(gdat.numbsideheal, np.pi / 2. - bgal, lgal)] if gdat.booldiagmode: if (indxpixl == -1).any(): raise Exception('pixlcnvt went negative!') if gdat.typepixl == 'cart': indxlgcr = np.floor(gdat.numbsidecart * (lgal - gdat.minmlgaldata) / 2. / gdat.maxmgangdata).astype(int) indxbgcr = np.floor(gdat.numbsidecart * (bgal - gdat.minmbgaldata) / 2. / gdat.maxmgangdata).astype(int) if np.isscalar(indxlgcr): if indxlgcr < 0: indxlgcr = 0 if indxlgcr >= gdat.numbsidecart: indxlgcr = gdat.numbsidecart - 1 else: indxlgcr[np.where(indxlgcr < 0)] = 0 indxlgcr[np.where(indxlgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 if np.isscalar(indxbgcr): if indxbgcr < 0: indxbgcr = 0 if indxbgcr >= gdat.numbsidecart: indxbgcr = gdat.numbsidecart - 1 else: indxbgcr[np.where(indxbgcr < 0)] = 0 indxbgcr[np.where(indxbgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 indxpixl = indxlgcr * gdat.numbsidecart + indxbgcr # convert to an index of non-zero exposure pixels #indxpixl = gdat.indxpixlroficnvt[indxpixl] return indxpixl ## obtain count maps def retr_cntp(gdat, sbrt): cntp = sbrt * gdat.expo * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] return cntp ## plotting ### construct path for plots def retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgplot, nameinte=''): if strgmodl == 'true' or strgstat == '': path = gdat.pathinit + nameinte + strgplot + '.pdf' elif strgstat == 'pdfn' or strgstat == 'mlik': path = gdat.pathplotrtag + strgpdfn + '/finl/' + nameinte + strgstat + strgplot + '.pdf' elif strgstat == 'this': path = gdat.pathplotrtag + strgpdfn + '/fram/' + nameinte + strgstat + strgplot + '_swep%09d.pdf' % gdatmodi.cntrswep return path ### determine the marker size def retr_mrkrsize(gdat, strgmodl, compampl, nameparagenrelemampl): gmod = getattr(gdat, strgmodl) minm = getattr(gdat.minmpara, nameparagenrelemampl) maxm = getattr(gdat.maxmpara, nameparagenrelemampl) mrkrsize = (np.sqrt(compampl) - np.sqrt(minm)) / (np.sqrt(maxm) - np.sqrt(minm)) * (gdat.maxmmrkrsize - gdat.minmmrkrsize) + gdat.minmmrkrsize return mrkrsize ## experiment specific def retr_psfphubb(gmod): # temp gmod.psfpexpr = np.array([0.080, 0.087]) / gdat.anglfact def retr_psfpchan(gmod): # temp #gmod.psfpexpr = np.array([0.25, 0.3, 0.4, 0.6, 0.7]) / gdat.anglfact if gdat.numbenerfull == 5: gmod.psfpexpr = np.array([0.424 / gdat.anglfact, 2.75, 0.424 / gdat.anglfact, 2.59, 0.440 / gdat.anglfact, 2.47, 0.457 / gdat.anglfact, 2.45, 0.529 / gdat.anglfact, 3.72]) if gdat.numbenerfull == 2: gmod.psfpexpr = np.array([0.427 / gdat.anglfact, 2.57, 0.449 / gdat.anglfact, 2.49]) #gdat.psfpchan = gmod.psfpexpr[(2 * gdat.indxenerincl[:, None] + np.arange(2)[None, :]).flatten()] #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, # 0.30 / gdat.anglfacti\ # 0.40 / gdat.anglfacti\ # 0.60 / gdat.anglfacti\ # 0.70 / gdat.anglfacti #gmod.psfpexpr = np.array([0.35 / gdat.anglfact, 2e-1, 1.9, 0.5 / gdat.anglfact, 1.e-1, 2.]) #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, 2.0e-1, 1.9, \ # 0.30 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.40 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.60 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.70 / gdat.anglfact, 1.0e-1, 2.0]) def retr_psfpsdyn(gmod): gmod.psfpexpr = np.array([0.05]) def retr_psfpferm(gmod): if gdat.anlytype.startswith('rec8'): path = gdat.pathdata + 'expr/irfn/psf_P8R2_SOURCE_V6_PSF.fits' else: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' irfn = astropy.io.fits.getdata(path, 1) minmener = irfn['energ_lo'].squeeze() * 1e-3 # [GeV] maxmener = irfn['energ_hi'].squeeze() * 1e-3 # [GeV] enerirfn = np.sqrt(minmener * maxmener) numbpsfpscal = 3 numbpsfpform = 5 fermscal = np.zeros((gdat.numbevtt, numbpsfpscal)) fermform = np.zeros((gdat.numbener, gdat.numbevtt, numbpsfpform)) strgpara = ['score', 'gcore', 'stail', 'gtail', 'ntail'] for m in gdat.indxevtt: if gdat.anlytype.startswith('rec8'): irfn = astropy.io.fits.getdata(path, 1 + 3 * gdat.indxevttincl[m]) fermscal[m, :] = astropy.io.fits.getdata(path, 2 + 3 * gdat.indxevttincl[m])['PSFSCALE'] else: if m == 1: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_front.fits' elif m == 0: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' else: continue irfn = astropy.io.fits.getdata(path, 1) fermscal[m, :] = astropy.io.fits.getdata(path, 2)['PSFSCALE'] for k in range(numbpsfpform): fermform[:, m, k] = sp.interpolate.interp1d(enerirfn, np.mean(irfn[strgpara[k]].squeeze(), axis=0), fill_value='extrapolate')(gdat.meanpara.ener) # convert N_tail to f_core for m in gdat.indxevtt: for i in gdat.indxener: fermform[i, m, 4] = 1. / (1. + fermform[i, m, 4] * fermform[i, m, 2]**2 / fermform[i, m, 0]**2) # calculate the scale factor gdat.fermscalfact = np.sqrt((fermscal[None, :, 0] * (10. * gdat.meanpara.ener[:, None])**fermscal[None, :, 2])**2 + fermscal[None, :, 1]**2) # store the fermi PSF parameters gmod.psfpexpr = np.zeros(gdat.numbener * gdat.numbevtt * numbpsfpform) for m in gdat.indxevtt: for k in range(numbpsfpform): indxfermpsfptemp = m * numbpsfpform * gdat.numbener + gdat.indxener * numbpsfpform + k gmod.psfpexpr[indxfermpsfptemp] = fermform[:, m, k] def retr_refrchaninit(gdat): gdat.indxrefr = np.arange(gdat.numbrefr) gdat.dictrefr = [] for q in gdat.indxrefr: gdat.dictrefr.append(dict()) gdat.refr.namepara.elemsign = ['flux', 'magt'] gdat.refr.lablelem = ['Xue+2011', 'Wolf+2008'] gdat.listnamerefr += ['xu11', 'wo08'] setattr(gdat, 'plotminmotyp', 0.) setattr(gdat, 'plottmaxmotyp', 1.) setattr(gmod.lablrootpara, 'otyp', 'O') setattr(gdat, 'scalotypplot', 'self') setattr(gmod.lablrootpara, 'otypxu11', 'O') for name in gdat.listnamerefr: setattr(gdat, 'plotminmotyp' + name, 0.) setattr(gdat, 'plotmaxmotyp' + name, 1.) if gdat.strgcnfg == 'pcat_chan_inpt_home4msc': with open(gdat.pathinpt + 'ECDFS_Cross_ID_Hsu2014.txt', 'r') as thisfile: for k, line in enumerate(thisfile): if k < 18: continue rasccand =line[2] declcand =line[2] gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'otyp', 'lumi'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'magt', 'reds', 'otyp'] def retr_refrchanfinl(gdat): booltemp = False if gdat.anlytype.startswith('extr'): if gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] = 1490 gdat.numbpixlbgalshft[0] = 1430 else: booltemp = True elif gdat.anlytype.startswith('home'): gdat.numbpixllgalshft[0] = 0 gdat.numbpixlbgalshft[0] = 0 if gdat.numbsidecart == 600: pass elif gdat.numbsidecart == 100: indxtile = int(gdat.anlytype[-4:]) numbsidecntr = int(gdat.anlytype[8:12]) numbtileside = numbsidecntr / gdat.numbsidecart indxtilexaxi = indxtile // numbtileside indxtileyaxi = indxtile % numbtileside gdat.numbpixllgalshft[0] += indxtilexaxi * gdat.numbsidecart gdat.numbpixlbgalshft[0] += indxtileyaxi * gdat.numbsidecart elif gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] += 150 gdat.numbpixlbgalshft[0] += 150 else: booltemp = True else: booltemp = True if booltemp: raise Exception('Reference elements cannot be aligned with the spatial axes!') ## WCS object for rotating reference elements into the ROI if gdat.numbener == 2: gdat.listpathwcss[0] = gdat.pathinpt + 'CDFS-4Ms-0p5to2-asca-im-bin1.fits' else: gdat.listpathwcss[0] = gdat.pathinpt + '0.5-0.91028_flux_%sMs.img' % gdat.anlytype[4] # Xue et al. (2011) #with open(gdat.pathinpt + 'chancatl.txt', 'r') as thisfile: pathfile = gdat.pathinpt + 'Xue2011.fits' hdun = pf.open(pathfile) hdun.info() lgalchan = hdun[1].data['_Glon'] / 180. * pi bgalchan = hdun[1].data['_Glat'] / 180. * pi fluxchansoft = hdun[1].data['SFlux'] fluxchanhard = hdun[1].data['HFlux'] objttypechan = hdun[1].data['Otype'] gdat.refrlumi[0][0] = hdun[1].data['Lx'] # position gdat.refr.dictelem[0]['lgal'] = lgalchan gdat.refr.dictelem[0]['bgal'] = bgalchan # spectra gdat.refrspec = [[np.zeros((3, gdat.numbener, lgalchan.size))]] if gdat.numbener == 2: gdat.refrspec[0][0, 0, :] = fluxchansoft * 0.624e9 gdat.refrspec[0][0, 1, :] = fluxchanhard * 0.624e9 / 16. else: gdat.refrspec[0][0, :, :] = 2. * fluxchansoft[None, :] * 0.624e9 gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] # fluxes gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] # spectral indices if gdat.numbener > 1: gdat.refrsind[0] = -np.log(gdat.refrspec[0][0, 1, :] / gdat.refrspec[0][0, 0, :]) / np.log(np.sqrt(7. / 2.) / np.sqrt(0.5 * 2.)) ## object type objttypechantemp = np.zeros(lgalchan.size) - 1. indx = np.where(objttypechan == 'AGN')[0] objttypechantemp[indx] = 0.165 indx = np.where(objttypechan == 'Galaxy')[0] objttypechantemp[indx] = 0.495 indx = np.where(objttypechan == 'Star')[0] objttypechantemp[indx] = 0.835 gdat.refrotyp[0][0] = objttypechantemp # Wolf et al. (2011) path = gdat.pathdata + 'inpt/Wolf2008.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['_Glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - pi) % (2. * pi)) - pi gdat.refrbgal[1] = np.deg2rad(data['_Glat']) gdat.refrmagt[1][0] = data['Rmag'] gdat.refrreds[1][0] = data['MCz'] #listname = [] #for k in range(data['MCclass'].size): # if not data['MCclass'][k] in listname: # listname.append(data['MCclass'][k]) listname = ['Galaxy', 'Galaxy (Uncl!)', 'QSO (Gal?)', 'Galaxy (Star?)', 'Star', 'Strange Object', 'QSO', 'WDwarf'] gdat.refrotyp[1][0] = np.zeros_like(gdat.refrreds[1][0]) - 1. for k, name in enumerate(listname): indx = np.where(data['MCclass'] == name)[0] gdat.refrotyp[1][0][indx] = k / 10. # error budget for name in ['lgal', 'bgal', 'sind', 'otyp', 'lumi', 'magt', 'reds']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_refrferminit(gdat): gdat.listnamerefr += ['ac15', 'ma05'] gdat.indxrefr = np.arange(gdat.numbrefr) gdat.refr.lablelem = ['Acero+2015', 'Manchester+2005'] gdat.refr.namepara.elemsign = ['flux', 'flux0400'] setattr(gmod.lablrootpara, 'curvac15', '%s_{3FGL}' % gdat.lablcurv) setattr(gmod.lablrootpara, 'expcac15', 'E_{c,3FGL}') for name in gdat.listnamerefr: setattr(gdat.minmpara, 'curv' + name, -1.) setattr(gdat.maxmpara, 'curv' + name, 1.) setattr(gdat.minmpara, 'expc' + name, 0.1) setattr(gdat.maxmpara, 'expc' + name, 10.) gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'curv', 'expc', 'tvar', 'etag', 'styp', 'sindcolr0001', 'sindcolr0002'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'flux0400', 'per0', 'per1'] def retr_refrfermfinl(gdat): gdat.minmstyp = -0.5 gdat.maxmstyp = 3.5 gdat.lablstyp = 'S' gmod.scalstypplot = 'self' gdat.minmtvar = 0. gdat.maxmtvar = 400. gdat.labltvar = 'T' gmod.scaltvarplot = 'logt' # Acero+2015 path = gdat.pathdata + 'expr/pnts/gll_psc_v16.fit' fgl3 = astropy.io.fits.getdata(path) gdat.refr.dictelem[0]['lgal'] = np.deg2rad(fgl3['glon']) gdat.refr.dictelem[0]['lgal'] = np.pi - ((gdat.refr.dictelem[0]['lgal'] - np.pi) % (2. * np.pi)) gdat.refr.dictelem[0]['bgal'] = np.deg2rad(fgl3['glat']) gdat.refr.numbelemfull = gdat.refr.dictelem[0]['lgal'].size gdat.refrspec = [np.empty((3, gdat.numbener, gdat.refr.dictelem[0]['lgal'].size))] gdat.refrspec[0][0, :, :] = np.stack((fgl3['Flux300_1000'], fgl3['Flux1000_3000'], fgl3['Flux3000_10000']))[gdat.indxenerincl, :] / gdat.deltener[:, None] fgl3specstdvtemp = np.stack((fgl3['Unc_Flux100_300'], fgl3['Unc_Flux300_1000'], fgl3['Unc_Flux1000_3000'], fgl3['Unc_Flux3000_10000'], \ fgl3['Unc_Flux10000_100000']))[gdat.indxenerincl, :, :] / gdat.deltener[:, None, None] gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 0] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 1] gdat.refrspec[0][np.where(np.isfinite(gdat.refrspec[0]) == False)] = 0. gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] gdat.refrsindcolr0001[0] = -np.log(gdat.refrspec[0][:, 1, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[1] / gdat.enerpivt) gdat.refrsindcolr0002[0] = -np.log(gdat.refrspec[0][:, 2, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[2] / gdat.enerpivt) fgl3axisstdv = (fgl3['Conf_68_SemiMinor'] + fgl3['Conf_68_SemiMajor']) * 0.5 fgl3anglstdv = np.deg2rad(fgl3['Conf_68_PosAng']) # [rad] fgl3lgalstdv = fgl3axisstdv * abs(np.cos(fgl3anglstdv)) fgl3bgalstdv = fgl3axisstdv * abs(np.sin(fgl3anglstdv)) gdat.refretag[0] = np.zeros(gdat.refr.dictelem[0]['lgal'].size, dtype=object) for k in range(gdat.refr.dictelem[0]['lgal'].size): gdat.refretag[0][k] = '%s, %s, %s' % (fgl3['Source_Name'][k], fgl3['CLASS1'][k], fgl3['ASSOC1'][k]) gdat.refrtvar[0] = fgl3['Variability_Index'] gdat.refrstyp[0] = np.zeros_like(gdat.refr.dictelem[0]['lgal']) - 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PowerLaw ')] = 0 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'LogParabola ')] = 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLExpCutoff ')] = 2 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLSuperExpCutoff')] = 3 indx = np.where(gdat.refrstyp[0] == -1)[0] if indx.size > 0: raise Exception('') gdat.refrsind[0] = fgl3['Spectral_Index'] gdat.refrcurv[0] = fgl3['beta'] gdat.refrexpc[0] = fgl3['Cutoff'] * 1e-3 gdat.refrcurv[0][np.where(np.logical_not(np.isfinite(gdat.refrcurv[0])))] = -10. gdat.refrexpc[0][np.where(np.logical_not(np.isfinite(gdat.refrexpc[0])))] = 0. gdat.refrsind[0] = np.tile(gdat.refrsind[0], (3, 1)) gdat.refrcurv[0] = np.tile(gdat.refrcurv[0], (3, 1)) gdat.refrexpc[0] = np.tile(gdat.refrexpc[0], (3, 1)) # Manchester+2005 path = gdat.pathdata + 'inpt/Manchester2005.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - np.pi) % (2. * np.pi)) - np.pi gdat.refrbgal[1] = np.deg2rad(data['glat']) gdat.refrper0[1] = data['P0'] gdat.refrper1[1] = data['P1'] gdat.refrflux0400[1] = data['S400'] #gdat.refrdism[1] = data['DM'] #gdat.refrdlos[1] = data['Dist'] # error budget for name in ['lgal', 'bgal', 'per0', 'per1', 'flux0400', 'tvar', 'styp']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_singgaus(scaldevi, sigc): psfn = 1. / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_singking(scaldevi, sigc, gamc): psfn = 1. / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) return psfn def retr_doubgaus(scaldevi, frac, sigc, sigt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_gausking(scaldevi, frac, sigc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_doubking(scaldevi, frac, sigc, gamc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) + \ (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_lgalbgal(gang, aang): lgal = gang * np.cos(aang) bgal = gang * np.sin(aang) return lgal, bgal def retr_gang(lgal, bgal): gang = np.arccos(np.cos(lgal) * np.cos(bgal)) return gang def retr_aang(lgal, bgal): aang = np.arctan2(bgal, lgal) return aang def show_paragenrscalfull(gdat, gdatmodi, strgstat='this', strgmodl='fitt', indxsampshow=None): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) print('strgmodl: ' + strgmodl) print('strgstat: ' + strgstat) print('%5s %20s %30s %30s %15s' % ('index', 'namepara', 'paragenrunitfull', 'paragenrscalfull', 'scalpara')) for k in gmod.indxparagenrfull: if indxsampshow is not None and not k in indxsampshow: continue if gmod.numbparaelem > 0: booltemp = False for l in gmod.indxpopl: if k == gmod.indxparagenrelemsing[l][0]: booltemp = True if booltemp: print('') print('%5d %20s %30g %30g %15s' % (k, gmod.namepara.genrfull[k], gmodstat.paragenrunitfull[k], gmodstat.paragenrscalfull[k], gmod.scalpara.genrfull[k])) def prop_stat(gdat, gdatmodi, strgmodl, thisindxelem=None, thisindxpopl=None, brth=False, deth=False): if gdat.typeverb > 1: print('prop_stat()') #indxproptype # within, birth, death, split, merge # 0, 1, 2, 3, 4 gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodthis = getattr(gdatobjt, 'this') gmodnext = getattr(gdatobjt, 'next') if gmod.numbparaelem > 0: if gdat.booldiagmode: for l in gmod.indxpopl: if len(gmodthis.indxelemfull[l]) > len(set(gmodthis.indxelemfull[l])): raise Exception('Repeating entry in the element index list!') thisindxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodthis.indxelemfull, strgmodl) setattr(gmodthis, 'indxparagenrfullelem', thisindxparagenrfullelem) else: thisindxparagenrfullelem = None gdatmodi.this.boolpropfilt = True # index of the population in which a transdimensional proposal will be attempted if gmod.numbparaelem > 0: if thisindxpopl is None: gdatmodi.indxpopltran = np.random.choice(gmod.indxpopl) else: gdatmodi.indxpopltran = thisindxpopl numbelemtemp = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # forced death or birth does not check for the prior on the dimensionality on purpose! if gmod.numbparaelem > 0 and (deth or brth or np.random.rand() < gdat.probtran) and \ not (numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if brth or deth or np.random.rand() < gdat.probbrde or \ numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == 1 or numbelemtemp == 0: ## births and deaths if numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] or deth: gdatmodi.this.indxproptype = 2 elif numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or brth: gdatmodi.this.indxproptype = 1 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 1 else: gdatmodi.this.indxproptype = 2 else: ## splits and merges if numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or numbelemtemp < 2: gdatmodi.this.indxproptype = 3 elif numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]: gdatmodi.this.indxproptype = 4 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 3 else: gdatmodi.this.indxproptype = 4 else: if gdat.booldiagmode and (gdatmodi.stdp > 1e2).any(): raise Exception('') thisindxparagenrfullelemconc = [] for l in gmod.indxpopl: thisindxparagenrfullelemconc.append(thisindxparagenrfullelem[l]['full']) # get the indices of the current parameter vector if gmod.numbparaelem > 0: thisindxsampfull = np.concatenate([gmod.indxparagenrbasestdv] + thisindxparagenrfullelemconc) else: thisindxsampfull = gmod.indxparagenrbasestdv thisstdp = gdatmodi.stdp[gdat.indxstdppara[thisindxsampfull]] if not np.isfinite(thisstdp).all(): raise Exception('') gdatmodi.this.indxproptype = 0 if gdat.booldiagmode and gdat.probspmr == 0 and gdatmodi.this.indxproptype > 2: raise Exception('') if gdat.typeverb > 1: print('gdatmodi.this.indxproptype') print(gdatmodi.this.indxproptype) if gdatmodi.this.indxproptype == 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = gmodthis.indxelemfull if gdatmodi.this.indxproptype > 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) gmodnext.paragenrscalfull = np.copy(gmodthis.paragenrscalfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = deepcopy(gmodthis.indxelemfull) if gdatmodi.this.indxproptype == 0: ## proposal scale if False: # amplitude-dependent proposal scale for l in gmod.indxpopl: thiscompampl = gmodthis.paragenrscalfull[thisindxparagenrfullelem[indxelemfull][gmod.nameparagenrelemampl[l]][l]] compampl = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] minmcompampl = getattr(gmod.minmpara, gmod.nameparagenrelemampl[l]) thiscompunit = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] compunit = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] if nameparagenrelem == gmod.nameparagenrelemampl[l]: # temp -- this only works if compampl is powr distributed gdatmodi.this.stdp = stdpcomp / (thiscompampl / minmcompampl)**2. gdatmodi.this.stdv = stdpcomp / (compampl / minmcompampl)**2. gdatmodi.this.ltrp += np.sum(0.5 * (nextcompunit - thiscompunit)**2 * (1. / gdatmodi.this.stdv**2 - 1. / gdatmodi.this.stdv**2)) else: gdatmodi.this.stdp = stdpcomp / (np.minimum(thiscompampl, compampl) / minmcompampl)**0.5 ## propose a step diffparagenrunitfull = np.random.normal(size=thisindxsampfull.size) * thisstdp gmodnext.paragenrunitfull[thisindxsampfull] = gmodthis.paragenrunitfull[thisindxsampfull] + diffparagenrunitfull if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') indxsamplowr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] < 0.)[0] if indxsamplowr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr] = abs(gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr]) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') indxsampuppr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] > 1.)[0] if indxsampuppr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] = (gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] - 1.) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') gmodnext.paragenrscalfull = icdf_paragenrscalfull(gdat, strgmodl, gmodnext.paragenrunitfull, thisindxparagenrfullelem) if gdat.booldiagmode: if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') if np.amin(gmodnext.paragenrunitfull[gmod.numbpopl:]) < 0.: raise Exception('') if np.amax(gmodnext.paragenrunitfull[gmod.numbpopl:]) > 1.: raise Exception('') if not np.isfinite(gmodnext.paragenrscalfull).all(): raise Exception('') if gdatmodi.this.indxproptype > 0: gdatmodi.indxsamptran = [] if gdatmodi.this.indxproptype == 1: gdatmodi.this.auxipara = np.random.rand(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) elif gdatmodi.this.indxproptype != 2: gdatmodi.this.auxipara = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: # find an empty slot in the element list for u in range(gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if not u in gdatmodi.this.indxelemfull[gdatmodi.indxpopltran]: break gdatmodi.indxelemmodi = [u] gdatmodi.indxelemfullmodi = [gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)] # sample indices to add the new element gdatmodi.indxparagenrfullelemaddd = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemaddd) gmodnext.indxelemfull[gdatmodi.indxpopltran].append(gdatmodi.indxelemmodi[0]) if gdatmodi.this.indxproptype == 1: # sample auxiliary variables gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.this.auxipara # death if gdatmodi.this.indxproptype == 2: # occupied element index to be killed if thisindxelem is None: dethindxindxelem = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) else: dethindxindxelem = thisindxelem # element index to be killed gdatmodi.indxelemmodi = [] gdatmodi.indxelemfullmodi = [] if gdat.typeverb > 1: print('dethindxindxelem') print(dethindxindxelem) gdatmodi.indxelemmodi.append(gmodthis.indxelemfull[gdatmodi.indxpopltran][dethindxindxelem]) gdatmodi.indxelemfullmodi.append(dethindxindxelem) # parameter indices to be killed indxparagenrfullelemdeth = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(indxparagenrfullelemdeth) gdatmodi.this.auxipara = gmodthis.paragenrscalfull[indxparagenrfullelemdeth] if gdatmodi.this.indxproptype > 2: gdatmodi.comppare = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compfrst = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compseco = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) # split if gdatmodi.this.indxproptype == 3: # find the probability of splitting elements gdatmodi.indxelemfullsplt = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) gdatmodi.indxelemsplt = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullsplt] gdatmodi.indxelemfullmodi.insert(0, gdatmodi.indxelemfullsplt) gdatmodi.indxelemmodi.insert(0, gdatmodi.indxelemsplt) # sample indices for the first element gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.insert(0, gdatmodi.indxparagenrfullelemfrst) # sample indices for the second element gdatmodi.indxsampseco = gdatmodi.indxparagenrfullelemaddd # take the parent element parameters for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gdatmodi.comppare[k] = np.copy(gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]]) # draw the auxiliary parameters for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.auxipara[g] = np.random.randn() * gdat.radispmr elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = np.random.rand() else: gdatmodi.this.auxipara[g] = icdf_trap(gdat, strgmodl, np.random.rand(), gmodthis.paragenrscalfull, gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], l) # determine the new parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[1]) * gdatmodi.this.auxipara[0] else: gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[0] gdatmodi.compfrst[1] = gdatmodi.comppare[1] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[1] gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[1] * gdatmodi.this.auxipara[0] else: gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[0] gdatmodi.compseco[1] = gdatmodi.comppare[1] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[1] gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] for g in range(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.compfrst[g] = gdatmodi.comppare[g] gdatmodi.compseco[g] = gdatmodi.this.auxipara[g] # place the new parameters into the sample vector gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compfrst, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.compfrst gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compseco, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = gdatmodi.compseco # check for prior boundaries if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): if np.fabs(gdatmodi.compfrst[0]) > gdat.maxmelin or np.fabs(gdatmodi.compseco[0]) > gdat.maxmelin: gdatmodi.this.boolpropfilt = False else: if np.fabs(gdatmodi.compfrst[0]) > maxmlgal or np.fabs(gdatmodi.compseco[0]) > maxmlgal or \ np.fabs(gdatmodi.compfrst[1]) > maxmbgal or np.fabs(gdatmodi.compseco[1]) > maxmbgal: gdatmodi.this.boolpropfilt = False if gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]) or \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: if not gdatmodi.this.boolpropfilt: print('Rejecting the proposal due to a split that falls out of the prior...') if gdatmodi.this.indxproptype == 4: # determine the index of the primary element to be merged (in the full element list) gdatmodi.indxelemfullmergfrst = np.random.choice(np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran]))) ## first element index to be merged gdatmodi.mergindxelemfrst = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergfrst] # find the probability of merging this element with the others probmerg = retr_probmerg(gdat, gdatmodi, gmodthis.paragenrscalfull, thisindxparagenrfullelem, gdatmodi.indxpopltran, 'seco', typeelem=gmod.typeelem) indxelemfulltemp = np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran])) if gdat.booldiagmode: if indxelemfulltemp.size < 2: raise Exception('') gdatmodi.indxelemfullmergseco = np.random.choice(np.setdiff1d(indxelemfulltemp, np.array([gdatmodi.indxelemfullmergfrst])), p=probmerg) gdatmodi.indxelemfullmodi = np.sort(np.array([gdatmodi.indxelemfullmergfrst, gdatmodi.indxelemfullmergseco])) # parameters of the first element to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## first gdatmodi.compfrst[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]] # determine indices of the modified elements in the sample vector ## first element # temp -- this would not work for multiple populations ! gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemfrst) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemfrst) ## second element index to be merged gdatmodi.mergindxelemseco = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergseco] ## second element gdatmodi.indxparagenrfullelemseco = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemseco) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemseco) # parameters of the elements to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## second gdatmodi.compseco[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[1]]] # indices of the element to be merged gdatmodi.indxelemmodi = [gdatmodi.mergindxelemfrst, gdatmodi.mergindxelemseco] # auxiliary parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] else: gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] gdatmodi.this.auxipara[1] = gdatmodi.compseco[1] - gdatmodi.compfrst[1] gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] / \ (gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = gdatmodi.compseco[g] # merged element gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] > getattr(gdat, 'maxm' + gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: print('Proposal rejected due to falling outside the prior.') return if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[1]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) else: gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) gdatmodi.comppare[1] = gdatmodi.compfrst[1] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[1] - gdatmodi.compfrst[1]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ (gdatmodi.compseco[g] - gdatmodi.compfrst[g]) elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + gdatmodi.compseco[g] else: gdatmodi.comppare[g] = gdatmodi.compfrst[g] gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.comppare, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.comppare # calculate the proposed list of pairs if gdat.typeverb > 1: print('mergindxfrst: ', gdatmodi.mergindxelemfrst) print('gdatmodi.indxelemfullmergfrst: ', gdatmodi.indxelemfullmergfrst) print('mergindxseco: ', gdatmodi.mergindxelemseco) print('gdatmodi.indxelemfullmergseco: ', gdatmodi.indxelemfullmergseco) print('indxparagenrfullelemfrst: ', gdatmodi.indxparagenrfullelemfrst) print('indxparagenrfullelemseco: ', gdatmodi.indxparagenrfullelemseco) if gdat.typeverb > 1 and (gdatmodi.this.indxproptype == 3 or gdatmodi.this.boolpropfilt and gdatmodi.this.indxproptype == 4): if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): print('elinfrst: ', gdatmodi.compfrst[0]) print('amplfrst: ', gdatmodi.compfrst[1]) print('elinseco: ', gdatmodi.compseco[0]) print('amplseco: ', gdatmodi.compseco[1]) print('elinpare: ', gdatmodi.comppare[0]) print('fluxpare: ', gdatmodi.comppare[1]) print('auxipara[0][0]: ', gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdatmodi.this.auxipara[1]) else: print('lgalfrst: ', gdat.anglfact * gdatmodi.compfrst[0]) print('bgalfrst: ', gdat.anglfact * gdatmodi.compfrst[1]) print('amplfrst: ', gdatmodi.compfrst[2]) print('lgalseco: ', gdat.anglfact * gdatmodi.compseco[0]) print('bgalseco: ', gdat.anglfact * gdatmodi.compseco[1]) print('amplseco: ', gdatmodi.compseco[2]) print('lgalpare: ', gdat.anglfact * gdatmodi.comppare[0]) print('bgalpare: ', gdat.anglfact * gdatmodi.comppare[1]) print('fluxpare: ', gdatmodi.comppare[2]) print('auxipara[0][0]: ', gdat.anglfact * gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdat.anglfact * gdatmodi.this.auxipara[1]) print('auxipara[0][2]: ', gdatmodi.this.auxipara[2]) if gmod.numbparaelem > 0 and gdatmodi.this.indxproptype > 0 and gdatmodi.this.boolpropfilt: # change the number of elements if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] + 1 if gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] - 1 gmodnext.paragenrunitfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # remove the element from the occupied element list if (gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4): for a, indxelem in enumerate(gdatmodi.indxelemmodi): if a == 0 and gdatmodi.this.indxproptype == 2 or a == 1 and gdatmodi.this.indxproptype == 4: gmodnext.indxelemfull[gdatmodi.indxpopltran].remove(indxelem) if gdatmodi.this.indxproptype == 0: gdatmodi.indxsampmodi = thisindxsampfull else: if gdatmodi.this.indxproptype == 1: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gdatmodi.this.indxproptype == 2: gdatmodi.indxsampmodi = [gmod.indxpara.numbelem[gdatmodi.indxpopltran]] if gdatmodi.this.indxproptype == 3: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), \ gdatmodi.indxsamptran[0], gdatmodi.indxsamptran[1])) if gdatmodi.this.indxproptype == 4: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gmod.numbparaelem > 0: if gdatmodi.this.indxproptype == 0: indxparagenrfullelem = thisindxparagenrfullelem else: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodnext.indxelemfull, strgmodl) if gdat.typeverb > 1: print('gdatmodi.indxsampmodi') print(gdatmodi.indxsampmodi) if gmod.numbparaelem > 0: print('gmodthis.indxelemfull') print(gmodthis.indxelemfull) print('gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)') print(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)) if gdatmodi.this.indxproptype > 0: print('gdatmodi.indxelemmodi') print(gdatmodi.indxelemmodi) print('gdatmodi.indxelemfullmodi') print(gdatmodi.indxelemfullmodi) print('gdatmodi.this.boolpropfilt') print(gdatmodi.this.boolpropfilt) print('indxparagenrfullelem') print(indxparagenrfullelem) if gdatmodi.this.indxproptype == 1: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0][g]] = icdf_trap(gdat, strgmodl, gdatmodi.this.auxipara[g], gmodthis.paragenrscalfull, \ gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gdatmodi.indxpopltran) if gdat.booldiagmode: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]]): print('l') print(l) print('gmod.indxpara.numbelem') print(gmod.indxpara.numbelem) print('gmodthis.paragenrunitfull') print(gmodthis.paragenrunitfull) raise Exception('') if gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if strgmodl == 'fitt': diffparagenrscalfull = abs(gmodnext.paragenrscalfull - gmodthis.paragenrscalfull) #size = np.where(((gmodthis.paragenrscalfull == 0.) & (diffparagenrscalfull > 0.)) | ((gmodthis.paragenrscalfull != 0.) & (diffparagenrscalfull / gmodthis.paragenrscalfull > 0)))[0].size size = np.where(diffparagenrscalfull != 0.)[0].size if gdatmodi.this.indxproptype == 1: if size - 1 != gmod.numbparagenrelemsing[gdatmodi.indxpopltran]: raise Exception('') def calc_probprop(gdat, gdatmodi): gmod = gdat.fitt # calculate the factor to multiply the acceptance rate, i.e., ## probability of the auxiliary parameters, if gdatmodi.this.indxproptype == 0: gdatmodi.this.lpau = 0. elif gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau = gdatmodi.next.lpritotl - gdatmodi.this.lpritotl lpautemp = 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[gdatmodi.indxpopltran] if gdatmodi.this.indxproptype == 1: gdatmodi.this.lpau += lpautemp if gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau -= lpautemp elif gdatmodi.this.indxproptype == 3 or gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau = 0. dictelemtemp = [dict()] for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.lpau += -0.5 * np.log(2. * np.pi * gdat.radispmr**2) - 0.5 * (gdatmodi.this.auxipara[g] / gdat.radispmr)**2 elif g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: dictelemtemp[0][nameparagenrelem] = gdatmodi.this.auxipara[g] gdatmodi.this.lpau += retr_lprielem(gdat, 'fitt', gdatmodi.indxpopltran, g, \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gdatmodi.this.paragenrscalfull, dictelemtemp, [1]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau *= -1. if gdatmodi.this.indxproptype > 2 and gdatmodi.this.boolpropfilt: ## the ratio of the probability of the reverse and forward proposals, and if gdatmodi.this.indxproptype == 3: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.next.paragenrscalfull, gdatmodi.next.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran] + 1) + np.log(gdatmodi.this.probmergtotl) else: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.this.paragenrscalfull, gdatmodi.this.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = -np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran]) - np.log(gdatmodi.this.probmergtotl) ## Jacobian if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.ljcb = np.log(gdatmodi.comppare[1]) else: gdatmodi.this.ljcb = np.log(gdatmodi.comppare[2]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.ljcb *= -1. else: gdatmodi.this.ljcb = 0. gdatmodi.this.ltrp = 0. for l in gmod.indxpopl: if gdatmodi.this.indxproptype > 0: setattr(gdatmodi, 'auxiparapop%d' % l, gdatmodi.this.auxipara) def retr_indxparagenrfullelem(gdat, indxelemfull, strgmodl): gmod = getattr(gdat, strgmodl) ## element parameters if gmod.numbparaelem > 0: indxparagenrfullelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: indxparagenrfulltemp = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + np.array(indxelemfull[l], dtype=int) * gmod.numbparagenrelemsing[l] cntr = tdpy.cntr() indxparagenrfullelem[l] = dict() for nameparagenrelem in gmod.namepara.genrelem[l]: indxparagenrfullelem[l][nameparagenrelem] = indxparagenrfulltemp + cntr.incr() indxparagenrfullelem[l]['full'] = np.repeat(indxparagenrfulltemp, gmod.numbparagenrelemsing[l]) + np.tile(gmod.indxparagenrelemsing[l], len(indxelemfull[l])) if gdat.booldiagmode: for l in gmod.indxpopl: if len(indxparagenrfullelem[l]['full']) > 0: if np.amax(indxparagenrfullelem[l]['full']) > gmod.numbparagenrelem[l] + gmod.numbparagenrbase: print('strgmodl') print(strgmodl) print('strgstat') print(strgstat) print('gmod.numbparagenrbase') print(gmod.numbparagenrbase) print('gmod.numbparagenrelem[l]') print(gmod.numbparagenrelem[l]) print('indxparagenrfullelem[l][full]') summgene(indxparagenrfullelem[l]['full']) print('gdat.fitt.minmpara.numbelempop0') print(gdat.fitt.minmpara.numbelempop0) print('gdat.fitt.maxmpara.numbelempop0') print(gdat.fitt.maxmpara.numbelempop0) raise Exception('Element parameter indices are bad.') else: indxparagenrfullelem = None return indxparagenrfullelem def retr_weigmergodim(gdat, elin, elinothr): weigmerg = np.exp(-0.5 * ((elin - elinothr) / gdat.radispmr)**2) return weigmerg def retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr): weigmerg = np.exp(-0.5 * (((lgal - lgalothr) / gdat.radispmr)**2 + ((bgal - bgalothr) / gdat.radispmr)**2)) return weigmerg def retr_probmerg(gdat, gdatmodi, paragenrscalfull, indxparagenrfullelem, indxpopltran, strgtype, typeelem=None): # calculate the weights if strgtype == 'seco': numb = 1 if strgtype == 'pair': numb = 2 listweigmerg = [] for a in range(numb): if gmod.typeelem[indxpopltran].startswith('lghtline'): elintotl = paragenrscalfull[indxparagenrfullelem['elin'][indxpopltran]] elin = elintotl[gdatmodi.indxelemfullmodi[0]] elinothr = np.concatenate((elintotl[:gdatmodi.indxelemfullmodi[0]], elintotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergodim(gdat, elin, elinothr) else: lgaltotl = paragenrscalfull[indxparagenrfullelem['lgal'][indxpopltran]] bgaltotl = paragenrscalfull[indxparagenrfullelem['bgal'][indxpopltran]] lgal = lgaltotl[gdatmodi.indxelemfullmodi[0]] bgal = bgaltotl[gdatmodi.indxelemfullmodi[0]] lgalothr = np.concatenate((lgaltotl[:gdatmodi.indxelemfullmodi[0]], lgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) bgalothr = np.concatenate((bgaltotl[:gdatmodi.indxelemfullmodi[0]], bgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr) listweigmerg.append(weigmerg) # determine the probability of merging the second element given the first element if strgtype == 'seco': probmerg = listweigmerg[0] / np.sum(listweigmerg[0]) # determine the probability of merging the pair if strgtype == 'pair': if gmod.typeelem[indxpopltran].startswith('lghtline'): weigpair = retr_weigmergtdim(gdat, elin, elintotl[gdatmodi.indxelemfullmodi[1]]) else: weigpair = retr_weigmergtdim(gdat, lgal, lgaltotl[gdatmodi.indxelemfullmodi[1]], bgal, bgaltotl[gdatmodi.indxelemfullmodi[1]]) probmerg = weigpair / np.sum(listweigmerg[0]) + weigpair / np.sum(listweigmerg[1]) if gdat.booldiagmode: if not np.isfinite(probmerg).all(): raise Exception('Merge probability is infinite.') return probmerg def retr_indxparaelem(gmod, l, u): indxsamppnts = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + u * gmod.numbparagenrelemsing[l] + gmod.indxparagenrelemsing[l] return indxsamppnts def gang_detr(): gang, aang, lgal, bgal = sympy.symbols('gang aang lgal bgal') AB = sympy.matrices.Matrix([[a1*b1,a1*b2,a1*b3],[a2*b1,a2*b2,a2*b3],[a3*b1,a3*b2,a3*b3]]) def retr_psfn(gdat, psfp, indxenertemp, thisangl, typemodlpsfn, strgmodl): gmod = getattr(gdat, strgmodl) indxpsfpinit = gmod.numbpsfptotl * (indxenertemp[:, None] + gdat.numbener * gdat.indxevtt[None, :]) if gdat.typeexpr == 'ferm': scalangl = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(thisangl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] scalanglnorm = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(gdat.binspara.angl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] else: scalangl = thisangl[None, :, None] if typemodlpsfn == 'singgaus': sigc = psfp[indxpsfpinit] sigc = sigc[:, None, :] psfn = retr_singgaus(scalangl, sigc) elif typemodlpsfn == 'singking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigc = sigc[:, None, :] gamc = gamc[:, None, :] psfn = retr_singking(scalangl, sigc, gamc) elif typemodlpsfn == 'doubking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigt = psfp[indxpsfpinit+2] gamt = psfp[indxpsfpinit+3] frac = psfp[indxpsfpinit+4] sigc = sigc[:, None, :] gamc = gamc[:, None, :] sigt = sigt[:, None, :] gamt = gamt[:, None, :] frac = frac[:, None, :] psfn = retr_doubking(scalangl, frac, sigc, gamc, sigt, gamt) if gdat.typeexpr == 'ferm': psfnnorm = retr_doubking(scalanglnorm, frac, sigc, gamc, sigt, gamt) # normalize the PSF if gdat.typeexpr == 'ferm': fact = 2. * np.pi * np.trapz(psfnnorm * np.sin(gdat.binspara.angl[None, :, None]), gdat.binspara.angl, axis=1)[:, None, :] psfn /= fact return psfn def retr_unit(lgal, bgal): xdat = np.cos(bgal) * np.cos(lgal) ydat = -np.cos(bgal) * np.sin(lgal) zaxi = np.sin(bgal) return xdat, ydat, zaxi def retr_psec(gdat, conv): # temp conv = conv.reshape((gdat.numbsidecart, gdat.numbsidecart)) psec = (abs(scipy.fftpack.fft2(conv))**2)[:gdat.numbsidecarthalf, :gdat.numbsidecarthalf] * 1e-3 psec = psec.flatten() return psec def retr_psecodim(gdat, psec): psec = psec.reshape((gdat.numbsidecarthalf, gdat.numbsidecarthalf)) psecodim = np.zeros(gdat.numbsidecarthalf) for k in gdat.indxmpolodim: indxmpol = np.where((gdat.meanpara.mpol > gdat.binspara.mpolodim[k]) & (gdat.meanpara.mpol < gdat.binspara.mpolodim[k+1])) psecodim[k] = np.mean(psec[indxmpol]) psecodim *= gdat.meanpara.mpolodim**2 return psecodim def retr_eerrnorm(minmvarb, maxmvarb, meanvarb, stdvvarb): cdfnminm = 0.5 * (sp.special.erf((minmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfnmaxm = 0.5 * (sp.special.erf((maxmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfndiff = cdfnmaxm - cdfnminm return cdfnminm, cdfndiff def retr_condcatl(gdat): # setup ## number of stacked samples numbstks = 0 indxtupl = [] indxstks = [] indxstksparagenrscalfull = [] for n in gdat.indxsamptotl: indxstks.append([]) indxstkssamptemp = [] for l in gmod.indxpopl: indxstks[n].append([]) for k in range(len(gdat.listpostindxelemfull[n][l])): indxstks[n][l].append(numbstks) indxstkssamptemp.append(numbstks) indxtupl.append([n, l, k]) numbstks += 1 indxstkssamp.append(np.array(indxstkssamptemp)) if gdat.typeverb > 1: print('indxstks') print(indxstks) print('indxtupl') print(indxtupl) print('indxstkssamp') print(indxstksparagenrscalfull) print('numbstks') print(numbstks) cntr = 0 arrystks = np.zeros((numbstks, gmod.numbparagenrelemtotl)) for n in gdat.indxsamptotl: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdat.listpostindxelemfull[n], 'fitt') for l in gmod.indxpopl: for k in np.arange(len(gdat.listpostindxelemfull[n][l])): for m, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): arrystks[indxstks[n][l][k], m] = gdat.listpostparagenrscalfull[n, gmodstat.indxparagenrfullelem[l][nameparagenrelem][k]] if gdat.typeverb > 0: print('Constructing the distance matrix for %d stacked samples...' % arrystks.shape[0]) timeinit = gdat.functime() gdat.distthrs = np.empty(gmod.numbparagenrelemtotl) for k, nameparagenrelem in enumerate(gmod.namepara.elem): # temp l = 0 gdat.distthrs[k] = gdat.stdp[getattr(gdat, 'indxstdppop%d' % l + nameparagenrelem)] # construct lists of samples for each proposal type listdisttemp = [[] for k in range(gmod.numbparagenrelemtotl)] indxstksrows = [[] for k in range(gmod.numbparagenrelemtotl)] indxstkscols = [[] for k in range(gmod.numbparagenrelemtotl)] thisperc = 0 cntr = 0 for k in gmod.indxparagenrelemtotl: for n in range(numbstks): dist = np.fabs(arrystks[n, k] - arrystks[:, k]) indxstks = np.where(dist < gdat.distthrs[k])[0] if indxstks.size > 0: for j in indxstks: cntr += 1 listdisttemp[k].append(dist[j]) indxstksrows[k].append(n) indxstkscols[k].append(j) nextperc = np.floor(100. * float(k * numbstks + n) / numbstks / gmod.numbparagenrelemtotl) if nextperc > thisperc: thisperc = nextperc if cntr > 1e6: break listdisttemp[k] = np.array(listdisttemp[k]) indxstksrows[k] = np.array(indxstksrows[k]) indxstkscols[k] = np.array(indxstkscols[k]) if cntr > 1e6: break listdist = [[] for k in range(gmod.numbparagenrelemtotl)] for k, nameparagenrelem in enumerate(gmod.namepara.elem): listdist[k] = scipy.sparse.csr_matrix((listdisttemp[k], (indxstksrows[k], indxstkscols[k])), shape=(numbstks, numbstks)) listindxstkspair = [] indxstksleft = [] if gdat.typeverb > 0: timefinl = gdat.functime() indxstksleft = range(numbstks) # list of sample lists of the labeled element indxstksassc = [] cntr = 0 gdat.prvlthrs = 0.05 while len(indxstksleft) > 0: # count number of associations numbdist = np.zeros(numbstks, dtype=int) - 1 for p in range(len(indxstksleft)): indxindx = np.where((listdist[0][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmlgal < gdat.anglassc) & \ (listdist[1][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmbgal < gdat.anglassc))[0] numbdist[indxstksleft[p]] = indxindx.size prvlmaxmesti = np.amax(numbdist) / float(gdat.numbsamptotl) if prvlmaxmesti < gdat.prvlthrs: break # determine the element with the highest number of neighbors indxstkscntr = np.argmax(numbdist) indxsamptotlcntr = indxtupl[indxstkscntr][0] indxpoplcntr = indxtupl[indxstkscntr][1] indxelemcntr = indxtupl[indxstkscntr][2] # add the central element sample indxstksassc.append([]) indxstksassc[cntr].append(indxstkscntr) indxstksleft.remove(indxstkscntr) if gdat.typeverb > 1: print('Match step %d' % cntr) print('numbdist') print(numbdist) print('indxstkscntr') print(indxstkscntr) print('indxstksleft') print(indxstksleft) # add the associated element samples if len(indxstksleft) > 0: for n in gdat.indxsamptotl: indxstkstemp = np.intersect1d(np.array(indxstksleft), indxstksparagenrscalfull[n]) if n == indxsamptotlcntr: continue if indxstkstemp.size > 0: totl = np.zeros_like(indxstkstemp) for k in gmod.indxparagenrelemtotl: temp = listdist[k][indxstkscntr, indxstkstemp].tonp.array()[0] totl = totl + temp**2 indxleft = np.argsort(totl)[0] indxstksthis = indxstkstemp[indxleft] thisbool = True for k in gmod.indxparagenrelemtotl: if listdist[k][indxstkscntr, indxstksthis] > gdat.distthrs[k]: thisbool = False if thisbool: indxstksassc[cntr].append(indxstksthis) indxstksleft.remove(indxstksthis) # temp #if gdat.makeplot: # gdatmodi = tdpy.gdatstrt() # gdatmodi.this.indxelemfull = deepcopy(listindxelemfull[n]) # for r in range(len(indxstksassc)): # calc_poststkscond(gdat, indxstksassc) # gdatmodi.this.indxelemfull = [[] for l in gmod.indxpopl] # for indxstkstemp in indxstksleft: # indxsamptotlcntr = indxtupl[indxstkstemp][0] # indxpoplcntr = indxtupl[indxstkstemp][1] # indxelemcntr = indxtupl[indxstkstemp][2] # gdatmodi.this.paragenrscalfull = gdat.listparagenrscalfull[indxsamptotlcntr, :] # gdatmodi.this.indxelemfull[].append() # plot_genemaps(gdat, gdatmodi, 'this', 'cntpdata', strgpdfn, indxenerplot=0, indxevttplot=0, cond=True) cntr += 1 gdat.dictglob['poststkscond'] = [] gdat.dictglob['liststkscond'] = [] # for each condensed element for r in range(len(indxstksassc)): gdat.dictglob['liststkscond'].append([]) gdat.dictglob['liststkscond'][r] = {} gdat.dictglob['poststkscond'].append([]) gdat.dictglob['poststkscond'][r] = {} for strgfeat in gmod.namepara.genrelem: gdat.dictglob['liststkscond'][r][strgfeat] = [] # for each associated sample associated with the central stacked sample for k in range(len(indxstksassc[r])): indxsamptotlcntr = indxtupl[indxstksassc[r][k]][0] indxpoplcntr = indxtupl[indxstksassc[r][k]][1] indxelemcntr = indxtupl[indxstksassc[r][k]][2] for strgfeat in gmod.namepara.genrelem: temp = getattr(gdat, 'list' + strgfeat) if temp[indxsamptotlcntr][indxpoplcntr].size > 0: temp = temp[indxsamptotlcntr][indxpoplcntr][..., indxelemcntr] gdat.dictglob['liststkscond'][r][strgfeat].append(temp) for r in range(len(gdat.dictglob['liststkscond'])): for strgfeat in gmod.namepara.genrelem: arry = np.stack(gdat.dictglob['liststkscond'][r][strgfeat], axis=0) gdat.dictglob['poststkscond'][r][strgfeat] = np.zeros(([3] + list(arry.shape[1:]))) gdat.dictglob['poststkscond'][r][strgfeat][0, ...] = median(arry, axis=0) gdat.dictglob['poststkscond'][r][strgfeat][1, ...] = percennp.tile(arry, 16., axis=0) gdat.dictglob['poststkscond'][r][strgfeat][2, ...] = percennp.tile(arry, 84., axis=0) gdat.numbstkscond = len(gdat.dictglob['liststkscond']) gdat.indxstkscond = np.arange(gdat.numbstkscond) gdat.prvl = np.empty(gdat.numbstkscond) for r in gdat.indxstkscond: gdat.prvl[r] = len(gdat.dictglob['liststkscond'][r]['deltllik']) gdat.prvl /= gdat.numbsamptotl gdat.minmprvl = 0. gdat.maxmprvl = 1. retr_axis(gdat, 'prvl') gdat.histprvl = np.histogram(gdat.prvl, bins=gdat.binspara.prvl)[0] if gdat.makeplot: pathcond = getattr(gdat, 'path' + strgpdfn + 'finlcond') for k, nameparagenrelem in enumerate(gmod.namepara.elem): path = pathcond + 'histdist' + nameparagenrelem listtemp = np.copy(listdist[k].tonp.array()).flatten() listtemp = listtemp[np.where(listtemp != 1e20)[0]] tdpy.mcmc.plot_hist(path, listtemp, r'$\Delta \tilde{' + getattr(gmod.lablrootpara, nameparagenrelem) + '}$') path = pathcond + 'histprvl' tdpy.mcmc.plot_hist(path, gdat.prvl, r'$p$') gdat.prvlthrs = 0.1 gdat.indxprvlhigh = np.where(gdat.prvl > gdat.prvlthrs)[0] gdat.numbprvlhigh = gdat.indxprvlhigh.size def retr_conv(gdat, defl): defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) # temp conv = abs(np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0) + np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) / 2. conv = conv.flatten() return conv def retr_invm(gdat, defl): # temp defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) invm = (1. - np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0)) * (1. - np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) - \ np.gradient(defl[:, :, 0], gdat.sizepixl, axis=1) * np.gradient(defl[:, :, 1], gdat.sizepixl, axis=0) invm = invm.flatten() return invm def setp_indxswepsave(gdat): gdat.indxswep = np.arange(gdat.numbswep) gdat.boolsave = np.zeros(gdat.numbswep, dtype=bool) gdat.indxswepsave = np.arange(gdat.numbburn, gdat.numbburn + gdat.numbsamp * gdat.factthin, gdat.factthin) gdat.boolsave[gdat.indxswepsave] = True gdat.indxsampsave = np.zeros(gdat.numbswep, dtype=int) - 1 gdat.indxsampsave[gdat.indxswepsave] = np.arange(gdat.numbsamp) def retr_cntspnts(gdat, listposi, spec): cnts = np.zeros((gdat.numbener, spec.shape[1])) if gdat.boolbinsspat: lgal = listposi[0] bgal = listposi[1] indxpixlpnts = retr_indxpixl(gdat, bgal, lgal) else: elin = listposi[0] indxpixlpnts = np.zeros_like(elin, dtype=int) for k in range(spec.shape[1]): cnts[:, k] += spec[:, k] * gdat.expototl[:, indxpixlpnts[k]] if gdat.enerdiff: cnts *= gdat.deltener[:, None] cnts = np.sum(cnts, axis=0) return cnts def retr_mdencrit(gdat, adissour, adishost, adishostsour): mdencrit = gdat.factnewtlght / 4. / np.pi * adissour / adishostsour / adishost return mdencrit def retr_massfrombein(gdat, adissour, adishost, adishostsour): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) massfrombein = np.pi * adishost**2 * mdencrit return massfrombein def retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) fracacutasca = acut / asca factmcutfromdefs = np.pi * adishost**2 * mdencrit * asca * retr_mcutfrommscl(fracacutasca) return factmcutfromdefs def retr_mcut(gdat, defs, asca, acut, adishost, mdencrit): mscl = defs * np.pi * adishost**2 * mdencrit * asca fracacutasca = acut / asca mcut = mscl * retr_mcutfrommscl(fracacutasca) return mcut def retr_mcutfrommscl(fracacutasca): mcut = fracacutasca**2 / (fracacutasca**2 + 1.)**2 * ((fracacutasca**2 - 1.) * np.log(fracacutasca) + fracacutasca * np.pi - (fracacutasca**2 + 1.)) return mcut def retr_negalogt(varb): negalogt = sign(varb) * np.log10(np.fabs(varb)) return negalogt def retr_gradmaps(gdat, maps): # temp -- this does not work with vanishing exposure maps = maps.reshape((gdat.numbsidecart, gdat.numbsidecart)) grad = np.dstack((np.gradient(maps, gdat.sizepixl, axis=0), np.gradient(maps, gdat.sizepixl, axis=1))).reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) grad = grad.reshape((gdat.numbpixlcart, 2)) return grad def retr_spatmean(gdat, inpt, boolcntp=False): listspatmean = [[] for b in gdat.indxspatmean] listspatstdv = [[] for b in gdat.indxspatmean] for b, namespatmean in enumerate(gdat.listnamespatmean): if boolcntp: cntp = inpt[gdat.listindxcubespatmean[b]] else: cntp = inpt[gdat.listindxcubespatmean[b]] * gdat.expo[gdat.listindxcubespatmean[b]] * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] spatmean = np.mean(np.sum(cntp, 2), axis=1) / gdat.apix spatstdv = np.sqrt(np.sum(cntp, axis=(1, 2))) / gdat.numbdata / gdat.apix if gdat.boolcorrexpo: spatmean /= gdat.expototlmean spatstdv /= gdat.expototlmean if gdat.enerdiff: spatmean /= gdat.deltener spatstdv /= gdat.deltener listspatmean[b] = spatmean listspatstdv[b] = spatstdv return listspatmean, listspatstdv def retr_rele(gdat, maps, lgal, bgal, defs, asca, acut, indxpixlelem, absv=True, cntpmodl=None): grad = retr_gradmaps(gdat, maps) defl = retr_defl(gdat, indxpixlelem, lgal, bgal, defs, asca=asca, acut=acut) prod = grad * defl if cntpmodl is not None: prod /= cntpmodl[:, None] dotstemp = np.sum(prod, 1) if absv: dotstemp = np.fabs(dotstemp) else: dotstemp = dotstemp dots = np.mean(dotstemp) return dots def retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn, strgmome='pmea', indxvarb=None, indxlist=None): if strgvarb.startswith('cntpdata'): varb = getattr(gdat, strgvarb) elif strgvarb.startswith('histcntpdata'): varb = getattr(gdat, strgvarb) else: if strgmodl == 'true': gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) varb = getattr(gmodstat, strgvarb) if strgmodl == 'fitt': if strgstat == 'this': if strgmome == 'errr': varb = getattr(gdatmodi, strgstat + 'errr' + strgvarb) else: varb = getattr(gdatmodi, strgstat + strgvarb) if strgstat == 'pdfn': varb = getattr(gdat, strgmome + strgpdfn + strgvarb) if indxlist is not None: varb = varb[indxlist] if indxvarb is not None: if strgmome == 'errr': varb = varb[[slice(None)] + indxvarb] else: varb = varb[indxvarb] return np.copy(varb) def setp_indxpara(gdat, typesetp, strgmodl='fitt'): print('setp_indxpara(): Building parameter indices for model %s with type %s...' % (strgmodl, typesetp)) gmod = getattr(gdat, strgmodl) if typesetp == 'init': if strgmodl == 'fitt': gmod.lablmodl = 'Model' if strgmodl == 'true': gmod.lablmodl = 'True' # transdimensional element populations gmod.numbpopl = len(gmod.typeelem) gmod.indxpopl = np.arange(gmod.numbpopl) if gdat.typeexpr != 'user': # background component gmod.numbback = 0 gmod.indxback = [] for c in range(len(gmod.typeback)): if isinstance(gmod.typeback[c], str): if gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): namebfun = gmod.typeback[c][:8] ordrexpa = int(gmod.typeback[c][8:]) numbexpa = 4 * ordrexpa**2 indxexpa = np.arange(numbexpa) del gmod.typeback[c] for k in indxexpa: gmod.typeback.insert(c+k, namebfun + '%04d' % k) gmod.numbback = len(gmod.typeback) gmod.indxback = np.arange(gmod.numbback) gmod.numbbacktotl = np.sum(gmod.numbback) gmod.indxbacktotl = np.arange(gmod.numbbacktotl) # galaxy components gmod.indxsersfgrd = np.arange(gmod.numbsersfgrd) # name of the generative element parameter used for the amplitude gmod.nameparagenrelemampl = [[] for l in gmod.indxpopl] gmod.indxparagenrelemampl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmod.nameparagenrelemampl[l] = 'per0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.nameparagenrelemampl[l] = 'lum0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtline'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 1 elif gmod.typeelem[l].startswith('lghtpnts'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtgausbgrd'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l].startswith('clus'): gmod.nameparagenrelemampl[l] = 'nobj' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' if gmod.typeelem[l] == 'clus': gmod.nameparagenrelemampl[l] = 'nobj' if len(gmod.nameparagenrelemampl[l]) == 0: raise Exception('Amplitude feature undefined.') for featpara in gdat.listfeatpara: for strggrop in gdat.liststrggroppara: setattr(gmod, 'list' + featpara + 'para' + strggrop, []) if typesetp == 'finl': # number of elements in the current state of the true model if strgmodl == 'true': gmod.numbelem = np.zeros(gmod.numbpopl) for l in gmod.indxpopl: gmod.numbelem[l] += getattr(gmod.maxmpara, 'numbelempop%d' % l) gmod.numbelemtotl = np.sum(gmod.numbelem) # element setup ## flag to calculate the kernel approximation errors boolcalcerrr = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelemspateval[l] == 'locl' and gdat.numbpixlfull < 1e5: # temp boolcalcerrr[l] = False else: boolcalcerrr[l] = False setp_varb(gdat, 'boolcalcerrr', valu=boolcalcerrr, strgmodl=strgmodl) # maximum number of elements for each population gmod.maxmpara.numbelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = getattr(gmod.maxmpara, 'numbelempop%d' % l) # maximum number of elements summed over all populations gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) ## sorting feature nameparaelemsort = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # feature to be used to sort elements if gmod.typeelem[l].startswith('lght'): nameparaelemsort[l] = 'flux' if gmod.typeelem[l] == 'lens': nameparaelemsort[l] = 'defs' if gmod.typeelem[l].startswith('clus'): nameparaelemsort[l] = 'nobj' ## label extensions gmod.lablelemextn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{fps}' if gmod.typeelem[l] == 'lghtgausbgrd': gmod.lablelemextn[l] = r'\rm{bgs}' else: if gmod.typeelem[l].startswith('lghtpntspuls'): gmod.lablelemextn[l] = r'\rm{pul}' if gmod.typeelem[l].startswith('lghtpntsagnn'): gmod.lablelemextn[l] = r'\rm{agn}' elif gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{pts}' if gmod.typeelem[l] == 'lens': gmod.lablelemextn[l] = r'\rm{sub}' if gmod.typeelem[l].startswith('clus'): gmod.lablelemextn[l] = r'\rm{cls}' if gmod.typeelem[l].startswith('lghtline'): gmod.lablelemextn[l] = r'\rm{lin}' gmod.indxpoplgrid = [[] for y in gdat.indxgrid] for y in gdat.indxgrid: for indx, typeelemtemp in enumerate(gmod.typeelem): # foreground grid (image plane) -- the one np.where the data is measured if y == 0: if typeelemtemp.startswith('lght') and not typeelemtemp.endswith('bgrd') or typeelemtemp.startswith('clus'): gmod.indxpoplgrid[y].append(indx) # foreground mass grid if y == 1: if typeelemtemp.startswith('lens'): gmod.indxpoplgrid[y].append(indx) # background grid (source plane) if y == 2: if typeelemtemp.endswith('bgrd'): gmod.indxpoplgrid[y].append(indx) indxgridpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for y in gdat.indxgrid: if l in gmod.indxpoplgrid[y]: indxgridpopl[l] = y calcelemsbrt = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts'): calcelemsbrt = True if 'lghtgausbgrd' in gmod.typeelem: calcelemsbrtbgrd = True else: calcelemsbrtbgrd = False if gmod.boollenssubh: calcelemdefl = True else: calcelemdefl = False ## element Boolean flags gmod.boolelemlght = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.boolelemlght[l] = True else: gmod.boolelemlght[l] = False gmod.boolelemlghtanyy = True in gmod.boolelemlght gmod.boolelemlens = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lens'): gmod.boolelemlens = True gmod.boolelemsbrtdfnc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0 and (gmod.typeelem[l].startswith('lght') and not gmod.typeelem[l].endswith('bgrd') or gmod.typeelem[l].startswith('clus')): gmod.boolelemsbrtdfnc[l] = True else: gmod.boolelemsbrtdfnc[l] = False gmod.boolelemsbrtdfncanyy = True in gmod.boolelemsbrtdfnc gmod.boolelemdeflsubh = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': gmod.boolelemdeflsubh[l] = True else: gmod.boolelemdeflsubh[l] = False gmod.boolelemdeflsubhanyy = True in gmod.boolelemdeflsubh gmod.boolelemsbrtextsbgrd = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l].endswith('bgrd'): gmod.boolelemsbrtextsbgrd[l] = True else: gmod.boolelemsbrtextsbgrd[l] = False gmod.boolelemsbrtextsbgrdanyy = True in gmod.boolelemsbrtextsbgrd if gmod.boolelemsbrtextsbgrdanyy: gmod.indxpopllens = 1 else: gmod.indxpopllens = 0 gmod.boolelemsbrtpnts = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l] != 'lghtline' or gmod.typeelem[l] == 'clus': gmod.boolelemsbrtpnts[l] = True else: gmod.boolelemsbrtpnts[l] = False gmod.boolelemsbrtpntsanyy = True in gmod.boolelemsbrtpnts # temp -- because there is currently no extended source gmod.boolelemsbrt = gmod.boolelemsbrtdfnc gmod.boolelempsfn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts') or gmod.typeelem[l] == 'clus': gmod.boolelempsfn[l] = True else: gmod.boolelempsfn[l] = False gmod.boolelempsfnanyy = True in gmod.boolelempsfn spectype = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.boolelemlght[l]: spectype[l] = 'powr' else: spectype[l] = 'none' setp_varb(gdat, 'spectype', valu=spectype, strgmodl=strgmodl) minmgwdt = 2. * gdat.sizepixl maxmgwdt = gdat.maxmgangdata / 4. setp_varb(gdat, 'gwdt', minm=minmgwdt, maxm=maxmgwdt, strgmodl=strgmodl) setp_varb(gdat, 'aerr', minm=-100, maxm=100, strgmodl=strgmodl, popl='full') if gmod.boolelemlghtanyy: # flux if gdat.typeexpr == 'ferm': minmflux = 1e-9 maxmflux = 1e-6 if gdat.typeexpr == 'tess': minmflux = 1. maxmflux = 1e3 if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': minmflux = 1e4 maxmflux = 1e7 else: minmflux = 3e-9 maxmflux = 1e-6 if gdat.typeexpr == 'gene': minmflux = 0.1 maxmflux = 100. if gdat.typeexpr == 'hubb': minmflux = 1e-20 maxmflux = 1e-17 if gdat.typeexpr == 'fire': minmflux = 1e-20 maxmflux = 1e-17 setp_varb(gdat, 'flux', limt=[minmflux, maxmflux], strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'brekprioflux', limt=[3e-9, 1e-6], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'sloplowrprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'slopupprprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) if gdat.boolbinsener: ### spectral parameters if gdat.typeexpr == 'ferm': sind = [1., 3.] minmsind = 1. maxmsind = 3. if gdat.typeexpr == 'chan': minmsind = 0.4 maxmsind = 2.4 sind = [0.4, 2.4] if gdat.typeexpr == 'hubb': minmsind = 0.5 maxmsind = 2.5 sind = [0.4, 2.4] if gdat.typeexpr != 'fire': setp_varb(gdat, 'sind', limt=[minmsind, maxmsind], strgmodl=strgmodl) setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) setp_varb(gdat, 'expc', limt=[0.1, 10.], strgmodl=strgmodl) setp_varb(gdat, 'sinddistmean', limt=sind, popl='full', strgmodl=strgmodl) #### standard deviations should not be too small setp_varb(gdat, 'sinddiststdv', limt=[0.3, 2.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdistmean', limt=[-1., 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdiststdv', limt=[0.1, 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdistmean', limt=[1., 8.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdiststdv', limt=[0.01 * gdat.maxmener, gdat.maxmener], popl='full', strgmodl=strgmodl) for i in gdat.indxenerinde: setp_varb(gdat, 'sindcolr0001', limt=[-2., 6.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr0002', limt=[0., 8.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr%04d' % i, limt=[-5., 10.], strgmodl=strgmodl) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': setp_varb(gdat, 'gang', limt=[1e-1 * gdat.sizepixl, gdat.maxmgangdata], strgmodl=strgmodl) setp_varb(gdat, 'geff', limt=[0., 0.4], strgmodl=strgmodl) setp_varb(gdat, 'dglc', limt=[10., 3e3], strgmodl=strgmodl) setp_varb(gdat, 'phii', limt=[0., 2. * np.pi], strgmodl=strgmodl) setp_varb(gdat, 'thet', limt=[0., np.pi], strgmodl=strgmodl) setp_varb(gdat, 'per0distmean', limt=[5e-4, 1e1], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdistmean', limt=[1e7, 1e16], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'per0diststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdiststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'gangslop', limt=[0.5, 4.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'dglcslop', limt=[0.5, 2.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'spatdistcons', limt=[1e-4, 1e-2], popl='full') setp_varb(gdat, 'bgaldistscal', limt=[0.5 / gdat.anglfact, 5. / gdat.anglfact], popl='full', strgmodl=strgmodl) if gmod.typeelem[l] == 'lghtpntsagnntrue': setp_varb(gdat, 'dlos', limt=[1e7, 1e9], strgmodl=strgmodl) setp_varb(gdat, 'dlosslop', limt=[-0.5, -3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0', limt=[1e43, 1e46], strgmodl=strgmodl) setp_varb(gdat, 'lum0distbrek', limt=[1e42, 1e46], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0sloplowr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0slopuppr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) # construct background surface brightness templates from the user input gmod.sbrtbacknorm = [[] for c in gmod.indxback] gmod.boolunifback = np.ones(gmod.numbback, dtype=bool) for c in gmod.indxback: gmod.sbrtbacknorm[c] = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gmod.typeback[c] == 'data': gmod.sbrtbacknorm[c] = np.copy(gdat.sbrtdata) gmod.sbrtbacknorm[c][np.where(gmod.sbrtbacknorm[c] == 0.)] = 1e-100 elif isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c] elif isinstance(gmod.typeback[c], list) and isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = retr_spec(gdat, np.array([gmod.typeback[c]]), sind=np.array([gmod.typeback[c]]))[:, 0, None, None] elif isinstance(gmod.typeback[c], np.ndarray) and gmod.typeback[c].ndim == 1: gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c][:, None, None] elif gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): indxexpatemp = int(gmod.typeback[c][8:]) indxterm = indxexpatemp // ordrexpa**2 indxexpaxdat = (indxexpatemp % ordrexpa**2) // ordrexpa + 1 indxexpaydat = (indxexpatemp % ordrexpa**2) % ordrexpa + 1 if namebfun == 'bfunfour': ampl = 1. func = gdat.meanpara.bgalcart if namebfun == 'bfunwfou': functemp = np.exp(-0.5 * (gdat.meanpara.bgalcart / (1. / gdat.anglfact))**2) ampl = np.sqrt(functemp) func = functemp argslgal = 2. * np.pi * indxexpaxdat * gdat.meanpara.lgalcart / gdat.maxmgangdata argsbgal = 2. * np.pi * indxexpaydat * func / gdat.maxmgangdata if indxterm == 0: termfrst = np.sin(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 1: termfrst = np.sin(argslgal) termseco = ampl * np.cos(argsbgal) if indxterm == 2: termfrst = np.cos(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 3: termfrst = np.cos(argslgal) termseco = ampl * np.cos(argsbgal) gmod.sbrtbacknorm[c] = (termfrst[None, :] * termseco[:, None]).flatten()[None, :, None] * \ np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) else: path = gdat.pathinpt + gmod.typeback[c] gmod.sbrtbacknorm[c] = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': if not gdat.boolforccart: if gmod.sbrtbacknorm[c].shape[2] != gdat.numbsidecart: raise Exception('Provided background template must have the chosen image dimensions.') gmod.sbrtbacknorm[c] = gmod.sbrtbacknorm[c].reshape((gmod.sbrtbacknorm[c].shape[0], -1, gmod.sbrtbacknorm[c].shape[-1])) if gdat.typepixl == 'cart' and gdat.boolforccart: sbrtbacknormtemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtbacknormtemp[i, :, m] = tdpy.retr_cart(gmod.sbrtbacknorm[c][i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gmod.sbrtbacknorm[c] = sbrtbacknormtemp # determine spatially uniform background templates for i in gdat.indxenerfull: for m in gdat.indxevttfull: if np.std(gmod.sbrtbacknorm[c][i, :, m]) > 1e-6: gmod.boolunifback[c] = False boolzero = True gmod.boolbfun = False for c in gmod.indxback: if np.amin(gmod.sbrtbacknorm[c]) < 0. and isinstance(gmod.typeback[c], str) and not gmod.typeback[c].startswith('bfun'): booltemp = False raise Exception('Background templates must be positive-definite every where.') if not np.isfinite(gmod.sbrtbacknorm[c]).all(): raise Exception('Background template is not finite.') if np.amin(gmod.sbrtbacknorm[c]) > 0. or gmod.typeback[c] == 'data': boolzero = False if isinstance(gmod.typeback[c], str) and gmod.typeback[c].startswith('bfun'): gmod.boolbfun = True if boolzero and not gmod.boolbfun: raise Exception('At least one background template must be positive everynp.where.') # temp -- does not take into account dark hosts gmod.boolhost = gmod.typeemishost != 'none' # type of PSF evaluation if gmod.maxmpara.numbelemtotl > 0 and gmod.boolelempsfnanyy: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'full' else: # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'kern' else: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is convolved by a kernel, no point source exists typeevalpsfn = 'conv' else: # the background is not convolved by a kernel, no point source exists typeevalpsfn = 'none' setp_varb(gdat, 'typeevalpsfn', valu=typeevalpsfn, strgmodl=strgmodl) if gdat.typeverb > 1: print('gmod.typeevalpsfn') print(gmod.typeevalpsfn) gmod.boolapplpsfn = gmod.typeevalpsfn != 'none' ### PSF model if gmod.typeevalpsfn != 'none': if gmod.typemodlpsfn == 'singgaus': numbpsfpform = 1 elif gmod.typemodlpsfn == 'singking': numbpsfpform = 2 elif gmod.typemodlpsfn == 'doubgaus': numbpsfpform = 3 elif gmod.typemodlpsfn == 'gausking': numbpsfpform = 4 elif gmod.typemodlpsfn == 'doubking': numbpsfpform = 5 gmod.numbpsfptotl = numbpsfpform if gdat.boolpriopsfninfo: for i in gdat.indxener: for m in gdat.indxevtt: meansigc = gmod.psfpexpr[i * gmod.numbpsfptotl + m * gmod.numbpsfptotl * gdat.numbener] stdvsigc = meansigc * 0.1 setp_varb(gdat, 'sigcen%02devt%d' % (i, m), mean=meansigc, stdv=stdvsigc, lablroot='$\sigma$', scal='gaus', \ strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': meangamc = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 1] stdvgamc = meangamc * 0.1 setp_varb(gdat, 'gamcen%02devt%d' % (i, m), mean=meangamc, stdv=stdvgamc, strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking': meansigt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 2] stdvsigt = meansigt * 0.1 setp_varb(gdat, 'sigten%02devt%d' % (i, m), mean=meansigt, stdv=stdvsigt, strgmodl=strgmodl) meangamt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 3] stdvgamt = meangamt * 0.1 setp_varb(gdat, 'gamten%02devt%d' % (i, m), mean=meangamt, stdv=stdvgamt, strgmodl=strgmodl) meanpsff = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 4] stdvpsff = meanpsff * 0.1 setp_varb(gdat, 'psffen%02devt%d' % (i, m), mean=meanpsff, stdv=stdvpsff, strgmodl=strgmodl) else: if gdat.typeexpr == 'gene': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'ferm': minmsigm = 0.1 maxmsigm = 10. if gdat.typeexpr == 'hubb': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'chan': minmsigm = 0.1 / gdat.anglfact maxmsigm = 2. / gdat.anglfact minmgamm = 1.5 maxmgamm = 20. setp_varb(gdat, 'sigc', minm=minmsigm, maxm=maxmsigm, lablroot='$\sigma_c$', ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'sigt', minm=minmsigm, maxm=maxmsigm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamc', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamt', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'psff', minm=0., maxm=1., ener='full', evtt='full', strgmodl=strgmodl) # background ## number of background parameters numbbacp = 0 for c in gmod.indxback: if gmod.boolspecback[c]: numbbacp += 1 else: numbbacp += gdat.numbener ## background parameter indices gmod.indxbackbacp = np.zeros(numbbacp, dtype=int) indxenerbacp = np.zeros(numbbacp, dtype=int) cntr = 0 for c in gmod.indxback: if gmod.boolspecback[c]: gmod.indxbackbacp[cntr] = c cntr += 1 else: for i in gdat.indxener: indxenerbacp[cntr] = i gmod.indxbackbacp[cntr] = c cntr += 1 # indices of background parameters for each background component gmod.indxbacpback = [[] for c in gmod.indxback] for c in gmod.indxback: gmod.indxbacpback[c] = np.where((gmod.indxbackbacp == c))[0] # list of names of diffuse components gmod.listnamediff = [] for c in gmod.indxback: gmod.listnamediff += ['back%04d' % c] if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: gmod.listnamediff += ['hostisf%d' % e] if gmod.boollens: gmod.listnamediff += ['lens'] # list of names of emission components listnameecom = deepcopy(gmod.listnamediff) for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: if strgmodl == 'true' and gmod.numbelem[l] > 0 or strgmodl == 'fitt' and gmod.maxmpara.numbelem[l] > 0: if not 'dfnc' in listnameecom: listnameecom += ['dfnc'] if not 'dfncsubt' in listnameecom: listnameecom += ['dfncsubt'] gmod.listnameecomtotl = listnameecom + ['modl'] for c in gmod.indxback: setp_varb(gdat, 'cntpback%04d' % c, lablroot='$C_{%d}$' % c, minm=1., maxm=100., scal='logt', strgmodl=strgmodl) gmod.listnamegcom = deepcopy(gmod.listnameecomtotl) if gmod.boollens: gmod.listnamegcom += ['bgrd'] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: gmod.listnamegcom += ['bgrdgalx', 'bgrdexts'] numbdiff = len(gmod.listnamediff) convdiff = np.zeros(numbdiff, dtype=bool) for k, namediff in enumerate(gmod.listnamediff): if not (gdat.boolthindata or gmod.typeevalpsfn == 'none' or gmod.typeevalpsfn == 'kern'): if namediff.startswith('back'): indx = int(namediff[-4:]) convdiff[k] = not gmod.boolunifback[indx] else: convdiff[k] = True # element parameters that correlate with the statistical significance of the element gmod.namepara.elemsign = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.namepara.elemsign[l] = 'flux' if gmod.typeelem[l] == 'lens': gmod.namepara.elemsign[l] = 'defs' if gmod.typeelem[l].startswith('clus'): gmod.namepara.elemsign[l] = 'nobj' if gdat.typeverb > 0: if strgmodl == 'true': strgtemp = 'true' if strgmodl == 'fitt': strgtemp = 'fitting' print('Building elements for the %s model...' % strgtemp) # define the names and scalings of element parameters gmod.namepara.genrelem = [[] for l in gmod.indxpopl] gmod.listscalparagenrelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] = ['elin'] gmod.listscalparagenrelem[l] = ['logt'] elif gmod.typespatdist[l] == 'diskscal': gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'dexp'] elif gmod.typespatdist[l] == 'gangexpo': gmod.namepara.genrelem[l] = ['gang', 'aang'] gmod.listscalparagenrelem[l] = ['expo', 'self'] elif gmod.typespatdist[l] == 'glc3': gmod.namepara.genrelem[l] = ['dglc', 'thet', 'phii'] gmod.listscalparagenrelem[l] = ['powr', 'self', 'self'] else: gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'self'] # amplitude if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['lum0'] gmod.listscalparagenrelem[l] += ['dpowslopbrek'] elif gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['per0'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] elif gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['flux'] gmod.listscalparagenrelem[l] += [gmod.typeprioflux[l]] elif gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['defs'] gmod.listscalparagenrelem[l] += ['powr'] elif gmod.typeelem[l].startswith('clus'): gmod.namepara.genrelem[l] += ['nobj'] gmod.listscalparagenrelem[l] += ['powr'] # shape if gmod.typeelem[l] == 'lghtgausbgrd' or gmod.typeelem[l] == 'clusvari': gmod.namepara.genrelem[l] += ['gwdt'] gmod.listscalparagenrelem[l] += ['powr'] if gmod.typeelem[l] == 'lghtlinevoig': gmod.namepara.genrelem[l] += ['sigm'] gmod.listscalparagenrelem[l] += ['logt'] gmod.namepara.genrelem[l] += ['gamm'] gmod.listscalparagenrelem[l] += ['logt'] # others if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['magf'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] gmod.namepara.genrelem[l] += ['geff'] gmod.listscalparagenrelem[l] += ['self'] elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['dlos'] gmod.listscalparagenrelem[l] += ['powr'] if gdat.numbener > 1 and gmod.typeelem[l].startswith('lghtpnts'): if gmod.spectype[l] == 'colr': for i in gdat.indxener: if i == 0: continue gmod.namepara.genrelem[l] += ['sindcolr%04d' % i] gmod.listscalparagenrelem[l] += ['self'] else: gmod.namepara.genrelem[l] += ['sind'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'curv': gmod.namepara.genrelem[l] += ['curv'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'expc': gmod.namepara.genrelem[l] += ['expc'] gmod.listscalparagenrelem[l] += ['self'] if gmod.typeelem[l] == 'lens': if gdat.variasca: gmod.namepara.genrelem[l] += ['asca'] gmod.listscalparagenrelem[l] += ['self'] if gdat.variacut: gmod.namepara.genrelem[l] += ['acut'] gmod.listscalparagenrelem[l] += ['self'] # names of element parameters for each scaling gmod.namepara.genrelemscal = [{} for l in gmod.indxpopl] for l in gmod.indxpopl: for scaltype in gdat.listscaltype: gmod.namepara.genrelemscal[l][scaltype] = [] for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if scaltype == gmod.listscalparagenrelem[l][k]: gmod.namepara.genrelemscal[l][scaltype].append(nameparagenrelem) # variables for which whose marginal distribution and pair-correlations will be plotted gmod.namepara.derielemodim = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.derielemodim[l] = deepcopy(gmod.namepara.genrelem[l]) gmod.namepara.derielemodim[l] += ['deltllik'] if gdat.boolbinsspat: if not 'lgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['lgal'] if not 'bgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['bgal'] if not 'gang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['gang'] if not 'aang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['aang'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.derielemodim[l] += ['cnts'] if gdat.typeexpr == 'ferm': gmod.namepara.derielemodim[l] + ['sbrt0018'] if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.derielemodim[l] += ['reds'] gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] gmod.namepara.derielemodim[l] += ['mass'] gmod.namepara.derielemodim[l] += ['dlos'] if gmod.typeelem[l] == 'lens': gmod.namepara.derielemodim[l] += ['mcut', 'diss', 'rele', 'reln', 'relk', 'relf', 'relm', 'reld', 'relc'] #for k in range(len(gmod.namepara.derielemodim[l])): # gmod.namepara.derielemodim[l][k] += 'pop%d' % l # check later # temp #if strgmodl == 'fitt': # for q in gdat.indxrefr: # if gmod.nameparagenrelemampl[l] in gdat.refr.namepara.elem[q]: # gmod.namepara.derielemodim[l].append('aerr' + gdat.listnamerefr[q]) if gdat.typeverb > 1: print('gmod.namepara.derielemodim') print(gmod.namepara.derielemodim) # derived element parameters gmod.namepara.derielem = gmod.namepara.derielemodim[:] if gdat.typeverb > 1: print('gmod.namepara.derielem') print(gmod.namepara.derielem) # derived parameters gmod.listnameparaderitotl = [temptemp for temp in gmod.namepara.derielem for temptemp in temp] #gmod.listnameparaderitotl += gmod.namepara.scal for namediff in gmod.listnamediff: gmod.listnameparaderitotl += ['cntp' + namediff] if gdat.typeverb > 1: print('gmod.listnameparaderitotl') print(gmod.listnameparaderitotl) if strgmodl == 'fitt': # add reference element parameters that are not available in the fitting model gdat.refr.namepara.elemonly = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] gmod.namepara.extrelem = [[] for l in gmod.indxpopl] for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for name in gdat.refr.namepara.elem[q]: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and (name == 'defs' or name == 'acut' or name == 'asca' or name == 'mass'): continue if gmod.typeelem[l] == ('lens') and (name == 'cnts' or name == 'flux' or name == 'spec' or name == 'sind'): continue if not name in gmod.namepara.derielemodim[l]: nametotl = name + gdat.listnamerefr[q] if name == 'etag': continue gmod.namepara.derielemodim[l].append(nametotl) if gdat.refr.numbelem[q] == 0: continue gdat.refr.namepara.elemonly[q][l].append(name) if not nametotl in gmod.namepara.extrelem[l]: gmod.namepara.extrelem[l].append(nametotl) #if name == 'reds': # for nametemp in ['lumi', 'dlos']: # nametemptemp = nametemp + gdat.listnamerefr[q] # if not nametemptemp in gmod.namepara.extrelem[l]: # gmod.namepara.derielemodim[l].append(nametemp + gdat.listnamerefr[q]) # gmod.namepara.extrelem[l].append(nametemptemp) if gdat.typeverb > 1: print('gdat.refr.namepara.elemonly') print(gdat.refr.namepara.elemonly) if gdat.typeexpr == 'chan' and gdat.typedata == 'inpt': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpnts': gmod.namepara.extrelem[l].append('lumiwo08') gmod.namepara.derielemodim[l].append('lumiwo08') if gdat.typeverb > 1: print('gmod.namepara.extrelem') print(gmod.namepara.extrelem) # defaults gmod.liststrgpdfnmodu = [[] for l in gmod.indxpopl] gmod.namepara.genrelemmodu = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0.: if l == 1: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] if l == 2: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for liststrg in [gmod.namepara.genrelem[l], gmod.namepara.derielemodim[l]]: for strgthis in liststrg: if not strgthis in gmod.namepara.elem[l]: gmod.namepara.elem[l].append(strgthis) # temp for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] += ['spec'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['spec', 'specplot'] if gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['deflprof'] #gmod.namepara.genrelemeval = [[] for l in gmod.indxpopl] #for l in gmod.indxpopl: # if gmod.typeelem[l].startswith('clus'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'nobj'] # if gmod.typeelem[l] == 'clusvari': # gmod.namepara.genrelemeval[l] += ['gwdt'] # if gmod.typeelem[l] == 'lens': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'defs', 'asca', 'acut'] # if gmod.typeelem[l].startswith('lghtline'): # gmod.namepara.genrelemeval[l] = ['elin', 'spec'] # elif gmod.typeelem[l] == 'lghtgausbgrd': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'gwdt', 'spec'] # elif gmod.typeelem[l].startswith('lght'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'spec'] ## element legends lablpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': lablpopl[l] = 'FPS' if gmod.typeelem[l] == 'lghtgausbgrd': lablpopl[l] = 'BGS' else: if gmod.typeelem[l] == 'lghtpntspuls': lablpopl[l] = 'Pulsar' elif gmod.typeelem[l].startswith('lghtpntsagnn'): lablpopl[l] = 'AGN' elif gmod.typeelem[l].startswith('lghtpnts'): lablpopl[l] = 'PS' if gmod.typeelem[l] == 'lens': lablpopl[l] = 'Subhalo' if gmod.typeelem[l].startswith('clus'): lablpopl[l] = 'Cluster' if gmod.typeelem[l].startswith('lghtline'): lablpopl[l]= 'Line' setp_varb(gdat, 'lablpopl', valu=lablpopl, strgmodl=strgmodl) if strgmodl == 'true': gmod.indxpoplassc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.numbpopl == 3 and gmod.typeelem[1] == 'lens': gmod.indxpoplassc[l] = [l] else: gmod.indxpoplassc[l] = gmod.indxpopl # variables for which two dimensional histograms will be calculated gmod.namepara.genrelemcorr = [[] for l in gmod.indxpopl] if gdat.boolplotelemcorr: for l in gmod.indxpopl: for strgfeat in gmod.namepara.derielemodim[l]: gmod.namepara.genrelemcorr[l].append(strgfeat) # number of element parameters if gmod.numbpopl > 0: gmod.numbparagenrelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcuml = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcumr = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: # number of generative element parameters for a single element of a specific population gmod.numbparagenrelemsing[l] = len(gmod.namepara.genrelem[l]) # number of derived element parameters for a single element of a specific population gmod.numbparaderielemsing[l] = len(gmod.namepara.derielem[l]) # number of element parameters for a single element of a specific population gmod.numbparaelemsing[l] = len(gmod.namepara.elem[l]) # number of generative element parameters for all elements of a specific population gmod.numbparagenrelem[l] = gmod.numbparagenrelemsing[l] * gmod.maxmpara.numbelem[l] # number of generative element parameters up to the beginning of a population gmod.numbparagenrelemcuml[l] = np.sum(gmod.numbparagenrelem[:l]) # number of generative element parameters up to the end of a population gmod.numbparagenrelemcumr[l] = np.sum(gmod.numbparagenrelem[:l+1]) # number of derived element parameters for all elements of a specific population gmod.numbparaderielem[l] = gmod.numbparaderielemsing[l] * gmod.numbelem[l] # number of element parameters for all elements of a specific population gmod.numbparaelem[l] = gmod.numbparaelemsing[l] * gmod.numbelem[l] # number of generative element parameters summed over all populations gmod.numbparagenrelemtotl = np.sum(gmod.numbparagenrelem) # number of derived element parameters summed over all populations gmod.numbparaderielemtotl = np.sum(gmod.numbparaderielem) # number of element parameters summed over all populations gmod.numbparaelemtotl = np.sum(gmod.numbparaderielem) gmod.indxparagenrelemsing = [] for l in gmod.indxpopl: gmod.indxparagenrelemsing.append(np.arange(gmod.numbparagenrelemsing[l])) gmod.indxparaderielemsing = [] for l in gmod.indxpopl: gmod.indxparaderielemsing.append(np.arange(gmod.numbparaderielemsing[l])) gmod.indxparaelemsing = [] for l in gmod.indxpopl: gmod.indxparaelemsing.append(np.arange(gmod.numbparaelemsing[l])) # size of the auxiliary variable propobability density vector if gmod.maxmpara.numbelemtotl > 0: gmod.numblpri = 3 + gmod.numbparagenrelem * gmod.numbpopl else: gmod.numblpri = 0 if gdat.penalpridiff: gmod.numblpri += 1 indxlpri = np.arange(gmod.numblpri) # append the population tags to element parameter names #for l in gmod.indxpopl: # gmod.namepara.genrelem[l] = [gmod.namepara.genrelem[l][g] + 'pop%d' % l for g in gmod.indxparagenrelemsing[l]] gmod.boolcompposi = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.boolcompposi[l] = np.zeros(gmod.numbparagenrelemsing[l], dtype=bool) if gmod.typeelem[l].startswith('lghtline'): gmod.boolcompposi[l][0] = True else: gmod.boolcompposi[l][0] = True gmod.boolcompposi[l][1] = True # list of strings across all populations ## all (generative and derived) element parameters gmod.numbparaelem = len(gmod.namepara.elem) gmod.indxparaelem = np.arange(gmod.numbparaelem) # flattened list of generative element parameters gmod.listnameparagenfelem = [] for l in gmod.indxpopl: for nameparagenrelem in gmod.namepara.genrelem[l]: gmod.listnameparagenfelem.append(nameparagenrelem + 'pop%d' % l) # concatenated list of flattened generative and derived element parameters gmod.listnameparatotlelem = gmod.listnameparagenfelem + gmod.namepara.derielem gmod.numbparaelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.numbparaelem[l] = len(gmod.namepara.elem[l]) numbdeflsubhplot = 2 numbdeflsingplot = numbdeflsubhplot if gmod.numbparaelem > 0: numbdeflsingplot += 3 gmod.convdiffanyy = True in convdiff cntr = tdpy.cntr() if gmod.boollens: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost massfrombein = retr_massfrombein(gdat, adissour, adishost, adishostsour) mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) # object of parameter indices gmod.indxpara = tdpy.gdatstrt() # define parameter indices if gmod.numbparaelem > 0: # number of elements #gmod.indxpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: indx = cntr.incr() setattr(gmod.indxpara, 'numbelempop%d' % l, indx) #gmod.indxpara.numbelem[l] = indx # hyperparameters ## mean number of elements if gmod.typemodltran == 'pois': #gmod.indxpara.meanelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: indx = cntr.incr() setattr(gmod.indxpara, 'meanelempop%d' % l, indx) #gmod.indxpara.meanelem[l] = indx ## parameters parametrizing priors on element parameters liststrgvarb = [] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: for strgpdfnelemgenr, strgfeat in zip(gmod.listscalparagenrelem[l], gmod.namepara.genrelem[l]): if strgpdfnelemgenr == 'expo' or strgpdfnelemgenr == 'dexp': liststrgvarb += [strgfeat + 'distscal'] if strgpdfnelemgenr == 'powr': liststrgvarb += ['slopprio' + strgfeat + 'pop%d' % l] if strgpdfnelemgenr == 'dpow': liststrgvarb += [strgfeat + 'distbrek'] liststrgvarb += [strgfeat + 'sloplowr'] liststrgvarb += [strgfeat + 'slopuppr'] if strgpdfnelemgenr == 'gausmean' or strgpdfnelemgenr == 'lnormean': liststrgvarb += [strgfeat + 'distmean'] if strgpdfnelemgenr == 'gausstdv' or strgpdfnelemgenr == 'lnorstdv': liststrgvarb += [strgfeat + 'diststdv'] if strgpdfnelemgenr == 'gausmeanstdv' or strgpdfnelemgenr == 'lnormeanstdv': liststrgvarb += [nameparagenrelem + 'distmean', nameparagenrelem + 'diststdv'] for strgvarb in liststrgvarb: setattr(gmod.indxpara, strgvarb, np.zeros(gmod.numbpopl, dtype=int) - 1) for l in gmod.indxpopl: strgpopl = 'pop%d' % l if gmod.maxmpara.numbelem[l] > 0: for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if gmod.listscalparagenrelem[l][k] == 'self': continue indx = cntr.incr() if gmod.listscalparagenrelem[l][k] == 'dpow': for nametemp in ['brek', 'sloplowr', 'slopuppr']: strg = '%s' % nametemp + nameparagenrelem setattr(gmod.indxpara, strg, indx) setattr(gmod.indxpara, strg, indx) else: if gmod.listscalparagenrelem[l][k] == 'expo' or gmod.listscalparagenrelem[l][k] == 'dexp': strghypr = 'scal' if gmod.listscalparagenrelem[l][k] == 'powr': strghypr = 'slop' if gmod.listscalparagenrelem[l][k] == 'gausmean' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnormean' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'mean' if gmod.listscalparagenrelem[l][k] == 'gausstdv' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnorstdv' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'stdv' strg = strghypr + 'prio' + nameparagenrelem + 'pop%d' % l setattr(gmod.indxpara, strg, indx) # group PSF parameters if gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full': for m in gdat.indxevtt: for i in gdat.indxener: setattr(gmod.indxpara, 'sigcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': setattr(gmod.indxpara, 'gamcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking': setattr(gmod.indxpara, 'sigten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'gamten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'ffenen%02devt%d' % (i, m), cntr.incr()) gmod.indxpara.psfp = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith('sigce') or strg.startswith('sigte') or strg.startswith('gamce') or strg.startswith('gamte') or strg.startswith('psffe'): gmod.indxpara.psfp.append(valu) gmod.indxpara.psfp = np.array(gmod.indxpara.psfp) gmod.numbpsfptotlevtt = gdat.numbevtt * gmod.numbpsfptotl gmod.numbpsfptotlener = gdat.numbener * gmod.numbpsfptotl numbpsfp = gmod.numbpsfptotl * gdat.numbener * gdat.numbevtt indxpsfpform = np.arange(numbpsfpform) indxpsfptotl = np.arange(gmod.numbpsfptotl) indxpsfp = np.arange(numbpsfp) gmod.indxpara.psfp = np.sort(gmod.indxpara.psfp) gmod.indxparapsfpinit = gmod.indxpara.psfp[0] # group background parameters gmod.indxpara.bacp = [] for c in gmod.indxback: if gmod.boolspecback[c]: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04d' % c, indx) gmod.indxpara.bacp.append(indx) else: for i in gdat.indxener: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04den%02d' % (c, i), indx) gmod.indxpara.bacp.append(indx) gmod.indxpara.bacp = np.array(gmod.indxpara.bacp) # temp #gmod.indxpara.anglsour = [] #gmod.indxpara.anglhost = [] #gmod.indxpara.angllens = [] if gmod.typeemishost != 'none': gmod.indxpara.specsour = [] gmod.indxpara.spechost = [] if gmod.boollens: gmod.indxpara.lgalsour = cntr.incr() gmod.indxpara.bgalsour = cntr.incr() gmod.indxpara.fluxsour = cntr.incr() if gdat.numbener > 1: gmod.indxpara.sindsour = cntr.incr() gmod.indxpara.sizesour = cntr.incr() gmod.indxpara.ellpsour = cntr.incr() gmod.indxpara.anglsour = cntr.incr() if gmod.typeemishost != 'none' or gmod.boollens: for e in gmod.indxsersfgrd: if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'lgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'bgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'fluxhostisf%d' % e, cntr.incr()) if gdat.numbener > 1: setattr(gmod.indxpara, 'sindhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'sizehostisf%d' % e, cntr.incr()) if gmod.boollens: setattr(gmod.indxpara, 'beinhostisf%d' % e, cntr.incr()) if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'ellphostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'anglhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'serihostisf%d' % e, cntr.incr()) if gmod.boollens: gmod.indxpara.sherextr = cntr.incr() gmod.indxpara.sangextr = cntr.incr() gmod.indxpara.sour = [] if gmod.boollens and gmod.typeemishost == 'none': raise Exception('Lensing cannot be modeled without host galaxy emission.') # collect groups of parameters if gdat.typeexpr == 'hubb': gmod.listnamecomplens = ['hostlght', 'hostlens', 'sour', 'extr'] for namecomplens in gmod.listnamecomplens: setattr(gmod, 'liststrg' + namecomplens, []) setattr(gmod.indxpara, namecomplens, []) if gmod.boollens or gmod.typeemishost != 'none': gmod.liststrghostlght += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] gmod.liststrghostlens += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] if gmod.typeemishost != 'none': gmod.liststrghostlght += ['fluxhost', 'sizehost', 'serihost'] if gdat.numbener > 1: gmod.liststrghostlght += ['sindhost'] if gmod.boollens: gmod.liststrghostlens += ['beinhost'] gmod.liststrgextr += ['sherextr', 'sangextr'] gmod.liststrgsour += ['lgalsour', 'bgalsour', 'fluxsour', 'sizesour', 'ellpsour', 'anglsour'] if gdat.numbener > 1: gmod.liststrgsour += ['sindsour'] for strg, valu in gmod.__dict__.items(): if isinstance(valu, list) or isinstance(valu, np.ndarray): continue if gdat.typeexpr == 'hubb': for namecomplens in gmod.listnamecomplens: for strgtemp in getattr(gmod, 'liststrg' + namecomplens): if strg[12:].startswith(strgtemp): if isinstance(valu, list): for valutemp in valu: gmod['indxparagenr' + namecomplens].append(valutemp) else: gmod['indxparagenr' + namecomplens].append(valu) # remove indxpara. from strg strg = strg[12:] if strg.startswith('fluxsour') or strg.startswith('sindsour'): gmod.indxpara.specsour.append(valu) if strg.startswith('fluxhost') or strg.startswith('sindhost'): gmod.indxpara.spechost.append(valu) if gmod.boollens or gmod.boolhost: gmod.indxpara.host = gmod.indxparahostlght + gmod.indxparahostlens gmod.indxpara.lens = gmod.indxpara.host + gmod.indxpara.sour + gmod.indxpara.extr ## number of model spectral parameters for each population #numbspep = np.empty(gmod.numbpopl, dtype=int) #liststrgspep = [[] for l in range(gmod.numbpopl)] #for l in gmod.indxpopl: # if gdat.numbener > 1: # liststrgspep[l] += ['sind'] # if gmod.spectype[l] == 'expc': # liststrgspep[l] += ['expc'] # if gmod.spectype[l] == 'curv': # liststrgspep[l] = ['curv'] # numbspep[l] = len(liststrgspep[l]) def setp_paragenrscalbase(gdat, strgmodl='fitt'): ''' Setup labels and scales for base parameters ''' print('setp_paragenrscalbase(): Building the %s model base paremeter names and scales...' % strgmodl) gmod = getattr(gdat, strgmodl) listlablback = [] listlablback = [] for nameback in gmod.listnameback: if nameback == 'isot': listlablback.append('Isotropic') listlablback.append(r'$\mathcal{I}$') if nameback == 'fdfm': listlablback.append('FDM') listlablback.append(r'$\mathcal{D}$') if nameback == 'dark': listlablback.append('NFW') listlablback.append(r'$\mathcal{D}_{dark}$') if nameback == 'part': listlablback.append('Particle Back.') listlablback.append(r'$\mathcal{I}_p$') # background templates listlablsbrt = deepcopy(listlablback) numblablsbrt = 0 for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: listlablsbrt.append(gmod.lablpopl[l]) listlablsbrt.append(gmod.lablpopl[l] + ' subt') numblablsbrt += 2 if gmod.boollens: listlablsbrt.append('Source') numblablsbrt += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listlablsbrt.append('Host %d' % e) numblablsbrt += 1 if gmod.numbpopl > 0: if 'clus' in gmod.typeelem or 'clusvari' in gmod.typeelem: listlablsbrt.append('Uniform') numblablsbrt += 1 listlablsbrtspec = ['Data'] listlablsbrtspec += deepcopy(listlablsbrt) if len(listlablsbrt) > 1: listlablsbrtspec.append('Total Model') numblablsbrtspec = len(listlablsbrtspec) # number of generative parameters per element, depends on population #numbparaelem = gmod.numbparagenrelem + numbparaelemderi # maximum total number of parameters #numbparagenrfull = gmod.numbparagenrbase + gmod.numbparaelem #numbparaelemkind = gmod.numbparagenrbase #for l in gmod.indxpopl: # numbparaelemkind += gmod.numbparagenrelemsing[l] #nameparagenrbase #gmod.namepara.genrelem #listnameparaderifixd #listnameparaderielem #gmod.namepara.genrelemextd = gmod.namepara.genrelem * maxm.numbelem #listnameparaderielemextd = gmod.namepara.genrelem * maxm.numbelem gmod.listindxparakindscal = {} for scaltype in gdat.listscaltype: gmod.listindxparakindscal[scaltype] = np.where(scaltype == gmod.listscalparakind)[0] # ## stack ## gmod.listnameparastck #gmod.listnameparastck = np.zeros(gmod.maxmnumbpara, dtype=object) #gmod.listscalparastck = np.zeros(gmod.maxmnumbpara, dtype=object) # #gmod.listnameparastck[gmod.indxparagenrbase] = gmod.nameparagenrbase #gmod.listscalparastck[gmod.indxparagenrbase] = gmod.listscalparagenrbase #for k in range(gmod.numbparaelem): # for l in gmod.indxpopl: # if k >= gmod.numbparagenrelemcuml[l]: # indxpopltemp = l # indxelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) // gmod.numbparagenrelemsing[indxpopltemp] # gmod.indxparagenrelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) % gmod.numbparagenrelemsing[indxpopltemp] # break # gmod.listnameparastck[gmod.numbparagenrbase+k] = '%spop%d%04d' % (gmod.namepara.genrelem[indxpopltemp][gmod.indxparagenrelemtemp], indxpopltemp, indxelemtemp) # gmod.listscalparastck[gmod.numbparagenrbase+k] = gmod.listscalparagenrelem[indxpopltemp][gmod.indxparagenrelemtemp] # # #if np.where(gmod.listscalpara == 0)[0].size > 0: # print('gmod.listscalpara[gmod.indxparagenrbase]') # print(gmod.listscalpara[gmod.indxparagenrbase]) # raise Exception('') # ## labels and scales for variables if gmod.boollens: setattr(gmod.lablrootpara, 'masssubhintg', r'$M_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhdelt', r'$\rho_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhintgbein', r'$M_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhdeltbein', r'$\rho_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhintgunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'masssubhintgbeinunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltbeinunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'fracsubhintg', r'f_{\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhdelt', r'f_{\rho,\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhintgbein', r'$f_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'fracsubhdeltbein', r'$f_{\rho,\rm{sub,E}}$') for e in gmod.indxsersfgrd: setattr(gmod.lablrootpara, 'masshostisf%dbein' % e, r'$M_{\rm{hst,%d,C}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintg' % e, r'$M_{\rm{hst,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddelt' % e, r'$M_{\rm{hst,%d}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintgbein' % e, r'$M_{\rm{hst,E,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddeltbein' % e, r'$M_{\rm{hst,E,%d}}$' % e) for namevarb in ['fracsubh', 'masssubh']: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scal' + namevarb + strgcalcmasssubh + nameeval, 'logt') for e in gmod.indxsersfgrd: setattr(gdat, 'scalmasshostisf%d' % e + 'bein', 'logt') for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scalmasshostisf%d' % e + strgcalcmasssubh + nameeval, 'logt') # scalar variable setup gdat.lablhistcntplowrdfncsubten00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncsubten00evt0 = 'N_{pix,h}' gdat.lablhistcntplowrdfncen00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncen00evt0 = 'N_{pix,h}' gdat.lablbooldfncsubt = 'H' gdat.lablpriofactdoff = r'$\alpha_{p}$' gmod.scalpriofactdoff = 'self' gdat.minmreds = 0. gdat.maxmreds = 1.5 gdat.minmmagt = 19. gdat.maxmmagt = 28. gmod.scalpara.numbelem = 'logt' gmod.scalpara.lliktotl = 'logt' gdat.lablener = 'E' #gdat.lablenertotl = '$%s$ [%s]' % (gdat.lablener, gdat.strgenerunit) # width of the Gaussian clusters gdat.lablgwdt = r'\sigma_G' gdat.lablgang = r'\theta' gdat.lablaang = r'\phi' gdat.labllgalunit = gdat.lablgangunit gdat.lablbgalunit = gdat.lablgangunit gdat.lablanglfromhost = r'\theta_{\rm{0,hst}}' gdat.lablanglfromhostunit = gdat.lablgangunit gdat.labldefs = r'\alpha_s' gdat.lablflux = 'f' gdat.lablnobj = 'p' gdat.lablelin = r'\mathcal{E}' gdat.lablsbrt = r'\Sigma' gdat.labldeflprof = r'\alpha_a' gdat.labldeflprofunit = u'$^{\prime\prime}$' gdat.strgenerkevv = 'keV' gdat.strgenergevv = 'GeV' gdat.strgenerergs = 'erg' gdat.strgenerimum = '\mu m^{-1}' gdat.labldefsunit = u'$^{\prime\prime}$' gdat.lablprat = 'cm$^{-2}$ s$^{-1}$' ### labels for derived fixed dimensional parameters if gdat.boolbinsener: for i in gdat.indxener: setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubten%02d' % i, 'f_{D/ST,%d}' % i) else: gmod.lablrootpara.fracsdenmeandarkdfncsubt = 'f_{D/ST}' setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubt', 'f_{D/ST}') ### labels for background units if gdat.typeexpr == 'ferm': for nameenerscaltype in ['en00', 'en01', 'en02', 'en03']: for labltemptemp in ['flux', 'sbrt']: # define the label if nameenerscaltype == 'en00': strgenerscal = '%s' % labltemp if nameenerscaltype == 'en01': strgenerscal = 'E%s' % labltemp if nameenerscaltype == 'en02': strgenerscal = 'E^2%s' % labltemp if nameenerscaltype == 'en03': strgenerscal = '%s' % labltemp labl = '%s' % strgenerscal for nameenerunit in ['gevv', 'ergs', 'kevv', 'imum']: strgenerunit = getattr(gdat, 'strgener' + nameenerunit) if nameenerscaltype == 'en00': strgenerscalunit = '%s$^{-1}$' % strgenerunit if nameenerscaltype == 'en01': strgenerscalunit = '' if nameenerscaltype == 'en02': strgenerscalunit = '%s' % strgenerunit if nameenerscaltype == 'en03': strgenerscalunit = '%s' % strgenerunit # define the label unit for namesoldunit in ['ster', 'degr']: if labltemptemp == 'flux': lablunit = '%s %s' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'lablflux' + nameenerscaltype + nameenerunit + 'unit', lablunit) else: if namesoldunit == 'ster': lablunit = '%s %s sr$^{-1}$' % (strgenerscalunit, gdat.lablprat) if namesoldunit == 'degr': lablunit = '%s %s deg$^{-2}$' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'sbrt' + nameenerscaltype + nameenerunit + namesoldunit + 'unit', lablunit) if gdat.boolbinsener: gdat.lablfluxunit = getattr(gmod.lablunitpara, 'fluxen00' + gdat.nameenerunit + 'unit') gdat.lablsbrtunit = getattr(gmod.lablunitpara, 'sbrten00' + gdat.nameenerunit + 'sterunit') gdat.lablexpo = r'$\epsilon$' gdat.lablexpounit = 'cm$^2$ s' gdat.lablprvl = '$p$' gdat.lablreds = 'z' gdat.lablmagt = 'm_R' gdat.lablper0 = 'P_0' gmod.scalper0plot = 'logt' gdat.labldglc = 'd_{gc}' gmod.scaldglcplot = 'logt' gdat.labldlos = 'd_{los}' gmod.scaldlosplot = 'logt' if gdat.typeexpr == 'ferm': gdat.labldlosunit = 'kpc' gdat.labllumi = r'L_{\gamma}' if gdat.typeexpr == 'chan': gdat.labldlosunit = 'Mpc' gdat.labllumi = r'L_{X}' gdat.labllum0 = r'L_{X, 0}' gdat.lablgeff = r'\eta_{\gamma}' gmod.scalgeffplot = 'logt' gmod.scallumiplot = 'logt' gdat.labllumiunit = 'erg s$^{-1}$' gdat.labllum0unit = 'erg s$^{-1}$' gdat.lablthet = r'\theta_{gc}' gmod.scalthetplot = 'self' gdat.lablphii = r'\phi_{gc}' gmod.scalphiiplot = 'self' setattr(gmod.lablrootpara, 'magf', 'B') setattr(gdat, 'scalmagfplot', 'logt') setattr(gmod.lablrootpara, 'per1', 'P_1') if gdat.typedata == 'inpt': gdat.minmpara.per0 = 1e-3 gdat.maxmpara.per0 = 1e1 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.flux0400 = 1e-1 gdat.maxmpara.flux0400 = 1e4 setattr(gdat, 'scalper1plot', 'logt') setattr(gmod.lablrootpara, 'flux0400', 'S_{400}') setattr(gdat, 'scalflux0400plot', 'logt') for q in gdat.indxrefr: setattr(gmod.lablrootpara, 'aerr' + gdat.listnamerefr[q], '\Delta_{%d}' % q) gdat.lablsigm = '\sigma_l' gdat.lablgamm = '\gamma_l' gdat.lablbcom = '\eta' gdat.lablinfopost = 'D_{KL}' gdat.lablinfopostunit = 'nat' gdat.lablinfoprio = 'D_{KL,pr}' gdat.lablinfopriounit = 'nat' gdat.labllevipost = '\ln P(D)' gdat.labllevipostunit = 'nat' gdat.lablleviprio = '\ln P_{pr}(D)' gdat.labllevipriounit = 'nat' gdat.lablsind = 's' if gdat.boolbinsener: for i in gdat.indxenerinde: setattr(gmod.lablrootpara, 'sindcolr%04d' % i, 's_%d' % i) gdat.lablexpcunit = gdat.strgenerunit gdat.labllliktotl = r'\ln P(D|M)' gdat.labllpripena = r'\ln P(N)' gdat.lablasca = r'\theta_s' gdat.lablascaunit = gdat.lablgangunit gdat.lablacut = r'\theta_c' gdat.lablacutunit = gdat.lablgangunit gdat.lablmcut = r'M_{c,n}' gdat.lablmcutunit = r'$M_{\odot}$' gdat.lablmcutcorr = r'\bar{M}_{c,n}' gdat.lablmcutcorrunit = r'$M_{\odot}$' gdat.lablspec = gdat.lablflux gdat.lablspecunit = gdat.lablfluxunit gdat.lablspecplot = gdat.lablflux gdat.lablspecplotunit = gdat.lablfluxunit gdat.lablcnts = 'C' gdat.labldeltllik = r'\Delta_n \ln P(D|M)' gdat.labldiss = r'\theta_{sa}' gdat.labldissunit = gdat.lablgangunit gdat.lablrele = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_l| \rangle' gdat.lablrelc = r'\langle\vec{\alpha}_n \cdot \vec{\nabla} k_l \rangle' gdat.lablreld = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_d| \rangle' gdat.lablreln = r'\langle \Delta \theta_{pix} |\hat{\alpha}_n \cdot \vec{\nabla} k_l| / \alpha_{s,n} \rangle' gdat.lablrelm = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelk = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelf = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle / k_m' for q in gdat.indxrefr: for l in gmod.indxpopl: setp_varb(gdat, 'fdispop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$F_{%d%d}$' % (l, q)) setp_varb(gdat, 'cmplpop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$C_{%d%d}$' % (l, q)) if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.minmspec = 1e-2 gdat.maxmspec = 1e1 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 if gdat.typeexpr == 'ferm': gdat.minmlumi = 1e32 gdat.maxmlumi = 1e36 elif gdat.typeexpr == 'chan': if gdat.typedata == 'inpt': gdat.minmlum0 = 1e42 gdat.maxmlum0 = 1e46 gdat.minmlumi = 1e41 gdat.maxmlumi = 1e45 try: gdat.minmdlos except: if gdat.typeexpr == 'chan': gdat.minmdlos = 1e7 gdat.maxmdlos = 1e9 else: gdat.minmdlos = 6e3 gdat.maxmdlos = 1.1e4 if gdat.typeexpr == 'ferm': gdat.minmcnts = 1e1 gdat.maxmcnts = 1e5 if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: gdat.minmcnts = 1e4 gdat.maxmcnts = 1e8 else: gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'hubb': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'fire': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 gdat.minmspecplot = gdat.minmspec gdat.maxmspecplot = gdat.maxmspec gdat.minmdeltllik = 1. gdat.maxmdeltllik = 1e3 gdat.minmdiss = 0. gdat.maxmdiss = gdat.maxmgangdata * np.sqrt(2.) gdat.minmrele = 1e-3 gdat.maxmrele = 1e1 gdat.minmreln = 1e-3 gdat.maxmreln = 1. gdat.minmrelk = 1e-3 gdat.maxmrelk = 1. gdat.minmrelf = 1e-5 gdat.maxmrelf = 1e-1 gdat.minmrelm = 1e-3 gdat.maxmrelm = 1e1 gdat.minmreld = 1e-3 gdat.maxmreld = 1e1 gdat.minmrelc = 1e-3 gdat.maxmrelc = 1. gdat.minmmcut = 3e7 gdat.maxmmcut = 2e9 gdat.minmmcutcorr = gdat.minmmcut gdat.maxmmcutcorr = gdat.maxmmcut if gdat.boolbinsspat: gdat.minmbein = 0. gdat.maxmbein = 1. / gdat.anglfact # scalar variables if gdat.boolbinsspat: gdat.minmdeflprof = 1e-3 / gdat.anglfact gdat.maxmdeflprof = 0.1 / gdat.anglfact #gdat.minmfracsubh = 0. #gdat.maxmfracsubh = 0.3 #gmod.scalfracsubh = 'self' #gdat.minmmasshost = 1e10 #gdat.maxmmasshost = 1e13 #gmod.scalmasshost = 'self' # #gdat.minmmasssubh = 1e8 #gdat.maxmmasssubh = 1e10 #gmod.scalmasssubh = 'self' # collect groups of parameter indices into lists ## labels and scales for base parameters gmod.nameparagenrbase = [] for name, k in gmod.indxpara.__dict__.items(): if not np.isscalar(k): print('name') print(name) print('temp: no nonscalar should be here!') continue gmod.nameparagenrbase.append(name) gmod.numbparagenrbase = len(gmod.nameparagenrbase) gmod.indxparagenrbase = np.arange(gmod.numbparagenrbase) gmod.indxparagenrbasestdv = gmod.indxparagenrbase[gmod.numbpopl:] ## list of scalar variable names gmod.namepara.scal = list(gmod.nameparagenrbase) gmod.namepara.scal += ['lliktotl'] # derived parameters print('Determining the list of derived, fixed-dimensional parameter names...') gmod.namepara.genrelemextd = [[[] for g in gmod.indxparagenrelemsing[l]] for l in gmod.indxpopl] gmod.namepara.derielemextd = [[[] for k in gmod.indxparaderielemsing[l]] for l in gmod.indxpopl] gmod.namepara.genrelemflat = [] gmod.namepara.derielemflat = [] gmod.namepara.genrelemextdflat = [] gmod.namepara.derielemextdflat = [] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: gmod.namepara.genrelemflat.append(gmod.namepara.genrelem[l][g] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.genrelemextd[l][g].append(gmod.namepara.genrelem[l][g] + 'pop%d' % l + '%04d' % d) gmod.namepara.genrelemextdflat.append(gmod.namepara.genrelemextd[l][g][d]) for k in gmod.indxparaderielemsing[l]: gmod.namepara.derielemflat.append(gmod.namepara.derielem[l][k] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.derielemextd[l][k].append(gmod.namepara.derielem[l][k] + 'pop%d' % l + '%04d' % d) gmod.namepara.derielemextdflat.append(gmod.namepara.derielemextd[l][k][d]) # list of element parameter names (derived and generative), counting label-degenerate element parameters only once gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.elem[l].extend(gmod.namepara.genrelem[l]) gmod.namepara.elem[l].extend(gmod.namepara.derielem[l]) gmod.namepara.elemflat = [] for l in gmod.indxpopl: gmod.namepara.elemflat.extend(gmod.namepara.elem[l]) gmod.namepara.genrelemdefa = deepcopy(gmod.namepara.elemflat) if gmod.boolelemlghtanyy: for strgfeat in ['sind', 'curv', 'expc'] + ['sindcolr%04d' % i for i in gdat.indxenerinde]: if not strgfeat in gmod.namepara.genrelemdefa: gmod.namepara.genrelemdefa.append(strgfeat) # list of flattened generative element parameter names, counting label-degenerate element parameters only once gmod.namepara.genrelemkind = gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparagenrelemkind = len(gmod.namepara.genrelemkind) #gmod.inxparagenrscalelemkind = np.arange(gmod.numbparagenrelemkind) gmod.inxparagenrscalelemkind = tdpy.gdatstrt() gmod.numbparagenrelemextdflat = len(gmod.namepara.genrelemextdflat) gmod.indxparagenrelemextdflat = np.arange(gmod.numbparagenrelemextdflat) # list of parameter names (derived and generative), counting label-degenerate element parameters only once, element lists flattened gmod.namepara.kind = gmod.nameparagenrbase + gmod.listnameparaderitotl + gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparakind = len(gmod.namepara.kind) gmod.indxparakind = np.arange(gmod.numbparakind) # list of generative parameter names, separately including all label-degenerate element parameters, element lists flattened gmod.namepara.genrscalfull = gmod.nameparagenrbase + gmod.namepara.genrelemextdflat gmod.namepara.genrscalfull = np.array(gmod.namepara.genrscalfull) gmod.numbparagenrfull = len(gmod.namepara.genrscalfull) gmod.indxparagenrfull = np.arange(gmod.numbparagenrfull) # list of generative parameter names, counting label-degenerate element parameters only once, element lists flattened gmod.listnameparagenrscal = gmod.nameparagenrbase + gmod.namepara.genrelemflat gmod.numbparagenr = len(gmod.listnameparagenrscal) gmod.indxparagenr = np.arange(gmod.numbparagenr) # list of parameter names (derived and generative), element lists flattened gmod.listnameparatotl = gmod.nameparagenrbase + gmod.listnameparaderitotl + \ gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.nameparagenrbase = np.array(gmod.nameparagenrbase) for e in gmod.indxsersfgrd: gmod.namepara.scal += ['masshost' + strgsersfgrd + 'bein'] for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masshost' + strgsersfgrd + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: if gmod.boollenssubh: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masssubh' + strgcalcmasssubh + 'bein', 'fracsubh' + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: gmod.namepara.scal += ['lpripena'] if False and gmod.boolelemsbrtdfncanyy: for strgbins in ['lowr', 'higr']: gmod.namepara.scal += ['histcntp%sdfncen00evt0' % strgbins] gmod.namepara.scal += ['histcntp%sdfncsubten00evt0' % strgbins] for i in gdat.indxener: gmod.namepara.scal += ['fracsdenmeandarkdfncsubten%02d' % i] gmod.namepara.scal += ['booldfncsubt'] if gmod.numbparaelem > 0: for q in gdat.indxrefr: if gdat.boolasscrefr[q]: for l in gmod.indxpopl: gmod.namepara.scal += ['cmplpop%dpop%d' % (l, q)] gmod.namepara.scal += ['fdispop%dpop%d' % (q, l)] gmod.numbvarbscal = len(gmod.namepara.scal) gmod.indxvarbscal = np.arange(gmod.numbvarbscal) # determine total label gmod.listnameparaglob = gmod.namepara.kind + gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.listnameparaglob += ['cntpmodl'] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: if not gmod.namepara.genrelem[l][g] in gmod.listnameparaglob: gmod.listnameparaglob.append(gmod.namepara.genrelem[l][g]) gmod.listnameparaglob.append(gmod.namepara.derielem[l][g]) for name in gmod.listnameparaglob: lablroot = getattr(gmod.lablrootpara, name) lablunit = getattr(gmod.lablunitpara, name) labltotl = tdpy.retr_labltotlsing(lablroot, lablunit) setattr(gmod.labltotlpara, name, labltotl) # define fact for l in gmod.indxpopl: for k in gmod.indxparakind: name = gmod.namepara.kind[k] scal = getattr(gmod.scalpara, name) if scal == 'self' or scal == 'logt': minm = getattr(gmod.minmpara, name) maxm = getattr(gmod.maxmpara, name) if scal == 'self': fact = maxm - minm if scal == 'logt': fact = np.log(maxm / minm) if fact == 0: print('name') print(name) raise Exception('') setattr(gmod.factpara, name, fact) if gmod.numbparaelem > 0: gmod.indxparagenrfulleleminit = gmod.indxparagenrbase[-1] + 1 else: gmod.indxparagenrfulleleminit = -1 ## arrays of parameter features (e.g., minm, maxm, labl, scal, etc.) for featpara in gdat.listfeatparalist: gmodfeat = getattr(gmod, featpara + 'para') ### elements #for strgtypepara in gdat.liststrgtypepara: # listname = getattr(gmod.namepara, strgtypepara + 'elem') # listfeat = [[] for l in gmod.indxpopl] # listfeatflat = [] # for l in gmod.indxpopl: # # numb = getattr(gmod, 'numbpara' + strgtypepara + 'elemsing')[l] # listfeat[l] = [[] for k in range(numb)] # for k in range(numb): # scal = getattr(gmod.scalpara, listname[l][k]) # if featpara == 'fact' and not (scal == 'self' or scal == 'logt'): # continue # if featpara == 'mean' and (scal != 'gaus' and scal != 'lnor'): # continue # if featpara == 'stdv' and (scal != 'gaus' and scal != 'lnor'): # continue # # if strgtypepara == 'genr': # strgextn = 'pop%d' % l # else: # strgextn = '' # print('featpara') # print(featpara) # print('listname') # print(listname) # listfeat[l][k] = getattr(gmodfeat, listname[l][k] + strgextn) # listfeatflat.append(listfeat[l][k]) # setattr(gmodfeat, strgtypepara + 'elem', listfeat) # setattr(gmodfeat, strgtypepara + 'elemflat', listfeatflat) ### groups of parameters inside the parameter vector ### 'base': all fixed-dimensional generative parameters ### 'full': all generative parameters for strggroppara in ['base', 'full']: indx = getattr(gmod, 'indxparagenr' + strggroppara) feat = [0. for k in indx] for attr, valu in gmod.indxpara.__dict__.items(): if not np.isscalar(valu): continue scal = getattr(gmod.scalpara, attr) if not (scal == 'self' or scal == 'logt') and featpara == 'fact': continue if scal != 'gaus' and (featpara == 'mean' or featpara == 'stdv'): print('Mean or Std for non-Gaussian') continue if featpara == 'name': feat[valu] = attr else: feat[valu] = getattr(gmodfeat, attr) feat = np.array(feat) setattr(gmodfeat, 'genr' + strggroppara, feat) #print('gmod.minmpara') #for attr, varb in gmod.minmpara.__dict__.items(): # print(attr, varb) #print('gmod.maxmpara') #for attr, varb in gmod.maxmpara.__dict__.items(): # print(attr, varb) #print('gmod.scalpara') #for attr, varb in gmod.scalpara.__dict__.items(): # print(attr, varb) #raise Exception('') ## population groups ### number of elements for strgvarb in ['numbelem', 'meanelem']: listindxpara = [] if strgmodl == 'true': listpara = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith(strgvarb + 'p'): listindxpara.append(valu) if strgmodl == 'true': listpara.append(getattr(gmod.this, strg)) listindxpara = np.array(listindxpara) setattr(gmod.indxpara, strgvarb, listindxpara) if strgmodl == 'true': listpara = np.array(listpara) setattr(gmod, strgvarb, listpara) ### parameters of priors for element parameters gmod.indxpara.prioelem = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg == 'dist' and np.isscalar(valu): gmod.indxpara.prioelem.append(valu) gmod.indxpara.prioelem = np.array(gmod.indxpara.prioelem) ### hyperparameters if gmod.typemodltran == 'pois': gmod.indxpara.hypr = np.array(list(gmod.indxpara.prioelem) + list(gmod.indxpara.meanelem)) else: gmod.indxpara.hypr = gmod.indxpara.prioelem ## generative base parameter indices for each scaling gmod.listindxparagenrbasescal = dict() for scaltype in gdat.listscaltype: gmod.listindxparagenrbasescal[scaltype] = np.where(np.array(gmod.scalpara.genrbase) == scaltype)[0] if gdat.booldiagmode: if np.where(gmod.scalpara.genrfull == 0)[0].size > 0: raise Exception('') def plot_lens(gdat): if gmod.boolelemdeflsubh: xdat = gdat.binspara.angl[1:] * gdat.anglfact lablxdat = gdat.labltotlpara.gang listdeflscal = np.array([4e-2, 4e-2, 4e-2]) / gdat.anglfact listanglscal = np.array([0.05, 0.1, 0.05]) / gdat.anglfact listanglcutf = np.array([1., 1., 10.]) / gdat.anglfact listasym = [False, False, False] listydat = [] for deflscal, anglscal, anglcutf, asym in zip(listdeflscal, listanglscal, listanglcutf, listasym): listydat.append(retr_deflcutf(gdat.binspara.angl[1:], deflscal, anglscal, anglcutf, asym=asym) * gdat.anglfact) for scalxdat in ['self', 'logt']: path = gdat.pathinitintr + 'deflcutf' + scalxdat + '.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat=scalxdat, scalydat='logt', lablxdat=lablxdat, \ lablydat=r'$\alpha_n$ [$^{\prime\prime}$]', limtydat=[1e-3, 1.5e-2], limtxdat=[None, 2.]) # pixel-convoltuion of the Sersic profile # temp -- y axis labels are wrong, should be per solid angle xdat = gdat.binspara.lgalsers * gdat.anglfact for n in range(gdat.numbindxsers + 1): for k in range(gdat.numbhalfsers + 1): if k != 5: continue path = gdat.pathinitintr + 'sersprofconv%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, gdat.sersprof[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) #path = gdat.pathinitintr + 'sersprofcntr%04d%04d.pdf' % (n, k) #tdpy.plot_gene(path, xdat, gdat.sersprofcntr[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], scalxdat='logt', \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) xdat = gdat.binspara.angl * gdat.anglfact listspec = np.array([1e-19, 1e-18, 1e-18, 1e-18]) / gdat.anglfact listsize = np.array([0.3, 1., 1., 1.]) / gdat.anglfact listindx = np.array([4., 2., 4., 10.]) listydat = [] listlabl = [] for spec, size, indx in zip(listspec, listsize, listindx): listydat.append(spec * retr_sbrtsersnorm(gdat.binspara.angl, size, indxsers=indx)) listlabl.append('$R_e = %.3g ^{\prime\prime}, n = %.2g$' % (size * gdat.anglfact, indx)) path = gdat.pathinitintr + 'sersprof.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, \ listlegd=listlegd, listhlin=1e-7, limtydat=[1e-8, 1e0]) minmredshost = 0.01 maxmredshost = 0.4 minmredssour = 0.01 maxmredssour = 2. numbreds = 200 retr_axis(gdat, 'redshost') retr_axis(gdat, 'redssour') gdat.meanpara.adishost = np.empty(numbreds) for k in range(numbreds): gdat.meanpara.adishost[k] = gdat.adisobjt(gdat.meanpara.redshost[k]) asca = 0.1 / gdat.anglfact acut = 1. / gdat.anglfact minmmass = np.zeros((numbreds + 1, numbreds + 1)) maxmmass = np.zeros((numbreds + 1, numbreds + 1)) for k, redshost in enumerate(gdat.binspara.redshost): for n, redssour in enumerate(gdat.binspara.redssour): if redssour > redshost: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) minmmass[n, k] = np.log10(factmcutfromdefs * gdat.minmdefs) maxmmass[n, k] = np.log10(factmcutfromdefs * gdat.maxmdefs) #valulevl = np.linspace(7.5, 9., 5) valulevl = [7.0, 7.3, 7.7, 8., 8.6] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, minmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=20, fmt='%.3g') axis.set_xlabel(r'$z_{\rm{hst}}$') axis.set_ylabel(r'$z_{\rm{src}}$') axis.set_title(r'$M_{c,min}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsminm.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) valulevl = np.linspace(9., 11., 20) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.imshow(maxmmass, extent=[minmredshost, maxmredshost, minmredssour, maxmredssour], aspect='auto', vmin=9., vmax=11.) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, maxmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=15, fmt='%.3g') axis.set_xlabel('$z_{hst}$') axis.set_ylabel('$z_{src}$') axis.set_title(r'$M_{c,max}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsmaxm.pdf' plt.colorbar(imag) plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * gdat.sizepixl * 1e-3) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * 2. * gdat.maxmgangdata * 1e-3) axis.set_xlabel('$z_h$') axis.set_yscale('log') axis.set_ylabel(r'$\lambda$ [kpc]') path = gdat.pathinitintr + 'wlenreds.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) fracacutasca = np.logspace(-1., 2., 20) mcut = retr_mcutfrommscl(fracacutasca) axis.lognp.log(fracacutasca, mcut) axis.set_xlabel(r'$\tau_n$') axis.set_ylabel(r'$M_{c,n} / M_{0,n}$') axis.axhline(1., ls='--') path = gdat.pathinitintr + 'mcut.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) def retr_listrtagprev(strgcnfg, pathpcat): # list of PCAT run plot outputs pathimag = pathpcat + '/imag/' listrtag = fnmatch.filter(os.listdir(pathimag), '2*') listrtagprev = [] for rtag in listrtag: strgstat = pathpcat + '/data/outp/' + rtag if chec_statfile(pathpcat, rtag, 'gdatmodipost', typeverb=0) and strgcnfg + '_' + rtag[16:].split('_')[-1] == rtag[16:]: listrtagprev.append(rtag) listrtagprev.sort() return listrtagprev def make_legd(axis, offs=None, loca=1, numbcols=1, ptch=None, line=None): hand, labl = axis.get_legend_handles_labels() legd = axis.legend(hand, labl, fancybox=True, frameon=True, bbox_to_anchor=offs, bbox_transform=axis.transAxes, ncol=numbcols, loc=loca, labelspacing=1, handlelength=2) legd.get_frame().set_fill(True) legd.get_frame().set_facecolor('white') def setp_namevarbsing(gdat, gmod, strgmodl, strgvarb, popl, ener, evtt, back, isfr, iele): if popl == 'full': indxpopltemp = gmod.indxpopl elif popl != 'none': indxpopltemp = [popl] if ener == 'full': indxenertemp = gdat.indxener elif ener != 'none': indxenertemp = [ener] if evtt == 'full': indxevtttemp = gdat.indxevtt elif evtt != 'none': indxevtttemp = [evtt] if back == 'full': gmod.indxbacktemp = gmod.indxback elif isinstance(back, int): gmod.indxbacktemp = np.array([back]) liststrgvarb = [] if iele != 'none': for l in gmod.indxpopl: if iele == 'full': listiele = np.arange(gmod.maxmpara.numbelem) else: listiele = [iele] for k in listiele: liststrgvarb.append(strgvarb + 'pop%d%04d' % (l, k)) if popl != 'none' and ener == 'none' and evtt == 'none' and back == 'none' and iele == 'none': for l in indxpopltemp: liststrgvarb.append(strgvarb + 'pop%d' % l) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr != 'none': for e in indxisfrtemp: liststrgvarb.append(strgvarb + 'isf%d' % e) if popl == 'none' and ener != 'none' and evtt != 'none' and back == 'none': for i in indxenertemp: for m in indxevtttemp: liststrgvarb.append(strgvarb + 'en%02devt%d' % (i, m)) if popl == 'none' and ener != 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: for i in indxenertemp: liststrgvarb.append(strgvarb + 'back%04den%02d' % (c, i)) if popl == 'none' and ener == 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: liststrgvarb.append(strgvarb + 'back%04d' % c) if popl == 'none' and ener != 'none' and evtt == 'none' and back == 'none': for i in indxenertemp: liststrgvarb.append(strgvarb + 'en%02d' % i) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr == 'none': liststrgvarb.append(strgvarb) if gdat.booldiagmode: for strgvarb in liststrgvarb: if liststrgvarb.count(strgvarb) != 1: print('liststrgvarb') print(liststrgvarb) print('popl') print(popl) print('ener') print(ener) print('evtt') print(evtt) print('back') print(back) print('isfr') print(isfr) print('iele') print(iele) raise Exception('') return liststrgvarb def setp_varb(gdat, strgvarbbase, valu=None, minm=None, maxm=None, scal='self', lablroot=None, lablunit='', mean=None, stdv=None, cmap=None, numbbins=10, \ popl='none', ener='none', evtt='none', back='none', isfr='none', iele='none', \ boolinvr=False, \ strgmodl=None, strgstat=None, \ ): ''' Set up variable values across all models (true and fitting) as well as all populations, energy bins, event bins, background components, and Sersic components ''' # determine the list of models if strgmodl is None: if gdat.typedata == 'mock': liststrgmodl = ['true', 'fitt', 'plot'] else: liststrgmodl = ['fitt', 'plot'] else: if strgmodl == 'true' or strgmodl == 'plot' or strgmodl == 'refr': liststrgmodl = [strgmodl] else: liststrgmodl = ['fitt', 'plot'] print('liststrgmodl') print(liststrgmodl) for strgmodl in liststrgmodl: if strgmodl == 'plot': gmod = gdat.fitt gmodoutp = gdat else: gmod = getattr(gdat, strgmodl) gmodoutp = gmod # get the list of names of the variable liststrgvarbnone = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, 'none') if iele != 'none': liststrgvarb = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, iele) else: liststrgvarb = liststrgvarbnone # set the values of each variable in the list for strgvarb in liststrgvarb: if minm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.minmpara, strgvarb, minm) if maxm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.maxmpara, strgvarb, maxm) if mean is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, mean) if stdv is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, stdv) if valu is not None: if strgstat is None: print('strgvarb') print(strgvarb) print('strgmodl') print(strgmodl) print('valu') print(valu) print('') setp_varbcore(gdat, strgmodl, gmodoutp, strgvarb, valu) elif strgstat == 'this': setp_varbcore(gdat, strgmodl, gmodoutp.this, strgvarb, valu) if scal is not None: setp_varbcore(gdat, strgmodl, gmodoutp.scalpara, strgvarb, scal) if lablroot is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablrootpara, strgvarb, lablroot) if lablunit is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablunitpara, strgvarb, lablunit) if cmap is not None: setp_varbcore(gdat, strgmodl, gmodoutp.cmappara, strgvarb, cmap) setp_varbcore(gdat, strgmodl, gmodoutp.numbbinspara, strgvarb, numbbins) # create limt, bins, mean, and delt if minm is not None and maxm is not None or mean is not None and stdv is not None: # determine minima and maxima for Gaussian or log-Gaussian distributed parameters if mean is not None: minm = mean - gdat.numbstdvgaus * stdv maxm = mean + gdat.numbstdvgaus * stdv # uniformly-distributed if scal == 'self' or scal == 'pois' or scal == 'gaus': binsunif = np.linspace(minm, maxm, numbbins + 1) if scal == 'logt' or scal == 'powr': binsunif = np.linspace(np.log10(minm), np.log10(maxm), numbbins + 1) if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsunif = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numbbins + 1) if boolinvr: binsunif = binsunif[::-1] meanparaunif = (binsunif[1:] + binsunif[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanpara = meanparaunif bins = binsunif minmunif = minm maxmunif = maxm if scal == 'logt' or scal == 'powr': meanpara = 10**meanparaunif bins = 10**binsunif minmunif = np.log10(minm) maxmunif = np.log10(maxm) if scal == 'asnh': meanpara = np.sinh(meanparaunif) bins = np.sinh(binsunif) minmunif = np.arcsinh(minm) maxmunif = np.arcsinh(maxm) delt = np.diff(bins) limt = np.array([minm, maxm]) # 'self' is not yet defined if scal == 'asnh' or scal == 'logt' or scal == 'powr': listvalutickmajr, listlabltickmajr, listvalutickminr, listlabltickminr = tdpy.retr_valulabltick(minm, maxm, scal) setattr(gmodoutp.labltickmajrpara, strgvarb, listlabltickmajr) setattr(gmodoutp.valutickmajrpara, strgvarb, listvalutickmajr) setattr(gmodoutp.labltickminrpara, strgvarb, listlabltickminr) setattr(gmodoutp.valutickminrpara, strgvarb, listvalutickminr) #labltick = np.empty(gdat.numbtickcbar, dtype=object) #for k in range(gdat.numbtickcbar): # if scal == 'asnh': # valutick[k] = np.sinh(tickunif[k]) # if scal == 'logt' or scal == 'powr': # valutick[k] = 10**(tickunif[k]) # # avoid very small, but nonzero central values in the residual count color maps # if strgcbar == 'cntpresi' and np.fabs(valutick[k]) < 1e-5: # valutick[k] = 0. # if strgcbar == 'cntpdata' and np.amax(valutick) > 1e3: # labltick[k] = '%d' % valutick[k] # else: # labltick[k] = '%.3g' % valutick[k] setattr(gmodoutp.limtpara, strgvarb, limt) setattr(gmodoutp.binspara, strgvarb, bins) setattr(gmodoutp.meanpara, strgvarb, meanpara) setattr(gmodoutp.deltpara, strgvarb, delt) def retr_ticklabltemp(gdat, strgcbar): minm = getattr(gdat.minmpara, strgcbar) maxm = getattr(gdat.maxmpara, strgcbar) scal = getattr(gdat.scalpara, strgcbar) numb = gdat.numbtickcbar - 1 retr_axis(gdat, strgcbar, numb=numb) minmscal = minm if scal == 'asnh': minmscal = np.arcsinh(minmscal) if scal == 'logt': minmscal = np.log10(minmscal) maxmscal = maxm if scal == 'asnh': maxmscal = np.arcsinh(maxmscal) if scal == 'logt': maxmscal = np.log10(maxmscal) tickscal = np.linspace(minmscal, maxmscal, gdat.numbtickcbar) labl = np.empty(gdat.numbtickcbar, dtype=object) tick = np.copy(tickscal) for k in range(gdat.numbtickcbar): if scal == 'asnh': tick[k] = np.sinh(tickscal[k]) elif scal == 'logt': tick[k] = 10**(tickscal[k]) # avoid very small, but nonzero central values in the residual count color maps if strgcbar == 'cntpresi' and np.fabs(tick[k]) < 1e-5: tick[k] = 0. if strgcbar == 'cntpdata' and np.amax(tick) > 1e3: labl[k] = '%d' % tick[k] else: labl[k] = '%.3g' % tick[k] setattr(gdat.tickpara, strgcbar, tick) def retr_axistemp(gdat, strgvarb, strgmodl=None, boolinvr=False): if strgmodl is None: listgdattemp = [gdat] for strgmodl in gdat.liststrgmodl: listgdattemp.append(getattr(gdat, strgmodl)) elif strgmodl == 'fitt' or strgmodl == 'true': listgdattemp = [getattr(gdat, strgmodl)] elif strgmodl == 'allm': listgdattemp = [] for strgmodl in gdat.liststrgmodl: listgdattemp = getattr(gdat, strgmodl) for gdattemp in listgdattemp: minm = getattr(gdattemp.minmpara, strgvarb) maxm = getattr(gdattemp.maxmpara, strgvarb) numb = getattr(gdattemp.numbbinspara, strgvarb) scal = getattr(gdattemp.scalpara, strgvarb) if scal == 'self' or scal == 'pois' or scal == 'gaus': binsscal = np.linspace(minm, maxm, numb + 1) if scal == 'logt': print('minm') print(minm) print('maxm') print(maxm) print('strgvarb') print(strgvarb) binsscal = np.linspace(np.log10(minm), np.log10(maxm), numb + 1) print('') if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsscal = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numb + 1) if boolinvr: binsscal = binsscal[::-1] meanvarbscal = (binsscal[1:] + binsscal[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanvarb = meanvarbscal bins = binsscal if scal == 'logt': meanvarb = 10**meanvarbscal bins = 10**binsscal if scal == 'asnh': meanvarb = np.sinh(meanvarbscal) bins = np.sinh(binsscal) delt = np.diff(bins) limt = np.array([np.amin(bins), np.amax(bins)]) setattr(gdattemp.limtpara, strgvarb, limt) setattr(gdattemp.binspara, strgvarb, bins) setattr(gdattemp.meanpara, strgvarb, meanvarb) setattr(gdattemp.deltpara, strgvarb, delt) def setp_varbcore(gdat, strgmodl, gdattemp, strgvarbtemp, valu): # check if the variable is defined by the user try: valutemp = getattr(gdattemp, strgvarbtemp) if valutemp is None: raise if gdat.typeverb > 0: print('Received custom value for %s, %s: %s' % (strgvarbtemp, strgmodl, valutemp)) # if not defined or defined as None, define it except: setattr(gdattemp, strgvarbtemp, valu) def intp_sinc(gdat, lgal, bgal): intpsinc = 4. * gdat.numbsidepsfn**2 * np.sum(gdat.temppsfn * sinc(gdat.numbsidepsfn * (gdat.gridpsfnlgal + lgal) - gdat.gridpsfnlgal) * \ sinc(gdat.numbsidepsfn * (gdat.gridpsfnbgal + bgal) - gdat.gridpsfnbgal)) return intpsinc def retr_fluxbrgt(gdat, lgal, bgal, flux): if lgal.size == 0: fluxbrgt = np.array([0.]) fluxbrgtassc = np.array([0.]) else: indxbrgt = np.argmax(flux) fluxbrgt = flux[indxbrgt] return fluxbrgt, fluxbrgtassc def init_figr(gdat, gdatmodi, strgpdfn, strgplot, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot): figrsize = (gdat.sizeimag, gdat.sizeimag) figr, axis = plt.subplots(figsize=figrsize) nameplot = strgplot if gdat.numbener > 1: nameplot += 'en%02d' % gdat.indxenerincl[indxenerplot] if gdat.numbener > 1: if indxevttplot == -1: nameplot += 'evtA' else: nameplot += 'evt%d' % gdat.indxevttincl[indxevttplot] if gdat.fitt.numbpopl > 1: if indxpoplplot == -1: nameplot += 'popA' else: nameplot += 'pop%d' % indxpoplplot path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, nameplot) print('gdat.fitt.labltotlpara.lgalpop0') print(gdat.fitt.labltotlpara.lgalpop0) print('gdat.fitt.labltotlpara.bgalpop0') print(gdat.fitt.labltotlpara.bgalpop0) axis.set_xlabel(gdat.fitt.labltotlpara.lgalpop0) axis.set_ylabel(gdat.fitt.labltotlpara.bgalpop0) titl = '' if indxenerplot is not None and gdat.numbener > 1 and strgplot.endswith('cnts'): titl = gdat.strgener[indxenerplot] if indxevttplot is not None and gdat.numbevtt > 1 and strgplot.endswith('cnts'): titl += ' ' + gdat.strgevtt[indxevttplot] axis.set_title(titl) return figr, axis, path def draw_frambndr(gdat, axis): outr = max(gdat.frambndrmodl, gdat.frambndrdata) axis.set_xlim([-outr, outr]) axis.set_ylim([-outr, outr]) innr = min(gdat.frambndrmodl, gdat.frambndrdata) axis.axvline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axvline(-innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(-innr, ls='--', alpha=gdat.alphbndr, color='black') def retr_imag(gdat, axis, maps, strgstat, strgmodl, strgcbar, indxenerplot=None, indxevttplot=-1, booltdim=False, imag=None): draw_frambndr(gdat, axis) # take the relevant energy and PSF bins if indxenerplot is not None: if indxevttplot == -1: maps = np.sum(maps[indxenerplot, ...], axis=1) else: maps = maps[indxenerplot, :, indxevttplot] # project the map to 2D if gdat.typepixl == 'heal': maps = tdpy.retr_cart(maps, indxpixlrofi=gdat.indxpixlrofi, numbsideinpt=gdat.numbsideheal, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata) if gdat.typepixl == 'cart': shap = [gdat.numbsidecart] + list(maps.shape) shap[1] = gdat.numbsidecart shapflat = list(maps.shape) shapflat[0] = gdat.numbpixlfull mapstemp = np.zeros(shapflat) if maps.size == gdat.indxpixlrofi.size: mapstemp[gdat.indxpixlrofi, ...] = maps else: mapstemp[:, ...] = maps maps = mapstemp.reshape(shap).swapaxes(0, 1) # temp -- this is needed to bring the Fermi-LAT map to the right direction #maps = fliplr(maps) # rescale the map if strgmodl is not None: gmod = getattr(gdat, strgmodl) else: gmod = gdat scal = getattr(gdat.scalpara, strgcbar) cmap = getattr(gdat.cmappara, strgcbar) vmin = getattr(gdat.minmpara, strgcbar) vmax = getattr(gdat.maxmpara, strgcbar) if scal == 'asnh': maps = np.arcsinh(maps) if scal == 'logt': maps = np.log10(maps) if imag is None: imag = axis.imshow(maps, cmap=cmap, origin='lower', extent=gdat.exttrofi, interpolation='nearest', vmin=vmin, vmax=vmax, alpha=gdat.alphmaps) return imag else: imag.set_data(maps) def make_cbar(gdat, axis, imag, strgvarb): # make a color bar valutickmajr = getattr(gdat.valutickmajrpara, strgvarb) labltickmajr = getattr(gdat.labltickmajrpara, strgvarb) print('valutickmajr') print(valutickmajr) print('labltickmajr') print(labltickmajr) cbar = plt.colorbar(imag, ax=axis, fraction=0.05, aspect=15) cbar.set_ticks(valutickmajr) cbar.set_ticklabels(labltickmajr) return cbar def make_legdmaps(gdat, strgstat, strgmodl, axis, mosa=False, assc=False): gmod = getattr(gdat, strgmodl) # transdimensional elements if strgmodl == 'fitt' and (strgstat == 'pdfn' and gdat.boolcondcatl or strgstat == 'this') and gmod.numbparaelem > 0: for l in gmod.indxpopl: colr = retr_colr(gdat, strgstat, strgmodl, l) if strgstat == 'pdfn': labl = 'Condensed %s %s' % (gmod.legd, gmod.legdpopl[l]) else: labl = 'Sample %s %s' % (gmod.legd, gmod.legdpopl[l]) if not gmod.maxmpara.numbelem[l] == 0: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=labl, marker=gmod.listelemmrkr[l], lw=gdat.mrkrlinewdth, color=colr) for q in gdat.indxrefr: if not np.amax(gdat.refr.numbelem[q]) == 0: if assc: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=gdat.refr.lablhits[q], marker=gdat.refr.listmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablmiss[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) else: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablelem[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) # fixed-dimensional objects if strgmodl == 'fitt': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gmod.lablmodl, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gmod.lablmodl, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gdat.typedata == 'mock': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gdat.refr.labl, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gdat.refr.labl, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) temphand, temp = axis.get_legend_handles_labels() numblabl = len(temp) if numblabl == 4: numbcols = 2 else: numbcols = 3 if mosa: axis.legend(bbox_to_anchor=[1., 1.15], loc='center', ncol=numbcols) else: axis.legend(bbox_to_anchor=[0.5, 1.15], loc='center', ncol=numbcols) def supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis, indxpoplplot=-1, assc=False): gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) # associations with the reference elements for q in gdat.indxrefr: if gdat.refr.numbelem[q] > 0: if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: reframpl = gdat.refr.dictelem[q][gdat.refr.nameparagenrelemampl[q]][0, :] mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl, gdat.refr.nameparagenrelemampl[q]) lgal = np.copy(gdat.refr.dictelem[q]['lgal'][0, :]) bgal = np.copy(gdat.refr.dictelem[q]['bgal'][0, :]) numbelem = int(gdat.refr.numbelem[q]) if gdatmodi is not None and gmod.numbparaelem > 0 and assc: ### hit indx = gdatmodi.this.indxelemrefrasschits[q][l] if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, label=gdat.refr.lablhits, \ marker=gdat.refrlistmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) ### missed indx = gdatmodi.this.indxelemrefrasscmiss[q][l] else: indx = np.arange(lgal.size) if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.listlablmiss, marker=gdat.refr.listmrkrmiss[q], \ lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) sizexoff = gdat.maxmgangdata * 0.05 * gdat.anglfact sizeyoff = gdat.maxmgangdata * 0.05 * gdat.anglfact if 'etag' in gdat.refr.namepara.elem[q]: for k in range(indx.size): axis.text(gdat.anglfact * lgal[indx[k]] + sizexoff, gdat.anglfact * bgal[indx[k]] + sizeyoff, gdat.refretag[q][indx[k]], \ verticalalignment='center', horizontalalignment='center', \ color='red', fontsize=1) # temp -- generalize this to input refrlgalhost vs. if gdat.typedata == 'mock': ## host galaxy position if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: lgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost, gdat.anglfact * bgalhost, facecolor='none', alpha=0.7, \ label='%s Host %d' % (gdat.refr.labl, e), s=300, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.boollens: ## host galaxy Einstein radius for e in gmod.indxsersfgrd: truelgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] truebgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] truebeinhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * truelgalhost, \ gdat.anglfact * truebgalhost), \ gdat.anglfact * truebeinhost, \ edgecolor=gdat.refr.colr, facecolor='none', lw=gdat.mrkrlinewdth)) if gmod.boollens: ## source galaxy position axis.scatter(gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.lgalsour], \ gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.bgalsour], \ facecolor='none', \ alpha=0.7, \ #alpha=gdat.alphelem, \ label='%s Source' % gdat.refr.labl, s=300, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) # model catalog if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: if gdatmodi is not None: if gmod.numbparaelem > 0: colr = retr_colr(gdat, strgstat, strgmodl, l) mrkrsize = retr_mrkrsize(gdat, strgmodl, gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[gmod.nameparagenrelemampl[l]][l]], gmod.nameparagenrelemampl[l]) if 'lgal' in gdatmodi.this.indxparagenrfullelem: lgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['lgal']] bgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['bgal']] else: gang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['gang']] aang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['aang']] lgal, bgal = retr_lgalbgal(gang, aang) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, alpha=gdat.alphelem, label='Sample', marker=gmod.listelemmrkr[l], \ lw=gdat.mrkrlinewdth, color=colr) ## source if gmod.boollens: lgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.bgalsour] axis.scatter(gdat.anglfact * lgalsour, gdat.anglfact * bgalsour, facecolor='none', \ alpha=gdat.alphelem, \ label='%s Source' % gmod.lablpara, s=300, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': ## host lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e], facecolor='none', \ alpha=gdat.alphelem, \ label='%s Host' % gmod.lablpara, s=300, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.boollens: beinhost = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e]), \ gdat.anglfact * beinhost, edgecolor=gmod.colr, facecolor='none', \ lw=gdat.mrkrlinewdth, ls='--')) # temp if strgstat == 'pdfn' and gdat.boolcondcatl and gmod.numbparaelem > 0: lgal = np.zeros(gdat.numbprvlhigh) bgal = np.zeros(gdat.numbprvlhigh) ampl = np.zeros(gdat.numbprvlhigh) cntr = 0 for r in gdat.indxstkscond: if r in gdat.indxprvlhigh: lgal[cntr] = gdat.dictglob['poststkscond'][r]['lgal'][0] bgal[cntr] = gdat.dictglob['poststkscond'][r]['bgal'][0] # temp -- this does not allow sources with different spectra to be assigned to the same stacked sample ampl[cntr] = gdat.dictglob['poststkscond'][r][gmod.nameparagenrelemampl[l]][0] cntr += 1 mrkrsize = retr_mrkrsize(gdat, strgmodl, ampl, gmod.nameparagenrelemampl[l]) colr = retr_colr(gdat, strgstat, strgmodl, l) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ label='Condensed', marker=gmod.listelemmrkr[l], color='black', lw=gdat.mrkrlinewdth) for r in gdat.indxstkscond: lgal = np.array([gdat.dictglob['liststkscond'][r]['lgal']]) bgal = np.array([gdat.dictglob['liststkscond'][r]['bgal']]) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ marker=gmod.listelemmrkr[l], color='black', alpha=0.1, lw=gdat.mrkrlinewdth) def retr_colr(gdat, strgstat, strgmodl, indxpopl=None): if strgmodl == 'true': if indxpopl is None: colr = gdat.refr.colr else: colr = gdat.refr.colrelem[indxpopl] if strgmodl == 'fitt': if strgstat == 'this' or strgstat == 'pdfn': if indxpopl is None: colr = gmod.colr else: colr = gmod.colrelem[indxpopl] if strgstat == 'mlik': colr = 'r' return colr def retr_levipost(listllik): minmlistllik = np.amin(listllik) levipost = np.log(np.mean(1. / np.exp(listllik - minmlistllik))) + minmlistllik return levipost def retr_infofromlevi(pmeallik, levi): info = pmeallik - levi return info def retr_jcbn(): fluxpare, lgalpare, bgalpare, fluxauxi, lgalauxi, bgalauxi = sympy.symbols('fluxpare lgalpare bgalpare fluxauxi lgalauxi bgalauxi') matr = sympy.Matrix([[ fluxpare, fluxauxi, 0, 0, 0, 0], \ [-fluxpare, 1 - fluxauxi, 0, 0, 0, 0], \ [-lgalauxi, 0, 1, 1 - fluxauxi, 0, 0], \ [-lgalauxi, 0, 1, -fluxauxi, 0, 0], \ [-bgalauxi, 0, 0, 0, 1, 1 - fluxauxi], \ [-bgalauxi, 0, 0, 0, 1, -fluxauxi]]) jcbn = matr.det() return jcbn # f1 = uf f0 # f2 = (1 - uf) f0 # x1 = x0 + (1 - uf) ux # x2 = x0 - uf ux # y1 = y0 + (1 - uf) uy # y2 = y0 - uf uy # f1/uf f1/f0 f1/x0 f1/ux f1/y0 f1/uy # f2/uf f2/f0 f2/x0 f2/ux f2/y0 f2/uy # x1/uf x1/f0 x1/x0 x1/ux x1/y0 x1/uy # x2/uf x2/f0 x2/x0 x2/ux x2/y0 x2/uy # y1/uf y1/f0 y1/x0 y1/ux y1/y0 y1/uy # y2/uf y2/f0 y2/x0 y2/ux y2/y0 y2/uy # f0 uf 0 0 0 0 # -f0 1 - uf 0 0 0 0 # -ux 0 1 1 - uf 0 0 # -ux 0 1 -uf 0 0 # -uy 0 0 0 1 1 - uf # -uy 0 0 0 1 -uf # f0 #retr_jcbn() def retr_angldist(gdat, lgalfrst, bgalfrst, lgalseco, bgalseco): # temp -- heal does not work when the dimension of lgalfrst is 1 if gdat.typepixl == 'heal': dir1 = np.array([lgalfrst, bgalfrst]) dir2 = np.array([lgalseco, bgalseco]) angldist = hp.rotator.angdist(dir1, dir2) else: angldist = np.sqrt((lgalfrst - lgalseco)**2 + (bgalfrst - bgalseco)**2) return angldist def retr_deflextr(gdat, indxpixlelem, sher, sang): factcosi = sher * np.cos(2. * sang) factsine = sher * np.cos(2. * sang) defllgal = factcosi * gdat.lgalgrid[indxpixlelem] + factsine * gdat.bgalgrid[indxpixlelem] deflbgal = factsine * gdat.lgalgrid[indxpixlelem] - factcosi * gdat.bgalgrid[indxpixlelem] return np.vstack((defllgal, deflbgal)).T def readfile(path): print('Reading %s...' % path) filepick = open(path + '.p', 'rb') filearry = h5py.File(path + '.h5', 'r') gdattemptemp = pickle.load(filepick) for attr in filearry: setattr(gdattemptemp, attr, filearry[attr][()]) filepick.close() filearry.close() if 'gdatfinl' in path or 'gdatinit' in path: if hasattr(gdattemptemp, 'edis') and gdattemptemp.edis is not None and hasattr(gdattemptemp, 'binsener'): gdattemptemp.edisintp = sp.interpolate.interp1d(gdattemptemp.binsener, gdattemptemp.edis, fill_value='extrapolate') gdattemptemp.adisobjt = sp.interpolate.interp1d(gdattemptemp.redsintp, gdattemptemp.adisintp, fill_value='extrapolate') gdattemptemp.redsfromdlosobjt = sp.interpolate.interp1d(gdattemptemp.adisintp * gdattemptemp.redsintp, \ gdattemptemp.redsintp, fill_value='extrapolate') return gdattemptemp def init_stat(gdat): # construct the initial state if gdat.typeverb > 0: print('Initializing the sampler state...') print('inittype') print(gdat.inittype) gmod = gdat.fitt ## initialization ### initialize the unit sample vector randomly gmod.this.paragenrunitfull = np.random.rand(gmod.numbparagenrfull) gmod.this.paragenrscalfull = np.empty(gmod.numbparagenrfull) ## impose user-specified initial state ### number of elements ## create dummy indxparagenrfullelem gmod.this.indxparagenrfullelem = None if gmod.numbparaelem > 0: if gdat.inittype == 'refr': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] else: for l in gmod.indxpopl: if gmod.typemodltran == 'pois': meanelemtemp = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, \ gmod.this.indxparagenrfullelem)[gmod.indxpara.meanelem[l]] print('temp -- user input is not working for numbelem') #namevarb = 'numbelempop%d' % l #initvalu = getattr(gmod.init, namevarb) #if initvalu > gmod.maxmpara.numbelem[l] or initvalu < gmod.minmpara.numbelem[l]: # raise Exception('Bad initial number of elements...') #gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = initvalu if gmod.typemodltran == 'pois': gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = np.random.poisson(meanelemtemp) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = round(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ min(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.maxmpara.numbelem[l]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ max(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.minmpara.numbelem[l]) gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] = gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] if gdat.booldiagmode: if gdat.typedata == 'mock' and gdat.inittype == 'refr': for l in gmod.indxpopl: if gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] > gmod.maxmpara.numbelem[l]: raise Exception('') if gmod.numbparaelem > 0: gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.inittype == 'reco': if gdat.namerecostat is not None: strgcnfg = gdat.namerecostat else: strgcnfg = gdat.strgcnfg path = gdat.pathoutp + 'stat_' + strgcnfg + '.h5' if os.path.exists(path): boolinitreco = True thisfile = h5py.File(path, 'r') if gdat.typeverb > 0: print('Initializing from the state %s...' % path) print('Likelihood:') print(thisfile['lliktotl'][...]) # find the number of populations provided maxmindxpopl = 0 for l in range(10): for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) if gmod.indxpopl > maxmindxpopl: maxmindxpopl = gmod.indxpopl numbpoplinpt = maxmindxpopl + 1 if numbpoplinpt != gmod.numbpopl: print('State file and fitting metamodel have different number of populations.') # find the number of elements provided cntr = np.zeros(gmod.numbpoplinpt, dtype=int) for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) cntr[indxpopl] += 1 if gdat.typeverb > 0: print('Number of elements found:') print(cntr) for attr in thisfile: for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase == attr: if gmod.nameparagenrbase.startswith('numbelem'): try: indxpopltemp = int(gmod.nameparagenrbase[-1]) initnumbelem = getattr(gdat, 'initnumbelempop%d' % indxpopltemp) print('Initial condition for the number of elements conflicts with the state file. Defaulting to the argument...') except: initnumbelem = thisfile[attr][()] gmod.this.paragenrunitfull[k] = initnumbelem else: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', thisfile[attr][()], k) if gmod.this.paragenrunitfull[k] == 0.: print('Warning CDF is zero.') if not np.isfinite(thisfile[attr][()]): raise Exception('Retreived state parameter is not finite.') if (gmod.numbparaelem == 0 or gmod.numbparaelem > 0 and not k in gmod.indxpara.numbelem) and \ (not np.isfinite(gmod.this.paragenrunitfull[k]) or gmod.this.paragenrunitfull[k] < 0. or \ gmod.this.paragenrunitfull[k] > 1.): raise Exception('CDF of the retreived state parameter is bad.') if gmod.numbparaelem > 0: for l in gmod.indxpopl: maxm.numbelem = getattr(gdat.fitt.maxm, 'numbelempop%d' % l) if gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] > maxm.numbelem: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = maxm.numbelem if gdat.typeverb > 0: print('Tapering off the element list...') gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) if gdat.typeverb > 0: print('gmod.this.paragenrunitfull[gmod.indxpara.numbelem]') print(gmod.this.paragenrunitfull[gmod.indxpara.numbelem]) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if (gmod.this.paragenrunitfull == 0).all(): raise Exception('Bad initialization.') if gmod.numbparaelem > 0 and gmod.this.indxparagenrfullelem is not None: for nameparagenrelem in gmod.namepara.elem: initcomp = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: initcomp[l] = np.empty(len(gmod.this.indxelemfull[l])) for k in range(len(gmod.this.indxelemfull[l])): namefiel = '%spop%d%04d' % (nameparagenrelem, l, k) for attr in thisfile: if namefiel == attr: initcomp[l][k] = thisfile[namefiel][()] setattr(gdat, 'init' + nameparagenrelem, initcomp) initcompfromstat(gdat, gdatmodi, 'init') thisfile.close() else: boolinitreco = False if gdat.typeverb > 0: print('Could not find the state file, %s, to initialize the sampler.' % path) if gdat.inittype == 'refr': if gdat.typedata == 'inpt': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gdat.refr.numbelem[l] if gdat.typedata == 'mock': for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if not (gdat.inittype == 'pert' and gmod.nameparagenrbase.startswith('numbelem')) and \ gmod.nameparagenrbase in gmod.nameparagenrbase: gmod.indxpara.true = np.where(gmod.nameparagenrbase == gmod.nameparagenrbase)[0] gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmodstat.paragenrscalfull[gmod.indxpara.true], k) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.typeverb > 1: show_paragenrscalfull(gdat, gdatmodi) if gmod.this.indxparagenrfullelem is not None: print('Initializing elements from the reference element parameters...') show_paragenrscalfull(gdat, gdatmodi) gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) show_paragenrscalfull(gdat, gdatmodi) initcompfromstat(gdat, gdatmodi, 'refr') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) ## impose user-specified individual initial values for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase.startswith('numbelem'): continue if gdat.inittype == 'reco' or gdat.inittype == 'refr' or gdat.inittype == 'pert': try: getattr(gdat, 'init' + gmod.nameparagenrbase) print('Conflicting initial state arguments detected, init keyword takes precedence.') except: pass try: raise Exception('') initvalu = getattr(gdat, 'init' + gmod.nameparagenrbase) gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', initvalu, k) if gdat.typeverb > 0: print('Received initial condition for %s: %.3g' % (gmod.nameparagenrbase, initvalu)) except: pass ## PSF if gdat.initpsfp is not None: print('Initializing the metamodel PSF from the provided initial state...') if gdat.initpsfp.size != gmod.indxpara.psfp.size: raise Exception('') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gdat.initpsfp[k-gmod.indxpara.psfp[0]], k) if gdat.initpsfprefr: print('Initializing the metamodel PSF from the reference state...') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmod.psfpexpr[k-gmod.indxpara.psfp[0]], k) if gdat.inittype == 'rand' or gdat.inittype == 'reco' and not boolinitreco: if gdat.typeverb > 0: print('Initializing from a random state...') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') # check the initial unit sample vector for bad entries if gmod.numbparaelem > 0: indxsampdiff = np.setdiff1d(gmod.indxparagenrfull, gmod.indxpara.numbelem) if np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])).any(): raise Exception('') indxsampbaddlowr = np.where((gmod.this.paragenrunitfull[indxsampdiff] <= 0.) | np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])))[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull[indxsampdiff] >= 1.)[0] indxsampbaddlowr = indxsampdiff[indxsampbaddlowr] indxsampbadduppr = indxsampdiff[indxsampbadduppr] else: indxsampbaddlowr = np.where(gmod.this.paragenrunitfull <= 0.)[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull >= 1.)[0] indxsampbadd = np.concatenate((indxsampbaddlowr, indxsampbadduppr)) if indxsampbadd.size > 0: print('Initial value caused unit sample vector to go outside the unit interval...') show_paragenrscalfull(gdat, gdatmodi, indxsampshow=indxsampbadd) gmod.this.paragenrunitfull[indxsampbadd] = np.random.rand(indxsampbadd.size) raise Exception('') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) indxbadd = np.where(np.logical_not(np.isfinite(gmod.this.paragenrscalfull)))[0] if indxbadd.size > 0: raise Exception('') def writfile(gdattemp, path): filepick = open(path + '.p', 'wb') filearry = h5py.File(path + '.h5', 'w') gdattemptemp = tdpy.gdatstrt() for attr, valu in gdattemp.__dict__.items(): if attr.endswith('psfnintp'): continue if isinstance(valu, np.ndarray) and valu.dtype != np.dtype('O') and valu.dtype != np.dtype('<U4'):# or isinstance(valu, str) or \ #isinstance(valu, float) or isinstance(valu, bool) or isinstance(valu, int) or isinstance(valu, np.float): filearry.create_dataset(attr, data=valu) else: # temp -- make sure interpolation objects are not written. if attr != 'adisobjt' and attr != 'redsfromdlosobjt' and attr != 'edisintp': setattr(gdattemptemp, attr, valu) print('Writing to %s...' % path) pickle.dump(gdattemptemp, filepick, protocol=pickle.HIGHEST_PROTOCOL) filepick.close() filearry.close() def retr_deflcutf(angl, defs, asca, acut, asym=False): fracanglasca = angl / asca deflcutf = defs / fracanglasca # second term in the NFW deflection profile fact = np.ones_like(fracanglasca) indxlowr = np.where(fracanglasca < 1.)[0] indxuppr = np.where(fracanglasca > 1.)[0] fact[indxlowr] = np.arccosh(1. / fracanglasca[indxlowr]) / np.sqrt(1. - fracanglasca[indxlowr]**2) fact[indxuppr] = np.arccos(1. / fracanglasca[indxuppr]) / np.sqrt(fracanglasca[indxuppr]**2 - 1.) if asym: deflcutf *= np.log(fracanglasca / 2.) + fact else: fracacutasca = acut / asca factcutf = fracacutasca**2 / (fracacutasca**2 + 1)**2 * ((fracacutasca**2 + 1. + 2. * (fracanglasca**2 - 1.)) * fact + \ np.pi * fracacutasca + (fracacutasca**2 - 1.) * np.log(fracacutasca) + np.sqrt(fracanglasca**2 + fracacutasca**2) * (-np.pi + (fracacutasca**2 - 1.) / fracacutasca * \ np.log(fracanglasca / (np.sqrt(fracanglasca**2 + fracacutasca**2) + fracacutasca)))) deflcutf *= factcutf return deflcutf def initchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime()) def stopchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime() - getattr(gdatmodi.this, 'chro' + name)) def retr_defl(gdat, indxpixlelem, lgal, bgal, angllens, ellp=None, angl=None, rcor=None, asca=None, acut=None): # translate the grid lgaltran = gdat.lgalgrid[indxpixlelem] - lgal bgaltran = gdat.bgalgrid[indxpixlelem] - bgal if acut is not None: defs = angllens angl = np.sqrt(lgaltran**2 + bgaltran**2) defl = retr_deflcutf(angl, defs, asca, acut) defllgal = lgaltran / angl * defl deflbgal = bgaltran / angl * defl else: bein = angllens # rotate the grid lgalrttr = np.cos(angl) * lgaltran - np.sin(angl) * bgaltran bgalrttr = np.sin(angl) * lgaltran + np.cos(angl) * bgaltran axisrati = 1. - ellp facteccc = np.sqrt(1. - axisrati**2) factrcor = np.sqrt(axisrati**2 * lgalrttr**2 + bgalrttr**2) defllgalrttr = bein * axisrati / facteccc * np.arctan(facteccc * lgalrttr / factrcor) deflbgalrttr = bein * axisrati / facteccc * np.arctanh(facteccc * bgalrttr / factrcor) # totate back vector to original basis defllgal = np.cos(angl) * defllgalrttr + np.sin(angl) * deflbgalrttr deflbgal = -np.sin(angl) * defllgalrttr + np.cos(angl) * deflbgalrttr defl = np.vstack((defllgal, deflbgal)).T return defl def retr_lpriselfdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_self(feat, minm, maxm))) return lpri def retr_lprilogtdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_logt(feat, minm, maxm))) return lpri def retr_lpripowrdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): gmod = getattr(gdat, strgmodl) minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + strgfeat + 'pop%d' % l)] lpri = np.sum(np.log(pdfn_powr(feat, minm, maxm, slop))) return lpri def retr_lpridpowdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) brek = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distbrek')[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + strgfeat)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + strgfeat)[l]] lpri = np.sum(np.log(pdfn_dpow(feat, minm, maxm, brek, sloplowr, slopuppr))) return lpri def retr_lprigausdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): distmean = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'diststdv')[l]] lpri = np.sum(np.log(pdfn_gaus(feat, distmean, diststdv))) return lpri def retr_lpriigamdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): slop = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'slop')[l]] cutf = getattr(gmod, 'cutf' + strgfeat) lpri = np.sum(np.log(pdfn_igam(feat, slop, cutf))) return lpri def traptdim(gdat, arry): s1 = arry[0, 0] + arry[-1, 0] + arry[0, -1] + arry[-1, -1] s2 = np.sum(arry[1:-1, 0]) + np.sum(arry[1:-1, -1]) + np.sum(arry[0, 1:-1]) + np.sum(arry[-1, 1:-1]) s3 = np.sum(arry[1:-1, 1:-1]) summ = (s1 + 2*s2 + 4*s3) * gdat.apix return summ def retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons=None): pdfnspatprio = pdfnspatpriotemp if spatdistcons is not None: pdfnspatprio += spatdistcons summ = traptdim(gdat, pdfnspatprio) pdfnspatprio /= summ lpdfspatprio = np.log(pdfnspatprio) lpdfspatprioobjt = sp.interpolate.RectBivariateSpline(gdat.binspara.bgalcart, gdat.binspara.lgalcart, lpdfspatprio) return lpdfspatprio, lpdfspatprioobjt def retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=False): if strgmodl == 'true': gdatobjt = gdat.true elif strgmodl == 'fitt' and boolinit: gdatobjt = gdat.fitt else: gdatobjt = gdatmodi return gdatobjt def proc_samp(gdat, gdatmodi, strgstat, strgmodl, fast=False, boolinit=False): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=boolinit) gmodstat = getattr(gdatobjt, strgstat) initchro(gdat, gdatmodi, 'pars') # grab the sample vector indxpara = np.arange(gmodstat.paragenrscalfull.size) if gdat.booldiagmode: if not np.isfinite(gmodstat.paragenrscalfull).all(): raise Exception('') if gmod.typeevalpsfn != 'none' and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): psfp = gmodstat.paragenrscalfull[gmod.indxpara.psfp] if gdat.booldiagmode: if np.where(psfp == 0)[0].size == psfp.size: raise Exception('') setattr(gmodstat, 'psfp', psfp) bacp = gmodstat.paragenrscalfull[gmod.indxpara.bacp] if gmod.numbparaelem > 0: # temp -- this may slow down execution gmodstat.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodstat.indxelemfull, strgmodl) gmodstat.numbelem = np.empty(gmod.numbpopl, dtype=int) indxelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) indxelem[l] = np.arange(gmodstat.numbelem[l]) gmodstat.numbelem[l] = np.sum(gmodstat.numbelem[l]) gmodstat.numbelemtotl = np.sum(gmodstat.numbelem) gmodstat.dictelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.dictelem[l] = dict() for strgfeat in gmod.namepara.genrelemdefa: gmodstat.dictelem[l][strgfeat] = [] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem] = gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]] if gdat.booldiagmode: if ((abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) < 1e-100 ) & (abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) > 0.)).any(): raise Exception('') if gmodstat.numbelem[l] != len(gmodstat.dictelem[l][nameparagenrelem]): print('l') print(l) print('numbelem') print(numbelem) print('gmodstat.dictelem') print(gmodstat.dictelem) print('nameparagenrelem') print(nameparagenrelem) raise Exception('') if gdat.boolbinsener: if gdat.typeverb > 2: print('Calculating element spectra...') initchro(gdat, gdatmodi, 'spec') for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], \ edisintp=gdat.edisintp, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'spec') if gdat.typeverb > 2: print('Element features:') for l in gmod.indxpopl: print('l') print(l) for strgfeat in gmod.namepara.genrelem[l]: print(strgfeat) print(gmodstat.dictelem[l][strgfeat]) if gdat.booldiagmode: for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if (gmod.listscalparagenrelem[l][g] != 'gaus' and not gmod.listscalparagenrelem[l][g].startswith('lnor')) and \ (gmod.listscalparagenrelem[l][g] != 'expo' and (gmodstat.dictelem[l][nameparagenrelem] < getattr(gmod.minmpara, nameparagenrelem)).any()) or \ (gmodstat.dictelem[l][nameparagenrelem] > getattr(gmod.maxmpara, nameparagenrelem)).any(): print('l, g') print(l, g) print('nameparagenrelem') print(nameparagenrelem) print('gmodstat.dictelem[l][nameparagenrelem]') summgene(gmodstat.dictelem[l][nameparagenrelem]) print('getattr(gmod, minm + nameparagenrelem)') print(getattr(gmod.minmpara, nameparagenrelem)) print('getattr(gmod, maxm + nameparagenrelem)') print(getattr(gmod.maxmpara, nameparagenrelem)) print('gmod.listscalparagenrelem[l][g]') print(gmod.listscalparagenrelem[l][g]) raise Exception('') # calculate element spectra # temp if gdat.booldiagmode: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gdat.variasca: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['acut']] < 0.)[0] if indx.size > 0: raise Exception('') if gdat.variacut: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['asca']] < 0.)[0] if indx.size > 0: raise Exception('') for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): # evaluate horizontal and vertical position for elements whose position is a power law in image-centric radius if gmod.typespatdist[l] == 'glc3': gmodstat.dictelem[l]['dlos'], gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'] = retr_glc3(gmodstat.dictelem[l]['dglc'], \ gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii']) if gmod.typespatdist[l] == 'gangexpo': gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], = retr_lgalbgal(gmodstat.dictelem[l]['gang'], \ gmodstat.dictelem[l]['aang']) if gdat.booldiagmode: if gmodstat.numbelem[l] > 0: if np.amin(gmodstat.dictelem[l]['lgal']) < gmod.minmlgal or \ np.amax(gmodstat.dictelem[l]['lgal']) > gmod.maxmlgal or \ np.amin(gmodstat.dictelem[l]['bgal']) < gmod.minmbgal or \ np.amax(gmodstat.dictelem[l]['bgal']) > gmod.maxmbgal: raise Exception('Bad coordinates!') if gmod.typespatdist[l] == 'los3': gmodstat.dictelem[l]['dglc'], gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii'] = retr_los3(gmodstat.dictelem[l]['dlos'], \ gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) # evaluate flux for pulsars if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['lumi'] = retr_lumipuls(gmodstat.dictelem[l]['geff'], gmodstat.dictelem[l]['magf'], gmodstat.dictelem[l]['per0']) if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) gmodstat.dictelem[l]['lumi'] = gmodstat.dictelem[l]['lum0'] * (1. + gmodstat.dictelem[l]['reds'])**4 if gmod.typeelem[l] == 'lghtpntspuls' or gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['flux'] = retr_flux(gdat, gmodstat.dictelem[l]['lumi'], gmodstat.dictelem[l]['dlos']) # evaluate spectra if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], edisintp=gdat.edisintp, spectype=gmod.spectype[l]) else: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'pars') ### loglikelihood initchro(gdat, gdatmodi, 'modl') if gmod.boollens: lgalsour = gmodstat.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gmodstat.paragenrscalfull[gmod.indxpara.bgalsour] if gdat.typeverb > 2: print('Evaluating the likelihood...') # process a sample vector and the occupancy list to calculate secondary variables if gmod.boollens: fluxsour = gmodstat.paragenrscalfull[gmod.indxpara.fluxsour] if gdat.numbener > 1: sindsour = gmodstat.paragenrscalfull[gmod.indxpara.sindsour] sizesour = gmodstat.paragenrscalfull[gmod.indxpara.sizesour] ellpsour = gmodstat.paragenrscalfull[gmod.indxpara.ellpsour] anglsour = gmodstat.paragenrscalfull[gmod.indxpara.anglsour] if gmod.typeemishost != 'none': lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] fluxhost = [[] for e in gmod.indxsersfgrd] if gdat.numbener > 1: sindhost = [[] for e in gmod.indxsersfgrd] sizehost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % e)] bgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % e)] fluxhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'fluxhostisf%d' % e)] if gdat.numbener > 1: sindhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sindhostisf%d' % e)] sizehost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sizehostisf%d' % e)] if gmod.boollens: beinhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: beinhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % e)] if gmod.typeemishost != 'none': ellphost = [[] for e in gmod.indxsersfgrd] anglhost = [[] for e in gmod.indxsersfgrd] serihost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: ellphost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'ellphostisf%d' % e)] anglhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'anglhostisf%d' % e)] serihost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'serihostisf%d' % e)] if gmod.boollens: numbpixltemp = gdat.numbpixlcart defl = np.zeros((numbpixltemp, 2)) # determine the indices of the pixels over which element kernels will be evaluated if gdat.boolbinsspat: if gmod.numbparaelem > 0: listindxpixlelem = [[] for l in gmod.indxpopl] listindxpixlelemconc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: listindxpixlelem[l], listindxpixlelemconc[l] = retr_indxpixlelemconc(gdat, strgmodl, gmodstat.dictelem, l) if gmod.boollens: sherextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sherextr')] sangextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sangextr')] ## host halo deflection initchro(gdat, gdatmodi, 'deflhost') deflhost = [[] for e in gmod.indxsersfgrd] indxpixlmiss = gdat.indxpixlcart for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the deflection field due to host galaxy %d' % e) print('lgalhost[e]') print(lgalhost[e]) print('bgalhost[e]') print(bgalhost[e]) print('beinhost[e]') print(beinhost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) deflhost[e] = retr_defl(gdat, indxpixlmiss, lgalhost[e], bgalhost[e], beinhost[e], ellp=ellphost[e], angl=anglhost[e]) if gdat.booldiagmode: indxpixltemp = slice(None) setattr(gmodstat, 'deflhostisf%d' % e, deflhost[e]) if gdat.typeverb > 2: print('deflhost[e]') summgene(deflhost[e]) defl += deflhost[e] if gdat.typeverb > 2: print('After adding the host deflection...') print('defl') summgene(defl) if gdat.booldiagmode: if not np.isfinite(deflhost).all(): raise Exception('') stopchro(gdat, gdatmodi, 'deflhost') ## external shear initchro(gdat, gdatmodi, 'deflextr') deflextr = [] indxpixltemp = gdat.indxpixlcart deflextr = retr_deflextr(gdat, indxpixltemp, sherextr, sangextr) defl += deflextr if gdat.typeverb > 2: print('After adding the external deflection...') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'deflextr') # Boolean flag to indicate that the object to convolve the image will be needed boolneedpsfnconv = gdat.typepixl == 'cart' and (gmod.typeevalpsfn == 'conv' or gmod.typeevalpsfn == 'full') ## Boolean flag to indicate that the object to convolve the image will be constructed boolcalcpsfnconv = strgmodl == 'true' or boolinit or gdat.boolmodipsfn # get the convolution object if boolneedpsfnconv and boolcalcpsfnconv: initchro(gdat, gdatmodi, 'psfnconv') if gdat.typeverb > 2: print('Evaluating the PSF convolution kernel...') psfnconv = [[[] for i in gdat.indxener] for m in gdat.indxevtt] if gdat.typepixl == 'cart': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) for mm, m in enumerate(gdat.indxevtt): for ii, i in enumerate(gdat.indxener): if gmod.typemodlpsfn == 'singgaus': sigm = psfp[i+m*gdat.numbener] else: sigm = fwhm[i, m] / 2.355 gmodstat.psfnconv[mm][ii] = AiryDisk2DKernel(sigm / gdat.sizepixl) stopchro(gdat, gdatmodi, 'psfnconv') if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and gmod.numbparaelem > 0: if strgmodl == 'true' or boolinit or gdat.boolmodipsfn: if gdat.typepixl == 'heal': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gdat.typepixl == 'cart': if gdat.kernevaltype == 'ulip': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') if gdat.booldiagmode: if not np.isfinite(gmodstat.psfnintp(0.05)).all(): raise Exception('') if gdat.kernevaltype == 'bspx': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.anglcart.flatten(), gmod.typemodlpsfn, strgmodl) # side length of the upsampled kernel gdat.numbsidekernusam = 100 # side length of the original kernel gdat.numbsidekern = gdat.numbsidekernusam / factkernusam gdat.indxsidekern = np.arange(gdat.numbsidekern) # pad by one row and one column #psf = np.zeros((gdat.numbsidekernusam+1, gdat.numbsidekernusam+1)) #psf[0:gdat.numbsidekernusam, 0:gdat.numbsidekernusam] = psf0 # make design matrix for each factkernusam x factkernusam region nx = factkernusam + 1 y, x = mgrid[0:nx, 0:nx] / float(factkernusam) x = x.flatten() y = y.flatten() kernmatrdesi = np.array([full(nx*nx, 1), x, y, x*x, x*y, y*y, x*x*x, x*x*y, x*y*y, y*y*y]).T # output np.array of coefficients gmodstat.psfnintp = np.empty((gdat.numbsidekern, gdat.numbsidekern, kernmatrdesi.shape[1])) # solve p = kernmatrdesi psfnintp for psfnintp for iy in gdat.indxsidekern: for ix in gdat.indxsidekern: p = psf[iy*factkernusam:(iy+1)*factkernusam+1, ix*factkernusam:(ix+1)*factkernusam+1].flatten() gmodstat.psfnintp[iy, ix, :] = dot(linalg.inv(dot(kernmatrdesi.T, kernmatrdesi)), dot(kernmatrdesi.T, p)) else: gmodstat.psfnintp = gdat.fitt.this.psfnintp sbrt = dict() for name in gmod.listnamediff: sbrt[name] = [] if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: sbrtdfnc = [] if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = [] if gmod.boolelemdeflsubhanyy: deflsubh = [] # retrieve or initialize state variable if gmod.boolelemsbrtdfncanyy: sbrtdfnc = np.zeros_like(gdat.expo) if gmod.boolelemdeflsubhanyy: deflsubh = np.zeros((gdat.numbpixl, 2)) if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = np.zeros_like(gdat.expo) # element kernel evaluation if gmod.boolelemsbrtdfncanyy: initchro(gdat, gdatmodi, 'elemsbrtdfnc') sbrt['dfnc'] = [] for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: for k in range(gmodstat.numbelem[l]): if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] if gmod.typeelem[l] == 'clusvari': sbrtdfnc[0, listindxpixlelem[l][k], 0] += gmodstat.dictelem[l]['nobj'][k] / 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[listindxpixlelem[l][k]])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[listindxpixlelem[l][k]])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) if gmod.boolelempsfn[l]: print('sbrtdfnc') summgene(sbrtdfnc) sbrtdfnc[:, listindxpixlelem[l][k], :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) if gmod.typeelem[l].startswith('lghtline'): sbrtdfnc[:, 0, 0] += gmodstat.dictelem[l]['spec'][:, k] sbrt['dfnc'] = sbrtdfnc if gdat.booldiagmode: if not np.isfinite(sbrtdfnc).all(): raise Exception('Element delta function brightness not finite.') setattr(gmodstat, 'sbrtdfnc', sbrt['dfnc']) if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['dfnc']) numbelemtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: numbelemtemp += np.sum(gmodstat.numbelem[l]) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtdfnc') if gmod.boolelemdeflsubhanyy: initchro(gdat, gdatmodi, 'elemdeflsubh') if gdat.typeverb > 2: print('Perturbing subhalo deflection field') for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': for kk, k in enumerate(indxelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] if gmod.typeelemspateval[l] == 'locl': indxpixl = listindxpixlelem[l][kk] else: indxpixl = gdat.indxpixl deflsubh[indxpixl, :] += retr_defl(gdat, indxpixl, \ gmodstat.dictelem[l]['lgal'][kk], gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['defs'][kk], \ asca=asca, acut=acut) # temp -- find out what is causing the features in the element convergence maps #for kk, k in enumerate(indxelem[l]): # indxpixlpnts = retr_indxpixl(gdat, gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['lgal'][kk]) # if deflsubh[listindxpixlelem[l][kk], :] if gdat.typeverb > 2: print('deflsubh') summgene(deflsubh) setattr(gmodstat, 'deflsubh', deflsubh) if gdat.booldiagmode: if not np.isfinite(deflsubh).all(): raise Exception('Element deflection is not finite.') defl += deflsubh if gdat.typeverb > 2: print('After adding subhalo deflection to the total deflection') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'elemdeflsubh') if gmod.boolelemsbrtextsbgrdanyy: initchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if strgstat == 'this': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtgausbgrd': for k in range(gmodstat.numbelem[l]): sbrtextsbgrd[:, listindxpixlelem[l][k], :] += gmodstat.dictelem[l]['spec'][:, k, None, None] / \ 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[None, listindxpixlelem[l][k], None])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[None, listindxpixlelem[l][k], None])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) setattr(gmodstat, 'sbrtextsbgrd', sbrtextsbgrd) sbrt['extsbgrd'] = [] sbrt['extsbgrd'] = sbrtextsbgrd if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['extsbgrd']) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if gdat.typeverb > 2: print('Element related state variables after perturbations...') if gmod.boolelemsbrtdfncanyy: print('sbrtdfnc') summgene(sbrtdfnc) if gmod.boolelemdeflsubhanyy: print('deflsubh') summgene(deflsubh) if gmod.boolelemsbrtextsbgrdanyy: print('sbrtextsbgrd') summgene(sbrtextsbgrd) if gmod.boollens: # lensed surface brightness initchro(gdat, gdatmodi, 'sbrtlens') if gdat.typeverb > 2: print('Evaluating lensed surface brightness...') if strgstat == 'this' or gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrd'] = [] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrdgalx'] = [] if gdat.numbener > 1: specsour = retr_spec(gdat, np.array([fluxsour]), sind=np.array([sindsour])) if gdat.typeverb > 2: print('sindsour') print(sindsour) else: specsour = np.array([fluxsour]) if gdat.typeverb > 2: print('lgalsour') print(lgalsour) print('bgalsour') print(bgalsour) print('sizesour') print(sizesour) print('ellpsour') print(ellpsour) print('anglsour') print(anglsour) print('fluxsour') print(fluxsour) print('specsour') print(specsour) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.typeverb > 2: print('Interpolating the background emission...') sbrt['bgrdgalx'] = retr_sbrtsers(gdat, gdat.lgalgrid[indxpixlelem[0]], gdat.bgalgrid[indxpixlelem[0]], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) if gdat.typeverb > 2: print('sbrt[bgrdgalx]') summgene(sbrt['bgrdgalx']) print('sbrtextsbgrd') summgene(sbrtextsbgrd) sbrt['bgrd'] = sbrt['bgrdgalx'] + sbrtextsbgrd sbrt['lens'] = np.empty_like(gdat.cntpdata) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): sbrtbgrdobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ sbrt['bgrd'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) bgalprim = gdat.bgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 1] lgalprim = gdat.lgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 0] # temp -- T? sbrt['lens'][ii, :, m] = sbrtbgrdobjt(bgalprim, lgalprim, grid=False).flatten() else: if gdat.typeverb > 2: print('Not interpolating the background emission...') sbrt['lens'] = retr_sbrtsers(gdat, gdat.lgalgrid - defl[gdat.indxpixl, 0], \ gdat.bgalgrid - defl[gdat.indxpixl, 1], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) sbrt['bgrd'] = retr_sbrtsers(gdat, gdat.lgalgrid, \ gdat.bgalgrid, \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) setattr(gmodthis, 'sbrtlens', sbrt['lens']) if gdat.booldiagmode: if not np.isfinite(sbrt['lens']).all(): raise Exception('Lensed emission is not finite.') if (sbrt['lens'] == 0).all(): raise Exception('Lensed emission is zero everynp.where.') stopchro(gdat, gdatmodi, 'sbrtlens') ### background surface brightness sbrtback = [] # temp #sbrtback = np.empty((numbback, gdat.numbener, indxpixlelem[yy].size, gdat.numbevtt)) # evaluate host galaxy surface brightness if gmod.typeemishost != 'none': initchro(gdat, gdatmodi, 'sbrthost') for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the host galaxy surface brightness...') if gdat.numbener > 1: spechost = retr_spec(gdat, np.array([fluxhost[e]]), sind=np.array([sindhost[e]])) else: spechost = np.array([fluxhost[e]]) if gdat.typeverb > 2: print('lgalhost[e]') print(lgalhost[e] * gdat.anglfact) print('bgalhost[e]') print(bgalhost[e] * gdat.anglfact) print('spechost') print(spechost) print('sizehost[e]') print(sizehost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) print('serihost[e]') print(serihost[e]) sbrt['hostisf%d' % e] = retr_sbrtsers(gdat, gdat.lgalgrid, gdat.bgalgrid, lgalhost[e], \ bgalhost[e], spechost, sizehost[e], ellphost[e], anglhost[e], serihost[e]) setattr(gmodstat, 'sbrthostisf%d' % e, sbrt['hostisf%d' % e]) #sbrthost = sbrt['host'] if gdat.typeverb > 2: for e in gmod.indxsersfgrd: print('e') print(e) print('sbrt[hostisf%d]') summgene(sbrt['hostisf%d' % e]) stopchro(gdat, gdatmodi, 'sbrthost') ## model emission initchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('Summing up the model emission...') sbrt['modlraww'] = np.zeros((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt)) for name in gmod.listnamediff: if name.startswith('back'): gmod.indxbacktemp = int(name[4:8]) if gdat.typepixl == 'heal' and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv') and not gmod.boolunifback[gmod.indxbacktemp]: sbrttemp = getattr(gmod, 'sbrtbackhealfull')[gmod.indxbacktemp] else: sbrttemp = gmod.sbrtbacknorm[gmod.indxbacktemp] if gmod.boolspecback[gmod.indxbacktemp]: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp]] else: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp][gdat.indxener]][:, None, None] sbrt['modlraww'] += sbrt[name] if gdat.booldiagmode: if np.amax(sbrttemp) == 0.: raise Exception('') if gdat.typeverb > 2: print('name') print(name) print('sbrt[name]') summgene(sbrt[name]) if gdat.typeverb > 2: for ii, i in enumerate(gdat.indxener): print('ii, i') print(ii, i) for mm, m in enumerate(gdat.indxevtt): print('mm, m') print(mm, m) print('sbrt[modlraww][ii, :, mm]') summgene(sbrt['modlraww'][ii, :, mm]) # convolve the model with the PSF if gmod.convdiffanyy and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv'): sbrt['modlconv'] = [] # temp -- isotropic background proposals are unnecessarily entering this clause if gdat.typeverb > 2: print('Convolving the model image with the PSF...') sbrt['modlconv'] = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): if gdat.strgcnfg == 'pcat_ferm_igal_mock_test': print('Convolving ii, i, mm, m') print(ii, i, mm, m) if gdat.typepixl == 'cart': if gdat.numbpixl == gdat.numbpixlcart: sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrt['modlraww'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)), \ psfnconv[mm][ii]).flatten() else: sbrtfull = np.zeros(gdat.numbpixlcart) sbrtfull[gdat.indxpixlrofi] = sbrt['modlraww'][ii, :, mm] sbrtfull = sbrtfull.reshape((gdat.numbsidecart, gdat.numbsidecart)) sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrtfull, psfnconv[mm][ii]).flatten()[gdat.indxpixlrofi] indx = np.where(sbrt['modlconv'][ii, :, mm] < 1e-50) sbrt['modlconv'][ii, indx, mm] = 1e-50 if gdat.typepixl == 'heal': sbrt['modlconv'][ii, :, mm] = hp.smoothing(sbrt['modlraww'][ii, :, mm], fwhm=fwhm[i, m])[gdat.indxpixlrofi] sbrt['modlconv'][ii, :, mm][np.where(sbrt['modlraww'][ii, :, mm] <= 1e-50)] = 1e-50 setattr(gmodstat, 'sbrtmodlconv', sbrt['modlconv']) # temp -- this could be made faster -- need the copy() statement because sbrtdfnc gets added to sbrtmodl afterwards sbrt['modl'] = np.copy(sbrt['modlconv']) else: if gdat.typeverb > 2: print('Skipping PSF convolution of the model...') sbrt['modl'] = np.copy(sbrt['modlraww']) if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ## add PSF-convolved delta functions to the model if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gdat.typeverb > 2: print('Adding delta functions into the model...') print('sbrt[dfnc]') summgene(sbrt['dfnc']) sbrt['modl'] += sbrt['dfnc'] stopchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ### count map initchro(gdat, gdatmodi, 'expo') cntp = dict() cntp['modl'] = retr_cntp(gdat, sbrt['modl']) if gdat.booldiagmode: setattr(gmodstat, 'cntpmodl', cntp['modl']) stopchro(gdat, gdatmodi, 'expo') # mock data specific if strgmodl == 'true' and strgstat == 'this': # generate count data cntptemp = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for i in gdat.indxener: for j in gdat.indxpixl: for m in gdat.indxevtt: cntptemp[i, j, m] = np.random.poisson(cntp['modl'][i, j, m]) setattr(gdat, 'cntpdata', cntptemp) if not gdat.boolsqzeexpo and np.amax(cntptemp) == 0: print('cntp[modl]') summgene(cntp['modl']) print('gdat.boolsqzeexpo') print(gdat.boolsqzeexpo) print('cntptemp') summgene(cntptemp) raise Exception('Data is zero.') proc_cntpdata(gdat) ## diagnostics if gdat.booldiagmode: frac = cntp['modl'] / np.mean(cntp['modl']) if np.amin(frac) < -1e-3 and np.amin(cntp['modl']) < -0.1: raise Exception('') indxcubebadd = np.where(cntp['modl'] < 0.)[0] if indxcubebadd.size > 0: print('Warning! Model prediction is negative. Correcting to 1e-20...') cntp['modl'][indxcubebadd] = 1e-20 stopchro(gdat, gdatmodi, 'modl') # log-prior initchro(gdat, gdatmodi, 'lpri') if gdat.typeverb > 2: print('Evaluating the prior...') lpri = np.zeros(gmod.numblpri) if gmod.numbparaelem > 0: for l in gmod.indxpopl: lpri[0] -= 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[l] * gmodstat.numbelem[l] if gdat.penalpridiff: sbrtdatapnts = gdat.sbrtdata - sbrt['dfnc'] if gdat.typepixl == 'heal': raise Exception('') if gdat.typepixl == 'cart': psecodimdatapnts = np.empty((gdat.numbener, gdat.numbsidecarthalf, gdat.numbevtt)) psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) sigm = fwhm / 2.355 psecodimdatapntsprio = np.exp(-2. * gdat.meanpara.mpolodim[None, :, None] / (0.1 / sigm[:, None, :])) lpridiff = 0. for i in gdat.indxener: for m in gdat.indxevtt: psecdatapnts = retr_psec(gdat, sbrtdatapnts[i, :, m]) psecodimdatapnts[i, :, m] = retr_psecodim(gdat, psecdatapnts) psecodimdatapnts[i, :, m] /= psecodimdatapnts[i, 0, m] lpridiff += -0.5 * np.sum((psecodimdatapnts[i, :, m] - psecodimdatapntsprio[i, :, m])**2) setattr(gmodstat, 'psecodimdatapntsen%02devt%d' % (i, m), psecodimdatapnts[i, :, m]) setattr(gmodstat, 'psecodimdatapntsprioen%02devt%d'% (i, m), psecodimdatapntsprio[i, :, m]) lpri[1] = lpridiff setattr(gmodstat, 'lpridiff', lpridiff) if gmod.typemodltran == 'pois': meanelem = gmodstat.paragenrscalfull[gmod.indxpara.meanelem] for l in gmod.indxpopl: lpri[2] += retr_lprbpois(gmodstat.numbelem[l], meanelem[l]) for l in gmod.indxpopl: for g, (strgfeat, strgpdfn) in enumerate(zip(gmod.namepara.genrelem[l], gmod.listscalparagenrelem[l])): indxlpritemp = 3 + l * gmod.numbparagenrelem + g lpri[indxlpritemp] = retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, gmodstat.paragenrscalfull, gmodstat.dictelem, gmodstat.numbelem) lpritotl = np.sum(lpri) if gdat.typeverb > 1: print('lpritotl') print(lpritotl) ### log-likelihood initchro(gdat, gdatmodi, 'llik') llik = retr_llik(gdat, strgmodl, cntp['modl']) if gdat.typeverb > 2: print('cntp[modl]') summgene(cntp['modl']) print('np.sum(cntp[modl], (1, 2))') print(np.sum(cntp['modl'], (1, 2))) print('np.sum(gdat.cntpdata, (1, 2))') print(np.sum(gdat.cntpdata, (1, 2))) if gdat.booldiagmode: if not np.isfinite(llik).all(): raise Exception('Likelihood is not finite.') gmodstat.lliktotl = np.sum(llik) if gdat.booldiagmode: if isinstance(gmodstat.lliktotl, np.ndarray): raise Exception('') if not np.isfinite(gmodstat.lliktotl).all(): raise Exception('') numbdoff = gdat.numbdata - gmod.numbparagenrbase if gmod.numbparaelem > 0: for l in gmod.indxpopl: numbdoff -= len(gmodstat.indxparagenrfullelem[l]['full']) setattr(gmodstat, 'llik', llik) setattr(gmodstat, 'llikmean', gmodstat.lliktotl / gdat.numbdata) setattr(gmodstat, 'llikcmea', gmodstat.lliktotl / (gdat.numbdata - numbdoff)) if gdat.typeverb > 2: print('llik') summgene(llik) if gdat.typeverb > 1: print('gmodstat.lliktotl') print(gmodstat.lliktotl) stopchro(gdat, gdatmodi, 'llik') lpostotl = lpritotl + gmodstat.lliktotl if gdat.typeverb > 1: print('lpostotl') print(lpostotl) setattr(gmodstat, 'lpritotl', lpritotl) setattr(gmodstat, 'gmodstat.lliktotl', gmodstat.lliktotl) setattr(gmodstat, 'lpostotl', lpostotl) stopchro(gdat, gdatmodi, 'lpri') if strgstat == 'next': return initchro(gdat, gdatmodi, 'tert') setattr(gmodstat, 'lpri', lpri) if gmod.numbparaelem > 0: setattr(gmodstat, 'lpripena', lpri[0]) dicttert = {} ## load necessary variables ## derived variables ## residual count map cntp['resi'] = [] cntp['resi'] = gdat.cntpdata - cntp['modl'] setattr(gmodstat, 'cntpmodl', cntp['modl']) setattr(gmodstat, 'cntpresi', cntp['resi']) setattr(gmodstat, 'llik', llik) #if gmod.boollens: # setattr(gmodstat, 'deflhost', deflhost) if gmod.boollens: setattr(gmodstat, 'defl', defl) for e in gmod.indxsersfgrd: masshostbein = massfrombein * beinhost[e]**2 setattr(gmodstat, 'masshostisf%dbein' % e, masshostbein) ### sort with respect to deflection at scale radius if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: indxelemsortampl = np.argsort(gmodstat.dictelem[l][nameparaelemsort[l]])[::-1] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem + 'sort'] = gmodstat.dictelem[l][nameparagenrelem][indxelemsortampl] deflsing = np.zeros((gdat.numbpixlcart, 2, numbdeflsingplot)) conv = np.zeros((gdat.numbpixlcart)) convpsec = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecodim = np.zeros((gdat.numbsidecarthalf)) if gmod.numbparaelem > 0: if boolelemlens: gmod.indxpopllens = gmod.typeelem.index('lens') numbdeflsing = 2 if gmod.numbparaelem > 0: if boolelemlens: if numbelem[indxpopllens] > 0: numbdeflsing += min(numbdeflsubhplot, numbelem[indxpopllens]) numbdeflsing += 1 for k in range(numbdeflsing): indxpixltemp = gdat.indxpixlcart if k == 0: # temp -- should take other sersics into account deflsing[indxpixltemp, :, k] = deflhost[0] elif k == 1: deflsing[indxpixltemp, :, k] = deflextr elif k == 2: deflsing[indxpixltemp, :, k] = defl - deflextr - deflhost[0] else: asca = gmodstat.dictelem[indxpopllens]['ascasort'][None, k-3] acut = gmodstat.dictelem[indxpopllens]['acutsort'][None, k-3] deflsing[listindxpixlelem[indxpopllens][k], :, k] = retr_defl(gdat, listindxpixlelem[indxpopllens][k], \ gmodstat.dictelem[indxpopllens]['lgalsort'][None, k-3], gmodstat.dictelem[indxpopllens]['bgalsort'][None, k-3], \ gmodstat.dictelem[indxpopllens]['defssort'][None, k-3], asca=asca, acut=acut) # convergence ## total conv[:] = retr_conv(gdat, defl) convhost = np.zeros((gmod.numbsersfgrd, gdat.numbpixlcart)) for e in gmod.indxsersfgrd: convhost[e, :] = retr_conv(gdat, deflhost[e]) ### power spectrum #### two dimensional convpsec[:] = retr_psec(gdat, conv[:]) #### one dimensional convpsecodim[:] = retr_psecodim(gdat, convpsec[:]) setattr(gmodstat, 'convpsec', convpsec) setattr(gmodstat, 'convpsecodim', convpsecodim) setattr(gmodstat, 'conv', conv[...]) for e in gmod.indxsersfgrd: setattr(gmodstat, 'convisf%d' % e, convhost[e, ...]) ## subhalos if gmod.numbparaelem > 0: if boolelemlens: convelem = np.zeros((gdat.numbpixl)) convpsecelem = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecelemodim = np.zeros((gdat.numbsidecarthalf)) ### convergence convelem[:] = retr_conv(gdat, deflsubh) ### power spectrum ##### two dimensional convpsecelem[:] = retr_psec(gdat, convelem[:]) ##### one dimensional convpsecelemodim[:] = retr_psecodim(gdat, convpsecelem[:]) setattr(gmodstat, 'convpsecelem', convpsecelem) setattr(gmodstat, 'convpsecelemodim', convpsecelemodim) setattr(gmodstat, 'convelem', convelem[...]) setattr(gmodstat, 'defl', defl) ### magnification magn = np.empty((gdat.numbpixlcart)) histdefl = np.empty((gdat.numbdefl)) if gmod.numbparaelem > 0 and boolelemlens: histdeflsubh = np.empty((gdat.numbdefl)) deflsingmgtd = np.zeros((gdat.numbpixlcart, numbdeflsingplot)) magn[:] = 1. / retr_invm(gdat, defl) histdefl[:] = np.histogram(defl, bins=gdat.binspara.defl)[0] if gmod.numbparaelem > 0: if boolelemlens: histdeflsubh[:] = np.histogram(deflsubh, bins=gdat.binspara.deflsubh)[0] deflsingmgtd[:, :] = np.sqrt(np.sum(deflsing[...]**2, axis=1)) if gmod.numbparaelem > 0: if boolelemlens: setattr(gmodstat, 'histdeflsubh', histdeflsubh) setattr(gmodstat, 'histdefl', histdefl) setattr(gmodstat, 'magn', magn[...]) setattr(gmodstat, 'deflsing', deflsing[...]) setattr(gmodstat, 'deflsingmgtd', deflsingmgtd[...]) ## element related if gmod.numbparaelem > 0: if gdat.numbpixl == 1: for l in gmod.indxpopl: for k in range(gmodstat.numbelem[l]): setattr(gmodstat, 'speclinepop%d%04d' % (l, k), gmodstat.dictelem[l]['spec'][:, k]) if gdat.typedata == 'mock' and strgmodl == 'true' and gdat.numbpixl > 1: gdat.refrlgal = [[] for l in gmod.indxpopl] gdat.refrbgal = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gdat.refrlgal[l] = np.tile(gmodstat.dictelem[l]['lgal'], [3] + list(np.ones(gmodstat.dictelem[l]['lgal'].ndim, dtype=int))) gdat.refrbgal[l] = np.tile(gmodstat.dictelem[l]['bgal'], [3] + list(np.ones(gmodstat.dictelem[l]['bgal'].ndim, dtype=int))) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['per1'] = retr_per1(gmodstat.dictelem[l]['per0'], gmodstat.dictelem[l]['magf']) if gmod.numbparaelem > 0: if strgstat == 'this' or gdat.boolrefeforc and strgmodl == 'fitt': # correlate the fitting model elements with the reference elements if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: indxelemrefrasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] == 0: continue indxelemfittmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) indxelemrefrmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) matrdist = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l])) for k in range(gmodstat.numbelem[l]): # construct a matrix of angular distances between reference and fitting elements if gmod.typeelem[l].startswith('lghtline'): matrdist[:, k] = abs(gdat.refrelin[q][0, :] - gmodstat.dictelem[l]['elin'][k]) / gdat.refrelin[q][0, :] else: matrdist[:, k] = retr_angldist(gdat, gdat.refr.dictelem[q]['lgal'][0, :], gdat.refr.dictelem[q]['bgal'][0, :], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k]) indxelemrefrmatr[:, k] = np.arange(gdat.refr.numbelem[q]) indxelemfittmatr[:, k] = k matrdist = matrdist.flatten() indxelemrefrmatr = indxelemrefrmatr.flatten() indxelemfittmatr = indxelemfittmatr.flatten() # take only angular separations smaller than some threshold indxmatrthrs = np.where(matrdist < gdat.anglassc) matrdist = matrdist[indxmatrthrs] indxelemrefrmatr = indxelemrefrmatr[indxmatrthrs] indxelemfittmatr = indxelemfittmatr[indxmatrthrs] # sort the remaining associations with respect to distance indxmatrsort = np.argsort(matrdist) matrdist = matrdist[indxmatrsort] indxelemrefrmatr = indxelemrefrmatr[indxmatrsort] indxelemfittmatr = indxelemfittmatr[indxmatrsort] for c in range(matrdist.size): if indxelemrefrmatr[c] in indxelemrefrasschits[q][l] or indxelemfittmatr[c] in indxelemfittasschits[q][l]: continue indxelemrefrasschits[q][l].append(indxelemrefrmatr[c]) indxelemfittasschits[q][l].append(indxelemfittmatr[c]) indxelemrefrasschits[q][l] = np.array(indxelemrefrasschits[q][l]) indxelemfittasschits[q][l] = np.array(indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasschits', indxelemrefrasschits) setattr(gmodstat, 'indxelemfittasschits', indxelemfittasschits) indxelemrefrasscmiss = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasscfals = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: # indices of the reference elements not associated with the fitting model elements if gdat.refr.numbelem[q] > 0: indxelemrefrasscmiss[q][l] = np.setdiff1d(np.arange(gdat.refr.numbelem[q]), indxelemrefrasschits[q][l]) # indices of the fitting model elements not associated with the reference elements if gmodstat.numbelem[l] > 0: indxelemfittasscfals[q][l] = np.setdiff1d(np.arange(gmodstat.numbelem[l]), indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasscmiss', indxelemrefrasscmiss) setattr(gmodstat, 'indxelemfittasscfals', indxelemfittasscfals) for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for l in gmod.indxpopl: # collect the associated reference element parameter for each fitting element for strgfeat in gdat.refr.namepara.elemonly[q][l]: name = strgfeat + gdat.listnamerefr[q] if strgfeat != 'spec' and strgfeat != 'specplot': refrfeat = getattr(gdat.refr, strgfeat) gmodstat.dictelem[l][name] = np.zeros(gmodstat.numbelem[l]) if len(refrfeat[q]) > 0 and len(indxelemrefrasschits[q][l]) > 0: gmodstat.dictelem[l][name][indxelemfittasschits[q][l]] = refrfeat[q][0, indxelemrefrasschits[q][l]] print('temp') continue # collect the error in the associated reference element amplitude for strgfeat in gdat.listnameparaetotlelemcomm[q][l]: refrfeat = getattr(gdat.refr, strgfeat) if strgfeat == gmod.nameparagenrelemampl[l] and len(indxelemfittasschits[q][l]) > 0: gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]] = np.zeros(gmodstat.numbelem[l]) fittfeattemp = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] refrfeattemp = refrfeat[q][0, indxelemrefrasschits[q][l]] if gdat.booldiagmode: if not np.isfinite(refrfeattemp).all(): raise Exception('') gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]][indxelemfittasschits[q][l]] = 100. * (fittfeattemp - refrfeattemp) / refrfeattemp if gdat.boolrefeforc and strgmodl == 'fitt': for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat in gdat.refr.namepara.elem[gdat.indxrefrforc[l]]: if len(indxelemrefrasschits[gdat.indxrefrforc[l]][l]) == 0: continue refrfeat = getattr(gdat.refr, strgfeat)[gdat.indxrefrforc[l]][0, indxelemrefrasschits[gdat.indxrefrforc[l]][l]] if len(gmodstat.dictelem[l][strgfeat]) == 0: continue lpritotl += -2. * np.sum(1e6 * (gmodstat.dictelem[l][strgfeat][indxelemfittasschits[gdat.indxrefrforc[l]][l]] - refrfeat)**2 / refrfeat**2) # other tertiary variables continues ## number of degrees of freedom chi2doff = np.sum(cntp['resi']**2 / gdat.varidata) / numbdoff if gdat.booldiagmode: if not np.isfinite(cntp['resi']).all(): raise Exception('') if not np.isfinite(numbdoff): raise Exception('') if not np.isfinite(chi2doff): raise Exception('') setattr(gmodstat, 'numbdoff', numbdoff) setattr(gmodstat, 'chi2doff', chi2doff) if gmod.boolelempsfn and gmod.numbparaelem > 0: gmodstat.fwhmpsfn = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gmod.numbparaelem > 0: ### derived parameters for l in gmod.indxpopl: # luminosity if gmod.boolelemlght[l] and 'flux' in gmod.namepara.genrelem[l]: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat.startswith('reds') and strgfeat != 'reds': namerefr = strgfeat[-4:] gmodstat.dictelem[l]['lumi' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan gmodstat.dictelem[l]['dlos' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan reds = gmodstat.dictelem[l]['reds' + namerefr] indxgood = np.where(np.isfinite(gmodstat.dictelem[l]['reds' + namerefr]))[0] if indxgood.size > 0: # temp -- these units only work for energy units of keV dlos = gdat.adisobjt(reds) gmodstat.dictelem[l]['dlos' + namerefr][indxgood] = dlos lumi = retr_lumi(gdat, gmodstat.dictelem[l]['flux'], dlos, reds) gmodstat.dictelem[l]['lumi' + namerefr][indxgood] = lumi if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['mass'] = full([numbelem[l]], 3.) if gdat.typeverb > 2: print('l') print(l) if gdat.boolbinsspat: #### radial and angular coordinates gmodstat.dictelem[l]['gang'] = retr_gang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) gmodstat.dictelem[l]['aang'] = retr_aang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) if gmod.boolelemlght[l]: #### number of expected counts if gdat.boolbinsspat: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']], gmodstat.dictelem[l]['spec']) else: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['elin']], gmodstat.dictelem[l]['spec']) #### delta log-likelihood gmodstat.dictelem[l]['deltllik'] = np.zeros(gmodstat.numbelem[l]) if not (strgmodl == 'true' and gdat.checprio): if gdat.typeverb > 2: print('Calculating log-likelihood differences when removing elements from the model.') for k in range(gmodstat.numbelem[l]): # construct gdatmodi gdatmoditemp = tdpy.gdatstrt() gdatmoditemp.this = tdpy.gdatstrt() gdatmoditemp.next = tdpy.gdatstrt() gdatmoditemp.this.indxelemfull = gmodstat.indxelemfull gdatmoditemp.this.paragenrscalfull = gmodstat.paragenrscalfull gdatmoditemp.this.paragenrunitfull = gmodstat.paragenrunitfull prop_stat(gdat, gdatmoditemp, strgmodl, deth=True, thisindxpopl=l, thisindxelem=k) proc_samp(gdat, gdatmoditemp, 'next', strgmodl)#, boolinit=boolinit) if gdat.booldiagmode: if not np.isfinite(gmodstat.lliktotl): raise Exception('') gdatobjttemp = retr_gdatobjt(gdat, gdatmoditemp, strgmodl)#, boolinit=boolinit) nextlliktotl = gdatobjttemp.next.lliktotl gmodstat.dictelem[l]['deltllik'][k] = gmodstat.lliktotl - nextlliktotl if gdat.typeverb > 2: print('deltllik calculation ended.') # more derived parameters if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): ### PSF FWHM if gdat.typepixl == 'cart': fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) setattr(gmodstat, 'fwhm', fwhm) if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gmod.numbparaelem > 0: sbrt['dfnctotl'] = np.zeros_like(gdat.expo) sbrt['dfncsubt'] = np.zeros_like(gdat.expo) sbrt['dfncsupt'] = np.zeros_like(gdat.expo) for l in gmod.indxpopl: if gmod.boolcalcerrr[l]: sbrt['dfncfull'] = np.zeros_like(gdat.expo) if gmod.boolelemsbrt[l]: for k in range(gmodstat.numbelem[l]): # read normalization from the element dictionary if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] # calculate imprint on the element surface brightness state variable if gmod.boolelempsfn[l]: sbrttemp = retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) indxpixltemp = listindxpixlelem[l][k] if gmod.typeelem[l].startswith('lghtline'): sbrttemp = gmodstat.dictelem[l]['spec'][:, k, None, None] # add it to the state variable depending on the significance sbrt['dfnctotl'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] > 35: sbrt['dfncsupt'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] < 35: sbrt['dfncsubt'][:, indxpixltemp, :] += sbrttemp # calculate imprint without PSF truncation to calculate approximation errors if gmod.boolcalcerrr[l]: sbrt['dfncfull'][:, :, :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, gdat.indxpixl) setattr(gmodstat, 'sbrtdfncsubtpop%d' % l, sbrt['dfncsubt']) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.booldiagmode: numbtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtextsbgrd[l]: numbtemp += np.sum(gmodstat.numbelem[l]) if numbtemp > 0 and (sbrtextsbgrd == 0.).all(): raise Exception('') sbrt['bgrdexts'] = sbrtextsbgrd #### count maps cntp = dict() for name in gmod.listnamegcom: cntp[name] = retr_cntp(gdat, sbrt[name]) setattr(gmodstat, 'cntp' + name, cntp[name]) ### spatial averages sbrtmean = dict() sbrtstdv = dict() for name in gmod.listnamegcom: sbrtmean[name], sbrtstdv[name] = retr_spatmean(gdat, sbrt[name]) for b in gdat.indxspatmean: setattr(gmodstat, 'sbrt%smea%d' % (name, b), sbrtmean[name][b]) setattr(gmodstat, 'sbrt%sstd%d' % (name, b), sbrtstdv[name][b]) if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: for i in gdat.indxener: if 'dark' in gmod.listnamegcom: fracsdenmeandarkdfncsubt = sbrtmean['dfncsubt'][0][0][i] / (sbrtmean['dfncsubt'][0][0][i] + sbrtmean['dark'][0][0][i]) else: fracsdenmeandarkdfncsubt = 1. setattr(gmodstat, 'fracsdenmeandarkdfncsubten%02d' % i, np.array([fracsdenmeandarkdfncsubt])) if 'dark' in gmod.listnamegcom: booldfncsubt = float(np.where(sbrtmean['dfncsubt'][0][0] > sbrtmean['dark'][0][0])[0].any()) else: booldfncsubt = 1. setattr(gmodstat, 'booldfncsubt', np.array([booldfncsubt])) # find the 1-point function of the count maps of all emission components including the total emission for name in gmod.listnamegcom: namehistcntp = 'histcntp' + name for m in gdat.indxevtt: if gdat.numbevtt > 1: namehistcntp += 'evt%d' % m for i in gdat.indxener: if gdat.numbener > 1: namehistcntp += 'en%02d' % i histcntp = np.histogram(cntp[name][i, :, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, namehistcntp, histcntp) if False and i == 0 and m == 0 and (name == 'dfnc' or name == 'dfncsubt'): for strgbins in ['lowr', 'higr']: strgtemp = 'histcntp' + strgbins + name + 'en%02devt%d' % (i, m) if strgbins == 'lowr': setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[:gdat.numbtickcbar-1]))])) else: setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[gdat.numbtickcbar-1:]))])) else: histcntp = np.histogram(cntp[name][:, 0, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, 'histcntp' + name + 'evt%d' % m, histcntp) if gmod.boollens: if strgmodl == 'true': s2nr = [] s2nr = cntp['lens'] / np.sqrt(cntp['modl']) setattr(gmodstat, 's2nr', s2nr) cntplensgrad = np.empty((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt, 2)) for i in gdat.indxener: for m in gdat.indxevtt: cntplenstemp = np.zeros(gdat.numbpixlcart) cntplenstemp[gdat.indxpixlrofi] = cntp['lens'][i, :, m] cntplensgrad[i, :, m, :] = retr_gradmaps(gdat, cntplenstemp) * gdat.sizepixl cntplensgradmgtd = np.sqrt(np.sum(cntplensgrad**2, axis=3)) cntplensgrad *= gdat.sizepixl indx = np.where(np.fabs(cntplensgrad) > 1. * gdat.sizepixl) cntplensgrad[indx] = np.sign(cntplensgrad[indx]) * 1. * gdat.sizepixl deflmgtd = np.sqrt(np.sum(defl**2, axis=1)) setattr(gmodstat, 'deflmgtd', deflmgtd) setattr(gmodstat, 'cntplensgrad', cntplensgrad) setattr(gmodstat, 'cntplensgradmgtd', cntplensgradmgtd) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.boolelemlght[l]: #### spectra if gdat.boolbinsspat: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['specplot'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], \ curv=gmodstat.dictelem[l]['curv'], expc=gmodstat.dictelem[l]['expc'], \ sindcolr=sindcolr, spectype=gmod.spectype[l], plot=True) if gdat.typedata == 'inpt': if gdat.typeexpr == 'ferm': # temp try: gmodstat.dictelem[l]['sbrt0018'] = gdat.sbrt0018objt(gmodstat.dictelem[l]['bgal'], gmodstat.dictelem[l]['lgal']) except: gmodstat.dictelem[l]['sbrt0018'] = gmodstat.dictelem[l]['bgal'] * 0. if gmod.typeelem[l] == 'lens': #### distance to the source if gmod.boollens: gmodstat.dictelem[l]['diss'] = retr_angldist(gdat, gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], lgalsour, bgalsour) if gmod.boollenssubh: gmodstat.dictelem[l]['deflprof'] = np.empty((gdat.numbanglfull, gmodstat.numbelem[l])) gmodstat.dictelem[l]['mcut'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['rele'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reln'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relk'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relf'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reld'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relc'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relm'] = np.empty(gmodstat.numbelem[l]) # temp -- this can be placed earlier in the code cntplensobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ cntp['lens'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) for k in np.arange(gmodstat.numbelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] #### deflection profiles gmodstat.dictelem[l]['deflprof'][:, k] = retr_deflcutf(gdat.meanpara.anglfull, gmodstat.dictelem[l]['defs'][k], asca, acut) ### truncated mass gmodstat.dictelem[l]['mcut'][k] = retr_mcut(gdat, gmodstat.dictelem[l]['defs'][k], asca, acut, adishost, mdencrit) #### dot product with the source flux gradient # temp -- weigh the energy and PSF bins gmodstat.dictelem[l]['rele'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relf'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, cntpmodl=cntp['modl'][0, :, 0]) deflelem = retr_defl(gdat, gdat.indxpixl, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], gmodstat.dictelem[l]['defs'][k], asca=asca, acut=acut) bgalprim = gdat.bgalgrid - deflelem[:, 1] lgalprim = gdat.lgalgrid - deflelem[:, 0] gmodstat.dictelem[l]['relm'][k] = np.mean(abs(cntp['lens'][0, :, 0] - cntplensobjt(bgalprim, lgalprim, grid=False).flatten())) gmodstat.dictelem[l]['relk'][k] = gmodstat.dictelem[l]['relm'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reln'][k] = gmodstat.dictelem[l]['rele'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reld'][k] = retr_rele(gdat, gdat.cntpdata[0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relc'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, absv=False) / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl ### distribution of element parameters and features #### calculate the model filter listindxelemfilt = [[[] for l in gmod.indxpopl] for namefilt in gdat.listnamefilt] for k, namefilt in enumerate(gdat.listnamefilt): for l in gmod.indxpopl: if namefilt == '': listindxelemfilt[k][l] = np.arange(gmodstat.numbelem[l]) if namefilt == 'imagbndr': listindxelemfilt[k][l] = np.where((np.fabs(gmodstat.dictelem[l]['lgal']) < gdat.maxmgangdata) & (np.fabs(gmodstat.dictelem[l]['bgal']) < gdat.maxmgangdata))[0] if namefilt == 'deltllik': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['deltllik'] > 0.5 * gmod.numbparagenrelemsing[l])[0] if namefilt == 'nrel': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['reln'] > 0.3)[0] for l in gmod.indxpopl: # histograms of element parameters for namefrst in gmod.namepara.elem[l]: ## one dimensional if namefrst[:-4] == 'etag': continue if namefrst == 'specplot' or namefrst == 'deflprof': continue elif namefrst == 'spec': histfrst = np.zeros((gdat.numbbinsplot, gdat.numbener)) for i in gdat.indxener: histfrst[:, i] = np.histogram(gmodstat.dictelem[l]['spec'][i, listindxelemfilt[0][l]], gdat.binspara.spec)[0] elif namefrst == 'cnts': histfrst = np.histogram(gmodstat.dictelem[l]['cnts'][listindxelemfilt[0][l]], gdat.binspara.cnts)[0] else: #elif not (namefrst == 'curv' and gmod.spectype[l] != 'curv' or namefrst == 'expc' \ # and gmod.spectype[l] != 'expc' or namefrst.startswith('sindarry') and \ # gmod.spectype[l] != 'colr'): binsfrst = getattr(gdat.binspara, namefrst) #if len(gmodstat.dictelem[l][namefrst]) > 0 and len(listindxelemfilt[0][l]) > 0: histfrst = np.histogram(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], binsfrst)[0] strgvarb = 'hist' + namefrst + 'pop%d' % l setattr(gmodstat, strgvarb, histfrst) #### two dimensional for nameseco in gmod.namepara.elem[l]: if namefrst == 'spec' or namefrst == 'specplot' or namefrst == 'deflprof' or \ nameseco == 'spec' or nameseco == 'specplot' or nameseco == 'deflprof': continue if not checstrgfeat(namefrst, nameseco): continue binsseco = getattr(gdat.binspara, nameseco) histtdim = np.histogram2d(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], \ gmodstat.dictelem[l][nameseco][listindxelemfilt[0][l]], [binsfrst, binsseco])[0] setattr(gmodstat, 'hist' + namefrst + nameseco + 'pop%d' % l, histtdim) ### priors on element parameters and features for nameparagenrelem in gmod.namepara.genrelem[l]: xdat = gmodstat.dictelem[l][nameparagenrelem] minm = getattr(gmod.minmpara, nameparagenrelem + 'pop%d' % l) maxm = getattr(gmod.maxmpara, nameparagenrelem + 'pop%d' % l) scal = getattr(gmod.scalpara, nameparagenrelem + 'pop%d' % l) booltemp = False if scal.startswith('expo') or scal.startswith('dexp'): if scal.startswith('expo'): if scal == 'expo': sexp = getattr(gmod, 'gangdistsexppop%d' % l) else: sexp = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] pdfn = pdfn_expo(xdat, maxm, sexp) if scal.startswith('dexp'): pdfn = pdfn_dnp.exp(xdat, maxm, scal) booltemp = True if scal.startswith('self') or scal.startswith('logt'): if scal.startswith('self'): pdfn = 1. / (maxm - minm) + np.zeros_like(xdat) else: pdfn = 1. / (np.log(maxm) - np.log(minm)) + np.zeros_like(xdat) booltemp = True # temp if scal.startswith('powr'): slop = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem + 'pop%d' % l)] pdfn = pdfn_powr(xdat, minm, maxm, slop) booltemp = True if scal.startswith('dpowslopbrek'): pdfn = pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr) booltemp = True if scal == 'lnormeanstdv': pdfn = pdfn_lnor(xdat, meanlnor, stdvlnor) booltemp = True if scal.startswith('igam'): cutf = getattr(gdat, 'cutf' + nameparagenrelem) pdfn = pdfn_igam(xdat, slop, cutf) booltemp = True if scal.startswith('gaus'): # this does not work for mismodeling meanvarb = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] stdv = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] if nameparagenrelem == 'expc' and gmod.spectype[l] == 'expc': pdfn = pdfn_gaus(xdat, meanvarb, stdv) else: pdfn = pdfn_gaus(xdat, meanvarb, stdv) booltemp = True # temp -- meanelem will not be defined #if booltemp: # gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio'] = gmodstat.numbelem[l] * pdfn * np.interp(xdat, xdatplot, delt) #setattr(gmodstat, 'hist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) #if strgmodl == 'true': # setattr(gmodstat, 'refrhist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gmodstat.numbelem[l] > 0: ## total truncated mass of the subhalo as a cross check # temp -- generalize asca = gmodstat.dictelem[l]['asca'] acut = gmodstat.dictelem[l]['acut'] factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) masssubh = np.array([np.sum(factmcutfromdefs * gmodstat.dictelem[l]['defs'])]) ## derived variables as a function of other derived variables if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpntspuls'): massshel = np.empty(gdat.numbanglhalf) for k in gdat.indxanglhalf: indxelemshel = np.where((gdat.binspara.anglhalf[k] < gmodstat.dictelem[l]['gang']) & (gmodstat.dictelem[l]['gang'] < gdat.binspara.anglhalf[k+1])) massshel[k] = np.sum(gmodstat.dictelem[l]['mass'][indxelemshel]) setattr(gmodstat, 'massshelpop%d' % l, massshel) if gmod.boollens or gmod.numbparaelem > 0 and gmod.boollenssubh: # find the host, subhalo masses and subhalo mass fraction as a function of halo-centric radius listnametemp = gdat.liststrgcalcmasssubh listnamevarbmass = [] listnamevarbmassscal = [] listnamevarbmassvect = [] for e in gmod.indxsersfgrd: if boolllenshost: listnamevarbmassscal += ['masshosttotl'] for strgtemp in listnametemp: listnamevarbmassvect.append('masshostisf%d' % e + strgtemp) listnamevarbmassscal.append('masshostisf%d' % e + strgtemp + 'bein') if gmod.numbparaelem > 0 and gmod.boollenssubh: listnamevarbmassscal.append('masssubhtotl') listnamevarbmassscal.append('fracsubhtotl') for strgtemp in listnametemp: listnamevarbmassvect.append('masssubh' + strgtemp) listnamevarbmassvect.append('fracsubh' + strgtemp) listnamevarbmassscal.append('masssubh' + strgtemp + 'bein') listnamevarbmassscal.append('fracsubh' + strgtemp + 'bein') for name in listnamevarbmassvect: dicttert[name] = np.zeros(gdat.numbanglhalf) if 'isf' in name: indxisfrtemp = int(name.split('isf')[1][0]) angl = np.sqrt((gdat.meanpara.lgalcartmesh - lgalhost[indxisfrtemp])**2 + (gdat.meanpara.bgalcartmesh - bgalhost[indxisfrtemp])**2).flatten() for k in gdat.indxanglhalf: if name[4:8] == 'host': convtemp = conv[:] if name[4:8] == 'subh': convtemp = convelem[:] if name.endswith('delt'): indxpixl = np.where((gdat.binspara.anglhalf[k] < angl) & (angl < gdat.binspara.anglhalf[k+1]))[0] dicttert[name][k] = 1e6 * np.sum(convtemp[indxpixl]) * mdencrit * \ gdat.apix * adishost**2 / 2. / np.pi * gdat.deltanglhalf[k] / gdat.meanpara.anglhalf[k] if name.endswith('intg'): indxpixl = np.where(angl < gdat.meanpara.anglhalf[k])[0] dicttert[name][k] = np.sum(convtemp[indxpixl]) * mdencrit * gdat.apix * adishost**2 if name[:4] == 'frac': masshosttotl = 0. for e in gmod.indxsersfgrd: masshosttotl += dicttert['masshostisf%d' % e + name[-4:]][k] if masshosttotl != 0.: dicttert['fracsubh' + name[8:]][k] = dicttert['masssubh' + name[8:]][k] / masshosttotl setattr(gmodstat, name, dicttert[name]) # interpolate the host, subhalo masses and subhalo mass fraction at the Einstein radius and save it as a scalar variable dicttert[name + 'bein'] = np.interp(beinhost, gdat.meanpara.anglhalf, dicttert[name]) setattr(gmodstat, name + 'bein', dicttert[name + 'bein']) #if gmod.numbparaelem > 0: # ## copy element parameters to the global object # feat = [[] for l in gmod.indxpopl] # for l in gmod.indxpopl: # feat[l] = dict() # for strgfeat in gmod.namepara.genrelem[l]: # if strgfeat[:-4] == 'etag': # continue # if len(gmodstat.dictelem[l][strgfeat]) > 0: # if strgmodl == 'true': # shap = list(np.ones(gmodstat.dictelem[l][strgfeat].ndim, dtype=int)) # feat[l][strgfeat] = np.tile(gmodstat.dictelem[l][strgfeat], [3] + shap) # if strgmodl == 'fitt': # feat[l][strgfeat] = gmodstat.dictelem[l][strgfeat] # # #for strgfeat in gmod.namepara.elem: # # feattemp = [[] for l in gmod.indxpopl] # # for l in gmod.indxpopl: # # if strgfeat in gmod.namepara.genrelem[l]: # # if strgfeat in feat[l]: # # feattemp[l] = feat[l][strgfeat] # # else: # # feattemp[l] = np.array([]) # # setattr(gmodstat, strgfeat, feattemp) # copy true state to the reference state #if strgmodl == 'true': # for name, valu in deepcopy(gdat.__dict__).items(): # if name.startswith('true'): # #indx = name.find('pop') # #if indx != -1 and not name.endswith('pop') and name[indx+3].isdigit(): # # namerefr = name.replace('pop%s' % name[indx+3], 'ref%s' % name[indx+3]) # #else: # # namerefr = name # #namerefr = name # #namerefr = namerefr.replace('true', 'refr') # name = name.replace('true', 'refr') # setattr(gdat, name, valu) if gmod.numbparaelem > 0 and gdat.priofactdoff != 0.: if strgmodl == 'true': for q in gdat.indxrefr: for strgfeat in gdat.refr.namepara.elem[q]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof': continue reca = np.zeros(gdat.numbbinsplot) - 1. indxelempars = np.where(gmodstat.dictelem[q]['deltllik'] > 2.5)[0] refrhistpars = np.zeros(gdat.numbbinsplot) - 1. histparaelem = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) indxrefrgood = np.where(histparaelem > 0)[0] reca[indxrefrgood] = 0. refrhistpars[indxrefrgood] = 0. refrhist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) bins = getattr(gdat.binspara, strgfeat) if len(indxelempars) > 0: refrhistpars = np.histogram(gmodstat.dictelem[q][strgfeat][indxelempars], bins=bins)[0].astype(float) if indxrefrgood.size > 0: reca[indxrefrgood] = refrhistpars[indxrefrgood] / refrhist[indxrefrgood] setattr(gmodstat, 'histpars' + strgfeat + 'pop%d' % q, refrhistpars) setattr(gmodstat, 'reca' + strgfeat + 'pop%d' % q, reca) print('gdat.rtagmock') print(gdat.rtagmock) if gdat.rtagmock is not None: if gmod.numbparaelem > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof':# or strgfeat.startswith('aerr'): continue if strgfeat in gmod.namepara.genrelem[l]: hist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % l) reca = getattr(gdat.true.this, 'reca' + strgfeat + 'pop%d' % l) histcorrreca = hist / reca setattr(gmodstat, 'histcorrreca' + strgfeat + 'pop%d' % l, histcorrreca) ### Exculusive comparison with the true state if strgmodl == 'fitt' and gdat.typedata == 'mock': if gmod.boollens: numbsingcomm = min(deflsing.shape[2], gmod.deflsing.shape[2]) deflsingresi = deflsing[0, ..., :numbsingcomm] - gmod.deflsing[..., :numbsingcomm] deflsingresimgtd = np.sqrt(np.sum(deflsingresi**2, axis=1)) deflsingresiperc = 100. * deflsingresimgtd / gmod.deflsingmgtd[..., :numbsingcomm] setattr(gmodstat, 'numbsingcomm', numbsingcomm) setattr(gmodstat, 'deflsingresi', deflsingresi) truedeflmgtd = getattr(gdat.true.this, 'deflmgtd') truedefl = getattr(gdat.true.this, 'defl') deflresi = defl - truedefl deflresimgtd = np.sqrt(np.sum(deflresi**2, axis=1)) deflresiperc = 100. * deflresimgtd / truedeflmgtd setattr(gmodstat, 'deflresi', deflresi) setattr(gmodstat, 'deflresimgtd', deflresimgtd) if gmod.numbparaelem > 0: trueconvelem = getattr(gdat.true.this, 'convelem') convelemresi = convelem[:] - trueconvelem convelemresiperc = 100. * convelemresi / trueconvelem setattr(gmodstat, 'convelemresi', convelemresi) setattr(gmodstat, 'convelemresiperc', convelemresiperc) truemagn = getattr(gdat.true.this, 'magn') magnresi = magn[:] - truemagn magnresiperc = 100. * magnresi / truemagn setattr(gmodstat, 'magnresi', magnresi) setattr(gmodstat, 'magnresiperc', magnresiperc) if gmod.numbparaelem > 0: # correlate the catalog sample with the reference catalog if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] > 0: cmpl = np.array([float(len(indxelemrefrasschits[q][l])) / gdat.refr.numbelem[q]]) if gdat.booldiagmode: if cmpl > 1. or cmpl < 0.: raise Exception('') else: cmpl = np.array([-1.]) setattr(gmodstat, 'cmplpop%dpop%d' % (l, q), cmpl) if gmodstat.numbelem[l] > 0: fdis = np.array([float(indxelemfittasscfals[q][l].size) / gmodstat.numbelem[l]]) if gdat.booldiagmode: if fdis > 1. or fdis < 0.: raise Exception('') else: fdis = np.array([-1.]) setattr(gmodstat, 'fdispop%dpop%d' % (q, l), fdis) # collect the associated fitting element parameter for each reference element featrefrassc = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: featrefrassc[q][l] = dict() for strgfeat in gdat.refr.namepara.elem[q]: if not strgfeat in gmod.namepara.genrelem[l] or strgfeat in gdat.refr.namepara.elemonly[q][l]: continue if isinstance(gmodstat.dictelem[l][strgfeat], np.ndarray) and gmodstat.dictelem[l][strgfeat].ndim > 1: continue featrefrassc[q][l][strgfeat] = np.zeros(gdat.refr.numbelem[q]) + np.nan if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][strgfeat]) > 0: featrefrassc[q][l][strgfeat][indxelemrefrasschits[q][l]] = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] name = strgfeat + 'asscpop%dpop%d' % (q, l) setattr(gmodstat, name, featrefrassc[q][l][strgfeat]) # completeness for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue l = gdat.refr.indxpoplfittassc[q] for nameparaelemfrst in gdat.refr.namepara.elem[q]: if nameparaelemfrst.startswith('etag'): continue if nameparaelemfrst == 'spec' or nameparaelemfrst == 'specplot': continue refrfeatfrst = gdat.refr.dictelem[q][nameparaelemfrst][0, :] binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gdat.refr.namepara.elem[q]: if nameparaelemfrst == nameparaelemseco: continue if nameparaelemseco.startswith('etag'): continue if nameparaelemseco == 'spec' or nameparaelemseco == 'specplot': continue if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the cmpl np.array should depend on strgmodl cmpltdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeattdim = getattr(gdat.refr, 'hist%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q)) refrfeatseco = gdat.refr.dictelem[q][nameparaelemseco][0, :] binsfeatseco = getattr(gdat.binspara, nameparaelemseco) refrhistfeattdimassc = np.histogram2d(refrfeatfrst[indxelemrefrasschits[q][l]], \ refrfeatseco[indxelemrefrasschits[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(refrhistfeattdim != 0.) if indxgood[0].size > 0: cmpltdim[indxgood] = refrhistfeattdimassc[indxgood].astype(float) / refrhistfeattdim[indxgood] if gdat.booldiagmode: if np.where((cmpltdim[indxgood] > 1.) | (cmpltdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q), cmpltdim) cmplfrst = np.zeros(gdat.numbbinsplot) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeatfrst = getattr(gdat.refr, 'hist' + nameparaelemfrst + 'pop%d' % q) binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) refrhistfeatfrstassc = np.histogram(refrfeatfrst[indxelemrefrasschits[q][l]], bins=binsfeatfrst)[0] indxgood = np.where(refrhistfeatfrst != 0.)[0] if indxgood.size > 0: cmplfrst[indxgood] = refrhistfeatfrstassc[indxgood].astype(float) / refrhistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((cmplfrst[indxgood] > 1.) | (cmplfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%spop%d' % (nameparaelemfrst, q), cmplfrst) # false discovery rate for l in gmod.indxpopl: q = gmod.indxpoplrefrassc[l] for nameparaelemfrst in gmod.namepara.elem[l]: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gmod.namepara.elem[l]: if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the fdis np.array should depend on strgmodl fdistdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemseco]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: strgfeattdim = nameparaelemfrst + nameparaelemseco + 'pop%d' % l fitthistfeattdim = getattr(gmodstat, 'hist' + strgfeattdim) binsfeatseco = getattr(gdat.binspara, nameparaelemseco) fitthistfeattdimfals = np.histogram2d(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], \ gmodstat.dictelem[l][nameparaelemseco][indxelemfittasscfals[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(fitthistfeattdim != 0.) if indxgood[0].size > 0: fdistdim[indxgood] = fitthistfeattdimfals[indxgood].astype(float) / fitthistfeattdim[indxgood] if gdat.booldiagmode: if np.where((fdistdim[indxgood] > 1.) | (fdistdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%s%spop%d' % (nameparaelemfrst, nameparaelemseco, l), fdistdim) fdisfrst = np.zeros(gdat.numbbinsplot) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) fitthistfeatfrstfals = np.histogram(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], bins=binsfeatfrst)[0] fitthistfeatfrst = getattr(gmodstat, 'hist' + nameparaelemfrst + 'pop%d' % l) indxgood = np.where(fitthistfeatfrst != 0.)[0] if indxgood.size > 0: fdisfrst[indxgood] = fitthistfeatfrstfals[indxgood].astype(float) / fitthistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((fdisfrst[indxgood] > 1.) | (fdisfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%spop%d' % (nameparaelemfrst, l), fdisfrst) # temp if strgmodl == 'true' and gdat.typeverb > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) if np.where(minm > gmodstat.dictelem[l][strgfeat])[0].size > 0 or np.where(maxm < gmodstat.dictelem[l][strgfeat])[0].size > 0: print('Warning: element parameter outside the plot limits.') print('l') print(l) print('Feature: ') print(strgfeat) print('Plot minmimum') print(minm) print('Plot maxmimum') print(maxm) if strgfeat == gmod.nameparagenrelemampl[l] and strgfeat in gmod.namepara.genrelem[l]: gmod.indxparagenrelemtemp = gmod.namepara.genrelem[l].index(strgfeat) if (gmod.listscalparagenrelem[l][gmod.indxparagenrelemtemp] != 'gaus' and not gmod.listscalparagenrelem[l][gmod.indxparagenrelemtemp].startswith('lnor')): raise Exception('') stopchro(gdat, gdatmodi, 'tert') def retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, paragenrscalfull, dictelem, numbelem): gmod = getattr(gdat, strgmodl) if strgpdfn == 'self': minmfeat = getattr(gmod.minmpara, strgfeat) maxmfeat = getattr(gmod.maxmpara, strgfeat) lpri = numbelem[l] * np.log(1. / (maxmfeat - minmfeat)) if strgpdfn == 'logt': lpri = retr_lprilogtdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'gaus': lpri = retr_lprigausdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dexp': maxmbgal = getattr(gmod, 'maxmbgal') gmod.indxpara.bgaldistscal = getattr(gmod.indxpara, 'bgaldistscalpop%d' % l) lpri = np.sum(np.log(pdfn_dnp.exp(dictelem[l]['bgal'], maxmbgal, paragenrscalfull[gmod.indxpara.bgaldistscal]))) if strgpdfn == 'expo': maxmgang = getattr(gmod, 'maxmgang') gang = retr_gang(dictelem[l]['lgal'], dictelem[l]['bgal']) gmod.indxpara.gangdistscal = getattr(gmod.indxpara, 'gangdistscalpop%d' % l) lpri = np.sum(np.log(pdfn_expo(gang, maxmgang, paragenrscalfull[gmod.indxpara.gangdistscal]))) lpri = -numbelem[l] * np.log(2. * pi) if strgpdfn == 'tmpl': lpri = np.sum(lpdfspatprioobjt(dictelem[l]['bgal'], dictelem[l]['lgal'], grid=False)) if strgpdfn == 'powr': lpri = retr_lpripowrdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dpowslopbrek': lpri = retr_lpridpowdist(gdat, strgmodl, dictelem[l][strgfeat], strgfeat, paragenrscalfull, l) if strgpdfn == 'dsrcexpo': lpri += -np.sum(np.sqrt((dictelem[l]['lgal'] - lgalsour)**2 + (dictelem[l]['bgal'] - bgalsour)**2) / \ getattr(gmod, 'dsrcdistsexppop%d' % l)) if strgpdfn == 'tmpl': if strgpdfn.endswith('cons'): pdfnspatpriotemp = getattr(gmod, 'pdfnspatpriotemp') spatdistcons = paragenrscalfull[getattr(gmod.indxpara, 'spatdistcons')] lpdfspatprio, lpdfspatprioobjt = retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons) lpdfspatpriointp = lpdfspatprioobjt(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart) lpdfspatpriointp = lpdfspatpriointp.T setattr(gmodstat, 'lpdfspatpriointp', lpdfspatpriointp) setattr(gmodstat, 'lpdfspatprioobjt', lpdfspatprioobjt) else: lpdfspatprioobjt = gmod.lpdfspatprioobjt return lpri def checstrgfeat(strgfrst, strgseco): numbfrst = len(strgfrst) numbseco = len(strgseco) numb = min(numbfrst, numbseco) if strgfrst[:numb] < strgseco[:numb]: booltemp = True elif strgfrst[:numb] == strgseco[:numb]: if numbfrst >= numbseco: booltemp = False else: booltemp = True else: booltemp = False return booltemp def retr_pathoutprtag(pathpcat, rtag): pathoutprtag = pathpcat + '/data/outp/' + rtag + '/' return pathoutprtag def proc_finl(gdat=None, rtag=None, strgpdfn='post', listnamevarbproc=None, forcplot=False): gdatmock = None print('proc_finl()') if rtag is None: rtag = gdat.rtag # determine if the final-processing if nominal or tiling if isinstance(rtag, list): listrtagmodi = rtag rtagfinl = tdpy.retr_strgtimestmp() + rtag[0][15:] + 'tile' booltile = True else: listrtagmodi = [rtag] rtagfinl = rtag booltile = False # determine of the gdatfinl object is available boolgdatfinl = chec_statfile(pathpcat, rtagfinl, 'gdatfinlpost') boolgdatfinlgood = False if boolgdatfinl: print('Final-processing has been performed previously.') pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) path = pathoutprtag + 'gdatfinl' + strgpdfn try: gdat = readfile(path) boolgdatfinlgood = True except: print('gdatfinl object is corrupted.') if boolgdatfinl and boolgdatfinlgood: # read gdatfinl pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) path = pathoutprtag + 'gdatfinl' + strgpdfn gdatfinl = readfile(path) if gdatfinl.fitt.numbparaelem > 0: if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: if gdatfinl.rtagmock is not None: path = gdatfinl.pathoutprtagmock + 'gdatfinlpost' gdatmock = readfile(path) else: if booltile: gdatfinltile = tdpy.gdatstrt() indxrtaggood = [] liststrgtile = [] listrtaggood = [] indxtiletemp = 0 for n, rtagmodi in enumerate(listrtagmodi): # read gdatinit boolgdatinit = chec_statfile(pathpcat, rtagmodi, 'gdatinit') if not boolgdatinit: if booltile: print('Initial global object not found. Skipping...') continue else: print('Initial global object not found. Quitting...') return pathoutprtag = retr_pathoutprtag(pathpcat, rtagmodi) path = pathoutprtag + 'gdatinit' gdatinit = readfile(path) if booltile: gdatfinltile = gdatinit gdatfinl = gdatinit else: gdatfinl = gdatinit pathoutprtagmodi = retr_pathoutprtag(pathpcat, rtagmodi) listgdatmodi = [] for k in gdatinit.indxproc: path = pathoutprtagmodi + 'gdatmodi%04d' % k + strgpdfn listgdatmodi.append(readfile(path)) # erase gdatdictcopy = deepcopy(gdatinit.__dict__) for strg, valu in gdatdictcopy.items(): if strg.startswith('fitt.indxpara.'): delattr(gdatinit, strg) if gdatinit.boolmockonly: print('Mock only run. Quitting final-processing...') return # read gdatmodi print('rtagmodi') print(rtagmodi) boolgdatmodi = chec_statfile(pathpcat, rtagmodi, 'gdatmodipost') if not boolgdatmodi: print('Modified global object not found. Quitting final-processing...') return ## list of other parameters to be flattened gdatinit.liststrgvarbarryflat = deepcopy(listgdatmodi[0].liststrgvarbarry) # temp #for strg in ['memoresi']: # gdatinit.liststrgvarbarryflat.remove(strg) listparagenrscalfull = np.empty((gdatinit.numbsamptotl, gdatinit.fitt.maxmnumbpara)) if booltile: gdatfinltile.pathoutprtag = retr_pathoutprtag(pathpcat, rtagfinl) numbsamptotlrsmp = gdatinit.numbsamptotl indxsamptotlrsmp = np.random.choice(gdatinit.indxsamptotl, size=gdatinit.numbsamptotl, replace=False) # aggregate samples from the chains if gdatinit.typeverb > 0: print('Reading gdatmodi objects from all processes...') timeinit = gdatinit.functime() if gdatinit.typeverb > 0: timefinl = gdatinit.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if gdatinit.fitt.numbparaelem > 0: if len(getattr(listgdatmodi[0], 'list' + strgpdfn + 'gmodstat.indxelemfull')) == 0: print('Found an empty element list. Skipping...') continue if gdatinit.typeverb > 0: print('Accumulating np.arrays...') timeinit = gdatinit.functime() for strgvarb in gdatinit.liststrgvarbarryflat: for k in gdatinit.indxproc: if k == 0: shap = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb).shape shap = [shap[0], gdatinit.numbproc] + list(shap[1:]) temp = np.zeros(shap) - 1 if len(shap) > 2: temp[:, k, :] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb) else: temp[:, k] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, temp) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if gdatfinl.typeverb > 0: print('Accumulating lists...') timeinit = gdatfinl.functime() # lists of lists collected at each sample for strgvarb in listgdatmodi[0].liststrgvarblistsamp: listtemp = [[[] for k in gdatfinl.indxproc] for j in gdatfinl.indxsamp] for j in gdatfinl.indxsamp: for k in gdatfinl.indxproc: listtemp[j][k] = getattr(listgdatmodi[k], 'list' + strgpdfn + strgvarb)[j] setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listtemp) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) if not booltile: ## np.maximum likelihood sample gdatfinl.maxmllikproc = np.empty(gdatfinl.numbproc) gdatfinl.indxswepmaxmllikproc = np.empty(gdatfinl.numbproc, dtype=int) gdatfinl.sampmaxmllikproc = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara)) for k in gdatfinl.indxproc: gdatfinl.maxmllikproc[k] = listgdatmodi[k].maxmllikswep gdatfinl.indxswepmaxmllikproc[k] = listgdatmodi[k].indxswepmaxmllik gdatfinl.sampmaxmllikproc[k, :] = listgdatmodi[k].sampmaxmllik listparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrunitfull') # Gelman-Rubin test if gdatfinl.numbproc > 1: if gdatfinl.typeverb > 0: print('Computing the Gelman-Rubin TS...') timeinit = gdatfinl.functime() gdatfinl.gmrbparagenrscalbase = np.zeros(gdatfinl.fitt.numbparagenrbase) gdatfinl.gmrbstat = np.zeros((gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt)) for k in gdatfinl.fitt.indxparagenrbase: gdatfinl.gmrbparagenrscalbase[k] = tdpy.mcmc.gmrb_test(listparagenrscalfull[:, :, k]) if not np.isfinite(gdatfinl.gmrbparagenrscalbase[k]): gdatfinl.gmrbparagenrscalbase[k] = 0. listcntpmodl = getattr(gdatfinl, 'list' + strgpdfn + 'cntpmodl') for i in gdatfinl.indxener: for j in gdatfinl.indxpixl: for m in gdatfinl.indxevtt: gdatfinl.gmrbstat[i, j, m] = tdpy.mcmc.gmrb_test(listcntpmodl[:, :, i, j, m]) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # calculate the autocorrelation of the chains if gdatfinl.typeverb > 0: print('Computing the autocorrelation of the chains...') timeinit = gdatfinl.functime() gdatfinl.atcrcntp = np.empty((gdatfinl.numbproc, gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt, int(gdatfinl.numbparagenrfull / 2))) gdatfinl.timeatcrcntp = np.empty((gdatfinl.numbproc, gdatfinl.numbener, gdatfinl.numbpixl, gdatfinl.numbevtt)) gdatfinl.atcrpara = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara, int(gdatfinl.numbparagenrfull / 2))) gdatfinl.timeatcrpara = np.empty((gdatfinl.numbproc, gdatfinl.fitt.maxmnumbpara)) for k in gdatfinl.indxproc: gdatfinl.atcrpara[k, :, :], gdatfinl.timeatcrpara[k, :] = tdpy.mcmc.retr_timeatcr(listparagenrscalfull[:, k, :], typeverb=gdatfinl.typeverb) listcntpmodl = getattr(gdatfinl, 'list' + strgpdfn + 'cntpmodl') gdatfinl.atcrcntp[k, :], gdatfinl.timeatcrcntp[k, :] = tdpy.mcmc.retr_timeatcr(listcntpmodl[:, k, :, :, :], typeverb=gdatfinl.typeverb) timeatcrcntpmaxm = np.amax(gdatfinl.timeatcrcntp) gdatfinl.timeatcrcntpmaxm = np.amax(timeatcrcntpmaxm) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) setattr(gdatfinl, 'list' + strgpdfn + 'sampproc', np.copy(getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull'))) # flatten the list chains from different walkers for strgvarb in listgdatmodi[0].liststrgvarblistsamp: listtemp = [] listinpt = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for j in gdatfinl.indxsamp: for k in gdatfinl.indxproc: listtemp.append(listinpt[j][k]) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listtemp) # flatten the np.array chains from different walkers for strgvarb in gdatinit.liststrgvarbarryflat: inpt = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) shap = [inpt.shape[0] * inpt.shape[1]] + list(inpt.shape[2:]) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, inpt.reshape(shap)) listparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrunitfull') if booltile: liststrgtile.append(rtagmodi.split('_')[-2][-4:]) listrtaggood.append(rtagmodi) indxrtaggood.append(n) indxtiletemp += 1 if len(liststrgtile) == 1: for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: refrfeattile = [[] for q in gdatfinl.indxrefr] setattr(gdatfinl, 'refr' + strgfeat, refrfeattile) for strgvarb in gdatfinl.liststrgvarbarrysamp: if not strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: listvarb = [] setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listvarb) else: hist = np.zeros_like(getattr(listgdatmodi[0], 'list' + strgpdfn + strgvarb)) setattr(gdatfinl, 'list' + strgpdfn + strgvarb, hist) for name, valu in gdatfinl.__dict__.items(): if name.startswith('refrhist'): setattr(gdatfinl, name, np.zeros_like(getattr(gdatfinl, name))) #for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: # refrfeattile = getattr(gdatfinl, 'refr' + strgfeat) # #refrfeat = getattr(gdatfinl, 'refr' + strgfeat) # refrfeat = [[] for q in gdatfinl.indxrefr] # for q in gdatfinl.indxrefr: # if strgfeat in gdatfinl.refrgmod.namepara.genrelem[q]: # refrfeat[q].append(refrfeattile[q]) for strgvarb in gdatfinl.liststrgvarbarrysamp: if strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: # temp if 'spec' in strgvarb: continue hist = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) hist += getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for name, valu in gdatfinl.__dict__.items(): if name.startswith('refrhist'): hist = getattr(gdatfinl, name) hist += getattr(gdatfinl, name) print('Done with the tile number %d, run number %d...' % (indxtiletemp, n)) if booltile: gdatfinl.pathplotrtag = gdatfinl.pathimag + rtagfinl + '/' make_fold(gdatfinl) indxrtaggood = np.array(indxrtaggood).astype(int) numbrtaggood = indxrtaggood.size numbtile = numbrtaggood print('Found %d tiles with run tags:' % numbrtaggood) for indxrtaggoodtemp in indxrtaggood: print(rtag[indxrtaggoodtemp]) # np.concatenate reference elements from different tiles #for strgfeat in gdatfinl.refrgmod.namepara.genrelemtotl: # refrfeat = getattr(gdatfinl, 'refr' + strgfeat, refrfeat) # for q in gdatfinl.indxrefr: # if strgfeat in gdatfinl.refrgmod.namepara.genrelem[q]: # refrfeat[q] = np.concatenate(refrfeat[q], axis=1) for strgvarb in gdatfinl.liststrgvarbarrysamp: if not strgvarb in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: listvarb = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) if 'assc' in strgvarb: numbrefrelemtotl = 0 for k, varbrsmp in enumerate(listvarb): numbrefrelemtotl += varbrsmp.shape[1] shap = [gdatfinl.numbsamptotl, numbrefrelemtotl] listvarbtemp = np.empty(shap) cntr = 0 for k, varb in enumerate(listvarb): listvarbtemp[:, cntr:cntr+varb.shape[1]] = varb cntr += varb.shape[1] else: shap = [gdatfinl.numbsamptotl * numbtile] + list(listvarb[0].shape[1:]) listvarbtemp = np.empty(shap) for k, varb in enumerate(listvarb): listvarbtemp[k*gdatfinl.numbsamptotl:(k+1)*gdatfinl.numbsamptotl, ...] = varb setattr(gdatfinl, 'list' + strgpdfn + strgvarb, listvarbtemp) else: # np.maximum likelihood sample if gdatfinl.fitt.numbparaelem > 0: listindxelemfull = getattr(gdatfinl, 'list' + strgpdfn + 'indxelemfull') listllik = getattr(gdatfinl, 'list' + strgpdfn + 'llik') listlliktotl = getattr(gdatfinl, 'list' + strgpdfn + 'lliktotl') indxsamptotlmlik = np.argmax(np.sum(np.sum(np.sum(listllik, 3), 2), 1)) # copy the np.maximum likelihood sample for strgvarb in listgdatmodi[0].liststrgvarbarrysamp: setattr(gdatfinl, 'mlik' + strgvarb, getattr(gdatfinl, 'list' + strgpdfn + strgvarb)[indxsamptotlmlik, ...]) for strgvarb in listgdatmodi[0].liststrgvarblistsamp: setattr(gdatfinl, 'mlik' + strgvarb, getattr(gdatfinl, 'list' + strgpdfn + strgvarb)[indxsamptotlmlik]) # temp -- dont gdatfinl.listllik and gdatfinl.listparagenrscalfull have the same dimensions? gdatfinl.mlikparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull')[indxsamptotlmlik, :] gdatfinl.mlikparagenrscalfull = getattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalfull')[indxsamptotlmlik, :] #if gdatfinl.fitt.numbparaelem > 0: # gdatfinl.mlikindxelemfull = listindxelemfull[indxsamptotlmlik] gdatfinl.mlikparagenrscalbase = gdatfinl.mlikparagenrscalfull[gdatfinl.fitt.indxparagenrbase] for k, gmod.nameparagenrbase in enumerate(gdatfinl.fitt.nameparagenrbase): setattr(gdatfinl, 'mlik' + gmod.nameparagenrbase, gdatfinl.mlikparagenrscalbase[k]) # add execution times to the chain output gdatfinl.timereal = np.zeros(gdatfinl.numbproc) gdatfinl.timeproc = np.zeros(gdatfinl.numbproc) for k in gdatfinl.indxproc: gdatfinl.timereal[k] = listgdatmodi[k].timereal gdatfinl.timeproc[k] = listgdatmodi[k].timeproc # find the np.maximum likelihood and posterior over the chains gdatfinl.indxprocmaxmllik = np.argmax(gdatfinl.maxmllikproc) #gdatfinl.maxmlliktotl = gdatfinl.maxmllikproc[gdatfinl.indxprocmaxmllik] gdatfinl.indxswepmaxmllik = gdatfinl.indxprocmaxmllik * gdatfinl.numbparagenrfull + gdatfinl.indxswepmaxmllikproc[gdatfinl.indxprocmaxmllik] gdatfinl.sampmaxmllik = gdatfinl.sampmaxmllikproc[gdatfinl.indxprocmaxmllik, :] if strgpdfn == 'post': levipost = retr_levipost(listlliktotl) setattr(gdatfinl, strgpdfn + 'levipost', levipost) if strgpdfn == 'prio': leviprio = np.log(np.mean(np.exp(listlliktotl))) setattr(gdatfinl, strgpdfn + 'leviprio', leviprio) # parse the sample vector listparagenrscalbase = listparagenrscalfull[:, gdatfinl.fitt.indxparagenrbase] for k, gmod.nameparagenrbase in enumerate(gdatfinl.fitt.nameparagenrbase): setattr(gdatfinl, 'list' + strgpdfn + gmod.nameparagenrbase, listparagenrscalbase[:, k]) setattr(gdatfinl, 'list' + strgpdfn + 'paragenrscalbase', listparagenrscalbase) if strgpdfn == 'post' and gdatfinl.checprio: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdatfinlprio' try: gdatprio = readfile(path) except: proc_finl(gdat=gdatfinl, strgpdfn='prio', listnamevarbproc=listnamevarbproc, forcplot=forcplot) else: gdatprio = None # post process samples ## bin element parameters if gdatfinl.typeverb > 0: print('Binning the probabilistic catalog spatially...') timeinit = gdatfinl.functime() if not booltile: if gdatfinl.fitt.numbparaelem > 0: if gdatfinl.boolbinsspat: histlgalbgalelemstkd = [[] for l in gdatfinl.fittindxpopl] listlgal = getattr(gdatfinl, 'list' + strgpdfn + 'lgal') listbgal = getattr(gdatfinl, 'list' + strgpdfn + 'bgal') for l in gdatfinl.fittindxpopl: if gdatfinl.fitttypeelem[l] != 'lghtline': histlgalbgalelemstkd[l] = np.zeros((gdatfinl.numbbgalpntsprob, gdatfinl.numblgalpntsprob, gdatfinl.numbbinsplot, numb)) temparry = np.concatenate([listlgal[n][l] for n in gdatfinl.indxsamptotl]) temp = np.empty((len(temparry), 3)) temp[:, 0] = temparry temp[:, 1] = np.concatenate([listbgal[n][l] for n in gdatfinl.indxsamptotl]) temp[:, 2] = np.concatenate([getattr(gdatfinl, 'list' + strgpdfn + strgfeat)[n][l] for n in gdatfinl.indxsamptotl]) bins = getattr(gdatfinl, 'bins' + strgfeat) histlgalbgalelemstkd[l][:, :, :, k] = np.histogramdd(temp, \ bins=(gdatfinl.binslgalpntsprob, gdatfinl.binsbgalpntsprob, bins))[0] setattr(gdatfinl, strgpdfn + 'histlgalbgalelemstkd', histlgalbgalelemstkd) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) ## construct a condensed catalog of elements if gdatfinl.boolcondcatl and gdatfinl.fitt.numbparaelem > 0: if gdatfinl.typeverb > 0: print('Constructing a condensed catalog...') timeinit = gdatfinl.functime() retr_condcatl(gdatfinl) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # construct lists of samples for each proposal type listindxproptype = getattr(gdatfinl, 'list' + strgpdfn + 'indxproptype') listboolpropaccp = getattr(gdatfinl, 'list' + strgpdfn + 'boolpropaccp') listboolpropfilt = getattr(gdatfinl, 'list' + strgpdfn + 'boolpropfilt') listindxsamptotlproptotl = [] listindxsamptotlpropfilt = [] listindxsamptotlpropaccp = [] listindxsamptotlpropreje = [] for n in gdatfinl.indxproptype: indxsampproptype = np.where(listindxproptype == gdatfinl.indxproptype[n])[0] listindxsamptotlproptotl.append(indxsampproptype) listindxsamptotlpropaccp.append(np.intersect1d(indxsampproptype, np.where(listboolpropaccp)[0])) listindxsamptotlpropfilt.append(np.intersect1d(indxsampproptype, np.where(listboolpropfilt)[0])) listindxsamptotlpropreje.append(np.intersect1d(indxsampproptype, np.where(np.logical_not(listboolpropaccp))[0])) if listindxsamptotlproptotl[n].size == 0: accp = 0. else: accp = float(listindxsamptotlpropaccp[n].size) / listindxsamptotlproptotl[n].size setattr(gdatfinl, 'accp' + gdatfinl.nameproptype[n], accp) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlproptotl', listindxsamptotlproptotl) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlpropaccp', listindxsamptotlpropaccp) setattr(gdatfinl, 'list' + strgpdfn + 'indxsamptotlpropreje', listindxsamptotlpropreje) if gdatfinl.fitt.numbparaelem > 0 and strgpdfn == 'post': if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: if gdatfinl.rtagmock is not None: path = gdatfinl.pathoutprtagmock + 'gdatfinlpost' gdatmock = readfile(path) # posterior corrections if gdatfinl.fitt.numbparaelem > 0 and strgpdfn == 'post': ## perform corrections if gdatfinl.typedata == 'inpt': if gdatfinl.boolcrex or gdatfinl.boolcrin: for gmod.namepara.genrelemvarbhist in gdatfinl.liststrgvarbhist: strgvarb = gmod.namepara.genrelemvarbhist[0] if gmod.namepara.genrelemvarbhist[1].startswith('aerr') or len(gmod.namepara.genrelemvarbhist[2]) > 0 and gmod.namepara.genrelemvarbhist[2].startswith('aerr'): continue if gmod.namepara.genrelemvarbhist[1] == 'spec' or gmod.namepara.genrelemvarbhist[1] == 'deflprof' or gmod.namepara.genrelemvarbhist[1] == 'specplot': continue if len(gmod.namepara.genrelemvarbhist[2]) > 0 and (gmod.namepara.genrelemvarbhist[2] == 'spec' or \ gmod.namepara.genrelemvarbhist[2] == 'deflprof' or gmod.namepara.genrelemvarbhist[2] == 'specplot'): continue ## internal correction listhist = getattr(gdatfinl, 'list' + strgpdfn + strgvarb) for qq in gdatmock.indxrefr: l = int(gmod.namepara.genrelemvarbhist[3][qq].split('pop')[1][0]) qq = int(gmod.namepara.genrelemvarbhist[3][qq].split('pop')[2][0]) if gmod.namepara.genrelemvarbhist[1][-4:] in gdatfinl.listnamerefr and \ (len(gmod.namepara.genrelemvarbhist[2]) == 0 or gmod.namepara.genrelemvarbhist[2][-4:] in gdatfinl.listnamerefr): listhistincr = listhist else: if gmod.namepara.genrelemvarbhist[1][-4:] in gdatfinl.listnamerefr and len(gmod.namepara.genrelemvarbhist[2]) > 0: listcmpltrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[2] + 'pop%dpop%d' % (l, qq))], 2) listfdistrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[2] + 'pop%dpop%d' % (qq, l))], 2) elif len(gmod.namepara.genrelemvarbhist[2][:-4]) > 0 and gmod.namepara.genrelemvarbhist[2][-4:] in gdatfinl.listnamerefr: listcmpltrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[1] + 'pop%dpop%d' % (l, qq))], 1) listfdistrue = np.stack(gdatfinl.numbbinsplot * \ [getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[1] + 'pop%dpop%d' % (qq, l))], 1) else: listcmpltrue = getattr(gdatmock, 'listpostcmpl' + gmod.namepara.genrelemvarbhist[3][qq]) listfdistrue = getattr(gdatmock, 'listpostfdis' + gmod.namepara.genrelemvarbhist[3][qq]) if len(gmod.namepara.genrelemvarbhist[2]) == 0: listcmplboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) listfdisboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) listhistboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot)) for k in gdatfinl.indxbinsplot: listcmplboot[:, k] = np.random.choice(listcmpltrue[:, k], size=gdatfinl.numbsampboot) listfdisboot[:, k] = np.random.choice(listfdistrue[:, k], size=gdatfinl.numbsampboot) listhistboot[:, k] = np.random.choice(listhist[:, k], size=gdatfinl.numbsampboot) else: listcmplboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) listfdisboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) listhistboot = np.empty((gdatfinl.numbsampboot, gdatfinl.numbbinsplot, gdatfinl.numbbinsplot)) for a in gdatfinl.indxbinsplot: for b in gdatfinl.indxbinsplot: listcmplboot[:, a, b] = np.random.choice(listcmpltrue[:, a, b], size=gdatfinl.numbsampboot) listfdisboot[:, a, b] = np.random.choice(listfdistrue[:, a, b], size=gdatfinl.numbsampboot) listhistboot[:, a, b] = np.random.choice(listhist[:, a, b], size=gdatfinl.numbsampboot) indxbadd = np.where(listcmplboot == -1) indxbaddzero = np.where(listcmplboot == 0.) listhistincr = listhistboot / listcmplboot * (1. - listfdisboot) listhistincr[indxbadd] = -1.5 listhistincr[indxbaddzero] = 1.5 listgdatmodi[0].liststrgchan += ['incr' + gmod.namepara.genrelemvarbhist[4][qq]] setattr(gdatfinl, 'listpostincr' + gmod.namepara.genrelemvarbhist[4][qq], listhistincr) ## external correction for q in gdatfinl.indxrefr: nametemp = gmod.namepara.genrelemvarbhist[1] if len(gmod.namepara.genrelemvarbhist[2]) > 0: nametemp += gmod.namepara.genrelemvarbhist[2] nametemp += 'pop%dpop%dpop%d' % (q, qq, l) crexhist = getattr(gdatfinl, 'crex' + nametemp) if crexhist is not None: listhistexcr = listhistincr * crexhist if crexhist.ndim == 1 and listhistincr.ndim == 3: raise Exception('') listgdatmodi[0].liststrgchan += ['excr' + nametemp] setattr(gdatfinl, 'listpostexcr' + nametemp, listhistexcr) # compute credible intervals if gdatfinl.typeverb > 0: print('Computing credible intervals...') timeinit = gdatfinl.functime() for strgchan in listgdatmodi[0].liststrgchan: if booltile: if strgchan in gdatfinl.liststrgvarbarryswep or strgchan in listgdatmodi[0].liststrgvarblistsamp: continue if not (strgchan.startswith('hist') or strgchan.startswith('incr') or strgchan.startswith('excr')): continue if gdatfinl.fitt.numbparaelem > 0 and strgchan in [strgvarbhist[0] for strgvarbhist in gdatfinl.liststrgvarbhist]: if 'spec' in strgchan: continue if strgchan == 'spec': continue listtemp = getattr(gdatfinl, 'list' + strgpdfn + strgchan) if isinstance(listtemp, list): if booltile: continue # ensure that transdimensional lists are not included # temp if strgchan in gdatfinl.fitt.namepara.genrelemtotl or strgchan == 'indxelemfull': continue pctltemp = [] pmeatemp = [] meditemp = [] errrtemp = [] stdvtemp = [] numb = len(listtemp[0]) for k in range(numb): if isinstance(listtemp[0][k], list): continue shap = [gdatfinl.numbsamptotl] + list(listtemp[0][k].shape) temp = np.zeros(shap) for n in gdatfinl.indxsamptotl: temp[n, ...] = listtemp[n][k] pctltempsing = tdpy.retr_pctlvarb(temp) pmeatempsing = np.mean(temp, axis=0) meditempsing = pctltempsing[0, ...] errrtempsing = tdpy.retr_errrvarb(pctltempsing) stdvtempsing = np.std(temp) pctltemp.append(pctltempsing) pmeatemp.append(pmeatempsing) meditemp.append(meditempsing) errrtemp.append(errrtempsing) stdvtemp.append(stdvtempsing) else: # this is needed for finding posterior moments of features of associated reference elements if 'asscref' in strgchan: if listtemp.ndim != 2: raise Exception('') pmeatemp = np.zeros(listtemp.shape[1]) pctltemp = np.zeros([3] + [listtemp.shape[1]]) # temp -- this only works for 2D listtemp for k in range(listtemp.shape[1]): indxassc = np.where(np.isfinite(listtemp[:, k]))[0] if indxassc.size > 0: pctltemp[:, k] = tdpy.retr_pctlvarb(listtemp[indxassc, k]) pmeatemp[k] = np.mean(listtemp[indxassc, k]) else: pctltemp = tdpy.retr_pctlvarb(listtemp) pmeatemp = np.mean(listtemp, axis=0) errrtemp = tdpy.retr_errrvarb(pctltemp) stdvtemp = np.std(pctltemp, axis=0) meditemp = pctltemp[0, ...] if strgchan in gdatfinl.listnamevarbcpct: cpcttemp = np.empty([gdatfinl.numbsampcpct] + [3] + list(listtemp.shape[1:])) for n in gdatfinl.indxsampcpct: cpcttemp[n, ...] = tdpy.retr_pctlvarb(listtemp[:n+1, ...]) setattr(gdatfinl, 'pctl' + strgpdfn + strgchan, pctltemp) setattr(gdatfinl, 'medi' + strgpdfn + strgchan, meditemp) setattr(gdatfinl, 'pmea' + strgpdfn + strgchan, pmeatemp) setattr(gdatfinl, 'errr' + strgpdfn + strgchan, errrtemp) setattr(gdatfinl, 'stdv' + strgpdfn + strgchan, stdvtemp) if strgchan in gdatfinl.listnamevarbcpct: setattr(gdatfinl, 'cpct' + strgpdfn + strgchan, cpcttemp) if not booltile: pmealliktotl = getattr(gdatfinl, 'pmea' + strgpdfn + 'lliktotl') stdvlliktotl = getattr(gdatfinl, 'stdv' + strgpdfn + 'lliktotl') minmlliktotl = np.amin(listlliktotl) maxmlliktotl = np.amax(listlliktotl) skewlliktotl = np.mean(((listlliktotl - pmealliktotl) / stdvlliktotl)**3) kurtlliktotl = np.mean(((listlliktotl - pmealliktotl) / stdvlliktotl)**4) setattr(gdatfinl, 'minm' + strgpdfn + 'lliktotl', minmlliktotl) setattr(gdatfinl, 'maxm' + strgpdfn + 'lliktotl', maxmlliktotl) setattr(gdatfinl, 'skew' + strgpdfn + 'lliktotl', skewlliktotl) setattr(gdatfinl, 'kurt' + strgpdfn + 'lliktotl', kurtlliktotl) if strgpdfn == 'post': infopost = retr_infofromlevi(pmealliktotl, levipost) setattr(gdatfinl, strgpdfn + 'infopost', infopost) if strgpdfn == 'post' and gdatfinl.checprio: leviprio = getattr(gdatprio, 'prioleviprio') infoprio = retr_infofromlevi(pmealliktotl, leviprio) setattr(gdatfinl, strgpdfn + 'infoprio', infoprio) bcom = maxmlliktotl - pmealliktotl setattr(gdatfinl, strgpdfn + 'bcom', bcom) listnametemp = ['lliktotl'] if gmod.numbparaelem > 0: listnametemp += ['lpripena'] for namevarbscal in listnametemp: listtemp = getattr(gdatfinl, 'list' + strgpdfn + namevarbscal) minm = np.amin(listtemp) maxm = np.amax(listtemp) setattr(gdatfinl, 'minm' + namevarbscal, minm) setattr(gdatfinl, 'maxm' + namevarbscal, maxm) setattr(gdatfinl, 'scal' + namevarbscal, 'self') retr_axis(gdat, namevarbscal) if gdatfinl.checprio: for strgvarb in gdatfinl.listnamevarbscal: setp_pdfnvarb(gdatfinl, strgpdfn, strgvarb, strgvarb) for l0 in gdatfinl.fittindxpopl: for strgfeatfrst in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue setp_pdfnvarb(gdatfinl, strgpdfn, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l0) for strgfeatseco in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue setp_pdfnvarb(gdatfinl, strgpdfn, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l0, nameseco=strgfeatseco) # calculate information gain if strgpdfn == 'post': for namevarbscal in gdatfinl.listnamevarbscal: setp_info(gdatfinl, gdatprio, namevarbscal, namevarbscal) for l0 in gdatfinl.fittindxpopl: for strgfeatfrst in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue setp_info(gdatfinl, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l0) for strgfeatseco in gdatfinl.fitt.namepara.genrelem[l0]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue setp_info(gdatfinl, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l0, nameseco=strgfeatseco) if gdatfinl.typeverb > 0: timefinl = gdatfinl.functime() print('Done in %.3g seconds.' % (timefinl - timeinit)) # flatten the np.arrays which have been collected at each sweep #setattr(gdat, 'list' + strgpdfn + strgpdfntemp + 'flat', getattr(gdat, 'list' + strgpdfn + strgpdfntemp + 'totl').flatten()) if not booltile: # memory usage listmemoresi = getattr(gdatfinl, 'list' + strgpdfn + 'memoresi') gdatfinl.meanmemoresi = np.mean(listmemoresi, 1) gdatfinl.derimemoresi = (gdatfinl.meanmemoresi[-1] - gdatfinl.meanmemoresi[0]) / gdatfinl.numbswep gdatfinl.timerealtotl = time.time() - gdatfinl.timerealtotl gdatfinl.timeproctotl = time.clock() - gdatfinl.timeproctotl gdatfinl.timeproctotlswep = gdatfinl.timeproctotl / gdatfinl.numbswep if gdatfinl.timeatcrcntpmaxm == 0.: gdatfinl.timeprocnorm = 0. else: gdatfinl.timeprocnorm = gdatfinl.timeproctotlswep / gdatfinl.timeatcrcntpmaxm # write the final gdat object path = gdatfinl.pathoutprtag + 'gdatfinl' + strgpdfn if gdatfinl.typeverb > 0: print('Writing gdatfinl to %s...' % path) writfile(gdatfinl, path) filestat = open(gdatfinl.pathoutprtag + 'stat.txt', 'a') filestat.write('gdatfinl%s written.\n' % strgpdfn) filestat.close() if not booltile: if gdatfinl.typeverb > 0: for k in gdatfinl.indxproc: print('Process %d has been completed in %d real seconds, %d CPU seconds.' % (k, gdatfinl.timereal[k], gdatfinl.timeproc[k])) print('Parent process has run in %d real seconds, %d CPU seconds.' % (gdatfinl.timerealtotl, gdatfinl.timeproctotl)) print('HACKING!!') gdatfinl.strgpdfn = 'post' print('Checking whether post-processing plots already exist.') booltemp = chec_statfile(pathpcat, rtagfinl, 'plotfinl') if booltemp: print('Final plots already exist. Skipping...') else: if strgpdfn == 'post' and gdatfinl.checprio: path = pathoutprtag + 'gdatfinlprio' gdatprio = readfile(path) else: gdatprio = None if gdatfinl.makeplot and getattr(gdatfinl, 'makeplotfinl' + strgpdfn) or forcplot: plot_finl(gdatfinl, gdatprio=gdatprio, strgpdfn=strgpdfn, gdatmock=gdatmock, booltile=booltile) filestat = open(gdatfinl.pathoutprtag + 'stat.txt', 'a') filestat.write('plotfinl%s written.\n' % strgpdfn) filestat.close() def retr_listgdat(listrtag, typegdat='finlpost'): listgdat = [] for rtag in listrtag: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdat%s' % typegdat listgdat.append(readfile(path)) return listgdat def make_fold(gdat): for strgpdfn in gdat.liststrgpdfn: setattr(gdat, 'path' + strgpdfn, gdat.pathplotrtag + strgpdfn + '/') path = getattr(gdat, 'path' + strgpdfn) for nameseco in ['finl', 'fram', 'anim', 'opti']: setattr(gdat, 'path' + strgpdfn + nameseco, path + nameseco + '/') for nameseco in ['diag', 'lpac', 'varbscal', 'cond', 'varbscalproc']: setattr(gdat, 'path' + strgpdfn + 'finl' + nameseco, path + 'finl/' + nameseco + '/') for n in gdat.indxproptype: setattr(gdat, 'path' + strgpdfn + 'finl' + gdat.nameproptype[n], path + 'finl/lpac/' + gdat.nameproptype[n] + '/') for namethrd in ['hist', 'trac', 'join', 'cova']: setattr(gdat, 'path' + strgpdfn + 'finlvarbscal' + namethrd, path + 'finl/varbscal/' + namethrd + '/') for strgphas in gdat.liststrgphas + ['init']: liststrgfold = getattr(gdat, 'liststrgfold' + strgphas) for nameseco in liststrgfold: if strgphas == 'init': if nameseco == 'assc' or nameseco.startswith('cmpl') or nameseco.startswith('fdis'): continue setattr(gdat, 'path' + strgphas + nameseco[:-1], gdat.pathplotrtag + 'init/' + nameseco) else: setattr(gdat, 'path' + strgpdfn + strgphas + nameseco[:-1], path + strgphas + '/' + nameseco) gdat.pathinfo = gdat.pathplotrtag + 'info/' ## make the directories for attr, valu in gdat.__dict__.items(): if attr.startswith('path'): os.system('mkdir -p %s' % valu) def make_cmapdivg(strgcolrloww, strgcolrhigh): funccolr = mpl.colors.ColorConverter().to_rgb colrloww = funccolr(strgcolrloww) colrhigh = funccolr(strgcolrhigh) cmap = make_cmap([colrloww, funccolr('white'), 0.5, funccolr('white'), colrhigh]) return cmap def make_cmap(seq): seq = [(None,) * 3, 0.0] + list(seq) + [1.0, (None,) * 3] cdict = {'red': [], 'green': [], 'blue': []} for i, item in enumerate(seq): if isinstance(item, float): r1, g1, b1 = seq[i - 1] r2, g2, b2 = seq[i + 1] cdict['red'].append([item, r1, r2]) cdict['green'].append([item, g1, g2]) cdict['blue'].append([item, b1, b2]) return mpl.colors.LinearSegmentedColormap('CustomMap', cdict) def setp_pdfnvarb(gdat, strgpdfn, name, namefull, nameseco=None): if listvarb.ndim == 1: shaptemp = [gdat.numbbinspdfn, 1] else: shaptemp = [gdat.numbbinspdfn] + list(listvarb.shape[1:]) pdfn = np.empty(shaptemp) if listvarb.ndim == 1: binsvarb = getattr(gdat.binspara, name) deltvarb = getattr(gdat, 'delt' + name) pdfn[:, 0] = np.histogram(listvarb, bins=binsvarb)[0].astype(float) pdfn[:, 0] /= np.sum(pdfn[:, 0]) pdfn[:, 0] /= deltvarb else: binsvarb = np.linspace(0, gmod.maxmpara.numbelemtotl, 51) if listvarb.ndim == 2: for k in range(listvarb.shape[1]): pdfn[:, k] = np.histogram(listvarb[:, k], bins=binsvarb)[0].astype(float) pdfn[:, k] /= np.sum(pdfn[:, k]) pdfn *= 50. if listvarb.ndim == 3: for k in range(listvarb.shape[1]): for m in range(listvarb.shape[2]): pdfn[:, k, m] = np.histogram(listvarb[:, k, m], bins=binsvarb)[0].astype(float) pdfn[:, k, m] /= np.sum(pdfn[:, k, m]) pdfn *= 2500. pdfn[np.where(pdfn < 1e-50)[0]] = 1e-50 setattr(gdat, 'pdfn' + strgpdfn + namefull, pdfn) def setp_info(gdat, gdatprio, name, namefull, nameseco=None, namesecofull=None): listpost = getattr(gdat, 'listpost' + namefull) listprio = getattr(gdatprio, 'listprio' + namefull) pdfnpost = getattr(gdat, 'pdfnpost' + namefull) pdfnprio = getattr(gdatprio, 'pdfnprio' + namefull) if listpost.ndim == 3: infodens = np.empty((gdat.numbbinspdfn, listpost.shape[1], listpost.shape[2])) info = np.empty((listpost.shape[1], listpost.shape[2])) pvks = np.empty((listpost.shape[1], listpost.shape[2])) else: if listpost.ndim == 1: numbtemp = 1 else: numbtemp = listpost.shape[1] infodens = np.empty((gdat.numbbinspdfn, numbtemp)) info = np.empty(numbtemp) pvks = np.empty(numbtemp) if listpost.ndim == 1: listpost = listpost[:, None] listprio = listprio[:, None] deltvarb = getattr(gdat, 'delt' + name) else: if listpost.ndim == 2: deltvarb = 1. / 50 else: deltvarb = 1. / 50**list2 if listpost.ndim == 1 or listpost.ndim == 2: for k in range(listpost.shape[1]): infodens[:, k] = retr_infodens(pdfnpost[:, k], pdfnprio[:, k]) info[k] = np.sum(infodens[:, k] * deltvarb) temp, pvks[k] = sp.stats.ks_2samp(listpost[:, k], listprio[:, k]) if listpost.ndim == 3: for k in range(listpost.shape[1]): for m in range(listpost.shape[2]): infodens[:, k, m] = retr_infodens(pdfnpost[:, k, m], pdfnprio[:, k, m]) info[k, m] = np.sum(infodens[:, k, m] * deltvarb) temp, pvks[k, m] = sp.stats.ks_2samp(listpost[:, k, m], listprio[:, k, m]) setattr(gdat, 'pvks' + namefull, pvks) setattr(gdat, 'infodens' + namefull, infodens) setattr(gdat, 'info' + namefull, info) # check the state file def chec_statfile(pathpcat, rtag, strggdat, typeverb=1): print('Checking the state file %s for %s...' % (strggdat, rtag)) pathoutprtag = retr_pathoutprtag(pathpcat, rtag) # check the status file if not os.path.isfile(pathoutprtag + 'stat.txt'): if typeverb > 0: print('pathoutprtag') print(pathoutprtag) print('stat.txt not found.') return False # check the global object filestat = open(pathoutprtag + 'stat.txt', 'r') booltemp = False linesrch = strggdat + ' written.\n' for line in filestat: if line == linesrch: booltemp = True filestat.close() if not booltemp: if typeverb > 0: print('bad %s status.' % (strggdat)) return False else: return True def retr_los3(dlos, lgal, bgal): dglc = np.sqrt(8.5e3**2 + dlos**2 - 2. * dlos * 8.5e3 * np.cos(bgal) * np.cos(lgal)) thet = np.arccos(np.sin(bgal) * dlos / dglc) phii = np.arcsin(np.sqrt(np.cos(bgal)**2 * dlos**2 + 8.5e3**2 - 2 * dlos * np.cos(bgal) * 8.5e3) / dglc) return dglc, thet, phii def retr_glc3(dglc, thet, phii): xpos = dglc * np.sin(thet) * np.cos(phii) ypos = dglc * np.sin(thet) * np.sin(phii) zpos = dglc * np.cos(thet) dlos = np.sqrt(zpos**2 + xpos**2 + (8.5e3 - ypos)**2) lgal = np.arctan2(8.5e3 - ypos, xpos) - np.pi / 2 bgal = np.arcsin(zpos / dlos) return dlos, lgal, bgal def retr_lumipuls(geff, magf, per0): # temp -- this is bolometric luminosity np.whereas dictelem[l]['flux'] is differential! lumi = 9.6e33 * (geff / 0.2) * (magf / 10**8.5)**2 * (3e-3 / per0)*4 return lumi def retr_lumi(gdat, flux, dlos, reds=None): lumi = flux * 4. * np.pi * dlos**2 * gdat.prsccmtr**2 / gdat.ergsgevv # temp # redshift correction if reds is not None: lumi *= (1. + reds)**2 return lumi def retr_flux(gdat, lumi, dlos, reds=None): flux = lumi / 4. / np.pi / dlos**2 / gdat.prsccmtr**2 * gdat.ergsgevv # temp # redshift correction if reds is not None: pass return flux def retr_per1(per0, magf): per1 = 3.3e-20 * (magf / 10**8.5)**2 * (3e-3 / per0) return per1 def retr_dlosgalx(lgal, bgal, dglc): # temp -- this is obviously wrong dlos = 8.5e3 - dglc return dlos def retr_arryfromlist(listtemp): shap = [len(listtemp)] + list(listtemp[0].shape) arry = np.empty(shap) for k in range(len(listtemp)): arry[k, ...] = listtemp[k] return arry def proc_cntpdata(gdat): # exclude voxels with vanishing exposure ## data counts if gdat.typedata == 'inpt': gdat.cntpdata = retr_cntp(gdat, gdat.sbrtdata) # data variance gdat.varidata = np.maximum(gdat.cntpdata, 1.) # correct the likelihoods for the constant data dependent factorial gdat.llikoffs = -sp.special.gammaln(gdat.cntpdata + 1) ## spatial average gdat.sbrtdatamean, gdat.sbrtdatastdv = retr_spatmean(gdat, gdat.cntpdata, boolcntp=True) # data count limits minmcntpdata = np.amin(gdat.cntpdata) maxmcntpdata = np.amax(gdat.cntpdata) minm = minmcntpdata maxm = maxmcntpdata setp_varb(gdat, 'cntpdata', minm=minm, maxm=maxm, lablroot='$C_{D}$', scal='asnh', strgmodl='plot') maxm = maxmcntpdata minm = 1e-1 * minmcntpdata for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) setp_varb(gdat, 'cntpmodl', minm=minm, maxm=maxm, strgmodl=strgmodl, scal='asnh') print('gdat.labltickmajrpara.cntpmodl') print(gdat.labltickmajrpara.cntpmodl) # residual limits maxm = np.ceil(maxmcntpdata * 0.1) minm = -np.ceil(maxmcntpdata * 0.1) setp_varb(gdat, 'cntpresi', minm=minm, maxm=maxm, lablroot='$C_{R}$', scal='asnh', strgmodl='plot') # 1-point function of the data counts for m in gdat.indxevtt: if gdat.numbpixl > 1: for i in gdat.indxener: print('gdat.cntpdata[i, :, m]') summgene(gdat.cntpdata[i, :, m]) print('gdat.binspara.cntpdata') summgene(gdat.binspara.cntpdata) histcntp = np.histogram(gdat.cntpdata[i, :, m], bins=gdat.binspara.cntpdata)[0] setattr(gdat, 'histcntpdataen%02devt%d' % (i, m), histcntp) else: histcntp = np.histogram(gdat.cntpdata[:, 0, m], bins=gdat.binspara.cntpdata)[0] setattr(gdat, 'histcntpdataevt%d' % m, histcntp) # obtain cartesian versions of the maps if gdat.typepixl == 'cart': ## data counts gdat.cntpdatacart = np.zeros((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt)) gdat.cntpdatacart[:, gdat.indxpixlrofi, :] = gdat.cntpdata gdat.cntpdatacart = gdat.cntpdatacart.reshape((gdat.numbener, gdat.numbsidecart, gdat.numbsidecart, gdat.numbevtt)) def retr_infodens(pdfnpost, pdfnprio): infodens = pdfnpost * np.log(pdfnpost / pdfnprio) return infodens def retr_llik(gdat, strgmodl, cntpmodl): if gdat.liketype == 'pois': llik = gdat.cntpdata * np.log(cntpmodl) - cntpmodl if gdat.liketype == 'gaus': llik = -0.5 * (gdat.cntpdata - cntpmodl)**2 / gdat.varidata return llik def retr_mapsgaus(gdat, lgal, bgal, spec, size, ellp, angl): rttrmatr = np.array([[np.cos(angl), -np.sin(angl)], [np.sin(angl), np.cos(angl)]]) icovmatr = np.array([[1. / ((1. - ellp) * size)**2, 0.], [0., 1. / size**2]]) posi = np.array([lgalgrid - lgal, bgalgrid - bgal]) mapsgaus = flux * np.exp(-0.5 * np.sum(posi * tensordot(self.icovmatr, posi, (1,0)), 0)) / size**2 / (1. - ellp) return mapsgaus def retr_sbrtsers(gdat, lgalgrid, bgalgrid, lgal, bgal, spec, size, ellp, angl, seri=np.array([4.])): lgalrttr = (1. - ellp) * (np.cos(angl) * (lgalgrid - lgal) - np.sin(angl) * (bgalgrid - bgal)) bgalrttr = np.sin(angl) * (lgalgrid - lgal) + np.cos(angl) * (bgalgrid - bgal) angl = np.sqrt(lgalrttr**2 + bgalrttr**2) # interpolate pixel-convolved Sersic surface brightness if gdat.typesers == 'intp': shapinpt = angl.shape inpt = np.empty(list(shapinpt) + [3]) inpt[..., 0] = angl inpt[..., 1] = size inpt[..., 2] = seri sbrtsers = spec[:, None, None] * sp.interpolate.interpn((gdat.binspara.lgalsers, gdat.binspara.halfsers, gdat.binspara.indxsers), gdat.sersprof, inpt)[None, :, None] # evaluate directly de Vaucouleurs if gdat.typesers == 'vauc': sbrtsers = spec[:, None, None] * retr_sbrtsersnorm(angl, size)[None, :, None] return sbrtsers def retr_sbrtsersnorm(angl, halfsers, indxsers=4.): ## this approximation works for 0.5 < indx < 10 factsers = 1.9992 * indxsers - 0.3271 ## surface brightness profile at the half-light radius for a 1 erg cm^-2 s^-1 A^-1 source if indxsers == 4.: sbrthalf = 1. / 7.2 / np.pi / halfsers**2 else: sbrthalf = 1. / 2. / np.pi / np.exp(factsers) * factsers**(2 * indxsers) / indxsers / sp.special.gamma(2. * indxsers) / halfsers**2 ## surface brightness profile sbrtsers = sbrthalf * np.exp(-factsers * ((angl / halfsers)**(1. / indxsers) - 1.)) return sbrtsers def copytdgu(varb): if isinstance(varb, np.ndarray): return np.copy(varb) else: return deepcopy(varb) def proc_anim(rtag): pathoutprtag = retr_pathoutprtag(pathpcat, rtag) print('Making animations of frame plots for %s...' % rtag) path = pathoutprtag + 'gdatinit' gdat = readfile(path) for strgpdfn in gdat.liststrgpdfn: for nameextn in gdat.liststrgfoldanim: pathframextn = gdat.pathimag + rtag + '/' + strgpdfn + '/fram/' + nameextn pathanimextn = gdat.pathimag + rtag + '/' + strgpdfn + '/anim/' + nameextn try: listfile = fnmatch.filter(os.listdir(pathframextn), '*_swep*.pdf') except: print('%s failed.' % pathframextn) continue listfiletemp = [] for thisfile in listfile: listfiletemp.extend((thisfile.split('_')[0]).rsplit('/', 1)) listname = list(set(listfiletemp)) if len(listname) == 0: continue shuffle(listname) for name in listname: strgtemp = '%s*_swep*.pdf' % name listfile = fnmatch.filter(os.listdir(pathframextn), strgtemp) numbfile = len(listfile) liststrgextn = [] for k in range(numbfile): liststrgextn.append((listfile[k].split(name)[1]).split('_')[0]) liststrgextn = list(set(liststrgextn)) for k in range(len(liststrgextn)): listfile = fnmatch.filter(os.listdir(pathframextn), name + liststrgextn[k] + '_swep*.pdf') numbfile = len(listfile) indxfilelowr = 0 if indxfilelowr < numbfile: indxfileanim = np.arange(indxfilelowr, numbfile) else: continue indxfileanim = np.random.choice(indxfileanim, replace=False, size=indxfileanim.size) cmnd = 'convert -delay 20 -density 300 -quality 100 ' for n in range(indxfileanim.size): cmnd += '%s%s ' % (pathframextn, listfile[indxfileanim[n]]) namegiff = '%s%s.gif' % (pathanimextn, name + liststrgextn[k]) cmnd += ' ' + namegiff print('Processing %s' % namegiff) if not os.path.exists(namegiff): print('Run: %s, pdf: %s' % (rtag, strgpdfn)) print('Making %s animation...' % name) os.system(cmnd) else: print('GIF already exists.') pass pathoutprtag = retr_pathoutprtag(pathpcat, rtag) filestat = open(pathoutprtag + 'stat.txt', 'a') filestat.write('animfinl written.\n') filestat.close() def plot_samp(gdat, gdatmodi, strgstat, strgmodl, strgphas, strgpdfn='post', gdatmock=None, booltile=False): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) if not booltile: if strgstat != 'pdfn': numbelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) if gdatmodi is not None: strgswep = '_%09d' % gdatmodi.cntrswep else: strgswep = '' if not booltile: # data count maps if gdat.numbpixl > 1: for i in gdat.indxener: for m in gdat.indxevtt: if gdat.boolmakeframcent and (i != gdat.numbener / 2 or m != gdat.numbevtt / 2): continue plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpdata', i, m) ## residual count maps for i in gdat.indxener: for m in gdat.indxevtt: if gdat.boolmakeframcent and (i != gdat.numbener / 2 or m != gdat.numbevtt / 2): continue plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpresi', i, m) if gdat.numbpixl > 1: if gmod.numbparaelem > 0: if gmod.boolelemlens: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convelem', booltdim=True) # temp -- restrict other plots to indxmodlelemcomp if gdat.boolbinsener: for specconvunit in gdat.listspecconvunit: if not gmod.boolbfun: plot_sbrt(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, specconvunit) if gmod.boolapplpsfn: plot_psfn(gdat, gdatmodi, strgstat, strgmodl) setp_indxswepsave(gdat) if gmod.numbparaelem > 0: # element parameter histograms if not (strgmodl == 'true' and gdat.typedata == 'inpt'): limtydat = gdat.limtydathistfeat for l in gmod.indxpopl: strgindxydat = 'pop%d' % l for nameparaderielemodim in gmod.namepara.derielemodim[l]: if not (nameparaderielemodim == 'flux' or nameparaderielemodim == 'mcut' or \ nameparaderielemodim == 'deltllik' or nameparaderielemodim == 'defs' or nameparaderielemodim == 'nobj'): continue if gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt': continue indxydat = [l, slice(None)] name = nameparaderielemodim namepopl = nameparaderielemodim + 'pop%d' % l lablxdat = getattr(gmod.labltotlpara, namepopl) scalxdat = getattr(gmod.scalpara, namepopl) limtxdat = getattr(gmod.limtpara, namepopl) meanxdat = getattr(gdat.meanpara, name) if gdat.numbpixl > 1: listydattype = ['totl', 'sden'] else: listydattype = ['totl'] for ydattype in listydattype: ## plot the surface density of elements if ydattype == 'sden': # plot the surface density of elements only for the amplitude feature if nameparaderielemodim != gmod.nameparagenrelemampl: continue if gdat.sdenunit == 'degr': lablydat = r'$\Sigma_{%s}$ [deg$^{-2}$]' % gmod.lablelemextn[l] if gdat.sdenunit == 'ster': lablydat = r'$\Sigma_{%s}$ [sr$^{-2}$]' % gmod.lablelemextn[l] ## plot the total number of elements if ydattype == 'totl': lablydat = r'$N_{%s}$' % gmod.lablelemextn[l] if ydattype == 'totl' and not gdat.rtagmock is None: listtypehist = ['hist', 'histcorrreca'] else: listtypehist = ['hist'] boolhistprio = not booltile for typehist in listtypehist: if typehist == 'histcorrreca': if gmod.numbparaelem == 0 or gdat.priofactdoff == 0.: continue if nameparaderielemodim == 'specplot' or nameparaderielemodim == 'spec' or nameparaderielemodim == 'deflprof': continue if not nameparaderielemodim in gmod.namepara.genrelem[l]: continue plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'hist' + nameparaderielemodim + 'pop%d' % l, \ 'mean' + nameparaderielemodim, scalydat='logt', lablxdat=lablxdat, \ lablydat=lablydat, histodim=True, ydattype=ydattype, \ scalxdat=scalxdat, meanxdat=meanxdat, limtydat=limtydat, \ limtxdat=limtxdat, boolhistprio=boolhistprio, \ #indxydat=indxydat, strgindxydat=strgindxydat, \ nameinte='histodim/', typehist=typehist) if not booltile: if gmod.numbparaelem > 0: # element parameter correlations for l in gmod.indxpopl: if strgmodl != 'true' and gdat.boolinforefr and gdat.boolasscrefr: for strgfeat in gmod.namepara.derielemodim[l]: if not (strgfeat == 'flux' or strgfeat == 'mass' or strgfeat == 'deltllik' or strgfeat == 'nobj') and \ (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): continue for q in gdat.indxrefr: if not l in gdat.refrindxpoplassc[q]: continue if gdat.refr.numbelem[q] == 0: continue if not strgfeat in gdat.refr.namepara.elem[q] or strgfeat in gdat.refr.namepara.elemonly[q][l]: continue plot_scatassc(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, q, l, strgfeat) plot_scatassc(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, q, l, strgfeat, plotdiff=True) if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): # plots for i in gdat.indxener: for m in gdat.indxevtt: if gmod.numbpopl > 1: if gmod.numbparaelem > 0: for l in gmod.indxpopl: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpdata', i, m, indxpoplplot=l) ## histograms of the number of counts per pixel limtxdat = [gdat.minmpara.cntpmodl, gdat.maxmpara.cntpmodl] for nameecom in gmod.listnameecomtotl: name = 'histcntp' + nameecom for m in gdat.indxevtt: for i in gdat.indxener: if gdat.numbener > 1: name += 'en%02d' % (i) if gdat.numbevtt > 1: name += 'evt%d' % (m) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, \ name, 'meancntpdata', scalydat='logt', scalxdat='logt', lablxdat=gdat.lablcnts, histodim=True, \ lablydat='$N_{pix}$', limtydat=[0.5, gdat.numbener], limtxdat=limtxdat) ## highest amplitude element # temp if gmod.numbparaelem > 0: # completeness and false discovery rate if strgmodl != 'true' and gdat.boolasscrefr: for strgclas in ['cmpl', 'fdis']: nameinte = strgclas + 'odim/' limtydat = [getattr(gdat, 'minm' + strgclas), getattr(gdat, 'maxm' + strgclas)] for l in gmod.indxpopl: for q in gdat.indxrefr: if not l in gdat.refrindxpoplassc[q]: continue if gdat.refr.numbelem[q] == 0 and strgclas == 'cmpl' or gmod.numbparaelem == 0 and strgclas == 'fdis': continue if strgclas == 'cmpl': lablydat = getattr(gmod.lablpara, strgclas + 'pop%dpop%d' % (l, q)) strgindxydat = 'pop%dpop%d' % (l, q) else: lablydat = getattr(gmod.lablpara, strgclas + 'pop%dpop%d' % (q, l)) strgindxydat = 'pop%dpop%d' % (q, l) for strgfeat in gdat.refr.namepara.elem[q]: if strgfeat == 'etag': continue if strgclas == 'fdis' and not strgfeat in gmod.namepara.derielemodim[l]: continue if not strgfeat.startswith('spec') and not strgfeat.startswith('defl') \ and not strgfeat in gdat.refr.namepara.elemonly[q][l] and \ not (gdat.typedata == 'mock' and (strgfeat.endswith('pars') or strgfeat.endswith('nrel'))): plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, strgclas + strgfeat + strgindxydat, \ 'mean' + strgfeat, lablxdat=lablxdat, \ lablydat=lablydat, \ #plottype='errr', \ scalxdat=scalxdat, limtydat=limtydat, limtxdat=limtxdat, \ omittrue=True, nameinte=nameinte) if gmod.numbparaelem > 0: alph = 0.1 if strgmodl == 'true': pathtemp = gdat.pathinit else: if strgstat == 'this': pathtemp = gdat.pathplotrtag + strgpdfn + '/fram/' elif strgstat == 'mlik': pathtemp = gdat.pathplotrtag + strgpdfn + '/finl/' elif strgstat == 'pdfn': pathtemp = gdat.pathplotrtag + strgpdfn + '/finl/' colr = retr_colr(gdat, strgstat, strgmodl, indxpopl=None) # transdimensional element parameters projected onto the data axes if not (strgstat == 'pdfn' and not gdat.boolcondcatl): for l in gmod.indxpopl: if gmod.typeelem[l] == 'lght': # PS spectra if strgstat == 'pdfn': specplot = [np.empty((gdat.numbenerplot, gdat.numbstkscond))] for r in gdat.indxstkscond: specplot[0][:, r] = gdat.dictglob['poststkscond'][r]['specplot'][0, :] listxdat = [] listplottype = [] for k in range(specplot[l].shape[-1]): listxdat.append(gdat.meanpara.enerplot) listplottype.append('lghtline') for specconvunit in gdat.listspecconvunit: listydat = [] for k in range(specplot[l].shape[-1]): specplottemp = specplot[l] if strgmodl == 'true': specplottemp = np.copy(specplottemp[0, :, k]) else: specplottemp = np.copy(specplottemp[:, k]) if specconvunit[0] == 'en01': specplottemp *= gdat.meanpara.enerplot if specconvunit[0] == 'en02': specplottemp *= gdat.meanpara.enerplot**2 if specconvunit[0] == 'en03': # temp pass listydat.append(specplottemp) lablydat = getattr(gmod.lablpara, 'flux' + specconvunit[0] + specconvunit[1] + 'totl') strgtemp = specconvunit[0] + specconvunit[1] if specconvunit[0] == 'en03': strgtemp += specconvunit[2] path = pathtemp + strgstat + 'specpop%d%s%s.pdf' % (l, strgtemp, strgswep) limtydat = [np.amin(gdat.minmspec), np.amax(gdat.maxmspec)] tdpy.plot_gene(path, listxdat, listydat, scalxdat='logt', scalydat='logt', \ lablxdat=gdat.lablenertotl, colr=colr, alph=alph, \ plottype=listplottype, limtxdat=[gdat.minmener, gdat.maxmener], lablydat=lablydat, \ limtydat=limtydat) if gmod.boollenssubh: ## deflection profiles if gdat.boolvariasca and gdat.boolvariacut: lablxdat = gdat.labltotlpara.gang if strgstat == 'pdfn': deflprof = [np.empty((gdat.numbanglfull, gdat.numbstkscond))] asca = [np.empty(gdat.numbstkscond)] acut = [np.empty(gdat.numbstkscond)] for r in gdat.indxstkscond: deflprof[0][:, r] = gdat.dictglob['poststkscond'][r]['deflprof'][0, :] asca[0][r] = gdat.dictglob['poststkscond'][r]['asca'][0] acut[0][r] = gdat.dictglob['poststkscond'][r]['acut'][0] for l in range(len(deflprof)): xdat = gdat.meanpara.anglfull * gdat.anglfact listydat = [] listvlinfrst = [] listvlinseco = [] if 'deflprof' in gmod.typeelem[l]: if strgmodl == 'true': deflproftemp = deflprof[l][0, :, :] else: deflproftemp = deflprof[l] for k in range(deflprof[l].shape[-1]): listydat.append(deflproftemp[:, k] * gdat.anglfact) if strgmodl == 'true': ascatemp = asca[l][0, k] acuttemp = acut[l][0, k] else: ascatemp = asca[l][k] acuttemp = acut[l][k] listvlinfrst.append(ascatemp * gdat.anglfact) listvlinseco.append(acuttemp * gdat.anglfact) beinhost = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'paragenrscalfull', strgpdfn, indxvarb=gmod.indxpara.beinhost) listydat.append(xdat * 0. + gdat.anglfact * beinhost) path = pathtemp + strgstat + 'deflsubhpop%d%s.pdf' % (l, strgswep) limtydat = [1e-3, 1.] limtxdat = [1e-3, 1.] tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', \ lablxdat=lablxdat, drawdiag=True, limtydat=limtydat, \ limtxdat=limtxdat, colr=colr, alph=alph, lablydat=r'$\alpha$ [$^{\prime\prime}$]', \ listvlinfrst=listvlinfrst, listvlinseco=listvlinseco) if gdat.typedata == 'mock': # pulsar masses for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': lablxdat = gdat.labltotlpara.gang limtydat = [gdat.minmmassshel, gdat.maxmmassshel] lablydat = gdat.lablmassshel name = 'massshelpop%d' % l plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) if gmod.boollens: ## radial mass budget lablxdat = gdat.lablanglfromhosttotl for strgcalcmasssubh in gdat.liststrgcalcmasssubh: # host mass for e in gmod.indxsersfgrd: strgsersfgrd = 'isf%d' % e limtydat = [gdat.minmmcut, getattr(gdat, 'plotmaxmmasshost' + strgsersfgrd + strgcalcmasssubh + 'bein')] lablydat = getattr(gmod.lablpara, 'masshost' + strgsersfgrd + strgcalcmasssubh + 'totl') name = 'masshost%s%s' % (strgsersfgrd, strgcalcmasssubh) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) if gmod.boolelemdeflsubhanyy: # subhalo masses limtydat = [gdat.minmmcut, getattr(gdat, 'plotmaxmmasssubh' + strgcalcmasssubh + 'bein')] lablydat = getattr(gmod.lablpara, 'masssubh' + strgcalcmasssubh + 'totl') name = 'masssubh%s' % (strgcalcmasssubh) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) # subhalo mass fraction limtydat = [1e-3, 0.1] lablydat = getattr(gmod.lablpara, 'fracsubh' + strgcalcmasssubh + 'totl') name = 'fracsubh%s' % (strgcalcmasssubh) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'meananglhalf', scalydat='logt', \ lablxdat=lablxdat, lablydat=lablydat, limtydat=limtydat) alph = 0.1 if gdat.boolmodipsfn and gmod.boolelempsfnanyy: ## PSF radial profile for i in gdat.indxener: for m in gdat.indxevtt: indxydat = [i, slice(None), m] strgindxydat = 'en%02devt%d' % (i, m) lablxdat = gdat.labltotlpara.gang limtydat= np.array([1e-3, 1e3]) * gdat.anglfact**2 plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'psfn', \ 'binsangl', indxydat=indxydat, strgindxydat=strgindxydat, scalydat='logt', \ lablxdat=lablxdat, lablydat=r'$\mathcal{P}$', limtydat=limtydat) # internally and externally corrected element parameter histograms if gdat.typedata == 'inpt' and strgstat == 'pdfn' and gdat.rtagmock is not None: limtydat = gdat.limtydathistfeat for l in gmod.indxpopl: strgindxydat = 'pop%d' % l for strgfeat in gmod.namepara.derielemodim[l]: if strgfeat.startswith('aerr') or strgfeat == 'specplot' or strgfeat == 'spec' or strgfeat == 'deflprof': continue lablydat = r'$N_{%s}$' % gmod.lablelemextn[l] for namecorr in ['incr', 'excr']: nameinte = namecorr + 'odim/' for qq in gdatmock.indxrefr: if namecorr == 'excr': if not strgfeat in gmod.namepara.extrelem[l]: continue q = gdat.listnamerefr.index(strgfeat[-4:]) if getattr(gdat, 'crex' + strgfeat + 'pop%dpop%dpop%d' % (q, qq, l)) is None: continue name = namecorr + strgfeat + 'pop%dpop%dpop%d' % (q, qq, l) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'mean' + strgfeat, scalydat='logt', lablxdat=lablxdat, \ lablydat=lablydat, histodim=True, ydattype='totl', \ scalxdat=scalxdat, limtydat=limtydat, limtxdat=limtxdat, \ nameinte=nameinte) else: if strgfeat in gmod.namepara.extrelem[l]: continue name = namecorr + strgfeat + 'pop%dpop%d' % (qq, l) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, name, 'mean' + strgfeat, scalydat='logt', lablxdat=lablxdat, \ lablydat=lablydat, histodim=True, ydattype='totl', \ scalxdat=scalxdat, limtydat=limtydat, limtxdat=limtxdat, \ nameinte=nameinte) if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): if gmod.numbparaelem > 0: # element parameter correlations liststrgelemtdimvarb = getattr(gdat, 'liststrgelemtdimvarb' + strgphas) for strgelemtdimtype in gdat.liststrgelemtdimtype: for strgelemtdimvarb in liststrgelemtdimvarb: if strgelemtdimvarb.startswith('cmpl'): continue for l0 in gmod.indxpopl: for strgfrst in gmod.namepara.genrelem[l0]: if strgfrst.startswith('spec') or strgfrst == 'specplot' or strgfrst == 'deflprof': continue for strgseco in gmod.namepara.genrelem[l0]: if strgseco.startswith('spec') or strgseco == 'specplot' or strgseco == 'deflprof': continue if not checstrgfeat(strgfrst, strgseco): continue if strgelemtdimvarb.startswith('hist'): strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%d' % l0 plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst + 'pop%d' % l0, \ strgseco + 'pop%d' % l0, \ strgtotl, strgpdfn=strgpdfn) else: if booltile: continue if strgfrst.startswith('aerr') or strgseco.startswith('aerr'): continue if strgelemtdimvarb.startswith('fdis'): for q in gdat.indxrefr: strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%dpop%d' % (q, l0) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst, strgseco, strgtotl, strgpdfn=strgpdfn) elif strgelemtdimvarb.startswith('excr') or strgelemtdimvarb.startswith('incr'): for qq in gdatmock.indxrefr: if strgelemtdimvarb.startswith('excr'): for q in gdat.indxrefr: if getattr(gdat, 'crex' + strgfrst + strgseco + 'pop%dpop%dpop%d' % (q, qq, l0)) is None: continue strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%dpop%dpop%d' % (q, qq, l0) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst, strgseco, strgtotl, strgpdfn=strgpdfn) else: if strgfrst[-4:] in gdat.listnamerefr and strgseco[-4:] in gdat.listnamerefr: continue strgtotl = strgelemtdimvarb + strgfrst + strgseco + 'pop%dpop%d' % (qq, l0) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, \ l0, strgfrst, strgseco, strgtotl, strgpdfn=strgpdfn) if not (gdat.typedata == 'mock' and (gmod.numbelemtotl == 0 or gmod.maxmpara.numbelemtotl == 0)): for q in gdat.indxrefr: if strgphas == 'init' and gdat.typedata == 'mock': continue print('strgpdfn') print(strgpdfn) raise Exception('') if booltile: continue for l0 in gmod.indxpopl: for refrstrgfrst in gdat.refr.namepara.elem[q]: if refrstrgfrst == 'spec' or refrstrgfrst == 'specplot' or refrstrgfrst == 'deflprof' or refrstrgfrst == 'etag': continue if refrstrgfrst in gdat.refr.namepara.elemonly[q][l0]: continue for refrstrgseco in gdat.refr.namepara.elem[q]: if refrstrgseco in gdat.refr.namepara.elemonly[q][l0]: continue if refrstrgseco == 'spec' or refrstrgseco == 'specplot' or refrstrgseco == 'deflprof' or refrstrgseco == 'etag': continue if not checstrgfeat(refrstrgfrst, refrstrgseco): continue if refrstrgfrst.startswith('aerr') or refrstrgseco.startswith('aerr') or refrstrgfrst == 'specplot' or refrstrgseco == 'specplot': continue strgtotl = 'cmpl' + refrstrgfrst + refrstrgseco + 'pop%dpop%d' % (l0, q) plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, 'bind', 'cmpl', \ q, refrstrgfrst + 'pop%d' % l0, refrstrgseco + 'pop%d' % l0, strgtotl, strgpdfn=strgpdfn) if not booltile: if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): # data and model count scatter for m in gdat.indxevttplot: if gdat.numbpixl > 1: for i in gdat.indxener: plot_scatcntp(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, m, indxenerplot=i) else: plot_scatcntp(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, m) ## spatial priors # temp if gdat.numbpixl > 1: if gmod.numbparaelem > 0: for l in gmod.indxpopl: for strgfeat, strgpdfn in zip(gmod.namepara.genrelemmodu[l], gmod.liststrgpdfnmodu[l]): if strgpdfn == 'tmplreln': plot_genemaps(gdat, gdatmodi, 'fitt', strgpdfn, 'lpdfspatpriointp', booltdim=True) if strgpdfn == 'tmplgaum': plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'lpdfspatpriointp', booltdim=True) # model count maps ## backgrounds if gdat.numbpixl > 1: for i in gdat.indxener: for m in gdat.indxevtt: for c in gmod.indxback: if gmod.boolbfun: continue if not gmod.boolunifback[c]: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpback%04d' % c, i, m, strgcbar='cntpdata') ## count error if strgmodl != 'true': if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.boolcalcerrr[l]: for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntperrr', i, -1, strgcbar='cntpresi') ## diffuse components for i in gdat.indxener: for k, name in enumerate(gmod.listnamediff): plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntp%s' % (name), i, strgcbar='cntpdata') ## model count maps for i in gdat.indxener: for m in gdat.indxevtt: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpmodl', i, m, strgcbar='cntpdata') # likelihood if strgmodl != 'true': for i in gdat.indxener: for m in gdat.indxevtt: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'llik', i, m, strgcbar='llikmaps') if gmod.boollens: ## lensing signal to noise if strgmodl == 'true': for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 's2nr', i, -1) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'magn', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'conv', booltdim=True) for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntplens', i, strgcbar='cntpdata', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntplensgradmgtd', i, strgcbar='cntpdata', booltdim=True) if gdat.penalpridiff: for i in gdat.indxener: for m in gdat.indxevtt: plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, \ 'psecodimdatapntsen%02devt%d' % (i, m), 'meanmpolodim', lablxdat='$l$', lablydat='$P_{resi}(l)$', \ limtydat=[1e-2, 2.], scalxdat='logt', scalydat='logt') plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'psecodimdatapntsprioen%02devt%d' % (i, m), 'meanmpolodim', lablxdat='$l$', \ lablydat='$P_{prio}(l)$', limtydat=[1e-2, 2.], scalxdat='logt', scalydat='logt') if gmod.boollens: indxydat = [slice(None)] strgindxydat = '' plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convpsecodim', 'meanwvecodim', lablxdat='$k$ [1/kpc]', lablydat='$P(k)$', limtydat=[1e-1, 1e2], \ scalxdat='logt', scalydat='logt', indxydat=indxydat, strgindxydat=strgindxydat) plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'histdefl', 'meandefl', \ scal='self', lablxdat=r'$\alpha$ [arcsec]', lablydat=r'$N_{pix}$', \ strgindxydat=strgindxydat, indxydat=indxydat, histodim=True) if gmod.numbparaelem > 0 and gmod.boolelemdeflsubhanyy: indxydat = [slice(None)] strgindxydat = '' plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convpsecelemodim', 'meanwvecodim', lablxdat='$k$ [1/kpc]', lablydat='$P_{sub}(k)$', \ strgindxydat=strgindxydat, indxydat=indxydat, limtydat=[1e-5, 1e-1], scalxdat='logt', scalydat='logt') plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'histdeflsubh', 'meandeflsubh', scal='self', lablxdat=r'$\alpha$ [arcsec]', \ strgindxydat=strgindxydat, indxydat=indxydat, lablydat=r'$N_{pix}$', histodim=True) if gmod.boollens: for i in gdat.indxener: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpbgrd', i, -1, strgcbar='cntpdata') if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpbgrdgalx', i, -1, strgcbar='cntpdata') plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntpbgrdexts', i, -1, strgcbar='cntpdata') # gradient of the lens emission for i in gdat.indxener: for m in gdat.indxevtt: plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'cntplensgrad', indxenerplot=i, indxevttplot=m) if not (gdat.boolshrtfram and strgstat == 'this' and strgmodl == 'fitt'): if gmod.boollens: # overall deflection field plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, multfact=0.1) # deflection field due to individual lenses for k in range(numbdeflsingplot): if k == 0: multfact = 0.1 elif k == 1: multfact = 1. elif k >= 2: multfact = 10. plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, indxdefl=k, multfact=multfact) # residual deflection field if strgmodl == 'fitt' and gdat.typedata == 'mock': plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, nameparagenrelem='resi', multfact=100.) if strgstat != 'pdfn': for k in range(numbsingcomm): plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, nameparagenrelem='resi', indxdefl=k, multfact=100.) if gdat.numbpixl > 1: if gmod.numbparaelem > 0: plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convelemresi', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'convelemresiperc', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'magnresi', booltdim=True) plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, 'magnresiperc', booltdim=True) def dele_rtag(rtag): pathdata = pathpcat + '/data/outp/' pathimag = pathpcat + '/imag/' cmnd = 'rm -rf %s%s' % (pathdata, rtag) print(cmnd) os.system(cmnd) cmnd = 'rm -rf %s%s' % (pathimag, rtag) os.system(cmnd) print(cmnd) def plot_infopvks(gdat, gdatprio, name, namefull, nameseco=None): pvks = getattr(gdat, 'pvks' + namefull) info = getattr(gdat, 'info' + namefull) path = gdat.pathinfo + 'info' + namefull if nameseco is not None: indxpoplfrst = int(namefull[-1]) # information gain figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.pcolor(varbfrst, varbseco, info, cmap='Greys') plt.colorbar(imag) plot_sigmcont(gdat.fitt, '', axis, name, indxpoplfrst, strgseco=nameseco) if scalfrst == 'logt': axis.set_xscale('log') if scalseco == 'logt': axis.set_yscale('log') axis.set_xlabel(getattr(gdat.labltotlpara, name)) axis.set_ylabel(getattr(gdat.labltotlpara, nameseco)) axis.set_xlim(limtfrst) axis.set_ylim(limtseco) plt.tight_layout() plt.savefig(path) plt.close(figr) # KS test p value pathpvkstdim = gdat.pathinfo + 'pvks' + namefull figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.pcolor(varbfrst, varbseco, pvks, cmap='Greys') plt.colorbar(imag) plot_sigmcont(gdat.fitt, '', axis, name, indxpoplfrst, strgseco=nameseco) if scalfrst == 'logt': axis.set_xscale('log') if scalseco == 'logt': axis.set_yscale('log') axis.set_xlabel(getattr(gdat.labltotlpara, name)) axis.set_ylabel(getattr(gdat.labltotlpara, nameseco)) axis.set_xlim(limtfrst) axis.set_ylim(limtseco) plt.tight_layout() plt.savefig(pathpvkstdim) plt.close(figr) elif name != namefull: lablydat = '$D_{KL}$' lablxdat = getattr(gmod.lablpara, name + 'totl') xdat = getattr(gdat, 'mean' + name) ydat = getattr(gdat, 'info' + namefull) tdpy.mcmc.plot_plot(path, xdat, ydat, lablxdat, lablydat, scal) ydat = getattr(gdat, 'pvks' + namefull) pathpvks = gdat.pathinfo + 'pvks' + namefull tdpy.mcmc.plot_plot(pathpvks, xdat, ydat, lablxdat, '$p_{KS}$', scal) else: # horizontal axis xdat = getattr(gdat, 'mean' + name) lablxdat = getattr(gmod.lablpara, name + 'totl') # scaling scal = getattr(gdat, 'scal' + name) # common title titl = '$D_{KL} = %.3g$, KS = %.3g $\sigma$' % (info, pvks) # DKL density pathdinf = gdat.pathinfo + 'dinf' + namefull ydat = getattr(gdat, 'infodens' + namefull) lablydat = r'$\rho_{D_{KL}}$' tdpy.mcmc.plot_plot(pathdinf, xdat, ydat, lablxdat, lablydat, scal, titl=titl) # prior and posterior PDFs pathpdfn = gdat.pathinfo + 'pdfn' + namefull lablydat = r'$P$' ydat = [getattr(gdat, 'pdfnpost' + namefull), getattr(gdatprio, 'pdfnprio' + namefull)] legd = ['$P$(%s|$D$)' % lablxdat, '$P$(%s)' % lablxdat] tdpy.mcmc.plot_plot(pathpdfn, xdat, ydat, lablxdat, lablydat, scal, colr=['k', 'k'], linestyl=['-', '--'], legd=legd, titl=titl) def plot_finl(gdat=None, gdatprio=None, rtag=None, strgpdfn='post', gdatmock=None, booltile=None): if gdat.typeverb > 0: print('plot_finl()') print('Producing postprocessing plots...') timetotlinit = gdat.functime() gdat.strgbest = 'ML' if not booltile: # terms in the log-acceptance probability listindxsamptotlproptotl = getattr(gdat, 'list' + strgpdfn + 'indxsamptotlproptotl') listindxsamptotlpropaccp = getattr(gdat, 'list' + strgpdfn + 'indxsamptotlpropaccp') listindxsamptotlpropreje = getattr(gdat, 'list' + strgpdfn + 'indxsamptotlpropreje') for n in gdat.indxproptype: pathbase = getattr(gdat, 'path' + strgpdfn + 'finl%s' % gdat.nameproptype[n]) for k in gdat.indxtermlacp: varb = getattr(gdat, 'list' + strgpdfn + gdat.listnametermlacp[k]) labl = gdat.listlabltermlacp[k] if listindxsamptotlproptotl[n].size > 0 and (varb[listindxsamptotlproptotl[n]] != 0.).any(): path = pathbase + gdat.listnametermlacp[k] + 'totl' tdpy.mcmc.plot_trac(path, varb[listindxsamptotlproptotl[n]], labl, titl=gdat.nameproptype[n] + ', Total') if listindxsamptotlpropaccp[n].size > 0 and (varb[listindxsamptotlpropaccp[n]] != 0.).any(): path = pathbase + gdat.listnametermlacp[k] + 'accp' tdpy.mcmc.plot_trac(path, varb[listindxsamptotlpropaccp[n]], labl, titl=gdat.nameproptype[n] + ', Accepted') if listindxsamptotlpropreje[n].size > 0 and (varb[listindxsamptotlpropreje[n]] != 0.).any(): path = pathbase + gdat.listnametermlacp[k] + 'reje' tdpy.mcmc.plot_trac(path, varb[listindxsamptotlpropreje[n]], labl, titl=gdat.nameproptype[n] + ', Rejected') if gdat.checprio and strgpdfn == 'post' and not booltile: # this works only for scalar variables -- needs to be generalized to all variables if gdatprio is None: pathoutprtag = retr_pathoutprtag(pathpcat, rtag) path = pathoutprtag + 'gdatfinlprio' gdatprio = readfile(path) for namevarbscal in gmod.namepara.scal: plot_infopvks(gdat, gdatprio, namevarbscal, namevarbscal) for l in gmod.indxpopl: for strgfeatfrst in gmod.namepara.genrelem[l]: if strgfeatfrst == 'spec' or strgfeatfrst == 'deflprof' or strgfeatfrst == 'specplot': continue plot_infopvks(gdat, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + 'pop%d' % l) for strgfeatseco in gmod.namepara.genrelem[l]: if strgfeatseco == 'spec' or strgfeatseco == 'deflprof' or strgfeatseco == 'specplot': continue if not checstrgfeat(strgfeatfrst, strgfeatseco): continue plot_infopvks(gdat, gdatprio, strgfeatfrst, 'hist' + strgfeatfrst + strgfeatseco + 'pop%d' % l, nameseco=strgfeatseco) listparagenrscalfull = getattr(gdat, 'list' + strgpdfn + 'paragenrscalfull') listparagenrscalfull = getattr(gdat, 'list' + strgpdfn + 'paragenrscalfull') listparagenrscalbase = getattr(gdat, 'list' + strgpdfn + 'paragenrscalbase') listboolpropfilt = getattr(gdat, 'list' + strgpdfn + 'boolpropfilt') listmemoresi = getattr(gdat, 'list' + strgpdfn + 'memoresi') listindxproptype = getattr(gdat, 'list' + strgpdfn + 'indxproptype') listsampproc = getattr(gdat, 'list' + strgpdfn + 'sampproc') # Gelman-Rubin test pathdiag = getattr(gdat, 'path' + strgpdfn + 'finldiag') if gdat.numbproc > 1: if np.isfinite(gdat.gmrbstat).all(): if gdat.typeverb > 0: print('Gelman-Rubin TS...') figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) minm = min(np.amin(gdat.gmrbstat), np.amin(gdat.gmrbparagenrscalbase)) maxm = max(np.amax(gdat.gmrbstat), np.amax(gdat.gmrbparagenrscalbase)) bins = np.linspace(minm, maxm, 40) axis.hist(gdat.gmrbstat.flatten(), bins=bins, label='Data proj.') axis.hist(gdat.gmrbparagenrscalbase, bins=bins, label='Fixed dim.') axis.set_xlabel('PSRF') axis.set_ylabel('$N_{stat}$') plt.tight_layout() figr.savefig(pathdiag + 'gmrbhist.pdf') plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gmod.indxparagenrbase, gdat.gmrbparagenrscalbase) axis.set_xticklabels(gmod.labltotlpara.genrbase) axis.set_ylabel('PSRF') plt.tight_layout() figr.savefig(pathdiag + 'gmrbparagenrscalbase.pdf') plt.close(figr) for i in gdat.indxener: for m in gdat.indxevtt: maps = gdat.gmrbstat[i, :, m] path = pathdiag + 'gmrbdataen%02devt%d.pdf' % (i, m) tdpy.plot_maps(path, maps, indxpixlrofi=gdat.indxpixlrofi, numbpixl=gdat.numbpixlfull, typepixl=gdat.typepixl, \ minmlgal=gdat.anglfact*gdat.minmlgal, maxmlgal=gdat.anglfact*gdat.maxmlgal, \ minmbgal=gdat.anglfact*gdat.minmbgal, maxmbgal=gdat.anglfact*gdat.maxmbgal) else: print('Inappropriate Gelman-Rubin test statistics encountered.') # plot autocorrelation if gdat.typeverb > 0: print('Autocorrelation...') tdpy.mcmc.plot_atcr(pathdiag, gdat.atcrcntp[0, 0, 0, 0, :], gdat.timeatcrcntp[0, 0, 0, 0], strgextn='cntp') tdpy.mcmc.plot_atcr(pathdiag, gdat.atcrpara[0, 0, :], gdat.timeatcrpara[0, 0], strgextn='para') print('Autocorrelation times:') for k, namepara in enumerate(gmod.namepara): print('%s %g' % (namepara, np.mean(gdat.timeatcrpara[:, k]))) # plot proposal efficiency if gdat.typeverb > 0: print('Acceptance ratio...') numbtimemcmc = 20 binstimemcmc = np.linspace(0., gdat.numbswep, numbtimemcmc) numbtick = 2 sizefigrydat = 4. * gdat.numbproptype figr, axgr = plt.subplots(gdat.numbproptype, 1, figsize=(12., sizefigrydat), sharex='all') if gdat.numbproptype == 1: axgr = [axgr] for n, axis in enumerate(axgr): histtotl = axis.hist(listindxsamptotlproptotl[n], bins=binstimemcmc)[0] histaccp = axis.hist(listindxsamptotlpropaccp[n], bins=binstimemcmc)[0] axis.set_ylabel('%s' % gdat.nameproptype[n]) if k == gdat.numbproptype - 1: axis.set_xlabel('$i_{samp}$') plt.tight_layout() figr.savefig(pathdiag + 'accpratiproptype.pdf') plt.close(figr) if gdat.typeverb > 0: print('Proposal execution times...') ## time performance #listchro = np.empty((gdat.numbswep, gdat.numbchro)) #listchro = [] #for k, name in enumerate(gdat.listnamechro): # #listchro[:, k] = getattr(gdat, 'list' + strgpdfn + 'chro' + name).flatten() * 1e3 # listchro.append(getattr(gdat, 'list' + strgpdfn + 'chro' + name).flatten() * 1e3) #pathdiag = getattr(gdat, 'path' + strgpdfn + 'finldiag') #figr, axis = plt.subplots(figsize=(2 * gdat.plotsize, gdat.plotsize)) #axis.violin(listchro) #axis.set_yscale('log') #axis.set_ylabel('$t$ [ms]') #axis.set_xticklabels(gdat.listlablchro) #axis.axvline(mean(chro), ls='--', alpha=0.2, color='black') #figr.savefig(pathdiag + 'chro.pdf' % gdat.listnamechro[k]) #plt.close(figr) # temp gdat.lablpmea = 'Mean' # posterior versions of the frame plots plot_samp(gdat, None, 'pdfn', 'fitt', 'finl', strgpdfn=strgpdfn, gdatmock=gdatmock, booltile=booltile) if booltile: return if gmod.numbparaelem > 0: if gdat.typeverb > 0: print('A mosaic of samples...') ## mosaic of images of posterior catalogs if gdat.numbpixl > 1: plot_mosa(gdat, strgpdfn) ## randomly selected trandimensional parameters if gmod.numbparaelem > 0: if gdat.typeverb > 0: print('Transdimensional parameters...') # choose the parameters based on persistence stdvlistsamptran = np.std(listparagenrscalfull[:, gmod.indxsamptrap], axis=0) indxtrapgood = np.where(stdvlistsamptran > 0.)[0] gmod.numbparaelemgood = indxtrapgood.size gmod.numbparaelemplot = min(3, gmod.numbparaelemgood) if gmod.numbparaelemplot > 0: indxtrapplot = np.sort(np.random.choice(gmod.indxsamptrap[indxtrapgood], size=gmod.numbparaelemplot, replace=False)) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') tdpy.mcmc.plot_grid(path, 'listelemfrst', listparagenrscalfull[:, gmod.indxsamptrap[:3]], [gmod.lablpara[k] for k in gmod.indxsamptrap[:3]]) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') tdpy.mcmc.plot_grid(path, 'listsamp', listparagenrscalfull[:, indxtrapplot], ['%d' % k for k in indxtrapplot]) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') tdpy.mcmc.plot_grid(path, 'listsamp', listparagenrscalfull[:, indxtrapplot], [gmod.lablpara[k] for k in indxtrapplot]) if gdat.typeverb > 0: print('Scalar variables...') # scalar variables ## trace and marginal distribution of each parameter for name in gmod.namepara.scal: if gdat.typeverb > 0: print('Working on %s...' % name) scal = getattr(gdat, 'scal' + name) corr = getattr(gdat, 'corr' + name) if corr is None: truepara = None else: truepara = getattr(gdat, 'corr' + name) listvarb = getattr(gdat, 'list' + strgpdfn + name) if listvarb.ndim != 1: if listvarb.shape[1] == 1: listvarb = listvarb[:, 0] else: raise Exception('') mlik = getattr(gdat, 'mlik' + name) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscaltrac') + name tdpy.mcmc.plot_trac(path, listvarb, labltotl, truepara=truepara, scalpara=scal, listvarbdraw=[mlik], listlabldraw=[''], listcolrdraw=['r']) path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalhist') + name tdpy.mcmc.plot_hist(path, listvarb, labltotl, truepara=truepara, scalpara=scal, listvarbdraw=[mlik], listlabldraw=[''], listcolrdraw=['r']) for nameseco in gmod.namepara.scal: if name == nameseco: continue if gdat.typeverb > 0: print('Working on correlation of %s with %s...' % (name, nameseco)) pathjoin = getattr(gdat, 'path' + strgpdfn + 'finlvarbscaljoin') if corrseco is None: trueparaseco = None else: trueparaseco = getattr(gdat, 'corr' + nameseco) if listvarbseco.ndim != 1: if listvarbseco.shape[1] == 1: listvarbseco = listvarbseco[:, 0] else: raise Exception('') listjoin = np.vstack((listvarb, listvarbseco)).T tdpy.mcmc.plot_grid(pathjoin, name + nameseco, listjoin, [labltotl, labltotlseco], scalpara=[scal, scalseco], truepara=[truepara, trueparaseco], \ join=True, listvarbdraw=[np.array([mlik, mlikseco])]) if gdat.typeverb > 0: print('Fixed dimensional parameter covariance...') ### covariance ## overall path = getattr(gdat, 'path' + strgpdfn + 'finlvarbscalcova') truepara = gmod.corrparagenrscalbase mlikpara = gdat.mlikparagenrscalbase tdpy.mcmc.plot_grid(path, 'paragenrscalbase', listparagenrscalbase, gmod.labltotlpara.genrbasetotl, truepara=truepara, listvarbdraw=[mlikpara]) # stacked posteiors binned in position and flux if gmod.numbparaelem > 0 and gdat.numbpixl > 1: liststrgbins = ['quad', 'full'] for l in gmod.indxpopl: plot_histlgalbgalelemstkd(gdat, strgpdfn, l, 'cumu') for strgbins in liststrgbins: plot_histlgalbgalelemstkd(gdat, strgpdfn, l, strgbins, namepara.elemsign[l]) if gdat.typeverb > 0: print('Prior and likelihood...') for strgpdfntemp in ['lpritotl', 'lliktotl']: if strgpdfntemp == 'lpritotl': labltemp = '\ln P(M)' if strgpdfntemp == 'lliktotl': labltemp = '\ln P(D|M)' labl = r'$%s$' % labltemp path = getattr(gdat, 'path' + strgpdfn + 'finl') + strgpdfntemp varb = getattr(gdat, 'list' + strgpdfn + strgpdfntemp) tdpy.mcmc.plot_hist(path, varb, labl) listvarbdraw = [] listlabldraw = [] listcolrdraw = [] if gdat.typedata == 'mock': listvarbdraw += [getattr(gdat.true, strgpdfntemp)] listlabldraw += ['True model'] listcolrdraw += [gdat.refr.colr] tdpy.mcmc.plot_trac(path, getattr(gdat, 'list' + strgpdfn + strgpdfntemp), labl, \ listvarbdraw=listvarbdraw, listlabldraw=listlabldraw, listcolrdraw=listcolrdraw) # plot resident memory figr, axis = plt.subplots(figsize=(2 * gdat.plotsize, gdat.plotsize)) axis.plot(gdat.indxswep, np.mean(listmemoresi, 1) / float(2**30)) axis.set_ylabel(r'$M$ [GB]') axis.set_xlabel(r'$i_{samp}$') plt.tight_layout() figr.savefig(pathdiag + 'memoresi.pdf') plt.close(figr) timetotlfinl = gdat.functime() if gdat.typeverb > 0: print('Plots and animations are produced in %.3g seconds.' % (timetotlfinl - timetotlinit)) def plot_sbrt(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, specconvunit): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) for b, namespatmean in enumerate(gdat.listnamespatmean): figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) # plot reference spectra if gdat.listprefsbrtlabltotl is not None: for k in range(len(gdat.listprefsbrtlabltotl)): if gdat.listprefsbrttype[k] == 'shad': factenerrefr = [[] for a in range(3)] for a in range(3): factenerrefr[a] = retr_factener(specconvunit[0], gdat.listprefsbrtener[k][a]) axis.plot(gdat.listprefsbrtener[k][0], gdat.listprefsbrtsbrt[k][0] * factenerrefr[0], color='m', label=gdat.listprefsbrtlabltotl[k]) enerpoly = np.empty(gdat.listprefsbrtener[k][1].size + gdat.listprefsbrtener[k][2].size) enerpoly[:gdat.listprefsbrtener[k][1].size] = gdat.listprefsbrtener[k][1] enerpoly[gdat.listprefsbrtener[k][1].size:] = gdat.listprefsbrtener[k][2][::-1] sbrtpoly = np.empty(gdat.listprefsbrtener[k][1].size + gdat.listprefsbrtener[k][2].size) sbrtpoly[:gdat.listprefsbrtener[k][1].size] = gdat.listprefsbrtsbrt[k][1] * factenerrefr[1] sbrtpoly[gdat.listprefsbrtener[k][1].size:] = gdat.listprefsbrtsbrt[k][2][::-1] * factenerrefr[2][::-1] axis.fill(enerpoly, sbrtpoly, color='m', alpha=0.5) else: factenerrefr = retr_factener(specconvunit[0], gdat.listprefsbrtener[k][1]) axis.errorbar(gdat.listprefsbrtener[k][1], gdat.listprefsbrtsbrt[k][1] * factenerrefr, label=gdat.listprefsbrtlabltotl[k], color='m') if strgmodl == 'true': liststrgmodl = [strgmodl] listgdatobjt = [gdat] if strgmodl == 'fitt' and (strgstat == 'this' or strgstat == 'pdfn'): if gdat.typedata == 'mock': liststrgmodl = [strgmodl, 'true'] listgdatobjt = [gdatobjt, gdat] else: liststrgmodl = [strgmodl] listgdatobjt = [gdatobjt] numbstrgstattemp = len(liststrgmodl) for a in range(numbstrgstattemp): indxploteleminit = [] indxplotelemendd = [] # number of transdimensional elements to be overplotted numbelemtemp = 0 if gdat.numbpixl == 1 and strgstat != 'pdfn': if liststrgmodl[a] == 'fitt': numbelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) numbelemtemp += np.sum(gmodstat.numbelem[l]) else: for q in gdat.indxrefr: numbelemtemp += np.sum(gdat.refr.numbelem[q]) numbplot = numblablsbrtspec + numbelemtemp listydat = np.zeros((numbplot, gdat.numbener)) listyerr = np.zeros((2, numbplot, gdat.numbener)) cntr = 0 cntrdata = cntr ## data listydat[cntr, :] = gdat.sbrtdatamean[b] listyerr[:, cntr, :] = gdat.sbrtdatastdv[b] cntr += 1 for c in gmod.indxback: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtback%04dmea%d' % (c, b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtback%04dmea%d' % (c, b), strgpdfn, strgmome='errr') cntr += 1 if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy and not (liststrgmodl[a] == 'true' and gdat.refr.numbelemtotl == 0): listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncsubtmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtdfncsubtmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrthostisf%dmea%d' % (e, b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], \ 'sbrthostisf%dmea%d' % (e, b), strgpdfn, strgmome='errr') cntr += 1 if gmod.boollens: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtlensmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtlensmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 if gdat.numbpixl == 1 and strgstat != 'pdfn': cntrline = cntr indxploteleminit.append(cntr) for l in gmod.indxpopl: if liststrgmodl[a] == 'true': for k in range(gmod.numbelem[l]): listydat[cntr, :] = getattr(listgdatobjt[a], liststrgmodl[a] + 'spec')[l][0, :, k] if cntr == cntrline: listlablsbrtspec = listlablsbrtspec[:cntr] + ['Lines'] + listlablsbrtspec[cntr:] else: listlablsbrtspec = listlablsbrtspec[:cntr] + [None] + listlablsbrtspec[cntr:] cntr += 1 if k == gmod.numbelem[l] - 1: indxplotelemendd.append(k) else: for k in range(gmodstat.numbelem[l]): listydat[cntr, :] = getattr(listgdatobjt[a], strgstat + 'spec')[l][:, k] if cntr == cntrline: listlablsbrtspec = listlablsbrtspec[:cntr] + ['Lines'] + listlablsbrtspec[cntr:] else: listlablsbrtspec = listlablsbrtspec[:cntr] + [None] + listlablsbrtspec[cntr:] cntr += 1 if k == gmodstat.numbelem[l] - 1: indxplotelemendd.append(k) ## total model if numblablsbrt > 1: listydat[cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtmodlmea%d' % (b), strgpdfn) if strgstat == 'pdfn': listyerr[:, cntr, :] = retr_fromgdat(gdat, gdatmodi, strgstat, liststrgmodl[a], 'sbrtmodlmea%d' % (b), strgpdfn, strgmome='errr') cntr += 1 if liststrgmodl[a] == 'true': listyerr = np.zeros((2, numbplot, gdat.numbener)) # plot energy spectra of the data, background model components and total background if gdat.numbener > 1: listmrkr = ['o', '>', 's', 'h', '*', 'p', 'x'] for k in range(100): listmrkr.append('x') # determine the energy scaling factor if specconvunit[0] == 'en00': factener = 1. if specconvunit[0] == 'en01': factener = gdat.meanpara.ener if specconvunit[0] == 'en02': factener = gdat.meanpara.ener**2 if specconvunit[0] == 'en03': # temp pass factener = 1. #indxenerintv = np.where((gdat.meanpara.ener < specconvunit[4]) & (gdat.meanpara.ener > specconvunit[3]))[0] #ener = np.concatenate((np.array([specconvunit[3]]), gdat.meanpara.ener[indxenerintv], np.array([specconvunit[4]]))) # #for k in range(3): # if k == 0: # ydattemp = # ydatminmener = np.interp(specconvunit[3], gdat.meanpara.ener, ydat) # ydatmaxmener = np.interp(specconvunit[4], gdat.meanpara.ener, ydat) # ydat = np.concatenate((np.array([ydatminmener]), ydat[indxenerintv], np.array([ydatmaxmener]))) # ydat = np.trapz(ydat, gdat.meanpara.ener) # #yerrminmener = np.interp(specconvunit[3], gdat.meanpara.ener, yerr, axis=1) #yerrmaxmener = np.interp(specconvunit[4], gdat.meanpara.ener, yerr, axis=1) #ydat = np.stack((np.array([yerrminmener]), ydat[indxenerintv], np.array([yerrmaxmener]))) # # #yerr = np.trapz(yerr, gdat.meanpara.ener) xdat = gdat.meanpara.ener cntr = 0 for k in range(listydat.shape[0]): mrkr = listmrkr[cntr] if k == cntrdata: colr = 'black' alph = 1. linestyl = '-' else: colr = retr_colr(gdat, strgstat, liststrgmodl[a], indxpopl=None) linestyl = '--' alph = 0.5 ydat = np.copy(listydat[k, :]) yerr = np.copy(listyerr[:, k, :]) ydat *= factener yerr *= factener if k == cntrdata and a > 0: continue if liststrgmodl[a] == 'fitt': labl = listlablsbrtspec[k] else: labl = None temp, listcaps, temp = axis.errorbar(xdat, ydat, yerr=yerr, color=colr, marker=mrkr, ls=linestyl, markersize=10, alpha=alph, label=labl) for caps in listcaps: caps.set_markeredgewidth(1) if gdat.numbpixl == 1 and strgstat != 'pdfn': if cntr != cntrline or k in indxplotelemendd: cntr += 1 else: cntr += 1 if gdat.numbener > 1: axis.set_xlim([np.amin(gdat.binspara.ener), np.amax(gdat.binspara.ener)]) if gdat.typeexpr == 'chan': factminm = 1e-1 factmaxm = 1e2 elif gdat.typeexpr == 'ferm': factminm = 1e1 factmaxm = 1e-1 else: factminm = 1e-4 factmaxm = 1e0 minmydat = factminm * gdat.factylimtbrt[0] * np.amax(listydat[cntrdata, :] * factener) maxmydat = factmaxm * gdat.factylimtbrt[1] * np.amax(listydat[cntrdata, :] * factener) limtydat = [minmydat, maxmydat] axis.set_ylim(limtydat) axis.set_yscale('log') axis.set_xlabel(gdat.lablenertotl) axis.set_xscale('log') labl = getattr(gmod.lablpara, 'sbrt' + specconvunit[0] + specconvunit[1] + 'stertotl') axis.set_ylabel(labl) make_legd(axis, numbcols=2) plt.tight_layout() path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, 'sdenmean%s%s%s' % (namespatmean, specconvunit[0], specconvunit[1])) figr.savefig(path) plt.close(figr) def retr_factener(strgconvunit, ener): if strgconvunit == 'en00': factener = np.ones_like(ener) if strgconvunit == 'en01': factener = ener if strgconvunit == 'en02': factener = ener**2 if strgconvunit == 'en03': # temp pass factener = np.ones_like(ener) return factener def plot_pdfntotlflux(): minm = 1e-9 maxm = 10e-9 numbvarb = 90 numbparagenrfull = 100000 numbbins = 40 alph = 0.5 binssing = np.linspace(minm, maxm, numbvarb + 1) meansing = (binssing[:-1] + binssing[1:]) / 2. deltsing = binssing[1:] - binssing[:-1] binsdoub = np.linspace(2. * minm, 2. * maxm, 2 * numbvarb) meandoub = (binsdoub[:-1] + binsdoub[1:]) / 2. deltdoub = binsdoub[1:] - binsdoub[:-1] bins = np.linspace(minm, 2. * maxm, 2 * numbvarb + 1) arry = np.empty((2, numbparagenrfull)) minmslop = 1.5 maxmslop = 3. numbslop = 4 sloparry = np.linspace(minmslop, maxmslop, numbslop) for n in range(numbslop): slop = sloparry[n] for k in range(2): arry[k, :] = (np.random.rand(numbparagenrfull) * (maxm**(1. - slop) - minm**(1. - slop)) + minm**(1. - slop))**(1. / (1. - slop)) totl = np.sum(arry, 0) powrprob = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) * meansing**(-slop) convprob = convolve(powrprob, powrprob) * deltdoub[0] indxdoub = np.where(meandoub <= maxm)[0] convprobpoly = polyval(polyfit(meandoub[indxdoub], convprob[indxdoub], 8), meandoub[indxdoub]) figr, axis = plt.subplots() axis.hist(arry[k, :], bins=bins, alpha=alph, label='$f_1$ (Sampled)', color='b') axis.hist(totl, bins=bins, alpha=alph, label='$f_0$ (Sampled)', color='g') axis.plot(meansing, powrprob * numbparagenrfull * deltsing, label='$f_1$ (Analytic)', color='b') axis.plot(meandoub, convprob * numbparagenrfull * deltdoub[0], label='$f_0$ (Numerically convolved)', color='g') axis.plot(meandoub[indxdoub], convprobpoly * numbparagenrfull * deltdoub[indxdoub], label='$f_0$ (Fit)', color='r') axis.set_ylim([0.5, numbsamp]) axis.set_xlabel('$f$') axis.set_xlim([np.amin(bins), np.amax(bins)]) axis.set_xscale('log') axis.set_yscale('log') axis.set_ylabel('$N_{samp}$') make_legd(axis) plt.tight_layout() pathfold = os.environ["TDGU_DATA_PATH"] + '/imag/powrpdfn/' figr.savefig(pathfold + 'powrpdfn%04d.pdf' % n) plt.close(figr) def savefigr(gdat, gdatmodi, figr, path): #if gdatmodi is not None and gdat.numbproc > 1: # gdatmodi.lock.acquire() # print 'Process %d acquiring the lock...' % gdatmodi.indxprocwork plt.savefig(path) #if gdatmodi is not None and gdat.numbproc > 1: # gdatmodi.lock.release() # print 'Process %d releasing the lock...' % gdatmodi.indxprocwork def plot_elemtdim(gdat, gdatmodi, strgstat, strgmodl, strgelemtdimtype, strgelemtdimvarb, indxpoplfrst, strgfrst, \ strgseco, strgtotl, strgmome='pmea', strgpdfn='post'): gmod = getattr(gdat, strgmodl) sizelarg = 10 sizesmll = 1 if strgstat == 'pdfn': lablmome = getattr(gdat, 'labl' + strgmome) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) if strgmodl == 'fitt': colrtemp = gmod.colrelem[indxpoplfrst] if strgstat == 'pdfn': labl = gdat.lablsampdist + ' ' + lablmome if strgelemtdimtype == 'bind': varb = getattr(gdat, strgmome + strgpdfn + strgtotl) varbfrst = gdat.binspara.strgfrst varbseco = getattr(gdat.binspara, strgseco) if strgtotl.startswith('hist') or strgtotl.startswith('exr') or strgtotl.startswith('incr') or np.amax(varb) <= 0.: normtdim = None else: normtdim = mpl.colors.LogNorm(0.5, vmax=np.amax(varb)) imag = axis.pcolor(varbfrst, varbseco, varb.T, cmap='Blues', label=labl, norm=normtdim) make_cbar(gdat, axis, imag) else: if gdat.boolcondcatl: varbfrst = np.zeros(gdat.numbprvlhigh) varbseco = np.zeros(gdat.numbprvlhigh) cntr = 0 for r in gdat.indxstkscond: if r in gdat.indxprvlhigh: varbfrst[cntr] = gdat.dictglob['poststkscond'][r][strgfrst][indxpoplfrst] varbseco[cntr] = gdat.dictglob['poststkscond'][r][strgseco][indxpoplfrst] cntr += 1 axis.scatter(varbfrst, varbseco, alpha=gdat.alphelem, color=colrtemp, label=gdat.lablparagenrscalfull) if strgstat == 'this' or strgstat == 'mlik': if strgelemtdimtype == 'bind': meanfrst = getattr(gdat.binspara, strgfrst) meanseco = getattr(gdat.binspara, strgseco) hist = getattr(gdatmodi, strgstat + strgtotl) if strgtotl.startswith('hist') or strgtotl.startswith('exr') or strgtotl.startswith('incr') or np.amax(hist) <= 0.: normtdim = None else: normtdim = mpl.colors.LogNorm(0.5, vmax=np.amax(hist)) imag = axis.pcolor(meanfrst, meanseco, hist.T, cmap='Blues', label=gdat.lablparagenrscalfull, alpha=gdat.alphhist, norm=normtdim) else: varbfrst = getattr(gdatmodi.this, strgfrst)[indxpoplfrst] varbseco = getattr(gdatmodi.this, strgseco)[indxpoplfrst] if len(varbfrst) == 0 or len(varbseco) == 0: varbfrst = np.array([limtfrst[0] * 0.1]) varbseco = np.array([limtseco[0] * 0.1]) axis.scatter(varbfrst, varbseco, alpha=gdat.alphelem, color=colrtemp, label=gdat.lablparagenrscalfull) # reference elements if strgfrst[-4:] in gdat.listnamerefr: strgfrsttemp = strgfrst[-4:] else: strgfrsttemp = strgfrst if strgseco[-4:] in gdat.listnamerefr: strgsecotemp = strgseco[-4:] else: strgsecotemp = strgseco if hasattr(gdat.refr, strgfrsttemp) and hasattr(gdat.refr, strgsecotemp): for q in gdat.indxrefr: if strgfrsttemp in gdat.refr.namepara.elem[q] and strgsecotemp in gdat.refr.namepara.elem[q]: refrvarbfrst = getattr(gdat.refr, strgfrsttemp)[q] refrvarbseco = getattr(gdat.refr, strgsecotemp)[q] if len(refrvarbfrst) == 0 or len(refrvarbseco) == 0: refrvarbfrst = np.array([limtfrst[0] * 0.1]) refrvarbseco = np.array([limtseco[0] * 0.1]) axis.scatter(refrvarbfrst, refrvarbseco, alpha=gdat.alphelem, color=gdat.refr.colrelem[q], label=gdat.refr.lablelem[q], s=sizelarg) plot_sigmcont(gdat, strgmodl, axis, strgfrst, indxpoplfrst, strgseco=strgseco) scalfrst = getattr(gmod.scalpara, strgfrst) scalseco = getattr(gmod.scalpara, strgseco) if scalfrst == 'logt': axis.set_xscale('log') if scalseco == 'logt': axis.set_yscale('log') axis.set_xlabel(getattr(gmod.labltotlpara, strgfrst)) axis.set_ylabel(getattr(gmod.labltotlpara, strgseco)) axis.set_xlim(getattr(gmod.limtpara, strgfrst)) axis.set_ylim(getattr(gmod.limtpara, strgseco)) make_legd(axis) plt.tight_layout() if strgstat == 'pdfn': strgmometemp = strgmome else: strgmometemp = '' nameinte = strgelemtdimvarb + 'tdim/' path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, '%s%s' % (strgmometemp, strgtotl), nameinte=nameinte) savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_sigmcont(gdat, strgmodl, axis, strgfrst, indxpoplfrst, strgseco=None): if strgfrst == 'deltllik' or strgseco == 'deltllik': for pval in gdat.pvalcont: if strgfrst == 'deltllik': deltlliksigm = scipy.stats.chi2.ppf(1. - pval, gmod.numbparagenrelemsing[indxpoplfrst]) axis.axvline(deltlliksigm, ls='--', color='black', alpha=0.2) if strgseco == 'deltllik': deltlliksigm = scipy.stats.chi2.ppf(1. - pval, gmod.numbparagenrelemsing[indxpoplfrst]) axis.axhline(deltlliksigm, ls='--', color='black', alpha=0.2) def plot_gene(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, strgydat, strgxdat, typehist='hist', \ indxrefrplot=None, indxydat=None, strgindxydat=None, indxxdat=None, strgindxxdat=None, plottype='none', \ meanxdat=None, \ scal=None, scalxdat=None, scalydat=None, limtxdat=None, limtydat=None, omittrue=False, nameinte='', \ lablxdat='', lablydat='', histodim=False, offslegd=None, booltdim=False, ydattype='totl', boolhistprio=True): gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) if strgydat[-8:-5] == 'pop': boolelem = True else: boolelem = False if scal is None: if scalxdat is None: scalxdat = 'linr' if scalydat is None: scalydat = 'linr' else: scalxdat = scal scalydat = scal if histodim: figrsize = (gdat.plotsize, 0.8 * gdat.plotsize) else: figrsize = (gdat.plotsize, gdat.plotsize) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) if booltdim: xdat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgxdat, strgpdfn) ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn) else: xdat = getattr(gdat.meanpara, strgxdat[4:]) if typehist == 'histcorrreca': ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'histcorrreca' + strgydat[4:], strgpdfn) else: ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn) if indxxdat is not None: xdat = xdat[indxxdat] if indxydat is not None: ydat = ydat[indxydat] xerr = np.zeros((2, xdat.size)) if booltdim: axis.scatter(xdat, ydat, alpha=gdat.alphelem, color=colr, label=gdat.lablparagenrscalfull) else: if histodim: # temp if strgxdat[4:] in gmod.namepara.elem: deltxdat = getattr(gdat.deltpara, strgxdat[4:]) binsxdat = getattr(gdat.binspara, strgxdat[4:]) else: deltxdat = getattr(gdat.deltpara, strgxdat[4:]) binsxdat = getattr(gdat.binspara, strgxdat[4:]) xdattemp = binsxdat[:-1] + deltxdat / 2. if strgmodl == 'fitt': if boolelem: if strgydat.startswith('cmpl'): labl = gmod.lablelem[int(strgydat[-5])] colr = gmod.colrelem[int(strgydat[-5])] else: labl = gmod.lablelem[int(strgydat[-1])] colr = gmod.colrelem[int(strgydat[-1])] else: labl = gmod.labl colr = gmod.colr if strgstat == 'pdfn': if typehist == 'histcorrreca': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'histcorrreca' + strgydat[4:], strgpdfn, strgmome='errr') else: yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn, strgmome='errr') if indxydat is not None: yerr = yerr[[slice(None)] + indxydat] # label if strgydat.startswith('hist'): ## element distribution labl = gdat.lablsampdist else: ## other labl = gdat.lablsampdist # draw points indxerrr = np.where((yerr[0, :] > 0.) | (yerr[1, :] > 0.))[0] if indxerrr.size > 0: labltemp = None else: labltemp = labl temp, listcaps, temp = axis.errorbar(xdat, ydat, yerr=yerr, xerr=xerr, label=labl, \ marker='o', ls='', markersize=5, color=colr, lw=1, capsize=5) # draw error-bar caps if indxerrr.size > 0: temp, listcaps, temp = axis.errorbar(xdat[indxerrr], ydat[indxerrr], yerr=yerr[:, indxerrr], xerr=xerr[:, indxerrr], \ marker='o', ls='', markersize=5, color=colr, lw=1, capsize=5) for caps in listcaps: caps.set_markeredgewidth(1) elif strgstat == 'this' or strgstat == 'mlik': if strgstat == 'this': labl = gdat.lablsamp else: labl = gdat.lablmlik if histodim: axis.bar(xdattemp, ydat, deltxdat, label=gdat.lablparagenrscalfull, alpha=0.5, linewidth=1, edgecolor=colr) else: if plottype == 'errr': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgydat, strgpdfn, strgmome='errr') if indxydat is not None: yerr = yerr[[slice(None)] + indxydat] temp, listcaps, temp = axis.errorbar(xdat, ydat, yerr=yerr, xerr=xerr, \ marker='o', ls='', markersize=5, label=labl, lw=1, capsize=5, color=colr) for caps in listcaps: caps.set_markeredgewidth(1) else: axis.plot(xdat, ydat, label=gdat.lablparagenrscalfull, alpha=0.5, color=colr) # reference histogram if not omittrue: for q in gdat.indxrefr: if boolelem: if strgydat[-12:-8] in gdat.listnamerefr: name = 'refr' + strgydat[:-12] + 'pop%d' % q + strgydat[-4:] else: name = 'refr' + strgydat[:-8] + 'pop%d' % q + strgydat[-4:] else: name = 'refr' + strgydat if not hasattr(gdat, name): continue ydattemp = getattr(gdat, name) ydat = ydattemp if indxydat is not None: ydat = ydat[indxydat] if strgydat[-8:-5] == 'pop': labl = gdat.refr.lablelem[q] colr = gdat.refr.colrelem[q] else: labl = gdat.refr.labl colr = gdat.refr.colr if histodim: axis.bar(xdattemp, ydat, deltxdat, color=colr, label=labl, alpha=gdat.alphhist, linewidth=1, edgecolor=colr) else: axis.plot(xdat, ydat, color=colr, label=labl, alpha=gdat.alphline) try: if histodim: if typehist == 'histcorrreca': reca = getattr(gdat.true, 'reca' + strgydat[4:]) axis.plot(xdattemp, 10. * reca, color='purple', label='PTFN', alpha=gdat.alphline) except: pass if not boolelem: break # external reference histogram if histodim and strgydat == 'histfluxpop0': try: if gdat.listprefhistfluxlabl is not None: for k in range(len(gdat.listprefhistfluxlabl)): if gdat.listprefhistfluxtype[k] == 'shad': axis.plot(gdat.listprefhistfluxflux[k][0], gdat.listprefhistfluxhist[k][0], color='m', label=gdat.listprefhistfluxlabl[k]) enerpoly = np.empty(gdat.listprefhistfluxflux[k][1].size + gdat.listprefhistfluxflux[k][2].size) enerpoly[:gdat.listprefhistfluxflux[k][1].size] = gdat.listprefhistfluxflux[k][1] enerpoly[gdat.listprefhistfluxflux[k][1].size:] = gdat.listprefhistfluxflux[k][2][::-1] sbrtpoly = np.empty(gdat.listprefhistfluxflux[k][1].size + gdat.listprefhistfluxflux[k][2].size) sbrtpoly[:gdat.listprefhistfluxflux[k][1].size] = gdat.listprefhistfluxhist[k][1] sbrtpoly[gdat.listprefhistfluxflux[k][1].size:] = gdat.listprefhistfluxhist[k][2][::-1] axis.fill(enerpoly, sbrtpoly, color='m', alpha=0.5) else: axis.errorbar(gdat.listprefhistfluxflux[k], gdat.listprefhistfluxhist[k], label=gdat.listprefhistfluxlabl[k], color='m') except: pass if strgydat.startswith('histcntp'): ydattemp = getattr(gmodstat, strgydat) axis.bar(xdattemp, ydattemp, deltxdat, color='black', label='Data', alpha=gdat.alphhist, linewidth=1, edgecolor='black') # axis scales if scalxdat == 'logt': axis.set_xscale('log') if scalydat == 'logt': if np.where(ydat > 0.)[0].size > 0: axis.set_yscale('log') # axis labels axis.set_xlabel(lablxdat) axis.set_ylabel(lablydat) # superimpose prior on the feature ptch = None line = None if strgydat.startswith('hist') and strgydat != 'histdefl' and strgydat != 'histdeflelem' and boolhistprio: if strgydat[-8:-5] == 'pop': strgtemp = strgydat[4:-8] if strgtemp in gmod.namepara.genrelem[int(strgydat[-5])]: xdatprio = getattr(gmod, strgxdat + 'prio') if gdat.typedata == 'mock' and not omittrue: for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue if strgtemp in gmod.namepara.genrelem[q]: truexdatprio = getattr(gdat.true, strgxdat + 'prio') trueydatsupr = getattr(gdat.true, strgydat + 'prio') trueydatsupr = retr_fromgdat(gdat, gdatmodi, strgstat, 'true', strgydat + 'prio', strgpdfn) axis.plot(truexdatprio, trueydatsupr, ls='-', alpha=gdat.alphline, color=gdat.refr.colrelem[q]) if strgmodl != 'true': ydatsupr = retr_fromgdat(gdat, gdatmodi, strgstat, 'fitt', strgydat + 'prio', strgpdfn) if strgstat == 'pdfn': yerrsupr = retr_fromgdat(gdat, gdatmodi, strgstat, 'fitt', strgydat + 'prio', strgpdfn, strgmome='errr') labl = gdat.lablsampdist + ' hyper-distribution' ptch, line = tdpy.plot_braz(axis, xdatprio, ydatsupr, yerr=yerrsupr, lcol='lightgrey', dcol='grey', labltotl=labltotl) else: axis.plot(xdatprio, ydatsupr, ls='--', alpha=gdat.alphline, color=gmod.colrelem[int(strgydat[-5])]) for name, valu in gdat.refr.__dict__.items(): if name[8:12] == 'hist' and name[12:16] == strgydat[4:] and name[16:19] == 'pop' and int(name[-1]) == indxpopltemp: colr = getattr(gdat, name + 'colr') linestyl = getattr(gdat, name + 'linestyl') axis.plot(valu[0, :], valu[1, :], ls=linestyl, color=colr) if strgydat.startswith('hist') and strgydat[4:-8] == 'deltllik': plot_sigmcont(gdat, strgmodl, axis, strgxdat[4:], int(strgydat[-1])) if indxydat is not None: strgydat += strgindxydat if indxxdat is not None: strgxdat += strgindxxdat if limtxdat is not None: axis.set_xlim(limtxdat) else: axis.set_xlim([np.amin(xdat), np.amax(xdat)]) if limtydat is not None: axis.set_ylim([limtydat[0], limtydat[1]]) else: axis.set_ylim([np.amin(ydat), np.amax(ydat)]) if ydattype != 'totl': strgydat += ydattype try: make_legd(axis, offs=offslegd, ptch=ptch, line=line) except: print('Legend failed when') print('strgstat') print(strgstat) print('strgmodl') print(strgmodl) print('strgydat') print(strgydat) raise Exception('') plt.tight_layout() if typehist == 'histcorrreca': path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, 'histcorrreca' + strgydat[4:], nameinte=nameinte) else: path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgydat, nameinte=nameinte) savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_scatassc(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, q, l, strgfeat, plotdiff=False): if plotdiff: figrsize = (gdat.plotsize, 0.7 * gdat.plotsize) else: figrsize = (gdat.plotsize, gdat.plotsize) figr, axis = plt.subplots(1, 1, figsize=figrsize) # prepare data to be plotted xdat = np.copy(getattr(gdat.refr, strgfeat)[q][0, :]) xerr = tdpy.retr_errrvarb(getattr(gdat.refr, strgfeat)[q]) ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgfeat + 'asscpop%dpop%d' % (q, l), strgpdfn) yerr = np.zeros((2, ydat.size)) if strgstat == 'pdfn': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgfeat + 'asscpop%dpop%d' % (q, l), strgpdfn, strgmome='errr') if plotdiff: ydat = 100. * (ydat - xdat) / xdat # handle the case when there is a single reference element if yerr.ndim == 1: ydat = np.array([ydat]) yerr = yerr[:, None] # plot all associations if plotdiff: indx = np.where(ydat > -100.)[0] else: indx = np.where(ydat > 0.)[0] if indx.size > 0: axis.errorbar(xdat[indx], ydat[indx], ls='', yerr=yerr[:, indx], xerr=xerr[:, indx], lw=1, marker='o', markersize=5, color='black') # temp -- plot associations inside the comparison area if plotdiff: axis.axhline(0., ls='--', alpha=gdat.alphline, color='black') else: axis.plot(binsplot, binsplot, ls='--', alpha=gdat.alphline, color='black') lablxdat = getattr(gmod.lablpara, strgfeat + 'refr') lablydat = getattr(gmod.lablpara, strgfeat + 'paragenrscalfull') axis.set_xlabel(lablxdat) axis.set_ylabel(lablydat) boollogtxaxi = False boollogtyaxi = False if indx.size > 0 and scal == 'logt': if not plotdiff: axis.set_yscale('log') boollogtyaxi = True axis.set_xscale('log') boollogtaxis = True if plotdiff: limtydat = np.array([-100., 100.]) else: limtydat = np.array([minmplot, maxmplot]) limtxdat = [minmplot, maxmplot] # overplot text if 'etag' in gdat.refr.namepara.elem[q]: for k in range(indx.size): if boollogtxaxi: sizexoff = 0.01 * xdat[indx[k]] else: sizexoff = 0.01 * (limtxdat[1] - limtxdat[0]) if boollogtyaxi: sizeyoff = 0.01 * ydat[indx[k]] else: sizeyoff = 0.01 * (limtydat[1] - limtydat[0]) axis.text(xdat[indx[k]] + sizexoff, ydat[indx[k]] + sizeyoff, gdat.refretag[q][indx[k]], verticalalignment='center', horizontalalignment='center', \ color='red', fontsize=1) axis.set_ylim(limtydat) axis.set_xlim(limtxdat) plt.tight_layout() if plotdiff: strgtype = 'diff' else: strgtype = '' path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, 'scatassc' + strgfeat + '%spop%dpop%d' % (strgtype, q, l), nameinte='assc') savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_scatcntp(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, indxevttplot, indxenerplot=None): gmod = getattr(gdat, strgmodl) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) ydat = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'cntpmodl', strgpdfn) if indxenerplot is None: xdat = gdat.cntpdata[:, :, indxevttplot].flatten() ydat = ydat[:, :, indxevttplot].flatten() nameplot = 'scatcntpevt%d' % (indxevttplot) if strgstat == 'pdfn': indxvarb = [slice(None), slice(None), indxevttplot] else: xdat = gdat.cntpdata[indxenerplot, :, indxevttplot] ydat = ydat[indxenerplot, :, indxevttplot] nameplot = 'scatcntpen%02devt%d' % (indxenerplot, indxevttplot) if strgstat == 'pdfn': indxvarb = [indxenerplot, slice(None), indxevttplot] if strgstat == 'pdfn': yerr = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, 'cntpmodl', strgpdfn, strgmome='errr', indxvarb=indxvarb) colr = gmod.colr if strgstat == 'pdfn': axis.errorbar(xdat, ydat, yerr=yerr, marker='o', ls='', markersize=5, color=gmod.colr, capsize=5) else: axis.plot(xdat, ydat, marker='o', ls='', markersize=5, color=gmod.colr) gdat.limtcntpdata = [gdat.binspara.cntpdata[0], gdat.binspara.cntpdata[-1]] axis.set_xlim(gdat.limtcntpdata) axis.set_ylim(gdat.limtcntpdata) axis.set_ylabel('$k^{modl}$') axis.set_xlabel('$k^{data}$') axis.set_xscale('log') axis.set_yscale('log') plt.tight_layout() path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, nameplot) savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_indxprox(gdat): numbbins = 40 numbfluxprox = len(gdat.indxpixlprox) bins = np.empty((gdat.numbprox, numbbins + 1)) indxpixlproxsize = np.empty((numbfluxprox, gdat.numbpixlfull)) for h in gdat.indxprox: for j in gdat.indxpixlfull: try: indxpixlproxsize[h, j] = gdat.indxpixlprox[h][j].size except: indxpixlproxsize[h, j] = gdat.numbpixlfull bins[h, :] = np.logspace(np.log10(np.amin(indxpixlproxsize[h, :])), np.log10(np.amax(indxpixlproxsize[h, :])), numbbins + 1) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) for h in gdat.indxprox: axis.hist(indxpixlproxsize[h, :], bins=bins[h, :], log=True, label='Flux bin %d' % h, alpha=gdat.alphhist) axis.set_xscale('log') axis.axvline(gdat.numbpixlfull, label='ROI', ls='--') axis.set_xlabel('Number of pixels') axis.set_ylabel("Number of tables") make_legd(axis) plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'init/indxprox.pdf') plt.close() def plot_psfn_type(): devi = np.linspace(0., 5., 100) y = np.zeros((x.size, 5)) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) singgaus = retr_singgaus(devi, 0.25) axis.plot(devi, singgaus, label='Single Gaussian') singking = retr_singking(devi, 0.25, 10.) axis.plot(devi, singking, label='Single King') doubgaus = retr_doubgaus(devi, 0.1, 0.25, 1.) axis.plot(devi, doubgaus, label='Double Gaussian') gausking = retr_gausking(devi, 0.1, 0.25, 1., 10.) axis.plot(devi, gausking, label='Gaussian + King') doubking = retr_doubking(devi, 0.1, 0.25, 10., 1., 5.) axis.plot(devi, doubking, label='Double King') make_legd(axis) axis.set_xscale('log') axis.set_yscale('log') axis.set_ylim([1e-3, None]) def plot_evidtest(): minmgain = -1. maxmgain = 5. minmdevi = 0. maxmdevi = 5. gain = np.linspace(minmgain, maxmgain, 100) devi = np.linspace(minmdevi, maxmdevi, 100) evid = np.log(np.sqrt(1. + np.exp(2. * gain[None, :])) * np.exp(-devi[:, None]**2 / 2. / (1. + 1. / np.exp(2. * gain[None, :])))) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) figr.suptitle('Log-Bayesian Evidence For Lower-Dimension Model', fontsize=18) imag = axis.imshow(evid, extent=[minmgain, maxmgain, minmdevi, maxmdevi], cmap='winter', origin='lower') cset1 = plt.contourf(gain, devi, evid, cmap='winter') axis.set_xlabel('Information gain') axis.set_ylabel('Goodness of fit') plt.colorbar(imag, ax=axis, fraction=0.03) plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'evidtest.pdf') plt.close(figr) def plot_histlgalbgalelemstkd(gdat, strgpdfn, indxpoplplot, strgbins, strgfeat=None): if strgfeat is not None: numbparaplot = gdat.numbbinsplot else: numbparaplot = 1 if strgbins == 'cumu': numbrows = 1 numbcols = 1 else: numbcols = 2 if strgbins == 'full': numbrows = numbparaplot / 2 else: numbrows = 2 histlgalbgalelemstkd = getattr(gdat, strgpdfn + 'histlgalbgalelemstkd') figr, axgr = plt.subplots(numbrows, numbcols, figsize=(numbcols * gdat.plotsize, numbrows * gdat.plotsize), sharex='all', sharey='all') if numbrows == 1: axgr = [axgr] for a, axrw in enumerate(axgr): if numbcols == 1: axrw = [axrw] for b, axis in enumerate(axrw): if strgfeat is not None: h = a * 2 + b if strgbins == 'full': indxlowr = h indxuppr = h + 1 elif strgbins == 'cumu': indxlowr = 0 indxuppr = numbparaplot else: if h < 3: indxlowr = 2 * h indxuppr = 2 * (h + 1) else: indxlowr = 2 * h indxuppr = numbparaplot temp = np.sum(histlgalbgalelemstkd[indxpoplplot][:, :, indxlowr:indxuppr], 2).T else: temp = np.sum(np.sum(histlgalbgalelemstkd[indxpoplplot], 2), 2).T if np.where(temp > 0.)[0].size > 0: imag = axis.imshow(temp, interpolation='nearest', origin='lower', cmap='BuPu', \ extent=gdat.exttrofi, norm=mpl.colors.LogNorm(vmin=0.5, vmax=None)) else: imag = axis.imshow(temp, interpolation='nearest', origin='lower', cmap='BuPu', extent=gdat.exttrofi) if strgfeat is not None: bins = getattr(gdat.binspara, strgfeat) # superimpose reference elements for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue # temp -- backcomp reframpl = getattr(gdat.refr, gdat.refr.nameparagenrelemampl[q]) if strgfeat in gdat.refr.namepara.elem[q]: refrfeat = getattr(gdat.refr, strgfeat)[q] if len(refrfeat) > 0: indxelem = np.where((bins[indxlowr] < refrfeat[0, :]) & (refrfeat[0, :] < bins[indxuppr]))[0] else: indxelem = np.array([]) else: indxelem = np.arange(gdat.refr.numbelem[q]) # temp -- backcomp try: mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl[q][0, indxelem], gdat.refr.nameparagenrelemampl[q]) except: mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl[q][0, indxelem], gdat.refr.nameparagenrelemampl[q]) if indxelem.size > 0: axis.scatter(gdat.anglfact * gdat.refr.dictelem[q]['lgal'][0, indxelem], gdat.anglfact * gdat.refr.dictelem[q]['bgal'][0, indxelem], \ s=mrkrsize, alpha=gdat.alphelem, marker=gdat.refrlistmrkrhits[q], lw=2, color=gdat.refr.colrelem[q]) if a == numbrows - 1: axis.set_xlabel(gdat.labllgaltotl) else: axis.set_xticklabels([]) if b == 0: axis.set_ylabel(gdat.lablbgaltotl) else: axis.set_yticklabels([]) draw_frambndr(gdat, axis) if strgbins != 'cumu': titl = tdpy.mexp(bins[indxlowr]) + ' < $%s$ < ' % lablfeat + tdpy.mexp(bins[indxuppr]) axis.set_title(titl) if strgfeat is not None: lablfeattotl = getattr(gmod.lablpara, strgfeat + 'totl') plt.figtext(0.5, 0.95, '%s' % lablfeattotl, ha='center', va='center') axiscomm = figr.add_axes([0.87, 0.2, 0.02, 0.6]) cbar = figr.colorbar(imag, cax=axiscomm) plt.subplots_adjust() #plt.subplots_adjust(left=0.18, top=.9, right=0.82, bottom=0.15, hspace=0.08, wspace=0.08) if strgbins == 'cumu': strgtemp = '' else: strgtemp = strgfeat path = getattr(gdat, 'path' + strgpdfn + 'finl') + 'histlgalbgalelemstkd%s%spop%d' % (strgbins, strgtemp, indxpoplplot) + '.pdf' figr.savefig(path) plt.close(figr) def plot_king(gdat): angl = rad2deg(gdat.binspara.angl) figr, axgr = plt.subplots(1, 2, figsize=(2 * gdat.plotsize, gdat.plotsize)) figr.suptitle('King Function', fontsize=20) for k, axis in enumerate(axgr): if k == 0: sigmlist = [0.25] gammlist = [1.01, 2.5, 10.] else: sigmlist = [0.1, 0.25, 1.] gammlist = [2.] for sigm in sigmlist: for gamm in gammlist: axis.plot(angl, retr_singking(angl, sigm, gamm), label=r'$\sigma = %.4g, \gamma = %.3g$' % (sigm, gamm)) make_legd(axis) axis.set_yscale('log') axis.set_xlabel(gdat.labltotlpara.gang) axis.set_xlabel(r'$\mathcal{K}$') plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'king.pdf') plt.close(figr) def plot_intr(gdat): if gdat.typeverb > 0: print('Making PCAT introductory plots...') #plot_grap(plottype='meta', typeverb=1) plot_grap(plottype='lght0000', typeverb=1) #plot_grap(plottype='lght0001', typeverb=1) #plot_grap(plottype='lght0002', typeverb=1) #plot_grap(plottype='lght0003', typeverb=1) #plot_grap(plottype='lens0000', typeverb=1) plot_grap(plottype='lens0001', typeverb=1) with plt.xkcd(): from matplotlib import patheffects mpl.rcParams['path.effects'] = [patheffects.withStroke(linewidth=0)] figr, axis = plt.subplots(figsize=(2 * gdat.plotsize, gdat.plotsize)) catl = np.arange(80) probcatl = pss.pmf(catl, 30.) + 0.5 * pss.pmf(catl, 60.) axis.plot(catl, probcatl) axis.set_xticks([10, 30, 60]) axis.set_xticklabels(["Crackpot's Catalog", "Best-fit catalog", "Not-so-best-fit catalog"]) axis.set_yticks([]) text = axis.set_title("Exploring the catalog space with Probabilistic cataloging") text.set_position([.5, 1.05]) axis.set_xlabel('Catalog index') axis.set_ylabel("Probability") axis.tick_params(axis='x', colors='#B6E954') axis.tick_params(axis='y', colors='#B6E954') axis.spines['bottom'].set_color('#B6E954') axis.spines['top'].set_color('#B6E954') axis.spines['right'].set_color('#B6E954') axis.spines['left'].set_color('#B6E954') axis.yaxis.label.set_color('#B6E954') axis.xaxis.label.set_color('#B6E954') axis.title.set_color('#B6E954') axis.set_axis_bgcolor('black') figr.set_facecolor('black') plt.tight_layout() figr.savefig(gdat.pathimag + 'talkintr.pdf', facecolor=figr.get_facecolor()) plt.close() def plot_psfn(gdat, gdatmodi, strgstat, strgmodl): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) for i in gdat.indxener: for m in gdat.indxevtt: for k in range(gdat.numbprox + 1): if k == 0 or k == gdat.numbprox: alph = 1. colr = 'b' if k == 0: labl = 'Dimmest PS' else: labl = 'Brightest PS' else: alph = 0.2 labl = None colr = 'black' axis.plot(gdat.binspara.angl * gdat.anglfact, gdat.binspara.prox[k] * gmodstat.psfn[i, :, m], label=labl, color=colr, alpha=alph) axis.set_xlim([np.amin(gdat.binspara.angl) * gdat.anglfact, np.amax(gdat.binspara.angl) * gdat.anglfact]) if k > 0: axis.axvline(gdat.anglfact * gdat.maxmangleval[k-1], ls='--', alpha=alph, color=colr) axis.set_yscale('log') axis.set_xlabel(gdat.labltotlpara.gang) axis.set_ylabel(gdat.lablsbrttotl) limt = gdat.specfraceval * np.amax(gdat.binspara.prox[0] * gmodstat.psfn[i, :, m]) if limt != 0.: axis.axhline(limt, color='red', ls=':', label='Flux floor') make_legd(axis) plt.tight_layout() name = 'psfn' if gdat.numbener > 1: name += 'en%02d' % i if gdat.numbevtt > 1: name += 'evt%d' % m figr.savefig(gdat.pathinit + name + '.pdf') plt.close(figr) def plot_mosa(gdat, strgpdfn): # empty global object gdatmodi = tdpy.gdatstrt() listparagenrscalfull = getattr(gdat, 'list' + strgpdfn + 'paragenrscalfull') listparagenrunitfull = getattr(gdat, 'list' + strgpdfn + 'paragenrunitfull') numbrows = 3 numbcols = 2 numbsampmosa = numbrows * numbcols if numbsampmosa <= gdat.numbsamptotl: indxsampmosa = np.random.choice(gdat.indxsamptotl, size=numbsampmosa, replace=False) for l in gmod.indxpopl: for i in gdat.indxener: for m in gdat.indxevttplot: figr, axgr = plt.subplots(numbrows, numbcols, figsize=(numbcols * gdat.plotsize, numbrows * gdat.plotsize)) for a, axrw in enumerate(axgr): for b, axis in enumerate(axrw): n = indxsampmosa[numbcols*a+b] gdatmodi.this.paragenrscalfull = listparagenrscalfull[n, :].flatten() gdatmodi.this.paragenrunitfull = listparagenrunitfull[n, :].flatten() if gmod.numbparaelem > 0: gdatmodi.this.indxelemfull = getattr(gdat, 'list' + strgpdfn + 'indxelemfull')[n] proc_samp(gdat, gdatmodi, 'this', 'fitt') if a == numbrows - 1: axis.set_xlabel(gdat.labllgaltotl) else: axis.set_xticklabels([]) if b == 0: axis.set_ylabel(gdat.lablbgaltotl) else: axis.set_yticklabels([]) imag = retr_imag(gdat, axis, gdat.cntpdata, '', 'fitt', 'cntpdata', i, m) supr_fram(gdat, gdatmodi, 'this', 'fitt', axis, l) if gdat.boolbinsener: plt.figtext(0.5, 0.93, gdat.strgener[i], ha='center', va='center') axiscomm = figr.add_axes([0.92, 0.1, 0.02, 0.8]) cbar = figr.colorbar(imag, cax=axiscomm) cbar.set_ticks(gdat.valutickmajrpara.cntpdata) cbar.set_ticklabels(gdat.labltickmajrpara.cntpdata) plt.subplots_adjust() #plt.subplots_adjust(left=0.1, top=.91, hspace=0.03, wspace=0.1, bottom=0.09) if l == 1: strg = '' else: strg = 'pop%d' % l pathfinl = getattr(gdat, 'path' + strgpdfn + 'finl') if m is None: path = pathfinl + 'mosa' + strg + 'en%02dA.pdf' % (gdat.indxenerincl[i]) else: path = pathfinl + 'mosa' + strg + 'en%02devtt%d.pdf' % (gdat.indxenerincl[i], gdat.indxevttincl[m]) figr.savefig(path) plt.close(figr) else: if gdat.typeverb > 0: print('Skipping the mosaic plot...') def plot_grap(plottype, typeverb=0): import networkx as nx figr, axis = plt.subplots(figsize=(6, 6)) grap = nx.DiGraph() if plottype == 'meta': listcolr = ['black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', 'magenta'] if plottype == 'lens0001': listcolr = ['olive', 'olive', 'black', 'magenta', 'magenta', 'magenta', 'magenta', 'magenta', 'olive', 'olive', 'olive', 'olive', 'olive', \ r'black', 'olive', 'black'] if plottype == 'lght0000': listcolr = [r'olive', r'black', r'magenta', r'magenta', 'magenta', r'magenta', r'olive', r'olive', r'black', r'olive', r'olive', r'black', r'olive'] if plottype == 'lght0001': listcolr = ['black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', 'olive', 'olive', 'magenta', 'magenta', 'magenta', 'magenta', 'black'] if plottype == 'lght0002': listcolr = ['black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', 'olive', 'olive', 'olive', 'magenta', \ 'magenta', 'magenta', 'magenta', 'magenta', 'black'] if plottype == 'lght0003': listcolr = ['black', 'black', 'black', 'olive', 'black', 'olive', 'olive', 'black', 'olive', \ 'olive', 'olive', 'magenta', 'magenta', 'magenta', 'magenta'] if plottype == 'lens0000': listcolr = ['olive', 'black', 'black', 'olive', 'olive', 'olive', 'olive', 'black', 'olive', 'magenta', 'magenta', 'magenta'] if plottype.startswith('meta'): grap.add_edges_from([ \ ('meanelem', 'numbelem'), \ ('modl','data'), \ ('psfp', 'modl'), \ ('feat','modl'), \ ('numbelem','feat'), \ ('amplslop', 'ampl'), \ ]) if plottype.startswith('lght') or plottype.startswith('lens'): grap.add_edges_from([ \ ('meanelem', 'numbelem'), \ ('modl','data'), \ ('psfp', 'modl'), \ ('bacp', 'modl'), \ ('lgal','modl'), \ ('bgal','modl'), \ ('numbelem','lgal'), \ ('numbelem','bgal'), \ ]) if plottype.startswith('lght'): grap.add_edges_from([ \ ('amplslop', 'ampl'), \ ('ampl', 'modl'), \ ('numbelem','ampl'), \ ('numbelem', 'sind'), \ ('sind','modl'), \ ]) if plottype.startswith('lens'): grap.add_edges_from([ \ ('lenp', 'modl'), \ ('defsslop', 'defs'), \ ('defs', 'modl'), \ ('numbelem','defs'), \ ]) if plottype == 'lens0001': grap.add_edges_from([ \ ('asca', 'modl'), \ ('numbelem','asca'), \ ('acut', 'modl'), \ ('numbelem','acut'), \ ]) if plottype == 'lght0001' or plottype == 'lght0002': grap.add_edges_from([ \ ('sinddistmean', 'sind'), \ ]) if plottype == 'lght0002': grap.add_edges_from([ \ ('numbelem', 'expc'), \ ('expc', 'modl'), \ ]) if plottype == 'lght0003': grap.add_edges_from([ \ ('spatdistcons', 'lgal'), \ ('spatdistcons', 'bgal'), \ ]) labl = {} if plottype.startswith('lens'): nameelem = r'\rm{sub}' else: nameelem = r'\rm{pts}' if plottype.startswith('lght') and (plottype == 'lght0001' or plottype == 'lght0002'): labl['numbelem'] = r'$\vec{N}_{%s}$' % nameelem labl['meanelem'] = r'$\vec{\mu}_{%s}$' % nameelem else: labl['numbelem'] = '$N_{%s}$' % nameelem labl['meanelem'] = r'$\mu_{%s}$' % nameelem if plottype.startswith('lght'): if plottype == 'lght0000' or plottype == 'lght0003': labl['amplslop'] = r'$\alpha$' else: labl['amplslop'] = r'$\vec{\alpha}$' if plottype.startswith('lens'): labl['defsslop'] = r'$\beta$' if plottype == 'lght0001' or plottype == 'lght0002': labl['sinddistmean'] = r'$\vec{\beta}$' if plottype == 'lght0003': labl['spatdistcons'] = r'$\gamma$' if plottype.startswith('lens'): labl['lenp'] = r'$\vec{\chi}$' labl['psfp'] = r'$\vec{\eta}$' labl['bacp'] = r'$\vec{A}$' labl['lgal'] = r'$\vec{\theta_1}$' labl['bgal'] = r'$\vec{\theta_2}$' if plottype.startswith('meta'): labl['feat'] = r'$\vec{\xi}$' else: if plottype.startswith('lght'): labl['sind'] = r'$\vec{s}$' labl['ampl'] = r'$\vec{f}$' else: labl['defs'] = r'$\vec{\alpha_{\rm{s}}}$' if plottype == 'lens0001': labl['asca'] = r'$\vec{\theta_{\rm{s}}}$' labl['acut'] = r'$\vec{\theta_{\rm{c}}}$' if plottype == 'lght0002': labl['expc'] = r'$\vec{E_{\rm{c}}}$' labl['modl'] = r'$M_D$' labl['data'] = r'$D$' posi = nx.circular_layout(grap) posi['sinddistmean'] = np.array([0.4, 0.15]) if plottype == 'lght0003': posi['spatdistcons'] = np.array([-0.2, 0.15]) if plottype.startswith('lght'): posi['numbelem'] = np.array([0., 0.075]) posi['meanelem'] = np.array([0., 0.15]) posi['amplslop'] = np.array([0.2, 0.15]) if plottype.startswith('lens'): posi['numbelem'] = np.array([-0.1, 0.075]) posi['meanelem'] = np.array([-0.1, 0.15]) posi['defsslop'] = np.array([0.1, 0.15]) if plottype.startswith('lght'): if plottype == 'lght0002': posi['psfp'] = np.array([0.7, -0.0]) posi['bacp'] = np.array([0.9, -0.0]) else: posi['psfp'] = np.array([0.5, -0.0]) posi['bacp'] = np.array([0.7, -0.0]) if plottype == 'lens0000': posi['psfp'] = np.array([0.3, -0.0]) posi['bacp'] = np.array([0.5, -0.0]) posi['lenp'] = np.array([0.7, -0.0]) if plottype == 'lens0001': posi['psfp'] = np.array([0.7, -0.0]) posi['bacp'] = np.array([0.9, -0.0]) posi['lenp'] = np.array([1.1, -0.0]) posi['lgal'] = np.array([-0.3, -0.0]) posi['bgal'] = np.array([-0.1, -0.0]) if plottype.startswith('lght'): posi['ampl'] = np.array([0.1, -0.0]) posi['sind'] = np.array([0.3, -0.0]) if plottype == 'lght0002': posi['expc'] = np.array([0.5, -0.0]) if plottype.startswith('lens'): posi['defs'] = np.array([0.1, -0.0]) if plottype == 'lens0001': posi['asca'] = np.array([0.3, -0.0]) posi['acut'] = np.array([0.5, -0.0]) posi['modl'] = np.array([0., -0.075]) posi['data'] = np.array([0., -0.15]) if typeverb > 0: numb = max(len(grap.edges()), len(listcolr)) for k in range(numb): try: print('%15s %15s %15s' % (grap.edges()[k][0], grap.edges()[k][1], listcolr[k])) except: print('unequal') size = 1000 nx.draw(grap, posi, labels=labl, ax=axis, edgelist=[], nodelist=[]) nx.draw_networkx_edges(grap, posi, ax=axis, labels=labl, edge_color=listcolr) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['modl', 'data'], node_color='grey', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['numbelem'], node_color='b', node_size=size) if plottype.startswith('lght'): nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['meanelem', 'amplslop'], node_color='r', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lgal', 'bgal', 'ampl', 'sind'], node_color='g', node_size=size) if plottype == 'lght0001' or plottype == 'lght0002': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['sinddistmean'], node_color='r', node_size=size) if plottype == 'lght0002': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['expc'], node_color='g', node_size=size) if plottype == 'lght0003': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['spatdistcons'], node_color='r', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['psfp', 'bacp'], node_color='y', node_size=size) if plottype.startswith('lens'): nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['meanelem', 'defsslop'], node_color='r', node_size=size) nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lenp'], node_color='y', node_size=size) if plottype == 'lens0000': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lgal', 'bgal', 'defs'], node_color='g', node_size=size) if plottype == 'lens0001': nx.draw_networkx_nodes(grap, posi, ax=axis, labels=labl, nodelist=['lgal', 'bgal', 'defs', 'asca', 'acut'], node_color='g', node_size=size) pathplot = pathpcat + '/imag/' plt.tight_layout() figr.savefig(pathplot + 'grap%s.pdf' % plottype) plt.close(figr) def plot_3fgl_thrs(gdat): path = pathpcat + '/detthresh_P7v15source_4years_PL22.fits' fluxthrs = astropy.io.fits.getdata(path, 0) bgalfgl3 = np.linspace(-90., 90., 481) lgalfgl3 = np.linspace(-180., 180., 960) bgalexpo = np.linspace(-90., 90., 400) lgalexpo = np.linspace(-180., 180., 800) #fluxthrs = interp2d(lgalfgl3, bgalfgl3, fluxthrs)(lgalexpo, bgalexpo) fluxthrs = griddata([lgalfgl3, bgalfgl3], fluxthrs, [gdat.lgalheal]) cntsthrs = fluxthrs * gdat.expo jbgal = np.where(abs(bgalexpo) < 10.)[0] jlgal = np.where(abs(lgalexpo) < 10.)[0] extent = [-10, 10, -10, 10] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.set_xlabel(gdat.labllgaltotl) axis.set_ylabel(gdat.lablbgaltotl) imag = plt.imshow(fluxthrs[np.amin(jbgal):np.amax(jbgal)+1, np.amin(jlghprofi):np.amax(jlghprofi)+1], origin='lower', cmap='Reds', extent=gdat.exttrofi) plt.colorbar(imag, fraction=0.05) plt.tight_layout() figr.savefig(gdat.pathplotrtag + 'thrs.pdf') plt.close(figr) def plot_init(gdat): print('Making initial plots...') gmod = gdat.fitt # make initial plots if gdat.makeplot: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if (gmod.typeelemspateval[l] == 'locl' and gmod.maxmpara.numbelem[l] > 0) and gdat.numbpixl > 1: plot_indxprox(gdat) for i in gdat.indxener: for m in gdat.indxevtt: if gdat.typedata == 'mock' and gmod.boollens: figr, axis, path = init_figr(gdat, None, 'post', 'cntpmodlraww', 'this', 'true', i, m, -1) imag = retr_imag(gdat, axis, gmod.cntpmodlraww, 'this', 'true', 'cntpdata', i, m, booltdim=True) make_cbar(gdat, axis, imag, 0, tick=gdat.valutickmajrpara.cntpdata, labltotl=gdat.lablcntpdata) plt.tight_layout() figr.savefig(path) plt.close(figr) if gdat.boolcorrexpo: gdat.lablnumbpixl = r'$N_{\rm{pix}}$' gdat.limtexpo = [gdat.minmpara.expo, gdat.maxmpara.expo] if gdat.boolbinsener: path = gdat.pathinit + 'expototlmean.pdf' tdpy.plot_gene(path, gdat.meanpara.ener, gdat.expototlmean, scalxdat='logt', scalydat='logt', lablxdat=gdat.lablenertotl, \ lablydat=gdat.lablexpototl, limtydat=gdat.limtexpo) for m in gdat.indxevtt: for i in gdat.indxener: figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.hist(gdat.expo[i, :, m], gdat.binspara.expo) axis.set_xlabel(gdat.labltotlpara.expo) axis.set_ylabel(gdat.labltotlpara.numbpixl) axis.set_xscale('log') axis.set_yscale('log') plt.tight_layout() name = 'histexpo' if gdat.numbener > 1: name += 'en%02d' % i if gdat.numbevtt > 1: name += 'evt%d' % m path = gdat.pathinit + name + '.pdf' figr.savefig(path) plt.close(figr) if gdat.numbpixl > 1: for i in gdat.indxener: for m in gdat.indxevtt: figr, axis, path = init_figr(gdat, None, 'post', 'expo', '', '', i, m, -1) imag = retr_imag(gdat, axis, gdat.expo, None, None, 'expo', i, m) make_cbar(gdat, axis, imag, i) plt.tight_layout() figr.savefig(path) plt.close(figr) def plot_defl(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, \ strgvarb='defl', nameparagenrelem='', indxdefl=None, indxpoplplot=-1, multfact=1., indxenerplot=None, indxevttplot=None): if indxdefl is not None: strgvarb += 'sing' strgvarb = strgvarb + nameparagenrelem defl = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn) defl *= multfact if indxenerplot is not None: defl = defl[indxenerplot, :, indxevttplot, ...] if indxdefl is not None: defl = defl[..., indxdefl] strgvarb += '%04d' % indxdefl defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) figr, axis, path = init_figr(gdat, gdatmodi, strgpdfn, strgvarb, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot) make_legdmaps(gdat, strgstat, strgmodl, axis) draw_frambndr(gdat, axis) defllgal = defl[:, :, 0] deflbgal = defl[:, :, 1] fact = 4 ptch = axis.quiver(gdat.anglfact * gdat.lgalgridcart[::fact, ::fact], gdat.anglfact * gdat.bgalgridcart[::fact, ::fact], \ gdat.anglfact * defllgal[::fact, ::fact], gdat.anglfact * deflbgal[::fact, ::fact], scale_units='xy', angles='xy', scale=1) supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis) plt.subplots_adjust(left=0.2, bottom=0.15, top=0.75, right=0.85) plt.subplots_adjust() savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def plot_genemaps(gdat, gdatmodi, strgstat, strgmodl, strgpdfn, strgvarb, indxenerplot=None, indxevttplot=-1, strgcbar=None, \ booltdim=False, indxpoplplot=-1, strgmome='pmea'): gmod = getattr(gdat, strgmodl) if strgcbar is None: strgcbar = strgvarb # construct the string for the map if strgvarb == 'cntpdata': strgplot = strgvarb else: if strgstat == 'post': strgtemp = strgmome + strgpdfn else: strgtemp = '' strgplot = strgtemp + strgvarb figr, axis, path = init_figr(gdat, gdatmodi, strgpdfn, strgplot, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot) maps = retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn) imag = retr_imag(gdat, axis, maps, strgstat, strgmodl, strgcbar, indxenerplot, indxevttplot, booltdim=booltdim) make_cbar(gdat, axis, imag, strgvarb) make_legdmaps(gdat, strgstat, strgmodl, axis) if gdat.boolsuprelem: supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis, indxpoplplot) print('strgvarb') print(strgvarb) plt.tight_layout() savefigr(gdat, gdatmodi, figr, path) plt.close(figr) def init( \ # user interaction ## type of verbosity typeverb=1, \ ## path in which PCAT data lives pathpcat=None, \ # miscelleneaous ## type of PDF to sample from strgpdfn='post', \ # data ## type of data ### 'mock': simulated data ### 'inpt': input data ### 'real': real data retrieved from databases typedata=None, \ ## type of experiment typeexpr='user', \ # diagnostics ## Boolean to enter the diagnostic mode booldiagmode=True, \ ## squeeze exposure to check the low sample limit boolsqzeexpo=False, \ ### explode exposure to check the large sample limit boolexplexpo=False, \ ## squeeze proposal scale to check the acceptance ratio boolsqzeprop=False, \ ## explode proposal scale to check the acceptance ratio boolexplprop=False, \ ## Boolean to thin down the data boolthindata=False, \ ## factor by which to thin down the data factthin=None, \ # reference catalog ## Boolean to use the reference catalogs to associate boolasscrefr=None, \ # sampling ## Boolean flag to make burn-in tempered boolburntmpr=False, \ ## number of sweeps numbswep=100000, \ ## number of samples numbsamp=None, \ ## number of initial sweeps to be burned numbburn=None, \ # output ## Boolean to make condensed catalog boolcondcatl=True, \ refrlabltotl=None, \ refrlablpopl=None, \ fittlablpopl=None, \ # numpy RNG seed seedtype=0, \ ## Boolean flag to re-seed each chain separately boolseedchan=True, \ ## optional deterministic seed for sampling element parameters seedelem=None, \ indxevttincl=None, \ indxenerincl=None, \ listmask=None, \ # number of samples for Bootstrap numbsampboot=None, \ listnamefeatsele=None, \ # type of mask for the exposure map typemaskexpo='ignr', \ # type of exposure ## 'cons': constant ## 'file': provided in a file typeexpo='cons', \ # maximum spatial distance out to which element kernel will be evaluated maxmangleval=None, \ # initial state initpsfprefr=False, \ initpsfp=None, \ # evaluate the likelihood inside circles around elements typeelemspateval=None, \ namestattrue=None, \ # plotting ## Boolean flag to make the frame plots short boolshrtfram=True, \ boolrefeforc=False, \ indxrefrforc=None, \ ## Boolean to overplot the elements boolsuprelem=True, \ ## Boolean to plot the correlation between elements boolplotelemcorr=True, \ ## Boolean flag to vary the PSF boolmodipsfn=False, \ # name of the configuration strgcnfg=None, \ # model ## number of spatial dimensions numbspatdims=2, \ # hyperparameters fittampldisttype=None, \ # metamodel settings ## PSF evaluation type ## kernel evaluation type kernevaltype='ulip', \ # photometric model ## base parameters ### Sersic type typesers='vauc', \ ## transdimensional parameters (elements) ### vary projected scale radius variasca=True, \ ### vary projected cutoff radius variacut=True, \ # prior penalpridiff=False, \ priotype='logt', \ priofactdoff=None, \ # initialization ## initialization type inittype=None, \ loadvaripara=False, \ # save the state of the MCMC savestat=False, \ namesavestat=None, \ # recover the state from a previous run namerecostat=None, \ forcsavestat=False, \ # proposals ## Boolean flag to turn on proposals on element parameters boolpropcomp=True, \ boolpropcova=True, \ propwithsing=True, \ # type of covariance estimation typeopti='none', \ # modes of operation ## only generate and plot mock data boolmockonly=False, \ ## perform an additional run sampling from the prior checprio=False, \ strgexprsbrt=None, \ anglassc=None, \ nameexpr=None, \ # likelihood dependent ## exposure map expo=None, \ lgalprio=None, \ bgalprio=None, \ minmcntpdata=None, \ strgexpo=None, \ # number of processors numbproc=None, \ # likelihood function liketype='pois', \ # user-defined likelihood function retr_llik=None, \ anlytype=None, \ lgalcntr=0., \ bgalcntr=0., \ maxmangl=None, \ # spatial grid ## type of spatial pixelization typepixl=None, \ ## Boolean flag to force Cartesian spatial grid boolforccart=False, \ # number of pixels on a side in the Cartesian grid numbsidecart=None, \ # Nside in Healpix numbsideheal=256, \ allwfixdtrue=True, \ asscmetrtype='dist', \ # plotting numbswepplot=None, \ # Boolean flagt to make the frame plots only for the central energy and PSF bin boolmakeframcent=True, \ makeplot=True, \ makeplotinit=True, \ makeplotfram=True, \ makeplotfinlprio=True, \ makeplotfinlpost=True, \ makeplotintr=False, \ scalmaps='asnh', \ makeanim=True, \ strgenerfull=None, \ strgexprname=None, \ strganglunit=None, \ strganglunittext=None, \ anglfact=None, \ limtydathistfeat=None, \ # model # emission ## elements ## PSF specfraceval=None, \ numbangl=1000, \ binsangltype='logt', \ numbsidepntsprob=100, \ listprefsbrtsbrt=None, \ listprefsbrtener=None, \ listprefsbrtlabltotl=None, \ lablgangunit=None, \ labllgal=None, \ lablbgal=None, \ lablfluxunit=None, \ lablflux=None, \ strgenerunit=None, \ indxenerfull=None, \ indxevttfull=None, \ binsenerfull=None, \ asymfluxprop=False, \ ## Boolean flag to make the PSF model informed boolpriopsfninfo=False, \ ## spectral # lensing fittrelnpowr=0., \ # temp margfactmodl=1., \ maxmgangdata=None, \ # proposals stdvprophypr=0.01, \ stdvproppsfp=0.1, \ stdvpropbacp=0.01, \ stdvproplenp=1e-4, \ stdvlgal=0.001, \ stdvbgal=0.001, \ stdvflux=0.001, \ stdvspep=0.001, \ stdvspmrsind=0.2, \ varistdvlbhl=True, \ rtagmock=None, \ ## transdimensional proposal probabilities probtran=None, \ probspmr=None, \ # when proposing from the covariance, fracproprand should be very small! fracproprand=0., \ # standard deviation of the Gaussian from which the angular splitting will be drawn for splits and merges radispmr=None, \ defa=False, \ **args \ ): # preliminary setup # construct the global object gdat = tdpy.gdatstrt() for attr, valu in locals().items(): if '__' not in attr and attr != 'gdat': setattr(gdat, attr, valu) # copy all provided inputs to the global object for strg, valu in args.items(): setattr(gdat, strg, valu) # PCAT folders if gdat.pathpcat is None: gdat.pathpcat = os.environ["PCAT_DATA_PATH"] + '/' if gdat.pathpcat[-1] != '/': gdat.pathpcat += '/' gdat.pathdata = gdat.pathpcat + 'data/' gdat.pathdataopti = gdat.pathdata + 'opti/' gdat.pathimag = gdat.pathpcat + 'imag/' gdat.pathoutp = gdat.pathdata + 'outp/' gdat.pathinpt = gdat.pathdata + 'inpt/' # list of parameter groups gdat.liststrggroppara = ['genrbase', 'genrelem', 'derifixd', 'derielem', 'genrelemextd', 'derielemextd', 'kind', 'full'] # list of parameter features to be turned into lists gdat.listfeatparalist = ['minm', 'maxm', 'fact', 'scal', 'lablroot', 'lablunit', 'stdv', 'labltotl', 'name'] # list of parameter features gdat.listfeatpara = gdat.listfeatparalist + ['limt', 'bins', 'delt', 'numb', 'indx', 'cmap', 'mean', 'tick', 'numbbins', 'valutickmajr', 'labltickmajr', 'valutickminr', 'labltickminr'] # run tag gdat.strgswep = '%d' % (gdat.numbswep) ## time stamp gdat.strgtimestmp = tdpy.retr_strgtimestmp() ## name of the configuration function if gdat.strgcnfg is None: gdat.strgcnfg = inspect.stack()[1][3] gdat.strgvers = 'v0.3' if gdat.typeverb > 0: print('PCAT %s started at %s.' % (gdat.strgvers, gdat.strgtimestmp)) print('Configuration %s' % gdat.strgcnfg) # string describing the number of sweeps gdat.strgnumbswep = '%d' % gdat.numbswep # output paths gdat.rtag = retr_rtag(gdat.strgcnfg, gdat.strgnumbswep) gdat.pathoutprtag = retr_pathoutprtag(gdat.pathpcat, gdat.rtag) # physical constants gdat.prsccmtr = 3.086e18 gdat.ergsgevv = 624.151 gdat.factnewtlght = 2.09e13 # Msun / pc gdat.listnamepdir = ['forw', 'reve'] gdat.listlablpdir = ['f', 'r'] # number of standard deviations around mean of Gaussian-distributed variables gdat.numbstdvgaus = 4. # start the timer gdat.timerealtotl = time.time() gdat.timeproctotl = time.clock() # list of parameter types ## 'genr': generative parameters ## 'deri': derived parameters gdat.liststrgtypepara = ['genr', 'deri'] booltemp = chec_statfile(gdat.pathpcat, gdat.rtag, 'gdatmodi') if booltemp: print('gdatmodi already exists. Skipping...') else: # create output folder for the run os.system('mkdir -p %s' % gdat.pathoutprtag) # write the list of arguments to file fram = inspect.currentframe() listargs, temp, temp, listargsvals = inspect.getargvalues(fram) fileargs = open(gdat.pathoutprtag + 'cmndargs.txt', 'w') fileargs.write('PCAT call arguments\n') for args in listargs: fileargs.write('%s = %s\n' % (args, listargsvals[args])) fileargs.close() # write the list of arguments to file fileargs = open(gdat.pathoutprtag + 'args.txt', 'w') fileargs.write('PCAT call arguments\n') for args in listargs: fileargs.write('%20s %s\n' % (args, listargsvals[args])) fileargs.close() # defaults if gdat.typedata is None: if gdat.strgexprsbrt is None: gdat.typedata = 'mock' else: gdat.typedata = 'inpt' print('gdat.typedata') print(gdat.typedata) # list of models gdat.liststrgmodl = [] if gdat.typedata == 'mock': gdat.liststrgmodl += ['true'] gdat.liststrgmodl += ['fitt'] gdat.refr = tdpy.gdatstrt() gdat.listgmod = [] for strgmodl in gdat.liststrgmodl + ['refr']: setattr(gdat, strgmodl, tdpy.gdatstrt()) gmod = getattr(gdat, strgmodl) for strgstat in ['this', 'next']: setattr(gmod, strgstat, tdpy.gdatstrt()) for strgfeatpara in gdat.listfeatpara: setattr(gmod, strgfeatpara + 'para', tdpy.gdatstrt()) gdat.listgmod += [gmod] for strgfeatpara in gdat.listfeatpara: setattr(gdat, strgfeatpara + 'para', tdpy.gdatstrt()) ## number of processes gdat.strgproc = os.uname()[1] if gdat.numbproc is None: if gdat.strgproc == 'fink1.rc.fas.harvard.edu' or gdat.strgproc == 'fink2.rc.fas.harvard.edu' or gdat.strgproc == 'wise': gdat.numbproc = 1 else: gdat.numbproc = 1 if gdat.typedata == 'inpt' and gdat.rtagmock is not None: print('Will use %s to account for selection effects.' % gdat.rtagmock) gdat.pathoutprtagmock = retr_pathoutprtag(gdat.pathpcat, gdat.rtagmock) ## number of burned sweeps if gdat.numbburn is None: print('gdat.numbswep') print(gdat.numbswep) gdat.numbburn = int(gdat.numbswep / 10) print('gdat.numbburn') print(gdat.numbburn) # burn-in gdat.factburntmpr = 0.75 gdat.numbburntmpr = gdat.factburntmpr * gdat.numbburn if (gdat.boolsqzeprop or gdat.boolexplprop) and gdat.typeopti == 'hess': raise Exception('') print('gdat.boolpriopsfninfo') print(gdat.boolpriopsfninfo) print('gdat.typeexpr') print(gdat.typeexpr) ## factor by which to thin the sweeps to get samples if gdat.factthin is not None and gdat.numbsamp is not None: raise Exception('Both factthin and numbparagenrfull cannot be provided at the same time.') elif gdat.factthin is None and gdat.numbsamp is None: gdat.factthin = int(np.ceil(1e-3 * (gdat.numbswep - gdat.numbburn))) gdat.numbsamp = int((gdat.numbswep - gdat.numbburn) / gdat.factthin) elif gdat.numbsamp is not None: gdat.factthin = int((gdat.numbswep - gdat.numbburn) / gdat.numbsamp) elif gdat.factthin is not None: gdat.numbsamp = int((gdat.numbswep - gdat.numbburn) / gdat.factthin) if not isinstance(gdat.numbsamp, int) or not isinstance(gdat.factthin, int) or \ not isinstance(gdat.numbburn, int) or not isinstance(gdat.numbswep, int): print('gdat.numbsamp') print(gdat.numbsamp) print('gdat.factthin') print(gdat.factthin) print('gdat.numbburn') print(gdat.numbburn) print('gdat.numbswep') print(gdat.numbswep) raise Exception('Number of samples is not an integer.') # samples to be saved gdat.indxsamp = np.arange(gdat.numbsamp) # samples to be saved from all chains gdat.numbsamptotl = gdat.numbsamp * gdat.numbproc gdat.indxsamptotl = np.arange(gdat.numbsamptotl) gdat.numbsweptotl = gdat.numbswep * gdat.numbproc if gdat.typeverb > 0: print('%d samples will be taken, discarding the first %d. The chain will be thinned by a factor of %d.' % \ (gdat.numbswep, gdat.numbburn, gdat.factthin)) print('The resulting chain will contain %d samples per chain and %d samples in total.' % (gdat.numbsamp, gdat.numbsamptotl)) if gdat.anlytype is None: if gdat.typeexpr == 'chan': gdat.anlytype = 'home' elif gdat.typeexpr == 'ferm': gdat.anlytype = 'rec8pnts' else: gdat.anlytype = 'nomi' if gdat.priofactdoff is None: gdat.priofactdoff = 1. # experiment defaults if gdat.typeexpr == 'ferm': gdat.lablenerunit = 'GeV' if gdat.typeexpr == 'chan': gdat.lablenerunit = 'keV' if gdat.typeexpr == 'gene': gdat.lablenerunit = '' if gdat.typeexpr == 'fire': gdat.lablenerunit = '$\mu$m^{-1}' if gdat.typeexpr == 'ferm': if gdat.anlytype[4:8] == 'pnts': bins = np.logspace(np.log10(0.3), np.log10(10.), 4) if gdat.anlytype[4:8] == 'back': bins = np.logspace(np.log10(0.3), np.log10(300.), 31) if gdat.typeexpr == 'chan': if gdat.anlytype.startswith('home'): bins = np.array([0.5, 0.91, 1.66, 3.02, 5.49, 10.]) if gdat.anlytype.startswith('extr'): bins = np.array([0.5, 2., 8.]) if gdat.anlytype.startswith('spec'): bins = np.logspace(np.log10(0.5), np.log10(10.), 21) if gdat.typeexpr == 'fire': bins = np.logspace(np.log10(1. / 2.5e-6), np.log10(1. / 0.8e-6), 31) if gdat.typeexpr == 'hubb': # temp #bins = np.array([500., 750, 1000.]) bins = np.array([750, 1000.]) if gdat.typeexpr != 'gene': setp_varb(gdat, 'enerfull', bins=bins) setp_varb(gdat, 'numbpixl', lablroot='$N_{pix}$') if gdat.expo is not None: setp_varb(gdat, 'expo', minm=np.amin(gdat.expo), maxm=np.amax(gdat.expo), lablroot='$\epsilon$', cmap='OrRd', scal='logt') # energy band string if gdat.strgenerfull is None: if gdat.typeexpr == 'tess': gdat.strgenerfull = ['T'] if gdat.typeexpr == 'sdss': gdat.strgenerfull = ['z-band', 'i-band', 'r-band', 'g-band', 'u-band'] if gdat.typeexpr == 'hubb': #gdat.strgenerfull = ['F606W', 'F814W'] gdat.strgenerfull = ['F814W'] if gdat.typeexpr == 'ferm' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'fire': gdat.strgenerfull = [] for i in range(len(gdat.binspara.enerfull) - 1): gdat.strgenerfull.append('%.3g %s - %.3g %s' % (gdat.binspara.enerfull[i], gdat.lablenerunit, gdat.binspara.enerfull[i+1], gdat.lablenerunit)) if gdat.typeexpr == 'gene': gdat.strgenerfull = [''] ## PSF class if gdat.indxevttfull is None: if gdat.typeexpr == 'ferm': gdat.indxevttfull = np.arange(2) else: gdat.indxevttfull = np.arange(1) if gdat.indxevttincl is None: if gdat.typeexpr == 'ferm': gdat.indxevttincl = np.array([0, 1]) else: gdat.indxevttincl = np.arange(1) if gdat.indxevttincl is not None: gdat.evttbins = True else: gdat.evttbins = False if gdat.evttbins: gdat.numbevtt = gdat.indxevttincl.size gdat.numbevttfull = gdat.indxevttfull.size else: gdat.numbevtt = 1 gdat.numbevttfull = 1 gdat.indxevttincl = np.array([0]) gdat.indxevtt = np.arange(gdat.numbevtt) # Boolean flag to indicate that the data are binned in energy if gdat.typeexpr == 'gene': gdat.boolbinsener = False else: gdat.boolbinsener = True if gdat.boolbinsener: gdat.numbenerfull = len(gdat.strgenerfull) else: gdat.numbenerfull = 1 gdat.indxenerfull = np.arange(gdat.numbenerfull) if gdat.typepixl is None: if gdat.typeexpr == 'ferm': gdat.typepixl = 'heal' else: gdat.typepixl = 'cart' if gdat.boolbinsener: gdat.meanpara.enerfull = np.sqrt(gdat.binspara.enerfull[1:] * gdat.binspara.enerfull[:-1]) setp_varb(gdat, 'boolmodipsfn', valu=False, strgmodl='fitt') # default values for model types print('Starting to determine the default values for model types using setp_varbvalu()...') if gdat.typeexpr == 'hubb': typeemishost = 'sers' else: typeemishost = 'none' setp_varb(gdat, 'typeemishost', valu=typeemishost) setp_varb(gdat, 'lliktotl', lablroot='$L$') ### background type #### template if gdat.typeexpr == 'ferm': if gdat.anlytype == 'bfun': gdat.ordrexpa = 10 gdat.numbexpasing = gdat.ordrexpa**2 gdat.numbexpa = gdat.numbexpasing * 4 gdat.indxexpa = np.arange(gdat.numbexpa) typeback = ['bfun%04d' % k for k in gdat.indxexpa] else: typeback = [1., 'sbrtfdfmsmthrec8pntsnorm.fits'] if gdat.typeexpr == 'chan': # particle background if gdat.anlytype.startswith('spec'): # temp -- this is fake! sbrtparttemp = np.array([70.04, 70.04, 12.12, 15.98, 10.79, 73.59, 73.59]) binsenerpart = np.logspace(np.log10(0.5), np.log10(10.), 6) meanenerpart = np.sqrt(binsenerpart[:-1] * binsenerpart[1:]) meanenerparttemp = np.concatenate((np.array([0.5]), meanenerpart, np.array([10.]))) typebacktemp = interp(gdat.meanpara.enerfull, meanenerparttemp, sbrtparttemp) if gdat.anlytype.startswith('home') : typebacktemp = 1. #typebacktemp = np.array([70.04, 12.12, 15.98, 10.79, 73.59]) / 70.04 if gdat.anlytype.startswith('extr'): #typebacktemp = 'sbrtchanback' + gdat.anlytype + '.fits' typebacktemp = 1. if gdat.anlytype.startswith('spec'): typeback = [[1e2, 2.], typebacktemp] else: typeback = [1., typebacktemp] if gdat.typeexpr == 'hubb': typeback = [1.] if gdat.typeexpr == 'tess': typeback = [1.] if gdat.typeexpr == 'gene': typeback = [1.] if gdat.typeexpr == 'fire': typeback = [1.] if gdat.typeexpr != 'user': setp_varb(gdat, 'typeback', valu=typeback) if gdat.typeexpr == 'hubb': numbsersfgrd = 1 else: numbsersfgrd = 0 setp_varb(gdat, 'numbsersfgrd', valu=numbsersfgrd) if gdat.typeexpr == 'gene': typeelem = ['clus'] if gdat.typeexpr == 'ferm': typeelem = ['lghtpnts'] if gdat.typeexpr == 'tess': typeelem = ['lghtpnts'] if gdat.typeexpr == 'chan': typeelem = ['lghtpnts'] if gdat.typeexpr == 'hubb': typeelem = ['lghtpnts', 'lens', 'lghtgausbgrd'] if gdat.typeexpr == 'fire': typeelem = ['lghtlineabso'] if gdat.typeexpr == 'user': typeelem = ['user'] setp_varb(gdat, 'typeelem', valu=typeelem) print('gdat.fitt.typeelem') print(gdat.fitt.typeelem) ### PSF model #### angular profile if gdat.typeexpr == 'ferm': typemodlpsfn = 'doubking' if gdat.typeexpr == 'chan': typemodlpsfn = 'singking' if gdat.typeexpr == 'sdss': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'hubb': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'tess': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'gene': typemodlpsfn = 'singgaus' if gdat.typeexpr == 'fire': typemodlpsfn = None if gdat.typeexpr != 'user': setp_varb(gdat, 'typemodlpsfn', valu=typemodlpsfn) #### background names listnameback = ['isot'] if gdat.typeexpr == 'ferm': listnameback.append('fdfm') #if gdat.typeexpr == 'chan': # listnameback.append('part') setp_varb(gdat, 'listnameback', valu=listnameback) if gdat.strgpdfn == 'prio': gdat.lablsampdist = 'Prior' if gdat.strgpdfn == 'post': gdat.lablsampdist = 'Posterior' for strgmodl in gdat.liststrgmodl: # set up the indices of the model setp_indxpara(gdat, 'init', strgmodl=strgmodl) if gdat.numbswepplot is None: gdat.numbswepplot = 50000 gdat.numbplotfram = gdat.numbswep / gdat.numbswepplot #setp_varb(gdat, 'colr', valu='mediumseagreen', strgmodl='refr') setp_varb(gdat, 'colr', valu='b', strgmodl='fitt') if gdat.typedata == 'mock': setp_varb(gdat, 'colr', valu='g', strgmodl='true') #gdat.refr.colr = 'mediumseagreen' #gdat.fitt.colr = 'deepskyblue' gdat.minmmass = 1. gdat.maxmmass = 10. if gdat.checprio: gdat.liststrgpdfn = ['prio', 'post'] else: gdat.liststrgpdfn = ['post'] gdat.lablmass = 'M' gdat.minmmassshel = 1e1 gdat.maxmmassshel = 1e5 gdat.lablmassshel = '$M_r$' gdat.lablcurv = r'\kappa' gdat.lablexpc = r'E_{c}' gmod.scalcurvplot = 'self' gmod.scalexpcplot = 'self' #gdat.minmper0 = 1e-3 #gdat.maxmper0 = 1e1 # #gdat.minmmagf = 10**7.5 #gdat.maxmmagf = 10**16 # temp -- automatize this eventually #gmod.minmper0 = gdat.minmper0 #gmod.minmper0 = gdat.minmper0 #gmod.maxmper0 = gdat.maxmper0 #gmod.maxmper0 = gdat.maxmper0 #gmod.minmmagf = gdat.minmmagf #gmod.minmmagf = gdat.minmmagf #gmod.maxmmagf = gdat.maxmmagf #gmod.maxmmagf = gdat.maxmmagf gdat.fitt.listelemmrkr = ['+', '_', '3'] gdat.true.listmrkrhits = ['x', '|', '4'] gdat.true.listmrkrmiss = ['s', 'o', 'p'] gdat.true.listlablmiss = ['s', 'o', 'p'] # list of scalings gdat.listscaltype = ['self', 'logt', 'atan', 'gaus', 'pois', 'expo'] # number of grids gdat.numbgrid = 1 gdat.indxgrid = np.arange(gdat.numbgrid) if gdat.typepixl == 'heal' and gdat.boolforccart: raise Exception('Cartesian forcing can only used with cart typepixl') gdat.liststrgphas = ['fram', 'finl', 'anim'] gdat.liststrgelemtdimtype = ['bind'] # lensing ## list of strings indicating different methods of calculating the subhalo mass fraction gdat.liststrgcalcmasssubh = ['delt', 'intg'] # input data if gdat.typedata == 'inpt': path = gdat.pathinpt + gdat.strgexprsbrt gdat.sbrtdata = astropy.io.fits.getdata(path) if gdat.typepixl == 'heal' or gdat.typepixl == 'cart' and gdat.boolforccart: if gdat.sbrtdata.ndim != 3: raise Exception('exprsbrtdata should be a 3D numpy np.array if pixelization is HealPix.') else: if gdat.sbrtdata.ndim != 4: raise Exception('exprsbrtdata should be a 4D numpy np.array if pixelization is Cartesian.') if gdat.typepixl == 'cart' and not gdat.boolforccart: gdat.sbrtdata = gdat.sbrtdata.reshape((gdat.sbrtdata.shape[0], -1, gdat.sbrtdata.shape[3])) gdat.numbenerfull = gdat.sbrtdata.shape[0] if gdat.typepixl == 'heal': gdat.numbpixlfull = gdat.sbrtdata.shape[1] elif gdat.boolforccart: gdat.numbpixlfull = gdat.numbsidecart**2 else: gdat.numbpixlfull = gdat.sbrtdata.shape[1] * gdat.sbrtdata.shape[2] gdat.numbevttfull = gdat.sbrtdata.shape[2] if gdat.typepixl == 'heal': # temp gdat.numbsidecart = 100 gdat.numbsidecarthalf = int(gdat.numbsidecart / 2) gdat.numbsideheal = int(np.sqrt(gdat.numbpixlfull / 12)) if gdat.typeexpr == 'hubb': gdat.hubbexpofact = 1.63050e-19 if gdat.strgexpo is None: if gdat.typeexpr == 'ferm': gdat.strgexpo = 'expofermrec8pntsigal0256.fits' if gdat.typeexpo is None: if gdat.typeexpr == 'ferm': gdat.typeexpo = 'file' else: gdat.typeexpo = 'cons' print('strgexpo') print(strgexpo) ## generative model # the factor to convert radians (i.e., internal angular unit of PCAT) to the angular unit that will be used in the output (i.e., plots and tables) if gdat.anglfact is None: if gdat.typeexpr == 'ferm': gdat.anglfact = 180. / np.pi if gdat.typeexpr == 'tess': gdat.anglfact = 60 * 180. / np.pi if gdat.typeexpr == 'sdss' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'hubb': gdat.anglfact = 3600 * 180. / np.pi if gdat.typeexpr == 'sche' or gdat.typeexpr == 'gene': gdat.anglfact = 1. if gdat.numbsidecart is not None and gdat.typepixl == 'cart' and not gdat.boolforccart and isinstance(strgexpo, str): raise Exception('numbsidecart argument should not be provided when strgexpo is a file name and pixelization is Cartesian.') if gdat.typepixl == 'heal' or gdat.typepixl == 'cart' and gdat.boolforccart: if gdat.numbsidecart is None: gdat.numbsidecart = 100 # exposure gdat.boolcorrexpo = gdat.expo is not None if gdat.typeexpo == 'cons': if gdat.typedata == 'mock': if gdat.numbsidecart is None: gdat.numbsidecart = 100 if gdat.typedata == 'mock': if gdat.typepixl == 'heal': gdat.expo = np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gdat.typepixl == 'cart': gdat.expo = np.ones((gdat.numbenerfull, gdat.numbsidecart**2, gdat.numbevttfull)) if gdat.typedata == 'inpt': gdat.expo = np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gdat.typeexpo == 'file': path = gdat.pathinpt + gdat.strgexpo if gdat.typeverb > 0: print('Reading %s...' % path) gdat.expo = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': gdat.expo = gdat.expo.reshape((gdat.expo.shape[0], -1, gdat.expo.shape[-1])) if gdat.numbsidecart is None: # temp -- gdat.numbsidecart takes the value of the region 0 if np.sqrt(gdat.expo.shape[1]) % 1. != 0.: raise Exception('') gdat.numbsidecart = int(np.sqrt(gdat.expo.shape[1])) if gdat.typedata == 'mock': if gdat.typepixl == 'cart': gdat.numbpixlfull = gdat.numbsidecart**2 if gdat.typepixl == 'heal': gdat.numbpixlfull = 12 * gdat.numbsideheal**2 # initialization type if gdat.inittype is None: gdat.inittype = 'rand' if gdat.typeexpr != 'user': # Boolean flag to indicate binning in space gdat.boolbinsspat = gdat.numbpixlfull != 1 print('gdat.boolbinsspat') print(gdat.boolbinsspat) if gdat.boolcorrexpo and np.amin(gdat.expo) == np.amax(gdat.expo) and not isinstance(gdat.strgexpo, float): raise Exception('Bad input exposure map.') if gdat.boolbinsspat: if gdat.typepixl == 'cart' and isinstance(gdat.strgexpo, float) and gdat.typedata == 'inpt': if np.sqrt(gdat.sbrtdata.shape[1]) % 1. != 0.: raise Exception('') gdat.numbsidecart = int(np.sqrt(gdat.sbrtdata.shape[1])) gdat.numbsidecarthalf = int(gdat.numbsidecart / 2) if gdat.typepixl == 'cart': gdat.numbpixlcart = gdat.numbsidecart**2 ### spatial extent of the data if gdat.maxmgangdata is None: if gdat.typeexpr == 'chan': gdat.maxmgangdata = 0.492 / gdat.anglfact * gdat.numbsidecarthalf if gdat.typeexpr == 'ferm': gdat.maxmgangdata = 15. / gdat.anglfact if gdat.typeexpr == 'tess': gdat.maxmgangdata = 20. / gdat.anglfact if gdat.typeexpr == 'hubb': gdat.maxmgangdata = 2. / gdat.anglfact if gdat.typeexpr == 'gene': gdat.maxmgangdata = 1. / gdat.anglfact print('gdat.numbsidecart') print(gdat.numbsidecart) print('gdat.maxmgangdata') print(gdat.maxmgangdata) # pixelization if gdat.typepixl == 'cart': gdat.apix = (2. * gdat.maxmgangdata / gdat.numbsidecart)**2 if gdat.typepixl == 'heal': temp, temp, temp, gdat.apix = tdpy.retr_healgrid(gdat.numbsideheal) gdat.sizepixl = np.sqrt(gdat.apix) # factor by which to multiply the y axis limits of the surface brightness plot if gdat.numbpixlfull == 1: gdat.factylimtbrt = [1e-4, 1e7] else: gdat.factylimtbrt = [1e-4, 1e3] # grid gdat.minmlgaldata = -gdat.maxmgangdata gdat.maxmlgaldata = gdat.maxmgangdata gdat.minmbgaldata = -gdat.maxmgangdata gdat.maxmbgaldata = gdat.maxmgangdata if gdat.typepixl == 'cart' and gdat.boolforccart: if gdat.typedata == 'inpt': sbrtdatatemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtdatatemp[i, :, m] = tdpy.retr_cart(gdat.sbrtdata[i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gdat.sbrtdata = sbrtdatatemp if gdat.boolcorrexpo: expotemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: expotemp[i, :, m] = tdpy.retr_cart(gdat.expo[i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gdat.expo = expotemp gdat.sdenunit = 'degr' gdat.factergskevv = 1.6e-9 if gdat.typeexpr == 'ferm': gdat.listspecconvunit = [['en02', 'gevv']] if gdat.typeexpr == 'chan': gdat.listspecconvunit = [['en00', 'kevv'], ['en02', 'kevv'], ['en02', 'ergs'], ['en03', 'ergs', '0520', 0.5, 2.], \ ['en03', 'ergs', '0210', 2., 10.], \ ['en03', 'ergs', '0510', 0.5, 10.], \ ['en03', 'ergs', '0208', 2., 8.], \ ['en03', 'ergs', '0508', 0.5, 8.], \ ['en03', 'ergs', '0207', 2., 7.], \ ['en03', 'ergs', '0507', 0.5, 7.]] if gdat.typeexpr == 'hubb': gdat.listspecconvunit = [['en03', 'ergs']] if gdat.typeexpr == 'fire': gdat.listspecconvunit = [['en00', 'imum']] # temp #if gdat.typeexpr == 'chan' and (gdat.anlytype.startswith('home') or gdat.anlytype.startswith('extr')): # gmod.lablpopl = ['AGN', 'Galaxy'] if gdat.typeexpr == 'ferm' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'fire': gdat.enerdiff = True if gdat.typeexpr == 'hubb' or gdat.typeexpr == 'gene' or gdat.typeexpr == 'tess': gdat.enerdiff = False if gdat.indxenerincl is None: # default if gdat.boolbinsener: gdat.indxenerincl = np.arange(gdat.binspara.enerfull.size - 1) if gdat.typeexpr == 'ferm': if gdat.anlytype[4:8] == 'pnts': gdat.indxenerincl = np.arange(3) if gdat.anlytype[4:8] == 'back': gdat.indxenerincl = np.arange(30) if gdat.typeexpr == 'chan': if gdat.anlytype.startswith('home'): gdat.indxenerincl = np.arange(5) if gdat.anlytype.startswith('extr'): gdat.indxenerincl = np.arange(2) if gdat.typeexpr == 'hubb': gdat.indxenerincl = np.array([0]) #gdat.indxenerincl = np.array([1]) #gdat.indxenerincl = np.array([0, 1]) if gdat.typeexpr == 'gene': gdat.indxenerincl = np.array([0]) if gdat.indxenerincl is None: gdat.numbener = 1 else: gdat.numbener = gdat.indxenerincl.size gdat.indxener = np.arange(gdat.numbener, dtype=int) if gdat.indxenerincl is None: gdat.indxenerincl = gdat.indxener if gdat.boolbinsener: gdat.indxenerinclbins = np.empty(gdat.numbener+1, dtype=int) gdat.indxenerinclbins[0:-1] = gdat.indxenerincl gdat.indxenerinclbins[-1] = gdat.indxenerincl[-1] + 1 gdat.indxenerpivt = 0 gdat.numbenerplot = 100 gdat.strgener = [gdat.strgenerfull[k] for k in gdat.indxenerincl] gdat.binspara.ener = gdat.binspara.enerfull[gdat.indxenerinclbins] gdat.meanpara.ener = np.sqrt(gdat.binspara.ener[1:] * gdat.binspara.ener[:-1]) gdat.deltener = gdat.binspara.ener[1:] - gdat.binspara.ener[:-1] gdat.minmener = gdat.binspara.ener[0] gdat.maxmener = gdat.binspara.ener[-1] retr_axis(gdat, 'ener') gdat.limtener = [np.amin(gdat.binspara.ener), np.amax(gdat.binspara.ener)] if gdat.boolbinsener: if gdat.numbener > 1: gdat.enerpivt = gdat.meanpara.ener[gdat.indxenerpivt] # energy bin indices other than that of the pivot bin gdat.indxenerinde = np.setdiff1d(gdat.indxener, gdat.indxenerpivt) # temp if gdat.typeexpr == 'chan': gdat.edis = 0.3 * np.sqrt(gdat.binspara.ener) / 2.35 gdat.edisintp = sp.interpolate.interp1d(gdat.binspara.ener, gdat.edis, fill_value='extrapolate') else: gdat.edis = None gdat.edisintp = None for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) setp_varb(gdat, 'cntpmodl', lablroot='$C_{M}$', scal='asnh', strgmodl=strgmodl) # number of elements if strgmodl == 'true': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': numbelem = 25 else: numbelem = 5 setp_varb(gdat, 'numbelem', minm=0, maxm=10, lablroot='N', scal='pois', valu=numbelem, popl=l, strgmodl=strgmodl, strgstat='this') if strgmodl == 'fitt': setp_varb(gdat, 'numbelem', minm=0, maxm=10, lablroot='N', scal='pois', popl='full', strgmodl=strgmodl) ## hyperparameters setp_varb(gdat, 'typemodltran', valu='drct', strgmodl=strgmodl) if gmod.typemodltran == 'pois': setp_varb(gdat, 'meanelem', minm=0.1, maxm=1000., scal='logt', popl='full', strgmodl=strgmodl) #### boolean flag background if gdat.typeexpr != 'user': if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: boolspecback = [True, True] else: boolspecback = [False, False] else: boolspecback = [False for k in gmod.indxback] setp_varb(gdat, 'boolspecback', valu=boolspecback, strgmodl=strgmodl) typeelemspateval = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # these element types slow down execution! if gmod.typeelem[l] == 'lens' or gmod.typeelem[l].startswith('lghtline') or gmod.typeelem[l] == 'clusvari' or gmod.typeelem[l] == 'lghtgausbgrd': typeelemspateval[l] = 'full' else: typeelemspateval[l] = 'locl' setp_varb(gdat, 'typeelemspateval', valu=typeelemspateval, strgmodl=strgmodl) gmod.minmpara.numbelem = np.empty(gmod.numbpopl, dtype=int) gmod.maxmpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = int(getattr(gmod.maxmpara, 'numbelempop%d' % l)) gmod.minmpara.numbelem[l] = int(getattr(gmod.minmpara, 'numbelempop%d' % l)) gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) gmod.minmpara.numbelemtotl = np.sum(gmod.minmpara.numbelem) # spatial distribution type typespatdist = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: typespatdist[l] = 'unif' setp_varb(gdat, 'typespatdist', valu=typespatdist, strgmodl=strgmodl) # flux distribution type typeprioflux = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # temp -- this can assign powr to populations whose flux is not drawn from a power law! if gmod.typeelem[l].startswith('lght'): typeprioflux[l] = 'powr' else: typeprioflux[l] = None setp_varb(gdat, 'typeprioflux', valu=typeprioflux, strgmodl=strgmodl) if gdat.strgexprname is None: if gdat.typeexpr == 'chan': gdat.strgexprname = 'Chandra' if gdat.typeexpr == 'ferm': gdat.strgexprname = 'Fermi-LAT' if gdat.typeexpr == 'hubb': gdat.strgexprname = 'HST' if gdat.typeexpr == 'sche': gdat.strgexprname = 'XXXXX' if gdat.typeexpr == 'gene': gdat.strgexprname = 'TGAS-RAVE' if gdat.lablgangunit is None: if gdat.typeexpr == 'ferm': gdat.lablgangunit = '$^o$' if gdat.typeexpr == 'gene': gdat.lablgangunit = '' if gdat.typeexpr == 'sdss' or gdat.typeexpr == 'chan' or gdat.typeexpr == 'hubb': gdat.lablgangunit = '$^{\prime\prime}$' if gdat.labllgal is None: if gdat.typeexpr == 'gene': gdat.labllgal = r'L_{z}' else: if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0 and gdat.bgalcntr == 0: gdat.labllgal = r'l' else: gdat.labllgal = r'\theta_1' if gdat.lablbgal is None: if gdat.typeexpr == 'gene': gdat.lablbgal = r'E_k' else: if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0 and gdat.bgalcntr == 0: gdat.lablbgal = r'b' else: gdat.lablbgal = r'\theta_2' if gdat.strgenerunit is None: if gdat.typeexpr == 'ferm': gdat.strgenerunit = 'GeV' gdat.nameenerunit = 'gevv' if gdat.typeexpr == 'chan': gdat.strgenerunit = 'keV' gdat.nameenerunit = 'kevv' if gdat.typeexpr == 'gene': gdat.strgenerunit = '' gdat.nameenerunit = '' if gdat.typeexpr == 'hubb': gdat.strgenerunit = 'erg' gdat.nameenerunit = 'ergs' if gdat.typeexpr == 'fire': gdat.strgenerunit = '$\mu$ m$^{-1}$' gdat.nameenerunit = 'imum' if gdat.nameexpr is None: if gdat.typeexpr == 'ferm': gdat.nameexpr = 'Fermi-LAT' if gdat.typeexpr == 'sdss': gdat.nameexpr = 'SDSS' if gdat.typeexpr == 'chan': gdat.nameexpr = 'Chandra' if gdat.typeexpr == 'hubb': gdat.nameexpr = 'HST' if gdat.typeexpr == 'gaia': gdat.nameexpr = 'Gaia' ## Lensing if gdat.radispmr is None: if gdat.typeexpr == 'ferm': gdat.radispmr = 0.6 / gdat.anglfact if gdat.typeexpr == 'hubb': gdat.radispmr = 0.15 / gdat.anglfact if gdat.typeexpr == 'tess': gdat.radispmr = 1. / gdat.anglfact if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.radispmr = 0.1 else: gdat.radispmr = 0.2 / gdat.anglfact if gdat.typeexpr == 'sdss': gdat.radispmr = 0.5 / gdat.anglfact if gdat.typeexpr == 'gene': gdat.radispmr = 0.2 print('gdat.radispmr') print(gdat.radispmr) if gdat.anglassc is None: gdat.anglassc = 5. * gdat.radispmr print('gdat.anglassc') print(gdat.anglassc) for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) if gdat.boolbinsspat: if gdat.typeexpr == 'chan' or gdat.typeexpr == 'sdss': numbpsfpform = 0 gmod.numbpsfptotl = 0 if gdat.typeexpr == 'chan': retr_psfpchan(gmod) if gdat.typeexpr == 'ferm': retr_psfpferm(gmod) if gdat.typeexpr == 'sdss': retr_psfpsdss(gmod) if gdat.typeexpr == 'hubb': retr_psfphubb(gmod) if gdat.typeexpr == 'tess': retr_psfptess(gmod) if gdat.typeexpr == 'gene': retr_psfpsdyn(gmod) # model evaluation approximation error tolerance in units of the fraction of the lowest PS flux if gdat.specfraceval is None: if gdat.typeexpr == 'ferm': gdat.specfraceval = 0.5 else: gdat.specfraceval = 0.1 gdat.binspara.lgalcart = np.linspace(gdat.minmlgaldata, gdat.maxmlgaldata, gdat.numbsidecart + 1) gdat.binspara.bgalcart = np.linspace(gdat.minmbgaldata, gdat.maxmbgaldata, gdat.numbsidecart + 1) gdat.meanpara.lgalcart = (gdat.binspara.lgalcart[0:-1] + gdat.binspara.lgalcart[1:]) / 2. gdat.meanpara.bgalcart = (gdat.binspara.bgalcart[0:-1] + gdat.binspara.bgalcart[1:]) / 2. # reference elements gdat.numbrefr = 0 if gdat.typedata == 'mock': gdat.numbrefr = gmod.numbpopl if gdat.typedata == 'inpt': if gdat.typeexpr == 'ferm': gdat.numbrefr = 2 if gdat.typeexpr == 'chan': gdat.numbrefr = 2 print('gdat.numbrefr') print(gdat.numbrefr) gdat.indxrefr = np.arange(gdat.numbrefr) if gdat.boolasscrefr is None: gdat.boolasscrefr = [True for q in gdat.indxrefr] gdat.listnamerefr = [] gdat.refr.nameparagenrelemampl = [[] for q in gdat.indxrefr] gdat.refr.namepara.elem = [[] for q in gdat.indxrefr] gdat.refr.namepara.elemodim = [[] for q in gdat.indxrefr] gdat.boolinforefr = False gdat.listpathwcss = [] gdat.numbpixllgalshft = [] gdat.numbpixlbgalshft = [] gdat.refrindxpoplassc = [[] for q in gdat.indxrefr] # temp -- this allows up to 3 reference populations gdat.true.colrelem = ['darkgreen', 'olivedrab', 'mediumspringgreen'] # temp -- this allows up to 3 reference populations gdat.fitt.colrelem = ['royalblue', 'dodgerblue', 'navy'] if gdat.typedata == 'mock': gdat.boolinforefr = True gdat.listnamerefr = ['moc%d' % l for l in gmod.indxpopl] gdat.indxrefr = np.arange(gdat.numbrefr) if gdat.typedata == 'inpt': if gdat.typeexpr == 'ferm': gdat.boolinforefr = True retr_refrferminit(gdat) for q in gdat.indxrefr: gdat.refrindxpoplassc[q] = gmod.indxpopl if gdat.typeexpr == 'chan': gdat.boolinforefr = True retr_refrchaninit(gdat) for q in gdat.indxrefr: gdat.refrindxpoplassc[q] = gmod.indxpopl for q in gdat.indxrefr: if 'lgal' in gdat.refr.namepara.elem[q] and 'bgal' in gdat.refr.namepara.elem[q]: gdat.refr.namepara.elem[q] += ['gang', 'aang'] for strgfeat in gdat.refr.namepara.elem[q]: setattr(gdat.refr, strgfeat, [[] for q in gdat.indxrefr]) if gdat.typeexpr == 'ferm': retr_refrfermfinl(gdat) if gdat.typeexpr == 'chan': retr_refrchanfinl(gdat) if gdat.typeexpr == 'hubb': boollenshost = True else: boollenshost = False setp_varb(gdat, 'boollenshost', valu=boollenshost) if gdat.typeexpr == 'hubb': boollenssubh = True else: boollenssubh = False setp_varb(gdat, 'boollenssubh', valu=boollenssubh) if gdat.typeexpr == 'hubb': boollens = True else: boollens = False setp_varb(gdat, 'boollens', valu=boollens) if gdat.typeexpr == 'hubb': boolemishost = True else: boolemishost = False setp_varb(gdat, 'boolemishost', valu=boolemishost) for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) ## names of the variables for which cumulative posteriors will be plotted if gmod.boollenssubh: gmod.listnamevarbcpct = ['convelem'] else: gmod.listnamevarbcpct = [] # the adis in the file is kpc fileh5py = h5py.File(gdat.pathdata + 'inpt/adis.h5','r') gdat.redsintp = fileh5py['reds'][()] gdat.adisintp = fileh5py['adis'][()] * 1e6 # [pc] gdat.adisobjt = sp.interpolate.interp1d(gdat.redsintp, gdat.adisintp, fill_value='extrapolate') gdat.redsfromdlosobjt = sp.interpolate.interp1d(gdat.adisintp * gdat.redsintp, gdat.redsintp, fill_value='extrapolate') fileh5py.close() setp_varb(gdat, 'lgal', minm=-10., maxm=10., lablroot='$l$') for strgmodl in gdat.liststrgmodl: gmod = getattr(gdat, strgmodl) if gdat.typedata == 'mock': if gmod.boollenshost: setp_varb(gdat, 'redshost', valu=0.2, strgmodl='true') setp_varb(gdat, 'redssour', valu=1., strgmodl='true') setp_indxpara(gdat, 'finl', strgmodl='true') ### background parameters if gdat.typeexpr == 'chan': if gdat.anlytype.startswith('extr'): meanbacpbac1 = 1. else: meanbacpbac1 = 70.04 stdvbacpbac1 = 1e-5 * meanbacpbac1 setp_varb(gdat, 'bacp', mean=meanbacpbac1, stdv=stdvbacpbac1, back=1, scal='gaus', strgmodl='true') if gdat.numbpixlfull == 1: bacp = [1e0, 1e2] setp_varb(gdat, 'bacp', limt=bacp, back=0) else: bacp = [1e-1, 1e3] setp_varb(gdat, 'bacp', limt=bacp, ener='full', back=0) if gdat.numbpixlfull == 1: bacp = 10. setp_varb(gdat, 'bacp', valu=bacp) else: setp_varb(gdat, 'bacp', valu=170., back=0, ener=0) setp_varb(gdat, 'bacp', valu=17.4, back=0, ener=1) setp_varb(gdat, 'bacp', valu=27., back=0, ener=2) setp_varb(gdat, 'bacp', valu=11.8, back=0, ener=3) setp_varb(gdat, 'bacp', valu=101., back=0, ener=4) if gdat.typeexpr == 'ferm': if 'ferm_bubb' in gdat.strgcnfg: setp_varb(gdat, 'bacp', limt=[1e-10, 1e10], ener='full', back='full') else: # isotropic + unresolved setp_varb(gdat, 'bacp', limt=[1e-7, 1e-2], ener=0, back=0) setp_varb(gdat, 'bacp', limt=[1e-9, 1e-3], ener=1, back=0) setp_varb(gdat, 'bacp', limt=[1e-10, 1e-4], ener=2, back=0) # diffuse setp_varb(gdat, 'bacp', limt=[1e-6, 1e-2], ener=0, back=1) setp_varb(gdat, 'bacp', limt=[1e-7, 1e-3], ener=1, back=1) setp_varb(gdat, 'bacp', limt=[1e-8, 1e-4], ener=2, back=1) # dark setp_varb(gdat, 'bacp', limt=[1e-11, 1e-4], ener=0, back=2) setp_varb(gdat, 'bacp', limt=[1e-11, 1e-4], ener=1, back=2) setp_varb(gdat, 'bacp', limt=[1e-11, 1e-4], ener=2, back=2) setp_varb(gdat, 'bacp', valu=5e-6, ener=0, back=0) setp_varb(gdat, 'bacp', valu=5e-6, ener=0, back=0) setp_varb(gdat, 'bacp', valu=2e-8, ener=1, back=0) setp_varb(gdat, 'bacp', valu=2e-9, ener=2, back=0) setp_varb(gdat, 'bacp', valu=1e-5, ener=4, back=0) setp_varb(gdat, 'bacp', valu=7e-7, ener=0, back=1) setp_varb(gdat, 'bacp', valu=1e-4, ener=0, back=1) setp_varb(gdat, 'bacp', valu=1e-5, ener=1, back=1) setp_varb(gdat, 'bacp', valu=7e-7, ener=2, back=1) setp_varb(gdat, 'bacp', valu=3e-8, ener=4, back=1) # Fourier basis for strgmodl in gdat.liststrgmodl: for c in gmod.indxback: if isinstance(typeback[c], str): if 'bfun' in typeback[c]: setp_varb(gdat, 'bacp', limt=[1e-10, 1e10], ener='full', back=c) if gdat.typeexpr == 'hubb': bacp = [1e-10, 1e-6] if gdat.typeexpr == 'gene': setp_varb(gdat, 'bacp', minm=1e-1, maxm=1e3, valu=1e1, lablroot='$A$', scal='logt', ener=0, back=0, strgmodl=strgmodl) if gdat.typeexpr == 'fire': bacp = [1e-1, 1e1] if gdat.typeexpr == 'tess': bacp = [1e-1, 1e1] setp_varb(gdat, 'bacp', limt=bacp, ener='full', back=0) if gdat.typeexpr == 'hubb': bacp = 2e-7 if gdat.typeexpr == 'chan': bacp = 1. if gdat.numbpixlfull == 1: setp_varb(gdat, 'bacp', valu=bacp, back=0) else: setp_varb(gdat, 'bacp', valu=bacp, ener='full', back=0) # particle background if gdat.typeexpr == 'chan': bacp = 70.04 setp_varb(gdat, 'bacp', valu=bacp, back=1) # particle background #if gdat.typeexpr == 'chan': # if gdat.anlytype == 'spec': # bacp = [1e-8, 1e-6] # else: # bacp = [1e-1, 1e2] # setp_varb(gdat, 'bacp', limt=bacp, back=1) ### element parameter boundaries #### spatial if gdat.boolbinsspat: if gdat.typeexpr == 'ferm': minmgang = 1e-1 / gdat.anglfact else: minmgang = 1e-2 / gdat.anglfact setp_varb(gdat, 'minmgang', valu=minmgang, popl='full', strgmodl=strgmodl) # parameter defaults for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): enertemp = np.sqrt(gdat.limtener[0] * gdat.limtener[1]) # temp -- these should depend on population index setp_varb(gdat, 'elin', limt=gdat.limtener, strgmodl=strgmodl) setp_varb(gdat, 'sigm', limt=np.array([1e-1, 1e0]) * enertemp, strgmodl=strgmodl) setp_varb(gdat, 'gamm', limt=np.array([1e-1, 1e0]) * enertemp, strgmodl=strgmodl) if gdat.boolbinsspat: minmdefs = 0.003 / gdat.anglfact setp_varb(gdat, 'minmdefs', valu=minmdefs, strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) if gdat.boolbinsspat: maxmdefs = 1. / gdat.anglfact setp_varb(gdat, 'maxmdefs', valu=maxmdefs, strgmodl=strgmodl) # true model parameters if gdat.typedata == 'mock': gmod.numbelem = np.zeros(gmod.numbpopl, dtype=int) if gmod.typemodltran == 'pois': for l in gmod.indxpopl: setattr(gdat.true.this, 'meanelempop%d' % l, getattr(gdat.true.this, 'numbelempop%d' % l)) gmod.numbelem[l] = getattr(gdat.true.this, 'numbelempop%d' % l) if gmod.numbelem[l] > gmod.maxmpara.numbelem[l]: raise Exception('True number of elements is larger than maximum.') gdat.stdvhostsour = 0.04 / gdat.anglfact ## distribution ### flux if gmod.boollenssubh: ### projected scale radius limtasca =
np.array([0., 0.1])
numpy.array
import numpy as np import matplotlib.pyplot as plt xm =
np.array([78, 82, 72, 76, 74, 69])
numpy.array
#!/usr/bin/env python """ Call DMseg. """ from __future__ import print_function import numpy as np from time import localtime, strftime import pandas as pd import sys import os.path as op def clustermaker(chr, pos, assumesorted=False, maxgap=500): tmp2 = chr.groupby(by=chr, sort=False) tmp3 = tmp2.count() Indexes = tmp3.cumsum().to_list() Indexes.insert(0, 0) clusterIDs = pd.Series(data=[None]*pos.shape[0], index=chr.index) Last = 0 for i in range(len(Indexes)-1): i1 = Indexes[i] i2 = Indexes[i+1] Index = range(i1, i2) x = pos.iloc[Index] if (not(assumesorted)): tmp = [j-1 for j in x.rank()] x = x.iloc[tmp] y = np.diff(x) > maxgap y = np.insert(y, 0, 1) z = np.cumsum(y) clusterIDs.iloc[i1:i2] = z + Last Last = max(z) + Last return clusterIDs def fit_model_probes(beta, design): #use np array to save time beta1 = np.array(beta) design1 = np.array(design) M = np.delete(design1,1,axis=1) M_QR_q, M_QR_r = np.linalg.qr(M) S = np.diag([1] * M.shape[0]) - np.matmul(M_QR_q, M_QR_q.transpose()) V = design1[:, 1] SV = np.matmul(S, V) coef = np.matmul(beta1, np.matmul(S.transpose(), V)) / np.matmul(V.transpose(), SV) # Calculate residuals QR_X_q, QR_X_r = np.linalg.qr(design) resids = np.diag([1] * design.shape[0]) - np.matmul(QR_X_q, QR_X_q.transpose()) resids = np.matmul(resids, beta1.transpose()) # Calculate SE tmp1 = np.linalg.inv(design1.T.dot(design1))[1, 1] / (beta.shape[1] - np.linalg.matrix_rank(M) - 1) SE = np.sqrt(np.multiply(resids, resids).sum(axis=0) * tmp1) result = np.array([coef,SE]).T return result # Vectorize part of the fit_model process for simulation, save 20% of time def fit_model_probes_sim(beta,design,seed=1000,B=500): beta1 = np.array(beta) design1 = np.array(design) M = np.delete(design1,1,axis=1) M_QR_q, M_QR_r = np.linalg.qr(M) S = np.diag([1] * M.shape[0]) - np.matmul(M_QR_q, M_QR_q.transpose()) np.random.seed(seed) design_permute = np.array(design.copy()) group_mat = np.zeros((design.shape[0],B)) for i in range(B): idx = np.random.permutation(range(design.shape[0])) group_mat[:,i]=design[idx,1] V = group_mat SV = np.matmul(S, V) coef = np.matmul(beta1, np.matmul(S.transpose(), V)) / np.diag(np.matmul(V.transpose(), SV)) allSE = np.zeros((beta.shape[0],B)) # Calculate residuals term1 = np.diag([1] * design.shape[0]) term2 = np.linalg.matrix_rank(M) #this takes time for i in range(B): design_permute[:,1]=group_mat[:,i] QR_X_q, QR_X_r = np.linalg.qr(design_permute) #np.allclose(design, np.matmul(QR_X_q, QR_X_r)) resids = term1 - np.matmul(QR_X_q, QR_X_q.transpose()) resids = np.matmul(resids, beta1.transpose()) # Calculate SE tmp1 = np.linalg.inv(design_permute.T.dot(design_permute))[1, 1] / (beta.shape[1] - term2 -1) allSE[:,i] = np.sqrt(np.multiply(resids,resids).sum(axis=0) * tmp1) #result = dict(Coef=pd.DataFrame(coef,index=beta.index),SE=pd.DataFrame(allSE,index=beta.index),group_mat=group_mat) result = np.concatenate((coef,allSE),axis=1) return result #Search peak segments def Search_segments(DMseg_stats, cutoff=1.96): zscore = DMseg_stats['Coef']/DMseg_stats['SE'] cutoff = abs(cutoff) #direction: 1 if cpg has zscore > cutoff, 0 abs(zscore) < cutoff, -1 if zscore < -cutoff direction = np.zeros(DMseg_stats.shape[0]) direction = np.where(zscore >= cutoff, 1, direction) direction = np.where(zscore <= -cutoff, -1, direction) #direction1 is based on the absolute zscores. #direction1 = np.zeros(DMseg_stats.shape[0]) direction1 = np.where(abs(zscore) >= cutoff, 1, direction) #segments are segments based on direction1 (a segment includes all connected CpGs with different direction); a segment can cross the border of a cluster tmp0 = 1*(np.diff(direction1) != 0) tmp0 = np.insert(tmp0, 0, 1) segments = np.cumsum(tmp0) #split a segment if it covers multiple clusters; a segment should be within a cluster allsegments = segments + DMseg_stats['cluster'] tmp0 = 1*(np.diff(allsegments) != 0) tmp0 = np.insert(tmp0, 0, 1) allsegments =
np.cumsum(tmp0)
numpy.cumsum
import numpy as np import tensorflow as tf from keras import backend as K from keras.layers import Input, Lambda, Conv2D from keras.models import load_model, Model from keras.callbacks import TensorBoard, ModelCheckpoint, EarlyStopping, CSVLogger from .keras_yolo import preprocess_true_boxes, yolo_body, yolo_eval, yolo_head, yolo_loss import logging import os from PIL import Image DEFAULT_ANCHORS = [(0.57273, 0.677385), (1.87446, 2.06253), (3.33843, 5.47434), (7.88282, 3.52778), (9.77052, 9.16828)] class YOLOTrainer(object): def __init__(self,images,boxes,args,test_mode=False): self.images = images self.args = args self.boxes = boxes self.processed_boxes = None self.processed_images = None self.detectors_mask, self.matching_true_boxes = None, None self.class_names = args['class_names'] self.anchors = np.array(args['anchors'] if 'anchors' in args else DEFAULT_ANCHORS) self.validation_split = args['validation_split'] if 'validation_split' in args else 0.1 self.model_body = None self.model = None self.phase_1_epochs = args['phase_1_epochs'] if 'phase_1_epochs' in args else 10 self.phase_2_epochs = args['phase_2_epochs'] if 'phase_2_epochs' in args else 10 self.root_dir = args['root_dir'] if test_mode: self.create_model(load_pretrained=False,freeze_body=False) else: self.base_model = args['base_model'] self.process_data() self.get_detector_mask() self.create_model() def process_data(self): orig_sizes = [] processed_images = [] boxes = [] for iindex,ipath in enumerate(self.images): im = Image.open(ipath) sz = np.expand_dims(np.array([float(im.width), float(im.height)]), axis=0) image_array = np.array(im.resize((416, 416), Image.BICUBIC),dtype=np.float)/255. if len(image_array.shape) != 3: logging.warning("skipping {} contains less than 3 channels".format(ipath)) else: boxes.append(np.array(self.boxes[iindex],dtype=np.uint16).reshape((-1, 5))) processed_images.append(image_array) orig_sizes.append(sz) boxes_extents = [box[:, [2, 1, 4, 3, 0]] for box in boxes] boxes_xy = [0.5 * (box[:, 3:5] + box[:, 1:3]) for box in boxes] boxes_wh = [box[:, 3:5] - box[:, 1:3] for box in boxes] boxes_xy = [boxxy / orig_sizes[i] for i,boxxy in enumerate(boxes_xy)] boxes_wh = [boxwh / orig_sizes[i] for i,boxwh in enumerate(boxes_wh)] boxes = [np.concatenate((boxes_xy[i], boxes_wh[i], box[:, 0:1]), axis=1) for i, box in enumerate(boxes)] max_boxes = 0 for boxz in boxes: if boxz.shape[0] > max_boxes: max_boxes = boxz.shape[0] for i, boxz in enumerate(boxes): if boxz.shape[0] < max_boxes: zero_padding = np.zeros( (max_boxes-boxz.shape[0], 5), dtype=np.float32) boxes[i] = np.vstack((boxz, zero_padding)) self.processed_images = np.array(processed_images) self.processed_boxes = np.array(boxes) self.get_detector_mask() def get_detector_mask(self): boxes = self.processed_boxes anchors = self.anchors detectors_mask = [0 for i in range(len(boxes))] matching_true_boxes = [0 for i in range(len(boxes))] for i, box in enumerate(boxes): detectors_mask[i], matching_true_boxes[i] = preprocess_true_boxes(box, anchors, [416, 416]) self.detectors_mask = np.array(detectors_mask) self.matching_true_boxes = np.array(matching_true_boxes) def create_model(self, load_pretrained=True, freeze_body=True): anchors, class_names = self.anchors, self.class_names detectors_mask_shape = (13, 13, 5, 1) matching_boxes_shape = (13, 13, 5, 5) # Create model input layers. image_input = Input(shape=(416, 416, 3)) boxes_input = Input(shape=(None, 5)) detectors_mask_input = Input(shape=detectors_mask_shape) matching_boxes_input = Input(shape=matching_boxes_shape) # Create model body. yolo_model = yolo_body(image_input, len(anchors), len(class_names)) topless_yolo = Model(yolo_model.input, yolo_model.layers[-2].output) if load_pretrained: # Save topless yolo: topless_yolo_path = os.path.join('{}/'.format(self.root_dir), 'yolo_headless.h5') if not os.path.exists(topless_yolo_path): yolo_path = self.base_model model_body = load_model(yolo_path) model_body = Model(model_body.inputs, model_body.layers[-2].output) model_body.save_weights(topless_yolo_path) topless_yolo.load_weights(topless_yolo_path) if freeze_body: for layer in topless_yolo.layers: layer.trainable = False else: for layer in topless_yolo.layers[:8]: layer.trainable = False final_layer = Conv2D(len(anchors)*(5+len(class_names)), (1, 1), activation='linear')(topless_yolo.output) self.model_body = Model(image_input, final_layer) # Place model loss on CPU to reduce GPU memory usage. with tf.device('/cpu:0'): # TODO: Replace Lambda with custom Keras layer for loss. model_loss = Lambda( yolo_loss, output_shape=(1, ), name='yolo_loss', arguments={'anchors': anchors, 'num_classes': len(class_names)})([ self.model_body.output, boxes_input, detectors_mask_input, matching_boxes_input ]) self.model = Model([self.model_body.input, boxes_input, detectors_mask_input, matching_boxes_input], model_loss) def train(self): validation_split = self.validation_split image_data = self.processed_images class_names = self.class_names anchors = self.anchors detectors_mask = self.detectors_mask matching_true_boxes = self.matching_true_boxes boxes = self.processed_boxes self.model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred}) logging_1 = TensorBoard(log_dir="{}/tensorboard_logs_1".format(self.root_dir)) logging_2 = TensorBoard(log_dir="{}/tensorboard_logs_2".format(self.root_dir)) csv_logger_1 = CSVLogger('{}/phase_1.log'.format(self.root_dir)) csv_logger_2 = CSVLogger('{}/phase_2.log'.format(self.root_dir)) checkpoint = ModelCheckpoint("{}/phase_2_best.h5".format(self.root_dir), monitor='val_loss',save_weights_only=True, save_best_only=True) early_stopping = EarlyStopping(monitor='val_loss', min_delta=0, patience=15, verbose=1, mode='auto') self.model.fit([image_data, boxes, detectors_mask, matching_true_boxes],np.zeros(len(image_data)), validation_split=validation_split,batch_size=32,epochs=self.phase_1_epochs,callbacks=[logging_1,csv_logger_1]) self.model.save_weights('{}/phase_1.h5'.format(self.root_dir)) self.create_model(load_pretrained=False, freeze_body=False) self.model.load_weights('{}/phase_1.h5'.format(self.root_dir)) self.model.compile(optimizer='adam', loss={'yolo_loss': lambda y_true, y_pred: y_pred}) self.model.fit([image_data, boxes, detectors_mask, matching_true_boxes],np.zeros(len(image_data)), validation_split=validation_split,batch_size=8,epochs=self.phase_2_epochs,callbacks=[logging_2, checkpoint, early_stopping,csv_logger_2]) self.model.save_weights('{}/phase_2.h5'.format(self.root_dir)) def predict(self): weights_name = '{}/phase_2_best.h5'.format(self.root_dir) self.model_body.load_weights(weights_name) yolo_outputs = yolo_head(self.model_body.output, self.anchors, len(self.class_names)) input_image_shape = K.placeholder(shape=(2,)) boxes, scores, classes = yolo_eval(yolo_outputs, input_image_shape, score_threshold=0.5, iou_threshold=0) sess = K.get_session() results = [] for i_path in self.images: im = Image.open(i_path) image_data = np.array(im.resize((416, 416), Image.BICUBIC), dtype=np.float) / 255. if len(image_data.shape) >= 3: image_data = np.expand_dims(image_data, 0) feed_dict = {self.model_body.input: image_data,input_image_shape: [im.size[1], im.size[0]], K.learning_phase(): 0} out_boxes, out_scores, out_classes = sess.run([boxes, scores, classes],feed_dict=feed_dict) for i, c in list(enumerate(out_classes)): box_class = self.class_names[c] box = out_boxes[i] score = out_scores[i] label = '{}'.format(box_class) top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(im.size[1], np.floor(bottom + 0.5).astype('int32')) right = min(im.size[0], np.floor(right + 0.5).astype('int32')) results.append((i_path,box_class,score,top, left, bottom, right)) else: logging.warning("skipping {} contains less than 3 channels".format(i_path)) return results def load(self): weights_name = '{}/phase_2_best.h5'.format(self.root_dir) self.model_body.load_weights(weights_name) yolo_outputs = yolo_head(self.model_body.output, self.anchors, len(self.class_names)) self.input_image_shape = K.placeholder(shape=(2,)) self.tfboxes, self.tfscores, self.tfclasses = yolo_eval(yolo_outputs, self.input_image_shape, score_threshold=0.5, iou_threshold=0) self.sess = K.get_session() def apply(self,path,min_score): im = Image.open(path) image_data = np.array(im.resize((416, 416), Image.BICUBIC), dtype=np.float) / 255. image_data = np.expand_dims(image_data, 0) feed_dict = {self.model_body.input: image_data, self.input_image_shape: [im.size[1], im.size[0]], K.learning_phase(): 0} out_boxes, out_scores, out_classes = self.sess.run([self.tfboxes, self.tfscores, self.tfclasses], feed_dict=feed_dict) results = [] for i, c in list(enumerate(out_classes)): box_class = self.class_names[c] box = out_boxes[i] score = out_scores[i] top, left, bottom, right = box top = max(0, np.floor(top + 0.5).astype('int32')) left = max(0, np.floor(left + 0.5).astype('int32')) bottom = min(im.size[1],
np.floor(bottom + 0.5)
numpy.floor
import numpy as np import sympy as sp from itertools import permutations import matplotlib.pyplot as plt import matplotlib.tri as tri # title size FONT_SIZE_FIG_TITLE = 16 FONT_SIZE_SP_TITLE = 16 FONT_SIZE_AXIS_LABEL = 14 FONT_SIZE_LEGEND = 14 def beta_pdf(x, a, b): """ :param x: Beta random variable--a scalar SymPy symbol :param a: Beta parameter--a scalar SymPy symbol :param b: Beta parameter--a scalar SymPy symbol :return: a SymPy expression for the Beta pdf """ # split x into it's fractional components (required for the simplification engine to work) x_numer, x_denom = sp.fraction(x) # define the distributions pdf = sp.gamma(a + b) / sp.gamma(a) / sp.gamma(b) *\ x_numer ** (a - 1) * x_denom ** (1 - a) * \ x_denom ** (1 - b) * (x_denom - x_numer) ** (b - 1) return pdf def kumaraswamy_pdf(x, a, b): """ :param x: Kumaraswamy random variable--a scalar SymPy symbol :param a: Kumaraswamy parameter--a scalar SymPy symbol :param b: Kumaraswamy parameter--a scalar SymPy symbol :return: a SymPy expression for the Kumaraswamy pdf """ # define the distributions pdf = a * b * x ** (a-1) * (1 - x ** a) ** (b - 1) return pdf def stick_breaking(K, pdf): """ :param K: number of dimensions :param pdf: a function--either beta_pdf or kumaraswamy_pdf :return: expected_f--the expected pdf w.r.t. all sampling orders f--a list of pdf for each sampling order x--a tuple of symbols a--a tuple of symbols """ # make symbol names X = sp.symbols(' '.join(['X_{:d}'.format(i + 1) for i in range(K)]), real=True, nonnegative=True) A = sp.symbols(' '.join(['A_{:d}'.format(i + 1) for i in range(K)]), real=True, postive=True) # generate all permutations perms = list(permutations(range(K))) # loop over the permutations f = [] for p in perms: # initialize the joint pdf for this permutation f_joint = pdf(X[p[0]], A[p[0]], sum([A[j] for j in set(p) - set(p[:1])])) # loop over the free dimensions for i in range(1, len(p) - 1): # set the stick-breaking parameters a = A[p[i]] b = [A[j] for j in set(p) - set(p[:i + 1])] # compute the amount of stick remaining x_left = (1 - sum([X[j] for j in p[:i]])) ** (-1) # multiply the current joint distribution by the next dimension's conditional distribution f_joint = sp.powsimp(f_joint * x_left * pdf(X[p[i]] * x_left, a, sum(b))) # append the permutation f.append(f_joint) # take the expectation expected_f = sum(f) / len(f) # generate all cycles cycles = [tuple(np.roll(np.arange(K), k)) for k in range(K)] # get indices for cycles approx_expected_f = sum([f[perms.index(cycle)] for cycle in cycles]) / len(cycles) return expected_f, approx_expected_f, f, X, A, perms class Dirichlet(object): def __init__(self, a): """ :param a: K-dimensional parameter vector """ # construct the pdf using the expected stick breaking process and save associated symbols self.expected_f, self.approx_expected_f, self.f, self.x, self.a, self.perms = \ stick_breaking(K=len(a), pdf=beta_pdf) # substitute variables for the non-free dimension for x in self.x: subs = 1 - sum(list(set(self.x) - {x})) self.expected_f = self.expected_f.subs(subs, x) self.approx_expected_f = self.approx_expected_f.subs(subs, x) self.f = list(map(lambda f: f.subs(subs, x), self.f)) # print resulting expression print('Dirichlet:', 'E[f(x;a)] =', self.expected_f) # substitute in parameter values self.expected_f = self.expected_f.subs(dict(zip(self.a, a))) self.approx_expected_f = self.approx_expected_f.subs(dict(zip(self.a, a))) self.f = [f.subs(dict(zip(self.a, a))) for f in self.f] def pdf(self, x, order=-1): """ :param x: (K-1)-dimensional value for the degrees of freedom :param order: which sampling order pdf to use, -1 uses the expected pdf :return: f(x;a) """ assert order in {-1, -2} or order in range(len(self.f)) # evaluate the pdf if order == -2: return np.float64(self.expected_f.evalf(subs=dict(zip(self.x, x)), chop=True)) elif order == -1: return np.float64(self.approx_expected_f.evalf(subs=dict(zip(self.x, x)), chop=True)) else: return np.float64(self.f[order].evalf(subs=dict(zip(self.x, x)), chop=True)) class MultivariateKumaraswamy(object): def __init__(self, a): """ :param a: K-dimensional parameter vector """ # construct the pdf using the expected stick breaking process and save associated symbols self.expected_f, self.approx_expected_f, self.f, self.x, self.a, self.perms = \ stick_breaking(K=len(a), pdf=kumaraswamy_pdf) # print resulting expression print('<NAME>:', 'E[f(x;a)] =', self.expected_f) # substitute in parameter values self.expected_f = self.expected_f.subs(dict(zip(self.a, a))) self.approx_expected_f = self.approx_expected_f.subs(dict(zip(self.a, a))) self.f = [f.subs(dict(zip(self.a, a))) for f in self.f] def pdf(self, x, order=-1): """ :param x: (K-1)-dimensional value for the degrees of freedom :param order: which sampling order pdf to use, -1 uses the expected pdf :return: f(x;a) """ assert order in {-1, -2} or order in range(len(self.f)) # evaluate the pdf if order == -2: return np.float64(self.expected_f.evalf(subs=dict(zip(self.x, x)), chop=True)) elif order == -1: return np.float64(self.approx_expected_f.evalf(subs=dict(zip(self.x, x)), chop=True)) else: return np.float64(self.f[order].evalf(subs=dict(zip(self.x, x)), chop=True)) def get_asymmetry(dist, order, pi, symmetry): """ :param dist: the target distribution class object :param order: the specified stick-breaking used to generate the pdf :param pi: an NumPy array of dimensions (number of evaluation points, K) :param symmetry: an iterable of length K-1 that defines the axis of symmetry :return: a NumPy array of shape(pi) that captures any anti-symmetry """ # initialize the anti-symmetry measurements asymmetry = np.zeros(pi.shape[0]) captured = np.zeros(pi.shape[0]) # loop over the points for i in range(len(pi)): # find point of symmetry i_sym = np.argmin(sum([np.abs(pi[i, p[0]] - pi[:, p[1]]) for p in permutations(symmetry)])) # save the measurement and mark its capture asymmetry[i] = np.abs(dist.pdf(pi[i], order=order) - dist.pdf(pi[i_sym], order=order)) captured[i] = 1 # make sure we caught them all assert np.sum(captured) == len(pi) # clamp differences to numerical relevance asymmetry[asymmetry < 1e-9] = 0 return asymmetry def plot_asymmetries_2_dimensions(nlevels=200): # define some K=2 parameters a = [np.array([1 / 2, 1 / 2]), np.array([1 / 2, 2]), np.array([2, 1 / 2]),
np.array([2, 2])
numpy.array
#!/usr/bin/env python import numpy as np from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error from scipy.stats import pearsonr, spearmanr #=============================================================================== #=============================================================================== class Metrics: @staticmethod def r2(true, pred): return r2_score(true, pred) @staticmethod def rmse(true, pred): return np.sqrt(mean_squared_error(true, pred)) @staticmethod def mae(true, pred): return mean_absolute_error(true, pred) @staticmethod def pearson(true, pred): if true.shape[-1] == 1: true, pred = np.squeeze(true), np.squeeze(pred) pearson_coeff, p_value = pearsonr(true, pred) return pearson_coeff else: pearsons = [] for dim in range(true.shape[-1]): pearson_coeff, p_value = pearsonr(true[:, dim], pred[:, dim]) pearsons.append(pearson_coeff) return pearsons @staticmethod def spearman(true, pred): if true.shape[-1] == 1: true, pred = np.squeeze(true),
np.squeeze(pred)
numpy.squeeze
# Copyright 2018 Xanadu Quantum Technologies Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for GaussianPropagation operation""" # pylint: disable=expression-not-assigned,no-self-use,too-few-public-methods import pytest import numpy as np from openfermion.ops import QuadOperator import strawberryfields as sf from strawberryfields.ops import (BSgate, CXgate, CZgate, Rgate, Sgate, S2gate, Xgate, Zgate) from strawberryfields.backends.shared_ops import rotation_matrix as rot from sfopenboson.hamiltonians import (displacement, rotation, squeezing, quadratic_phase, beamsplitter, two_mode_squeezing, controlled_addition, controlled_phase) from sfopenboson.ops import GaussianPropagation class TestSingularCoefficients: """Tests using singular Hamiltonians""" t = 0.432 def test_singular_coefficients(self): """Test that H=p^2/2+q has displacement (q,t)=(-t^2,-t)""" prog = sf.Program(1) eng = sf.Engine("gaussian") H = QuadOperator('p0 p0', 0.5) + QuadOperator('q0') with prog.context as q: GaussianPropagation(H, self.t) | q[0] state = eng.run(prog).state res = state.means() expected = [-self.t**2/2, -self.t] assert np.allclose(res, expected) class TestSingleModeGaussianGates: """Tests using single mode Gaussian gates""" def test_squeezing(self, hbar): """Test squeezing gives correct means and cov""" prog = sf.Program(1) eng = sf.Engine("gaussian") x = 0.2 p = 0.3 r = 0.42 phi = 0.123 H, t = squeezing(r, phi, hbar=hbar) with prog.context as q: Xgate(x) | q[0] Zgate(p) | q[0] GaussianPropagation(H, t) | q[0] state = eng.run(prog).state # test the covariance matrix res = state.cov() S = rot(phi/2) @ np.diag(np.exp([-r, r])) @ rot(phi/2).T V = S @ S.T * hbar/2 assert np.allclose(res, V) # test the vector of means res = state.means() exp = S @
np.array([x, p])
numpy.array
import matplotlib.pyplot as plt import matplotlib.lines import matplotlib.patches import matplotlib.collections import numpy as np from ..util.log import Handle logger = Handle(__name__) from .color import process_color from ..geochem.ind import get_ionic_radii, REE from ..util.types import iscollection from ..util.plot.style import ( DEFAULT_CONT_COLORMAP, linekwargs, scatterkwargs, patchkwargs, ) from ..util.plot.density import ( conditional_prob_density, plot_Z_percentiles, percentile_contour_values_from_meshz, ) from ..util.plot.axes import get_twins, init_axes from ..util.meta import get_additional_params, subkwargs _scatter_defaults = dict(cmap=DEFAULT_CONT_COLORMAP, marker="D", s=25,) _line_defaults = dict(cmap=DEFAULT_CONT_COLORMAP) # could create a spidercollection? def spider( arr, indexes=None, ax=None, label=None, logy=True, yextent=None, mode="plot", unity_line=False, scatter_kw={}, line_kw={}, set_ticks=True, **kwargs ): """ Plots spidergrams for trace elements data. Additional arguments are typically forwarded to respective :mod:`matplotlib` functions :func:`~matplotlib.pyplot.plot` and :func:`~matplotlib.pyplot.scatter` (see Other Parameters, below). Parameters ---------- arr : :class:`numpy.ndarray` Data array. indexes : : :class:`numpy.ndarray` Numerical indexes of x-axis positions. ax : :class:`matplotlib.axes.Axes`, :code:`None` The subplot to draw on. label : :class:`str`, :code:`None` Label for the individual series. logy : :class:`bool` Whether to use a log y-axis. yextent : :class:`tuple` Extent in the y direction for conditional probability plots. mode : :class:`str`, :code:`["plot", "fill", "binkde", "ckde", "kde", "hist"]` Mode for plot. Plot will produce a line-scatter diagram. Fill will return a filled range. Density will return a conditional density diagram. unity_line : :class:`bool` Add a line at y=1 for reference. scatter_kw : :class:`dict` Keyword parameters to be passed to the scatter plotting function. line_kw : :class:`dict` Keyword parameters to be passed to the line plotting function. set_ticks : :class:`bool` Whether to set the x-axis ticks according to the specified index. {otherparams} Returns ------- :class:`matplotlib.axes.Axes` Axes on which the spiderplot is plotted. Notes ----- By using separate lines and scatterplots, values between two missing items are still presented. Todo ---- * Might be able to speed up lines with `~matplotlib.collections.LineCollection`. * Legend entries .. seealso:: Functions: :func:`matplotlib.pyplot.plot` :func:`matplotlib.pyplot.scatter` :func:`REE_v_radii` """ # --------------------------------------------------------------------- ncomponents = arr.shape[-1] figsize = kwargs.pop("figsize", None) or (ncomponents * 0.3, 4) ax = init_axes(ax=ax, figsize=figsize, **kwargs) if logy: ax.set_yscale("log") if unity_line: ax.axhline(1.0, ls="--", c="k", lw=0.5) if indexes is None: indexes = np.arange(ncomponents) else: indexes = np.array(indexes) if indexes.ndim == 1: indexes0 = indexes else: indexes0 = indexes[0] if set_ticks: ax.set_xticks(indexes0) # if there is no data, return the blank axis if (arr is None) or (not np.isfinite(arr).sum()): return ax # if the indexes are supplied as a 1D array but the data is 2D, we need to expand # it to fit the scatter data if indexes.ndim < arr.ndim: indexes = np.tile(indexes0, (arr.shape[0], 1)) if "fill" in mode.lower(): mins = np.nanmin(arr, axis=0) maxs = np.nanmax(arr, axis=0) plycol = ax.fill_between(indexes0, mins, maxs, **patchkwargs(kwargs)) elif "plot" in mode.lower(): # copy params l_kw, s_kw = {**line_kw}, {**scatter_kw} ################################################################################ if line_kw.get("cmap") is None: l_kw["cmap"] = kwargs.get("cmap", None) l_kw = {**kwargs, **l_kw} # if a line color hasn't been specified, perhaps we can use the scatter 'c' if l_kw.get("color") is None: if l_kw.get("c") is not None: l_kw["color"] = kwargs.get("c") if "c" in l_kw: l_kw.pop("c") # remove c if it's been specified globally # if a color option is not specified, get the next cycled color if l_kw.get("color") is None: # add cycler color as array to suppress singular color warning l_kw["color"] = np.array([next(ax._get_lines.prop_cycler)["color"]]) l_kw = linekwargs(process_color(**{**_line_defaults, **l_kw})) # marker explictly dealt with by scatter for k in ["marker", "markers"]: l_kw.pop(k, None) # Construct and Add LineCollection? lcoll = matplotlib.collections.LineCollection( np.dstack((indexes, arr)), **{"zorder": 1, **l_kw} ) ax.add_collection(lcoll) ################################################################################ # load defaults and any specified parameters in scatter_kw / line_kw if s_kw.get("cmap") is None: s_kw["cmap"] = kwargs.get("cmap", None) _sctr_cfg = {**_scatter_defaults, **kwargs, **s_kw} s_kw = process_color(**_sctr_cfg) if s_kw["marker"] is not None: # will need to process colours for scatter markers here s_kw.update(dict(label=label)) scattercolor = None if s_kw.get("c") is not None: scattercolor = s_kw.get("c") elif s_kw.get("color") is not None: scattercolor = s_kw.get("color") else: # no color recognised - will be default, here we get the # cycled color we added earlier scattercolor = l_kw["color"] if scattercolor is not None: if not isinstance(scattercolor, (str, tuple)): # colors will be processed to arrays by this point # here we reshape them to be the same length as ravel-ed arrays if scattercolor.ndim >= 2 and scattercolor.shape[0] > 1: scattercolor = np.tile(scattercolor, arr.shape[1]).reshape( -1, scattercolor.shape[1] ) else: # singular color should be converted to 2d array? pass s_kw = scatterkwargs( {k: v for k, v in s_kw.items() if k not in ["c", "color"]} ) sc = ax.scatter( indexes.ravel(), arr.ravel(), c=scattercolor, **{"zorder": 2, **s_kw} ) # should create a custom legend handle here # could modify legend here. elif any([i in mode.lower() for i in ["binkde", "ckde", "kde", "hist"]]): cmap = kwargs.pop("cmap", None) if "contours" in kwargs and "vmin" in kwargs: msg = "Combining `contours` and `vmin` arugments for density plots should be avoided." logger.warn(msg) xe, ye, zi, xi, yi = conditional_prob_density( arr, x=indexes0, logy=logy, yextent=yextent, mode=mode, ret_centres=True, **kwargs ) # can have issues with nans here? vmin = kwargs.pop("vmin", 0) vmin = percentile_contour_values_from_meshz(zi, [1.0 - vmin])[1][0] # pctl if "contours" in kwargs: pzpkwargs = { # keyword arguments to forward to plot_Z_percentiles **subkwargs(kwargs, plot_Z_percentiles), **{"percentiles": kwargs["contours"]}, } plot_Z_percentiles( # pass all relevant kwargs including contours xi, yi, zi=zi, ax=ax, cmap=cmap, vmin=vmin, **pzpkwargs ) else: zi[zi < vmin] = np.nan ax.pcolormesh( xe, ye, zi, cmap=cmap, vmin=vmin, **subkwargs(kwargs, ax.pcolormesh) ) else: raise NotImplementedError( "Accepted modes: {plot, fill, binkde, ckde, kde, hist}" ) # consider relimiting here return ax def REE_v_radii( arr=None, ax=None, ree=REE(), index="elements", mode="plot", logy=True, tl_rotation=60, unity_line=False, scatter_kw={}, line_kw={}, set_labels=True, set_ticks=True, **kwargs ): r""" Creates an axis for a REE diagram with ionic radii along the x axis. Parameters ---------- arr : :class:`numpy.ndarray` Data array. ax : :class:`matplotlib.axes.Axes`, :code:`None` Optional designation of axes to reconfigure. ree : :class:`list` List of REE to use as an index. index : :class:`str` Whether to plot using radii on the x-axis ('radii'), or elements ('elements'). mode : :class:`str`, :code:`["plot", "fill", "binkde", "ckde", "kde", "hist"]` Mode for plot. Plot will produce a line-scatter diagram. Fill will return a filled range. Density will return a conditional density diagram. logy : :class:`bool` Whether to use a log y-axis. tl_rotation : :class:`float` Rotation of the numerical index labels in degrees. unity_line : :class:`bool` Add a line at y=1 for reference. scatter_kw : :class:`dict` Keyword parameters to be passed to the scatter plotting function. line_kw : :class:`dict` Keyword parameters to be passed to the line plotting function. set_labels : :class:`bool` Whether to set the x-axis ticklabels for the REE. set_ticks : :class:`bool` Whether to set the x-axis ticks according to the specified index. {otherparams} Returns ------- :class:`matplotlib.axes.Axes` Axes on which the REE_v_radii plot is added. Todo ---- * Turn this into a plot template within pyrolite.plot.templates submodule .. seealso:: Functions: :func:`matplotlib.pyplot.plot` :func:`matplotlib.pyplot.scatter` :func:`spider` :func:`pyrolite.geochem.transform.lambda_lnREE` """ ax = init_axes(ax=ax, **kwargs) radii = np.array(get_ionic_radii(ree, charge=3, coordination=8)) xlabels, _xlabels = ["{:1.3f}".format(i) for i in radii], ree xticks, _xticks = radii, radii xlim = (0.99 * np.min(radii), 1.01 *
np.max(radii)
numpy.max
""" Test Surrogates Overview ======================== """ # Author: <NAME> <<EMAIL>> # License: new BSD from PIL import Image import numpy as np import scripts.surrogates_overview as exo import scripts.image_classifier as imgclf import sklearn.datasets import sklearn.linear_model SAMPLES = 10 BATCH = 50 SAMPLE_IRIS = False IRIS_SAMPLES = 50000 def test_bilmey_image(): """Tests surrogate image bLIMEy.""" # Load the image doggo_img = Image.open('surrogates_overview/img/doggo.jpg') doggo_array = np.array(doggo_img) # Load the classifier clf = imgclf.ImageClassifier() explain_classes = [('tennis ball', 852), ('golden retriever', 207), ('Labrador retriever', 208)] # Configure widgets to select occlusion colour, segmentation granularity # and explained class colour_selection = { i: i for i in ['mean', 'black', 'white', 'randomise-patch', 'green'] } granularity_selection = {'low': 13, 'medium': 30, 'high': 50} # Generate explanations blimey_image_collection = {} for gran_name, gran_number in granularity_selection.items(): blimey_image_collection[gran_name] = {} for col_name in colour_selection: blimey_image_collection[gran_name][col_name] = \ exo.build_image_blimey( doggo_array, clf.predict_proba, explain_classes, explanation_size=5, segments_number=gran_number, occlusion_colour=col_name, samples_number=SAMPLES, batch_size=BATCH, random_seed=42) exp = [] for gran_ in blimey_image_collection: for col_ in blimey_image_collection[gran_]: exp.append(blimey_image_collection[gran_][col_]['surrogates']) assert len(exp) == len(EXP_IMG) for e, E in zip(exp, EXP_IMG): assert sorted(list(e.keys())) == sorted(list(E.keys())) for key in e.keys(): assert e[key]['name'] == E[key]['name'] assert len(e[key]['explanation']) == len(E[key]['explanation']) for e_, E_ in zip(e[key]['explanation'], E[key]['explanation']): assert e_[0] == E_[0] assert np.allclose(e_[1], E_[1], atol=.001, equal_nan=True) def test_bilmey_tabular(): """Tests surrogate tabular bLIMEy.""" # Load the iris data set iris = sklearn.datasets.load_iris() iris_X = iris.data # [:, :2] # take the first two features only iris_y = iris.target iris_labels = iris.target_names iris_feature_names = iris.feature_names label2class = {lab: i for i, lab in enumerate(iris_labels)} # Fit the classifier logreg = sklearn.linear_model.LogisticRegression(C=1e5) logreg.fit(iris_X, iris_y) # explained class _dtype = iris_X.dtype explained_instances = { 'setosa': np.array([5, 3.5, 1.5, 0.25]).astype(_dtype), 'versicolor': np.array([5.5, 2.75, 4.5, 1.25]).astype(_dtype), 'virginica': np.array([7, 3, 5.5, 2.25]).astype(_dtype) } petal_length_idx = iris_feature_names.index('petal length (cm)') petal_length_bins = [1, 2, 3, 4, 5, 6, 7] petal_width_idx = iris_feature_names.index('petal width (cm)') petal_width_bins = [0, .5, 1, 1.5, 2, 2.5] discs_ = [] for i, ix in enumerate(petal_length_bins): # X-axis for iix in petal_length_bins[i + 1:]: for j, jy in enumerate(petal_width_bins): # Y-axis for jjy in petal_width_bins[j + 1:]: discs_.append({ petal_length_idx: [ix, iix], petal_width_idx: [jy, jjy] }) for inst_i in explained_instances: for cls_i in iris_labels: for disc_i, disc in enumerate(discs_): inst = explained_instances[inst_i] cls = label2class[cls_i] exp = exo.build_tabular_blimey( inst, cls, iris_X, iris_y, logreg.predict_proba, disc, IRIS_SAMPLES, SAMPLE_IRIS, 42) key = '{}&{}&{}'.format(inst_i, cls, disc_i) exp_ = EXP_TAB[key] assert exp['explanation'].shape[0] == exp_.shape[0] assert np.allclose( exp['explanation'], exp_, atol=.001, equal_nan=True) EXP_IMG = [ {207: {'explanation': [(13, -0.24406872165780585), (11, -0.20456180387430317), (9, -0.1866779131424261), (4, 0.15001224157793785), (3, 0.11589480417160983)], 'name': 'golden retriever'}, 208: {'explanation': [(13, -0.08395966359346249), (0, -0.0644986107387837), (9, 0.05845584633658977), (1, 0.04369763085720947), (11, -0.035958188394941866)], 'name': '<NAME>'}, 852: {'explanation': [(13, 0.3463529698715463), (11, 0.2678050131923326), (4, -0.10639863421417416), (6, 0.08345792378117327), (9, 0.07366945242386444)], 'name': '<NAME>'}}, {207: {'explanation': [(13, -0.0624167912596456), (7, 0.06083359545295548), (3, 0.0495953943686462), (11, -0.04819787147412231), (2, -0.03858823761391199)], 'name': '<NAME>'}, 208: {'explanation': [(13, -0.08408428146916162), (7, 0.07704235920590158), (3, 0.06646468388122273), (11, -0.0638326572126609), (2, -0.052621478002380796)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.35248212611685886), (13, 0.2516925608037859), (2, 0.13682853028454384), (9, 0.12930134856644754), (6, 0.1257747954095489)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.21351937934930917), (10, 0.16933456312772083), (11, -0.13447244552856766), (8, 0.11058919217055371), (2, -0.06269239798368743)], 'name': '<NAME>'}, 208: {'explanation': [(8, 0.05995551486884414), (9, -0.05375302972380482), (11, -0.051997353324246445), (6, 0.04213181405953071), (2, -0.039169895361928275)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.31382219776986503), (11, 0.24126214884275987), (13, 0.21075924370226598), (2, 0.11937652039885377), (8, -0.11911265319329697)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.39254403293049134), (9, 0.19357165018747347), (6, 0.16592079671652987), (0, 0.14042059731407297), (1, 0.09793027079765507)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.19351859273276703), (1, -0.15262967987262344), (3, 0.12205127112235375), (2, 0.11352141032313934), (6, -0.11164209893429898)], 'name': '<NAME>'}, 852: {'explanation': [(7, 0.17213007100844877), (0, -0.1583030948868859), (3, -0.13748574615069775), (5, 0.13273283867075436), (11, 0.12309551170070354)], 'name': '<NAME>'}}, {207: {'explanation': [(3, 0.4073533182995105), (10, 0.20711667988142463), (8, 0.15360813290032324), (6, 0.1405424759832785), (1, 0.1332920685413575)], 'name': '<NAME>'}, 208: {'explanation': [(9, -0.14747910525112617), (1, -0.13977061235228924), (2, 0.10526833898161611), (6, -0.10416022118399552), (3, 0.09555992655161764)], 'name': '<NAME>'}, 852: {'explanation': [(11, 0.2232260929107954), (7, 0.21638443149433054), (5, 0.21100464215582274), (13, 0.145614853795006), (1, -0.11416523431311262)], 'name': '<NAME>'}}, {207: {'explanation': [(1, 0.14700178977744183), (0, 0.10346667279328238), (2, 0.10346667279328238), (7, 0.10346667279328238), (8, 0.10162900633690726)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.10845134816658476), (8, -0.1026920429226184), (6, -0.10238154733842847), (18, 0.10094164937411244), (16, 0.08646888450232793)], 'name': '<NAME>'}, 852: {'explanation': [(18, -0.20542297091894474), (13, 0.2012751176130666), (8, -0.19194747162742365), (20, 0.14686930696710473), (15, 0.11796990086271067)], 'name': '<NAME>'}}, {207: {'explanation': [(13, 0.12446259821701779), (17, 0.11859084421095789), (15, 0.09690553833007137), (12, -0.08869743701731962), (4, 0.08124900427893789)], 'name': '<NAME>'}, 208: {'explanation': [(10, -0.09478194981909983), (20, -0.09173392507039077), (9, 0.08768898801254493), (17, -0.07553994244536394), (4, 0.07422905503397653)], 'name': '<NAME>'}, 852: {'explanation': [(21, 0.1327882942965061), (1, 0.1238236573086363), (18, -0.10911712271717902), (19, 0.09707191051320978), (6, 0.08593672504338913)], 'name': '<NAME>'}}, {207: {'explanation': [(6, 0.14931728779865114), (14, 0.14092073957103526), (1, 0.11071480021464616), (4, 0.10655287976934531), (8, 0.08705404649152573)], 'name': '<NAME>'}, 208: {'explanation': [(8, -0.12242580400886727), (9, 0.12142729544158742), (14, -0.1148252787068248), (16, -0.09562322208795092), (4, 0.09350160975513132)], 'name': '<NAME>'}, 852: {'explanation': [(6, 0.04227675072263027), (9, -0.03107924340879173), (14, 0.028007115650713045), (13, 0.02771190348545554), (19, 0.02640441416071482)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.14313680656283245), (18, 0.12866508562342843), (8, 0.11809779264185447), (0, 0.11286255403442104), (2, 0.11286255403442104)], 'name': '<NAME>'}, 208: {'explanation': [(9, 0.2397917428082761), (14, -0.19435572812170654), (6, -0.1760894833446507), (18, -0.12243333818399058), (15, 0.10986343675377105)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.15378038774613365), (9, -0.14245940635481966), (6, 0.10213601012183973), (20, 0.1009180838986786), (3, 0.09780065767815548)], 'name': '<NAME>'}}, {207: {'explanation': [(15, 0.06525850448807077), (9, 0.06286791243851698), (19, 0.055189970374185854), (8, 0.05499197604401475), (13, 0.04748220842936177)], 'name': '<NAME>'}, 208: {'explanation': [(6, -0.31549091899770765), (5, 0.1862302670824446), (8, -0.17381478451341995), (10, -0.17353516098662508), (14, -0.13591542421754205)], 'name': '<NAME>'}, 852: {'explanation': [(14, 0.2163853942943355), (6, 0.17565046338282214), (1, 0.12446193028474549), (9, -0.11365789839746396), (10, 0.09239073691962967)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.1141207265647932), (36, -0.08861425922625768), (30, 0.07219209872026074), (9, -0.07150939547859836), (38, -0.06988288637544438)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.10531073909547647), (13, 0.08279642208039652), (34, -0.0817952443980797), (33, -0.08086848205765082), (12, 0.08086848205765082)], 'name': '<NAME>'}, 852: {'explanation': [(13, -0.1330452414595897), (4, 0.09942366413042845), (12, -0.09881995683190645), (33, 0.09881995683190645), (19, -0.09596925317560831)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08193926967758253), (35, 0.06804043021426347), (15, 0.06396269230810163), (11, 0.062255657227065296), (8, 0.05529200233091672)], 'name': '<NAME>'}, 208: {'explanation': [(19, 0.05711957286614678), (27, -0.050230108135410824), (16, -0.04743034616549999), (5, -0.046717346734255705), (9, -0.04419100026638039)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.08390967998497496), (30, -0.07037680222442452), (22, 0.07029819368543713), (8, -0.06861396187180349), (37, -0.06662511956402824)], 'name': '<NAME>'}}, {207: {'explanation': [(19, 0.048418845359024805), (9, -0.0423869575883795), (30, 0.04012650790044438), (36, -0.03787242980067195), (10, 0.036557999380695635)], 'name': '<NAME>'}, 208: {'explanation': [(10, 0.12120686823129677), (17, 0.10196564232230493), (7, 0.09495133975425854), (25, -0.0759657891182803), (2, -0.07035244568286837)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.0770578003457272), (28, 0.0769372258280398), (6, -0.06044725989272927), (22, 0.05550155775286349), (31, -0.05399028046597057)], 'name': '<NAME>'}}, {207: {'explanation': [(14, 0.05371383110181226), (0, -0.04442539316084218), (18, 0.042589475382826494), (19, 0.04227647855354252), (17, 0.041685661662754295)], 'name': '<NAME>'}, 208: {'explanation': [(29, 0.14419601354489464), (17, 0.11785174500536676), (36, 0.1000501679652906), (10, 0.09679790134851017), (35, 0.08710376081189208)], 'name': '<NAME>'}, 852: {'explanation': [(8, -0.02486237985832769), (3, -0.022559886154747102), (11, -0.021878686669239856), (36, 0.021847953817988534), (19, -0.018317598300716522)], 'name': '<NAME>'}}, {207: {'explanation': [(37, 0.08098729255605368), (35, 0.06639102704982619), (15, 0.06033721190370432), (34, 0.05826267856117829), (28, 0.05549505160798173)], 'name': '<NAME>'}, 208: {'explanation': [(17, 0.13839012042250542), (10, 0.11312187488346881), (7, 0.10729071207480922), (25, -0.09529127965797404), (11, -0.09279834572979286)], 'name': '<NAME>'}, 852: {'explanation': [(3, -0.028385651836694076), (22, 0.023364702783498722), (8, -0.023097812578270233), (30, -0.022931236620034406), (37, -0.022040170736525342)], 'name': '<NAME>'}} ] EXP_TAB = { 'setosa&0&0': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&1': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&2': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&3': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&4': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&5': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&6': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&7': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&8': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&9': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&10': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&11': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&12': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&13': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&14': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&15': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&16': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&17': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&18': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&19': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&20': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&21': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&22': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&23': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&24': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&25': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&26': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&27': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&28': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&29': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&30': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&31': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&32': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&33': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&34': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&35': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&36': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&37': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&38': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&39': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&40': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&41': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&42': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&43': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&44': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&45': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&46': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&50': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&51': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&52': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&53': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&54': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&55': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&56': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&60': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&61': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&65': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&66': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&67': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&68': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&69': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&70': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&71': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&75': np.array([0.0, 0.95124502153736]), 'setosa&0&76': np.array([0.0, 0.9708703761803881]), 'setosa&0&77': np.array([0.0, 0.5659706098422994]), 'setosa&0&78': np.array([0.0, 0.3962828716108186]), 'setosa&0&79': np.array([0.0, 0.2538069363248767]), 'setosa&0&80': np.array([0.0, 0.95124502153736]), 'setosa&0&81': np.array([0.0, 0.95124502153736]), 'setosa&0&82': np.array([0.0, 0.95124502153736]), 'setosa&0&83': np.array([0.0, 0.95124502153736]), 'setosa&0&84': np.array([0.0, 0.9708703761803881]), 'setosa&0&85': np.array([0.0, 0.9708703761803881]), 'setosa&0&86': np.array([0.0, 0.9708703761803881]), 'setosa&0&87': np.array([0.0, 0.5659706098422994]), 'setosa&0&88': np.array([0.0, 0.5659706098422994]), 'setosa&0&89': np.array([0.0, 0.3962828716108186]), 'setosa&0&90': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&91': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&92': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&93': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&94': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&95': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&96': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&97': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&98': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&99': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&100': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&101': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&102': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&103': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&104': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&105': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&106': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&107': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&108': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&109': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&110': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&111': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&112': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&113': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&114': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&115': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&116': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&117': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&118': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&119': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&120': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&121': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&122': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&123': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&124': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&125': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&126': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&127': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&128': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&129': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&130': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&131': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&132': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&133': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&134': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&135': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&136': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&137': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&138': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&139': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&140': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&141': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&142': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&143': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&144': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&145': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&146': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&147': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&148': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&149': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&150': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&151': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&152': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&153': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&154': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&155': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&156': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&157': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&158': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&159': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&160': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&161': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&162': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&163': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&164': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&165': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&166': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&167': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&168': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&169': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&170': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&171': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&172': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&173': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&174': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&175': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&176': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&177': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&178': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&179': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&180': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&181': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&182': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&183': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&184': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&185': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&186': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&187': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&188': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&189': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&190': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&191': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&192': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&193': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&194': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&195': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&196': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&197': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&198': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&199': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&200': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&201': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&202': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&203': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&204': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&205': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&206': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&207': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&208': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&209': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&210': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&211': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&212': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&213': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&214': np.array([0.9706534384443797, 0.007448195602953232]), 'setosa&0&215': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&216': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&217': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&218': np.array([0.7431524521056113, 0.24432235603856345]), 'setosa&0&219': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&220': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&221': np.array([0.4926091071260067, 0.49260910712601286]), 'setosa&0&222': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&223': np.array([0.9550700362273441, 0.025428672111930138]), 'setosa&0&224': np.array([0.9672121512728677, 0.012993005706020341]), 'setosa&0&225': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&226': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&227': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&228': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&229': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&230': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&231': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&232': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&233': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&234': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&235': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&236': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&237': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&238': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&239': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&240': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&241': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&242': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&243': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&244': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&245': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&246': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&247': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&248': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&249': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&250': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&251': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&252': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&253': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&254': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&255': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&256': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&257': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&258': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&259': np.array([0.7974072911132786, 0.006894018772033576]), 'setosa&0&260': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&261': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&262': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&263': np.array([0.19685199412911678, 0.7845879230594391]), 'setosa&0&264': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&265': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&266': np.array([0.07476043598366156, 0.9062715528547001]), 'setosa&0&267': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&268': np.array([0.7770298852793471, 0.0294434304771479]), 'setosa&0&269': np.array([0.7936433456054741, 0.01258375207649658]), 'setosa&0&270': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&271': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&275': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&276': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&277': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&278': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&279': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&280': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&281': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&285': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&286': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'setosa&0&290': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&291': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&292': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&293': np.array([0.050316962184345455, 0.9292276112117481]), 'setosa&0&294': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&295': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&296': np.array([0.0171486447659196, 0.9632117581295891]), 'setosa&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'setosa&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'setosa&0&300': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&301': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'setosa&0&305': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&306': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&307': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&308': np.array([0.029402442458921055, 0.9481684282717416]), 'setosa&0&309': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&310': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&311': np.array([0.00988785935411159, 0.9698143912008228]), 'setosa&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'setosa&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'setosa&1&0': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&1': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&2': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&3': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&4': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&5': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&6': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&7': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&8': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&9': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&10': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&11': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&12': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&13': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&14': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&15': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&16': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&17': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&18': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&19': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&20': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&21': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&22': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&23': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&24': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&25': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&26': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&27': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&28': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&29': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&30': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&31': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&32': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&33': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&34': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&35': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&36': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&37': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&38': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&39': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&40': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&41': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&42': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&43': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&44': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&45': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&46': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&50': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&51': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&52': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&53': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&54': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&55': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&56': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&60': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&61': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&65': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&66': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&67': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&68': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&69': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&70': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&71': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&75': np.array([0.0, -0.4756207622944677]), 'setosa&1&76': np.array([0.0, -0.4854334805210761]), 'setosa&1&77': np.array([0.0, 0.16885577975809635]), 'setosa&1&78': np.array([0.0, 0.395805885538554]), 'setosa&1&79': np.array([0.0, 0.2538072707138344]), 'setosa&1&80': np.array([0.0, -0.4756207622944677]), 'setosa&1&81': np.array([0.0, -0.4756207622944677]), 'setosa&1&82': np.array([0.0, -0.4756207622944677]), 'setosa&1&83': np.array([0.0, -0.4756207622944677]), 'setosa&1&84': np.array([0.0, -0.4854334805210761]), 'setosa&1&85': np.array([0.0, -0.4854334805210761]), 'setosa&1&86': np.array([0.0, -0.4854334805210761]), 'setosa&1&87': np.array([0.0, 0.16885577975809635]), 'setosa&1&88': np.array([0.0, 0.16885577975809635]), 'setosa&1&89': np.array([0.0, 0.395805885538554]), 'setosa&1&90': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&91': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&92': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&93': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&94': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&95': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&96': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&97': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&98': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&99': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&100': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&101': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&102': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&103': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&104': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&105': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&106': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&107': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&108': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&109': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&110': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&111': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&112': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&113': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&114': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&115': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&116': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&117': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&118': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&119': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&120': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&121': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&122': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&123': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&124': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&125': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&126': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&127': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&128': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&129': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&130': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&131': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&132': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&133': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&134': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&135': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&136': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&137': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&138': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&139': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&140': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&141': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&142': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&143': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&144': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&145': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&146': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&147': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&148': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&149': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&150': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&151': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&152': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&153': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&154': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&155': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&156': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&157': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&158': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&159': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&160': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&161': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&162': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&163': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&164': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&165': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&166': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&167': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&168': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&169': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&170': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&171': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&172': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&173': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&174': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&175': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&176': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&177': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&178': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&179': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&180': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&181': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&182': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&183': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&184': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&185': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&186': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&187': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&188': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&189': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&190': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&191': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&192': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&193': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&194': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&195': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&196': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&197': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&198': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&199': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&200': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&201': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&202': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&203': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&204': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&205': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&206': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&207': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&208': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&209': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&210': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&211': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&212': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&213': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&214': np.array([-0.4964962439921071, 0.3798215458387346]), 'setosa&1&215': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&216': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&217': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&218': np.array([-0.37157553889555184, -0.1221600832023858]), 'setosa&1&219': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&220': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&221': np.array([-0.2463036871609408, -0.24630368716093934]), 'setosa&1&222': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&223': np.array([-0.9105775730167809, 0.6842162738602727]), 'setosa&1&224': np.array([-0.6718337295341267, 0.6620422637360075]), 'setosa&1&225': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&226': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&227': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&228': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&229': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&230': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&231': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&232': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&233': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&234': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&235': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&236': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&237': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&238': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&239': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&240': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&241': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&242': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&243': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&244': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&245': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&246': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&247': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&248': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&249': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&250': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&251': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&252': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&253': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&254': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&255': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&256': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&257': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&258': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&259': np.array([-0.26192650167775977, 0.33491141590339474]), 'setosa&1&260': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&261': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&262': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&263': np.array([0.32199975656257585, -0.748229355246375]), 'setosa&1&264': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&265': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&266': np.array([0.43843349141088417, -0.8642740701867918]), 'setosa&1&267': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&268': np.array([-0.7141739659554724, 0.6619819140152877]), 'setosa&1&269': np.array([-0.4446001433508151, 0.6107546840046902]), 'setosa&1&270': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&271': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&275': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&276': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&277': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&278': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&279': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&280': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&281': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&285': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&286': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'setosa&1&290': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&291': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&292': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&293': np.array([0.7749499208750121, -0.814718944080443]), 'setosa&1&294': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&295': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&296': np.array([0.80403091954169, -0.844515250413482]), 'setosa&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'setosa&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'setosa&1&300': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&301': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'setosa&1&305': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&306': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&307': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&308': np.array([0.4933316375690333, -0.5272416708629277]), 'setosa&1&309': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&310': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&311': np.array([0.5041830043657418, -0.5392782673950876]), 'setosa&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'setosa&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'setosa&2&0': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&1': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&2': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&3': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&4': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&5': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&6': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&7': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&8': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&9': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&10': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&11': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&12': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&13': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&14': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&15': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&16': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&17': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&18': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&19': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&20': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&21': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&22': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&23': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&24': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&25': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&26': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&27': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&28': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&29': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&30': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&31': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&32': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&33': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&34': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&35': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&36': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&37': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&38': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&39': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&40': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&41': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&42': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&43': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&44': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&45': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&46': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&50': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&51': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&52': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&53': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&54': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&55': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&56': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&60': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&61': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&65': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&66': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&67': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&68': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&69': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&70': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&71': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&75': np.array([0.0, -0.47562425924289314]), 'setosa&2&76': np.array([0.0, -0.48543689565931186]), 'setosa&2&77': np.array([0.0, -0.7348263896003956]), 'setosa&2&78': np.array([0.0, -0.7920887571493729]), 'setosa&2&79': np.array([0.0, -0.507614207038711]), 'setosa&2&80': np.array([0.0, -0.47562425924289314]), 'setosa&2&81': np.array([0.0, -0.47562425924289314]), 'setosa&2&82': np.array([0.0, -0.47562425924289314]), 'setosa&2&83': np.array([0.0, -0.47562425924289314]), 'setosa&2&84': np.array([0.0, -0.48543689565931186]), 'setosa&2&85': np.array([0.0, -0.48543689565931186]), 'setosa&2&86': np.array([0.0, -0.48543689565931186]), 'setosa&2&87': np.array([0.0, -0.7348263896003956]), 'setosa&2&88': np.array([0.0, -0.7348263896003956]), 'setosa&2&89': np.array([0.0, -0.7920887571493729]), 'setosa&2&90': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&91': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&92': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&93': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&94': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&95': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&96': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&97': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&98': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&99': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&100': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&101': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&102': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&103': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&104': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&105': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&106': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&107': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&108': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&109': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&110': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&111': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&112': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&113': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&114': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&115': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&116': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&117': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&118': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&119': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&120': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&121': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&122': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&123': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&124': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&125': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&126': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&127': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&128': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&129': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&130': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&131': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&132': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&133': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&134': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&135': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&136': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&137': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&138': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&139': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&140': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&141': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&142': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&143': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&144': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&145': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&146': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&147': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&148': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&149': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&150': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&151': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&152': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&153': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&154': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&155': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&156': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&157': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&158': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&159': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&160': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&161': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&162': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&163': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&164': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&165': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&166': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&167': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&168': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&169': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&170': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&171': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&172': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&173': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&174': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&175': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&176': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&177': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&178': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&179': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&180': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&181': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&182': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&183': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&184': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&185': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&186': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&187': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&188': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&189': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&190': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&191': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&192': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&193': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&194': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&195': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&196': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&197': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&198': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&199': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&200': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&201': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&202': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&203': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&204': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&205': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&206': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&207': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&208': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&209': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&210': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&211': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&212': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&213': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&214': np.array([-0.47415719445227245, -0.38726974144168774]), 'setosa&2&215': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&216': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&217': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&218': np.array([-0.3715769132100501, -0.12216227283618744]), 'setosa&2&219': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&220': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&221': np.array([-0.24630541996506924, -0.24630541996506994]), 'setosa&2&222': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&223': np.array([-0.044492463210563125, -0.7096449459722027]), 'setosa&2&224': np.array([-0.29537842173874096, -0.6750352694420283]), 'setosa&2&225': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&226': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&227': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&228': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&229': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&230': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&231': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&232': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&233': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&234': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&235': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&236': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&237': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&238': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&239': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&240': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&241': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&242': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&243': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&244': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&245': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&246': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&247': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&248': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&249': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&250': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&251': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&252': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&253': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&254': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&255': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&256': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&257': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&258': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&259': np.array([-0.5354807894355184, -0.3418054346754283]), 'setosa&2&260': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&261': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&262': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&263': np.array([-0.5188517506916893, -0.036358567813067795]), 'setosa&2&264': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&265': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&266': np.array([-0.513193927394545, -0.041997482667908786]), 'setosa&2&267': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&268': np.array([-0.06285591932387405, -0.6914253444924359]), 'setosa&2&269': np.array([-0.34904320225465857, -0.6233384360811872]), 'setosa&2&270': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&271': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&272': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&273': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&274': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&275': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&276': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&277': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&278': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&279': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&280': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&281': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&282': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&283': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&284': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&285': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&286': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&287': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&288': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&289': np.array([-0.8735738195653328, -0.046438180466149094]), 'setosa&2&290': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&291': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&292': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&293': np.array([-0.8252668830593567, -0.11450866713130638]), 'setosa&2&294': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&295': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&296': np.array([-0.8211795643076093, -0.1186965077161071]), 'setosa&2&297': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&298': np.array([-0.6441664102689847, -0.3012046426099901]), 'setosa&2&299': np.array([-0.7640280271176497, -0.19364537761420375]), 'setosa&2&300': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&301': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&302': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&303': np.array([-0.2741128763380603, -0.7260889090887469]), 'setosa&2&304': np.array([-0.6188410763351541, -0.22803625884668638]), 'setosa&2&305': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&306': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&307': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&308': np.array([-0.5227340800279542, -0.42092675740881474]), 'setosa&2&309': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&310': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&311': np.array([-0.5140708637198534, -0.43053612380573514]), 'setosa&2&312': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&313': np.array([-0.2661726847443776, -0.6902916602462779]), 'setosa&2&314': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&0&0': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&1': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&2': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&3': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&4': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&5': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&6': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&7': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&8': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&9': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&10': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&11': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&12': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&13': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&14': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&15': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&16': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&17': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&18': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&19': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&20': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&21': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&22': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&23': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&24': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&25': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&26': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&27': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&28': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&29': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&30': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&31': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&32': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&33': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&34': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&35': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&36': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&37': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&38': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&39': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&40': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&41': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&42': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&43': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&44': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&45': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&46': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&47': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&48': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&49': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&50': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&51': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&52': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&53': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&54': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&55': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&56': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&57': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&58': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&59': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&60': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&61': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&62': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&63': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&64': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&65': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&66': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&67': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&68': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&69': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&70': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&71': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&72': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&73': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&74': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&75': np.array([0.0, -0.95124502153736]), 'versicolor&0&76': np.array([0.0, -0.9708703761803881]), 'versicolor&0&77': np.array([0.0, 0.5659706098422994]), 'versicolor&0&78': np.array([0.0, 0.3962828716108186]), 'versicolor&0&79': np.array([0.0, 0.2538069363248767]), 'versicolor&0&80': np.array([0.0, -0.9708703761803881]), 'versicolor&0&81': np.array([0.0, -0.3631376646911367]), 'versicolor&0&82': np.array([0.0, -0.5804857652839247]), 'versicolor&0&83': np.array([0.0, -0.8943993997517804]), 'versicolor&0&84': np.array([0.0, -0.4231275527222919]), 'versicolor&0&85': np.array([0.0, -0.6164235822373675]), 'versicolor&0&86': np.array([0.0, -0.9166476163222441]), 'versicolor&0&87': np.array([0.0, 0.5659706098422994]), 'versicolor&0&88': np.array([0.0, 0.5659706098422994]), 'versicolor&0&89': np.array([0.0, 0.3962828716108186]), 'versicolor&0&90': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&91': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&92': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&93': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&94': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&95': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&96': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&97': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&98': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&99': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&100': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&101': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&102': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&103': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&104': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&105': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&106': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&107': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&108': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&109': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&110': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&111': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&112': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&113': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&114': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&115': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&116': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&117': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&118': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&119': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&120': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&121': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&122': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&123': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&124': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&125': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&126': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&127': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&128': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&129': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&130': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&131': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&132': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&133': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&134': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&135': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&136': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&137': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&138': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&139': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&140': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&141': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&142': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&143': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&144': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&145': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&146': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&147': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&148': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&149': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&150': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&151': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&152': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&153': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&154': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&155': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&156': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&157': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&158': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&159': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&160': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&161': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&162': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&163': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&164': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&165': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&166': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&167': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&168': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&169': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&170': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&171': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&172': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&173': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&174': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&175': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&176': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&177': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&178': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&179': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&180': np.array([-0.05855179950109871, -0.9211684729232403]), 'versicolor&0&181': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&182': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&183': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&184': np.array([-0.5182062652425321, 0.3958533237517639]), 'versicolor&0&185': np.array([-0.020067537725011863, -0.960349531159508]), 'versicolor&0&186': np.array([-0.5107107533700952, 0.0075507123577884866]), 'versicolor&0&187': np.array([-0.1464063320531759, -0.4788055402156298]), 'versicolor&0&188': np.array([-0.061109248092233844, -0.8620287767000373]), 'versicolor&0&189': np.array([-0.4706137753079746, -0.057389625790424635]), 'versicolor&0&190': np.array([-0.06804620923037683, -0.5677904519730453]), 'versicolor&0&191': np.array([-0.020216773196675246, -0.9057119888626176]), 'versicolor&0&192': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&193': np.array([-0.5775164514598086, 0.6278692602817483]), 'versicolor&0&194': np.array([-0.6813845327458135, 0.6599725404733693]), 'versicolor&0&195': np.array([-0.19684482070614498, -0.7845939961595055]), 'versicolor&0&196': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&197': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&198': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&199': np.array([-0.8063011502229427, 0.4134300066735808]), 'versicolor&0&200': np.array([-0.07475231751447156, -0.9062785678426409]), 'versicolor&0&201': np.array([-0.7985789197998611, 0.0026209054759345337]), 'versicolor&0&202': np.array([-0.7182275903095532, -0.11963032135457498]), 'versicolor&0&203': np.array([-0.2798927835773098, -0.6581136857450849]), 'versicolor&0&204': np.array([-0.7920119433269182, -0.0142751249964083]), 'versicolor&0&205': np.array([-0.6943081428778407, -0.14852813120265815]), 'versicolor&0&206': np.array([-0.16106555563262584, -0.777621649099753]), 'versicolor&0&207': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&208': np.array([-0.6782037543706109, 0.2956007367698983]), 'versicolor&0&209': np.array([-0.7694171988675237, 0.276633135028249]), 'versicolor&0&210': np.array([-0.7431524521056113, -0.24432235603856345]), 'versicolor&0&211': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&212': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&213': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&214': np.array([-0.9706534384443797, 0.007448195602953232]), 'versicolor&0&215': np.array([-0.4926091071260067, -0.49260910712601286]), 'versicolor&0&216': np.array([-0.967167257194905, -0.011919414234523772]), 'versicolor&0&217': np.array([-0.953200964337313, -0.027163424176667752]), 'versicolor&0&218': np.array([-0.8486399726113752, -0.13537345771621853]), 'versicolor&0&219': np.array([-0.9658161779555727, -0.01446062269877741]), 'versicolor&0&220': np.array([-0.9493506964095418, -0.0312186903717912]), 'versicolor&0&221': np.array([-0.7870031444780577, -0.1952404625292782]), 'versicolor&0&222': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&223': np.array([-0.9550700362273441, 0.025428672111930138]), 'versicolor&0&224': np.array([-0.9672121512728677, 0.012993005706020341]), 'versicolor&0&225': np.array([-0.04777085826693217, -0.931704979630315]), 'versicolor&0&226': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&227': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&228': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&229': np.array([-0.46216647196120714, 0.35468591243823655]), 'versicolor&0&230': np.array([-0.016252316132452975, -0.9640854286687816]), 'versicolor&0&231': np.array([-0.3707180757031537, -0.1977196581472426]), 'versicolor&0&232': np.array([-0.1043459833293615, -0.5233314327065356]), 'versicolor&0&233': np.array([-0.049289647556763364, -0.8736084405111605]), 'versicolor&0&234': np.array([-0.34078174031874375, -0.25874482325965437]), 'versicolor&0&235': np.array([-0.050841051273783675, -0.5877587283589205]), 'versicolor&0&236': np.array([-0.0161720977425142, -0.9096817855236822]), 'versicolor&0&237': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&238': np.array([-0.44101924439572626, 0.5583264842761904]), 'versicolor&0&239': np.array([-0.5844994389588399, 0.5715208832363579]), 'versicolor&0&240': np.array([-0.11329659732608087, -0.8671819100849522]), 'versicolor&0&241': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&242': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&243': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&244': np.array([-0.6814868825686854, 0.35066801608083215]), 'versicolor&0&245': np.array([-0.040390637135858574, -0.9402832917474078]), 'versicolor&0&246': np.array([-0.6425009695928476, -0.24851992476830956]), 'versicolor&0&247': np.array([-0.5151243662384031, -0.3255567772442641]), 'versicolor&0&248': np.array([-0.16157511199607094, -0.7754323813403634]), 'versicolor&0&249': np.array([-0.6300442788906601, -0.28361140069713875]), 'versicolor&0&250': np.array([-0.4875864856121089, -0.3614122096616301]), 'versicolor&0&251': np.array([-0.08968204532514226, -0.8491191210330045]), 'versicolor&0&252': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&253': np.array([-0.5276460255602035, 0.28992233541586077]), 'versicolor&0&254': np.array([-0.6392402874163683, 0.24114611970435948]), 'versicolor&0&255': np.array([-0.19685199412911655, -0.7845879230594393]), 'versicolor&0&256': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&257': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&258': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&259': np.array([-0.7974072911132788, 0.006894018772033604]), 'versicolor&0&260': np.array([-0.07476043598366228, -0.9062715528546994]), 'versicolor&0&261': np.array([-0.7779663027946229, -0.2981599980028888]), 'versicolor&0&262': np.array([-0.6669876551417979, -0.2911996622134135]), 'versicolor&0&263': np.array([-0.3355030348883163, -0.6305271339971502]), 'versicolor&0&264': np.array([-0.7658431164447598, -0.3248317507526541]), 'versicolor&0&265': np.array([-0.6459073168288453, -0.31573292128613833]), 'versicolor&0&266': np.array([-0.2519677855687844, -0.7134447168661863]), 'versicolor&0&267': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&268': np.array([-0.7770298852793476, 0.029443430477147536]), 'versicolor&0&269': np.array([-0.7936433456054744, 0.012583752076496493]), 'versicolor&0&270': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&271': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&272': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&273': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&274': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&275': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&276': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&277': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&278': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&279': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&280': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&281': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&282': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&283': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&284': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&285': np.array([0.05031696218434577, -0.929227611211748]), 'versicolor&0&286': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&287': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&288': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&289': np.array([0.4656481363306145, 0.007982539480288167]), 'versicolor&0&290': np.array([0.017148644765919676, -0.9632117581295891]), 'versicolor&0&291': np.array([0.6614632074748169, -0.6030419328583525]), 'versicolor&0&292': np.array([0.5519595359123358, -0.6434192906054143]), 'versicolor&0&293': np.array([0.14241819268815753, -0.8424615476000691]), 'versicolor&0&294': np.array([0.667423576348749, -0.6594086777766442]), 'versicolor&0&295': np.array([0.5429872243487625, -0.6697888833280774]), 'versicolor&0&296': np.array([0.1140907502997574, -0.8737800276630269]), 'versicolor&0&297': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&298': np.array([0.06151571389390039, 0.524561199322281]), 'versicolor&0&299': np.array([0.4329463382004908, 0.057167210150691136]), 'versicolor&0&300': np.array([0.029402442458921384, -0.9481684282717414]), 'versicolor&0&301': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&302': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&303': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&0&304': np.array([0.3094460464703627, 0.11400643817329122]), 'versicolor&0&305': np.array([0.009887859354111524, -0.9698143912008228]), 'versicolor&0&306': np.array([0.42809266524335826, -0.40375108595117376]), 'versicolor&0&307': np.array([0.45547700380103057, -0.6083463409799501]), 'versicolor&0&308': np.array([0.19002455311770447, -0.8848597943731074]), 'versicolor&0&309': np.array([0.436966114193701, -0.4638042290788281]), 'versicolor&0&310': np.array([0.45424510803217066, -0.6425314361631614]), 'versicolor&0&311': np.array([0.1746467870122951, -0.9073062742839755]), 'versicolor&0&312': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&313': np.array([0.009595083643662688, 0.5643652067423869]), 'versicolor&0&314': np.array([0.13694026920485936, 0.36331091829858003]), 'versicolor&1&0': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&1': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&2': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&3': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&4': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&5': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&6': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&7': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&8': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&9': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&10': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&11': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&12': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&13': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&14': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&15': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&16': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&17': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&18': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&19': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&20': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&21': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&22': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&23': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&24': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&25': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&26': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&27': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&28': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&29': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&30': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&31': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&32': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&33': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&34': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&35': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&36': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&37': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&38': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&39': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&40': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&41': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&42': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&43': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&44': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&45': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&46': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&47': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&48': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&49': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&50': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&51': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&52': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&53': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&54': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&55': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&56': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&57': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&58': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&59': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&60': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&61': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&62': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&63': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&64': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&65': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&66': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&67': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&68': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&69': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&70': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&71': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&72': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&73': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&74': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&75': np.array([0.0, 0.4756207622944677]), 'versicolor&1&76': np.array([0.0, 0.4854334805210761]), 'versicolor&1&77': np.array([0.0, 0.16885577975809635]), 'versicolor&1&78': np.array([0.0, 0.395805885538554]), 'versicolor&1&79': np.array([0.0, 0.2538072707138344]), 'versicolor&1&80': np.array([0.0, 0.4854334805210761]), 'versicolor&1&81': np.array([0.0, 0.7613919530844643]), 'versicolor&1&82': np.array([0.0, 0.6668230985485095]), 'versicolor&1&83': np.array([0.0, 0.4904755652105692]), 'versicolor&1&84': np.array([0.0, 0.8121046082359693]), 'versicolor&1&85': np.array([0.0, 0.6855766903749089]), 'versicolor&1&86': np.array([0.0, 0.5008471974438506]), 'versicolor&1&87': np.array([0.0, 0.16885577975809635]), 'versicolor&1&88': np.array([0.0, 0.16885577975809635]), 'versicolor&1&89': np.array([0.0, 0.395805885538554]), 'versicolor&1&90': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&91': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&92': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&93': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&94': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&95': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&96': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&97': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&98': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&99': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&100': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&101': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&102': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&103': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&104': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&105': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&106': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&107': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&108': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&109': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&110': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&111': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&112': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&113': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&114': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&115': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&116': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&117': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&118': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&119': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&120': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&121': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&122': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&123': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&124': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&125': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&126': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&127': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&128': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&129': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&130': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&131': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&132': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&133': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&134': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&135': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&136': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&137': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&138': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&139': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&140': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&141': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&142': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&143': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&144': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&145': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&146': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&147': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&148': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&149': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&150': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&151': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&152': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&153': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&154': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&155': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&156': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&157': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&158': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&159': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&160': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&161': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&162': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&163': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&164': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&165': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&166': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&167': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&168': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&169': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&170': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&171': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&172': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&173': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&174': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&175': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&176': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&177': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&178': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&179': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&180': np.array([0.8224435822504677, 0.05315271528828394]), 'versicolor&1&181': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&182': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&183': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&184': np.array([0.8476206690613984, 0.02146454924522743]), 'versicolor&1&185': np.array([0.820222886307464, 0.055413714884152906]), 'versicolor&1&186': np.array([0.69362517791403, 0.2579390890424607]), 'versicolor&1&187': np.array([0.7261791877801502, 0.16248655642013624]), 'versicolor&1&188': np.array([0.8190416077589757, 0.05661509439536992]), 'versicolor&1&189': np.array([0.6654762076749751, 0.2949291633432878]), 'versicolor&1&190': np.array([0.7118161070185614, 0.17683644094125878]), 'versicolor&1&191': np.array([0.8165214253946836, 0.059175619390630096]), 'versicolor&1&192': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&193': np.array([0.8393089066702096, 0.0788980157959197]), 'versicolor&1&194': np.array([0.8282924295054531, 0.0752641855714259]), 'versicolor&1&195': np.array([0.5188109114552927, 0.03638964581864269]), 'versicolor&1&196': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&197': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&198': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&199': np.array([0.5436097000280874, 0.1461891067488832]), 'versicolor&1&200': np.array([0.5131478569192371, 0.04203387599862816]), 'versicolor&1&201': np.array([0.32513442685780247, 0.6124765483184536]), 'versicolor&1&202': np.array([0.1812883360919208, 0.5504982486874137]), 'versicolor&1&203': np.array([0.4788153032824012, 0.08625929936974323]), 'versicolor&1&204': np.array([0.28490718210609345, 0.6650298146522879]), 'versicolor&1&205': np.array([0.1313204067730033, 0.597079642504441]), 'versicolor&1&206': np.array([0.46583127837967303, 0.09875847161509169]), 'versicolor&1&207': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&208': np.array([0.73294627367007, 0.4610490766898855]), 'versicolor&1&209': np.array([0.5965042032375719, 0.48856644624972617]), 'versicolor&1&210': np.array([0.37157553889555184, 0.1221600832023858]), 'versicolor&1&211': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&212': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&213': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&214': np.array([0.4964962439921071, 0.3798215458387346]), 'versicolor&1&215': np.array([0.2463036871609408, 0.24630368716093934]), 'versicolor&1&216': np.array([0.2805345936193346, 0.6595182922149835]), 'versicolor&1&217': np.array([0.08302493125394889, 0.6186280682763334]), 'versicolor&1&218': np.array([0.22125635302655813, 0.2925832702358638]), 'versicolor&1&219': np.array([0.2365788606456636, 0.7120007179768731]), 'versicolor&1&220': np.array([0.022347126801293967, 0.6718013300441928]), 'versicolor&1&221': np.array([0.10063786451829529, 0.4085974066833644]), 'versicolor&1&222': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&223': np.array([0.9105775730167809, 0.6842162738602727]), 'versicolor&1&224': np.array([0.6718337295341267, 0.6620422637360075]), 'versicolor&1&225': np.array([0.6253337666017573, 0.21983620140147825]), 'versicolor&1&226': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&227': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&228': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&229': np.array([0.7182033715159247, 0.0970420677941148]), 'versicolor&1&230': np.array([0.6178968870349187, 0.22747652768125623]), 'versicolor&1&231': np.array([0.4976586558055923, 0.5393318265947251]), 'versicolor&1&232': np.array([0.4361093214026388, 0.4279491486345008]), 'versicolor&1&233': np.array([0.613985959011319, 0.23148898930908424]), 'versicolor&1&234': np.array([0.46747697713468217, 0.586607956360002]), 'versicolor&1&235': np.array([0.41044950174869577, 0.45415985894965977]), 'versicolor&1&236': np.array([0.6057447478066579, 0.23993389556303918]), 'versicolor&1&237': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&238': np.array([0.7245803616608639, 0.18141483095066183]), 'versicolor&1&239': np.array([0.6762617119303499, 0.19305674697949574]), 'versicolor&1&240': np.array([0.056623968925773045, 0.43360725859686644]), 'versicolor&1&241': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&242': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&243': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&244': np.array([0.3351719071445682, 0.20616862401308342]), 'versicolor&1&245': np.array([0.020169511418752378, 0.47015948158260334]), 'versicolor&1&246': np.array([0.24022705822940116, 0.7185371033867092]), 'versicolor&1&247': np.array([0.010447231513465048, 0.6616528865917504]), 'versicolor&1&248': np.array([0.024556360933646205, 0.4723948285969902]), 'versicolor&1&249': np.array([0.21321406009810842, 0.7648907754638917]), 'versicolor&1&250': np.array([-0.027450681014480036, 0.6999336015080245]), 'versicolor&1&251': np.array([-0.0164329511444131, 0.5132208276383963]), 'versicolor&1&252': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&253': np.array([0.5806365328450954, 0.47262706807712623]), 'versicolor&1&254': np.array([0.4146290154471569, 0.4964318942067898]), 'versicolor&1&255': np.array([-0.32199975656257646, 0.7482293552463756]), 'versicolor&1&256': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&257': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&258': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&259': np.array([0.2619265016777598, 0.33491141590339474]), 'versicolor&1&260': np.array([-0.43843349141088417, 0.8642740701867917]), 'versicolor&1&261': np.array([0.20183015430619713, 0.7445346002055082]), 'versicolor&1&262': np.array([-0.05987874887638573, 0.6927937290176818]), 'versicolor&1&263': np.array([-0.2562642052727569, 0.6920266972283227]), 'versicolor&1&264': np.array([0.1736438124560164, 0.7898174616442941]), 'versicolor&1&265': np.array([-0.10114089899940126, 0.7326610366533243]), 'versicolor&1&266': np.array([-0.34479806250338163, 0.7789143553916729]), 'versicolor&1&267': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&268': np.array([0.7141739659554727, 0.6619819140152878]), 'versicolor&1&269': np.array([0.44460014335081516, 0.6107546840046902]), 'versicolor&1&270': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&271': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&272': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&273': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&274': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&275': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&276': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&277': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&278': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&279': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&280': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&281': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&282': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&283': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&284': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&285': np.array([0.7749499208750119, 0.8147189440804429]), 'versicolor&1&286': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&287': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&288': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&289': np.array([0.4079256832347186, 0.038455640985860955]), 'versicolor&1&290': np.array([0.8040309195416899, 0.8445152504134819]), 'versicolor&1&291': np.array([0.18555813792691386, 0.6940923833143309]), 'versicolor&1&292': np.array([0.32639262064172164, 0.6296083447134281]), 'versicolor&1&293': np.array([0.6964303997553315, 0.7444536452136676]), 'versicolor&1&294': np.array([0.18216358701833335, 0.747615101407194]), 'versicolor&1&295': np.array([0.33549445287370383, 0.6526039763053625]), 'versicolor&1&296': np.array([0.7213651642695392, 0.7718874443854203]), 'versicolor&1&297': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&298': np.array([0.5826506963750848, -0.22335655671229107]), 'versicolor&1&299': np.array([0.33108168891715983, 0.13647816746351163]), 'versicolor&1&300': np.array([0.4933316375690332, 0.5272416708629276]), 'versicolor&1&301': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&302': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&303': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&1&304': np.array([0.3093950298647913, 0.1140298206733954]), 'versicolor&1&305': np.array([0.5041830043657418, 0.5392782673950876]), 'versicolor&1&306': np.array([0.1413116283690917, 0.7479856297394165]), 'versicolor&1&307': np.array([0.189773257421942, 0.6552150653012478]), 'versicolor&1&308': np.array([0.40694846236352233, 0.5109051764198169]), 'versicolor&1&309': np.array([0.1390424906594644, 0.7991613016301518]), 'versicolor&1&310': np.array([0.1945777487290197, 0.6743932844312892]), 'versicolor&1&311': np.array([0.415695226122737, 0.5230815102377903]), 'versicolor&1&312': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&313': np.array([0.25657760110071476, 0.12592645350389123]), 'versicolor&1&314': np.array([0.13717260713320106, 0.3627779907901665]), 'versicolor&2&0': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&1': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&2': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&3': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&4': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&5': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&6': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&7': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&8': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&9': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&10': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&11': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&12': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&13': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&14': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&15': np.array([0.37157691321004915, 0.12216227283618836]), 'versicolor&2&16': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&17': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&18': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&19': np.array([0.4741571944522723, -0.3872697414416878]), 'versicolor&2&20': np.array([0.24630541996506908, 0.24630541996506994]), 'versicolor&2&21': np.array([0.68663266357557, -0.6475988779804592]), 'versicolor&2&22': np.array([0.8701760330833639, -0.5914646440996656]), 'versicolor&2&23': np.array([0.6273836195848199, -0.15720981251964872]), 'versicolor&2&24': np.array([0.7292373173099087, -0.6975400952780954]), 'versicolor&2&25': np.array([0.9270035696082471, -0.640582639672401]), 'versicolor&2&26': np.array([0.6863652799597699, -0.21335694415409426]), 'versicolor&2&27': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&28': np.array([0.04449246321056282, -0.709644945972203]), 'versicolor&2&29': np.array([0.2953784217387408, -0.6750352694420283]), 'versicolor&2&30': np.array([0.5188517506916897, 0.036358567813067386]), 'versicolor&2&31': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&32': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&33': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&34': np.array([0.5354807894355184, -0.3418054346754283]), 'versicolor&2&35': np.array([0.5131939273945454, 0.04199748266790813]), 'versicolor&2&36': np.array([0.5761361484884252, -0.44637460220261904]), 'versicolor&2&37': np.array([0.7268664040181829, -0.40159406680426807]), 'versicolor&2&38': np.array([0.5917672401610737, -0.061499563231173816]), 'versicolor&2&39': np.array([0.5921993039887428, -0.46498571089163954]), 'versicolor&2&40': np.array([0.7470482158282458, -0.4169281153671854]), 'versicolor&2&41': np.array([0.5967658480721675, -0.06546963852548916]), 'versicolor&2&42': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&43': np.array([0.06285591932387405, -0.6914253444924359]), 'versicolor&2&44': np.array([0.34904320225465857, -0.6233384360811872]), 'versicolor&2&45': np.array([-0.8252668830593566, 0.11450866713130668]), 'versicolor&2&46': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&47': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&48': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&49': np.array([-0.8735738195653328, -0.046438180466149094]), 'versicolor&2&50': np.array([-0.8211795643076095, 0.11869650771610692]), 'versicolor&2&51': np.array([-0.8470213454017305, -0.0910504504559782]), 'versicolor&2&52': np.array([-0.8783521565540571, 0.01381094589198601]), 'versicolor&2&53': np.array([-0.8388485924434891, 0.09800790238640067]), 'versicolor&2&54': np.array([-0.8495871633670822, -0.08820642363054954]), 'versicolor&2&55': np.array([-0.8784816772224661, 0.017184907022714958]), 'versicolor&2&56': np.array([-0.835455914569297, 0.10189258327760495]), 'versicolor&2&57': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&58': np.array([-0.6441664102689847, -0.3012046426099901]), 'versicolor&2&59': np.array([-0.7640280271176497, -0.19364537761420375]), 'versicolor&2&60': np.array([-0.5227340800279543, 0.4209267574088147]), 'versicolor&2&61': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&62': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&63': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&64': np.array([-0.6188410763351541, -0.22803625884668638]), 'versicolor&2&65': np.array([-0.5140708637198534, 0.4305361238057349]), 'versicolor&2&66': np.array([-0.56940429361245, -0.3442345437882425]), 'versicolor&2&67': np.array([-0.6452502612229726, -0.04686872432129788]), 'versicolor&2&68': np.array([-0.596973015481227, 0.37395461795328944]), 'versicolor&2&69': np.array([-0.5760086048531655, -0.3353570725513232]), 'versicolor&2&70': np.array([-0.6488228567611906, -0.03186184826812757]), 'versicolor&2&71': np.array([-0.5903420131350324, 0.384224764046184]), 'versicolor&2&72': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&73': np.array([-0.2661726847443776, -0.6902916602462779]), 'versicolor&2&74': np.array([-0.2741128763380603, -0.7260889090887469]), 'versicolor&2&75': np.array([0.0, 0.47562425924289314]), 'versicolor&2&76': np.array([0.0, 0.4854368956593117]), 'versicolor&2&77': np.array([0.0, -0.7348263896003956]), 'versicolor&2&78': np.array([0.0, -0.7920887571493729]), 'versicolor&2&79': np.array([0.0, -0.507614207038711]), 'versicolor&2&80': np.array([0.0, 0.4854368956593117]), 'versicolor&2&81': np.array([0.0, -0.3982542883933272]), 'versicolor&2&82': np.array([0.0, -0.08633733326458487]), 'versicolor&2&83': np.array([0.0, 0.4039238345412103]), 'versicolor&2&84':
np.array([0.0, -0.38897705551367706])
numpy.array
from re import L import sqlite3 from cryptography.x509 import Extensions import matplotlib.pyplot as plt import numpy as np con = sqlite3.connect('ca-providers.db') cur = con.cursor() #cur.execute("select * from ca") #print(cur.fetchall()) #merge same providers together cur.execute("UPDATE ca SET ca_provider='DigiCert Inc' WHERE ca_provider='DigiCert, Inc.'") cur.execute("UPDATE ca SET ca_provider='Google Trust Services' WHERE ca_provider='Google Trust Services LLC'") #beyond Google Trust Services, we merge all providers together cur.execute("UPDATE ca SET ca_provider='Others' WHERE ca_provider NOT IN ('DigiCert Inc', 'Cloudflare, Inc.', \"Let's Encrypt\", 'Sectigo Limited', 'GlobalSign nv-sa', 'Amazon', 'GoDaddy.com, Inc.', 'Google Trust Services')") ################## CAMEMBERT ################################## cur.execute("SELECT ca_provider, COUNT(*) provider_count FROM ca WHERE ca_provider IS NOT 'Others' GROUP BY ca_provider ORDER BY provider_count DESC") #cur.execute("SELECT ca_provider, COUNT(*) provider_count FROM ca GROUP BY ca.ca_provider ORDER BY ca.ca_provider ASC") # #print(cur.fetchall()) data = cur.fetchall() print(data) # Data to plot ca_provider = [] provider_count = [] for row in data: ca_provider.append(row[0]) provider_count.append(row[1]) cur.execute("SELECT ca_provider, COUNT(*) provider_count FROM ca WHERE ca_provider IS 'Others' GROUP BY ca_provider") data = cur.fetchall() print(data) ca_provider.append(data[0][0]) provider_count.append(data[0][1]) #cur.execute("SELECT ca_provider FROM ca GROUP BY ca.ca_provider ORDER BY COUNT(*) DESC") labels = ca_provider #cur.execute("SELECT COUNT(*) provider_count FROM ca GROUP BY ca.ca_provider ORDER BY provider_count DESC") sizes = provider_count ######################## CUMULATIVE FLOW DIAGRAM ######################### cur.execute("SELECT MAX(ca_num) FROM ca") i_max = cur.fetchall()[0][0] print(i_max) scales = np.arange(0, i_max, 100) scales = scales+99 DigiCert = [] Cloudflare = [] Let_s_Encrypt = [] Sectigo = [] GlobalSign = [] Amazon = [] GoDaddy = [] Google = [] Others = [] i=0 while (i < i_max): #for i in scales: cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'DigiCert Inc' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (DigiCert == []): DigiCert.append(data[0][0]) elif (data == []): DigiCert.append(DigiCert[len(DigiCert) - 1]) else: DigiCert.append(data[0][0] + DigiCert[len(DigiCert) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'Cloudflare, Inc.' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (Cloudflare == []): Cloudflare.append(data[0][0]) elif (data == []): Cloudflare.append(Cloudflare[len(Cloudflare) - 1]) else: Cloudflare.append(data[0][0] + Cloudflare[len(Cloudflare) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS \"Let's Encrypt\" AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (Let_s_Encrypt == []): Let_s_Encrypt.append(data[0][0]) elif (data == []): Let_s_Encrypt.append(Let_s_Encrypt[len(Let_s_Encrypt) - 1]) else: Let_s_Encrypt.append(data[0][0] + Let_s_Encrypt[len(Let_s_Encrypt) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'Sectigo Limited' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (Sectigo == []): Sectigo.append(data[0][0]) elif (data == []): Sectigo.append(Sectigo[len(Sectigo) - 1]) else: Sectigo.append(data[0][0] + Sectigo[len(Sectigo) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'GlobalSign nv-sa' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (GlobalSign == []): GlobalSign.append(data[0][0]) elif (data == []): GlobalSign.append(GlobalSign[len(GlobalSign) - 1]) else: GlobalSign.append(data[0][0] + GlobalSign[len(GlobalSign) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'Amazon' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (Amazon == []): Amazon.append(data[0][0]) elif (data == []): Amazon.append(Amazon[len(Amazon) - 1]) else: Amazon.append(data[0][0] + Amazon[len(Amazon) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'GoDaddy.com, Inc.' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (GoDaddy == []): GoDaddy.append(data[0][0]) elif (data == []): GoDaddy.append(GoDaddy[len(GoDaddy) - 1]) else: GoDaddy.append(data[0][0] + GoDaddy[len(GoDaddy) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'Google Trust Services' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (Google == []): Google.append(data[0][0]) elif (data == []): Google.append(Google[len(Google) - 1]) else: Google.append(data[0][0] + Google[len(Google) - 1]) cur.execute("SELECT COUNT(*) provider_count FROM ca WHERE ca_provider IS 'Others' AND ca_num BETWEEN ? AND ? GROUP BY ca_provider", (i, i+99)) data = cur.fetchall() if (Others == []): Others.append(data[0][0]) elif (data == []): Others.append(Others[len(Others) - 1]) else: Others.append(data[0][0] + Others[len(Others) - 1]) i += 100 providers_values =
np.row_stack((DigiCert, Cloudflare, Let_s_Encrypt, Sectigo, GlobalSign, Amazon, GoDaddy, Google, Others))
numpy.row_stack
# it in fact extractes rules from the training data, the function of the neural network is to remove # insignificant attributes # OK # %% import torch import random import os import numpy as np import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt from tensorflow.keras import models, layers, optimizers, callbacks import torch.nn.functional as F import torch.nn as nn # from sample_enumerate_abstraction_pedagogical_ing_australian_dataset import * from joblib import dump, load import pickle import copy import sys random.seed(0) torch.autograd.set_detect_anomaly(True) # device=torch.device("cuda" if torch.cuda.is_available() else 'cpu') device=torch.device('cpu') from joblib import dump, load from sklearn.model_selection import train_test_split # %% # create a data storing path dirName='./v3/data2' if not os.path.exists(dirName): os.makedirs(dirName) other_data_name='./v3/data2' if not os.path.exists(other_data_name): os.makedirs(other_data_name) # %% print('beginnnnnnnnnnnnnnnnn') class Model(torch.nn.Module): def __init__(self): super(Model,self).__init__() num_input_features=9 num_output_features=1 self.flatten = torch.nn.Flatten() self.linear_relu_stack = torch.nn.Sequential( torch.nn.Linear(num_input_features,30), torch.nn.ReLU(), torch.nn.Linear(30,30), torch.nn.ReLU(), torch.nn.Linear(30,10), torch.nn.ReLU(), torch.nn.Linear(10,num_output_features), torch.nn.Sigmoid() ) def forward(self,x): x = self.flatten(x) y=self.linear_relu_stack(x) return y model=Model() model.load_state_dict(torch.load(other_data_name+'/german_nn_classifier.pth')) sc=load(other_data_name+'/german_std_scaler.bin') # %% X_train = np.load(other_data_name+'/germain_x_train.npy',allow_pickle=True) Y_train = np.load(other_data_name+'/germain_y_train.npy',allow_pickle=True) X_test = np.load(other_data_name+'/germain_x_test.npy',allow_pickle=True) Y_test = np.load(other_data_name+'/germain_y_test.npy',allow_pickle=True) logicalRules=np.load(other_data_name+'/logical_rules_german_data.npy',allow_pickle=True) print(f"extracted rule shape: {logicalRules.shape}") X_train=torch.from_numpy(X_train).type(torch.float32) # %% T_x=np.full([1,X_train.shape[1]],None) # Tidx=np.full([1,1],None) T_y=np.full([1],None) for i in range(X_train.shape[0]): x=copy.deepcopy(X_train[[i]]) # x_rule=copy.deepcopy(x) x=sc.transform(x) x=torch.from_numpy(x).type(torch.float32) y_pred=model(x).reshape((1,-1)) y_pred=y_pred.reshape(-1).detach().numpy().astype(np.float32).round() y_true=Y_train[[i]].astype(np.float32) if y_pred==y_true: if T_x[0,0]==None: T_x=copy.deepcopy(np.array(X_train[[i]]).astype('float32')) else: T_x=np.concatenate((T_x,copy.deepcopy(np.array(X_train[[i]]).astype('float32'))),axis=0) if T_y[0]==None: T_y=copy.deepcopy(y_true) else: T_y=np.concatenate((T_y,copy.deepcopy(y_true))) # %% # pruning # E_x=[] # E_y=[] # err=[] # for i in range(T_x.shape[1]): # print('i: ',i) # Ei_x=np.full([1,X_train.shape[1]],None) # Ei_y=np.full([1],None) # model.load_state_dict(torch.load(other_data_name+'/german_nn_classifier.pth')) # for j in range(T_x.shape[0]): # # print('j: ',j) # x=copy.deepcopy(T_x[[j]]) # x=sc.transform(x) # x=torch.from_numpy(x).type(torch.float32) # keyv=list(model.state_dict().keys()) # model.state_dict()[keyv[0]][:,[i]]=torch.zeros(model.state_dict()[keyv[0]][:,[i]].shape) # y_pred=model(x).reshape((1,-1)) # y_pred=y_pred.reshape(-1).detach().numpy().astype(np.float32).round() # y_true=T_y[[j]].astype(np.float32) # if y_pred!=y_true: # if Ei_x[0,0]==None: # Ei_x=copy.deepcopy(np.array(T_x[[j]]).astype("float32")) # else: # Ei_x=np.concatenate((Ei_x,copy.deepcopy(np.array(T_x[[j]]).astype("float32"))),axis=0) # if Ei_y[0]==None: # Ei_y=copy.deepcopy(y_true) # else: # Ei_y=np.concatenate((Ei_y,copy.deepcopy(y_true))) # E_x.append(copy.deepcopy(Ei_x)) # E_y.append(copy.deepcopy(Ei_y)) # err.append(Ei_x.shape[0]) # %% # for i in range(len(err)): # print(f'i: {i}') # print(err[i]) #--> no attributes are deleted # with open(other_data_name+"/E_x.txt", "wb") as fp: #Pickling # pickle.dump(E_x, fp) # with open(other_data_name+"/E_y.txt", "wb") as fp: #Pickling # pickle.dump(E_y, fp) # with open(other_data_name+"/E_x.txt", "wb") as fp: #Pickling # pickle.dump(err, fp) # %% # pruning # with open(other_data_name+"/E_x.txt", "wb") as fp: #Pickling # E_x=pickle.load(fp) # with open(other_data_name+"/E_y.txt", "wb") as fp: #Pickling # E_y=pickle.load(fp) # with open(other_data_name+"/E_x.txt", "wb") as fp: #Pickling # err=pickle.load(fp) # % # %% # pruning # testing on test dataset model.load_state_dict(torch.load(other_data_name+'/german_nn_classifier.pth')) x_test=torch.from_numpy(np.array(sc.transform(X_test))).type(torch.float32) predicted=model(x_test) predicted=predicted.reshape(-1).detach().numpy().astype(np.float32).round() Y_test=Y_test.astype(np.float32) acc=(predicted==Y_test).mean() print(acc) # %% # pruning # input node 0 is removed keyv=list(model.state_dict().keys()) # model.state_dict()[keyv[0]][:,[0]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[9]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[3]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[9]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[7]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[8]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[9]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[11]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[12]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[13]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[14]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[16]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[17]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[18]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[20]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[22]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[23]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[25]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) # model.state_dict()[keyv[0]][:,[27]]=torch.zeros(model.state_dict()[keyv[0]][:,[0]].shape) x_test=torch.from_numpy(np.array(sc.transform(X_test))).type(torch.float32) predicted=model(x_test) predicted=predicted.reshape(-1).detach().numpy().astype(np.float32).round() Y_test=Y_test.astype(np.float32) acc=(predicted==Y_test).mean() print(acc) model.load_state_dict(torch.load(other_data_name+'/german_nn_classifier.pth')) # %% # Data range computation Range=np.full([X_train.shape[1], len(set(Y_train))],None) classes=list(set(Y_train)) classes=sorted(classes, key=lambda x: x) for c in range(len(classes)): C_x=np.full([1,T_x.shape[1]],None) for i in range(T_x.shape[0]): if T_y[i]==classes[c]: if C_x[0,0]==None: C_x=copy.deepcopy(np.array(T_x[[i]]).astype('float32')) else: C_x=np.concatenate((C_x,copy.deepcopy(
np.array(T_x[[i]])
numpy.array
from abc import ABCMeta, abstractmethod import numpy as np import imaging_db.utils.meta_utils as meta_utils class FileSplitter(metaclass=ABCMeta): """Read different types of files and separate frame information""" def __init__(self, data_path, storage_dir, storage_class, storage_access=None, overwrite=False, file_format=".png", nbr_workers=4, int2str_len=3): """ :param str data_path: Full path to file or directory name :param str storage_dir: Directory where data will be stored :param class storage_class: LocalStorage or S3Storage filestorage class :param str/None storage_access: If not using predefined storage locations, this parameter refers to mount_point for local storage and bucket_name for S3 storage. :param bool overwrite: Will not continue DataStorage if dataset is already present in storage. :param str file_format: Image file format (preferred is png) :param int int2str_len: How many integers will be added to each index """ self.data_path = data_path self.storage_dir = storage_dir # Instantiate local or S3 storage class self.data_uploader = storage_class( storage_dir=self.storage_dir, nbr_workers=nbr_workers, access_point=storage_access, ) if not overwrite: self.data_uploader.assert_unique_id() self.file_format = file_format self.nbr_workers = nbr_workers self.int2str_len = int2str_len self.im_stack = None self.frames_meta = None self.frames_json = None self.global_meta = None self.global_json = None # The following three parameters will be set in set_frame self.frame_shape = None self.im_colors = None self.bit_depth = None def get_imstack(self): """ Checks that image stack has been assigned and if so returns it :return np.array im_stack: Image stack """ assert self.im_stack is not None,\ "Image stack has not been assigned yet" return self.im_stack def get_global_meta(self): """ Checks if metadata is assigned and if so returns it :return dict global_meta: Global metadata for file """ assert self.global_meta is not None, \ "global_meta has no values yet" return self.global_meta def get_global_json(self): """ Checks if metadata is assigned and if so returns it :return dict global_json: Non-required (variable) global metadata """ assert self.global_json is not None, \ "global_json has no values yet" return self.global_json def _generate_hash(self, im_stack): """ calculates the sha256 checksum for all image slices :param ndarray im_stack: image to be hashed :return list sha: sha256 hashes indexed by the image index """ sha = [] for i in range(im_stack.shape[3]): sha.append(meta_utils.gen_sha256(im_stack[..., i])) return sha def get_frames_meta(self): """ Checks if metadata is assigned and if so returns it :return pd.DataFrame frames_meta: Associated metadata for each frame """ assert self.frames_meta is not None, \ "frames_meta has no values yet" return self.frames_meta def get_frames_json(self): """ Checks if metadata is assigned and if so returns it :return dict frames_json: Non-required (variable) metadata for each frame """ assert self.frames_json is not None, \ "frames_json has no values yet" return self.frames_json def _get_imname(self, meta_row): """ Generate image (frame) name given frame metadata and file format. :param dict meta_row: Metadata for frame, must contain frame indices :return str imname: Image file name """ return "im_c" + str(meta_row["channel_idx"]).zfill(self.int2str_len) + \ "_z" + str(meta_row["slice_idx"]).zfill(self.int2str_len) + \ "_t" + str(meta_row["time_idx"]).zfill(self.int2str_len) + \ "_p" + str(meta_row["pos_idx"]).zfill(self.int2str_len) + \ self.file_format def set_global_meta(self, nbr_frames): """ Add values to global_meta given all of the metadata for all the frames. :param int nbr_frames: Total number of frames """ assert not isinstance(self.frame_shape, type(None)),\ "Frame shape is empty" self.global_meta = { "storage_dir": self.storage_dir, "nbr_frames": nbr_frames, "im_height": self.frame_shape[0], "im_width": self.frame_shape[1], "im_colors": self.im_colors, "bit_depth": self.bit_depth, "nbr_slices": len(
np.unique(self.frames_meta["slice_idx"])
numpy.unique
import pygame as pg import numpy as np from numba import njit def main(): pg.init() pg.display.set_caption("Dead and - A Python game by FinFET, thanks for playing!") font = pg.font.SysFont("Courier New", 70) sounds = load_sounds() m_vol, sfx_vol, music = 0.4, 0.5, 0 set_volume(m_vol, sfx_vol, sounds) sounds['music'+str(music)].play(-1) stepdelay = pg.time.get_ticks()/200 stepdelay2 = stepdelay click, clickdelay = 0, stepdelay screen = pg.display.set_mode((800,600)) running, pause, options, newgame = 1, 1, 0, 2 clock = pg.time.Clock() pg.mouse.set_visible(False) timer = 0 hres, halfvres, mod, frame = adjust_resolution() fullscreen = 0 level, player_health, swordsp, story = 0, 0, 0, 0 #sky1, floor, wall, door, window, enemies level_textures = [[0, 1, 0, 0, 1, 4], #level 0 [0, 2, 1, 1, 0, 3], #level 1 [1, 0, 2, 1, 1, 4], #level 2 [1, 3, 1, 0, 0, 1], #level 3 [2, 1, 2, 1, 1, 0], #level 4 [2, 0, 0, 0, 0, 2]] #level 5 menu = [pg.image.load('Assets/Textures/menu0.png').convert_alpha()] menu.append(pg.image.load('Assets/Textures/options.png').convert_alpha()) menu.append(pg.image.load('Assets/Textures/credits.png').convert_alpha()) menu.append(pg.image.load('Assets/Textures/menu1.png').convert_alpha()) hearts = pg.image.load('Assets/Textures/hearts.png').convert_alpha() colonel = pg.image.load('Assets/Sprites/colonel1.png').convert_alpha() hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) exit1 = pg.image.load('Assets/Textures/exit.png').convert_alpha() exit2 = 1 exits = [pg.Surface.subsurface(exit1,(0,0,50,50)), pg.Surface.subsurface(exit1,(50,0,50,50))] splash = [] for i in range(4): splash.append(pg.image.load('Assets/Textures/splash'+str(i)+'.jpg').convert()) blood = pg.image.load('Assets/Textures/blood0.png').convert_alpha() blood_size = np.asarray(blood.get_size()) sky1 = hearts.copy() # initialize with something to adjust resol on start msg = "Press any key..." surf = splash[0].copy() splash_screen(msg, splash[0], clock, font, screen) msg = " " while running: pg.display.update() ticks = pg.time.get_ticks()/200 er = min(clock.tick()/500, 0.3) if not pause and (player_health <= 0 or (exit2 == 0 and int(posx) == exitx and int(posy) == exity)): msg = ' ' if player_health <= 0: sounds['died'].play() newgame = 2 surf = splash[3].copy() else: level += 1 player_health = min(player_health+2, 20) sounds['won'].play() newgame = 1 if level > 5: level, newgame = 0, 2 sounds['died'].play() surf = splash[2].copy() surf.blit(font.render('Total time: ' + str(round(timer,1)), 1, (255, 255, 255)), (20, 525)) else: msg = "Cleared level " + str(level-1)+'!' splash_screen(msg, surf, clock, font, screen) pause, clickdelay = 1, ticks pg.time.wait(500) if pg.mouse.get_pressed()[0]: if swordsp < 1 and not pause: swordsp, damage_mod = 1, 1 if pause and ticks - clickdelay > 1: click, clickdelay = 1, ticks sounds['healthup'].play() for event in pg.event.get(): if event.type == pg.QUIT: running = False if event.type == pg.KEYDOWN: if event.key == ord('p') or event.key == pg.K_ESCAPE: if not pause: pause = 1 else: if options > 0: options = 0 elif newgame == 0: pause = 0 pg.mouse.set_pos(400,300) if event.key == ord('f'): # toggle fullscreen pg.display.toggle_fullscreen() fullscreen = not(fullscreen) if pause: clock.tick(60) surf2, pause, options, running, newgame, adjust_res, m_vol, sfx_vol, story = pause_menu( surf.copy(), menu, pause, options, click, running, m_vol, sfx_vol, sounds, newgame, font, msg, level, ticks, hres, story) if adjust_res != 1: hres, halfvres, mod, frame = adjust_resolution(int(hres*adjust_res)) sky = pg.surfarray.array3d(pg.transform.smoothscale(sky1, (720, halfvres*4))) adjust_res = 1 screen.blit(surf2, (0,0)) click = 0 if newgame == 1: newgame, pause = 0, not(pause) if player_health <= 0 or msg[0] != 'C': surf = splash[1].copy() splash_screen(' ', surf, clock, font, screen) level, player_health, timer = 0, 20, -0.1 if np.random.randint(0, 2) != music: sounds['music'+str(music)].fadeout(1000) music = int(not(music)) sounds['music'+str(music)].play(-1) msg = 'Loading...' surf2 = surf.copy() surf2.blit(font.render(msg, 1, (255, 255, 255)), (30, 500)) surf2.blit(font.render(msg, 1, (30, 255, 155)), (32, 502)) screen.blit(surf2, (0,0)) pg.display.update() msg = 'Kill the monsters!' if story: posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount, size = load_map(level) nlevel = level_textures[level] else: size = np.random.randint(10+level*2, 16+level*2) nenemies = size #number of enemies posx, posy, rot, rotv, maph, mapc, exitx, exity, stepscount = gen_map(size) nlevel = [np.random.randint(0,3), #sky1 np.random.randint(0,4), #floorwall np.random.randint(0,3), #wall np.random.randint(0,2), #door np.random.randint(0,2), #window np.random.randint(0,5), #enemies ] nenemies = level**2 + 10 + level #number of enemies sprites, spsize, sword, swordsp = get_sprites(nlevel[5]) sky1, floor, wall, bwall, door, window = load_textures(nlevel) sky = pg.surfarray.array3d(pg.transform.smoothscale(sky1, (720, halfvres*4))) enemies = spawn_enemies(nenemies, maph, size, posx, posy, level/2) hearts2 = pg.Surface.subsurface(hearts,(0,0,player_health*10,20)) exit2, damage_mod, blood_scale = 1, 1, 1 mape, minimap =
np.zeros((size, size))
numpy.zeros
import argparse import cv2 as cv import numpy as np import pandas as pd parser = argparse.ArgumentParser(description='Segment the cells from an image.') parser.add_argument(dest="segment", type=str, help = "Segmentation to pixelize") parser.add_argument(dest="centroids", type=str, help="Write out each cell as pixel.") parser.add_argument("--centroid-intensity", dest="centroid_intensity", type=int, default=255) args = parser.parse_args() if __name__ == '__main__': segment = cv.imread(args.segment, cv.COLOR_BGR2GRAY) contours, hierarchy = cv.findContours(segment.astype("uint8"), cv.RETR_EXTERNAL, cv.CHAIN_APPROX_NONE) # cv.findContours returns a list of np.ndarray of shape [px, unknown, 2]. contours = [
np.squeeze(contour, axis=1)
numpy.squeeze
import cv2 import numpy as np import tensorflow as tf from keras.models import load_model, save_model import serial MODEL_FILE = "opencv_face_detector_uint8.pb" CONFIG_FILE = "opencv_face_detector.pbtxt" SIZE = 300 CONFIDENCE_FACE = 0.9 RESULT = ['with_mask' , 'without_mask'] MARGIN_RATIO = 0.2 CONFIG = { "SENSOR_X_RESOLUTION" : 32, "SENSOR_Y_RESOLUTION" : 32, "CHANNELS" : 3, "DATA_REQUEST_COMMAND" : [0x51 , 0x75 , 0x65, 0x72 , 0x79 , 0x43 , 0x61 , 0x6C , 0x63 , 0x54 , 0x0D , 0x0A], "SENSOR_DATA_TOTAL_LEN" : 2060, "TSM_SENSOR_NAME" : "COM3", "TSM_SENSOR_BAUD_RATE" : 115200, "RESOLUTION" : (575,575) } # def OpenThermalSensor(): try: TSM_COM_Port = serial.Serial( CONFIG["TSM_SENSOR_NAME"] , CONFIG["TSM_SENSOR_BAUD_RATE"] ) return TSM_COM_Port except: return False # def GetHumanTemp( TSM_COM_Port ): TSM_COM_Port.write( bytearray( CONFIG["DATA_REQUEST_COMMAND"] ) ) total_len = 0 Received_Data = bytearray() ImageData = np.zeros([CONFIG["SENSOR_X_RESOLUTION"] , CONFIG["SENSOR_Y_RESOLUTION"] , CONFIG["CHANNELS"]] , dtype=np.uint8) # Receive Thermal Sensor Data while True: data = TSM_COM_Port.read( 1 ) Received_Data = Received_Data + data total_len = total_len + len(data) if total_len >= CONFIG["SENSOR_DATA_TOTAL_LEN"]: break DegData , AmbTemp , HumanTemp , HumanPosRow , HumanPosCol = ExtractData( Received_Data ) return HumanTemp # def ExtractData( SensorData ): DegData = np.array(range( CONFIG["SENSOR_X_RESOLUTION"] * CONFIG["SENSOR_Y_RESOLUTION"] ) , np.float) for idx in range(2,2050,2): DegData[int((idx / 2)-1)] = (( SensorData[idx+1] * 256 + SensorData[idx] ) - 2731 ) / 10.0 AmbTemp = (( SensorData[2051] * 256 + SensorData[2050] ) - 2731 ) / 10.0 HumanTemp = float(SensorData[2052]) + (float(SensorData[2053]) / 100.0) HumanPosRow = SensorData[2054] HumanPosCol = SensorData[2056] return DegData , AmbTemp , HumanTemp , HumanPosRow , HumanPosCol # def Inference( TSM_COM_Port ): print(tf.__version__) # Load Face Detection Model net = cv2.dnn.readNetFromTensorflow( MODEL_FILE , CONFIG_FILE ) # Loading Model print("Loading Saved Model...") model = load_model("CheckPoints_Mask_Detection_Val_Acc_0.97494") cap = cv2.VideoCapture(0) while cv2.waitKey(1) < 0: ret, frame = cap.read() rows, cols, channels = frame.shape blob = cv2.dnn.blobFromImage(frame, 1.0)#, (SIZE, SIZE)) # , (104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward() detection = detections[0, 0] i = np.argmax(detection[:,2]) if i != 0: print("Max index is not 0") continue if detection[i,2] < CONFIDENCE_FACE: print("Low CONFIDENCE_FACE" , detection[i,2]) continue if detection[i,3] >= 1.00 or detection[i,4] >= 1.00 or detection[i,5] >= 1.00 or detection[i,6] >= 1.00 or detection[i,3] <= 0 or detection[i,4] < 0 or detection[i,5] <= 0 or detection[i,6] <= 0: pass else: left = int(detection[i,3] * cols) top = int(detection[i,4] * rows) right = int(detection[i,5] * cols) bottom = int(detection[i,6] * rows) left = left - int((right - left) * MARGIN_RATIO) top = top - int((bottom - top) * MARGIN_RATIO) right = right + int((right - left) * MARGIN_RATIO) bottom = bottom + int((bottom - top) * MARGIN_RATIO) if left < 0: left = 0 if right > cols: right = cols if top < 0: top = 0 if bottom > rows: bottom = rows cropped = frame[top:bottom, left:right] cropped = cv2.cvtColor(cropped, cv2.COLOR_BGR2RGB) cropped = cv2.resize( cropped , dsize=(224,224) ) cropped =
np.array(cropped)
numpy.array
import numpy as np from library import * from datetime import datetime from energy_evaluation import read_from_tags ## To reproduce Figures 6-9, do the following: ################# Step 1 ############################### ## First, run the classical optimization. For example: def optimize_all(n=12,hz=0.1): from optimization import optimize for l in [0,1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50]: for hx in [0.1,0.2,0.3,0.4,0.5,1.5]: optimize(n,l,hx,hz,method='BFGS',gpu=True,jac=True) ## if jac=True, the gradient is computed analytically, in parallel. If gpu=True, then the optimization uses a gpu. (This requires cupy.) If you do not have a gpu, you should set gpu=False. You can play around with the different optimization methods in https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.htm. We usually used TNC, but BFGS may work well too. In optimization.py, change /your_directory/... to be the location where you want to save parameters. You will need to set up the directories before running the optimizer. ## if you want to impose cyclic permutation symmetry, then instead do def optimize_all_symm(n=12,hz=0.1): from optimization import optimize_symm for l in [0,1,2,3,4,5,6,7,8,9,10,15,20,25,30,35,40,45,50]: for hx in [0.1,0.2,0.3,0.4,0.5,1.5]: optimize_symm(n,l,hx,hz,method='BFGS',gpu=True,jac=True) ## Same comments about gpu and jac as above. ## Make sure that your optimizers have (approximately) converged before continuing. For our work, we imposed permutation symmetry for the 20 qubit case above 10 layers. ############# Step 2 ######################### ## Next, to compare the mitigation methods, submit ansatz circuits with the optimized parameters, in addition to \theta=0 circuits. # use something like the following. It will need to be modified for your directory and whether you imposed permutation symmetry def submit_saved_params(n,l,hx,backend_name,hz=0.1,rand_compile=True,noise_scale=1): from energy_evaluation import submit_ising, submit_ising_symm my_directory = '/your_directory/saved_parameters/' if not hasattr(l,'__iter__'): l = [l] if not hasattr(hx,'__iter__'): hx = [hx] for li in l: if n < 20 or (n == 20 and li < 10): symm = False base_dir = my_directory+'ising/ALAy_cx/' elif n == 20 and li >= 10: symm = True base_dir = my_directory+'ising/ALAy_symm/' for hxi in hx: E = float(np.genfromtxt(base_dir+'n'+str(n)+'_l'+str(li)+'_hx'+str(hxi)+'_hz'+str(hz)+'/E.csv')) theta = np.genfromtxt(base_dir+'n'+str(n)+'_l'+str(li)+'_hx'+str(hxi)+'_hz'+str(hz)+'/theta.csv',delimiter=',') if not symm: submit_ising(n,theta,backend_name,shots=1024,hx=hxi,hz=hz,E=E,rand_compile=rand_compile,noise_scale=noise_scale) elif symm: submit_ising_symm(n,theta,backend_name,shots=8192,hx=hxi,hz=hz,E=E,input_condensed_theta=False,rand_compile=rand_compile,noise_scale=noise_scale) def submit_zero_calibration(n,l,backend_name,rand_compile=True,noise_scale=1): from energy_evaluation import all_ising_Paulis_symm, submit_circuits if not hasattr(l,'__iter__'): l = [l] whichPauli = all_ising_Paulis_symm(n) for li in l: theta = np.zeros(n*(li+1)) submit_circuits(theta,whichPauli,backend_name,tags=['zero_theta_calibration'],shots=8192,rand_compile=rand_compile,noise_scale=noise_scale) ## It is important that the backend is not recalibrated between when any of the above jobs run. To check the latest calibration datetime use def latest_calibration_date(backend_name,n): from qiskit import IBMQ from energy_evaluation import load_qubit_map account = IBMQ.load_account() backend = account.get_backend(backend_name) properties = backend.properties() gates = properties.gates qubits = properties.qubits loop_qubits = load_qubit_map(backend_name,n) sx_dates = [gate.parameters[0].date for gate in gates if gate.gate == 'sx' and gate.qubits[0] in loop_qubits] cx_dates = [gate.parameters[0].date for gate in gates if gate.gate == 'cx' and gate.qubits[0] in loop_qubits and gate.qubits[1] in loop_qubits] em_dates = [ qubits[q][4].date for q in loop_qubits] return max( max(cx_dates), max(sx_dates), max(em_dates) ) ## you might also want to check the latest calibration date at a time when a job ran. To do this, use: def latest_calibration_date_from_job(job_id): from qiskit import IBMQ from energy_evaluation import load_qubit_map, read_from_tags job = account.backends.retrieve_job(job_id) n = read_from_tags('n',job.tags()) properties = job.properties() backend_name = job.backend().name() gates = properties.gates qubits = properties.qubits loop_qubits = load_qubit_map(backend_name,n,0) sx_dates = [gate.parameters[0].date for gate in gates if gate.gate == 'sx' and gate.qubits[0] in loop_qubits] cx_dates = [gate.parameters[0].date for gate in gates if gate.gate == 'cx' and gate.qubits[0] in loop_qubits and gate.qubits[1] in loop_qubits] em_dates = [ qubits[q][4].date for q in loop_qubits] return max( max(cx_dates), max(sx_dates), max(em_dates) ) ############ Step 3 ############### ## Now that your circuits have run successfully, it is time to analyze the results. ## Use the following functions to compare the observed damping factors to the predicted damping factors. # The observed damping factor for a given job, with or without readout error mitigation applied, is def damping_from_job(job,readout_mitigate=True,readout_calibration_job=[]): from energy_evaluation import ising_energy_from_job E_exact = read_from_tags('E',job.tags()) E_meas, dE_meas = ising_energy_from_job(job,readout_mitigate,readout_calibration_job) print('E_meas = '+str(E_meas)) print('dE_meas = '+str(dE_meas)) damping = E_meas/E_exact d_damping = abs(dE_meas/E_exact) return damping, d_damping ## We use several methods of predicting the damping factor: def plot_figs(backend,n=20,hx=1.5,hz=0.1,l_all=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,25,30,35,40,45,50],readout_mitigate=True,plot_ZNE=False,load_from_saved=False,threshold=0.1,plot_ZNE_calib=False,plot_from_pert=False): import matplotlib.pyplot as plt from matplotlib import container from matplotlib import colors import pickle ## first, retrieve the data: if readout_mitigate: filename = backend.name()+'_n'+str(n)+".p" else: filename = backend.name()+'_n'+str(n)+"_no_readout_mitigation.p" if load_from_saved: damping, d_damping, rel_error, d_rel_error = pickle.load( open( filename, "rb" ) ) else: damping = {} d_damping = {} rel_error = {} d_rel_error = {} methods = ['raw','from pert','from small $l$',r'$\theta = 0$'] for method in methods: damping[method] = np.empty(len(l_all)) damping[method][:] = np.nan d_damping[method] = np.empty(len(l_all)) d_damping[method][:] = np.nan methods_ZNE = ['ZNE',r'$\theta = 0$ + ZNE first',r'$\theta = 0$ + ZNE last'] rel_error = {} d_rel_error = {} for method in methods + methods_ZNE: rel_error[method] = np.empty(len(l_all)) rel_error[method][:] = np.nan d_rel_error[method] = np.empty(len(l_all)) d_rel_error[method][:] = np.nan fit_shallow = small_l_fit(backend,n,hx,hz,max_l=15,readout_mitigate=readout_mitigate) for _ in range(len(l_all)): l = l_all[_] print('starting l = '+str(l)) if l > 0: limit = 3 else: limit = 1 jobs = backend.jobs(limit=limit,job_tags=['n = '+str(n),'l = '+str(l),'hx = '+str(hx),'hz = '+str(hz)],job_tags_operator='AND') jobs_calib = backend.jobs(limit=limit,job_tags=['zero_theta_calibration','n = '+str(n),'l = '+str(l)],job_tags_operator='AND') for job in jobs: if read_from_tags('noise_scale',job.tags()) == 1.0: break for job_calib in jobs_calib: if read_from_tags('noise_scale',job_calib.tags()) == 1.0: break damping['raw'][_], d_damping['raw'][_] = damping_from_job(job,readout_mitigate) damping['from pert'][_], d_damping['from pert'][_] = damping_est_pert(job,readout_mitigate,plot=plot_from_pert,damping1_5=damping['raw'][_],d_damping1_5=d_damping['raw'][_]) damping['from small $l$'][_], d_damping['from small $l$'] = pred_from_fit(l,fit_shallow) damping[r'$\theta = 0$'][_], d_damping[r'$\theta = 0$'][_] = damping_from_zero_theta_energy(job_calib,hx,hz,readout_mitigate) if l > 0: rel_error['ZNE'][_], d_rel_error['ZNE'][_] = ZNE(jobs,readout_mitigate=readout_mitigate,plot=plot_ZNE) rel_error[r'$\theta = 0$ + ZNE last'][_], d_rel_error[r'$\theta = 0$ + ZNE last'][_] = damping_zero_theta_ZNE(jobs,jobs_calib,order='extrapolate_last',readout_mitigate=readout_mitigate,plot=plot_ZNE_calib) rel_error[r'$\theta = 0$ + ZNE first'][_], d_rel_error[r'$\theta = 0$ + ZNE first'][_] = damping_zero_theta_ZNE(jobs,jobs_calib,order='extrapolate_first',readout_mitigate=readout_mitigate,plot=plot_ZNE_calib) for method in rel_error: rel_error[method][_] -= 1 for method in damping: if (method != 'raw' and method != 'ZNE'): rel_error[method] = damping['raw']/damping[method] - 1 d_rel_error[method] = np.sqrt( (d_damping['raw']/damping[method])**2 + (damping['raw']*d_damping[method]/damping[method]**2)) elif method == 'raw': rel_error[method] = damping[method] - 1 d_rel_error[method] = d_damping[method] pickle.dump( (damping, d_damping, rel_error, d_rel_error), open( filename, "wb" ) ) ## now plot markers = ['o','v','^','<','>','s','P','*','+','x','D'] marker_i = 0 ### damping: fig, ax = plt.subplots() for method in damping: if method == 'raw': plt.errorbar(l_all,damping[method],d_damping[method],label='true damping factor',linewidth=3,capsize=4,fmt=markers[marker_i]) else: plt.errorbar(l_all,damping[method],d_damping[method],label='predicted, '+method,linewidth=3,capsize=4,fmt=markers[marker_i]+'-') marker_i += 1 plt.xlabel('number of ansatz layers',fontsize = 20) plt.ylabel('actual or predicted damping factor',fontsize = 18) # removing error bars from legend using https://swdg.io/2015/errorbar-legends/ handles, labels = ax.get_legend_handles_labels() new_handles = [] for h in handles: #only need to edit the errorbar legend entries if isinstance(h, container.ErrorbarContainer): new_handles.append(h[0]) else: new_handles.append(h) ax.legend(new_handles, labels,loc='best',prop={'size': 11}) plt.ylim((1e-2,1)) ax = plt.gca() ax.tick_params(axis='both', which='major', labelsize=15) ax.tick_params(axis='both', which='minor', labelsize=15) plt.title(backend.name(),fontsize=20) plt.yscale('log') fig.tight_layout() ### relative error: marker_i = 0 fig, ax = plt.subplots() for method in rel_error: plt.errorbar(l_all,rel_error[method],d_rel_error[method],label=method,linewidth=3,capsize=4,fmt=markers[marker_i]+'-') marker_i += 1 plt.xlabel('number of ansatz layers',fontsize = 20) plt.ylabel('relative error',fontsize = 18) # removing error bars from legend using https://swdg.io/2015/errorbar-legends/ handles, labels = ax.get_legend_handles_labels() new_handles = [] for h in handles: #only need to edit the errorbar legend entries if isinstance(h, container.ErrorbarContainer): new_handles.append(h[0]) else: new_handles.append(h) ax.legend(new_handles, labels,loc='best',prop={'size': 11}) #plt.legend(loc='best',prop={'size': 11}) plt.plot([min(l_all),max(l_all)],[threshold,threshold],'k--',linewidth=2) plt.plot([min(l_all),max(l_all)],[-threshold,-threshold],'k--',linewidth=2) plt.ylim((-1,3)) ax = plt.gca() ax.tick_params(axis='both', which='major', labelsize=15) ax.tick_params(axis='both', which='minor', labelsize=15) plt.title(backend.name(),fontsize=20) fig.tight_layout() cmap = colors.ListedColormap(np.array([[255,255,204],[161,218,180],[65,182,196],[34,94,168]])/255) scores = {} for method in rel_error: scores[method] = rel_error_score(rel_error[method],d_rel_error[method],threshold) fig, ax = plt.subplots() im = ax.imshow(list(scores.values()),cmap=cmap) # Loop over data dimensions and create text annotations. for i in range(len(scores)): for j in range(len(l_all)): if not np.isnan(list(scores.values())[i][j]): text = ax.text(j, i, list(scores.values())[i][j], ha="center", va="center", color="k") # We want to show all ticks... ax.set_xticks(np.arange(len(l_all))) ax.set_yticks(np.arange(len(scores))) # ... and label them with the respective list entries ax.set_xticklabels(l_all) ax.set_yticklabels(list(scores.keys())) plt.xlabel('number of ansatz layers',fontsize = 18) #plt.ylabel('mitigation method',fontsize = 15) plt.title(str(n)+' qubits, '+backend.name(),fontsize=15) ax.tick_params(axis='y', which='major', labelsize=12) ax.tick_params(axis='y', which='minor', labelsize=12) ax.tick_params(axis='x', which='major', labelsize=11) ax.tick_params(axis='x', which='minor', labelsize=11) fig.tight_layout() plt.show() # From the perturbative regime: def damping_est_pert(job,readout_mitigate=True,calibration_job=[],noise_scale=1,plot=False,damping1_5=0,d_damping1_5=0): backend = job.backend() tags = job.tags() n = read_from_tags('n',tags) hz = read_from_tags('hz',tags) symm = 'symm' in tags l = read_from_tags('l',tags) hx_pert = [0.1,0.2,0.3,0.4,0.5] damping_all = [] d_damping_all = [] for hx in hx_pert: desired_tags = ['Ising','l = '+str(l),'hx = '+str(hx),'n = '+str(n),'hz = '+str(hz),'noise_scale = '+str(noise_scale)] if symm: desired_tags.append('symm') job_pert = backend.jobs(limit=1,job_tags=desired_tags,job_tags_operator='AND')[0] damping_i, d_damping_i = damping_from_job(job_pert,readout_mitigate,calibration_job) damping_all.append(damping_i) d_damping_all.append(d_damping_i) damping = np.mean(damping_all) d_damping = np.std(damping_all)/np.sqrt(len(hx_pert)) if plot: import matplotlib.pyplot as plt hx = hx_pert + [1.5] damping_all.append(damping1_5) d_damping_all.append(d_damping1_5) plt.errorbar(hx,damping_all,d_damping_all,fmt='.',capsize=4,label='observed damping factors') plt.plot([min(hx),max(hx)],[damping,damping],'k') plt.plot([min(hx),max(hx)],[damping+d_damping,damping+d_damping],'k--') plt.plot([min(hx),max(hx)],[damping-d_damping,damping-d_damping],'k--') plt.legend(loc='best',prop={'size':15}) plt.xlabel('$h_x$', fontsize=20) plt.ylabel('damping factor',fontsize=20) ax = plt.gca() ax.tick_params(axis='both', which='major', labelsize=15) ax.tick_params(axis='both', which='minor', labelsize=15) if l != 1: plt.title(backend.name()+', '+str(l)+' ansatz layers',fontsize=20) else: plt.title(backend.name()+', '+str(l)+' ansatz layer',fontsize=20) plt.tight_layout() plt.show() return damping, d_damping # ZNE: def ZNE(jobs,readout_mitigate=True,plot=True): import matplotlib.pyplot as plt from matplotlib import container scales = [read_from_tags('noise_scale',j.tags()) for j in jobs] dampings = [] d_dampings = [] for job in jobs: damping, d_damping = damping_from_job(job,readout_mitigate=readout_mitigate) dampings.append(damping) d_dampings.append(d_damping) from scipy.optimize import curve_fit try: fit = curve_fit(exp_fit,scales,dampings,p0=[1,0.5],sigma=d_dampings,absolute_sigma=True) failed = False except: print('error: fit failed') failed = True if plot: fig, ax = plt.subplots() print('scales = '+str(scales)) print('dampings = '+str(dampings)) plt.errorbar(scales,dampings,d_dampings,label='measured energy/exact energy',linewidth=3,capsize=4) if not failed: plt.plot(np.linspace(0,max(scales),100),exp_fit(np.linspace(0,max(scales),100),fit[0][0], fit[0][1]),label='exponential fit') plt.xlabel('noise scale',fontsize = 18) plt.ylabel('energy/exact energy',fontsize = 18) plt.xlim([0,max(scales)]) dampings = np.array(dampings) d_dampings = np.array(d_dampings) plt.ylim([min(dampings-d_dampings),max(max(dampings+d_dampings), exp_fit(0,fit[0][0], fit[0][1]), 1)]) plt.yscale('log') ax.tick_params(axis='both', which='major', labelsize=15) ax.tick_params(axis='both', which='minor', labelsize=15) # removing error bars from legend using https://swdg.io/2015/errorbar-legends/ handles, labels = ax.get_legend_handles_labels() new_handles = [] for h in handles: #only need to edit the errorbar legend entries if isinstance(h, container.ErrorbarContainer): new_handles.append(h[0]) else: new_handles.append(h) ax.legend(new_handles, labels,loc='best',prop={'size': 11}) fig.tight_layout() plt.show() if failed: return float('nan'), float('nan') else: return pred_from_fit(0,fit) def ZNE_zero_theta(jobs,hx,hz,readout_mitigate=True,plot=True): import matplotlib.pyplot as plt scales = [read_from_tags('noise_scale',j.tags()) for j in jobs] dampings = [] d_dampings = [] for job in jobs: damping, d_damping = damping_from_zero_theta_energy(job,hx,hz,readout_mitigate=readout_mitigate) dampings.append(damping) d_dampings.append(d_damping) from scipy.optimize import curve_fit try: fit = curve_fit(exp_fit,scales,dampings,p0=[1,0.5],sigma=d_dampings,absolute_sigma=True) except: print('error: fit failed') return float('nan'), float('nan') if plot: plt.errorbar(scales,dampings,d_dampings,label='data') plt.plot(np.linspace(0,max(scales),100),exp_fit(np.linspace(0,max(scales),100),fit[0][0], fit[0][1]),label='fit') plt.legend(loc='best') plt.xlabel('noise scale') plt.ylabel('damping factor') plt.xlim([0,max(scales)]) plt.show() return pred_from_fit(0,fit) def damping_zero_theta_ZNE(jobs_ZNE,jobs_ZNE_zero_theta,order='extrapolate_last',readout_mitigate=True,plot=True): hx = read_from_tags('hx',jobs_ZNE[0].tags()) hz = read_from_tags('hz',jobs_ZNE[0].tags()) if order == 'extrapolate_first': damping, d_damping = ZNE(jobs_ZNE,readout_mitigate=readout_mitigate,plot=plot) damping_zero_theta, d_damping_zero_theta = ZNE_zero_theta(jobs_ZNE_zero_theta,hx,hz,readout_mitigate=readout_mitigate,plot=plot) return damping/damping_zero_theta, np.sqrt( (d_damping/damping_zero_theta)**2 + (damping*d_damping_zero_theta/damping_zero_theta**2)**2) elif order == 'extrapolate_last': dampings = [] d_dampings = [] scales = [] for i in range(len(jobs_ZNE)): job = jobs_ZNE[i] job_calib = jobs_ZNE_zero_theta[i] scales.append(read_from_tags('noise_scale',job.tags())) damping, d_damping = damping_from_job(job,readout_mitigate=readout_mitigate) damping_calib, d_damping_calib = damping_from_zero_theta_energy(job_calib,hx,hz,readout_mitigate=readout_mitigate) dampings.append(damping/damping_calib) d_dampings.append(np.sqrt( (d_damping/damping_calib)**2 + (damping*d_damping_calib/damping_calib**2)**2)) print('scale = '+str(scales[-1])) print('damping_i = '+str(dampings[-1])) print('d_damping_i = '+str(d_dampings[-1])) from scipy.optimize import curve_fit try: fit = curve_fit(exp_fit,scales,dampings,p0=[1,0.5],sigma=d_dampings,absolute_sigma=True) except: print('error: fit failed') return float('nan'), float('nan') if plot: import matplotlib.pyplot as plt plt.errorbar(scales,dampings,d_dampings,label='data') plt.plot(np.linspace(0,max(scales),100),exp_fit(np.linspace(0,max(scales),100),fit[0][0], fit[0][1]),label='fit') plt.legend(loc='best') plt.xlabel('noise scale') plt.ylabel('damping factor') plt.xlim([0,max(scales)]) plt.show() return pred_from_fit(0,fit) # from small l: def exp_fit(l,A,b): return A*np.exp(-b*l) def small_l_fit(backend,n,hx,hz,max_l=15,readout_mitigate=True,noise_scale=1): from scipy.optimize import curve_fit l_all = range(0,max_l+1) damping_all = [] d_damping_all = [] for l in l_all: desired_tags = ['Ising','l = '+str(l),'hx = '+str(hx),'n = '+str(n),'hz = '+str(hz)] jobs = backend.jobs(limit=3,job_tags=desired_tags,job_tags_operator='AND') for job in jobs: if read_from_tags('noise_scale',job.tags()) == noise_scale: break damping_i, d_damping_i = damping_from_job(job,readout_mitigate) damping_all.append(damping_i) d_damping_all.append(d_damping_i) fit_shallow = curve_fit(exp_fit,l_all,damping_all,p0=[1,0.5],sigma=d_damping_all,absolute_sigma=True) return fit_shallow def pred_from_fit(l,fit,size=100000): rng = np.random.default_rng() params = rng.multivariate_normal(fit[0],fit[1],size=size) est = exp_fit(l,params[:,0],params[:,1]) return np.mean(est), np.std(est) # from zero theta calibration: def Minv_uncorrelated_uncertainty(e0_0_pop, e1_0_pop, e0_1_pop, e1_1_pop, shots): num_trials = 100000 rng = np.random.default_rng() Minv = [] for trial in range(num_trials): e0_0 = rng.binomial(shots,e0_0_pop)/shots e1_0 = rng.binomial(shots,e1_0_pop)/shots e0_1 = rng.binomial(shots,e0_1_pop)/shots e1_1 = rng.binomial(shots,e1_1_pop)/shots M = [[ (1 - e0_0)*(1-e0_1), e1_0*(1-e0_1), e1_1*(1-e0_0), e1_0*e1_1], \ [e0_0*(1-e0_1), (1-e1_0)*(1-e0_1), e0_0*e1_1, e1_1*(1-e1_0)], \ [e0_1*(1-e0_0), e1_0*e0_1, (1-e0_0)*(1-e1_1), (1-e1_1)*e1_0], \ [e0_1*e0_0, (1-e1_0)*e0_1, e0_0*(1-e1_1), (1-e1_1)*(1-e1_0)]] Minv.append( np.linalg.inv(M)) return np.mean(Minv,axis=0), np.std(Minv,axis=0) def damping_from_zero_theta_energy(zero_calib_job,hx,hz,readout_mitigate=True,readout_calibrate_job=[]): from energy_evaluation import ising_energy_from_job, energy_from_job E_exact = -2*(1+hz) coeffs = [-1 for _ in range(2)] + [-hx for _ in range(2)] + [-hz for _ in range(2)] E_meas, dE_meas = energy_from_job(zero_calib_job,coeffs,readout_mitigate,readout_calibrate_job) damping = E_meas/E_exact d_damping = abs(dE_meas/E_exact) return damping, d_damping # finally, we have the two methods which estimate the damping from the reported error rates # simulating with qiskit aer noise model (not scalable): def noise_model_from_properties(properties,include_gate_errors=True,include_readout_errors=True): from qiskit.providers.aer.noise import device, NoiseModel gates = properties.gates basis_gates = list({g.gate for g in gates}) noise_model = NoiseModel(basis_gates=basis_gates) if include_gate_errors: gate_errors = device.basic_device_gate_errors(properties) for gate_error in gate_errors: noise_model.add_quantum_error(gate_error[2],gate_error[0],gate_error[1]) if include_readout_errors: readout_errors = device.basic_device_readout_errors(properties) for readout_error in readout_errors: noise_model.add_readout_error(readout_error[1], readout_error[0]) return noise_model def simulate_job(job,include_noise=True,gpu=True,include_gate_errors=True,include_readout_errors=True,density_matrix=True): # the gpu option requires qiskit-aer-gpu from qiskit import QuantumCircuit, execute, Aer, IBMQ import qiskit.providers.aer.noise as noise from qiskit.providers.aer import QasmSimulator from energy_evaluation import ansatz_circuit, load_qubit_map, read_from_tags, cycle_QuantumCircuit, energy_from_counts backend = job.backend() machine = backend.name() tags = job.tags() n = read_from_tags('n',tags) hx = read_from_tags('hx',tags) hz = read_from_tags('hz',tags) E = read_from_tags('E',tags) l = read_from_tags('l',tags) paulis = read_from_tags('whichPauli',tags) configs = read_from_tags('configs',tags) theta = read_from_tags('theta',tags) symm = 'symm' in tags if include_noise: #noise_model = noise.NoiseModel.from_backend(backend) noise_model = noise_model_from_properties(job.properties(),include_gate_errors,include_readout_errors) # Get coupling map from backend coupling_map = backend.configuration().coupling_map # Get basis gates from noise model basis_gates = noise_model.basis_gates if gpu and density_matrix: simulator = QasmSimulator(method='density_matrix_gpu') elif not gpu and density_matrix: simulator = QasmSimulator(method='density_matrix',max_parallel_threads=30) elif gpu and not density_matrix: simulator = QasmSimulator(method='statevector_gpu') elif not gpu and not density_matrix: simulator = QasmSimulator(method='statevector') qubits0 = load_qubit_map(machine,n) qc = [] multi_theta = len( np.shape(theta) ) > 1 if not multi_theta: theta = [theta] for theta_i in theta: for i in range(len(paulis)): pauli = paulis[i] for config in configs[i]: qc_i = ansatz_circuit(theta_i,pauli,rand_compile=False,noise_scale=1) qc_i = cycle_QuantumCircuit(qc_i,config) qc.append(qc_i) if include_noise: job2 = execute(qc, simulator, basis_gates=basis_gates, noise_model=noise_model,coupling_map=coupling_map,initial_layout=qubits0) else: job2 = execute(qc, Aer.get_backend('qasm_simulator')) counts = job2.result().get_counts() if symm: coeffs = [-1 for _ in range(2)] + [-hx for _ in range(2)] + [-hz for _ in range(2)] coeffs = np.array(coeffs) * n//2 else: coeffs = [-1 for _ in range(n)] + [-hx for _ in range(n)] + [-hz for _ in range(n)] E, dE = energy_from_counts(counts,coeffs) return E, dE def damping_from_aer_simulation(job,include_noise=True,gpu=True,include_gate_errors=True,include_readout_errors=True,density_matrix=True): # readout error is included in the aer simulation, so this should be compared to the measured dampings without readout error mitigation E_exact = read_from_tags('E',job.tags()) E_pred, dE_pred = simulate_job(job,include_noise,gpu,include_gate_errors,include_readout_errors,density_matrix) damping = E_pred/E_exact d_damping = dE_pred/E_exact return damping, d_damping # multiplying fidelities: def energy_from_job_mult_fidelities(job,coeffs): from library import damping_from_fidelities counts = job.result().get_counts() tags = job.tags() whichPauli_all = read_from_tags('whichPauli',tags) n = read_from_tags('n',tags) l = read_from_tags('l',tags) configs = read_from_tags('configs',tags) num_configs = len(configs[0]) num_thetas = len(counts)//(num_configs*len(whichPauli_all)) num_terms = len(whichPauli_all) multi_coeffs = len(np.shape(coeffs)) == 2 if multi_coeffs: coeffs_all = coeffs backend_name = job.backend().name() qubits = load_qubit_map(backend_name,n) properties = job.properties() e0 = np.array([properties.qubits[q][6].value for q in qubits]) e1 = np.array([properties.qubits[q][5].value for q in qubits]) em = (e0+e1)/2 e1_minus_e0 = e1 - e0 e_cx = [properties.gate_error('cx',[qubits[i],qubits[(i+1)%n]]) for i in range(n)] e_sx = [properties.gate_error('sx',q) for q in qubits] E_all = [] dE_all = [] for which_theta in range(num_thetas): E = 0 dE2 = 0 if multi_coeffs: coeffs = coeffs_all[which_theta] for term in range(num_terms): whichPauli = whichPauli_all[term] qubits_measured = np.array([i for i in range(n) if whichPauli[i]>0]) for which_config in range(num_configs): config = configs[term][which_config] if config >= 0: qubits_measured_config = np.mod(qubits_measured + config, n) elif config < 0: qubits_measured_config = np.mod( -qubits_measured + config + 1, n) P,dP = P_from_counts(counts[which_theta*num_configs*num_terms + num_configs*term + which_config]) P,dP = readout_error_correct(P,dP,em[qubits_measured_config],e1_minus_e0[qubits_measured_config]) predicted_damping = damping_from_fidelities(l,whichPauli, e_cx, e_sx,config) P = P/predicted_damping dP = dP/predicted_damping E += coeffs[term] * P /num_configs dE2 += (coeffs[term] * dP /num_configs )**2 E_all.append(E) dE_all.append(np.sqrt(dE2)) if num_thetas > 1: return E_all, dE_all elif num_thetas == 1: return E_all[0], dE_all[0] def ising_energy_from_job_mult_fidelities(job): tags = job.tags() symm = 'symm' in tags hx = read_from_tags('hx',tags) hz = read_from_tags('hz',tags) n = read_from_tags('n',tags) if symm: # symmetric ansatz m = 2 else: m = n multi_hx = hasattr(hx,'__iter__') if not multi_hx: coeffs = [-1 for _ in range(m)] + [-hx for _ in range(m)] + [-hz for _ in range(m)] elif multi_hx: coeffs = [[-1 for _ in range(m)] + [-hxi for _ in range(m)] + [-hz for _ in range(m)] for hxi in hx] if symm: coeffs = np.array(coeffs) * n//2 # rescale the coefficients return energy_from_job_mult_fidelities(job,coeffs) def damping_mult_fidelities(job): # this is the damping factor including readout errors from energy_evaluation import ising_energy_from_job E_meas, dE_meas = ising_energy_from_job(job) E_mitigated, dE_mitigated = ising_energy_from_job_mult_fidelities(job) damping = E_meas/E_mitigated return damping ################# The following is not finished: ########################## ## more careful readout mitigation: def qubits_measured_from_job(job): tags = job.tags() whichPauli_all = read_from_tags('whichPauli',tags) configs_all = read_from_tags('configs',tags) n = read_from_tags('n',tags) qubits_measured_all = set() num_terms = len(whichPauli_all) for term in range(num_terms): whichPauli = whichPauli_all[term] configs = configs_all[term] qubits_measured_0 = np.array([i for i in range(n) if whichPauli[i] > 0]) for config in configs: if config >= 0: qubits_measured = (qubits_measured_0 + config) % n else: qubits_measured = (-qubits_measured_0 + config + 1) % n qubits_measured_all.add( frozenset(qubits_measured) ) return qubits_measured_all def submit_readout_calibration_circuits(n,backend,qubits_measured_all,shots=8192): from qiskit import QuantumCircuit, execute from energy_evaluation import load_qubit_map qc_all = [] qubits = load_qubit_map(backend.name(),n) for qubits_measured in qubits_measured_all: qubits_measured = list(qubits_measured) if len(qubits_measured) == 2: for x0 in [False, True]: for x1 in [False, True]: qc = QuantumCircuit(n,2) if x0: qc.x(qubits_measured[0]) if x1: qc.x(qubits_measured[1]) qc.measure(qubits_measured[0],0) qc.measure(qubits_measured[1],1) qc_all.append(qc) elif len(qubits_measured) == 1: for x0 in [False,True]: qc = QuantumCircuit(n,1) if x0: qc.x(qubits_measured[0]) qc.measure(qubits_measured[0],0) qc_all.append(qc) job = execute(qc_all, backend=backend, shots=shots, initial_layout=qubits, job_tags=['readout_calibration','qubits_measured_all = '+str(qubits_measured_all)]) return job def submit_readout_calibration_datetimes(n,backend_name,start,end,shots=8192): from qiskit import IBMQ account = IBMQ.load_account() backend = account.get_backend(backend_name) jobs = backend.jobs(limit=1000,start_datetime=start,end_datetime=end,job_tags=['n = '+str(n)]) qubits_measured_all = set() print('# jobs = '+str(len(jobs))) for job in jobs: qubits_measured_all = qubits_measured_all.union( qubits_measured_from_job(job) ) print('qubits_measured_all = '+str(qubits_measured_all)) return submit_readout_calibration_circuits(n,backend,qubits_measured_all,shots) def analyze_readout_calibration(calibration_job): result = calibration_job.result() shots = result.results[0].shots counts = result.get_counts() num_pairs = len(counts)//4 e0 = [] e1 = [] for pair in range(num_pairs): e0_pair = (counts[4*pair].get('01',0) + counts[4*pair].get('10',0) + counts[4*pair+3].get('01',0) + counts[4*pair+3].get('10',0))/(2*shots) e1_pair = (counts[4*pair+1].get('00',0) + counts[4*pair+1].get('11',0) + counts[4*pair+2].get('00',0) + counts[4*pair+2].get('11',0))/(2*shots) e0.append(e0_pair) e1.append(e1_pair) e0 = np.array(e0) e1 = np.array(e1) return e0, e1 def analyze_readout_calibration_advanced(calibration_job): result = calibration_job.result() shots = result.results[0].shots counts = result.get_counts() qubits_measured_all = list(read_from_tags('qubits_measured_all',calibration_job.tags())) circuit = 0 e_1qubit = [] Minv = [] dMinv = [] for qubits_measured in qubits_measured_all: num_qubits = len(list(counts[circuit])[0]) if num_qubits == 1: e_1qubit.append( [counts[circuit].get('1',0)/shots, counts[circuit+1].get('0',0)/shots] ) circuit += 2 elif num_qubits == 2: M = [ [ counts[circuit+j].get(bitstr,0)/shots for j in range(4)] for bitstr in ['00','10','01','11'] ] M = np.array(M) #dM = np.sqrt(M*(1-M)/shots) Minv_i_est, dMinv_i = uncertainty_in_Minv(M,shots) Minv_i = np.linalg.inv(M) Minv.append( Minv_i ) dMinv.append(dMinv_i) circuit += 4 e_1qubit = np.array(e_1qubit) de_1qubit = np.sqrt(e_1qubit * (1-e_1qubit) /shots) return e_1qubit, Minv, de_1qubit, dMinv def uncertainty_in_Minv(M,shots): rng =
np.random.default_rng()
numpy.random.default_rng
import unittest import numpy as np from abcpy.output import Journal class JournalTests(unittest.TestCase): def test_add_parameters(self): params1 =
np.zeros((2,4))
numpy.zeros
import numpy as np import time import scipy from scipy import stats from scipy.special import multigammaln from numpy.random import uniform, normal, beta, choice, gamma from math import sqrt, floor, log from scipy.special import erf, erfinv, gammaln from scipy.stats import invwishart from numpy.linalg import cholesky, slogdet #from itertools import repeat #import multiprocessing as mp #import pandas as pd import impala.superCal.pbar as pbar #np.seterr(under='ignore') # no probit tranform for hierarchical and DP versions ##################### # class for setting everything up ##################### class CalibSetup: """Structure for storing calibration experimental data, likelihood, discrepancy, etc.""" def __init__(self, bounds, constraint_func=None): self.nexp = 0 # Number of independent emulators self.ys = [] self.y_lens = [] self.models = [] self.tl = np.array(1.) self.itl = 1/self.tl self.bounds = bounds # should be a dict so we can use parameter names self.bounds_mat =np.array([v for v in bounds.values()]) self.p = bounds.__len__() if constraint_func is None: constraint_func = lambda *x: True self.checkConstraints = constraint_func self.nmcmc = 10000 self.nburn = 5000 self.thin = 5 self.decor = 100 self.ntemps = 1 self.sd_est = [] self.s2_df = [] self.ig_a = [] self.ig_b = [] self.s2_ind = [] self.s2_exp_ind = [] self.ns2 = [] self.ny_s2 = [] self.ntheta = [] self.theta_ind = [] self.nswap = 5 self.s2_prior_kern = [] return def addVecExperiments(self, yobs, model, sd_est, s2_df, s2_ind, meas_error_cor=None, theta_ind=None, D=None, discrep_tau=1): # if theta_ind specified, s2_ind is? self.ys.append(np.array(yobs)) self.y_lens.append(len(yobs)) if theta_ind is None: theta_ind = [0]*len(yobs) self.theta_ind.append(theta_ind) self.ntheta.append(len(set(theta_ind))) model.yobs = np.array(yobs) model.meas_error_cor = np.eye(len(yobs)) # this doesn't work when ntheta>1 if meas_error_cor is not None: model.meas_error_cor = meas_error_cor if D is not None: model.D = D model.nd = D.shape[1] model.discrep_tau = discrep_tau self.models.append(model) self.nexp += 1 self.sd_est.append(sd_est) self.s2_df.append(s2_df) self.ig_a.append(s2_df / 2) self.ig_b.append(s2_df/2 * sd_est ** 2) self.s2_ind.append(s2_ind) self.s2_exp_ind.append(list(range(sd_est.size))) self.ns2.append(sd_est.size) vec = np.empty(sd_est.size) for i in range(len(vec)): vec[i] = np.sum(s2_ind==i) self.ny_s2.append(vec) self.nclustmax = max(sum(self.ntheta), 10) if np.any(s2_df == 0): self.s2_prior_kern.append(ldhc_kern) else: self.s2_prior_kern.append(ldig_kern) return def setTemperatureLadder(self, temperature_ladder, start_temper=1000): self.tl = temperature_ladder self.itl = 1/self.tl self.ntemps = len(self.tl) self.nswap_per = floor(self.ntemps // 2) self.start_temper = start_temper return def setMCMC(self, nmcmc, nburn=0, thin=1, decor=100, start_var_theta=1e-8, start_tau_theta = 0., start_var_ls2=1e-5, start_tau_ls2=0., start_adapt_iter=300): self.nmcmc = nmcmc self.nburn = nburn self.thin = thin self.decor = decor self.start_var_theta = start_var_theta self.start_tau_theta = start_tau_theta self.start_var_ls2 = start_var_ls2 self.start_tau_ls2 = start_tau_ls2 self.start_adapt_iter = start_adapt_iter return def setHierPriors(self, theta0_prior_mean, theta0_prior_cov, Sigma0_prior_df, Sigma0_prior_scale): self.theta0_prior_mean = theta0_prior_mean self.theta0_prior_cov = theta0_prior_cov self.Sigma0_prior_df = Sigma0_prior_df self.Sigma0_prior_scale = Sigma0_prior_scale return def setClusterPriors(self, nclustmax): self.nclustmax = nclustmax pass def normalize(x, bounds): """Normalize to 0-1 scale""" return (x - bounds[:, 0]) / (bounds[:, 1] - bounds[:, 0]) def unnormalize(z, bounds): """Inverse of normalize""" return z * (bounds[:, 1] - bounds[:, 0]) + bounds[:, 0] def probit(x): """ Probit Transformation: For x in (0,1), y in (-inf,inf) """ return np.sqrt(2.) * erfinv(2 * x - 1) def invprobit(y): """ Inverse Probit Transformation: For y in (-inf,inf), x in (0,1) """ return 0.5 * (1 + erf(y / np.sqrt(2.))) initfunc_probit = np.random.normal # if probit, then normal--if uniform, then uniform initfunc_unif = np.random.uniform def tran_probit(th, bounds, names): return dict(zip(names, unnormalize(invprobit(th),bounds).T)) # If probit # return dict(zip(names, unnormalize(th, bounds).T)) # If uniform pass def tran_unif(th, bounds, names): return dict(zip(names, unnormalize(th, bounds).T)) # If uniform def chol_sample(mean, cov): return mean + np.dot(np.linalg.cholesky(cov), np.random.standard_normal(mean.size)) def chol_sample_1per(means, covs): return means + np.einsum('tnpq,tnq->tnp', cholesky(covs), normal(size = means.shape)) def chol_sample_nper(means, covs, n): return means + np.einsum('ijk,ilk->ilj', cholesky(covs), normal(size = (*means.shape, n))) def chol_sample_1per_constraints(means, covs, cf, bounds_mat, bounds_keys, bounds): """ Sample with constraints. If fail constraints, resample. """ chols = cholesky(covs) cand = means + np.einsum('ijk,ik->ij', chols, normal(size = means.shape)) good = cf(tran_unif(cand, bounds_mat, bounds_keys), bounds) while np.any(~good): cand[np.where(~good)] = ( + means[~good] + np.einsum('ijk,ik->ij', chols[~good], normal(size = ((~good).sum(), means.shape[1]))) ) good[~good] = cf(tran_unif(cand[~good], bounds_mat, bounds_keys), bounds) return cand def chol_sample_nper_constraints(means, covs, n, cf, bounds_mat, bounds_keys, bounds): """ Sample with constraints. If fail constraints, resample. """ chols = cholesky(covs) cand = means.reshape(means.shape[0], 1, means.shape[1]) + \ np.einsum('ijk,ink->inj', chols, normal(size = (means.shape[0], n, means.shape[1]))) for i in range(cand.shape[0]): goodi = cf(tran_unif(cand[i], bounds_mat, bounds_keys),bounds) while np.any(~goodi): cand[i, np.where(~goodi)[0]] = ( + means[i] + np.einsum('ik,nk->ni', chols[i], normal(size = ((~goodi).sum(), means.shape[1]))) ) goodi[np.where(~goodi)[0]] = ( cf(tran_unif(cand[i,np.where(~goodi)[0]], bounds_mat, bounds_keys), bounds) ) return cand def cov_3d_pcm(arr, mean): """ Covariance array from 3d Array (with pre-computed mean): arr = 3d Array (nSamp x nTemp x nCol) mean = 2d Array (nTemp x nCol) out = 3d Array (nTemp x nCol x nCol) """ N = arr.shape[0] return np.einsum('kij,kil->ijl', arr - mean, arr - mean) / (N - 1) def cov_4d_pcm(arr, mean): """ Covariance Array from 4d Array (With pre-computed mean): arr = 4d array (nSamp x nTemp x nTheta x nCol) mean = 3d Array (nTemp x nCol) out = 4d Array (nTemp x nTheta x nCol x nCol) """ N = arr.shape[0] return np.einsum('ktij,ktil->tijl', arr - mean, arr - mean) / (N - 1) def cov_anyd_pcm(arr, mean): """ Covariance Array from p dimensional Array (With pre-computed mean): arr = p-dim array (e.g., nSamp x nTemp x nTheta x nCol) mean = (p-1)-dim Array (e.g., nTemp x nCol) out = p-dim Array (nTemp x nTheta x nCol x nCol) """ N = arr.shape[0] return np.einsum('...ij,...il->...ijl', arr - mean, arr - mean) / (N - 1) def mvnorm_logpdf(x, mean, Prec, ldet): # VALIDATED """ # k = x.shape[-1] # part1 = -k * 0.5 * np.log(2 * np.pi) - 0.5 * ldet # x = x - mu # return part1 + np.squeeze(-x[..., None, :] @ Prec @ x[..., None] / 2) """ ld = ( - 0.5 * x.shape[-1] * 1.8378770664093453 - 0.5 * ldet - 0.5 * np.einsum('tm,mn,tn->t', x - mean, Prec, x - mean) ) return ld def mvnorm_logpdf_(x, mean, prec, ldet): # VALIDATED """ x = (ntemps, n_theta[i], k) mu = (ntemps[i]) prec = (ntemps x k x k) ldet = (ntemps) """ # m = np.repeat(mean.reshape(mean.shape[0], 1, mean.shape[1]), x.shape[1], 1) mean_reshape = (mean.shape[0], 1, mean.shape[1]) ld = ( - 0.5 * x.shape[-1] * 1.8378770664093453 - 0.5 * ldet.reshape(-1,1) - 0.5 * np.einsum( 'tsm,tmn,tsn->ts', x - mean.reshape(mean_reshape), prec, x - mean.reshape(mean_reshape), ) ) return ld def invwishart_logpdf(w, df, scale): # VALIDATED """ unnormalized logpdf of inverse wishart w given df and scale """ ld = ( + 0.5 * df * slogdet(scale)[1] - multigammaln(df / 2, scale.shape[-1]) - 0.5 * df * scale.shape[-1] * log(2.) - 0.5 * (df + w.shape[-1] + 1) * slogdet(w)[1] - 0.5 * np.einsum('...ii->...', np.einsum('ji,...ij->...ij', scale,
np.linalg.inv(w)
numpy.linalg.inv
import copy from dataclasses import dataclass import dataclasses import functools import traceback from typing import Any, Dict, List, Optional, Tuple, Union from async_timeout import enum from attr import field from concurrent.futures import ProcessPoolExecutor from transformers import AutoConfig, T5ForConditionalGeneration import requests import os import torch import time import threading import multiprocessing as mp from multiprocessing import Process, Manager from multiprocessing.managers import BaseManager from fastapi import FastAPI import json from requests import Request import numpy as np from scipy.special import softmax from transformers import AutoTokenizer from tqdm import tqdm import sqlite3 import gc # ====== ray serve import ray from ray import data, serve from ray.serve import pipeline from ray.util.metrics import Counter, Gauge, Histogram, Metric # ====== hfutils from hfutils.arg_parser import RayArguments from hfutils.logger import Logger from hfutils.options import EnsembleOptions, ParallelOptions, ReplicationOptions from hfutils.model_pipe import T5Pipe, T5PyTorchPipe, get_num_layers from hfutils.calibration import agg_logits, temperature_scale from hfutils.constants import ( MODEL_TASK_TO_CLASS, ENSEMBLE_ORDER, TASK_TO_LABELS, np_to_torch_dtype, MODEL_KEYS, ) os.environ['TOKENIZERS_PARALLELISM'] = 'false' # import pyprof # import torch.cuda.profiler as profiler class LatencyMonitor: def __init__(self, record_tag: str, config: Union[Dict, List[Dict]]): self.fp = open(f"mie_latency-{record_tag}", "w") # self.con = sqlite3.connect('mie_latency.db') # self.cur = self.con.cursor() # self.cur.execute(''' # CREATE TABLE IF NOT EXISTS latency ( # record_id TEXT NOT NULL, # model_id TEXT NOT NULL, # latency FLOAT NOT NULL # )''') # self.cur.execute(''' # CREATE TABLE IF NOT EXISTS config ( # record_id TEXT NOT NULL, # config BLOB NOT NULL # )''') # self.lock = mp.Lock() # self.record_id = record_tag # self.cur.execute(''' # INSERT INTO config VALUES ( # "%s", "%s" # )''' % (record_tag, json.dumps(config))) async def observe(self, value: Union[int, float], tag: str): if not isinstance(value, (int, float)): raise TypeError(f"value must be int or float, got {type(value)}.") with self.lock: # self.cur.execute(''' # INSERT INTO latency VALUES ( # %s, "%s", # )''' % (self.record_id, tag, value)) # self.con.commit() self.fp.write("%s:%s;" % (tag, value)) # self.record(value, tags, _internal=True) def __del__(self): # self.con.commit() # self.con.close() self.fp.close() fp.close() args = RayArguments() task_name = args.data_args.task_name serve_args = args.serve_args home = "/jmain02/home/J2AD002/jxm12/lxx22-jxm12" tokenizer = AutoTokenizer.from_pretrained(os.path.join(home, "HuggingFace", "google", "t5-small-lm-adapt")) label_tokens = [ tokenizer(label, max_length=2).input_ids[0] for label in TASK_TO_LABELS[task_name] if label is not None ] print(args) print(serve_args) ray.init( namespace=f"t5-{task_name}", num_cpus=40, num_gpus=torch.cuda.device_count() ) serve.start(detached=False) print("ray initialized") # print(torch.cuda.is_available()) # m = torch.nn.Softmax(dim=-1) m = functools.partial(softmax, axis=-1) # task_name = "sst2" model_ensemble_name = serve_args.deployment # "_".join(["t5", task_name, "test"]) # tokenizer = AutoTokenizer.from_pretrained("google/t5-small-lm-adapt", use_fast=False) # label_tokens = [ # tokenizer(label, max_length=2).input_ids[0] # for label in TASK_TO_LABELS[task_name] # if label is not None # ] deploy_options = [] with open(serve_args.cfg, "r") as fp: config = json.load(fp) ensemble_config = config[model_ensemble_name] ensemble_names = ensemble_config["ensembles"] ensemble_weights = ensemble_config["weights"] for idx, name in enumerate(ensemble_names): model_config = config[name] ckpt_path = model_config["ckpt"] visible_gpus = [str(i) for i in model_config["devices"]] num_gpus = len(visible_gpus) num_replicas = model_config["count"] hf_config = AutoConfig.from_pretrained(ckpt_path) total_pp_layers = (get_num_layers(hf_config) + 4) * 2 + 1 # print(name, "num_layers", total_pp_layers) parallel_stages = model_config["parallel_stages"] pp_layers = int(total_pp_layers / parallel_stages) deploy_options.append( EnsembleOptions( ensemble_weight=ensemble_weights[idx], ensemble_pos=idx, ckpt_path=ckpt_path, threshold=model_config["threshold"], temperature=model_config["temperature"], name=name, scheduler=ensemble_config["scheduler"], parallel=parallel_stages > 1, skip_connection=ensemble_config["skip_connection"], ray_actor_options={"num_gpus": 1, "num_cpus": 5}, parallel_options=[ ParallelOptions( num_stages=parallel_stages, parallel_stage=p, first_parallel_layer=pp_layers * p, last_parallel_layer=pp_layers * (p + 1) if p < parallel_stages - 1 else total_pp_layers, replication_options=[ ReplicationOptions( replica_id=r, key=f"{MODEL_KEYS[idx]}R{r}P{p}", device=torch.device( "cuda:" + visible_gpus[(r + p) % num_gpus] ), ) for r in range(num_replicas) ], ) for p in range(parallel_stages) ], ) ) visible_gpus = [str(i) for i in range(torch.cuda.device_count())] @serve.deployment(max_concurrent_queries=10) class T5Model: def __init__(self, options: EnsembleOptions, replica: int, stage: int) -> None: # pyprof.init() self.key = options.parallel_options[stage].replication_options[replica].key # self.logger = Logger(self.key, "debug", 5000000, 5) self.logger = Logger(__file__, "debug", 50000000, 5) self.logger.info("%s logger initialized", options.name) self.options = options os.environ["CUDA_VISIBLE_DEVICES"] = ",".join(visible_gpus) self.logger.info("CUDA_VISIBLE_DEVICES: %s", os.environ["CUDA_VISIBLE_DEVICES"]) # visible_gpus = ray.get_gpu_ids() self.logger.info("options: %s", options) # self.logger.info("ray.get_gpu_ids(): {}".format(ray.get_gpu_ids())) # self.logger.info("torch visible devices: {}".format(torch.cuda.device_count())) self.device = ( options.parallel_options[stage].replication_options[replica].device ) self.logger.info("%s device %s", options.name, self.device) self.cuda_stream = torch.cuda.Stream( device=self.device, priority=-1 ) # self.cuda_stream = torch.cuda.Stream() self.logger.info("%s stream %s", options.name, self.cuda_stream) self.model_name = model_name = options.name self.logger.debug("%s model_name %s", self.key, self.model_name) self.temperature = torch.nn.Parameter( torch.ones(1, device=self.device) * options.temperature ) self.logger.debug("%s temperature %s", self.key, self.temperature) self.ensemble_pos = options.ensemble_pos self.logger.debug("%s ensemble_pos %s", self.key, self.ensemble_pos) self.ensemble_weight = options.ensemble_weight self.logger.debug("%s ensemble_weight %s", self.key, self.ensemble_weight) self.parallel_stage = options.parallel_options[stage].parallel_stage self.logger.debug("%s parallel_stage %s", self.key, self.parallel_stage) self.num_stages = options.parallel_options[stage].num_stages self.logger.debug("%s num_stages %s", self.key, self.num_stages) # self.cuda_stream = torch.cuda.Stream() # from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint model = T5ForConditionalGeneration.from_pretrained(options.ckpt_path) # if not "small" in model_name: # model = load_state_dict_from_zero_checkpoint(model, options.ckpt_path) self.model_parallel = options.parallel # exec_map = ( # options.parallel_options[stage].first_parallel_layer, # options.parallel_options[stage].last_parallel_layer, # ) # self.logger.info("%s garbage collected", model_name) # if self.model_parallel: # self.model = T5PyTorchPipe(model, exec_map) # self.model = self.model.to(self.device) # # self.model.device = self.device # self.logger.debug( # "%s T5PyTorchPipe num_layers %s ", model_name, len(self.model.pipe) # ) # else: # self.model = model.to(self.device) self.model = T5PyTorchPipe(model) self.model.partition_by_parameter( stage, options.parallel_options[stage].num_stages ) self.logger.debug( "%s T5PyTorchPipe num_layers %s ", model_name, len(self.model.layers) ) # self.model = self.model.to(self.device) self.model.convert(self.device) self.logger.info("%s model initialized %s", model_name, type(self.model)) self.model.eval() del model torch.cuda.empty_cache() gc.collect() self.logger.debug("%s garbage collected", model_name) # profiler.start() self.logger.info("%s full initialization complete", model_name) def t5_parallel_inference(self, args): # batch_size = input_ids.shape[0] outputs = self.model.forward(args) # for i, t in enumerate(outputs): # self.logger.trace( # "%s t5_parallel_inference outputs size (%s) %s", # self.model_name, # i, # t.size() if t is not None else None, # ) if self.parallel_stage == self.num_stages - 1: logits = torch.squeeze(outputs, 1)[:, label_tokens] # logits = outputs[1].view(batch_size, -1) outputs = temperature_scale(logits, self.temperature) return outputs # def t5_inference(self, input_ids, attention_mask, *args): # outputs = self.model.generate( # input_ids=input_ids, # attention_mask=attention_mask, # do_sample=False, # disable sampling to test if batching affects output # return_dict_in_generate=True, # output_scores=True, # ) # logits = outputs.scores[0][:, label_tokens] # # logits = outputs.scores[0] # logits = temperature_scale(logits, self.temperature) # return logits def default_inference(self, args): logits = self.model( input_ids=args[0], attention_mask=args[1], return_dict=True, ).logits logits = temperature_scale(logits, self.temperature) return logits # @torch.no_grad() def model_inference(self, args, types, **kwds): tag = kwds.get("tag", "") start_time = time.perf_counter() # input_ids = torch.Tensor(input_ids.copy()).to(self.device).to(torch.long) # attention_mask = ( # torch.Tensor(attention_mask.copy()).to(self.device).to(torch.long) # ) # input_ids = torch.as_tensor(input_ids, dtype=torch.int, device=self.device) # attention_mask = torch.as_tensor(attention_mask, dtype=torch.int, device=self.device) args = tuple( # torch.Tensor(arg.copy()).to(self.device).to(torch.float) [ torch.as_tensor(arg, dtype=types[i], device=self.device) if arg is not None else None for i, arg in enumerate(args) ] ) # masked_inputs = ( # input_ids, # attention_mask, # *tensor_args, # ) end_time = time.perf_counter() self.logger.debug( "L(%s:%s[%s]:%s:%s)", tag, self.key, os.getpid(), "datacopy", (end_time - start_time) * 1000, ) # self.cuda_stream.synchronize() start_time = time.perf_counter() with torch.cuda.stream(self.cuda_stream): if "t5" in self.model_name: outputs = self.t5_parallel_inference(args) # if "t5" in self.model_name and not self.model_parallel: # outputs = self.t5_inference(*masked_inputs) # elif "t5" in self.model_name and self.model_parallel: # outputs = self.t5_parallel_inference(*masked_inputs) else: outputs = self.default_inference(args) end_time = time.perf_counter() self.logger.debug( "L(%s:%s[%s]:%s:%s)", tag, self.key, os.getpid(), "submitstream", (end_time - start_time) * 1000, ) start_time = time.perf_counter() self.cuda_stream.synchronize() # MUST sync otherwise outputs are zeros end_time = time.perf_counter() # self.logger.info( # "(%s) %s model_inference time elapsed %s (ms)", # self.key, # self.model_name, # (end_time - start_time) * 1000, # ) self.logger.info( "L(%s:%s[%s]:%s:%s)", tag, self.key, os.getpid(), "cudasync", (end_time - start_time) * 1000, ) # print(outputs.shape, isinstance(outputs, tuple)) start_time = time.perf_counter() if isinstance(outputs, tuple): outputs = tuple( [ output.detach().cpu().numpy() if output is not None else None for output in outputs ] ) else: outputs = outputs.detach().cpu().numpy() end_time = time.perf_counter() self.logger.info( "L(%s:%s[%s]:%s:%s)", tag, self.key, os.getpid(), "outputscopy", (end_time - start_time) * 1000, ) return outputs async def __call__(self, *args: Any, **kwds: Any) -> Any: return self.model_inference(*args, **kwds) # async def __call__(self, request): # data = await request.json() # batch_size = len(data["input_ids"]) # input_ids = np.array(data["input_ids"]) # attention_mask = np.array(data["attention_mask"]) # step = data["step"] # pid = data["pid"] # outputs = self.model_inference( # input_ids, attention_mask, (None, None, None, None) # ) # # print("a", type(outputs)) # return { # "step": step, # "pid": pid, # "logits": outputs.tolist(), # # "labels": np.argmax(outputs, axis=-1).flatten().tolist(), # } # remote_handles = [] for d, ensemble_option in enumerate(deploy_options): for p, parallel_options in enumerate(ensemble_option.parallel_options): for r, replication_options in enumerate(parallel_options.replication_options): T5Model.options( name=replication_options.key, ray_actor_options=ensemble_option.ray_actor_options, ).deploy(options=ensemble_option, replica=r, stage=p) # deploy_options[d].parallel_options[p].replication_options[ # r # ].handle = serve.get_deployment(replication_options.key).get_handle() # remote_handles.append( # serve.get_deployment(replication_options.key).get_handle() # ) # latency_monitor = LatencyMonitor(serve_args.tag, config) # key = "12345" # key = bytes(key, encoding='utf8') # BaseManager.register("LatencyMonitor", LatencyMonitor) # manager = BaseManager(authkey=key) # manager.start() # latency_monitor = manager.LatencyMonitor(serve_args.tag, config) # print("=============================================================================================") @serve.deployment(max_concurrent_queries=100, route_prefix="/composed") class T5Ensemble: def __init__(self, deploy_options): # self.deploy_options = deploy_options # self.latency_monitor = LatencyMonitor(serve_args.tag, config) self.logger = Logger(__file__, "info", 50000000, 5) self.logger.info("T5Ensemble logger initialized") self.model_name = model_name = model_ensemble_name self.logger.info("T5Ensemble read cfg %s", serve_args.cfg) self.ensembles = deploy_options self.num_ensembles = len(deploy_options) # self.thresholds = [cfg[t]["threshold"] for t in model_subtypes] self.logger.info("Current ensembles %s", self.ensembles) def schedule_handle(self, type, parallel_options): num_replicas = len(parallel_options.replication_options) if type == "rand": r =
np.random.choice(num_replicas)
numpy.random.choice
import basis.trimesh as trm import math import numpy as np import numpy from sklearn import cluster import functools import operator import warnings as wns from scipy.spatial.transform import Rotation as R from scipy.spatial.transform import Slerp import matplotlib.pyplot as plt # epsilon for testing whether a number is close to zero _EPS = numpy.finfo(float).eps * 4.0 # axis sequences for Euler angles _NEXT_AXIS = [1, 2, 0, 1] # map axes strings to/from tuples of inner axis, parity, repetition, frame _AXES2TUPLE = { 'sxyz': (0, 0, 0, 0), 'sxyx': (0, 0, 1, 0), 'sxzy': (0, 1, 0, 0), 'sxzx': (0, 1, 1, 0), 'syzx': (1, 0, 0, 0), 'syzy': (1, 0, 1, 0), 'syxz': (1, 1, 0, 0), 'syxy': (1, 1, 1, 0), 'szxy': (2, 0, 0, 0), 'szxz': (2, 0, 1, 0), 'szyx': (2, 1, 0, 0), 'szyz': (2, 1, 1, 0), 'rzyx': (0, 0, 0, 1), 'rxyx': (0, 0, 1, 1), 'ryzx': (0, 1, 0, 1), 'rxzx': (0, 1, 1, 1), 'rxzy': (1, 0, 0, 1), 'ryzy': (1, 0, 1, 1), 'rzxy': (1, 1, 0, 1), 'ryxy': (1, 1, 1, 1), 'ryxz': (2, 0, 0, 1), 'rzxz': (2, 0, 1, 1), 'rxyz': (2, 1, 0, 1), 'rzyz': (2, 1, 1, 1)} _TUPLE2AXES = dict((v, k) for k, v in _AXES2TUPLE.items()) ## rotmat def rotmat_from_axangle(axis, angle): """ Compute the rodrigues matrix using the given axis and angle :param axis: 1x3 nparray :param angle: angle in radian :return: 3x3 rotmat author: weiwei date: 20161220 """ axis = unit_vector(axis) if angle > 2 * math.pi: angle = angle % 2 * math.pi a = math.cos(angle / 2.0) b, c, d = -axis * math.sin(angle / 2.0) aa, bb, cc, dd = a * a, b * b, c * c, d * d bc, ad, ac, ab, bd, cd = b * c, a * d, a * c, a * b, b * d, c * d return np.array([[aa + bb - cc - dd, 2.0 * (bc + ad), 2.0 * (bd - ac)], [2.0 * (bc - ad), aa + cc - bb - dd, 2.0 * (cd + ab)], [2.0 * (bd + ac), 2.0 * (cd - ab), aa + dd - bb - cc]]) def rotmat_from_quaternion(quaternion): """ convert a quaterion to rotmat """ q = np.array(quaternion, dtype=np.float64, copy=True) n = np.dot(q, q) if n < _EPS: return np.identity(4) q *= math.sqrt(2.0 / n) q = np.outer(q, q) return np.array([ [1.0 - q[2, 2] - q[3, 3], q[1, 2] - q[3, 0], q[1, 3] + q[2, 0], 0.0], [q[1, 2] + q[3, 0], 1.0 - q[1, 1] - q[3, 3], q[2, 3] - q[1, 0], 0.0], [q[1, 3] - q[2, 0], q[2, 3] + q[1, 0], 1.0 - q[1, 1] - q[2, 2], 0.0], [0.0, 0.0, 0.0, 1.0]]) def rotmat_to_quaternion(rotmat): """ convert a rotmat to quaternion :param rotmat: :return: """ pass def rotmat_from_normal(surfacenormal): ''' Compute the rotation matrix of a 3D mesh using a surface normal :param surfacenormal: 1x3 nparray :return: 3x3 rotmat date: 20160624 author: weiwei ''' rotmat = np.eye(3, 3) rotmat[:, 2] = unit_vector(surfacenormal) rotmat[:, 0] = orthogonal_vector(rotmat[:, 2], toggle_unit=True) rotmat[:, 1] = np.cross(rotmat[:, 2], rotmat[:, 0]) return rotmat def rotmat_from_normalandpoints(facetnormal, facetfirstpoint, facetsecondpoint): ''' Compute the rotation matrix of a 3D facet using facetnormal and the first two points on the facet The function uses the concepts defined by Trimesh :param facetnormal: 1x3 nparray :param facetfirstpoint: 1x3 nparray :param facetsecondpoint: 1x3 nparray :return: 3x3 rotmat date: 20160624 author: weiwei ''' rotmat = np.eye(3, 3) rotmat[:, 2] = unit_vector(facetnormal) rotmat[:, 0] = unit_vector(facetsecondpoint - facetfirstpoint) if np.allclose(rotmat[:, 0], 0): wns.warn("The provided facetpoints are the same! An autocomputed vector is used instead...") rotmat[:, 0] = orthogonal_vector(rotmat[:, 2], toggle_unit=True) rotmat[:, 1] = np.cross(rotmat[:, 2], rotmat[:, 0]) return rotmat def rotmat_from_euler(ai, aj, ak, axes='sxyz'): """ :param ai: degree :param aj: degree :param ak: degree :param axes: :return: author: weiwei date: 20190504 """ return _euler_matrix(ai, aj, ak, axes)[:3, :3] def rotmat_to_euler(rotmat, axes='sxyz'): """ :param rotmat: 3x3 nparray :param axes: order :return: degrees author: weiwei date: 20190504 """ ax, ay, az = _euler_from_matrix(rotmat, axes) return np.array([ax, ay, az]) def rotmat_between_vectors(v1, v2): """ :param v1: 1-by-3 nparray :param v2: 1-by-3 nparray :return: author: weiwei date: 20191228 """ theta = angle_between_vectors(v1, v2) if np.allclose(theta, 0): return np.eye(3) if np.allclose(theta, math.pi): # in this case, the rotation axis is arbitrary; I am using v1 for reference return rotmat_from_axangle(orthogonal_vector(v1, toggle_unit=True), theta) axis = unit_vector(np.cross(v1, v2)) return rotmat_from_axangle(axis, theta) def rotmat_average(rotmatlist, bandwidth=10): """ average a list of rotmat (3x3) :param rotmatlist: :param denoise: meanshift denoising is applied if True :return: author: weiwei date: 20190422 """ if len(rotmatlist) == 0: return False quaternionlist = [] for rotmat in rotmatlist: quaternionlist.append(quaternion_from_matrix(rotmat)) quatavg = quaternion_average(quaternionlist, bandwidth=bandwidth) rotmatavg = rotmat_from_quaternion(quatavg)[:3, :3] return rotmatavg def rotmat_slerp(rotmat0, rotmat1, nval): """ :param rotmat0: :param rotmat1: :param nval: :return: 1xnval list of slerped rotmat including rotmat0 and rotmat1 """ key_rots = R.from_matrix((rotmat0, rotmat1)) key_times = [0, 1] slerp = Slerp(key_times, key_rots) slerp_times = np.linspace(key_times[0], key_times[1], nval) interp_rots = slerp(slerp_times) return interp_rots.as_matrix() ## homogeneous matrix def homomat_from_posrot(pos=np.zeros(3), rot=np.eye(3)): """ build a 4x4 nparray homogeneous matrix :param pos: nparray 1x3 :param rot: nparray 3x3 :return: author: weiwei date: 20190313 """ homomat = np.eye(4, 4) homomat[:3, :3] = rot homomat[:3, 3] = pos return homomat def homomat_from_pos_axanglevec(pos=np.zeros(3), axangle=np.ones(3)): """ build a 4x4 nparray homogeneous matrix :param pos: nparray 1x3 :param axanglevec: nparray 1x3, correspondent unit vector is rotation direction; length is radian rotation angle :return: author: weiwei date: 20200408 """ ax, angle = unit_vector(axangle, toggle_length=True) rotmat = rotmat_from_axangle(ax, angle) return homomat_from_posrot(pos, rotmat) def homomat_inverse(homomat): """ compute the inverse of a homogeneous transform :param homomat: 4x4 homogeneous matrix :return: author: weiwei date :20161213 """ rotmat = homomat[:3, :3] tranvec = homomat[:3, 3] invhomomat = np.eye(4, 4) invhomomat[:3, :3] = np.transpose(rotmat) invhomomat[:3, 3] = -np.dot(np.transpose(rotmat), tranvec) return invhomomat def homomat_transform_points(homomat, points): """ do homotransform on a point or an array of points using homomat :param homomat: :param points: 1x3 nparray or nx3 nparray :return: author: weiwei date: 20161213 """ if isinstance(points, list): points = np.asarray(points) if points.ndim == 1: homopoint = np.array([points[0], points[1], points[2], 1]) return np.dot(homomat, homopoint)[:3] else: homopcdnp = np.ones((4, points.shape[0])) homopcdnp[:3, :] = points.T[:3, :] transformed_pointarray = homomat.dot(homopcdnp).T return transformed_pointarray[:, :3] def homomat_average(homomatlist, bandwidth=10): """ average a list of homomat (4x4) :param homomatlist: :param bandwidth: :param denoise: :return: author: weiwei date: 20200109 """ homomatarray = np.asarray(homomatlist) posavg = posvec_average(homomatarray[:, :3, 3], bandwidth) rotmatavg = rotmat_average(homomatarray[:, :3, :3], bandwidth) return homomat_from_posrot(posavg, rotmatavg) def interplate_pos_rotmat(start_pos, start_rotmat, goal_pos, goal_rotmat, granularity=.01): """ :param start_info: [pos, rotmat] :param goal_info: [pos, rotmat] :param granularity :return: a list of 1xn nparray """ len, vec = unit_vector(start_pos - goal_pos, toggle_length=True) nval = math.ceil(len / granularity) if nval == 0: nval = 1 pos_list = np.linspace(start_pos, goal_pos, nval) rotmat_list = rotmat_slerp(start_rotmat, goal_rotmat, nval) return pos_list, rotmat_list def interplate_pos_rotmat_around_circle(circle_center_pos, circle_ax, radius, start_rotmat, end_rotmat, granularity=.01): """ :param circle_center_pos: :param start_rotmat: :param end_rotmat: :param granularity: mm between two key points in the workspace :return: """ vec = orthogonal_vector(circle_ax) granularity_radius = granularity / radius nval = math.ceil(math.pi * 2 / granularity_radius) rotmat_list = rotmat_slerp(start_rotmat, end_rotmat, nval) pos_list = [] for angle in np.linspace(0, math.pi * 2, nval).tolist(): pos_list.append(rotmat_from_axangle(circle_ax, angle).dot(vec * radius) + circle_center_pos) return pos_list, rotmat_list # quaternion def quaternion_from_axangle(angle, axis): """ :param angle: radian :param axis: 1x3 nparray author: weiwei date: 20201113 """ quaternion = np.array([0.0, axis[0], axis[1], axis[2]]) qlen = vector_norm(quaternion) if qlen > _EPS: quaternion *= math.sin(angle / 2.0) / qlen quaternion[0] = math.cos(angle / 2.0) return quaternion def quaternion_average(quaternionlist, bandwidth=10): """ average a list of quaternion (nx4) this is the full version :param rotmatlist: :param bandwidth: meanshift denoising is applied if available :return: author: weiwei date: 20190422 """ if len(quaternionlist) == 0: return False quaternionarray = np.array(quaternionlist) if bandwidth is not None: anglelist = [] for quaternion in quaternionlist: anglelist.append([quaternion_to_axangle(quaternion)[0]]) mt = cluster.MeanShift(bandwidth=bandwidth) quaternionarray = quaternionarray[np.where(mt.fit(anglelist).labels_ == 0)] nquat = quaternionarray.shape[0] weights = [1.0 / nquat] * nquat # Form the symmetric accumulator matrix accummat = np.zeros((4, 4)) wsum = 0 for i in range(nquat): q = quaternionarray[i, :] w_i = weights[i] accummat += w_i * (np.outer(q, q)) # rank 1 update wsum += w_i # scale accummat /= wsum # Get the eigenvector corresponding to largest eigen value quatavg = np.linalg.eigh(accummat)[1][:, -1] return quatavg def quaternion_to_euler(quaternion, axes='sxyz'): """ :param rotmat: 3x3 nparray :param axes: order :return: degrees author: weiwei date: 20190504 """ return rotmat_to_euler(rotmat_from_quaternion(quaternion), axes) def skewsymmetric(posvec): """ compute the skew symmetric maxtix that corresponds to a cross :param posvec: 1x3 nparray :return: 3x3 skew symmetric matrix author: weiwei date: 20170421 """ return np.array([[0, -posvec[2], posvec[1]], [posvec[2], 0, -posvec[0]], [-posvec[1], posvec[0], 0]]) def orthogonal_vector(basevec, toggle_unit=True): """ given a vector np.array([a,b,c]), this function computes an orthogonal one using np.array([b-c, -a+c, a-c]) and then make it unit :param basevec: 1x3 nparray :return: a 1x3 unit nparray author: weiwei date: 20200528 """ a = basevec[0] b = basevec[1] c = basevec[2] if toggle_unit: return unit_vector(np.array([b - c, -a + c, a - b])) else: return np.array([b - c, -a + c, a - b]) def rel_pose(pos0, rot0, pos1, rot1): """ relpos of rot1, pos1 with respect to rot0 pos0 :param rot0: 3x3 nparray :param pos0: 1x3 nparray :param rot1: :param pos1: :return: author: weiwei date: 20180811 """ relpos = np.dot(rot0.T, (pos1 - pos0)) relrot = np.dot(rot0.T, rot1) return relpos, relrot def regulate_angle(lowerbound, upperbound, jntangles): """ change the range of armjnts to [lowerbound, upperbound] NOTE: upperbound-lowerbound must be multiplies of 2*math.pi or 360 :param lowerbound :param upperbound :param jntangles: an array or a single joint angle :return: """ if isinstance(jntangles, np.ndarray): rng = upperbound - lowerbound if rng >= 2 * math.pi: jntangles[jntangles < lowerbound] = jntangles[jntangles < lowerbound] % -rng + rng jntangles[jntangles > upperbound] = jntangles[jntangles > upperbound] % rng - rng else: raise ValueError("upperbound-lowerbound must be multiplies of 2*math.pi or 360") return jntangles else: rng = upperbound - lowerbound if rng >= 2 * math.pi: jntangles = jntangles % -rng + rng if jntangles < lowerbound else jntangles % rng - rng else: raise ValueError("upperbound-lowerbound must be multiplies of 2*math.pi or 360") return jntangles def unit_vector(vector, toggle_length=False): """ :param vector: 1-by-3 nparray :return: the unit of a vector author: weiwei date: 20200701osaka """ length = np.linalg.norm(vector) if math.isclose(length, 0): if toggle_length: return 0.0, np.zeros_like(vector) else: return np.zeros_like(vector) if toggle_length: return length, vector / np.linalg.norm(vector) else: return vector / np.linalg.norm(vector) def angle_between_vectors(v1, v2): """ :param v1: 1-by-3 nparray :param v2: 1-by-3 nparray :return: author: weiwei date: 20190504 """ l1, v1_u = unit_vector(v1, toggle_length=True) l2, v2_u = unit_vector(v2, toggle_length=True) if l1 == 0 or l2 == 0: return None return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0)) def angle_between_2d_vectors(v1, v2): """ return the angle from v1 to v2, with signs :param v1: 2d vector :param v2: :return: author: weiwei date: 20210530 """ return math.atan2(v2[1] * v1[0] - v2[0] * v1[1], v2[0] * v1[0] + v2[1] * v1[1]) def deltaw_between_rotmat(rotmati, rotmatj): """ compute angle*ax from rotmati to rotmatj rotmat_from_axangle(np.linalg.norm(deltaw), unit_vec(deltaw)).dot(rotmati) = rotmatj :param rotmati: 3x3 nparray :param rotmatj: 3x3 nparray :return: author: weiwei date: 20200326 """ deltarot = np.dot(rotmatj, rotmati.T) tempvec = np.array( [deltarot[2, 1] - deltarot[1, 2], deltarot[0, 2] - deltarot[2, 0], deltarot[1, 0] - deltarot[0, 1]]) tempveclength = np.linalg.norm(tempvec) if tempveclength > 1e-6: deltaw = math.atan2(tempveclength, np.trace(deltarot) - 1.0) / tempveclength * tempvec elif deltarot[0, 0] > 0 and deltarot[1, 1] > 0 and deltarot[2, 2] > 0: deltaw = np.array([0, 0, 0]) else: deltaw = math.pi / 2 * (np.diag(deltarot) + 1) return deltaw def cosine_between_vector(v1, v2): l1, v1_u = unit_vector(v1, toggle_length=True) l2, v2_u = unit_vector(v2, toggle_length=True) if l1 == 0 or l2 == 0: raise Exception("One of the given vector is [0,0,0].") return np.clip(np.dot(v1_u, v2_u), -1.0, 1.0) def axangle_between_rotmat(rotmati, rotmatj): deltaw = deltaw_between_rotmat(rotmati, rotmatj) angle = np.linalg.norm(deltaw) ax = deltaw / angle if isinstance(deltaw, np.ndarray) else None return ax, angle def quaternion_to_axangle(quaternion): """ :param quaternion: :return: angle (radian), axis author: weiwei date: 20190421 """ lim = 1e-12 norm = np.linalg.norm(quaternion) angle = 0 axis = [0, 0, 0] if norm > lim: w = quaternion[0] vec = quaternion[1:] normvec = np.linalg.norm(vec) angle = 2 * math.acos(w) axis = vec / normvec return angle, axis def posvec_average(posveclist, bandwidth=10): """ average a list of posvec (1x3) :param posveclist: :param denoise: meanshift denoising is applied if True :return: author: weiwei date: 20190422 """ if len(posveclist) == 0: return False if bandwidth is not None: mt = cluster.MeanShift(bandwidth=bandwidth) posvecavg = mt.fit(posveclist).cluster_centers_[0] return posvecavg else: return np.array(posveclist).mean(axis=0) def gen_icorotmats(icolevel=1, rotagls=np.linspace(0, 2 * math.pi, 8, endpoint=False), toggleflat=False): """ generate rotmats using icospheres and rotationaangle each origin-vertex vector of the icosphere :param icolevel, the default value 1 = 42vertices :param angles, 8 directions by default :return: [[rotmat3, ...], ...] size of the inner list is size of the angles author: weiwei date: 20191015osaka """ returnlist = [] icos = trm.creation.icosphere(icolevel) for vert in icos.vertices: z = -vert x = orthogonal_vector(z) y = unit_vector(np.cross(z, x)) temprotmat = np.eye(3) temprotmat[:, 0] = x temprotmat[:, 1] = y temprotmat[:, 2] = z returnlist.append([]) for angle in rotagls: returnlist[-1].append(np.dot(rotmat_from_axangle(z, angle), temprotmat)) if toggleflat: return functools.reduce(operator.iconcat, returnlist, []) return returnlist def gen_icohomomats(icolevel=1, position=np.array([0, 0, 0]), rotagls=np.linspace(0, 2 * math.pi, 8, endpoint=False), toggleflat=False): """ generate homomats using icospheres and rotationaangle each origin-vertex vector of the icosphere :param icolevel, the default value 1 = 42vertices :param rotagls, 8 directions by default :return: [[homomat, ...], ...] size of the inner list is size of the angles author: weiwei date: 20200701osaka """ returnlist = [] icos = trm.creation.icosphere(icolevel) for vert in icos.vertices: z = -vert x = orthogonal_vector(z) y = unit_vector(np.cross(z, x)) temprotmat = np.eye(3) temprotmat[:, 0] = x temprotmat[:, 1] = y temprotmat[:, 2] = z returnlist.append([]) for angle in rotagls: tmphomomat = np.eye(4) tmphomomat[:3, :3] = np.dot(rotmat_from_axangle(z, angle), temprotmat) tmphomomat[:3, 3] = position returnlist[-1].append(tmphomomat) if toggleflat: return functools.reduce(operator.iconcat, returnlist, []) return returnlist def getaabb(pointsarray): """ get the axis aligned bounding box of nx3 array :param pointsarray: nx3 array :return: center + np.array([[xmin, xmax], [ymin, ymax], [zmin, zmax]]) author: weiwei date: 20191229 """ xmax = np.max(pointsarray[:, 0]) xmin = np.min(pointsarray[:, 0]) ymax = np.max(pointsarray[:, 1]) ymin = np.min(pointsarray[:, 1]) zmax = np.max(pointsarray[:, 2]) zmin = np.min(pointsarray[:, 2]) center = np.array([(xmax + xmin) / 2, (ymax + ymin) / 2, (zmax + zmin) / 2]) # volume = (xmax-xmin)*(ymax-ymin)*(zmax-zmin) return [center, np.array([[xmin, xmax], [ymin, ymax], [zmin, zmax]])] def compute_pca(nparray): """ :param nparray: nxd array, d is the dimension :return: evs eigenvalues, axmat dxn array, each column is an eigenvector author: weiwei date: 20200701osaka """ ca = np.cov(nparray, y=None, rowvar=False, bias=True) # rowvar row=point, bias biased covariance pcv, pcaxmat = np.linalg.eig(ca) return pcv, pcaxmat def transform_data_pcv(data, random_rot=True): """ :param data: :param random_rot: :return: author: reuishuang date: 20210706 """ pcv, pcaxmat = compute_pca(data) inx = sorted(range(len(pcv)), key=lambda k: pcv[k]) x_v = pcaxmat[:, inx[2]] y_v = pcaxmat[:, inx[1]] z_v = pcaxmat[:, inx[0]] pcaxmat = np.asarray([y_v, x_v, -z_v]).T if random_rot: pcaxmat = np.dot(rotmat_from_axangle([1, 0, 0], math.radians(5)), pcaxmat) pcaxmat = np.dot(rotmat_from_axangle([0, 1, 0], math.radians(5)), pcaxmat) pcaxmat = np.dot(rotmat_from_axangle([0, 0, 1], math.radians(5)), pcaxmat) transformed_data = np.dot(pcaxmat.T, data.T).T return transformed_data, pcaxmat def fit_plane(points): """ :param points: nx3 nparray :return: """ plane_center = points.mean(axis=0) result = np.linalg.svd(points - plane_center) plane_normal = unit_vector(np.cross(result[2][0], result[2][1])) return plane_center, plane_normal def project_to_plane(point, plane_center, plane_normal): dist = abs((point - plane_center).dot(plane_normal)) print((point - plane_center).dot(plane_normal)) if (point - plane_center).dot(plane_normal) < 0: plane_normal = - plane_normal projected_point = point - dist * plane_normal return projected_point def points_obb(pointsarray, toggledebug=False): """ applicable to both 2d and 3d pointsarray :param pointsarray: nx3 or nx3 array :return: center, corners, and [x, y, ...] frame author: weiwei date: 20191229, 20200701osaka """ pcv, pcaxmat = compute_pca(pointsarray) pcaxmat_t = pcaxmat.T # use the inverse of the eigenvectors as a rotation matrix and # rotate the points so they align with the x and y axes ar = np.dot(pointsarray, np.linalg.inv(pcaxmat_t)) # get the minimum and maximum mina = np.min(ar, axis=0) maxa = np.max(ar, axis=0) diff = (maxa - mina) * 0.5 # the center is just half way between the min and max xy center = mina + diff # get the corners by subtracting and adding half the bounding boxes height and width to the center if pointsarray.shape[1] == 2: corners = np.array([center + [-diff[0], -diff[1]], center + [diff[0], -diff[1]], center + [diff[0], diff[1]], center + [-diff[0], diff[1]]]) elif pointsarray.shape[1] == 3: corners = np.array([center + [-diff[0], -diff[1], -diff[2]], center + [diff[0], -diff[1], -diff[2]], center + [diff[0], diff[1], -diff[2]], center + [-diff[0], diff[1], -diff[2]], center + [-diff[0], diff[1], diff[2]], center + [-diff[0], -diff[1], diff[2]], center + [diff[0], -diff[1], diff[2]], center + [diff[0], diff[1], diff[2]]]) # use the the eigenvectors as a rotation matrix and # rotate the corners and the centerback corners = np.dot(corners, pcaxmat_t) center = np.dot(center, pcaxmat_t) if toggledebug: import matplotlib.pyplot as plt fig = plt.figure(figsize=(12, 12)) ax = fig.add_subplot(111) ax.scatter(pointsarray[:, 0], pointsarray[:, 1]) ax.scatter([center[0]], [center[1]]) ax.plot(corners[:, 0], corners[:, 1], '-') plt.axis('equal') plt.show() return [center, corners, pcaxmat] def gaussian_ellipsoid(pointsarray): """ compute a 95% percent ellipsoid axmat for the given points array :param pointsarray: :return: author: weiwei date: 20200701 """ pcv, pcaxmat = compute_pca(pointsarray) center = np.mean(pointsarray, axis=0) axmat = np.eye(3) # TODO is there a better way to do this? axmat[:, 0] = 2 * math.sqrt(5.991 * pcv[0]) * pcaxmat[:, 0] axmat[:, 1] = 2 * math.sqrt(5.991 * pcv[1]) * pcaxmat[:, 1] axmat[:, 2] = 2 * math.sqrt(5.991 * pcv[2]) * pcaxmat[:, 2] return center, axmat def random_rgba(toggle_alpha_random=False): """ randomize a 1x4 list in range 0-1 :param toggle_alpha_random: alpha = 1 if False :return: """ if not toggle_alpha_random: return
np.random.random_sample(3)
numpy.random.random_sample
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,1,0,1,0,0,0,0,-1])
numpy.array
import numpy as np import tensorflow as tf from keras.layers import Dense, Input from keras.models import Model from keras.layers.advanced_activations import LeakyReLU from mpi4py import MPI from keras.optimizers import SGD import keras.backend as K import time def mapping(dim,edim): n=int(2.5*dim) Z0=np.random.rand(n,edim) B1=np.tile(np.random.rand(1,dim),(n,1))-0.5 B2=np.tile(np.random.rand(1,dim),(n,1))-0.5 B3=np.tile(np.random.rand(1,dim),(n,1))-0.5 W1=(np.random.rand(edim,dim)*0.05+0.05)*np.sign(np.random.rand(edim,dim)-0.5) W2=(np.random.rand(dim,dim)*0.05+0.05)*np.sign(np.random.rand(dim,dim)-0.5) W3=(np.random.rand(dim,dim)*0.05+0.05)*np.sign(np.random.rand(dim,dim)-0.5) X1=np.tanh(B1+np.dot(Z0,W1)) X2=B2+np.dot(X1,W2) X2=np.exp(-X2**2) X3=2/(1-np.min(X2,0)[np.newaxis,:])*(X2-np.min(X2,0)[np.newaxis,:])-1 X4=B3+np.dot(X3,W3) X5=X4-X4[0,:] X5=np.tanh(X5)*0.325 X6=(X5**2-1)*(0.75*X5-0.25)+2/np.pi*np.arcsin(X5) return X6 def cost_opt(X,opt_it,X0): M=np.zeros(X.shape) V=np.zeros(X.shape) eta=0.001 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for i in range(opt_it): G=gradient(X,X0) M=betam*M+(1-betam)*G V=betav*V+(1-betav)*G**2 Mh=M/(1-betamh) Vh=V/(1-betavh) betamh=betamh*betam betavh=betavh*betav D=eta*Mh/(Vh**0.5 +1e-8) X=X-D X=np.clip(X,-1,1) return cost(X,X0) def cost_dec(Z,decoder,opt_it,X0): X=decoder.predict(Z) M=np.zeros(X.shape) V=np.zeros(X.shape) eta=0.001 betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 for i in range(opt_it): G=gradient(X,X0) M=betam*M+(1-betam)*G V=betav*V+(1-betav)*G**2 Mh=M/(1-betamh) Vh=V/(1-betavh) betamh=betamh*betam betavh=betavh*betav D=eta*Mh/(Vh**0.5 +1e-8) X=X-D X=np.clip(X,-1,1) return cost(X,X0) def cost(X,X0): C=np.zeros(len(X)) for i in range(len(X)): C[i]=np.min(np.sum((X0-X[[i],:])**2,1)) Cn=np.sum((X-0.25)**2,1) Cn=(1-np.exp(-10*Cn))*(0.4+np.exp(-10*Cn))*3 return C+Cn def gradient(X,X0): ECn=np.exp(-10*np.sum((X-0.25)**2,1)) dCndX=2*(X-0.25) dCndCn=3*(20*ECn**2-6*ECn) Gn=dCndCn[:,np.newaxis]*dCndX G0=np.zeros(X.shape) for i in range(len(X)): jmin=np.argmin(np.sum((X0-X[[i],:])**2,1)) G0[i,:]=2*(X[i,:]-X0[jmin,:]) G=G0+Gn return G def train_autoencoder(AE,X_rank,rank,size,perrank,n_epochs): num_batches=10 batch_size_perrank=int(perrank/num_batches) betam=0.9 betav=0.999 betamh=0.9 betavh=0.999 eta=0.001 m=None v=None Index=np.arange(perrank) if rank==0: optimizer=SGD(learning_rate=eta,momentum=0.0) comm.Barrier() for epoch in range(n_epochs): np.random.shuffle(Index) if epoch+1>0.9*n_epochs: num_batches=1 batch_size_perrank=perrank for batch in range(num_batches): X_batch=np.copy(X_rank[Index[batch*batch_size_perrank:(batch+1)*batch_size_perrank],:]) if rank==0: AE_weights=AE.get_weights() else: AE_weights=None AE_weights=comm.bcast(AE_weights,root=0) AE.set_weights(AE_weights) with tf.GradientTape() as tape: X_batch_pred=AE(X_batch) loss_batch=K.mean((X_batch-X_batch_pred)**2)/size grad=np.array(tape.gradient(loss_batch,AE.trainable_weights),dtype=object) Gradient=[None]*len(grad) for i in range(len(grad)): Gradient[i]=comm.gather(grad[i],root=0) # Gradients=comm.gather(grad,root=0) if rank==0: # Grad=np.sum(Gradients,0) Grad=
np.sum(Gradient,1)
numpy.sum
# Atom Tracing Code for International Workshop and Short Course on the FRONTIERS OF ELECTRON TOMOGRAPHY # https://www.electron-tomo.com/ import numpy as np import scipy as sp import scipy.io as sio import os import warnings def tripleRoll(vol, vec): return np.roll(np.roll(np.roll(vol, vec[0], axis=0), vec[1], axis=1), vec[2], axis=2) def peakFind3D(vol, thresh3D): """ Find peaks in a 3D volume vol: an ndarray of values with peaks to find thresh3D: [0,1] value to set a threshold for size of peak vs. max intensity in image """ pLarge = ((vol > tripleRoll(vol, [-1, -1, -1])) & (vol > tripleRoll(vol, [0, -1, -1])) & (vol > tripleRoll(vol, [1, -1, -1])) & (vol > tripleRoll(vol, [-1, 0, -1])) & (vol > tripleRoll(vol, [1, 0, -1])) & (vol > tripleRoll(vol, [-1, 1, -1])) & (vol > tripleRoll(vol, [0, 1, -1])) & (vol > tripleRoll(vol, [1, 1, -1])) & (vol > tripleRoll(vol, [0, 0, -1])) & (vol > tripleRoll(vol, [-1, -1, 0])) & (vol > tripleRoll(vol, [0, -1, 0])) & (vol > tripleRoll(vol, [1, -1, 0])) & (vol > tripleRoll(vol, [-1, 0, 0])) & (vol > tripleRoll(vol, [1, 0, 0])) & (vol > tripleRoll(vol, [-1, 1, 0])) & (vol > tripleRoll(vol, [0, 1, 0])) & (vol > tripleRoll(vol, [1, 1, 0])) & (vol > tripleRoll(vol, [-1, -1, 1])) & (vol > tripleRoll(vol, [0, -1, 1])) & (vol > tripleRoll(vol, [1, -1, 1])) & (vol > tripleRoll(vol, [-1, 0, 1])) & (vol > tripleRoll(vol, [1, 0, 1])) & (vol > tripleRoll(vol, [-1, 1, 1])) & (vol > tripleRoll(vol, [0, 1, 1])) & (vol > tripleRoll(vol, [1, 1, 1])) & (vol > tripleRoll(vol, [0, 0, 1])) & (vol > thresh3D * np.max(vol))) [xp, yp, zp] = np.where(pLarge * vol) ip = vol[xp, yp, zp] return {'xp': xp, 'yp': yp, 'zp': zp, 'ip': ip} def MatrixQuaternionRot(vector, theta): """ MatrixQuaternionRot(vector,theta) Returns a 3x3 rotation matrix [SO(3)] in numpy array (not numpy matrix!) for rotating "theta" angle around the given "vector" axis. vector - A non-zero 3-element numpy array representing rotation axis theta - A real number for rotation angle in "DEGREES" Author: <NAME>, Dept. of Physics and Astronomy, UCLA <EMAIL> """ theta = theta * np.pi / 180 vector = vector / np.float(np.sqrt(np.dot(vector, vector))) w = np.cos(theta / 2) x = -np.sin(theta / 2) * vector[0] y = -
np.sin(theta / 2)
numpy.sin
import numpy as np import numpy.matlib as npmat import math def my_phantomgallery( phantom_type ): """ Calculates the matrix of the elements of the phantom given its type. Parameters ---------- phantom_type: 'ellipses' (or 'shepp_logan'),'modified_shepp_logan','squares','rectangles' Returns ------- M : matrix of the elements of the phantom """ if phantom_type == 'ellipses' or phantom_type == 'shepp_logan': # [semiaxis 1, semiaxis 2, x center, y center, phi=angle (degrees), greyscale=attenuation] M = np.array([[ .69, .92, 0, 0, 0, 1.], [ .6624, .8740, 0, -.0184, 0, -0.8], [ .1100, .3100, .22, 0, -18, -.2], [ .1600, .4100, -.22, 0, 18, -.2], [ .2100, .2500, 0, .35, 0, .1], [ .0460, .0460, 0, .1, 0, .1], [ .0460, .0460, 0, -.1, 0, .1], [ .0460, .0230, -.08, -.605, 0, .1], [ .0230, .0230, 0, -.605, 0, .1], [ .0230, .0460, .06, -.605, 0, .1]]) elif phantom_type == 'modified_shepp_logan': # [semiaxis 1, semiaxis 2, x center, y center, phi=angle (degrees), greyscale=attenuation] p1 = [.7, .8, 0, 0, 0, 1] p2 = [.65,.75,0,0,0,-.9] p3 = [.15,.2,0,.4,0,.5] p4 = [.25,.15,-.25,.25,135.79,.2] p5 = [.25,.15,.25,.25,45.26,.2] p6 = [.08,.25,0,-.3,28.65,.65] p7 = [.05,.05,.5,-.3,0,.8] # combine into a matrix with one ellipse in each row M = np.array([p1, p2, p3, p4, p5, p6, p7]); elif phantom_type == 'squares': # [x center, y center, edge length ,phi=angle (degrees), greyscale=attenuation] s1 = [0,0,1.3,0,1] s2 = [0,0,1.1,0,-.9] s3 = [.1,-.1,.5,180/6,.4] s4 = [-.25,.15,.25,180/4,.2] s5 = [-.2,.25,.3,180/3,.4] #combine into a matrix with one square in each row M = np.array([s1, s2, s3, s4, s5]); elif (phantom_type == 'rectangles'): # [x center, y center, dimension 1, dimension 2, phi=angle (degrees), greyscale=attenuation] r1 = [0,0,1.3,1.1,0,1] r2 = [0,0,1.2,1,0,-.9] r3 = [0.25,.15,.25,.6,180/6,.4] r4 = [-.2,.1,.25,.20,180/4,.2] r5 = [-.3,.2,.3,.2,180/6,.4] #combine into a matrix with one square in each row M =
np.array([r1, r2, r3, r4, r5])
numpy.array
from __future__ import print_function, division import numpy as np import torch from skimage import io, transform, color from torch.utils.data import Dataset class RescaleT(object): def __init__(self, output_size): assert isinstance(output_size, (int, tuple)) self.output_size = output_size def __call__(self, sample): imidx, image, label = sample['imidx'], sample['image'], sample['label'] img = transform.resize( image, (self.output_size, self.output_size), mode='constant' ) lbl = transform.resize( label, (self.output_size, self.output_size), mode='constant', order=0, preserve_range=True ) return dict(imidx=imidx, image=img, label=lbl) class ToTensorLab(object): def __init__(self, flag=0): self.flag = flag # noinspection PyUnresolvedReferences def __call__(self, sample): imidx, image, label = sample['imidx'], sample['image'], sample['label'] temp_label = np.zeros(label.shape) if np.max(label) < 1e-6: label = label else: label = label / np.max(label) # Change the color space if self.flag == 2: # With RGB and Lab colors tmp_image = np.zeros((image.shape[0], image.shape[1], 6)) tmp_image_t = np.zeros((image.shape[0], image.shape[1], 3)) if image.shape[2] == 1: tmp_image_t[:, :, 0] = image[:, :, 0] tmp_image_t[:, :, 1] = image[:, :, 0] tmp_image_t[:, :, 2] = image[:, :, 0] else: tmp_image_t = image tmp_image_tl = color.rgb2lab(tmp_image_t) # Normalize image to range [0,1] tmp_image[:, :, 0] = (tmp_image_t[:, :, 0] - np.min(tmp_image_t[:, :, 0])) / ( np.max(tmp_image_t[:, :, 0]) - np.min(tmp_image_t[:, :, 0])) tmp_image[:, :, 1] = (tmp_image_t[:, :, 1] - np.min(tmp_image_t[:, :, 1])) / ( np.max(tmp_image_t[:, :, 1]) - np.min(tmp_image_t[:, :, 1])) tmp_image[:, :, 2] = (tmp_image_t[:, :, 2] - np.min(tmp_image_t[:, :, 2])) / ( np.max(tmp_image_t[:, :, 2]) - np.min(tmp_image_t[:, :, 2])) tmp_image[:, :, 3] = (tmp_image_tl[:, :, 0] - np.min(tmp_image_tl[:, :, 0])) / ( np.max(tmp_image_tl[:, :, 0]) - np.min(tmp_image_tl[:, :, 0])) tmp_image[:, :, 4] = (tmp_image_tl[:, :, 1] - np.min(tmp_image_tl[:, :, 1])) / ( np.max(tmp_image_tl[:, :, 1]) - np.min(tmp_image_tl[:, :, 1])) tmp_image[:, :, 5] = (tmp_image_tl[:, :, 2] - np.min(tmp_image_tl[:, :, 2])) / ( np.max(tmp_image_tl[:, :, 2]) - np.min(tmp_image_tl[:, :, 2])) tmp_image[:, :, 0] = (tmp_image[:, :, 0] - np.mean(tmp_image[:, :, 0])) / np.std(tmp_image[:, :, 0]) tmp_image[:, :, 1] = (tmp_image[:, :, 1] - np.mean(tmp_image[:, :, 1])) / np.std(tmp_image[:, :, 1]) tmp_image[:, :, 2] = (tmp_image[:, :, 2] - np.mean(tmp_image[:, :, 2])) / np.std(tmp_image[:, :, 2]) tmp_image[:, :, 3] = (tmp_image[:, :, 3] - np.mean(tmp_image[:, :, 3])) / np.std(tmp_image[:, :, 3]) tmp_image[:, :, 4] = (tmp_image[:, :, 4] - np.mean(tmp_image[:, :, 4])) / np.std(tmp_image[:, :, 4]) tmp_image[:, :, 5] = (tmp_image[:, :, 5] - np.mean(tmp_image[:, :, 5])) / np.std(tmp_image[:, :, 5]) elif self.flag == 1: # With Lab color tmp_image =
np.zeros((image.shape[0], image.shape[1], 3))
numpy.zeros
import numpy as np """ This is a library to do pretty basic neural network computations automatically. It should be kept clean and simple. Computations are made as nodes are added to the graph and derivatives are propogated in the reverse order. There are currently just a few operations, which should be enough for me: graph.dot(vector, matrix) graph.relu(tensor, alpha=0.0) graph.add(tensor_list) graph.multiply(scalar, tensor) graph.sigmoid() graph.concat(vector_list) graph.split(num, vector_list) """ NNLibraryDType = np.float64 NNepsilon = np.float64(1.0e-30) class Node: def __init__(self,graph): self.is_variable = False if graph is not None: graph.append(self) def shape(self): return self.value.shape def __repr__(self): if hasattr(self, 'name'): return '<{0}: Node of size {1}>'.format( self.name, self.shape() ) else: return '<Node of size {0}>'.format( self.shape() ) def __str__(self): return self.__repr__() class DotNode(Node): def __init__(self, vector, tensor, graph): # vector and tensor are nodes Node.__init__(self, graph) assert len(vector.value.shape)<3 assert len(tensor.value.shape)==2 #self.value = np.dot(vector.value, tensor.value) self.value = np.dot(vector.value, tensor.value) if graph is not None: self.d = 0.0*self.value self.vector = vector self.tensor = tensor def backprop(self): n = len(self.vector.value.shape) if n == 1: self.vector.d += np.dot(self.d, self.tensor.value.transpose()) self.tensor.d +=
np.outer(self.vector.value, self.d)
numpy.outer
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # (mostly translation, see implementation details) # <NAME> <<EMAIL>> # (converting to a object-oriented, more modular design) # Licence: BSD 3 clause """ The built-in correlation models submodule for the gaussian_process module. """ from abc import ABCMeta, abstractmethod import numpy as np from sklearn.utils import check_array from sklearn.externals.six import with_metaclass MACHINE_EPSILON = np.finfo(np.double).eps def l1_cross_differences(X): """ Computes the nonzero componentwise differences between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise differences. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = check_array(X) n_samples, n_features = X.shape n_nonzero_cross_diff = n_samples * (n_samples - 1) // 2 ij = np.zeros((n_nonzero_cross_diff, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_diff, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = X[k] - X[(k + 1):n_samples] return D, ij.astype(np.int) class StationaryCorrelation(with_metaclass(ABCMeta, object)): """ Base-class for stationary correlation models for Gaussian Processes. Stationary correlation models dependent only on the relative distance and not on the absolute positions of the respective datapoints. We can thus work internally solely on these distances. """ def __init__(self): pass def fit(self, X, nugget=10. * MACHINE_EPSILON): """ Fits the correlation model for training data X Parameters ---------- X : array_like, shape=(n_samples, n_features) An array of training datapoints at which observations were made, i.e., where the outputs y are known nugget : double or ndarray, optional The Gaussian Process nugget parameter The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). """ self.X = X self.nugget = nugget self.n_samples = X.shape[0] # Calculate array with shape (n_eval, n_features) giving the # componentwise distances between locations x and x' at which the # correlation model should be evaluated. self.D, self.ij = l1_cross_differences(self.X) if (np.min(np.sum(self.D, axis=1)) == 0. and not isinstance(self, PureNugget)): raise Exception("Multiple input features cannot have the same" " value.") def __call__(self, theta, X=None): """ Compute correlation for given correlation parameter(s) theta. Parameters ---------- theta : array_like An array with giving the autocorrelation parameter(s). Dimensionality depends on the specific correlation model; often shape (1,) corresponds to an isotropic correlation model and shape (n_features,) to a anisotropic one. X : array_like, shape(n_eval, n_features) An array containing the n_eval query points whose correlation with the training datapoints shall be computed. If None, autocorrelation of the training datapoints is computed instead. Returns ------- r : array_like, shape=(n_eval, n_samples) if X != None (n_samples, n_samples) if X == None An array containing the values of the correlation model. """ theta = np.asarray(theta, dtype=np.float) if X is not None: # Get pairwise componentwise L1-differences to the input training # set d = X[:, np.newaxis, :] - self.X[np.newaxis, :, :] d = d.reshape((-1, X.shape[1])) else: # No external datapoints given; auto-correlation of training set # is used instead d = self.D if d.ndim > 1: n_features = d.shape[1] else: n_features = 1 # Compute the correlation for the respective correlation model (handled # by subclass) r = self._compute_corr(theta, d, n_features) if X is not None: # Convert to 2d matrix return r.reshape(-1, self.n_samples) else: # Auto-correlation computed only for upper triangular part of # matrix. Fill diagonal with 1+nugget and the lower triangular # by exploiting symmetry of matrix R = np.eye(self.n_samples) * (1. + self.nugget) R[self.ij[:, 0], self.ij[:, 1]] = r R[self.ij[:, 1], self.ij[:, 0]] = r return R def log_prior(self, theta): """ Returns the (log) prior probability of parameters theta. The prior is assumed to be uniform over the parameter space. NOTE: The returned quantity is an improper prior as its integral over the parameter space is not equal to 1. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). Returns ------- log_p : float The (log) prior probability of parameters theta. An improper probability. """ return 0 @abstractmethod def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ class AbsoluteExponential(StationaryCorrelation): """ Absolute exponential autocorrelation model. Absolute exponential autocorrelation model (Ornstein-Uhlenbeck stochastic process):: n theta, d --> r(theta, d) = exp( sum - theta_i * d_i ) i = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) or (n_features,) An array with shape 1 (isotropic) or n_features (anisotropic) giving the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) d = np.abs(d) if theta.size == 1: return np.exp(- theta[0] * np.sum(d, axis=1)) elif theta.size != n_features: raise ValueError("Length of theta must be 1 or %s" % n_features) else: return np.exp(- np.sum(theta.reshape(1, n_features) * d, axis=1)) class SquaredExponential(StationaryCorrelation): """ Squared exponential correlation model. Squared exponential correlation model (Radial Basis Function). (Infinitely differentiable stochastic process, very smooth):: n theta, d --> r(theta, d) = exp( sum - theta_i * (d_i)^2 ) i = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) return np.exp(-self._quadratic_activation(theta, d, n_features)) def _quadratic_activation(self, theta, d, n_features): """ Utility function for computing quadratic activation. Computes the activation activ=d.T * M * d where M is a covariance matrix of size n*n. The hyperparameters theta specify * an isotropic covariance matrix, i.e., M = theta * I with I being the identity, if theta has shape 1 * an automatic relevance determination model if theta has shape n, in which the characteristic length scales of each dimension are learned separately: M = diag(theta) * a factor analysis distance model if theta has shape k*n for k> 1, in which a low-rank approximation of the full matrix M is learned. This low-rank approximation approximates the covariance matrix as low-rank matrix plus a diagonal matrix: M = Lambda * Lambda.T + diag(l), where Lambda is a n*(k-1) matrix and l specifies the diagonal matrix. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). In the case of the factor analysis distance, M is approximated by M = Lambda * Lambda.T + diag(l), where l is encoded in the last n entries of theta and Lambda is encoded row-wise in the first entries of theta. Note that Lambda may contain negative entries while theta is strictly positive; because of this, the entries of Lambda are set to the logarithm with basis 10 of the corresponding entries in theta. array_like, shape=(n_eval, n_features) An array giving the componentwise differences of x and x' at which the quadratic activation should be evaluated. Returns ------- a : array_like, shape=(n_eval, ) An array with the activation values for the respective componentwise differences d. """ if theta.size == 1: # case where M is isotropic: M = diag(theta[0]) return theta[0] * np.sum(d ** 2, axis=1) elif theta.size == n_features: # anisotropic but diagonal case (ARD) return np.sum(theta.reshape(1, n_features) * d ** 2, axis=1) elif theta.size % n_features == 0: # Factor analysis case: M = lambda*lambda.T + diag(l) theta = theta.reshape((1, theta.size)) M = np.diag(theta[0, :n_features]) # the diagonal matrix part l # The low-rank matrix contribution which allows accounting for # correlations in the feature dimensions # NOTE: these components of theta are passed through a log-function # to allow negative values in Lambda Lambda = np.log10(theta[0, n_features:].reshape((n_features, -1))) M += Lambda.dot(Lambda.T) return np.sum(d.dot(M) * d, -1) else: raise ValueError("Length of theta must be 1 or a multiple of %s." % n_features) class Matern_1_5(SquaredExponential): """ Matern correlation model for nu=1.5. Sample paths are once differentiable. Given by:: r(theta, dx) = (1 + np.sqrt(3*activ))*exp(-np.sqrt(3*activ)) where activ=dx.T * M * dx and M is a covariance matrix of size n*n. See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) activ = self._quadratic_activation(theta, d, n_features) tmp = np.sqrt(3 * activ) # temporary variable for preventing # recomputation return (1 + tmp) * np.exp(-tmp) class Matern_2_5(SquaredExponential): """ Matern correlation model for nu=2.5. Sample paths are twice differentiable. Given by:: r(theta, dx) = (1 + np.sqrt(5*activ) + 5/3*activ)*exp(-np.sqrt(5*activ)) where activ=dx.T * M * dx and M is a covariance matrix of size n*n. See Rasmussen and Williams 2006, pp84 for details regarding the different variants of the Matern kernel. """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1,) [isotropic] (n_features,) [anisotropic] or (k*n_features,) [factor analysis distance] An array encoding the autocorrelation parameter(s). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) activ = self._quadratic_activation(theta, d, n_features) tmp = np.sqrt(5 * activ) # temporary variable for preventing # recomputation return (1 + tmp + 5.0 / 3.0 * activ) * np.exp(-tmp) class GeneralizedExponential(StationaryCorrelation): """ Generalized exponential correlation model. Generalized exponential correlation model. (Useful when one does not know the smoothness of the function to be predicted.):: n theta, d --> r(theta, d) = exp( sum - theta_i * |d_i|^p ) i = 1 """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like, shape=(1+1,) or (n_features+1,) An array with shape 1+1 (isotropic) or n_features+1 (anisotropic) giving the autocorrelation parameter(s) (theta, p). d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like, shape=(n_eval, ) An array containing the values of the autocorrelation model. """ d = np.asarray(d, dtype=np.float) lth = theta.size if n_features > 1 and lth == 2: theta = np.hstack([np.repeat(theta[0], n_features), theta[1]]) elif lth != n_features + 1: raise Exception("Length of theta must be 2 or %s" % (n_features + 1)) else: theta = theta.reshape(1, lth) td = theta[:, 0:-1].reshape(1, n_features) \ * np.abs(d) ** theta[:, -1] return np.exp(- np.sum(td, 1)) class PureNugget(StationaryCorrelation): """ Spatial independence correlation model (pure nugget). Useful when one wants to solve an ordinary least squares problem!:: n theta, d --> r(theta, dx) = 1 if sum |d_i| == 0 i = 1 0 otherwise """ def _compute_corr(self, theta, d, n_features): """ Correlation for given pairwise, component-wise L1-differences. Parameters ---------- theta : array_like None. d : array_like, shape=(n_eval, n_features) An array with the pairwise, component-wise L1-differences of x and x' at which the correlation model should be evaluated. Returns ------- r : array_like An array with shape (n_eval, ) with the values of the autocorrelation model. """ d =
np.asarray(d, dtype=np.float)
numpy.asarray
import os import gc import tensorflow as tf import numpy as np import pickle import glob import shutil import multiprocessing as mp import pandas as pd from Fuzzy_clustering.ver_tf2.RBFNN_tf_core import RBFNN from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous import logging from joblib import Parallel, delayed # from util_database import write_database # from Fuzzy_clustering.ver_tf2.Forecast_model import forecast_model # from Fuzzy_clustering.ver_tf2.utils_for_forecast import split_continuous def optimize_rbf(rbf, X_train, y_train, X_val, y_val, X_test, y_test, num_centr, lr, gpu): acc_old = np.inf acc_old, centroids, radius, w, model = rbf.train(X_train, y_train, X_val, y_val, X_test, y_test, num_centr, lr, gpu_id=gpu) return num_centr, lr, acc_old, model class rbf_model(object): def __init__(self, static_data, rated, cluster_dir): self.static_data=static_data self.cluster = os.path.basename(cluster_dir) self.rated=rated self.cluster_dir=os.path.join(cluster_dir, 'RBFNN') self.model_dir = os.path.join(self.cluster_dir, 'model') self.istrained = False if not os.path.exists(self.model_dir): os.makedirs(self.model_dir) try: self.load(self.model_dir) except: pass def train_core(self, X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs): self.gpu = True nproc = self.static_data['njobs'] gpus = np.tile(self.static_data['gpus'], ncs.shape[0]*lrs.shape[0]) RBFnn = RBFNN(self.model_dir, rated=self.rated, max_iterations=self.static_data['max_iterations']) # n=0 # optimize_rbf(RBFnn, cvs[n][0], cvs[n][1], cvs[n][2], cvs[n][3], X_test, y_test, nc[n], gpus[n]) # pool = mp.Pool(processes=nproc) # # result = [] # k=0 # for n in range(ncs.shape[0]): # for lr in range(lrs.shape[0]): # optimize_rbf(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[n], lrs[lr], gpus[k]) # result.append(pool.apply_async(optimize_rbf, # args=(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[n], lrs[lr], gpus[k]))) k = np.arange(ncs.shape[0]*lrs.shape[0]) # optimize_rbf(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[0], lrs[0], gpus[0]) results = Parallel(n_jobs=nproc)( delayed(optimize_rbf)(RBFnn, X_train, y_train, X_val, y_val, X_test, y_test, ncs[n], lrs[lr], gpus[i+j]) for i, n in enumerate(range(ncs.shape[0])) for j, lr in enumerate(range(lrs.shape[0]))) # k+=1 # results = [p.get() for p in result] # pool.close() # pool.terminate() # pool.join() r = pd.DataFrame(results, columns=['num_centr', 'lr', 'acc', 'model']) self.num_centr = r.loc[r['acc'].idxmin()]['num_centr'] self.lr = r.loc[r['acc'].idxmin()]['lr'] self.rbf_performance = r['acc'].min() self.save(self.model_dir) gc.collect() models = [r2[3] for r2 in results] return models def rbf_train(self, cvs): logger = logging.getLogger('RBFNN ADAM_train_' + self.cluster) logger.setLevel(logging.INFO) handler = logging.FileHandler(os.path.join(self.model_dir, 'log_train_' + self.cluster + '.log'), 'a') handler.setLevel(logging.INFO) # create a logging format formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) # add the handlers to the logger logger.addHandler(handler) print('RBFNN ADAM training...begin') logger.info('RBFNN ADAM training...begin for %s', self.cluster) nc = [8, 12, 16, 20, 24, 28, 32, 36, 40, 48, 52] # nc = [12] self.N = cvs[0][0].shape[1] self.D = cvs[0][0].shape[0] + cvs[0][2].shape[0] + cvs[0][4].shape[0] X_train = cvs[0][0] y_train = cvs[0][1].reshape(-1, 1) X_val = cvs[0][2] y_val = cvs[0][3].reshape(-1, 1) X_test = cvs[0][4] y_test = cvs[0][5].reshape(-1, 1) ncs = np.array(nc) lrs=np.array([self.static_data['learning_rate']]) models = self.train_core(X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs) same = 1 for model in models: logger.info('Best number of centers training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists( os.path.join(self.model_dir, 'train_centers_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv( os.path.join(self.model_dir, 'train_centers_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_centers_result_' + str(model['num_centr']) + '_' + str( same) + '.csv'), header=None) same += 1 logger.info('temporary performance %s ', str(self.rbf_performance)) logger.info('temporary RBF number %s ', str(self.num_centr)) logger.info('\n') logger.info('\n') if self.num_centr >= 5 and self.static_data['Fine_tuning']: logger.info('Begin fine tuning....') print('Begin fine tuning....') ncs = np.hstack( [np.arange(self.num_centr - 2, self.num_centr - 1), np.arange(self.num_centr + 1, self.num_centr + 3)]) models = self.train_core(X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs) same = 1 for model in models: logger.info('fine tunninig training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists( os.path.join(self.model_dir, 'train_fine_tune_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv( os.path.join(self.model_dir, 'train_fine_tune_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_fine_tune_result_' + str(model['num_centr']) + '_' + str( same) + '.csv'), header=None) same += 1 logger.info('After fine tuning performance %s ', str(self.rbf_performance)) logger.info('After fine tuning RBF number %s ', str(self.num_centr)) logger.info('\n') ncs = np.array([self.num_centr]) lrs=np.array([1e-3, 5e-4, 1e-4, 5e-5]) models = self.train_core(X_train, y_train, X_val, y_val, X_test, y_test, ncs, lrs) same=1 for model in models: logger.info('Best Learning rate training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists(os.path.join(self.model_dir,'train_lr_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv(os.path.join(self.model_dir,'train_lr_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_lr_result_' + str(model['num_centr']) + '_'+ str(same) + '.csv'), header=None) same+=1 logger.info('Tuning lr performance %s ', str(self.rbf_performance)) logger.info('Tuning lr is %s ', str(self.lr)) logger.info('\n') ncs = np.array([self.num_centr]) ncs = np.repeat(ncs, 3) gpus = np.tile(self.static_data['gpus'], ncs.shape[0]) RBFnn = RBFNN(self.model_dir, rated=self.rated, max_iterations=self.static_data['max_iterations']) nproc = self.static_data['njobs'] # pool = mp.Pool(processes=nproc) # # result = [pool.apply_async(optimize_rbf, args=( # RBFnn, cvs[n][0], cvs[n][1].reshape(-1, 1), cvs[n][2], cvs[n][3].reshape(-1, 1), X_test, y_test, ncs[n], self.lr, gpus[n])) for n in # range(ncs.shape[0])] # # results = [p.get() for p in result] # pool.close() # pool.terminate() # pool.join() # results = Parallel(n_jobs=nproc)( delayed(optimize_rbf)(RBFnn, cvs[n][0], cvs[n][1].reshape(-1, 1), cvs[n][2], cvs[n][3].reshape(-1, 1), X_test, y_test, ncs[n], self.lr, gpus[n]) for n in range(ncs.shape[0])) r = pd.DataFrame(results, columns=['num_centr','lr', 'acc', 'model']) r2 = r.groupby(['num_centr'])['model'].apply(lambda x: np.squeeze([x])) r1 = r.groupby(['num_centr']).mean() self.acc_old = r1['acc'].values[0] r2 = r2[self.num_centr] self.models = [r2[i] for i in range(3)] self.rbf_performance = self.acc_old self.istrained = True self.save(self.model_dir) gc.collect() same=1 for model in self.models: logger.info('Final training ') logger.info('Model with num centers %s ', str(model['num_centr'])) logger.info('val_mae %s, val_mse %s, val_sse %s, val_rms %s ', *model['metrics']) logger.info('Model trained with max iterations %s ', str(model['best_iteration'])) train_res = pd.DataFrame.from_dict(model['error_func'], orient='index') if not os.path.exists(os.path.join(self.model_dir,'train_fin_result_' + str(model['num_centr']) + '.csv')): train_res.to_csv(os.path.join(self.model_dir,'train_fin_result_' + str(model['num_centr']) + '.csv'), header=None) else: train_res.to_csv(os.path.join(self.model_dir, 'train_fin_result_' + str(model['num_centr']) + '_'+ str(same) + '.csv'), header=None) same+=1 logger.info('final performance %s ', str(self.rbf_performance)) logger.info('final RBF number %s ', str(self.num_centr)) logger.info('RBFNN training...end for %s', self.cluster) logger.info('\n') return self.to_dict() def to_dict(self): dict = {} for k in self.__dict__.keys(): if k not in ['static_data', 'logger', 'cluster_dir','model_dir', 'model']: dict[k] = self.__dict__[k] return dict def predict(self,X): p=[] self.load(self.model_dir) for i in range(len(self.models)): centroids=self.models[i]['centroids'] radius=self.models[i]['Radius'] w=self.models[i]['W'] s = X.shape d1 = np.transpose(np.tile(np.expand_dims(X, axis=0), [self.num_centr, 1, 1]), [1, 0, 2]) - np.tile( np.expand_dims(centroids, axis=0), [s[0], 1, 1]) d = np.sqrt(np.sum(np.power(np.multiply(d1, np.tile(
np.expand_dims(radius, axis=0)
numpy.expand_dims
#!/usr/bin/env python # ------------------------------------------------------------------------------------------------------% # Created by "Thieu" at 17:13, 01/03/2021 % # % # Email: <EMAIL> % # Homepage: https://www.researchgate.net/profile/Nguyen_Thieu2 % # Github: https://github.com/thieu1995 % # ------------------------------------------------------------------------------------------------------% import numpy as np from mealpy.optimizer import Optimizer class BaseFireflyA(Optimizer): """ The original version of: Firefly Algorithm (FireflyA) Firefly Algorithm for Optimization Problem Link: DOI: https://www.researchgate.net/publication/259472546_Firefly_Algorithm_for_Optimization_Problem """ def __init__(self, problem, epoch=10000, pop_size=100, gamma=0.001, beta_base=2, alpha=0.2, alpha_damp=0.99, delta=0.05, exponent=2, **kwargs): """ Args: problem (): epoch (int): maximum number of iterations, default = 10000 pop_size (int): number of population size, default = 100 gamma (float): Light Absorption Coefficient, default = 0.001 beta_base (float): Attraction Coefficient Base Value, default = 2 alpha (float): Mutation Coefficient, default = 0.2 alpha_damp (float): Mutation Coefficient Damp Rate, default = 0.99 delta (float): Mutation Step Size, default = 0.05 exponent (int): Exponent (m in the paper), default = 2 **kwargs (): """ super().__init__(problem, kwargs) self.nfe_per_epoch = int(pop_size * (pop_size + 1) / 2 * 0.5) self.sort_flag = False self.epoch = epoch self.pop_size = pop_size self.gamma = gamma self.beta_base = beta_base self.alpha = alpha self.alpha_damp = alpha_damp self.delta = delta self.exponent = exponent ## Dynamic variable self.dyn_alpha = alpha # Initial Value of Mutation Coefficient def evolve(self, epoch): """ Args: epoch (int): The current iteration """ # Maximum Distance dmax = np.sqrt(self.problem.n_dims) for idx in range(0, self.pop_size): agent = self.pop[idx].copy() pop_child = [] for j in range(idx+1, self.pop_size): # Move Towards Better Solutions if self.compare_agent(self.pop[j], agent): # Calculate Radius and Attraction Level rij = np.linalg.norm(agent[self.ID_POS] - self.pop[j][self.ID_POS]) / dmax beta = self.beta_base * np.exp(-self.gamma * rij ** self.exponent) # Mutation Vector mutation_vector = self.delta *
np.random.uniform(0, 1, self.problem.n_dims)
numpy.random.uniform
#!/usr/bin/python # <NAME> 20235661 # CT5148 Programming Assignment 3 # manual_solve.py # My Github repository can be found at the link below # https://github.com/conorwa/ARC import os, sys import json import numpy as np import re ### YOUR CODE HERE: write at least three functions which solve ### specific tasks by transforming the input x and returning the ### result. Name them according to the task ID as in the three ### examples below. Delete the three examples. The tasks you choose ### must be in the data/training directory, not data/evaluation. ## The numbers to colour encoding is as follows ## Colour Encoding: Black = 0, Blue = 1, Red =2 , Green = 3 , Yellow = 4 , Grey = 5 , Pink = 6 , Orange = 7 , Light Blue = 8 , Brown = 9 # To solve cdecee7f: The grid has a size 10x10. Each column has a two coluours, Black and another colour. These colours then need to # be added to a new grid size 3x3. The way this is populated is shown below, from 1st colour to 9th colour found. # If Black colour found it is moved to the end, there fore if 9 colours found then last colour can't be Black. # [1st Colour, 2nd colour, 3rd colour] # [6th colour, 5th colour, 4th colour] ## Note this row is reversed # [7th colour, 8th colour, 9th colour] # If there are less than 9 colours then the remaining are populated as Black # We need to get the Max number in each of the columns. # Then where there are zero's move them to the end of the list, and delete the last index in the list # Then split the list into three, and append that into the array as the answer. def solve_cdecee7f(x): #Check for Max number in each column, Black is zero so if there is another colour in the column, it will always be the max col_max =np.max(x, axis=0) #Next four line removes zero's first and then moves them to the end of the list, and then removes the last item in the list col_temp = [x for x in col_max if x !=0] col_temp1 = [x for x in col_max if x == 0] col_temp.extend(col_temp1) col_temp2 = np.delete(col_temp, [-1]) #Reshape to size 3x3 out_array = np.reshape(col_temp2, (3,3)) #Reverse row 1 out_array[1]=
np.flip(out_array[1])
numpy.flip
import random from random import shuffle import numpy as np from datetime import datetime from typing import Any, List, Tuple import time import queue import threading import logging from PIL import Image import itertools import re import os import glob import shutil import sys import copy import h5py import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.nn.parallel.data_parallel import data_parallel import torch.utils.checkpoint as cp from collections import OrderedDict from torch import Tensor os.environ['CUDA_VISIBLE_DEVICES'] = '0' target_city = 'R3' TRAIN_VAL_RATIO = 5 TRAIN_VAL_INDEX = 4 global_step_start = 0 initial_checkpoint = None initial_checkpoint_optimizer = None #initial_checkpoint = 'model' + ('/%09d_model.pth' % (global_step_start)) #initial_checkpoint_optimizer = 'model' + ('/%09d_optimizer.pth' % (global_step_start)) LEARNING_RATE = 1e-4 BATCH_SIZE = 1 BATCH_SIZE_VAL = 1 VAL_INTERVAL = 8000 num_thread=2 SEED = int(time.time()) loss_weight_np = np.array([0.03163512, 0.00024158, 0.00703378, 0.19160305], np.float32) loss_weight_np = 1.0/loss_weight_np loss_weight_np *=(4.0/np.sum(loss_weight_np)) loss_weight_np *=10 input_data_folder_path = '../../0_data/' + target_city input_n_data_folder_path = '../../0_data/' + target_city + 'n' out_dir = 'output' num_frame_per_day = 96 num_frame_before = 4 num_frame_out = 32 num_frame_sequence = 36 height=256 width =256 num_channel_1 = 9 num_channel_2_src = 16 num_channel_2 = 107 + num_channel_2_src num_channel = (num_channel_1*2 + num_channel_2) num_channel_out= 4 NUM_INPUT_CHANNEL = num_channel * num_frame_before NUM_OUTPUT_CHANNEL = num_channel_out * num_frame_out num_groups = 8 EPS = 1e-12 np.set_printoptions(precision=6) other_city_list = ['R1', 'R2', 'R3'] other_city_list.remove(target_city) assert len(other_city_list) == 2 class Deconv3x3Block(nn.Sequential): def __init__(self, in_size: int, h_size: int, ) -> None: super(Deconv3x3Block, self).__init__() self.add_module('deconv', nn.ConvTranspose2d(in_size, h_size, kernel_size=3, stride=2, padding=1, bias=True)) self.add_module('elu', nn.ELU(inplace=True)) self.add_module('norm', nn.GroupNorm(num_groups=num_groups, num_channels=h_size)) class Conv1x1Block(nn.Sequential): def __init__(self, in_size: int, h_size: int, ) -> None: super(Conv1x1Block, self).__init__() self.add_module('conv', nn.Conv2d(in_size, h_size, kernel_size=1, stride=1, padding=0, bias=True)) class Conv3x3Block(nn.Sequential): def __init__(self, in_size: int, h_size: int, ) -> None: super(Conv3x3Block, self).__init__() self.add_module('conv', nn.Conv2d(in_size, h_size, kernel_size=3, stride=1, padding=1, bias=True)) self.add_module('elu', nn.ELU(inplace=True)) self.add_module('norm', nn.GroupNorm(num_groups=num_groups, num_channels=h_size)) class AvgBlock(nn.Sequential): def __init__(self, kernel_size: int, stride: int, padding: int) -> None: super(AvgBlock, self).__init__() self.add_module('pool', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding)) class MaxBlock(nn.Sequential): def __init__(self, kernel_size: int, stride: int, padding: int) -> None: super(MaxBlock, self).__init__() self.add_module('pool', nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=padding)) class DownBlock(nn.Module): def __init__(self, in_size: int, h_size: int, out_size: int, do_pool: int = True): super(DownBlock, self).__init__() self.do_pool = do_pool self.pool = None if self.do_pool: self.pool = AvgBlock(kernel_size=2, stride=2, padding=0) in_size_cum = in_size self.conv_1 = Conv3x3Block( in_size=in_size_cum, h_size=h_size) in_size_cum += h_size self.conv_3 = Conv3x3Block( in_size=in_size_cum, h_size=h_size) in_size_cum += h_size self.conv_2 = Conv1x1Block( in_size=in_size_cum, h_size=out_size) def forward(self, x): batch_size = len(x) if self.do_pool: x = self.pool(x) x_list = [] x_list.append(x) x = self.conv_1(x) x_list.append(x) x = torch.cat(x_list, 1) x = self.conv_3(x) x_list.append(x) x = torch.cat(x_list, 1) x = self.conv_2(x) return x def cuda(self, ): super(DownBlock, self).cuda() self.conv_1.cuda() self.conv_3.cuda() self.conv_2.cuda() return self class UpBlock(nn.Module): def __init__(self, in_size: int, in_size_2: int, h_size: int, out_size: int, ): super(UpBlock, self).__init__() self.deconv = Deconv3x3Block( in_size=in_size, h_size=h_size) self.out_conv = Conv3x3Block( in_size=h_size + in_size_2, h_size=out_size) def forward(self, x1, x2): x1 = self.deconv(x1) x1 = F.interpolate(x1, size=x2.size()[2:4], scale_factor=None, mode='bilinear', align_corners=False, recompute_scale_factor=None) x = torch.cat([x2, x1], dim=1) return self.out_conv(x) def cuda(self, ): super(UpBlock, self).cuda() self.deconv.cuda() self.out_conv.cuda() return self class NetA(nn.Module): def __init__(self,): super(NetA, self).__init__() self.block0 = DownBlock(in_size=NUM_INPUT_CHANNEL, h_size=128, out_size=128, do_pool=False) self.block1 = DownBlock(in_size=128, h_size=128, out_size=128,) self.block2 = DownBlock(in_size=128, h_size=128, out_size=128, ) self.block3 = DownBlock(in_size=128, h_size=128, out_size=128, ) self.block4 = DownBlock(in_size=128, h_size=128, out_size=128, ) self.block5 = DownBlock(in_size=128, h_size=128, out_size=128, ) self.block6 = DownBlock(in_size=128, h_size=128, out_size=128,) self.block20 = Conv3x3Block(in_size=128, h_size=128) self.block15 = UpBlock(in_size=128, in_size_2=128, h_size=128, out_size=128,) self.block14 = UpBlock(in_size=128, in_size_2=128, h_size=128, out_size=128,) self.block13 = UpBlock(in_size=128, in_size_2=128, h_size=128, out_size=128,) self.block12 = UpBlock(in_size=128, in_size_2=128, h_size=128, out_size=128,) self.block11 = UpBlock(in_size=128, in_size_2=128 , h_size=128, out_size=128,) self.block10 = UpBlock(in_size=128, in_size_2=128 , h_size=128, out_size=128,) self.out_conv = nn.Sequential( nn.Conv2d(128*1, NUM_OUTPUT_CHANNEL, kernel_size=3, stride=1, padding=1, bias=True) ) if 1: for name, m in self.named_modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.kaiming_normal_(m.weight) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.GroupNorm): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.constant_(m.bias, 0) def forward(self, x): batch_size = len(x) x0 = self.block0(x) x1 = self.block1(x0) x2 = self.block2(x1) x3 = self.block3(x2) x4 = self.block4(x3) x5 = self.block5(x4) x6 = self.block6(x5) x = self.block20(x6) x = self.block15(x, x5) x = self.block14(x, x4) x = self.block13(x, x3) x = self.block12(x, x2) x = self.block11(x, x1) x = self.block10(x, x0) x = self.out_conv(x) x = torch.reshape(x, (batch_size, num_channel_out, 1, num_frame_out, height, width)) return x[:,0,:,:,:,:], x[:,1,:,:,:,:], x[:,2,:,:,:,:], x[:,3,:,:,:,:] def cuda(self, ): super(NetA, self).cuda() self.block0.cuda() self.block1.cuda() self.block2.cuda() self.block3.cuda() self.block4.cuda() self.block5.cuda() self.block6.cuda() self.block20.cuda() self.block15.cuda() self.block14.cuda() self.block13.cuda() self.block12.cuda() self.block11.cuda() self.block10.cuda() self.out_conv.cuda() return self other_city_train_days_list = [] for other_city in other_city_list: asii_frame_file_name_prefix = 'S_NWC_ASII-TF_MSG4_Europe-VISIR_' asii_frame_file_name_prefix_len = len(asii_frame_file_name_prefix) other_city_day_dict = {} other_data_folder_path = '../../0_data/' + other_city other_n_data_folder_path = '../../0_data/' + other_city + 'n' input_folder_path_list = [] input_folder_path_list.append(other_data_folder_path + '/' + 'training') input_folder_path_list.append(other_data_folder_path + '/' + 'validation') for input_folder_path in input_folder_path_list: for day_folder_name in os.listdir(input_folder_path): day_folder_path = os.path.join(input_folder_path, day_folder_name) if os.path.isdir(day_folder_path) == False: continue day = int(day_folder_name) assert day not in other_city_day_dict for frame_file_name in os.listdir(os.path.join(day_folder_path, 'ASII')): if frame_file_name.split('.')[-1] != 'nc': continue assert frame_file_name[asii_frame_file_name_prefix_len-1] == '_' assert frame_file_name[asii_frame_file_name_prefix_len+8] == 'T' ymd = frame_file_name[asii_frame_file_name_prefix_len : (asii_frame_file_name_prefix_len+8)] other_city_day_dict[day] = (ymd, input_folder_path) break all_days = sorted(list(other_city_day_dict.keys())) other_city_train_days_list.append(all_days) day_dict = {} train_days = [] val_days = [] if 1: asii_frame_file_name_prefix = 'S_NWC_ASII-TF_MSG4_Europe-VISIR_' asii_frame_file_name_prefix_len = len(asii_frame_file_name_prefix) input_folder_path_list = [] input_folder_path_list.append(input_data_folder_path + '/' + 'training') input_folder_path_list.append(input_data_folder_path + '/' + 'validation') for input_folder_path in input_folder_path_list: for day_folder_name in os.listdir(input_folder_path): day_folder_path = os.path.join(input_folder_path, day_folder_name) if os.path.isdir(day_folder_path) == False: continue day = int(day_folder_name) assert day not in day_dict for frame_file_name in os.listdir(os.path.join(day_folder_path, 'ASII')): if frame_file_name.split('.')[-1] != 'nc': continue assert frame_file_name[asii_frame_file_name_prefix_len-1] == '_' assert frame_file_name[asii_frame_file_name_prefix_len+8] == 'T' ymd = frame_file_name[asii_frame_file_name_prefix_len : (asii_frame_file_name_prefix_len+8)] day_dict[day] = (ymd, input_folder_path) break all_days = sorted(list(day_dict.keys())) num_val_case = len(all_days) // TRAIN_VAL_RATIO num_val_case_begin = TRAIN_VAL_INDEX * num_val_case num_val_case_end = (TRAIN_VAL_INDEX+1) * num_val_case if TRAIN_VAL_INDEX == (TRAIN_VAL_RATIO-1): num_val_case_end = len(all_days) for i, day in enumerate(all_days): if i < num_val_case_begin or i >= num_val_case_end: train_days.append(day) else: val_days.append(day) continuous_data_info_list = np.zeros((num_channel_1, 3), np.float32) if 1: continuous_data_info_filepath = os.path.join('../../0_data', 'continuous_data_info_all.txt') c=0 with open(continuous_data_info_filepath) as info_file: content = info_file.readlines() for line in content: cols = line.strip().split('\t') d_min = int( cols[0]) d_max = int( cols[1]) d_avg = float(cols[2]) continuous_data_info_list[c,:] = (d_min,d_max,d_avg) c += 1 assert c == num_channel_1 print(continuous_data_info_filepath, '\t', 'num_line:', c, '\t', ) continuous_data_info_list_min = continuous_data_info_list[np.newaxis,:, 0, np.newaxis,np.newaxis,] continuous_data_info_list_max = continuous_data_info_list[np.newaxis,:, 1, np.newaxis,np.newaxis,] continuous_output_info_list = np.zeros((3, 2), np.float32) continuous_output_info_list[0,:] = (130, 350) continuous_output_info_list[1,:] = (0, 50) continuous_output_info_list[2,:] = (0, 100) continuous_output_info_list = continuous_output_info_list[np.newaxis, :, :, np.newaxis,np.newaxis,] discrete_data_info_list = np.zeros((num_channel_2_src, ), np.uint8) if 1: discrete_data_info_filepath = os.path.join(input_n_data_folder_path, 'discrete_data_info.txt') c=0 with open(discrete_data_info_filepath) as info_file: content = info_file.readlines() for line in content: cols = line.strip().split('\t') num_flag = int(cols[0]) discrete_data_info_list[c] = (num_flag+1) c += 1 assert c == num_channel_2_src assert np.sum(discrete_data_info_list) == num_channel_2 cum_num_flag_list = np.zeros((num_channel_2_src, 2), np.uint8) cc = 0 for c in range(num_channel_2_src): cum_num_flag_list[c,0] = cc cc+=discrete_data_info_list[c] cum_num_flag_list[c,1] = cc assert cc < 256 if __name__ == '__main__': if initial_checkpoint == None: assert global_step_start == 0 else: assert global_step_start > 0 COMMON_STRING ='@%s: \n' % os.path.basename(__file__) COMMON_STRING += '\tset random seed\n' COMMON_STRING += '\t\tSEED = %d\n'%SEED random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed_all(SEED) torch.backends.cudnn.enabled = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False COMMON_STRING += '\tset cuda environment\n' COMMON_STRING += '\t\ttorch.__version__ = %s\n'%torch.__version__ COMMON_STRING += '\t\ttorch.version.cuda = %s\n'%torch.version.cuda COMMON_STRING += '\t\ttorch.backends.cudnn.version() = %s\n'%torch.backends.cudnn.version() try: COMMON_STRING += '\t\tos[\'CUDA_VISIBLE_DEVICES\'] = %s\n'%os.environ['CUDA_VISIBLE_DEVICES'] NUM_CUDA_DEVICES = len(os.environ['CUDA_VISIBLE_DEVICES'].split(',')) except Exception: COMMON_STRING += '\t\tos[\'CUDA_VISIBLE_DEVICES\'] = None\n' NUM_CUDA_DEVICES = 1 COMMON_STRING += '\t\ttorch.cuda.device_count() = %d\n'%torch.cuda.device_count() print(COMMON_STRING) try: if not os.path.exists(out_dir): os.makedirs(out_dir) except Exception: print('out_dir not made') exit(-1) net = NetA().cuda() loss_weight = torch.from_numpy(loss_weight_np).float().cuda() asii_logit_m = -torch.logit(torch.from_numpy(np.array(0.003,np.float32)).float().cuda()) optimizer = optim.Adam(filter(lambda p: p.requires_grad, net.parameters()),lr=LEARNING_RATE) loss_func2 = nn.MSELoss(reduction='none') loss_func3 = nn.BCEWithLogitsLoss(reduction='none') if initial_checkpoint is not None: print('Loading ', initial_checkpoint) state_dict_0 = torch.load(initial_checkpoint, map_location=lambda storage, loc: storage) net.load_state_dict(state_dict_0, strict=True) optimizer_state_dict_ = torch.load(initial_checkpoint_optimizer, map_location=lambda storage, loc: storage) optimizer_state_dict = optimizer_state_dict_['optimizer'] optimizer.load_state_dict(optimizer_state_dict) train_list = [] for day in train_days: for frame_start in range(num_frame_per_day): if (frame_start + num_frame_sequence) > num_frame_per_day: if (day+1) not in train_days: continue train_list.append( (day, frame_start) ) other_train_list_list = [] for other_city_train_days in other_city_train_days_list: other_train_list = [] for day in other_city_train_days: for frame_start in range(num_frame_per_day): if (frame_start + num_frame_sequence) > num_frame_per_day: if (day+1) not in other_city_train_days: continue other_train_list.append( (day, frame_start) ) other_train_list_list.append(other_train_list) num_iteration_per_epoch = (len(train_list) + len(other_train_list_list[0]) + len(other_train_list_list[1]) ) // BATCH_SIZE val_list = [] for day in val_days: for frame_start in range(0, num_frame_per_day, num_frame_sequence//4): if (frame_start+num_frame_sequence) > num_frame_per_day: continue val_list.append( (day, frame_start) ) num_val_iteration_per_epoch = int(len(val_list) / BATCH_SIZE_VAL) print('len(train_list):', len(train_list)) print('len(val_list):', len(val_list)) print('BATCH_SIZE:', BATCH_SIZE,) print('num_iteration_per_epoch:', num_iteration_per_epoch) print('BATCH_SIZE_VAL:', BATCH_SIZE_VAL,) print('num_val_iteration_per_epoch:', num_val_iteration_per_epoch) np.random.shuffle(train_list) np.random.shuffle(other_train_list_list[0]) np.random.shuffle(other_train_list_list[1]) global_step = global_step_start epoch = float(global_step*BATCH_SIZE) / float(len(train_list) + len(other_train_list_list[0]) + len(other_train_list_list[1]) ) index_list2 = np.arange(num_frame_before * height * width) def get_data_and_label_from_other_city(day, frame_start, other_n_data_folder_path, ): input_data_1 = np.zeros((num_frame_before, num_channel_1, height, width), np.float32) input_data_2 = np.zeros((num_frame_before, num_channel_2_src, height, width), np.uint16) d = day f_start = frame_start f_end = f_start + num_frame_before do_next_day = False if f_end > num_frame_per_day: do_next_day = True f_end = num_frame_per_day for f in range(f_start, f_end): np_filepath = os.path.join(other_n_data_folder_path, str(d) + '_' + str(f) +'.npz') day_np =
np.load(np_filepath)
numpy.load
import pdb import sys import torch import numpy as np import cv2 def write_calib(K,bl,shape,maxd,path): str1 = 'camera.A=[%f 0 %f; 0 %f %f; 0 0 1]'%(K[0,0], K[0,2], K[1,1],K[1,2]) str2 = 'camera.height=%d'%(shape[0]) str3 = 'camera.width=%d' %(shape[1]) str4 = 'camera.zmax=%f'%(maxd) str5 = 'rho=%f'%(bl*K[0,0]) with open(path,'w') as f: f.write('%s\n%s\n%s\n%s\n%s'%(str1,str2,str3,str4,str5)) def create_ade20k_label_colormap(): """Creates a label colormap used in ADE20K segmentation benchmark. Returns: A colormap for visualizing segmentation results. """ return np.asarray([ [0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255], ]) def write_pfm(path, image, scale=1): """Write pfm file. Args: path (str): pathto file image (array): data scale (int, optional): Scale. Defaults to 1. """ with open(path, "wb") as file: color = None if image.dtype.name != "float32": raise Exception("Image dtype must be float32.") image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif ( len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1 ): # greyscale color = False else: raise Exception("Image must have H x W x 3, H x W x 1 or H x W dimensions.") file.write("PF\n".encode() if color else "Pf\n".encode()) file.write("%d %d\n".encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == "<" or endian == "=" and sys.byteorder == "little": scale = -scale file.write("%f\n".encode() % scale) image.tofile(file) def triangulation(disp, xcoord, ycoord, bl=1, fl = 450, cx = 479.5, cy = 269.5): mask = (disp<=0).flatten() depth = bl*fl / (disp) # 450px->15mm focal length X = (xcoord - cx) * depth / fl Y = (ycoord - cy) * depth / fl Z = depth P = np.concatenate((X[np.newaxis],Y[np.newaxis],Z[np.newaxis]),0).reshape(3,-1) P = np.concatenate((P,np.ones((1,P.shape[-1]))),0) P[:,mask]=0 return P def midpoint_triangulate(x, cam): """ Args: x: Set of 2D points in homogeneous coords, (3 x n x N) matrix cam: Collection of n objects, each containing member variables cam.P - 3x4 camera matrix [0] cam.R - 3x3 rotation matrix [1] cam.T - 3x1 translation matrix [2] Returns: midpoint: 3D point in homogeneous coords, (4 x 1) matrix """ n = len(cam) # No. of cameras N = x.shape[-1] I = np.eye(3) # 3x3 identity matrix A = np.zeros((3,n)) B = np.zeros((3,n,N)) sigma2 = np.zeros((3,N)) for i in range(n): a = -np.linalg.inv(cam[i][:3,:3]).dot(cam[i][:3,-1:]) # ith camera position # A[:,i,None] = a if i==0: b = np.linalg.pinv(cam[i][:3,:3]).dot(x[:,i]) # Directional vector # 4, N else: b = np.linalg.pinv(cam[i]).dot(x[:,i]) # Directional vector # 4, N b = b / b[3:] b = b[:3,:] - a # 3,N b = b / np.linalg.norm(b,2,0)[np.newaxis] B[:,i,:] = b sigma2 = sigma2 + b * (b.T.dot(a).reshape(-1,N)) # 3,N Bo = B.transpose([2,0,1]) Bt = B.transpose([2,1,0]) Bo = torch.DoubleTensor(Bo) Bt = torch.DoubleTensor(Bt) A = torch.DoubleTensor(A) sigma2 = torch.DoubleTensor(sigma2) I = torch.DoubleTensor(I) BoBt = torch.matmul(Bo, Bt) C = (n * I)[np.newaxis] - BoBt# N,3,3 Cinv = C.inverse() sigma1 = torch.sum(A, axis=1)[:,None] m1 = I[np.newaxis] + torch.matmul(BoBt,Cinv) m2 = torch.matmul(Cinv,sigma2.T[:,:,np.newaxis]) midpoint = (1/n) * torch.matmul(m1,sigma1[np.newaxis]) - m2 midpoint = np.asarray(midpoint) return midpoint[:,:,0].T, np.asarray(Bo) def register_disp_fast(id_flow, id_mono, mask, inlier_th=0.01,niters=100): """ input: disp_flow, disp_mono, mask output: inlier_mask, registered register up-to-scale rough depth to motion-based depth """ shape = id_mono.shape id_mono = id_mono.flatten() disp_flow = id_flow[mask] # register to flow with mono disp_mono = id_mono[mask] num_samp = min(3000,len(disp_flow)) np.random.seed(0) submask = np.random.choice(range(len(disp_flow)), num_samp) disp_flow = disp_flow[submask] disp_mono = disp_mono[submask] n = len(disp_flow) sample_size=niters rand_idx = np.random.choice(range(n),sample_size) scale_cand = (disp_flow/disp_mono)[rand_idx] dis_cand = np.abs(np.log(disp_mono[:,np.newaxis]*scale_cand[np.newaxis])-np.log(disp_flow[:,np.newaxis])) rank_metric = (dis_cand<inlier_th).sum(0) scale_idx = np.argmax(rank_metric) scale = scale_cand[scale_idx] # # another way to align scale # from scipy.optimize import minimize # def cost_function(alpha, K): # return np.mean(np.abs(alpha*K - 1)) # # # MRE minimize # output = minimize(cost_function, 1., args=(disp_mono/disp_flow),method='Nelder-Mead') # if output.success: # scale = output.x dis = np.abs(np.log(disp_mono*scale)-np.log(disp_flow)) ninliers = (dis<inlier_th).sum()/n registered_flow=(id_flow.reshape(shape))/scale return registered_flow, scale, ninliers def testEss(K0,K1,R,T,p1,p2): testP = cv2.triangulatePoints(K0.dot(np.concatenate( (np.eye(3),np.zeros((3,1))), -1)), K1.dot(np.concatenate( (R,T), -1)), p1[:2],p2[:2]) Z1 = testP[2,:]/testP[-1,:] Z2 = (R.dot(Z1*np.linalg.inv(K0).dot(p1))+T)[-1,:] if ((Z1>0).sum() > (Z1<=0).sum()) and ((Z2>0).sum() > (Z2<=0).sum()): #print(Z1) #print(Z2) return True else: return False def pose_estimate(K0,K1,hp0,hp1,strict_mask,rot,th=0.0001): # epipolar geometry from ..models.submodule import F_ngransac tmphp0 = hp0[:,strict_mask] tmphp1 = hp1[:,strict_mask] #num_samp = min(300000,tmphp0.shape[1]) #num_samp = min(30000,tmphp0.shape[1]) num_samp = min(3000,tmphp0.shape[1]) submask = np.random.choice(range(tmphp0.shape[1]), num_samp) if num_samp > 0: submask = np.random.choice(range(tmphp0.shape[1]), num_samp) tmphp0 = tmphp0[:, submask] tmphp1 = tmphp1[:, submask] rotx,transx,Ex = F_ngransac(torch.Tensor(tmphp0.T[np.newaxis]).cuda(), torch.Tensor(tmphp1.T[np.newaxis]).cuda(), torch.Tensor(K0[np.newaxis]).cuda(), False,0, Kn = torch.Tensor(K1[np.newaxis]).cuda()) R01 = cv2.Rodrigues(np.asarray(rotx[0]))[0] T01 = np.asarray(transx[0]) E = np.asarray(Ex[0]) # _,R01,T01,_ = cv2.recoverPose(E.astype(float), tmphp0[:2].T, tmphp1[:2].T, K0) # RT are 0->1 points transform # T01 = T01[:,0] # R01=R01.T # T01=-R01.dot(T01) # now are 1->0 points transform R1, R2, T = cv2.decomposeEssentialMat(E) for rott in [(R1,T),(R2,T),(R1,-T),(R2,-T)]: if testEss(K0,K1,rott[0],rott[1],tmphp0, tmphp1): R01=rott[0].T T01=-R01.dot(rott[1][:,0]) if not 'T01' in locals(): T01 = np.asarray([0,0,1]) R01 = np.eye(3) # E, maskk = cv2.findEssentialMat(np.linalg.inv(K0).dot(hp0[:,strict_mask])[:2].T, # np.linalg.inv(K1).dot(hp1[:,strict_mask])[:2].T, np.eye(3), # cv2.LMEDS,threshold=th) # # valid_points = np.ones((strict_mask.sum())).astype(bool) # valid_points[~maskk[:,0].astype(bool)]=False # fmask = strict_mask.copy() # fmask[strict_mask]=valid_points # # R1, R2, T = cv2.decomposeEssentialMat(E) # for rott in [(R1,T),(R2,T),(R1,-T),(R2,-T)]: # if testEss(K0,K1,rott[0],rott[1],hp0[:,fmask], hp1[:,fmask]): # R01=rott[0].T # T01=-R01.dot(rott[1][:,0]) # if not 'T01' in locals(): # T01 = np.asarray([0,0,1]) # R01 = np.eye(3) # T01t = T01.copy() else: T01 = np.asarray([0, 0, 1]) R01 = np.eye(3) E = None # compensate R H01 = K0.dot(R01).dot(np.linalg.inv(K1)) # plane at infinity comp_hp1 = H01.dot(hp1) comp_hp1 = comp_hp1/comp_hp1[-1:] return R01,T01,H01,comp_hp1,E def evaluate_tri(t10,R01,K0,K1,hp0,hp1,disp0,ent,bl,inlier_th=0.1,select_th=0.4, valid_mask=None): if valid_mask is not None: hp0 = hp0[:,valid_mask] hp1 = hp1[:,valid_mask] disp0 = disp0.flatten()[valid_mask] ent = ent.flatten()[valid_mask] # triangluation #import time; beg = time.time() cams = [K0.dot(np.concatenate( (np.eye(3),np.zeros((3,1))), -1)), K1.dot(np.concatenate( (R01.T,-R01.T.dot(t10[:,np.newaxis])), -1)) ] P_pred,_ = midpoint_triangulate( np.concatenate([hp0[:,np.newaxis],hp1[:,np.newaxis]],1),cams) #print(1000*(time.time()-beg)) idepth_p3d = np.clip(K0[0,0]*bl/P_pred[2], 1e-6, np.inf) # discard points with small disp entmask = np.logical_and(idepth_p3d>1e-12, ~np.isinf(idepth_p3d)) entmask_tmp = entmask[entmask].copy() entmask_tmp[np.argsort(-idepth_p3d[entmask])[entmask.sum()//2:]]=False # remove sky entmask[entmask] = entmask_tmp med = np.median(idepth_p3d[entmask]) entmask = np.logical_and(entmask, np.logical_and(idepth_p3d>med/5., idepth_p3d<med*5)) if entmask.sum()<10: return None,None,None registered_p3d,scale,ninliers = register_disp_fast(idepth_p3d, disp0, entmask, inlier_th=inlier_th,niters=100) print('size/inlier ratio: %d/%.2f'%(entmask.sum(),ninliers)) disp_ratio = np.abs(np.log(registered_p3d.flatten()/disp0.flatten())) agree_mask = disp_ratio<np.log(select_th) rank = np.argsort(disp_ratio) return agree_mask,t10*scale,rank def rb_fitting(bgmask_pred,mask_pred,idepth,flow,ent,K0,K1,bl,parallax_th=2,mono=True,sintel=False,tranpred=None,quatpred=None): if sintel: parallax_th = parallax_th*0.25 # prepare data shape = flow.shape[:2] x0,y0=np.meshgrid(range(shape[1]),range(shape[0])) x0=x0.astype(np.float32) y0=y0.astype(np.float32) x1=x0+flow[:,:,0] y1=y0+flow[:,:,1] hp0 = np.concatenate((x0[np.newaxis],y0[np.newaxis],np.ones(x1.shape)[np.newaxis]),0).reshape((3,-1)) hp1 = np.concatenate((x1[np.newaxis],y1[np.newaxis],np.ones(x1.shape)[np.newaxis]),0).reshape((3,-1)) # use bg + valid pixels to compute R/t valid_mask = np.logical_and(bgmask_pred, ent<0).flatten() R01,T01,H01,comp_hp1,E = pose_estimate(K0,K1,hp0,hp1,valid_mask,[0,0,0]) parallax = np.transpose((comp_hp1[:2]-hp0[:2]),[1,0]).reshape(x1.shape+(2,)) parallax_mag = np.linalg.norm(parallax[:,:,:2],2,2) flow_mag = np.linalg.norm(flow[:,:,:2],2,2) print('[BG Fitting] mean pp/flow: %.1f/%.1f px'%(parallax_mag[bgmask_pred].mean(), flow_mag[bgmask_pred].mean())) reg_flow_P = triangulation(idepth, x0, y0, bl=bl, fl = K0[0,0], cx = K0[0,2], cy = K0[1,2])[:3] if False and parallax_mag[bgmask_pred].mean()<parallax_th: # static camera print("static") scene_type = 'H' T01_c = [0,0,0] else: scene_type = 'F' # determine scale of translation / reconstruction if valid_mask.sum() > 0: aligned_mask,T01_c,ranked_p = evaluate_tri(T01,R01,K0,K1,hp0,hp1,idepth,ent,bl,inlier_th=0.01,select_th=1.2,valid_mask=valid_mask) if aligned_mask is not None and aligned_mask.sum() > 0: if not mono: # PnP refine aligned_mask[ranked_p[50000:]]=False tmp = valid_mask.copy() tmp[tmp] = aligned_mask aligned_mask = tmp _,rvec, T01=cv2.solvePnP(reg_flow_P.T[aligned_mask.flatten(),np.newaxis], hp1[:2].T[aligned_mask.flatten(),np.newaxis], K0, 0, flags=cv2.SOLVEPNP_DLS) _,rvec, T01,=cv2.solvePnP(reg_flow_P.T[aligned_mask,np.newaxis], hp1[:2].T[aligned_mask,np.newaxis], K0, 0,rvec, T01,useExtrinsicGuess=True, flags=cv2.SOLVEPNP_ITERATIVE) R01 = cv2.Rodrigues(rvec)[0].T T01_c = -R01.dot(T01)[:,0] else: T01_c = T01 else: T01_c = T01 RTs = [] for i in range(0,mask_pred.max()): obj_mask = (mask_pred==i+1).flatten() valid_mask = np.logical_and(obj_mask, ent.reshape(obj_mask.shape)<0) if valid_mask.sum()<10 or (valid_mask.sum() / obj_mask.sum() < 0.3): RT01 = None else: if tranpred is None: R01x,T01_cx,_,comp_hp1,_ = pose_estimate(K0,K1,hp0,hp1,valid_mask,[0,0,0]) parallax = np.transpose((comp_hp1[:2]-hp0[:2]),[1,0]) parallax_mag = np.linalg.norm(parallax,2,-1) center_coord = hp0[:,obj_mask].mean(-1) print('[FG-%03d Fitting] center/mean pp/flow: (%d,%d)/%.1f/%.1f px'%(i, center_coord[0], center_coord[1], parallax_mag[obj_mask].mean(), flow_mag.flatten()[obj_mask].mean())) if False and parallax_mag[obj_mask].mean()<parallax_th: RTs.append(None);continue else: R01x = quatpred[i].T T01_cx = -quatpred[i].T.dot(tranpred[i][:,None])[:,0] T01_cx = T01_cx / np.linalg.norm(T01_cx) aligned_mask,T01_cx,ranked_p = evaluate_tri(T01_cx,R01x,K0,K1,hp0,hp1,idepth,ent,bl,inlier_th=0.01,select_th=1.2,valid_mask=valid_mask) if T01_cx is None: RTs.append(None); continue if not mono: aligned_mask[ranked_p[50000:]]=False tmp = valid_mask.copy() tmp[tmp] = aligned_mask obj_mask = tmp #if reg_flow_P.T[obj_mask,np.newaxis].shape[0] < 4 and reg_flow_P.T[obj_mask,np.newaxis].shape[2] < 4: # print('reg_flow', reg_flow_P.T[obj_mask,np.newaxis]) # print('hp1', hp1[:2].T[obj_mask,np.newaxis]) # print('K0', K0) if obj_mask.sum() >= 4: # extra checking because of aligned_mask (aligned triangulation) there is another restriction of points _,rvec, T01_cx=cv2.solvePnP(reg_flow_P.T[obj_mask,np.newaxis], hp1[:2].T[obj_mask,np.newaxis], K0, 0, flags=cv2.SOLVEPNP_DLS) _,rvec, T01_cx=cv2.solvePnP(reg_flow_P.T[obj_mask,np.newaxis], hp1[:2].T[obj_mask,np.newaxis], K0, 0,rvec, T01_cx,useExtrinsicGuess=True, flags=cv2.SOLVEPNP_ITERATIVE) R01x = cv2.Rodrigues(rvec)[0].T T01_cx = -R01x.dot(T01_cx)[:,0] if T01_cx is None: RT01=None else: RT01 = [R01x, T01_cx] else: RT01=None RTs.append(RT01) return scene_type, T01_c, R01,RTs def mod_flow(bgmask,mask_pred, idepth,disp1,flow,ent,bl,K0,K1,scene_type, T01_c,R01, RTs, segs_unc, oracle=None, mono=True,sintel=False): # prepare data idepth = idepth.copy() flow = flow.copy() shape = flow.shape[:2] x0,y0=np.meshgrid(range(shape[1]),range(shape[0])) x0=x0.astype(np.float32) y0=y0.astype(np.float32) x1=x0+flow[:,:,0] y1=y0+flow[:,:,1] hp0 = np.concatenate((x0[np.newaxis],y0[np.newaxis],np.ones(x1.shape)[np.newaxis]),0).reshape((3,-1)) hp1 = np.concatenate((x1[np.newaxis],y1[np.newaxis],np.ones(x1.shape)[np.newaxis]),0).reshape((3,-1)) reg_flow_P = triangulation(idepth, x0, y0, bl=bl, fl = K0[0,0], cx = K0[0,2], cy = K0[1,2])[:3] # modify motion fields if scene_type == 'H': H,maskh = cv2.findHomography(hp0.T[ent.flatten()<0], hp1.T[ent.flatten()<0], cv2.FM_RANSAC,ransacReprojThreshold=5) mod_mask = np.logical_and(bgmask,ent>0) comp_hp0 = H.dot(hp0); comp_hp0 = comp_hp0/comp_hp0[-1:] flow[mod_mask] = np.transpose((comp_hp0-hp0).reshape((3,)+shape), (1,2,0))[mod_mask] elif scene_type == 'F': mod_mask = bgmask # modify disp0 | if monocular if not (T01_c is None or np.isinf(np.linalg.norm(T01_c))): print('[BG Update] cam trans mag: %.2f'%np.linalg.norm(T01_c)) if mono: cams = [K0.dot(np.concatenate( (np.eye(3),np.zeros((3,1))), -1)), K1.dot(np.concatenate( (R01.T,-R01.T.dot(T01_c[:,np.newaxis])), -1)) ] pts = np.concatenate([hp0[:,np.newaxis,mod_mask.flatten()], hp1[:,np.newaxis,mod_mask.flatten()]],1) P_flow,cray = midpoint_triangulate(pts ,cams) cflow = 1-(1/(1 + np.exp(-ent)) ) cmotion = 1-segs_unc angle_th = 0.2 cangle = np.clip(np.arccos(np.abs(np.sum(cray[:,:,0] * cray[:,:,1],-1))) / np.pi * 180, 0,angle_th) # N,3,2 cangle = 1-np.power((cangle-angle_th)/angle_th,2) cangle_tmp = np.zeros(shape) cangle_tmp[mod_mask] = cangle conf_depth = (cmotion*cflow*cangle_tmp) lflow = (cmotion*cangle_tmp) dcmask = np.logical_or(lflow[mod_mask]<0.25, P_flow[-1]<1e-12) P_flow[:,dcmask] = reg_flow_P[:,mod_mask.flatten()][:,dcmask] # dont change reg_flow_P[:,mod_mask.flatten()] = P_flow # disp 1 reg_flow_PP = R01.T.dot(reg_flow_P)-R01.T.dot(T01_c)[:,np.newaxis] hpp1 = K0.dot(reg_flow_PP) hpp1 = hpp1/hpp1[-1:] if not mono: flow[mod_mask] = (hpp1 - hp0).T.reshape(shape+(3,))[mod_mask] disp1[mod_mask] = bl*K0[0,0]/reg_flow_PP[-1].reshape(shape)[mod_mask] # obj for i in range(0,mask_pred.max()): if sintel:break obj_mask = mask_pred==i+1 if oracle is not None: if (obj_mask).sum()>0: # use midas depth if np.median(idepth[obj_mask])==0: continue reg_flow_P[2,obj_mask.flatten()] = bl*K0[0,0] / (np.median(oracle[obj_mask]) /
np.median(idepth[obj_mask])
numpy.median
from __future__ import division, print_function import math, sys, warnings, datetime from operator import itemgetter import itertools import numpy as np from numpy import ma import matplotlib rcParams = matplotlib.rcParams import matplotlib.artist as martist from matplotlib.artist import allow_rasterization import matplotlib.axis as maxis import matplotlib.cbook as cbook import matplotlib.collections as mcoll import matplotlib.colors as mcolors import matplotlib.contour as mcontour import matplotlib.dates as _ # <-registers a date unit converter from matplotlib import docstring import matplotlib.font_manager as font_manager import matplotlib.image as mimage import matplotlib.legend as mlegend import matplotlib.lines as mlines import matplotlib.markers as mmarkers import matplotlib.mlab as mlab import matplotlib.path as mpath import matplotlib.patches as mpatches import matplotlib.spines as mspines import matplotlib.quiver as mquiver import matplotlib.scale as mscale import matplotlib.stackplot as mstack import matplotlib.streamplot as mstream import matplotlib.table as mtable import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import matplotlib.tri as mtri from matplotlib import MatplotlibDeprecationWarning as mplDeprecation from matplotlib.container import BarContainer, ErrorbarContainer, StemContainer iterable = cbook.iterable is_string_like = cbook.is_string_like is_sequence_of_strings = cbook.is_sequence_of_strings def _string_to_bool(s): if not is_string_like(s): return s if s == 'on': return True if s == 'off': return False raise ValueError("string argument must be either 'on' or 'off'") def _process_plot_format(fmt): """ Process a MATLAB style color/line style format string. Return a (*linestyle*, *color*) tuple as a result of the processing. Default values are ('-', 'b'). Example format strings include: * 'ko': black circles * '.b': blue dots * 'r--': red dashed lines .. seealso:: :func:`~matplotlib.Line2D.lineStyles` and :func:`~matplotlib.pyplot.colors` for all possible styles and color format string. """ linestyle = None marker = None color = None # Is fmt just a colorspec? try: color = mcolors.colorConverter.to_rgb(fmt) # We need to differentiate grayscale '1.0' from tri_down marker '1' try: fmtint = str(int(fmt)) except ValueError: return linestyle, marker, color # Yes else: if fmt != fmtint: # user definitely doesn't want tri_down marker return linestyle, marker, color # Yes else: # ignore converted color color = None except ValueError: pass # No, not just a color. # handle the multi char special cases and strip them from the # string if fmt.find('--')>=0: linestyle = '--' fmt = fmt.replace('--', '') if fmt.find('-.')>=0: linestyle = '-.' fmt = fmt.replace('-.', '') if fmt.find(' ')>=0: linestyle = 'None' fmt = fmt.replace(' ', '') chars = [c for c in fmt] for c in chars: if c in mlines.lineStyles: if linestyle is not None: raise ValueError( 'Illegal format string "%s"; two linestyle symbols' % fmt) linestyle = c elif c in mlines.lineMarkers: if marker is not None: raise ValueError( 'Illegal format string "%s"; two marker symbols' % fmt) marker = c elif c in mcolors.colorConverter.colors: if color is not None: raise ValueError( 'Illegal format string "%s"; two color symbols' % fmt) color = c else: raise ValueError( 'Unrecognized character %c in format string' % c) if linestyle is None and marker is None: linestyle = rcParams['lines.linestyle'] if linestyle is None: linestyle = 'None' if marker is None: marker = 'None' return linestyle, marker, color def set_default_color_cycle(clist): """ Change the default cycle of colors that will be used by the plot command. This must be called before creating the :class:`Axes` to which it will apply; it will apply to all future axes. *clist* is a sequence of mpl color specifiers. See also: :meth:`~matplotlib.axes.Axes.set_color_cycle`. .. Note:: Deprecated 2010/01/03. Set rcParams['axes.color_cycle'] directly. """ rcParams['axes.color_cycle'] = clist warnings.warn("Set rcParams['axes.color_cycle'] directly", mplDeprecation) class _process_plot_var_args(object): """ Process variable length arguments to the plot command, so that plot commands like the following are supported:: plot(t, s) plot(t1, s1, t2, s2) plot(t1, s1, 'ko', t2, s2) plot(t1, s1, 'ko', t2, s2, 'r--', t3, e3) an arbitrary number of *x*, *y*, *fmt* are allowed """ def __init__(self, axes, command='plot'): self.axes = axes self.command = command self.set_color_cycle() def __getstate__(self): # note: it is not possible to pickle a itertools.cycle instance return {'axes': self.axes, 'command': self.command} def __setstate__(self, state): self.__dict__ = state.copy() self.set_color_cycle() def set_color_cycle(self, clist=None): if clist is None: clist = rcParams['axes.color_cycle'] self.color_cycle = itertools.cycle(clist) def __call__(self, *args, **kwargs): if self.axes.xaxis is not None and self.axes.yaxis is not None: xunits = kwargs.pop( 'xunits', self.axes.xaxis.units) if self.axes.name == 'polar': xunits = kwargs.pop( 'thetaunits', xunits ) yunits = kwargs.pop( 'yunits', self.axes.yaxis.units) if self.axes.name == 'polar': yunits = kwargs.pop( 'runits', yunits ) if xunits!=self.axes.xaxis.units: self.axes.xaxis.set_units(xunits) if yunits!=self.axes.yaxis.units: self.axes.yaxis.set_units(yunits) ret = self._grab_next_args(*args, **kwargs) return ret def set_lineprops(self, line, **kwargs): assert self.command == 'plot', 'set_lineprops only works with "plot"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(line,funcName): raise TypeError('There is no line property "%s"'%key) func = getattr(line,funcName) func(val) def set_patchprops(self, fill_poly, **kwargs): assert self.command == 'fill', 'set_patchprops only works with "fill"' for key, val in kwargs.items(): funcName = "set_%s"%key if not hasattr(fill_poly,funcName): raise TypeError('There is no patch property "%s"'%key) func = getattr(fill_poly,funcName) func(val) def _xy_from_xy(self, x, y): if self.axes.xaxis is not None and self.axes.yaxis is not None: bx = self.axes.xaxis.update_units(x) by = self.axes.yaxis.update_units(y) if self.command!='plot': # the Line2D class can handle unitized data, with # support for post hoc unit changes etc. Other mpl # artists, eg Polygon which _process_plot_var_args # also serves on calls to fill, cannot. So this is a # hack to say: if you are not "plot", which is # creating Line2D, then convert the data now to # floats. If you are plot, pass the raw data through # to Line2D which will handle the conversion. So # polygons will not support post hoc conversions of # the unit type since they are not storing the orig # data. Hopefully we can rationalize this at a later # date - JDH if bx: x = self.axes.convert_xunits(x) if by: y = self.axes.convert_yunits(y) x = np.atleast_1d(x) #like asanyarray, but converts scalar to array y = np.atleast_1d(y) if x.shape[0] != y.shape[0]: raise ValueError("x and y must have same first dimension") if x.ndim > 2 or y.ndim > 2: raise ValueError("x and y can be no greater than 2-D") if x.ndim == 1: x = x[:,np.newaxis] if y.ndim == 1: y = y[:,np.newaxis] return x, y def _makeline(self, x, y, kw, kwargs): kw = kw.copy() # Don't modify the original kw. if not 'color' in kw and not 'color' in kwargs.keys(): kw['color'] = self.color_cycle.next() # (can't use setdefault because it always evaluates # its second argument) seg = mlines.Line2D(x, y, axes=self.axes, **kw ) self.set_lineprops(seg, **kwargs) return seg def _makefill(self, x, y, kw, kwargs): try: facecolor = kw['color'] except KeyError: facecolor = self.color_cycle.next() seg = mpatches.Polygon(np.hstack( (x[:,np.newaxis],y[:,np.newaxis])), facecolor = facecolor, fill=True, closed=kw['closed'] ) self.set_patchprops(seg, **kwargs) return seg def _plot_args(self, tup, kwargs): ret = [] if len(tup) > 1 and is_string_like(tup[-1]): linestyle, marker, color = _process_plot_format(tup[-1]) tup = tup[:-1] elif len(tup) == 3: raise ValueError('third arg must be a format string') else: linestyle, marker, color = None, None, None kw = {} for k, v in zip(('linestyle', 'marker', 'color'), (linestyle, marker, color)): if v is not None: kw[k] = v y = np.atleast_1d(tup[-1]) if len(tup) == 2: x = np.atleast_1d(tup[0]) else: x = np.arange(y.shape[0], dtype=float) x, y = self._xy_from_xy(x, y) if self.command == 'plot': func = self._makeline else: kw['closed'] = kwargs.get('closed', True) func = self._makefill ncx, ncy = x.shape[1], y.shape[1] for j in xrange(max(ncx, ncy)): seg = func(x[:,j%ncx], y[:,j%ncy], kw, kwargs) ret.append(seg) return ret def _grab_next_args(self, *args, **kwargs): remaining = args while 1: if len(remaining)==0: return if len(remaining) <= 3: for seg in self._plot_args(remaining, kwargs): yield seg return if is_string_like(remaining[2]): isplit = 3 else: isplit = 2 for seg in self._plot_args(remaining[:isplit], kwargs): yield seg remaining=remaining[isplit:] class Axes(martist.Artist): """ The :class:`Axes` contains most of the figure elements: :class:`~matplotlib.axis.Axis`, :class:`~matplotlib.axis.Tick`, :class:`~matplotlib.lines.Line2D`, :class:`~matplotlib.text.Text`, :class:`~matplotlib.patches.Polygon`, etc., and sets the coordinate system. The :class:`Axes` instance supports callbacks through a callbacks attribute which is a :class:`~matplotlib.cbook.CallbackRegistry` instance. The events you can connect to are 'xlim_changed' and 'ylim_changed' and the callback will be called with func(*ax*) where *ax* is the :class:`Axes` instance. """ name = "rectilinear" _shared_x_axes = cbook.Grouper() _shared_y_axes = cbook.Grouper() def __str__(self): return "Axes(%g,%g;%gx%g)" % tuple(self._position.bounds) def __init__(self, fig, rect, axisbg = None, # defaults to rc axes.facecolor frameon = True, sharex=None, # use Axes instance's xaxis info sharey=None, # use Axes instance's yaxis info label='', xscale=None, yscale=None, **kwargs ): """ Build an :class:`Axes` instance in :class:`~matplotlib.figure.Figure` *fig* with *rect=[left, bottom, width, height]* in :class:`~matplotlib.figure.Figure` coordinates Optional keyword arguments: ================ ========================================= Keyword Description ================ ========================================= *adjustable* [ 'box' | 'datalim' | 'box-forced'] *alpha* float: the alpha transparency (can be None) *anchor* [ 'C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W' ] *aspect* [ 'auto' | 'equal' | aspect_ratio ] *autoscale_on* [ *True* | *False* ] whether or not to autoscale the *viewlim* *axis_bgcolor* any matplotlib color, see :func:`~matplotlib.pyplot.colors` *axisbelow* draw the grids and ticks below the other artists *cursor_props* a (*float*, *color*) tuple *figure* a :class:`~matplotlib.figure.Figure` instance *frame_on* a boolean - draw the axes frame *label* the axes label *navigate* [ *True* | *False* ] *navigate_mode* [ 'PAN' | 'ZOOM' | None ] the navigation toolbar button status *position* [left, bottom, width, height] in class:`~matplotlib.figure.Figure` coords *sharex* an class:`~matplotlib.axes.Axes` instance to share the x-axis with *sharey* an class:`~matplotlib.axes.Axes` instance to share the y-axis with *title* the title string *visible* [ *True* | *False* ] whether the axes is visible *xlabel* the xlabel *xlim* (*xmin*, *xmax*) view limits *xscale* [%(scale)s] *xticklabels* sequence of strings *xticks* sequence of floats *ylabel* the ylabel strings *ylim* (*ymin*, *ymax*) view limits *yscale* [%(scale)s] *yticklabels* sequence of strings *yticks* sequence of floats ================ ========================================= """ % {'scale': ' | '.join([repr(x) for x in mscale.get_scale_names()])} martist.Artist.__init__(self) if isinstance(rect, mtransforms.Bbox): self._position = rect else: self._position = mtransforms.Bbox.from_bounds(*rect) self._originalPosition = self._position.frozen() self.set_axes(self) self.set_aspect('auto') self._adjustable = 'box' self.set_anchor('C') self._sharex = sharex self._sharey = sharey if sharex is not None: self._shared_x_axes.join(self, sharex) if sharex._adjustable == 'box': sharex._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' if sharey is not None: self._shared_y_axes.join(self, sharey) if sharey._adjustable == 'box': sharey._adjustable = 'datalim' #warnings.warn( # 'shared axes: "adjustable" is being changed to "datalim"') self._adjustable = 'datalim' self.set_label(label) self.set_figure(fig) self.set_axes_locator(kwargs.get("axes_locator", None)) self.spines = self._gen_axes_spines() # this call may differ for non-sep axes, eg polar self._init_axis() if axisbg is None: axisbg = rcParams['axes.facecolor'] self._axisbg = axisbg self._frameon = frameon self._axisbelow = rcParams['axes.axisbelow'] self._rasterization_zorder = None self._hold = rcParams['axes.hold'] self._connected = {} # a dict from events to (id, func) self.cla() # funcs used to format x and y - fall back on major formatters self.fmt_xdata = None self.fmt_ydata = None self.set_cursor_props((1,'k')) # set the cursor properties for axes self._cachedRenderer = None self.set_navigate(True) self.set_navigate_mode(None) if xscale: self.set_xscale(xscale) if yscale: self.set_yscale(yscale) if len(kwargs): martist.setp(self, **kwargs) if self.xaxis is not None: self._xcid = self.xaxis.callbacks.connect('units finalize', self.relim) if self.yaxis is not None: self._ycid = self.yaxis.callbacks.connect('units finalize', self.relim) def __setstate__(self, state): self.__dict__ = state # put the _remove_method back on all artists contained within the axes for container_name in ['lines', 'collections', 'tables', 'patches', 'texts', 'images']: container = getattr(self, container_name) for artist in container: artist._remove_method = container.remove def get_window_extent(self, *args, **kwargs): """ get the axes bounding box in display space; *args* and *kwargs* are empty """ return self.bbox def _init_axis(self): "move this out of __init__ because non-separable axes don't use it" self.xaxis = maxis.XAxis(self) self.spines['bottom'].register_axis(self.xaxis) self.spines['top'].register_axis(self.xaxis) self.yaxis = maxis.YAxis(self) self.spines['left'].register_axis(self.yaxis) self.spines['right'].register_axis(self.yaxis) self._update_transScale() def set_figure(self, fig): """ Set the class:`~matplotlib.axes.Axes` figure accepts a class:`~matplotlib.figure.Figure` instance """ martist.Artist.set_figure(self, fig) self.bbox = mtransforms.TransformedBbox(self._position, fig.transFigure) #these will be updated later as data is added self.dataLim = mtransforms.Bbox.unit() self.viewLim = mtransforms.Bbox.unit() self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) self._set_lim_and_transforms() def _set_lim_and_transforms(self): """ set the *dataLim* and *viewLim* :class:`~matplotlib.transforms.Bbox` attributes and the *transScale*, *transData*, *transLimits* and *transAxes* transformations. .. note:: This method is primarily used by rectilinear projections of the :class:`~matplotlib.axes.Axes` class, and is meant to be overridden by new kinds of projection axes that need different transformations and limits. (See :class:`~matplotlib.projections.polar.PolarAxes` for an example. """ self.transAxes = mtransforms.BboxTransformTo(self.bbox) # Transforms the x and y axis separately by a scale factor. # It is assumed that this part will have non-linear components # (e.g. for a log scale). self.transScale = mtransforms.TransformWrapper( mtransforms.IdentityTransform()) # An affine transformation on the data, generally to limit the # range of the axes self.transLimits = mtransforms.BboxTransformFrom( mtransforms.TransformedBbox(self.viewLim, self.transScale)) # The parentheses are important for efficiency here -- they # group the last two (which are usually affines) separately # from the first (which, with log-scaling can be non-affine). self.transData = self.transScale + (self.transLimits + self.transAxes) self._xaxis_transform = mtransforms.blended_transform_factory( self.transData, self.transAxes) self._yaxis_transform = mtransforms.blended_transform_factory( self.transAxes, self.transData) def get_xaxis_transform(self,which='grid'): """ Get the transformation used for drawing x-axis labels, ticks and gridlines. The x-direction is in data coordinates and the y-direction is in axis coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which=='grid': return self._xaxis_transform elif which=='tick1': # for cartesian projection, this is bottom spine return self.spines['bottom'].get_spine_transform() elif which=='tick2': # for cartesian projection, this is top spine return self.spines['top'].get_spine_transform() else: raise ValueError('unknown value for which') def get_xaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_xaxis_transform(which='tick1') + mtransforms.ScaledTranslation(0, -1 * pad_points / 72.0, self.figure.dpi_scale_trans), "top", "center") def get_xaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary x-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in data coordinates and the y-direction is in axis coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_xaxis_transform(which='tick2') + mtransforms.ScaledTranslation(0, pad_points / 72.0, self.figure.dpi_scale_trans), "bottom", "center") def get_yaxis_transform(self,which='grid'): """ Get the transformation used for drawing y-axis labels, ticks and gridlines. The x-direction is in axis coordinates and the y-direction is in data coordinates. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ if which=='grid': return self._yaxis_transform elif which=='tick1': # for cartesian projection, this is bottom spine return self.spines['left'].get_spine_transform() elif which=='tick2': # for cartesian projection, this is top spine return self.spines['right'].get_spine_transform() else: raise ValueError('unknown value for which') def get_yaxis_text1_transform(self, pad_points): """ Get the transformation used for drawing y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_yaxis_transform(which='tick1') + mtransforms.ScaledTranslation(-1 * pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "right") def get_yaxis_text2_transform(self, pad_points): """ Get the transformation used for drawing the secondary y-axis labels, which will add the given amount of padding (in points) between the axes and the label. The x-direction is in axis coordinates and the y-direction is in data coordinates. Returns a 3-tuple of the form:: (transform, valign, halign) where *valign* and *halign* are requested alignments for the text. .. note:: This transformation is primarily used by the :class:`~matplotlib.axis.Axis` class, and is meant to be overridden by new kinds of projections that may need to place axis elements in different locations. """ return (self.get_yaxis_transform(which='tick2') + mtransforms.ScaledTranslation(pad_points / 72.0, 0, self.figure.dpi_scale_trans), "center", "left") def _update_transScale(self): self.transScale.set( mtransforms.blended_transform_factory( self.xaxis.get_transform(), self.yaxis.get_transform())) if hasattr(self, "lines"): for line in self.lines: try: line._transformed_path.invalidate() except AttributeError: pass def get_position(self, original=False): 'Return the a copy of the axes rectangle as a Bbox' if original: return self._originalPosition.frozen() else: return self._position.frozen() def set_position(self, pos, which='both'): """ Set the axes position with:: pos = [left, bottom, width, height] in relative 0,1 coords, or *pos* can be a :class:`~matplotlib.transforms.Bbox` There are two position variables: one which is ultimately used, but which may be modified by :meth:`apply_aspect`, and a second which is the starting point for :meth:`apply_aspect`. Optional keyword arguments: *which* ========== ==================== value description ========== ==================== 'active' to change the first 'original' to change the second 'both' to change both ========== ==================== """ if not isinstance(pos, mtransforms.BboxBase): pos = mtransforms.Bbox.from_bounds(*pos) if which in ('both', 'active'): self._position.set(pos) if which in ('both', 'original'): self._originalPosition.set(pos) def reset_position(self): """Make the original position the active position""" pos = self.get_position(original=True) self.set_position(pos, which='active') def set_axes_locator(self, locator): """ set axes_locator ACCEPT : a callable object which takes an axes instance and renderer and returns a bbox. """ self._axes_locator = locator def get_axes_locator(self): """ return axes_locator """ return self._axes_locator def _set_artist_props(self, a): """set the boilerplate props for artists added to axes""" a.set_figure(self.figure) if not a.is_transform_set(): a.set_transform(self.transData) a.set_axes(self) def _gen_axes_patch(self): """ Returns the patch used to draw the background of the axes. It is also used as the clipping path for any data elements on the axes. In the standard axes, this is a rectangle, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ return mpatches.Rectangle((0.0, 0.0), 1.0, 1.0) def _gen_axes_spines(self, locations=None, offset=0.0, units='inches'): """ Returns a dict whose keys are spine names and values are Line2D or Patch instances. Each element is used to draw a spine of the axes. In the standard axes, this is a single line segment, but in other projections it may not be. .. note:: Intended to be overridden by new projection types. """ return { 'left':mspines.Spine.linear_spine(self,'left'), 'right':mspines.Spine.linear_spine(self,'right'), 'bottom':mspines.Spine.linear_spine(self,'bottom'), 'top':mspines.Spine.linear_spine(self,'top'), } def cla(self): """Clear the current axes.""" # Note: this is called by Axes.__init__() self.xaxis.cla() self.yaxis.cla() for name,spine in self.spines.iteritems(): spine.cla() self.ignore_existing_data_limits = True self.callbacks = cbook.CallbackRegistry() if self._sharex is not None: # major and minor are class instances with # locator and formatter attributes self.xaxis.major = self._sharex.xaxis.major self.xaxis.minor = self._sharex.xaxis.minor x0, x1 = self._sharex.get_xlim() self.set_xlim(x0, x1, emit=False, auto=None) # Save the current formatter/locator so we don't lose it majf = self._sharex.xaxis.get_major_formatter() minf = self._sharex.xaxis.get_minor_formatter() majl = self._sharex.xaxis.get_major_locator() minl = self._sharex.xaxis.get_minor_locator() # This overwrites the current formatter/locator self.xaxis.set_scale(self._sharex.xaxis.get_scale()) # Reset the formatter/locator self.xaxis.set_major_formatter(majf) self.xaxis.set_minor_formatter(minf) self.xaxis.set_major_locator(majl) self.xaxis.set_minor_locator(minl) else: self.xaxis.set_scale('linear') if self._sharey is not None: self.yaxis.major = self._sharey.yaxis.major self.yaxis.minor = self._sharey.yaxis.minor y0, y1 = self._sharey.get_ylim() self.set_ylim(y0, y1, emit=False, auto=None) # Save the current formatter/locator so we don't lose it majf = self._sharey.yaxis.get_major_formatter() minf = self._sharey.yaxis.get_minor_formatter() majl = self._sharey.yaxis.get_major_locator() minl = self._sharey.yaxis.get_minor_locator() # This overwrites the current formatter/locator self.yaxis.set_scale(self._sharey.yaxis.get_scale()) # Reset the formatter/locator self.yaxis.set_major_formatter(majf) self.yaxis.set_minor_formatter(minf) self.yaxis.set_major_locator(majl) self.yaxis.set_minor_locator(minl) else: self.yaxis.set_scale('linear') self._autoscaleXon = True self._autoscaleYon = True self._xmargin = 0 self._ymargin = 0 self._tight = False self._update_transScale() # needed? self._get_lines = _process_plot_var_args(self) self._get_patches_for_fill = _process_plot_var_args(self, 'fill') self._gridOn = rcParams['axes.grid'] self.lines = [] self.patches = [] self.texts = [] self.tables = [] self.artists = [] self.images = [] self._current_image = None # strictly for pyplot via _sci, _gci self.legend_ = None self.collections = [] # collection.Collection instances self.containers = [] # self.grid(self._gridOn) props = font_manager.FontProperties(size=rcParams['axes.titlesize']) self.titleOffsetTrans = mtransforms.ScaledTranslation( 0.0, 5.0 / 72.0, self.figure.dpi_scale_trans) self.title = mtext.Text( x=0.5, y=1.0, text='', fontproperties=props, verticalalignment='baseline', horizontalalignment='center', ) self.title.set_transform(self.transAxes + self.titleOffsetTrans) self.title.set_clip_box(None) self._set_artist_props(self.title) # the patch draws the background of the axes. we want this to # be below the other artists; the axesPatch name is # deprecated. We use the frame to draw the edges so we are # setting the edgecolor to None self.patch = self.axesPatch = self._gen_axes_patch() self.patch.set_figure(self.figure) self.patch.set_facecolor(self._axisbg) self.patch.set_edgecolor('None') self.patch.set_linewidth(0) self.patch.set_transform(self.transAxes) self.axison = True self.xaxis.set_clip_path(self.patch) self.yaxis.set_clip_path(self.patch) self._shared_x_axes.clean() self._shared_y_axes.clean() def get_frame(self): raise AttributeError('Axes.frame was removed in favor of Axes.spines') frame = property(get_frame) def clear(self): """clear the axes""" self.cla() def set_color_cycle(self, clist): """ Set the color cycle for any future plot commands on this Axes. *clist* is a list of mpl color specifiers. """ self._get_lines.set_color_cycle(clist) self._get_patches_for_fill.set_color_cycle(clist) def ishold(self): """return the HOLD status of the axes""" return self._hold def hold(self, b=None): """ Call signature:: hold(b=None) Set the hold state. If *hold* is *None* (default), toggle the *hold* state. Else set the *hold* state to boolean value *b*. Examples:: # toggle hold hold() # turn hold on hold(True) # turn hold off hold(False) When hold is *True*, subsequent plot commands will be added to the current axes. When hold is *False*, the current axes and figure will be cleared on the next plot command """ if b is None: self._hold = not self._hold else: self._hold = b def get_aspect(self): return self._aspect def set_aspect(self, aspect, adjustable=None, anchor=None): """ *aspect* ======== ================================================ value description ======== ================================================ 'auto' automatic; fill position rectangle with data 'normal' same as 'auto'; deprecated 'equal' same scaling from data to plot units for x and y num a circle will be stretched such that the height is num times the width. aspect=1 is the same as aspect='equal'. ======== ================================================ *adjustable* ============ ===================================== value description ============ ===================================== 'box' change physical size of axes 'datalim' change xlim or ylim 'box-forced' same as 'box', but axes can be shared ============ ===================================== 'box' does not allow axes sharing, as this can cause unintended side effect. For cases when sharing axes is fine, use 'box-forced'. *anchor* ===== ===================== value description ===== ===================== 'C' centered 'SW' lower left corner 'S' middle of bottom edge 'SE' lower right corner etc. ===== ===================== """ if aspect in ('normal', 'auto'): self._aspect = 'auto' elif aspect == 'equal': self._aspect = 'equal' else: self._aspect = float(aspect) # raise ValueError if necessary if adjustable is not None: self.set_adjustable(adjustable) if anchor is not None: self.set_anchor(anchor) def get_adjustable(self): return self._adjustable def set_adjustable(self, adjustable): """ ACCEPTS: [ 'box' | 'datalim' | 'box-forced'] """ if adjustable in ('box', 'datalim', 'box-forced'): if self in self._shared_x_axes or self in self._shared_y_axes: if adjustable == 'box': raise ValueError( 'adjustable must be "datalim" for shared axes') self._adjustable = adjustable else: raise ValueError('argument must be "box", or "datalim"') def get_anchor(self): return self._anchor def set_anchor(self, anchor): """ *anchor* ===== ============ value description ===== ============ 'C' Center 'SW' bottom left 'S' bottom 'SE' bottom right 'E' right 'NE' top right 'N' top 'NW' top left 'W' left ===== ============ """ if anchor in mtransforms.Bbox.coefs.keys() or len(anchor) == 2: self._anchor = anchor else: raise ValueError('argument must be among %s' % ', '.join(mtransforms.Bbox.coefs.keys())) def get_data_ratio(self): """ Returns the aspect ratio of the raw data. This method is intended to be overridden by new projection types. """ xmin,xmax = self.get_xbound() ymin,ymax = self.get_ybound() xsize = max(math.fabs(xmax-xmin), 1e-30) ysize = max(math.fabs(ymax-ymin), 1e-30) return ysize/xsize def get_data_ratio_log(self): """ Returns the aspect ratio of the raw data in log scale. Will be used when both axis scales are in log. """ xmin,xmax = self.get_xbound() ymin,ymax = self.get_ybound() xsize = max(math.fabs(math.log10(xmax)-math.log10(xmin)), 1e-30) ysize = max(math.fabs(math.log10(ymax)-math.log10(ymin)), 1e-30) return ysize/xsize def apply_aspect(self, position=None): """ Use :meth:`_aspect` and :meth:`_adjustable` to modify the axes box or the view limits. """ if position is None: position = self.get_position(original=True) aspect = self.get_aspect() if self.name != 'polar': xscale, yscale = self.get_xscale(), self.get_yscale() if xscale == "linear" and yscale == "linear": aspect_scale_mode = "linear" elif xscale == "log" and yscale == "log": aspect_scale_mode = "log" elif (xscale == "linear" and yscale == "log") or \ (xscale == "log" and yscale == "linear"): if aspect is not "auto": warnings.warn( 'aspect is not supported for Axes with xscale=%s, yscale=%s' \ % (xscale, yscale)) aspect = "auto" else: # some custom projections have their own scales. pass else: aspect_scale_mode = "linear" if aspect == 'auto': self.set_position( position , which='active') return if aspect == 'equal': A = 1 else: A = aspect #Ensure at drawing time that any Axes involved in axis-sharing # does not have its position changed. if self in self._shared_x_axes or self in self._shared_y_axes: if self._adjustable == 'box': self._adjustable = 'datalim' warnings.warn( 'shared axes: "adjustable" is being changed to "datalim"') figW,figH = self.get_figure().get_size_inches() fig_aspect = figH/figW if self._adjustable in ['box', 'box-forced']: if aspect_scale_mode == "log": box_aspect = A * self.get_data_ratio_log() else: box_aspect = A * self.get_data_ratio() pb = position.frozen() pb1 = pb.shrunk_to_aspect(box_aspect, pb, fig_aspect) self.set_position(pb1.anchored(self.get_anchor(), pb), 'active') return # reset active to original in case it had been changed # by prior use of 'box' self.set_position(position, which='active') xmin,xmax = self.get_xbound() ymin,ymax = self.get_ybound() if aspect_scale_mode == "log": xmin, xmax = math.log10(xmin), math.log10(xmax) ymin, ymax = math.log10(ymin), math.log10(ymax) xsize = max(math.fabs(xmax-xmin), 1e-30) ysize = max(math.fabs(ymax-ymin), 1e-30) l,b,w,h = position.bounds box_aspect = fig_aspect * (h/w) data_ratio = box_aspect / A y_expander = (data_ratio*xsize/ysize - 1.0) #print 'y_expander', y_expander # If y_expander > 0, the dy/dx viewLim ratio needs to increase if abs(y_expander) < 0.005: #print 'good enough already' return if aspect_scale_mode == "log": dL = self.dataLim dL_width = math.log10(dL.x1) - math.log10(dL.x0) dL_height = math.log10(dL.y1) - math.log10(dL.y0) xr = 1.05 * dL_width yr = 1.05 * dL_height else: dL = self.dataLim xr = 1.05 * dL.width yr = 1.05 * dL.height xmarg = xsize - xr ymarg = ysize - yr Ysize = data_ratio * xsize Xsize = ysize / data_ratio Xmarg = Xsize - xr Ymarg = Ysize - yr xm = 0 # Setting these targets to, e.g., 0.05*xr does not seem to help. ym = 0 #print 'xmin, xmax, ymin, ymax', xmin, xmax, ymin, ymax #print 'xsize, Xsize, ysize, Ysize', xsize, Xsize, ysize, Ysize changex = (self in self._shared_y_axes and self not in self._shared_x_axes) changey = (self in self._shared_x_axes and self not in self._shared_y_axes) if changex and changey: warnings.warn("adjustable='datalim' cannot work with shared " "x and y axes") return if changex: adjust_y = False else: #print 'xmarg, ymarg, Xmarg, Ymarg', xmarg, ymarg, Xmarg, Ymarg if xmarg > xm and ymarg > ym: adjy = ((Ymarg > 0 and y_expander < 0) or (Xmarg < 0 and y_expander > 0)) else: adjy = y_expander > 0 #print 'y_expander, adjy', y_expander, adjy adjust_y = changey or adjy #(Ymarg > xmarg) if adjust_y: yc = 0.5*(ymin+ymax) y0 = yc - Ysize/2.0 y1 = yc + Ysize/2.0 if aspect_scale_mode == "log": self.set_ybound((10.**y0, 10.**y1)) else: self.set_ybound((y0, y1)) #print 'New y0, y1:', y0, y1 #print 'New ysize, ysize/xsize', y1-y0, (y1-y0)/xsize else: xc = 0.5*(xmin+xmax) x0 = xc - Xsize/2.0 x1 = xc + Xsize/2.0 if aspect_scale_mode == "log": self.set_xbound((10.**x0, 10.**x1)) else: self.set_xbound((x0, x1)) #print 'New x0, x1:', x0, x1 #print 'New xsize, ysize/xsize', x1-x0, ysize/(x1-x0) def axis(self, *v, **kwargs): """ Convenience method for manipulating the x and y view limits and the aspect ratio of the plot. For details, see :func:`~matplotlib.pyplot.axis`. *kwargs* are passed on to :meth:`set_xlim` and :meth:`set_ylim` """ if len(v) == 0 and len(kwargs) == 0: xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax if len(v)==1 and is_string_like(v[0]): s = v[0].lower() if s=='on': self.set_axis_on() elif s=='off': self.set_axis_off() elif s in ('equal', 'tight', 'scaled', 'normal', 'auto', 'image'): self.set_autoscale_on(True) self.set_aspect('auto') self.autoscale_view(tight=False) # self.apply_aspect() if s=='equal': self.set_aspect('equal', adjustable='datalim') elif s == 'scaled': self.set_aspect('equal', adjustable='box', anchor='C') self.set_autoscale_on(False) # Req. by <NAME> elif s=='tight': self.autoscale_view(tight=True) self.set_autoscale_on(False) elif s == 'image': self.autoscale_view(tight=True) self.set_autoscale_on(False) self.set_aspect('equal', adjustable='box', anchor='C') else: raise ValueError('Unrecognized string %s to axis; ' 'try on or off' % s) xmin, xmax = self.get_xlim() ymin, ymax = self.get_ylim() return xmin, xmax, ymin, ymax emit = kwargs.get('emit', True) try: v[0] except IndexError: xmin = kwargs.get('xmin', None) xmax = kwargs.get('xmax', None) auto = False # turn off autoscaling, unless... if xmin is None and xmax is None: auto = None # leave autoscaling state alone xmin, xmax = self.set_xlim(xmin, xmax, emit=emit, auto=auto) ymin = kwargs.get('ymin', None) ymax = kwargs.get('ymax', None) auto = False # turn off autoscaling, unless... if ymin is None and ymax is None: auto = None # leave autoscaling state alone ymin, ymax = self.set_ylim(ymin, ymax, emit=emit, auto=auto) return xmin, xmax, ymin, ymax v = v[0] if len(v) != 4: raise ValueError('v must contain [xmin xmax ymin ymax]') self.set_xlim([v[0], v[1]], emit=emit, auto=False) self.set_ylim([v[2], v[3]], emit=emit, auto=False) return v def get_child_artists(self): """ Return a list of artists the axes contains. .. deprecated:: 0.98 """ raise mplDeprecation('Use get_children instead') def get_frame(self): """Return the axes Rectangle frame""" warnings.warn('use ax.patch instead', mplDeprecation) return self.patch def get_legend(self): """Return the legend.Legend instance, or None if no legend is defined""" return self.legend_ def get_images(self): """return a list of Axes images contained by the Axes""" return cbook.silent_list('AxesImage', self.images) def get_lines(self): """Return a list of lines contained by the Axes""" return cbook.silent_list('Line2D', self.lines) def get_xaxis(self): """Return the XAxis instance""" return self.xaxis def get_xgridlines(self): """Get the x grid lines as a list of Line2D instances""" return cbook.silent_list('Line2D xgridline', self.xaxis.get_gridlines()) def get_xticklines(self): """Get the xtick lines as a list of Line2D instances""" return cbook.silent_list('Text xtickline', self.xaxis.get_ticklines()) def get_yaxis(self): """Return the YAxis instance""" return self.yaxis def get_ygridlines(self): """Get the y grid lines as a list of Line2D instances""" return cbook.silent_list('Line2D ygridline', self.yaxis.get_gridlines()) def get_yticklines(self): """Get the ytick lines as a list of Line2D instances""" return cbook.silent_list('Line2D ytickline', self.yaxis.get_ticklines()) #### Adding and tracking artists def _sci(self, im): """ helper for :func:`~matplotlib.pyplot.sci`; do not use elsewhere. """ if isinstance(im, matplotlib.contour.ContourSet): if im.collections[0] not in self.collections: raise ValueError( "ContourSet must be in current Axes") elif im not in self.images and im not in self.collections: raise ValueError( "Argument must be an image, collection, or ContourSet in this Axes") self._current_image = im def _gci(self): """ Helper for :func:`~matplotlib.pyplot.gci`; do not use elsewhere. """ return self._current_image def has_data(self): """ Return *True* if any artists have been added to axes. This should not be used to determine whether the *dataLim* need to be updated, and may not actually be useful for anything. """ return ( len(self.collections) + len(self.images) + len(self.lines) + len(self.patches))>0 def add_artist(self, a): """ Add any :class:`~matplotlib.artist.Artist` to the axes. Returns the artist. """ a.set_axes(self) self.artists.append(a) self._set_artist_props(a) a.set_clip_path(self.patch) a._remove_method = lambda h: self.artists.remove(h) return a def add_collection(self, collection, autolim=True): """ Add a :class:`~matplotlib.collections.Collection` instance to the axes. Returns the collection. """ label = collection.get_label() if not label: collection.set_label('_collection%d'%len(self.collections)) self.collections.append(collection) self._set_artist_props(collection) if collection.get_clip_path() is None: collection.set_clip_path(self.patch) if autolim: if collection._paths and len(collection._paths): self.update_datalim(collection.get_datalim(self.transData)) collection._remove_method = lambda h: self.collections.remove(h) return collection def add_line(self, line): """ Add a :class:`~matplotlib.lines.Line2D` to the list of plot lines Returns the line. """ self._set_artist_props(line) if line.get_clip_path() is None: line.set_clip_path(self.patch) self._update_line_limits(line) if not line.get_label(): line.set_label('_line%d' % len(self.lines)) self.lines.append(line) line._remove_method = lambda h: self.lines.remove(h) return line def _update_line_limits(self, line): """Figures out the data limit of the given line, updating self.dataLim.""" path = line.get_path() if path.vertices.size == 0: return line_trans = line.get_transform() if line_trans == self.transData: data_path = path elif any(line_trans.contains_branch_seperately(self.transData)): # identify the transform to go from line's coordinates # to data coordinates trans_to_data = line_trans - self.transData # if transData is affine we can use the cached non-affine component # of line's path. (since the non-affine part of line_trans is # entirely encapsulated in trans_to_data). if self.transData.is_affine: line_trans_path = line._get_transformed_path() na_path, _ = line_trans_path.get_transformed_path_and_affine() data_path = trans_to_data.transform_path_affine(na_path) else: data_path = trans_to_data.transform_path(path) else: # for backwards compatibility we update the dataLim with the # coordinate range of the given path, even though the coordinate # systems are completely different. This may occur in situations # such as when ax.transAxes is passed through for absolute # positioning. data_path = path if data_path.vertices.size > 0: updatex, updatey = line_trans.contains_branch_seperately( self.transData ) self.dataLim.update_from_path(data_path, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def add_patch(self, p): """ Add a :class:`~matplotlib.patches.Patch` *p* to the list of axes patches; the clipbox will be set to the Axes clipping box. If the transform is not set, it will be set to :attr:`transData`. Returns the patch. """ self._set_artist_props(p) if p.get_clip_path() is None: p.set_clip_path(self.patch) self._update_patch_limits(p) self.patches.append(p) p._remove_method = lambda h: self.patches.remove(h) return p def _update_patch_limits(self, patch): """update the data limits for patch *p*""" # hist can add zero height Rectangles, which is useful to keep # the bins, counts and patches lined up, but it throws off log # scaling. We'll ignore rects with zero height or width in # the auto-scaling # cannot check for '==0' since unitized data may not compare to zero if (isinstance(patch, mpatches.Rectangle) and ((not patch.get_width()) or (not patch.get_height()))): return vertices = patch.get_path().vertices if vertices.size > 0: xys = patch.get_patch_transform().transform(vertices) if patch.get_data_transform() != self.transData: patch_to_data = (patch.get_data_transform() - self.transData) xys = patch_to_data.transform(xys) updatex, updatey = patch.get_transform().\ contains_branch_seperately(self.transData) self.update_datalim(xys, updatex=updatex, updatey=updatey) def add_table(self, tab): """ Add a :class:`~matplotlib.tables.Table` instance to the list of axes tables Returns the table. """ self._set_artist_props(tab) self.tables.append(tab) tab.set_clip_path(self.patch) tab._remove_method = lambda h: self.tables.remove(h) return tab def add_container(self, container): """ Add a :class:`~matplotlib.container.Container` instance to the axes. Returns the collection. """ label = container.get_label() if not label: container.set_label('_container%d'%len(self.containers)) self.containers.append(container) container.set_remove_method(lambda h: self.containers.remove(h)) return container def relim(self): """ Recompute the data limits based on current artists. At present, :class:`~matplotlib.collections.Collection` instances are not supported. """ # Collections are deliberately not supported (yet); see # the TODO note in artists.py. self.dataLim.ignore(True) self.ignore_existing_data_limits = True for line in self.lines: self._update_line_limits(line) for p in self.patches: self._update_patch_limits(p) def update_datalim(self, xys, updatex=True, updatey=True): """Update the data lim bbox with seq of xy tups or equiv. 2-D array""" # if no data is set currently, the bbox will ignore its # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(xys) and not len(xys): return if not ma.isMaskedArray(xys): xys = np.asarray(xys) self.dataLim.update_from_data_xy(xys, self.ignore_existing_data_limits, updatex=updatex, updatey=updatey) self.ignore_existing_data_limits = False def update_datalim_numerix(self, x, y): """Update the data lim bbox with seq of xy tups""" # if no data is set currently, the bbox will ignore it's # limits and set the bound to be the bounds of the xydata. # Otherwise, it will compute the bounds of it's current data # and the data in xydata if iterable(x) and not len(x): return self.dataLim.update_from_data(x, y, self.ignore_existing_data_limits) self.ignore_existing_data_limits = False def update_datalim_bounds(self, bounds): """ Update the datalim to include the given :class:`~matplotlib.transforms.Bbox` *bounds* """ self.dataLim.set(mtransforms.Bbox.union([self.dataLim, bounds])) def _process_unit_info(self, xdata=None, ydata=None, kwargs=None): """Look for unit *kwargs* and update the axis instances as necessary""" if self.xaxis is None or self.yaxis is None: return #print 'processing', self.get_geometry() if xdata is not None: # we only need to update if there is nothing set yet. if not self.xaxis.have_units(): self.xaxis.update_units(xdata) #print '\tset from xdata', self.xaxis.units if ydata is not None: # we only need to update if there is nothing set yet. if not self.yaxis.have_units(): self.yaxis.update_units(ydata) #print '\tset from ydata', self.yaxis.units # process kwargs 2nd since these will override default units if kwargs is not None: xunits = kwargs.pop( 'xunits', self.xaxis.units) if self.name == 'polar': xunits = kwargs.pop( 'thetaunits', xunits ) if xunits!=self.xaxis.units: #print '\tkw setting xunits', xunits self.xaxis.set_units(xunits) # If the units being set imply a different converter, # we need to update. if xdata is not None: self.xaxis.update_units(xdata) yunits = kwargs.pop('yunits', self.yaxis.units) if self.name == 'polar': yunits = kwargs.pop( 'runits', yunits ) if yunits!=self.yaxis.units: #print '\tkw setting yunits', yunits self.yaxis.set_units(yunits) # If the units being set imply a different converter, # we need to update. if ydata is not None: self.yaxis.update_units(ydata) def in_axes(self, mouseevent): """ Return *True* if the given *mouseevent* (in display coords) is in the Axes """ return self.patch.contains(mouseevent)[0] def get_autoscale_on(self): """ Get whether autoscaling is applied for both axes on plot commands """ return self._autoscaleXon and self._autoscaleYon def get_autoscalex_on(self): """ Get whether autoscaling for the x-axis is applied on plot commands """ return self._autoscaleXon def get_autoscaley_on(self): """ Get whether autoscaling for the y-axis is applied on plot commands """ return self._autoscaleYon def set_autoscale_on(self, b): """ Set whether autoscaling is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleXon = b self._autoscaleYon = b def set_autoscalex_on(self, b): """ Set whether autoscaling for the x-axis is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleXon = b def set_autoscaley_on(self, b): """ Set whether autoscaling for the y-axis is applied on plot commands accepts: [ *True* | *False* ] """ self._autoscaleYon = b def set_xmargin(self, m): """ Set padding of X data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. accepts: float in range 0 to 1 """ if m < 0 or m > 1: raise ValueError("margin must be in range 0 to 1") self._xmargin = m def set_ymargin(self, m): """ Set padding of Y data limits prior to autoscaling. *m* times the data interval will be added to each end of that interval before it is used in autoscaling. accepts: float in range 0 to 1 """ if m < 0 or m > 1: raise ValueError("margin must be in range 0 to 1") self._ymargin = m def margins(self, *args, **kw): """ Set or retrieve autoscaling margins. signatures:: margins() returns xmargin, ymargin :: margins(margin) margins(xmargin, ymargin) margins(x=xmargin, y=ymargin) margins(..., tight=False) All three forms above set the xmargin and ymargin parameters. All keyword parameters are optional. A single argument specifies both xmargin and ymargin. The *tight* parameter is passed to :meth:`autoscale_view`, which is executed after a margin is changed; the default here is *True*, on the assumption that when margins are specified, no additional padding to match tick marks is usually desired. Setting *tight* to *None* will preserve the previous setting. Specifying any margin changes only the autoscaling; for example, if *xmargin* is not None, then *xmargin* times the X data interval will be added to each end of that interval before it is used in autoscaling. """ if not args and not kw: return self._xmargin, self._ymargin tight = kw.pop('tight', True) mx = kw.pop('x', None) my = kw.pop('y', None) if len(args) == 1: mx = my = args[0] elif len(args) == 2: mx, my = args else: raise ValueError("more than two arguments were supplied") if mx is not None: self.set_xmargin(mx) if my is not None: self.set_ymargin(my) scalex = (mx is not None) scaley = (my is not None) self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley) def set_rasterization_zorder(self, z): """ Set zorder value below which artists will be rasterized. Set to `None` to disable rasterizing of artists below a particular zorder. """ self._rasterization_zorder = z def get_rasterization_zorder(self): """ Get zorder value below which artists will be rasterized """ return self._rasterization_zorder def autoscale(self, enable=True, axis='both', tight=None): """ Autoscale the axis view to the data (toggle). Convenience method for simple axis view autoscaling. It turns autoscaling on or off, and then, if autoscaling for either axis is on, it performs the autoscaling on the specified axis or axes. *enable*: [True | False | None] True (default) turns autoscaling on, False turns it off. None leaves the autoscaling state unchanged. *axis*: ['x' | 'y' | 'both'] which axis to operate on; default is 'both' *tight*: [True | False | None] If True, set view limits to data limits; if False, let the locator and margins expand the view limits; if None, use tight scaling if the only artist is an image, otherwise treat *tight* as False. The *tight* setting is retained for future autoscaling until it is explicitly changed. Returns None. """ if enable is None: scalex = True scaley = True else: scalex = False scaley = False if axis in ['x', 'both']: self._autoscaleXon = bool(enable) scalex = self._autoscaleXon if axis in ['y', 'both']: self._autoscaleYon = bool(enable) scaley = self._autoscaleYon self.autoscale_view(tight=tight, scalex=scalex, scaley=scaley) def autoscale_view(self, tight=None, scalex=True, scaley=True): """ Autoscale the view limits using the data limits. You can selectively autoscale only a single axis, eg, the xaxis by setting *scaley* to *False*. The autoscaling preserves any axis direction reversal that has already been done. The data limits are not updated automatically when artist data are changed after the artist has been added to an Axes instance. In that case, use :meth:`matplotlib.axes.Axes.relim` prior to calling autoscale_view. """ if tight is None: # if image data only just use the datalim _tight = self._tight or (len(self.images)>0 and len(self.lines)==0 and len(self.patches)==0) else: _tight = self._tight = bool(tight) if scalex and self._autoscaleXon: xshared = self._shared_x_axes.get_siblings(self) dl = [ax.dataLim for ax in xshared] bb = mtransforms.BboxBase.union(dl) x0, x1 = bb.intervalx xlocator = self.xaxis.get_major_locator() try: # e.g. DateLocator has its own nonsingular() x0, x1 = xlocator.nonsingular(x0, x1) except AttributeError: # Default nonsingular for, e.g., MaxNLocator x0, x1 = mtransforms.nonsingular(x0, x1, increasing=False, expander=0.05) if self._xmargin > 0: delta = (x1 - x0) * self._xmargin x0 -= delta x1 += delta if not _tight: x0, x1 = xlocator.view_limits(x0, x1) self.set_xbound(x0, x1) if scaley and self._autoscaleYon: yshared = self._shared_y_axes.get_siblings(self) dl = [ax.dataLim for ax in yshared] bb = mtransforms.BboxBase.union(dl) y0, y1 = bb.intervaly ylocator = self.yaxis.get_major_locator() try: y0, y1 = ylocator.nonsingular(y0, y1) except AttributeError: y0, y1 = mtransforms.nonsingular(y0, y1, increasing=False, expander=0.05) if self._ymargin > 0: delta = (y1 - y0) * self._ymargin y0 -= delta y1 += delta if not _tight: y0, y1 = ylocator.view_limits(y0, y1) self.set_ybound(y0, y1) #### Drawing @allow_rasterization def draw(self, renderer=None, inframe=False): """Draw everything (plot lines, axes, labels)""" if renderer is None: renderer = self._cachedRenderer if renderer is None: raise RuntimeError('No renderer defined') if not self.get_visible(): return renderer.open_group('axes') locator = self.get_axes_locator() if locator: pos = locator(self, renderer) self.apply_aspect(pos) else: self.apply_aspect() artists = [] artists.extend(self.collections) artists.extend(self.patches) artists.extend(self.lines) artists.extend(self.texts) artists.extend(self.artists) if self.axison and not inframe: if self._axisbelow: self.xaxis.set_zorder(0.5) self.yaxis.set_zorder(0.5) else: self.xaxis.set_zorder(2.5) self.yaxis.set_zorder(2.5) artists.extend([self.xaxis, self.yaxis]) if not inframe: artists.append(self.title) artists.extend(self.tables) if self.legend_ is not None: artists.append(self.legend_) # the frame draws the edges around the axes patch -- we # decouple these so the patch can be in the background and the # frame in the foreground. if self.axison and self._frameon: artists.extend(self.spines.itervalues()) dsu = [ (a.zorder, a) for a in artists if not a.get_animated() ] # add images to dsu if the backend support compositing. # otherwise, does the manaul compositing without adding images to dsu. if len(self.images)<=1 or renderer.option_image_nocomposite(): dsu.extend([(im.zorder, im) for im in self.images]) _do_composite = False else: _do_composite = True dsu.sort(key=itemgetter(0)) # rasterize artists with negative zorder # if the minimum zorder is negative, start rasterization rasterization_zorder = self._rasterization_zorder if (rasterization_zorder is not None and len(dsu) > 0 and dsu[0][0] < rasterization_zorder): renderer.start_rasterizing() dsu_rasterized = [l for l in dsu if l[0] < rasterization_zorder] dsu = [l for l in dsu if l[0] >= rasterization_zorder] else: dsu_rasterized = [] # the patch draws the background rectangle -- the frame below # will draw the edges if self.axison and self._frameon: self.patch.draw(renderer) if _do_composite: # make a composite image blending alpha # list of (mimage.Image, ox, oy) zorder_images = [(im.zorder, im) for im in self.images \ if im.get_visible()] zorder_images.sort(key=lambda x: x[0]) mag = renderer.get_image_magnification() ims = [(im.make_image(mag),0,0) for z,im in zorder_images] l, b, r, t = self.bbox.extents width = mag*((round(r) + 0.5) - (round(l) - 0.5)) height = mag*((round(t) + 0.5) - (round(b) - 0.5)) im = mimage.from_images(height, width, ims) im.is_grayscale = False l, b, w, h = self.bbox.bounds # composite images need special args so they will not # respect z-order for now gc = renderer.new_gc() gc.set_clip_rectangle(self.bbox) gc.set_clip_path(mtransforms.TransformedPath( self.patch.get_path(), self.patch.get_transform())) renderer.draw_image(gc, round(l), round(b), im) gc.restore() if dsu_rasterized: for zorder, a in dsu_rasterized: a.draw(renderer) renderer.stop_rasterizing() for zorder, a in dsu: a.draw(renderer) renderer.close_group('axes') self._cachedRenderer = renderer def draw_artist(self, a): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None a.draw(self._cachedRenderer) def redraw_in_frame(self): """ This method can only be used after an initial draw which caches the renderer. It is used to efficiently update Axes data (axis ticks, labels, etc are not updated) """ assert self._cachedRenderer is not None self.draw(self._cachedRenderer, inframe=True) def get_renderer_cache(self): return self._cachedRenderer def __draw_animate(self): # ignore for now; broken if self._lastRenderer is None: raise RuntimeError('You must first call ax.draw()') dsu = [(a.zorder, a) for a in self.animated.keys()] dsu.sort(key=lambda x: x[0]) renderer = self._lastRenderer renderer.blit() for tmp, a in dsu: a.draw(renderer) #### Axes rectangle characteristics def get_frame_on(self): """ Get whether the axes rectangle patch is drawn """ return self._frameon def set_frame_on(self, b): """ Set whether the axes rectangle patch is drawn ACCEPTS: [ *True* | *False* ] """ self._frameon = b def get_axisbelow(self): """ Get whether axis below is true or not """ return self._axisbelow def set_axisbelow(self, b): """ Set whether the axis ticks and gridlines are above or below most artists ACCEPTS: [ *True* | *False* ] """ self._axisbelow = b @docstring.dedent_interpd def grid(self, b=None, which='major', axis='both', **kwargs): """ Turn the axes grids on or off. Call signature:: grid(self, b=None, which='major', axis='both', **kwargs) Set the axes grids on or off; *b* is a boolean. (For MATLAB compatibility, *b* may also be a string, 'on' or 'off'.) If *b* is *None* and ``len(kwargs)==0``, toggle the grid state. If *kwargs* are supplied, it is assumed that you want a grid and *b* is thus set to *True*. *which* can be 'major' (default), 'minor', or 'both' to control whether major tick grids, minor tick grids, or both are affected. *axis* can be 'both' (default), 'x', or 'y' to control which set of gridlines are drawn. *kwargs* are used to set the grid line properties, eg:: ax.grid(color='r', linestyle='-', linewidth=2) Valid :class:`~matplotlib.lines.Line2D` kwargs are %(Line2D)s """ if len(kwargs): b = True b = _string_to_bool(b) if axis == 'x' or axis == 'both': self.xaxis.grid(b, which=which, **kwargs) if axis == 'y' or axis == 'both': self.yaxis.grid(b, which=which, **kwargs) def ticklabel_format(self, **kwargs): """ Change the `~matplotlib.ticker.ScalarFormatter` used by default for linear axes. Optional keyword arguments: ============ ========================================= Keyword Description ============ ========================================= *style* [ 'sci' (or 'scientific') | 'plain' ] plain turns off scientific notation *scilimits* (m, n), pair of integers; if *style* is 'sci', scientific notation will be used for numbers outside the range 10`m`:sup: to 10`n`:sup:. Use (0,0) to include all numbers. *useOffset* [True | False | offset]; if True, the offset will be calculated as needed; if False, no offset will be used; if a numeric offset is specified, it will be used. *axis* [ 'x' | 'y' | 'both' ] *useLocale* If True, format the number according to the current locale. This affects things such as the character used for the decimal separator. If False, use C-style (English) formatting. The default setting is controlled by the axes.formatter.use_locale rcparam. ============ ========================================= Only the major ticks are affected. If the method is called when the :class:`~matplotlib.ticker.ScalarFormatter` is not the :class:`~matplotlib.ticker.Formatter` being used, an :exc:`AttributeError` will be raised. """ style = kwargs.pop('style', '').lower() scilimits = kwargs.pop('scilimits', None) useOffset = kwargs.pop('useOffset', None) useLocale = kwargs.pop('useLocale', None) axis = kwargs.pop('axis', 'both').lower() if scilimits is not None: try: m, n = scilimits m+n+1 # check that both are numbers except (ValueError, TypeError): raise ValueError("scilimits must be a sequence of 2 integers") if style[:3] == 'sci': sb = True elif style in ['plain', 'comma']: sb = False if style == 'plain': cb = False else: cb = True raise NotImplementedError("comma style remains to be added") elif style == '': sb = None else: raise ValueError("%s is not a valid style value") try: if sb is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_scientific(sb) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_scientific(sb) if scilimits is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_powerlimits(scilimits) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_powerlimits(scilimits) if useOffset is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_useOffset(useOffset) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_useOffset(useOffset) if useLocale is not None: if axis == 'both' or axis == 'x': self.xaxis.major.formatter.set_useLocale(useLocale) if axis == 'both' or axis == 'y': self.yaxis.major.formatter.set_useLocale(useLocale) except AttributeError: raise AttributeError( "This method only works with the ScalarFormatter.") def locator_params(self, axis='both', tight=None, **kwargs): """ Control behavior of tick locators. Keyword arguments: *axis* ['x' | 'y' | 'both'] Axis on which to operate; default is 'both'. *tight* [True | False | None] Parameter passed to :meth:`autoscale_view`. Default is None, for no change. Remaining keyword arguments are passed to directly to the :meth:`~matplotlib.ticker.MaxNLocator.set_params` method. Typically one might want to reduce the maximum number of ticks and use tight bounds when plotting small subplots, for example:: ax.locator_params(tight=True, nbins=4) Because the locator is involved in autoscaling, :meth:`autoscale_view` is called automatically after the parameters are changed. This presently works only for the :class:`~matplotlib.ticker.MaxNLocator` used by default on linear axes, but it may be generalized. """ _x = axis in ['x', 'both'] _y = axis in ['y', 'both'] if _x: self.xaxis.get_major_locator().set_params(**kwargs) if _y: self.yaxis.get_major_locator().set_params(**kwargs) self.autoscale_view(tight=tight, scalex=_x, scaley=_y) def tick_params(self, axis='both', **kwargs): """ Change the appearance of ticks and tick labels. Keyword arguments: *axis* : ['x' | 'y' | 'both'] Axis on which to operate; default is 'both'. *reset* : [True | False] If *True*, set all parameters to defaults before processing other keyword arguments. Default is *False*. *which* : ['major' | 'minor' | 'both'] Default is 'major'; apply arguments to *which* ticks. *direction* : ['in' | 'out' | 'inout'] Puts ticks inside the axes, outside the axes, or both. *length* Tick length in points. *width* Tick width in points. *color* Tick color; accepts any mpl color spec. *pad* Distance in points between tick and label. *labelsize* Tick label font size in points or as a string (e.g. 'large'). *labelcolor* Tick label color; mpl color spec. *colors* Changes the tick color and the label color to the same value: mpl color spec. *zorder* Tick and label zorder. *bottom*, *top*, *left*, *right* : [bool | 'on' | 'off'] controls whether to draw the respective ticks. *labelbottom*, *labeltop*, *labelleft*, *labelright* Boolean or ['on' | 'off'], controls whether to draw the respective tick labels. Example:: ax.tick_params(direction='out', length=6, width=2, colors='r') This will make all major ticks be red, pointing out of the box, and with dimensions 6 points by 2 points. Tick labels will also be red. """ if axis in ['x', 'both']: xkw = dict(kwargs) xkw.pop('left', None) xkw.pop('right', None) xkw.pop('labelleft', None) xkw.pop('labelright', None) self.xaxis.set_tick_params(**xkw) if axis in ['y', 'both']: ykw = dict(kwargs) ykw.pop('top', None) ykw.pop('bottom', None) ykw.pop('labeltop', None) ykw.pop('labelbottom', None) self.yaxis.set_tick_params(**ykw) def set_axis_off(self): """turn off the axis""" self.axison = False def set_axis_on(self): """turn on the axis""" self.axison = True def get_axis_bgcolor(self): """Return the axis background color""" return self._axisbg def set_axis_bgcolor(self, color): """ set the axes background color ACCEPTS: any matplotlib color - see :func:`~matplotlib.pyplot.colors` """ self._axisbg = color self.patch.set_facecolor(color) ### data limits, ticks, tick labels, and formatting def invert_xaxis(self): "Invert the x-axis." left, right = self.get_xlim() self.set_xlim(right, left, auto=None) def xaxis_inverted(self): """Returns *True* if the x-axis is inverted.""" left, right = self.get_xlim() return right < left def get_xbound(self): """ Returns the x-axis numerical bounds where:: lowerBound < upperBound """ left, right = self.get_xlim() if left < right: return left, right else: return right, left def set_xbound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the x-axis. This method will honor axes inversion regardless of parameter order. It will not change the _autoscaleXon attribute. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_xbound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.xaxis_inverted(): if lower < upper: self.set_xlim(upper, lower, auto=None) else: self.set_xlim(lower, upper, auto=None) else: if lower < upper: self.set_xlim(lower, upper, auto=None) else: self.set_xlim(upper, lower, auto=None) def get_xlim(self): """ Get the x-axis range [*left*, *right*] """ return tuple(self.viewLim.intervalx) def set_xlim(self, left=None, right=None, emit=True, auto=False, **kw): """ Call signature:: set_xlim(self, *args, **kwargs): Set the data limits for the xaxis Examples:: set_xlim((left, right)) set_xlim(left, right) set_xlim(left=1) # right unchanged set_xlim(right=1) # left unchanged Keyword arguments: *left*: scalar The left xlim; *xmin*, the previous name, may still be used *right*: scalar The right xlim; *xmax*, the previous name, may still be used *emit*: [ *True* | *False* ] Notify observers of limit change *auto*: [ *True* | *False* | *None* ] Turn *x* autoscaling on (*True*), off (*False*; default), or leave unchanged (*None*) Note, the *left* (formerly *xmin*) value may be greater than the *right* (formerly *xmax*). For example, suppose *x* is years before present. Then one might use:: set_ylim(5000, 0) so 5000 years ago is on the left of the plot and the present is on the right. Returns the current xlimits as a length 2 tuple ACCEPTS: length 2 sequence of floats """ if 'xmin' in kw: left = kw.pop('xmin') if 'xmax' in kw: right = kw.pop('xmax') if kw: raise ValueError("unrecognized kwargs: %s" % kw.keys()) if right is None and iterable(left): left,right = left self._process_unit_info(xdata=(left, right)) if left is not None: left = self.convert_xunits(left) if right is not None: right = self.convert_xunits(right) old_left, old_right = self.get_xlim() if left is None: left = old_left if right is None: right = old_right if left==right: warnings.warn(('Attempting to set identical left==right results\n' + 'in singular transformations; automatically expanding.\n' + 'left=%s, right=%s') % (left, right)) left, right = mtransforms.nonsingular(left, right, increasing=False) left, right = self.xaxis.limit_range_for_scale(left, right) self.viewLim.intervalx = (left, right) if auto is not None: self._autoscaleXon = bool(auto) if emit: self.callbacks.process('xlim_changed', self) # Call all of the other x-axes that are shared with this one for other in self._shared_x_axes.get_siblings(self): if other is not self: other.set_xlim(self.viewLim.intervalx, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return left, right def get_xscale(self): return self.xaxis.get_scale() get_xscale.__doc__ = "Return the xaxis scale string: %s""" % ( ", ".join(mscale.get_scale_names())) @docstring.dedent_interpd def set_xscale(self, value, **kwargs): """ Call signature:: set_xscale(value) Set the scaling of the x-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.xaxis.set_scale(value, **kwargs) self.autoscale_view(scaley=False) self._update_transScale() def get_xticks(self, minor=False): """Return the x ticks as a list of locations""" return self.xaxis.get_ticklocs(minor=minor) def set_xticks(self, ticks, minor=False): """ Set the x ticks with list of *ticks* ACCEPTS: sequence of floats """ return self.xaxis.set_ticks(ticks, minor=minor) def get_xmajorticklabels(self): """ Get the xtick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text xticklabel', self.xaxis.get_majorticklabels()) def get_xminorticklabels(self): """ Get the x minor tick labels as a list of :class:`matplotlib.text.Text` instances. """ return cbook.silent_list('Text xticklabel', self.xaxis.get_minorticklabels()) def get_xticklabels(self, minor=False): """ Get the x tick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text xticklabel', self.xaxis.get_ticklabels(minor=minor)) @docstring.dedent_interpd def set_xticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ Call signature:: set_xticklabels(labels, fontdict=None, minor=False, **kwargs) Set the xtick labels with list of strings *labels*. Return a list of axis text instances. *kwargs* set the :class:`~matplotlib.text.Text` properties. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.xaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) def invert_yaxis(self): "Invert the y-axis." bottom, top = self.get_ylim() self.set_ylim(top, bottom, auto=None) def yaxis_inverted(self): """Returns *True* if the y-axis is inverted.""" bottom, top = self.get_ylim() return top < bottom def get_ybound(self): "Return y-axis numerical bounds in the form of lowerBound < upperBound" bottom, top = self.get_ylim() if bottom < top: return bottom, top else: return top, bottom def set_ybound(self, lower=None, upper=None): """ Set the lower and upper numerical bounds of the y-axis. This method will honor axes inversion regardless of parameter order. It will not change the _autoscaleYon attribute. """ if upper is None and iterable(lower): lower,upper = lower old_lower,old_upper = self.get_ybound() if lower is None: lower = old_lower if upper is None: upper = old_upper if self.yaxis_inverted(): if lower < upper: self.set_ylim(upper, lower, auto=None) else: self.set_ylim(lower, upper, auto=None) else: if lower < upper: self.set_ylim(lower, upper, auto=None) else: self.set_ylim(upper, lower, auto=None) def get_ylim(self): """ Get the y-axis range [*bottom*, *top*] """ return tuple(self.viewLim.intervaly) def set_ylim(self, bottom=None, top=None, emit=True, auto=False, **kw): """ Call signature:: set_ylim(self, *args, **kwargs): Set the data limits for the yaxis Examples:: set_ylim((bottom, top)) set_ylim(bottom, top) set_ylim(bottom=1) # top unchanged set_ylim(top=1) # bottom unchanged Keyword arguments: *bottom*: scalar The bottom ylim; the previous name, *ymin*, may still be used *top*: scalar The top ylim; the previous name, *ymax*, may still be used *emit*: [ *True* | *False* ] Notify observers of limit change *auto*: [ *True* | *False* | *None* ] Turn *y* autoscaling on (*True*), off (*False*; default), or leave unchanged (*None*) Note, the *bottom* (formerly *ymin*) value may be greater than the *top* (formerly *ymax*). For example, suppose *y* is depth in the ocean. Then one might use:: set_ylim(5000, 0) so 5000 m depth is at the bottom of the plot and the surface, 0 m, is at the top. Returns the current ylimits as a length 2 tuple ACCEPTS: length 2 sequence of floats """ if 'ymin' in kw: bottom = kw.pop('ymin') if 'ymax' in kw: top = kw.pop('ymax') if kw: raise ValueError("unrecognized kwargs: %s" % kw.keys()) if top is None and iterable(bottom): bottom,top = bottom if bottom is not None: bottom = self.convert_yunits(bottom) if top is not None: top = self.convert_yunits(top) old_bottom, old_top = self.get_ylim() if bottom is None: bottom = old_bottom if top is None: top = old_top if bottom==top: warnings.warn(('Attempting to set identical bottom==top results\n' + 'in singular transformations; automatically expanding.\n' + 'bottom=%s, top=%s') % (bottom, top)) bottom, top = mtransforms.nonsingular(bottom, top, increasing=False) bottom, top = self.yaxis.limit_range_for_scale(bottom, top) self.viewLim.intervaly = (bottom, top) if auto is not None: self._autoscaleYon = bool(auto) if emit: self.callbacks.process('ylim_changed', self) # Call all of the other y-axes that are shared with this one for other in self._shared_y_axes.get_siblings(self): if other is not self: other.set_ylim(self.viewLim.intervaly, emit=False, auto=auto) if (other.figure != self.figure and other.figure.canvas is not None): other.figure.canvas.draw_idle() return bottom, top def get_yscale(self): return self.yaxis.get_scale() get_yscale.__doc__ = "Return the yaxis scale string: %s""" % ( ", ".join(mscale.get_scale_names())) @docstring.dedent_interpd def set_yscale(self, value, **kwargs): """ Call signature:: set_yscale(value) Set the scaling of the y-axis: %(scale)s ACCEPTS: [%(scale)s] Different kwargs are accepted, depending on the scale: %(scale_docs)s """ self.yaxis.set_scale(value, **kwargs) self.autoscale_view(scalex=False) self._update_transScale() def get_yticks(self, minor=False): """Return the y ticks as a list of locations""" return self.yaxis.get_ticklocs(minor=minor) def set_yticks(self, ticks, minor=False): """ Set the y ticks with list of *ticks* ACCEPTS: sequence of floats Keyword arguments: *minor*: [ *False* | *True* ] Sets the minor ticks if *True* """ return self.yaxis.set_ticks(ticks, minor=minor) def get_ymajorticklabels(self): """ Get the major y tick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text yticklabel', self.yaxis.get_majorticklabels()) def get_yminorticklabels(self): """ Get the minor y tick labels as a list of :class:`~matplotlib.text.Text` instances. """ return cbook.silent_list('Text yticklabel', self.yaxis.get_minorticklabels()) def get_yticklabels(self, minor=False): """ Get the y tick labels as a list of :class:`~matplotlib.text.Text` instances """ return cbook.silent_list('Text yticklabel', self.yaxis.get_ticklabels(minor=minor)) @docstring.dedent_interpd def set_yticklabels(self, labels, fontdict=None, minor=False, **kwargs): """ Call signature:: set_yticklabels(labels, fontdict=None, minor=False, **kwargs) Set the y tick labels with list of strings *labels*. Return a list of :class:`~matplotlib.text.Text` instances. *kwargs* set :class:`~matplotlib.text.Text` properties for the labels. Valid properties are %(Text)s ACCEPTS: sequence of strings """ return self.yaxis.set_ticklabels(labels, fontdict, minor=minor, **kwargs) def xaxis_date(self, tz=None): """ Sets up x-axis ticks and labels that treat the x data as dates. *tz* is a timezone string or :class:`tzinfo` instance. Defaults to rc value. """ # should be enough to inform the unit conversion interface # dates are coming in self.xaxis.axis_date(tz) def yaxis_date(self, tz=None): """ Sets up y-axis ticks and labels that treat the y data as dates. *tz* is a timezone string or :class:`tzinfo` instance. Defaults to rc value. """ self.yaxis.axis_date(tz) def format_xdata(self, x): """ Return *x* string formatted. This function will use the attribute self.fmt_xdata if it is callable, else will fall back on the xaxis major formatter """ try: return self.fmt_xdata(x) except TypeError: func = self.xaxis.get_major_formatter().format_data_short val = func(x) return val def format_ydata(self, y): """ Return y string formatted. This function will use the :attr:`fmt_ydata` attribute if it is callable, else will fall back on the yaxis major formatter """ try: return self.fmt_ydata(y) except TypeError: func = self.yaxis.get_major_formatter().format_data_short val = func(y) return val def format_coord(self, x, y): """Return a format string formatting the *x*, *y* coord""" if x is None: xs = '???' else: xs = self.format_xdata(x) if y is None: ys = '???' else: ys = self.format_ydata(y) return 'x=%s y=%s'%(xs,ys) #### Interactive manipulation def can_zoom(self): """ Return *True* if this axes supports the zoom box button functionality. """ return True def can_pan(self) : """ Return *True* if this axes supports any pan/zoom button functionality. """ return True def get_navigate(self): """ Get whether the axes responds to navigation commands """ return self._navigate def set_navigate(self, b): """ Set whether the axes responds to navigation toolbar commands ACCEPTS: [ *True* | *False* ] """ self._navigate = b def get_navigate_mode(self): """ Get the navigation toolbar button status: 'PAN', 'ZOOM', or None """ return self._navigate_mode def set_navigate_mode(self, b): """ Set the navigation toolbar button status; .. warning:: this is not a user-API function. """ self._navigate_mode = b def start_pan(self, x, y, button): """ Called when a pan operation has started. *x*, *y* are the mouse coordinates in display coords. button is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT .. note:: Intended to be overridden by new projection types. """ self._pan_start = cbook.Bunch( lim = self.viewLim.frozen(), trans = self.transData.frozen(), trans_inverse = self.transData.inverted().frozen(), bbox = self.bbox.frozen(), x = x, y = y ) def end_pan(self): """ Called when a pan operation completes (when the mouse button is up.) .. note:: Intended to be overridden by new projection types. """ del self._pan_start def drag_pan(self, button, key, x, y): """ Called when the mouse moves during a pan operation. *button* is the mouse button number: * 1: LEFT * 2: MIDDLE * 3: RIGHT *key* is a "shift" key *x*, *y* are the mouse coordinates in display coords. .. note:: Intended to be overridden by new projection types. """ def format_deltas(key, dx, dy): if key=='control': if(abs(dx)>abs(dy)): dy = dx else: dx = dy elif key=='x': dy = 0 elif key=='y': dx = 0 elif key=='shift': if 2*abs(dx) < abs(dy): dx=0 elif 2*abs(dy) < abs(dx): dy=0 elif(abs(dx)>abs(dy)): dy=dy/abs(dy)*abs(dx) else: dx=dx/abs(dx)*abs(dy) return (dx,dy) p = self._pan_start dx = x - p.x dy = y - p.y if dx == 0 and dy == 0: return if button == 1: dx, dy = format_deltas(key, dx, dy) result = p.bbox.translated(-dx, -dy) \ .transformed(p.trans_inverse) elif button == 3: try: dx = -dx / float(self.bbox.width) dy = -dy / float(self.bbox.height) dx, dy = format_deltas(key, dx, dy) if self.get_aspect() != 'auto': dx = 0.5 * (dx + dy) dy = dx alpha = np.power(10.0, (dx, dy)) start = np.array([p.x, p.y]) oldpoints = p.lim.transformed(p.trans) newpoints = start + alpha * (oldpoints - start) result = mtransforms.Bbox(newpoints) \ .transformed(p.trans_inverse) except OverflowError: warnings.warn('Overflow while panning') return self.set_xlim(*result.intervalx) self.set_ylim(*result.intervaly) def get_cursor_props(self): """ Return the cursor propertiess as a (*linewidth*, *color*) tuple, where *linewidth* is a float and *color* is an RGBA tuple """ return self._cursorProps def set_cursor_props(self, *args): """ Set the cursor property as:: ax.set_cursor_props(linewidth, color) or:: ax.set_cursor_props((linewidth, color)) ACCEPTS: a (*float*, *color*) tuple """ if len(args)==1: lw, c = args[0] elif len(args)==2: lw, c = args else: raise ValueError('args must be a (linewidth, color) tuple') c =mcolors.colorConverter.to_rgba(c) self._cursorProps = lw, c def connect(self, s, func): """ Register observers to be notified when certain events occur. Register with callback functions with the following signatures. The function has the following signature:: func(ax) # where ax is the instance making the callback. The following events can be connected to: 'xlim_changed','ylim_changed' The connection id is is returned - you can use this with disconnect to disconnect from the axes event """ raise mplDeprecation('use the callbacks CallbackRegistry instance ' 'instead') def disconnect(self, cid): """disconnect from the Axes event.""" raise mplDeprecation('use the callbacks CallbackRegistry instance ' 'instead') def get_children(self): """return a list of child artists""" children = [] children.append(self.xaxis) children.append(self.yaxis) children.extend(self.lines) children.extend(self.patches) children.extend(self.texts) children.extend(self.tables) children.extend(self.artists) children.extend(self.images) if self.legend_ is not None: children.append(self.legend_) children.extend(self.collections) children.append(self.title) children.append(self.patch) children.extend(self.spines.itervalues()) return children def contains(self,mouseevent): """ Test whether the mouse event occured in the axes. Returns *True* / *False*, {} """ if callable(self._contains): return self._contains(self,mouseevent) return self.patch.contains(mouseevent) def contains_point(self, point): """ Returns *True* if the point (tuple of x,y) is inside the axes (the area defined by the its patch). A pixel coordinate is required. """ return self.patch.contains_point(point, radius=1.0) def pick(self, *args): """ Call signature:: pick(mouseevent) each child artist will fire a pick event if mouseevent is over the artist and the artist has picker set """ if len(args) > 1: raise mplDeprecation('New pick API implemented -- ' 'see API_CHANGES in the src distribution') martist.Artist.pick(self, args[0]) def __pick(self, x, y, trans=None, among=None): """ Return the artist under point that is closest to the *x*, *y*. If *trans* is *None*, *x*, and *y* are in window coords, (0,0 = lower left). Otherwise, *trans* is a :class:`~matplotlib.transforms.Transform` that specifies the coordinate system of *x*, *y*. The selection of artists from amongst which the pick function finds an artist can be narrowed using the optional keyword argument *among*. If provided, this should be either a sequence of permitted artists or a function taking an artist as its argument and returning a true value if and only if that artist can be selected. Note this algorithm calculates distance to the vertices of the polygon, so if you want to pick a patch, click on the edge! """ # MGDTODO: Needs updating if trans is not None: xywin = trans.transform_point((x,y)) else: xywin = x,y def dist_points(p1, p2): 'return the distance between two points' x1, y1 = p1 x2, y2 = p2 return math.sqrt((x1-x2)**2+(y1-y2)**2) def dist_x_y(p1, x, y): '*x* and *y* are arrays; return the distance to the closest point' x1, y1 = p1 return min(np.sqrt((x-x1)**2+(y-y1)**2)) def dist(a): if isinstance(a, Text): bbox = a.get_window_extent() l,b,w,h = bbox.bounds verts = (l,b), (l,b+h), (l+w,b+h), (l+w, b) xt, yt = zip(*verts) elif isinstance(a, Patch): path = a.get_path() tverts = a.get_transform().transform_path(path) xt, yt = zip(*tverts) elif isinstance(a, mlines.Line2D): xdata = a.get_xdata(orig=False) ydata = a.get_ydata(orig=False) xt, yt = a.get_transform().numerix_x_y(xdata, ydata) return dist_x_y(xywin, np.asarray(xt), np.asarray(yt)) artists = self.lines + self.patches + self.texts if callable(among): artists = filter(test, artists) elif iterable(among): amongd = dict([(k,1) for k in among]) artists = [a for a in artists if a in amongd] elif among is None: pass else: raise ValueError('among must be callable or iterable') if not len(artists): return None ds = [ (dist(a),a) for a in artists] ds.sort() return ds[0][1] #### Labelling def get_title(self): """ Get the title text string. """ return self.title.get_text() @docstring.dedent_interpd def set_title(self, label, fontdict=None, **kwargs): """ Call signature:: set_title(label, fontdict=None, **kwargs): Set the title for the axes. kwargs are Text properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text` for information on how override and the optional args work """ default = { 'fontsize':rcParams['axes.titlesize'], 'verticalalignment' : 'baseline', 'horizontalalignment' : 'center' } self.title.set_text(label) self.title.update(default) if fontdict is not None: self.title.update(fontdict) self.title.update(kwargs) return self.title def get_xlabel(self): """ Get the xlabel text string. """ label = self.xaxis.get_label() return label.get_text() @docstring.dedent_interpd def set_xlabel(self, xlabel, fontdict=None, labelpad=None, **kwargs): """ Call signature:: set_xlabel(xlabel, fontdict=None, labelpad=None, **kwargs) Set the label for the xaxis. *labelpad* is the spacing in points between the label and the x-axis Valid kwargs are :class:`~matplotlib.text.Text` properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text` for information on how override and the optional args work """ if labelpad is not None: self.xaxis.labelpad = labelpad return self.xaxis.set_label_text(xlabel, fontdict, **kwargs) def get_ylabel(self): """ Get the ylabel text string. """ label = self.yaxis.get_label() return label.get_text() @docstring.dedent_interpd def set_ylabel(self, ylabel, fontdict=None, labelpad=None, **kwargs): """ Call signature:: set_ylabel(ylabel, fontdict=None, labelpad=None, **kwargs) Set the label for the yaxis *labelpad* is the spacing in points between the label and the y-axis Valid kwargs are :class:`~matplotlib.text.Text` properties: %(Text)s ACCEPTS: str .. seealso:: :meth:`text` for information on how override and the optional args work """ if labelpad is not None: self.yaxis.labelpad = labelpad return self.yaxis.set_label_text(ylabel, fontdict, **kwargs) @docstring.dedent_interpd def text(self, x, y, s, fontdict=None, withdash=False, **kwargs): """ Add text to the axes. Call signature:: text(x, y, s, fontdict=None, **kwargs) Add text in string *s* to axis at location *x*, *y*, data coordinates. Keyword arguments: *fontdict*: A dictionary to override the default text properties. If *fontdict* is *None*, the defaults are determined by your rc parameters. *withdash*: [ *False* | *True* ] Creates a :class:`~matplotlib.text.TextWithDash` instance instead of a :class:`~matplotlib.text.Text` instance. Individual keyword arguments can be used to override any given parameter:: text(x, y, s, fontsize=12) The default transform specifies that text is in data coords, alternatively, you can specify text in axis coords (0,0 is lower-left and 1,1 is upper-right). The example below places text in the center of the axes:: text(0.5, 0.5,'matplotlib', horizontalalignment='center', verticalalignment='center', transform = ax.transAxes) You can put a rectangular box around the text instance (eg. to set a background color) by using the keyword *bbox*. *bbox* is a dictionary of :class:`matplotlib.patches.Rectangle` properties. For example:: text(x, y, s, bbox=dict(facecolor='red', alpha=0.5)) Valid kwargs are :class:`~matplotlib.text.Text` properties: %(Text)s """ default = { 'verticalalignment' : 'baseline', 'horizontalalignment' : 'left', 'transform' : self.transData, } # At some point if we feel confident that TextWithDash # is robust as a drop-in replacement for Text and that # the performance impact of the heavier-weight class # isn't too significant, it may make sense to eliminate # the withdash kwarg and simply delegate whether there's # a dash to TextWithDash and dashlength. if withdash: t = mtext.TextWithDash( x=x, y=y, text=s, ) else: t = mtext.Text( x=x, y=y, text=s, ) self._set_artist_props(t) t.update(default) if fontdict is not None: t.update(fontdict) t.update(kwargs) self.texts.append(t) t._remove_method = lambda h: self.texts.remove(h) #if t.get_clip_on(): t.set_clip_box(self.bbox) if 'clip_on' in kwargs: t.set_clip_box(self.bbox) return t @docstring.dedent_interpd def annotate(self, *args, **kwargs): """ Create an annotation: a piece of text referring to a data point. Call signature:: annotate(s, xy, xytext=None, xycoords='data', textcoords='data', arrowprops=None, **kwargs) Keyword arguments: %(Annotation)s .. plot:: mpl_examples/pylab_examples/annotation_demo2.py """ a = mtext.Annotation(*args, **kwargs) a.set_transform(mtransforms.IdentityTransform()) self._set_artist_props(a) if kwargs.has_key('clip_on'): a.set_clip_path(self.patch) self.texts.append(a) a._remove_method = lambda h: self.texts.remove(h) return a #### Lines and spans @docstring.dedent_interpd def axhline(self, y=0, xmin=0, xmax=1, **kwargs): """ Add a horizontal line across the axis. Call signature:: axhline(y=0, xmin=0, xmax=1, **kwargs) Draw a horizontal line at *y* from *xmin* to *xmax*. With the default values of *xmin* = 0 and *xmax* = 1, this line will always span the horizontal extent of the axes, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red hline at *y* = 0 that spans the xrange:: >>> axhline(linewidth=4, color='r') * draw a default hline at *y* = 1 that spans the xrange:: >>> axhline(y=1) * draw a default hline at *y* = .5 that spans the the middle half of the xrange:: >>> axhline(y=.5, xmin=0.25, xmax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties, with the exception of 'transform': %(Line2D)s .. seealso:: :meth:`axhspan` for example plot and source code """ if "transform" in kwargs: raise ValueError( "'transform' is not allowed as a kwarg;" + "axhline generates its own transform.") ymin, ymax = self.get_ybound() # We need to strip away the units for comparison with # non-unitized bounds self._process_unit_info( ydata=y, kwargs=kwargs ) yy = self.convert_yunits( y ) scaley = (yy<ymin) or (yy>ymax) trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) l = mlines.Line2D([xmin,xmax], [y,y], transform=trans, **kwargs) self.add_line(l) self.autoscale_view(scalex=False, scaley=scaley) return l @docstring.dedent_interpd def axvline(self, x=0, ymin=0, ymax=1, **kwargs): """ Add a vertical line across the axes. Call signature:: axvline(x=0, ymin=0, ymax=1, **kwargs) Draw a vertical line at *x* from *ymin* to *ymax*. With the default values of *ymin* = 0 and *ymax* = 1, this line will always span the vertical extent of the axes, regardless of the ylim settings, even if you change them, eg. with the :meth:`set_ylim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *x* location is in data coordinates. Return value is the :class:`~matplotlib.lines.Line2D` instance. kwargs are the same as kwargs to plot, and can be used to control the line properties. Eg., * draw a thick red vline at *x* = 0 that spans the yrange:: >>> axvline(linewidth=4, color='r') * draw a default vline at *x* = 1 that spans the yrange:: >>> axvline(x=1) * draw a default vline at *x* = .5 that spans the the middle half of the yrange:: >>> axvline(x=.5, ymin=0.25, ymax=0.75) Valid kwargs are :class:`~matplotlib.lines.Line2D` properties, with the exception of 'transform': %(Line2D)s .. seealso:: :meth:`axhspan` for example plot and source code """ if "transform" in kwargs: raise ValueError( "'transform' is not allowed as a kwarg;" + "axvline generates its own transform.") xmin, xmax = self.get_xbound() # We need to strip away the units for comparison with # non-unitized bounds self._process_unit_info( xdata=x, kwargs=kwargs ) xx = self.convert_xunits( x ) scalex = (xx<xmin) or (xx>xmax) trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) l = mlines.Line2D([x,x], [ymin,ymax] , transform=trans, **kwargs) self.add_line(l) self.autoscale_view(scalex=scalex, scaley=False) return l @docstring.dedent_interpd def axhspan(self, ymin, ymax, xmin=0, xmax=1, **kwargs): """ Add a horizontal span (rectangle) across the axis. Call signature:: axhspan(ymin, ymax, xmin=0, xmax=1, **kwargs) *y* coords are in data units and *x* coords are in axes (relative 0-1) units. Draw a horizontal span (rectangle) from *ymin* to *ymax*. With the default values of *xmin* = 0 and *xmax* = 1, this always spans the xrange, regardless of the xlim settings, even if you change them, eg. with the :meth:`set_xlim` command. That is, the horizontal extent is in axes coords: 0=left, 0.5=middle, 1.0=right but the *y* location is in data coordinates. Return value is a :class:`matplotlib.patches.Polygon` instance. Examples: * draw a gray rectangle from *y* = 0.25-0.75 that spans the horizontal extent of the axes:: >>> axhspan(0.25, 0.75, facecolor='0.5', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/axhspan_demo.py """ trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = (xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin) p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) self.add_patch(p) self.autoscale_view(scalex=False) return p @docstring.dedent_interpd def axvspan(self, xmin, xmax, ymin=0, ymax=1, **kwargs): """ Add a vertical span (rectangle) across the axes. Call signature:: axvspan(xmin, xmax, ymin=0, ymax=1, **kwargs) *x* coords are in data units and *y* coords are in axes (relative 0-1) units. Draw a vertical span (rectangle) from *xmin* to *xmax*. With the default values of *ymin* = 0 and *ymax* = 1, this always spans the yrange, regardless of the ylim settings, even if you change them, eg. with the :meth:`set_ylim` command. That is, the vertical extent is in axes coords: 0=bottom, 0.5=middle, 1.0=top but the *y* location is in data coordinates. Return value is the :class:`matplotlib.patches.Polygon` instance. Examples: * draw a vertical green translucent rectangle from x=1.25 to 1.55 that spans the yrange of the axes:: >>> axvspan(1.25, 1.55, facecolor='g', alpha=0.5) Valid kwargs are :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s .. seealso:: :meth:`axhspan` for example plot and source code """ trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) # process the unit information self._process_unit_info( [xmin, xmax], [ymin, ymax], kwargs=kwargs ) # first we need to strip away the units xmin, xmax = self.convert_xunits( [xmin, xmax] ) ymin, ymax = self.convert_yunits( [ymin, ymax] ) verts = [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin)] p = mpatches.Polygon(verts, **kwargs) p.set_transform(trans) self.add_patch(p) self.autoscale_view(scaley=False) return p @docstring.dedent def hlines(self, y, xmin, xmax, colors='k', linestyles='solid', label='', **kwargs): """ Plot horizontal lines. call signature:: hlines(y, xmin, xmax, colors='k', linestyles='solid', **kwargs) Plot horizontal lines at each *y* from *xmin* to *xmax*. Returns the :class:`~matplotlib.collections.LineCollection` that was added. Required arguments: *y*: a 1-D numpy array or iterable. *xmin* and *xmax*: can be scalars or ``len(x)`` numpy arrays. If they are scalars, then the respective values are constant, else the widths of the lines are determined by *xmin* and *xmax*. Optional keyword arguments: *colors*: a line collections color argument, either a single color or a ``len(y)`` list of colors *linestyles*: [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] **Example:** .. plot:: mpl_examples/pylab_examples/hline_demo.py """ if kwargs.get('fmt') is not None: raise mplDeprecation('hlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') # We do the conversion first since not all unitized data is uniform # process the unit information self._process_unit_info( [xmin, xmax], y, kwargs=kwargs ) y = self.convert_yunits( y ) xmin = self.convert_xunits(xmin) xmax = self.convert_xunits(xmax) if not iterable(y): y = [y] if not iterable(xmin): xmin = [xmin] if not iterable(xmax): xmax = [xmax] y = np.asarray(y) xmin = np.asarray(xmin) xmax = np.asarray(xmax) if len(xmin)==1: xmin = np.resize( xmin, y.shape ) if len(xmax)==1: xmax = np.resize( xmax, y.shape ) if len(xmin)!=len(y): raise ValueError('xmin and y are unequal sized sequences') if len(xmax)!=len(y): raise ValueError('xmax and y are unequal sized sequences') verts = [ ((thisxmin, thisy), (thisxmax, thisy)) for thisxmin, thisxmax, thisy in zip(xmin, xmax, y)] coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) if len(y) > 0: minx = min(xmin.min(), xmax.min()) maxx = max(xmin.max(), xmax.max()) miny = y.min() maxy = y.max() corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll @docstring.dedent_interpd def vlines(self, x, ymin, ymax, colors='k', linestyles='solid', label='', **kwargs): """ Plot vertical lines. Call signature:: vlines(x, ymin, ymax, color='k', linestyles='solid') Plot vertical lines at each *x* from *ymin* to *ymax*. *ymin* or *ymax* can be scalars or len(*x*) numpy arrays. If they are scalars, then the respective values are constant, else the heights of the lines are determined by *ymin* and *ymax*. *colors* : A line collection's color args, either a single color or a ``len(x)`` list of colors *linestyles* : [ 'solid' | 'dashed' | 'dashdot' | 'dotted' ] Returns the :class:`matplotlib.collections.LineCollection` that was added. kwargs are :class:`~matplotlib.collections.LineCollection` properties: %(LineCollection)s """ if kwargs.get('fmt') is not None: raise mplDeprecation('vlines now uses a ' 'collections.LineCollection and not a ' 'list of Line2D to draw; see API_CHANGES') self._process_unit_info(xdata=x, ydata=[ymin, ymax], kwargs=kwargs) # We do the conversion first since not all unitized data is uniform x = self.convert_xunits( x ) ymin = self.convert_yunits( ymin ) ymax = self.convert_yunits( ymax ) if not iterable(x): x = [x] if not iterable(ymin): ymin = [ymin] if not iterable(ymax): ymax = [ymax] x = np.asarray(x) ymin = np.asarray(ymin) ymax = np.asarray(ymax) if len(ymin)==1: ymin = np.resize( ymin, x.shape ) if len(ymax)==1: ymax = np.resize( ymax, x.shape ) if len(ymin)!=len(x): raise ValueError('ymin and x are unequal sized sequences') if len(ymax)!=len(x): raise ValueError('ymax and x are unequal sized sequences') Y = np.array([ymin, ymax]).T verts = [ ((thisx, thisymin), (thisx, thisymax)) for thisx, (thisymin, thisymax) in zip(x,Y)] #print 'creating line collection' coll = mcoll.LineCollection(verts, colors=colors, linestyles=linestyles, label=label) self.add_collection(coll) coll.update(kwargs) if len(x) > 0: minx = min( x ) maxx = max( x ) miny = min( min(ymin), min(ymax) ) maxy = max( max(ymin), max(ymax) ) corners = (minx, miny), (maxx, maxy) self.update_datalim(corners) self.autoscale_view() return coll #### Basic plotting @docstring.dedent_interpd def plot(self, *args, **kwargs): """ Plot lines and/or markers to the :class:`~matplotlib.axes.Axes`. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional format string. For example, each of the following is legal:: plot(x, y) # plot x and y using default line style and color plot(x, y, 'bo') # plot x and y using blue circle markers plot(y) # plot y using x as index array 0..N-1 plot(y, 'r+') # ditto, but with red plusses If *x* and/or *y* is 2-dimensional, then the corresponding columns will be plotted. An arbitrary number of *x*, *y*, *fmt* groups can be specified, as in:: a.plot(x1, y1, 'g^', x2, y2, 'g-') Return value is a list of lines that were added. By default, each line is assigned a different color specified by a 'color cycle'. To change this behavior, you can edit the axes.color_cycle rcParam. Alternatively, you can use :meth:`~matplotlib.axes.Axes.set_default_color_cycle`. The following format string characters are accepted to control the line style or marker: ================ =============================== character description ================ =============================== ``'-'`` solid line style ``'--'`` dashed line style ``'-.'`` dash-dot line style ``':'`` dotted line style ``'.'`` point marker ``','`` pixel marker ``'o'`` circle marker ``'v'`` triangle_down marker ``'^'`` triangle_up marker ``'<'`` triangle_left marker ``'>'`` triangle_right marker ``'1'`` tri_down marker ``'2'`` tri_up marker ``'3'`` tri_left marker ``'4'`` tri_right marker ``'s'`` square marker ``'p'`` pentagon marker ``'*'`` star marker ``'h'`` hexagon1 marker ``'H'`` hexagon2 marker ``'+'`` plus marker ``'x'`` x marker ``'D'`` diamond marker ``'d'`` thin_diamond marker ``'|'`` vline marker ``'_'`` hline marker ================ =============================== The following color abbreviations are supported: ========== ======== character color ========== ======== 'b' blue 'g' green 'r' red 'c' cyan 'm' magenta 'y' yellow 'k' black 'w' white ========== ======== In addition, you can specify colors in many weird and wonderful ways, including full names (``'green'``), hex strings (``'#008000'``), RGB or RGBA tuples (``(0,1,0,1)``) or grayscale intensities as a string (``'0.8'``). Of these, the string specifications can be used in place of a ``fmt`` group, but the tuple forms can be used only as ``kwargs``. Line styles and colors are combined in a single format string, as in ``'bo'`` for blue circles. The *kwargs* can be used to set line properties (any property that has a ``set_*`` method). You can use this to set a line label (for auto legends), linewidth, anitialising, marker face color, etc. Here is an example:: plot([1,2,3], [1,2,3], 'go-', label='line 1', linewidth=2) plot([1,2,3], [1,4,9], 'rs', label='line 2') axis([0, 4, 0, 10]) legend() If you make multiple lines with one plot command, the kwargs apply to all those lines, e.g.:: plot(x1, y1, x2, y2, antialised=False) Neither line will be antialiased. You do not need to use format strings, which are just abbreviations. All of the line properties can be controlled by keyword arguments. For example, you can set the color, marker, linestyle, and markercolor with:: plot(x, y, color='green', linestyle='dashed', marker='o', markerfacecolor='blue', markersize=12). See :class:`~matplotlib.lines.Line2D` for details. The kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s kwargs *scalex* and *scaley*, if defined, are passed on to :meth:`~matplotlib.axes.Axes.autoscale_view` to determine whether the *x* and *y* axes are autoscaled; the default is *True*. """ scalex = kwargs.pop( 'scalex', True) scaley = kwargs.pop( 'scaley', True) if not self._hold: self.cla() lines = [] for line in self._get_lines(*args, **kwargs): self.add_line(line) lines.append(line) self.autoscale_view(scalex=scalex, scaley=scaley) return lines @docstring.dedent_interpd def plot_date(self, x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs): """ Plot with data with dates. Call signature:: plot_date(x, y, fmt='bo', tz=None, xdate=True, ydate=False, **kwargs) Similar to the :func:`~matplotlib.pyplot.plot` command, except the *x* or *y* (or both) data is considered to be dates, and the axis is labeled accordingly. *x* and/or *y* can be a sequence of dates represented as float days since 0001-01-01 UTC. Keyword arguments: *fmt*: string The plot format string. *tz*: [ *None* | timezone string | :class:`tzinfo` instance] The time zone to use in labeling dates. If *None*, defaults to rc value. *xdate*: [ *True* | *False* ] If *True*, the *x*-axis will be labeled with dates. *ydate*: [ *False* | *True* ] If *True*, the *y*-axis will be labeled with dates. Note if you are using custom date tickers and formatters, it may be necessary to set the formatters/locators after the call to :meth:`plot_date` since :meth:`plot_date` will set the default tick locator to :class:`matplotlib.dates.AutoDateLocator` (if the tick locator is not already set to a :class:`matplotlib.dates.DateLocator` instance) and the default tick formatter to :class:`matplotlib.dates.AutoDateFormatter` (if the tick formatter is not already set to a :class:`matplotlib.dates.DateFormatter` instance). Valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :mod:`~matplotlib.dates` for helper functions :func:`~matplotlib.dates.date2num`, :func:`~matplotlib.dates.num2date` and :func:`~matplotlib.dates.drange` for help on creating the required floating point dates. """ if not self._hold: self.cla() ret = self.plot(x, y, fmt, **kwargs) if xdate: self.xaxis_date(tz) if ydate: self.yaxis_date(tz) self.autoscale_view() return ret @docstring.dedent_interpd def loglog(self, *args, **kwargs): """ Make a plot with log scaling on both the *x* and *y* axis. Call signature:: loglog(*args, **kwargs) :func:`~matplotlib.pyplot.loglog` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basex*/*basey*: scalar > 1 Base of the *x*/*y* logarithm *subsx*/*subsy*: [ *None* | sequence ] The location of the minor *x*/*y* ticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`matplotlib.axes.Axes.set_xscale` / :meth:`matplotlib.axes.Axes.set_yscale` for details *nonposx*/*nonposy*: ['mask' | 'clip' ] Non-positive values in *x* or *y* can be masked as invalid, or clipped to a very small positive number The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/log_demo.py """ if not self._hold: self.cla() dx = {'basex': kwargs.pop('basex', 10), 'subsx': kwargs.pop('subsx', None), 'nonposx': kwargs.pop('nonposx', 'mask'), } dy = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), 'nonposy': kwargs.pop('nonposy', 'mask'), } self.set_xscale('log', **dx) self.set_yscale('log', **dy) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l @docstring.dedent_interpd def semilogx(self, *args, **kwargs): """ Make a plot with log scaling on the *x* axis. Call signature:: semilogx(*args, **kwargs) :func:`semilogx` supports all the keyword arguments of :func:`~matplotlib.pyplot.plot` and :meth:`matplotlib.axes.Axes.set_xscale`. Notable keyword arguments: *basex*: scalar > 1 Base of the *x* logarithm *subsx*: [ *None* | sequence ] The location of the minor xticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_xscale` for details. *nonposx*: [ 'mask' | 'clip' ] Non-positive values in *x* can be masked as invalid, or clipped to a very small positive number The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog` For example code and figure """ if not self._hold: self.cla() d = {'basex': kwargs.pop( 'basex', 10), 'subsx': kwargs.pop( 'subsx', None), 'nonposx': kwargs.pop('nonposx', 'mask'), } self.set_xscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l @docstring.dedent_interpd def semilogy(self, *args, **kwargs): """ Make a plot with log scaling on the *y* axis. call signature:: semilogy(*args, **kwargs) :func:`semilogy` supports all the keyword arguments of :func:`~matplotlib.pylab.plot` and :meth:`matplotlib.axes.Axes.set_yscale`. Notable keyword arguments: *basey*: scalar > 1 Base of the *y* logarithm *subsy*: [ *None* | sequence ] The location of the minor yticks; *None* defaults to autosubs, which depend on the number of decades in the plot; see :meth:`~matplotlib.axes.Axes.set_yscale` for details. *nonposy*: [ 'mask' | 'clip' ] Non-positive values in *y* can be masked as invalid, or clipped to a very small positive number The remaining valid kwargs are :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s .. seealso:: :meth:`loglog` For example code and figure """ if not self._hold: self.cla() d = {'basey': kwargs.pop('basey', 10), 'subsy': kwargs.pop('subsy', None), 'nonposy': kwargs.pop('nonposy', 'mask'), } self.set_yscale('log', **d) b = self._hold self._hold = True # we've already processed the hold l = self.plot(*args, **kwargs) self._hold = b # restore the hold return l @docstring.dedent_interpd def acorr(self, x, **kwargs): """ Plot the autocorrelation of *x*. Call signature:: acorr(x, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, **kwargs) If *normed* = *True*, normalize the data by the autocorrelation at 0-th lag. *x* is detrended by the *detrend* callable (default no normalization). Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length 2*maxlags+1 lag vector - *c* is the 2*maxlags+1 auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :meth:`plot` The default *linestyle* is None and the default *marker* is ``'o'``, though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*, :meth:`~matplotlib.axes.Axes.vlines` rather than :meth:`~matplotlib.axes.Axes.plot` is used to draw vertical lines from the origin to the acorr. Otherwise, the plot style is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where - *linecol* is the :class:`~matplotlib.collections.LineCollection` - *b* is the *x*-axis. .. seealso:: :meth:`~matplotlib.axes.Axes.plot` or :meth:`~matplotlib.axes.Axes.vlines` For documentation on valid kwargs. **Example:** :func:`~matplotlib.pyplot.xcorr` is top graph, and :func:`~matplotlib.pyplot.acorr` is bottom graph. .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ return self.xcorr(x, x, **kwargs) @docstring.dedent_interpd def xcorr(self, x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, **kwargs): """ Plot the cross correlation between *x* and *y*. Call signature:: xcorr(self, x, y, normed=True, detrend=mlab.detrend_none, usevlines=True, maxlags=10, **kwargs) If *normed* = *True*, normalize the data by the cross correlation at 0-th lag. *x* and y are detrended by the *detrend* callable (default no normalization). *x* and *y* must be equal length. Data are plotted as ``plot(lags, c, **kwargs)`` Return value is a tuple (*lags*, *c*, *line*) where: - *lags* are a length ``2*maxlags+1`` lag vector - *c* is the ``2*maxlags+1`` auto correlation vector - *line* is a :class:`~matplotlib.lines.Line2D` instance returned by :func:`~matplotlib.pyplot.plot`. The default *linestyle* is *None* and the default *marker* is 'o', though these can be overridden with keyword args. The cross correlation is performed with :func:`numpy.correlate` with *mode* = 2. If *usevlines* is *True*: :func:`~matplotlib.pyplot.vlines` rather than :func:`~matplotlib.pyplot.plot` is used to draw vertical lines from the origin to the xcorr. Otherwise the plotstyle is determined by the kwargs, which are :class:`~matplotlib.lines.Line2D` properties. The return value is a tuple (*lags*, *c*, *linecol*, *b*) where *linecol* is the :class:`matplotlib.collections.LineCollection` instance and *b* is the *x*-axis. *maxlags* is a positive integer detailing the number of lags to show. The default value of *None* will return all ``(2*len(x)-1)`` lags. **Example:** :func:`~matplotlib.pyplot.xcorr` is top graph, and :func:`~matplotlib.pyplot.acorr` is bottom graph. .. plot:: mpl_examples/pylab_examples/xcorr_demo.py """ Nx = len(x) if Nx!=len(y): raise ValueError('x and y must be equal length') x = detrend(np.asarray(x)) y = detrend(np.asarray(y)) c = np.correlate(x, y, mode=2) if normed: c/= np.sqrt(np.dot(x,x) * np.dot(y,y)) if maxlags is None: maxlags = Nx - 1 if maxlags >= Nx or maxlags < 1: raise ValueError('maglags must be None or strictly ' 'positive < %d'%Nx) lags = np.arange(-maxlags,maxlags+1) c = c[Nx-1-maxlags:Nx+maxlags] if usevlines: a = self.vlines(lags, [0], c, **kwargs) b = self.axhline(**kwargs) else: kwargs.setdefault('marker', 'o') kwargs.setdefault('linestyle', 'None') a, = self.plot(lags, c, **kwargs) b = None return lags, c, a, b def _get_legend_handles(self, legend_handler_map=None): "return artists that will be used as handles for legend" handles_original = self.lines + self.patches + \ self.collections + self.containers # collections handler_map = mlegend.Legend.get_default_handler_map() if legend_handler_map is not None: handler_map = handler_map.copy() handler_map.update(legend_handler_map) handles = [] for h in handles_original: if h.get_label() == "_nolegend_": #.startswith('_'): continue if mlegend.Legend.get_legend_handler(handler_map, h): handles.append(h) return handles def get_legend_handles_labels(self, legend_handler_map=None): """ Return handles and labels for legend ``ax.legend()`` is equivalent to :: h, l = ax.get_legend_handles_labels() ax.legend(h, l) """ handles = [] labels = [] for handle in self._get_legend_handles(legend_handler_map): label = handle.get_label() #if (label is not None and label != '' and not label.startswith('_')): if label and not label.startswith('_'): handles.append(handle) labels.append(label) return handles, labels def legend(self, *args, **kwargs): """ Place a legend on the current axes. Call signature:: legend(*args, **kwargs) Places legend at location *loc*. Labels are a sequence of strings and *loc* can be a string or an integer specifying the legend location. To make a legend with existing lines:: legend() :meth:`legend` by itself will try and build a legend using the label property of the lines/patches/collections. You can set the label of a line by doing:: plot(x, y, label='my data') or:: line.set_label('my data'). If label is set to '_nolegend_', the item will not be shown in legend. To automatically generate the legend from labels:: legend( ('label1', 'label2', 'label3') ) To make a legend for a list of lines and labels:: legend( (line1, line2, line3), ('label1', 'label2', 'label3') ) To make a legend at a given location, using a location argument:: legend( ('label1', 'label2', 'label3'), loc='upper left') or:: legend( (line1, line2, line3), ('label1', 'label2', 'label3'), loc=2) The location codes are =============== ============= Location String Location Code =============== ============= 'best' 0 'upper right' 1 'upper left' 2 'lower left' 3 'lower right' 4 'right' 5 'center left' 6 'center right' 7 'lower center' 8 'upper center' 9 'center' 10 =============== ============= Users can specify any arbitrary location for the legend using the *bbox_to_anchor* keyword argument. bbox_to_anchor can be an instance of BboxBase(or its derivatives) or a tuple of 2 or 4 floats. For example, loc = 'upper right', bbox_to_anchor = (0.5, 0.5) will place the legend so that the upper right corner of the legend at the center of the axes. The legend location can be specified in other coordinate, by using the *bbox_transform* keyword. The loc itslef can be a 2-tuple giving x,y of the lower-left corner of the legend in axes coords (*bbox_to_anchor* is ignored). Keyword arguments: *prop*: [ *None* | FontProperties | dict ] A :class:`matplotlib.font_manager.FontProperties` instance. If *prop* is a dictionary, a new instance will be created with *prop*. If *None*, use rc settings. *fontsize*: [ size in points | 'xx-small' | 'x-small' | 'small' | 'medium' | 'large' | 'x-large' | 'xx-large' ] Set the font size. May be either a size string, relative to the default font size, or an absolute font size in points. This argument is only used if prop is not specified. *numpoints*: integer The number of points in the legend for line *scatterpoints*: integer The number of points in the legend for scatter plot *scatteroffsets*: list of floats a list of yoffsets for scatter symbols in legend *markerscale*: [ *None* | scalar ] The relative size of legend markers vs. original. If *None*, use rc settings. *frameon*: [ *True* | *False* ] if *True*, draw a frame around the legend. The default is set by the rcParam 'legend.frameon' *fancybox*: [ *None* | *False* | *True* ] if *True*, draw a frame with a round fancybox. If *None*, use rc settings *shadow*: [ *None* | *False* | *True* ] If *True*, draw a shadow behind legend. If *None*, use rc settings. *ncol* : integer number of columns. default is 1 *mode* : [ "expand" | *None* ] if mode is "expand", the legend will be horizontally expanded to fill the axes area (or *bbox_to_anchor*) *bbox_to_anchor* : an instance of BboxBase or a tuple of 2 or 4 floats the bbox that the legend will be anchored. *bbox_transform* : [ an instance of Transform | *None* ] the transform for the bbox. transAxes if *None*. *title* : string the legend title Padding and spacing between various elements use following keywords parameters. These values are measure in font-size units. E.g., a fontsize of 10 points and a handlelength=5 implies a handlelength of 50 points. Values from rcParams will be used if None. ================ ================================================================== Keyword Description ================ ================================================================== borderpad the fractional whitespace inside the legend border labelspacing the vertical space between the legend entries handlelength the length of the legend handles handletextpad the pad between the legend handle and text borderaxespad the pad between the axes and legend border columnspacing the spacing between columns ================ ================================================================== .. Note:: Not all kinds of artist are supported by the legend command. See LINK (FIXME) for details. **Example:** .. plot:: mpl_examples/api/legend_demo.py .. seealso:: :ref:`plotting-guide-legend`. """ if len(args)==0: handles, labels = self.get_legend_handles_labels() if len(handles) == 0: warnings.warn("No labeled objects found. " "Use label='...' kwarg on individual plots.") return None elif len(args)==1: # LABELS labels = args[0] handles = [h for h, label in zip(self._get_legend_handles(), labels)] elif len(args)==2: if is_string_like(args[1]) or isinstance(args[1], int): # LABELS, LOC labels, loc = args handles = [h for h, label in zip(self._get_legend_handles(), labels)] kwargs['loc'] = loc else: # LINES, LABELS handles, labels = args elif len(args)==3: # LINES, LABELS, LOC handles, labels, loc = args kwargs['loc'] = loc else: raise TypeError('Invalid arguments to legend') # Why do we need to call "flatten" here? -JJL # handles = cbook.flatten(handles) self.legend_ = mlegend.Legend(self, handles, labels, **kwargs) return self.legend_ #### Specialized plotting def step(self, x, y, *args, **kwargs): """ Make a step plot. Call signature:: step(x, y, *args, **kwargs) Additional keyword args to :func:`step` are the same as those for :func:`~matplotlib.pyplot.plot`. *x* and *y* must be 1-D sequences, and it is assumed, but not checked, that *x* is uniformly increasing. Keyword arguments: *where*: [ 'pre' | 'post' | 'mid' ] If 'pre', the interval from x[i] to x[i+1] has level y[i+1] If 'post', that interval has level y[i] If 'mid', the jumps in *y* occur half-way between the *x*-values. """ where = kwargs.pop('where', 'pre') if where not in ('pre', 'post', 'mid'): raise ValueError("'where' argument to step must be " "'pre', 'post' or 'mid'") kwargs['linestyle'] = 'steps-' + where return self.plot(x, y, *args, **kwargs) @docstring.dedent_interpd def bar(self, left, height, width=0.8, bottom=None, **kwargs): """ Make a bar plot. Call signature:: bar(left, height, width=0.8, bottom=0, **kwargs) Make a bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *left*, *height*, *width*, and *bottom* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== =============================================== Argument Description ======== =============================================== *left* the x coordinates of the left sides of the bars *height* the heights of the bars ======== =============================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *width* the widths of the bars *bottom* the y coordinates of the bottom edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *error_kw* dictionary of kwargs to be passed to errorbar method. *ecolor* and *capsize* may be specified here rather than as independent kwargs. *align* 'edge' (default) | 'center' *orientation* 'vertical' | 'horizontal' *log* [False|True] False (default) leaves the orientation axis as-is; True sets it to log scale =============== ========================================== For vertical bars, *align* = 'edge' aligns bars by their left edges in left, while *align* = 'center' interprets these values as the *x* coordinates of the bar centers. For horizontal bars, *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use bar as the basis for stacked bar charts, or candlestick plots. Detail: *xerr* and *yerr* are passed directly to :meth:`errorbar`, so they can also have shape 2xN for independent specification of lower and upper errors. Other optional kwargs: %(Rectangle)s **Example:** A stacked bar chart. .. plot:: mpl_examples/pylab_examples/bar_stacked.py """ if not self._hold: self.cla() color = kwargs.pop('color', None) edgecolor = kwargs.pop('edgecolor', None) linewidth = kwargs.pop('linewidth', None) # Because xerr and yerr will be passed to errorbar, # most dimension checking and processing will be left # to the errorbar method. xerr = kwargs.pop('xerr', None) yerr = kwargs.pop('yerr', None) error_kw = kwargs.pop('error_kw', dict()) ecolor = kwargs.pop('ecolor', None) capsize = kwargs.pop('capsize', 3) error_kw.setdefault('ecolor', ecolor) error_kw.setdefault('capsize', capsize) align = kwargs.pop('align', 'edge') orientation = kwargs.pop('orientation', 'vertical') log = kwargs.pop('log', False) label = kwargs.pop('label', '') def make_iterable(x): if not iterable(x): return [x] else: return x # make them safe to take len() of _left = left left = make_iterable(left) height = make_iterable(height) width = make_iterable(width) _bottom = bottom bottom = make_iterable(bottom) linewidth = make_iterable(linewidth) adjust_ylim = False adjust_xlim = False if orientation == 'vertical': self._process_unit_info(xdata=left, ydata=height, kwargs=kwargs) if log: self.set_yscale('log', nonposy='clip') # size width and bottom according to length of left if _bottom is None: if self.get_yscale() == 'log': adjust_ylim = True else: bottom = [0] nbars = len(left) if len(width) == 1: width *= nbars if len(bottom) == 1: bottom *= nbars elif orientation == 'horizontal': self._process_unit_info(xdata=width, ydata=bottom, kwargs=kwargs) if log: self.set_xscale('log', nonposx='clip') # size left and height according to length of bottom if _left is None: if self.get_xscale() == 'log': adjust_xlim = True else: left = [0] nbars = len(bottom) if len(left) == 1: left *= nbars if len(height) == 1: height *= nbars else: raise ValueError('invalid orientation: %s' % orientation) if len(linewidth) < nbars: linewidth *= nbars if color is None: color = [None] * nbars else: color = list(mcolors.colorConverter.to_rgba_array(color)) if len(color) == 0: # until to_rgba_array is changed color = [[0,0,0,0]] if len(color) < nbars: color *= nbars if edgecolor is None: edgecolor = [None] * nbars else: edgecolor = list(mcolors.colorConverter.to_rgba_array(edgecolor)) if len(edgecolor) == 0: # until to_rgba_array is changed edgecolor = [[0,0,0,0]] if len(edgecolor) < nbars: edgecolor *= nbars # FIXME: convert the following to proper input validation # raising ValueError; don't use assert for this. assert len(left)==nbars, "incompatible sizes: argument 'left' must be length %d or scalar" % nbars assert len(height)==nbars, ("incompatible sizes: argument 'height' must be length %d or scalar" % nbars) assert len(width)==nbars, ("incompatible sizes: argument 'width' must be length %d or scalar" % nbars) assert len(bottom)==nbars, ("incompatible sizes: argument 'bottom' must be length %d or scalar" % nbars) patches = [] # lets do some conversions now since some types cannot be # subtracted uniformly if self.xaxis is not None: left = self.convert_xunits( left ) width = self.convert_xunits( width ) if xerr is not None: xerr = self.convert_xunits( xerr ) if self.yaxis is not None: bottom = self.convert_yunits( bottom ) height = self.convert_yunits( height ) if yerr is not None: yerr = self.convert_yunits( yerr ) if align == 'edge': pass elif align == 'center': if orientation == 'vertical': left = [left[i] - width[i]/2. for i in xrange(len(left))] elif orientation == 'horizontal': bottom = [bottom[i] - height[i]/2. for i in xrange(len(bottom))] else: raise ValueError('invalid alignment: %s' % align) args = zip(left, bottom, width, height, color, edgecolor, linewidth) for l, b, w, h, c, e, lw in args: if h<0: b += h h = abs(h) if w<0: l += w w = abs(w) r = mpatches.Rectangle( xy=(l, b), width=w, height=h, facecolor=c, edgecolor=e, linewidth=lw, label='_nolegend_' ) r.update(kwargs) r.get_path()._interpolation_steps = 100 #print r.get_label(), label, 'label' in kwargs self.add_patch(r) patches.append(r) holdstate = self._hold self.hold(True) # ensure hold is on before plotting errorbars if xerr is not None or yerr is not None: if orientation == 'vertical': # using list comps rather than arrays to preserve unit info x = [l+0.5*w for l, w in zip(left, width)] y = [b+h for b,h in zip(bottom, height)] elif orientation == 'horizontal': # using list comps rather than arrays to preserve unit info x = [l+w for l,w in zip(left, width)] y = [b+0.5*h for b,h in zip(bottom, height)] if "label" not in error_kw: error_kw["label"] = '_nolegend_' errorbar = self.errorbar(x, y, yerr=yerr, xerr=xerr, fmt=None, **error_kw) else: errorbar = None self.hold(holdstate) # restore previous hold state if adjust_xlim: xmin, xmax = self.dataLim.intervalx xmin = np.amin([w for w in width if w > 0]) if xerr is not None: xmin = xmin - np.amax(xerr) xmin = max(xmin*0.9, 1e-100) self.dataLim.intervalx = (xmin, xmax) if adjust_ylim: ymin, ymax = self.dataLim.intervaly ymin = np.amin([h for h in height if h > 0]) if yerr is not None: ymin = ymin - np.amax(yerr) ymin = max(ymin*0.9, 1e-100) self.dataLim.intervaly = (ymin, ymax) self.autoscale_view() bar_container = BarContainer(patches, errorbar, label=label) self.add_container(bar_container) return bar_container @docstring.dedent_interpd def barh(self, bottom, width, height=0.8, left=None, **kwargs): """ Make a horizontal bar plot. Call signature:: barh(bottom, width, height=0.8, left=0, **kwargs) Make a horizontal bar plot with rectangles bounded by: *left*, *left* + *width*, *bottom*, *bottom* + *height* (left, right, bottom and top edges) *bottom*, *width*, *height*, and *left* can be either scalars or sequences Return value is a list of :class:`matplotlib.patches.Rectangle` instances. Required arguments: ======== ====================================================== Argument Description ======== ====================================================== *bottom* the vertical positions of the bottom edges of the bars *width* the lengths of the bars ======== ====================================================== Optional keyword arguments: =============== ========================================== Keyword Description =============== ========================================== *height* the heights (thicknesses) of the bars *left* the x coordinates of the left edges of the bars *color* the colors of the bars *edgecolor* the colors of the bar edges *linewidth* width of bar edges; None means use default linewidth; 0 means don't draw edges. *xerr* if not None, will be used to generate errorbars on the bar chart *yerr* if not None, will be used to generate errorbars on the bar chart *ecolor* specifies the color of any errorbar *capsize* (default 3) determines the length in points of the error bar caps *align* 'edge' (default) | 'center' *log* [False|True] False (default) leaves the horizontal axis as-is; True sets it to log scale =============== ========================================== Setting *align* = 'edge' aligns bars by their bottom edges in bottom, while *align* = 'center' interprets these values as the *y* coordinates of the bar centers. The optional arguments *color*, *edgecolor*, *linewidth*, *xerr*, and *yerr* can be either scalars or sequences of length equal to the number of bars. This enables you to use barh as the basis for stacked bar charts, or candlestick plots. other optional kwargs: %(Rectangle)s """ patches = self.bar(left=left, height=height, width=width, bottom=bottom, orientation='horizontal', **kwargs) return patches @docstring.dedent_interpd def broken_barh(self, xranges, yrange, **kwargs): """ Plot horizontal bars. Call signature:: broken_barh(self, xranges, yrange, **kwargs) A collection of horizontal bars spanning *yrange* with a sequence of *xranges*. Required arguments: ========= ============================== Argument Description ========= ============================== *xranges* sequence of (*xmin*, *xwidth*) *yrange* sequence of (*ymin*, *ywidth*) ========= ============================== kwargs are :class:`matplotlib.collections.BrokenBarHCollection` properties: %(BrokenBarHCollection)s these can either be a single argument, ie:: facecolors = 'black' or a sequence of arguments for the various bars, ie:: facecolors = ('black', 'red', 'green') **Example:** .. plot:: mpl_examples/pylab_examples/broken_barh.py """ col = mcoll.BrokenBarHCollection(xranges, yrange, **kwargs) self.add_collection(col, autolim=True) self.autoscale_view() return col def stem(self, x, y, linefmt='b-', markerfmt='bo', basefmt='r-', bottom=None, label=None): """ Create a stem plot. Call signature:: stem(x, y, linefmt='b-', markerfmt='bo', basefmt='r-') A stem plot plots vertical lines (using *linefmt*) at each *x* location from the baseline to *y*, and places a marker there using *markerfmt*. A horizontal line at 0 is is plotted using *basefmt*. Return value is a tuple (*markerline*, *stemlines*, *baseline*). .. seealso:: This `document <http://www.mathworks.com/help/techdoc/ref/stem.html>`_ for details. **Example:** .. plot:: mpl_examples/pylab_examples/stem_plot.py """ remember_hold=self._hold if not self._hold: self.cla() self.hold(True) markerline, = self.plot(x, y, markerfmt, label="_nolegend_") if bottom is None: bottom = 0 stemlines = [] for thisx, thisy in zip(x, y): l, = self.plot([thisx,thisx], [bottom, thisy], linefmt, label="_nolegend_") stemlines.append(l) baseline, = self.plot([np.amin(x), np.amax(x)], [bottom,bottom], basefmt, label="_nolegend_") self.hold(remember_hold) stem_container = StemContainer((markerline, stemlines, baseline), label=label) self.add_container(stem_container) return stem_container def pie(self, x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None): r""" Plot a pie chart. Call signature:: pie(x, explode=None, labels=None, colors=('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w'), autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None) Make a pie chart of array *x*. The fractional area of each wedge is given by x/sum(x). If sum(x) <= 1, then the values of x give the fractional area directly and the array will not be normalized. The wedges are plotted counterclockwise, by default starting from the x-axis. Keyword arguments: *explode*: [ *None* | len(x) sequence ] If not *None*, is a ``len(x)`` array which specifies the fraction of the radius with which to offset each wedge. *colors*: [ *None* | color sequence ] A sequence of matplotlib color args through which the pie chart will cycle. *labels*: [ *None* | len(x) sequence of strings ] A sequence of strings providing the labels for each wedge *autopct*: [ *None* | format string | format function ] If not *None*, is a string or function used to label the wedges with their numeric value. The label will be placed inside the wedge. If it is a format string, the label will be ``fmt%pct``. If it is a function, it will be called. *pctdistance*: scalar The ratio between the center of each pie slice and the start of the text generated by *autopct*. Ignored if *autopct* is *None*; default is 0.6. *labeldistance*: scalar The radial distance at which the pie labels are drawn *shadow*: [ *False* | *True* ] Draw a shadow beneath the pie. *startangle*: [ *None* | Offset angle ] If not *None*, rotates the start of the pie chart by *angle* degrees counterclockwise from the x-axis. *radius*: [ *None* | scalar ] The radius of the pie, if *radius* is *None* it will be set to 1. The pie chart will probably look best if the figure and axes are square. Eg.:: figure(figsize=(8,8)) ax = axes([0.1, 0.1, 0.8, 0.8]) Return value: If *autopct* is *None*, return the tuple (*patches*, *texts*): - *patches* is a sequence of :class:`matplotlib.patches.Wedge` instances - *texts* is a list of the label :class:`matplotlib.text.Text` instances. If *autopct* is not *None*, return the tuple (*patches*, *texts*, *autotexts*), where *patches* and *texts* are as above, and *autotexts* is a list of :class:`~matplotlib.text.Text` instances for the numeric labels. """ self.set_frame_on(False) x = np.asarray(x).astype(np.float32) sx = float(x.sum()) if sx>1: x = np.divide(x,sx) if labels is None: labels = ['']*len(x) if explode is None: explode = [0]*len(x) assert(len(x)==len(labels)) assert(len(x)==len(explode)) if colors is None: colors = ('b', 'g', 'r', 'c', 'm', 'y', 'k', 'w') center = 0,0 if radius is None: radius = 1 # Starting theta1 is the start fraction of the circle if startangle is None: theta1 = 0 else: theta1 = startangle / 360.0 texts = [] slices = [] autotexts = [] i = 0 for frac, label, expl in cbook.safezip(x,labels, explode): x, y = center theta2 = theta1 + frac thetam = 2*math.pi*0.5*(theta1+theta2) x += expl*math.cos(thetam) y += expl*math.sin(thetam) w = mpatches.Wedge((x,y), radius, 360.*theta1, 360.*theta2, facecolor=colors[i%len(colors)]) slices.append(w) self.add_patch(w) w.set_label(label) if shadow: # make sure to add a shadow after the call to # add_patch so the figure and transform props will be # set shad = mpatches.Shadow(w, -0.02, -0.02, #props={'facecolor':w.get_facecolor()} ) shad.set_zorder(0.9*w.get_zorder()) shad.set_label('_nolegend_') self.add_patch(shad) xt = x + labeldistance*radius*math.cos(thetam) yt = y + labeldistance*radius*math.sin(thetam) label_alignment = xt > 0 and 'left' or 'right' t = self.text(xt, yt, label, size=rcParams['xtick.labelsize'], horizontalalignment=label_alignment, verticalalignment='center') texts.append(t) if autopct is not None: xt = x + pctdistance*radius*math.cos(thetam) yt = y + pctdistance*radius*math.sin(thetam) if is_string_like(autopct): s = autopct%(100.*frac) elif callable(autopct): s = autopct(100.*frac) else: raise TypeError( 'autopct must be callable or a format string') t = self.text(xt, yt, s, horizontalalignment='center', verticalalignment='center') autotexts.append(t) theta1 = theta2 i += 1 self.set_xlim((-1.25, 1.25)) self.set_ylim((-1.25, 1.25)) self.set_xticks([]) self.set_yticks([]) if autopct is None: return slices, texts else: return slices, texts, autotexts @docstring.dedent_interpd def errorbar(self, x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None, **kwargs): """ Plot an errorbar graph. Call signature:: errorbar(x, y, yerr=None, xerr=None, fmt='-', ecolor=None, elinewidth=None, capsize=3, barsabove=False, lolims=False, uplims=False, xlolims=False, xuplims=False, errorevery=1, capthick=None) Plot *x* versus *y* with error deltas in *yerr* and *xerr*. Vertical errorbars are plotted if *yerr* is not *None*. Horizontal errorbars are plotted if *xerr* is not *None*. *x*, *y*, *xerr*, and *yerr* can all be scalars, which plots a single error bar at *x*, *y*. Optional keyword arguments: *xerr*/*yerr*: [ scalar | N, Nx1, or 2xN array-like ] If a scalar number, len(N) array-like object, or an Nx1 array-like object, errorbars are drawn at +/-value relative to the data. If a sequence of shape 2xN, errorbars are drawn at -row1 and +row2 relative to the data. *fmt*: '-' The plot format symbol. If *fmt* is *None*, only the errorbars are plotted. This is used for adding errorbars to a bar plot, for example. *ecolor*: [ *None* | mpl color ] A matplotlib color arg which gives the color the errorbar lines; if *None*, use the marker color. *elinewidth*: scalar The linewidth of the errorbar lines. If *None*, use the linewidth. *capsize*: scalar The length of the error bar caps in points *capthick*: scalar An alias kwarg to *markeredgewidth* (a.k.a. - *mew*). This setting is a more sensible name for the property that controls the thickness of the error bar cap in points. For backwards compatibility, if *mew* or *markeredgewidth* are given, then they will over-ride *capthick*. This may change in future releases. *barsabove*: [ *True* | *False* ] if *True*, will plot the errorbars above the plot symbols. Default is below. *lolims* / *uplims* / *xlolims* / *xuplims*: [ *False* | *True* ] These arguments can be used to indicate that a value gives only upper/lower limits. In that case a caret symbol is used to indicate this. lims-arguments may be of the same type as *xerr* and *yerr*. *errorevery*: positive integer subsamples the errorbars. Eg if everyerror=5, errorbars for every 5-th datapoint will be plotted. The data plot itself still shows all data points. All other keyword arguments are passed on to the plot command for the markers. For example, this code makes big red squares with thick green edges:: x,y,yerr = rand(3,10) errorbar(x, y, yerr, marker='s', mfc='red', mec='green', ms=20, mew=4) where *mfc*, *mec*, *ms* and *mew* are aliases for the longer property names, *markerfacecolor*, *markeredgecolor*, *markersize* and *markeredgewith*. valid kwargs for the marker properties are %(Line2D)s Returns (*plotline*, *caplines*, *barlinecols*): *plotline*: :class:`~matplotlib.lines.Line2D` instance *x*, *y* plot markers and/or line *caplines*: list of error bar cap :class:`~matplotlib.lines.Line2D` instances *barlinecols*: list of :class:`~matplotlib.collections.LineCollection` instances for the horizontal and vertical error ranges. **Example:** .. plot:: mpl_examples/pylab_examples/errorbar_demo.py """ if errorevery < 1: raise ValueError('errorevery has to be a strictly positive integer') self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) if not self._hold: self.cla() holdstate = self._hold self._hold = True label = kwargs.pop("label", None) # make sure all the args are iterable; use lists not arrays to # preserve units if not iterable(x): x = [x] if not iterable(y): y = [y] if xerr is not None: if not iterable(xerr): xerr = [xerr]*len(x) if yerr is not None: if not iterable(yerr): yerr = [yerr]*len(y) l0 = None if barsabove and fmt is not None: l0, = self.plot(x,y,fmt,label="_nolegend_", **kwargs) barcols = [] caplines = [] lines_kw = {'label':'_nolegend_'} if elinewidth: lines_kw['linewidth'] = elinewidth else: if 'linewidth' in kwargs: lines_kw['linewidth']=kwargs['linewidth'] if 'lw' in kwargs: lines_kw['lw']=kwargs['lw'] if 'transform' in kwargs: lines_kw['transform'] = kwargs['transform'] if 'alpha' in kwargs: lines_kw['alpha'] = kwargs['alpha'] if 'zorder' in kwargs: lines_kw['zorder'] = kwargs['zorder'] # arrays fine here, they are booleans and hence not units if not iterable(lolims): lolims = np.asarray([lolims]*len(x), bool) else: lolims = np.asarray(lolims, bool) if not iterable(uplims): uplims = np.array([uplims]*len(x), bool) else: uplims = np.asarray(uplims, bool) if not iterable(xlolims): xlolims = np.array([xlolims]*len(x), bool) else: xlolims = np.asarray(xlolims, bool) if not iterable(xuplims): xuplims = np.array([xuplims]*len(x), bool) else: xuplims = np.asarray(xuplims, bool) everymask = np.arange(len(x)) % errorevery == 0 def xywhere(xs, ys, mask): """ return xs[mask], ys[mask] where mask is True but xs and ys are not arrays """ assert len(xs)==len(ys) assert len(xs)==len(mask) xs = [thisx for thisx, b in zip(xs, mask) if b] ys = [thisy for thisy, b in zip(ys, mask) if b] return xs, ys if capsize > 0: plot_kw = { 'ms':2*capsize, 'label':'_nolegend_'} if capthick is not None: # 'mew' has higher priority, I believe, # if both 'mew' and 'markeredgewidth' exists. # So, save capthick to markeredgewidth so that # explicitly setting mew or markeredgewidth will # over-write capthick. plot_kw['markeredgewidth'] = capthick # For backwards-compat, allow explicit setting of # 'mew' or 'markeredgewidth' to over-ride capthick. if 'markeredgewidth' in kwargs: plot_kw['markeredgewidth']=kwargs['markeredgewidth'] if 'mew' in kwargs: plot_kw['mew']=kwargs['mew'] if 'transform' in kwargs: plot_kw['transform'] = kwargs['transform'] if 'alpha' in kwargs: plot_kw['alpha'] = kwargs['alpha'] if 'zorder' in kwargs: plot_kw['zorder'] = kwargs['zorder'] if xerr is not None: if (iterable(xerr) and len(xerr)==2 and iterable(xerr[0]) and iterable(xerr[1])): # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[0])] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr[1])] else: # using list comps rather than arrays to preserve units left = [thisx-thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] right = [thisx+thiserr for (thisx, thiserr) in cbook.safezip(x,xerr)] yo, _ = xywhere(y, right, everymask) lo, ro= xywhere(left, right, everymask) barcols.append( self.hlines(yo, lo, ro, **lines_kw ) ) if capsize > 0: if xlolims.any(): # can't use numpy logical indexing since left and # y are lists leftlo, ylo = xywhere(left, y, xlolims & everymask) caplines.extend( self.plot(leftlo, ylo, ls='None', marker=mlines.CARETLEFT, **plot_kw) ) xlolims = ~xlolims leftlo, ylo = xywhere(left, y, xlolims & everymask) caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) ) else: leftlo, ylo = xywhere(left, y, everymask) caplines.extend( self.plot(leftlo, ylo, 'k|', **plot_kw) ) if xuplims.any(): rightup, yup = xywhere(right, y, xuplims & everymask) caplines.extend( self.plot(rightup, yup, ls='None', marker=mlines.CARETRIGHT, **plot_kw) ) xuplims = ~xuplims rightup, yup = xywhere(right, y, xuplims & everymask) caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) ) else: rightup, yup = xywhere(right, y, everymask) caplines.extend( self.plot(rightup, yup, 'k|', **plot_kw) ) if yerr is not None: if (iterable(yerr) and len(yerr)==2 and iterable(yerr[0]) and iterable(yerr[1])): # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[0])] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr[1])] else: # using list comps rather than arrays to preserve units lower = [thisy-thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] upper = [thisy+thiserr for (thisy, thiserr) in cbook.safezip(y,yerr)] xo, _ = xywhere(x, lower, everymask) lo, uo= xywhere(lower, upper, everymask) barcols.append( self.vlines(xo, lo, uo, **lines_kw) ) if capsize > 0: if lolims.any(): xlo, lowerlo = xywhere(x, lower, lolims & everymask) caplines.extend( self.plot(xlo, lowerlo, ls='None', marker=mlines.CARETDOWN, **plot_kw) ) lolims = ~lolims xlo, lowerlo = xywhere(x, lower, lolims & everymask) caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) ) else: xlo, lowerlo = xywhere(x, lower, everymask) caplines.extend( self.plot(xlo, lowerlo, 'k_', **plot_kw) ) if uplims.any(): xup, upperup = xywhere(x, upper, uplims & everymask) caplines.extend( self.plot(xup, upperup, ls='None', marker=mlines.CARETUP, **plot_kw) ) uplims = ~uplims xup, upperup = xywhere(x, upper, uplims & everymask) caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) ) else: xup, upperup = xywhere(x, upper, everymask) caplines.extend( self.plot(xup, upperup, 'k_', **plot_kw) ) if not barsabove and fmt is not None: l0, = self.plot(x,y,fmt,**kwargs) if ecolor is None: if l0 is None: ecolor = self._get_lines.color_cycle.next() else: ecolor = l0.get_color() for l in barcols: l.set_color(ecolor) for l in caplines: l.set_color(ecolor) self.autoscale_view() self._hold = holdstate errorbar_container = ErrorbarContainer((l0, tuple(caplines), tuple(barcols)), has_xerr=(xerr is not None), has_yerr=(yerr is not None), label=label) self.containers.append(errorbar_container) return errorbar_container # (l0, caplines, barcols) def boxplot(self, x, notch=False, sym='b+', vert=True, whis=1.5, positions=None, widths=None, patch_artist=False, bootstrap=None, usermedians=None, conf_intervals=None): """ Make a box and whisker plot. Call signature:: boxplot(x, notch=False, sym='+', vert=True, whis=1.5, positions=None, widths=None, patch_artist=False, bootstrap=None, usermedians=None, conf_intervals=None) Make a box and whisker plot for each column of *x* or each vector in sequence *x*. The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers. Function Arguments: *x* : Array or a sequence of vectors. *notch* : [ False (default) | True ] If False (default), produces a rectangular box plot. If True, will produce a notched box plot *sym* : [ default 'b+' ] The default symbol for flier points. Enter an empty string ('') if you don't want to show fliers. *vert* : [ False | True (default) ] If True (default), makes the boxes vertical. If False, makes horizontal boxes. *whis* : [ default 1.5 ] Defines the length of the whiskers as a function of the inner quartile range. They extend to the most extreme data point within ( ``whis*(75%-25%)`` ) data range. *bootstrap* : [ *None* (default) | integer ] Specifies whether to bootstrap the confidence intervals around the median for notched boxplots. If bootstrap==None, no bootstrapping is performed, and notches are calculated using a Gaussian-based asymptotic approximation (see <NAME>., <NAME>., and <NAME>., 1978, and <NAME>, 1967). Otherwise, bootstrap specifies the number of times to bootstrap the median to determine it's 95% confidence intervals. Values between 1000 and 10000 are recommended. *usermedians* : [ default None ] An array or sequence whose first dimension (or length) is compatible with *x*. This overrides the medians computed by matplotlib for each element of *usermedians* that is not None. When an element of *usermedians* == None, the median will be computed directly as normal. *conf_intervals* : [ default None ] Array or sequence whose first dimension (or length) is compatible with *x* and whose second dimension is 2. When the current element of *conf_intervals* is not None, the notch locations computed by matplotlib are overridden (assuming notch is True). When an element of *conf_intervals* is None, boxplot compute notches the method specified by the other kwargs (e.g. *bootstrap*). *positions* : [ default 1,2,...,n ] Sets the horizontal positions of the boxes. The ticks and limits are automatically set to match the positions. *widths* : [ default 0.5 ] Either a scalar or a vector and sets the width of each box. The default is 0.5, or ``0.15*(distance between extreme positions)`` if that is smaller. *patch_artist* : [ False (default) | True ] If False produces boxes with the Line2D artist If True produces boxes with the Patch artist Returns a dictionary mapping each component of the boxplot to a list of the :class:`matplotlib.lines.Line2D` instances created. That dictionary has the following keys (assuming vertical boxplots): - boxes: the main body of the boxplot showing the quartiles and the median's confidence intervals if enabled. - medians: horizonal lines at the median of each box. - whiskers: the vertical lines extending to the most extreme, n-outlier data points. - caps: the horizontal lines at the ends of the whiskers. - fliers: points representing data that extend beyone the whiskers (outliers). **Example:** .. plot:: pyplots/boxplot_demo.py """ def bootstrapMedian(data, N=5000): # determine 95% confidence intervals of the median M = len(data) percentile = [2.5,97.5] estimate = np.zeros(N) for n in range(N): bsIndex = np.random.random_integers(0,M-1,M) bsData = data[bsIndex] estimate[n] = mlab.prctile(bsData, 50) CI = mlab.prctile(estimate, percentile) return CI def computeConfInterval(data, med, iq, bootstrap): if bootstrap is not None: # Do a bootstrap estimate of notch locations. # get conf. intervals around median CI = bootstrapMedian(data, N=bootstrap) notch_min = CI[0] notch_max = CI[1] else: # Estimate notch locations using Gaussian-based # asymptotic approximation. # # For discussion: <NAME>., <NAME>., # and <NAME>. (1978) "Variations of # Boxplots", The American Statistician, 32:12-16. N = len(data) notch_min = med - 1.57*iq/np.sqrt(N) notch_max = med + 1.57*iq/np.sqrt(N) return notch_min, notch_max if not self._hold: self.cla() holdStatus = self._hold whiskers, caps, boxes, medians, fliers = [], [], [], [], [] # convert x to a list of vectors if hasattr(x, 'shape'): if len(x.shape) == 1: if hasattr(x[0], 'shape'): x = list(x) else: x = [x,] elif len(x.shape) == 2: nr, nc = x.shape if nr == 1: x = [x] elif nc == 1: x = [x.ravel()] else: x = [x[:,i] for i in xrange(nc)] else: raise ValueError("input x can have no more than 2 dimensions") if not hasattr(x[0], '__len__'): x = [x] col = len(x) # sanitize user-input medians msg1 = "usermedians must either be a list/tuple or a 1d array" msg2 = "usermedians' length must be compatible with x" if usermedians is not None: if hasattr(usermedians, 'shape'): if len(usermedians.shape) != 1: raise ValueError(msg1) elif usermedians.shape[0] != col: raise ValueError(msg2) elif len(usermedians) != col: raise ValueError(msg2) #sanitize user-input confidence intervals msg1 = "conf_intervals must either be a list of tuples or a 2d array" msg2 = "conf_intervals' length must be compatible with x" msg3 = "each conf_interval, if specificied, must have two values" if conf_intervals is not None: if hasattr(conf_intervals, 'shape'): if len(conf_intervals.shape) != 2: raise ValueError(msg1) elif conf_intervals.shape[0] != col: raise ValueError(msg2) elif conf_intervals.shape[1] == 2: raise ValueError(msg3) else: if len(conf_intervals) != col: raise ValueError(msg2) for ci in conf_intervals: if ci is not None and len(ci) != 2: raise ValueError(msg3) # get some plot info if positions is None: positions = range(1, col + 1) if widths is None: distance = max(positions) - min(positions) widths = min(0.15*max(distance,1.0), 0.5) if isinstance(widths, float) or isinstance(widths, int): widths = np.ones((col,), float) * widths # loop through columns, adding each to plot self.hold(True) for i, pos in enumerate(positions): d = np.ravel(x[i]) row = len(d) if row==0: # no data, skip this position continue # get median and quartiles q1, med, q3 = mlab.prctile(d,[25,50,75]) # replace with input medians if available if usermedians is not None: if usermedians[i] is not None: med = usermedians[i] # get high extreme iq = q3 - q1 hi_val = q3 + whis*iq wisk_hi = np.compress( d <= hi_val , d ) if len(wisk_hi) == 0: wisk_hi = q3 else: wisk_hi = max(wisk_hi) # get low extreme lo_val = q1 - whis*iq wisk_lo = np.compress( d >= lo_val, d ) if len(wisk_lo) == 0: wisk_lo = q1 else: wisk_lo = min(wisk_lo) # get fliers - if we are showing them flier_hi = [] flier_lo = [] flier_hi_x = [] flier_lo_x = [] if len(sym) != 0: flier_hi = np.compress( d > wisk_hi, d ) flier_lo = np.compress( d < wisk_lo, d ) flier_hi_x = np.ones(flier_hi.shape[0]) * pos flier_lo_x = np.ones(flier_lo.shape[0]) * pos # get x locations for fliers, whisker, whisker cap and box sides box_x_min = pos - widths[i] * 0.5 box_x_max = pos + widths[i] * 0.5 wisk_x = np.ones(2) * pos cap_x_min = pos - widths[i] * 0.25 cap_x_max = pos + widths[i] * 0.25 cap_x = [cap_x_min, cap_x_max] # get y location for median med_y = [med, med] # calculate 'notch' plot if notch: # conf. intervals from user, if available if conf_intervals is not None and conf_intervals[i] is not None: notch_max = np.max(conf_intervals[i]) notch_min = np.min(conf_intervals[i]) else: notch_min, notch_max = computeConfInterval(d, med, iq, bootstrap) # make our notched box vectors box_x = [box_x_min, box_x_max, box_x_max, cap_x_max, box_x_max, box_x_max, box_x_min, box_x_min, cap_x_min, box_x_min, box_x_min ] box_y = [q1, q1, notch_min, med, notch_max, q3, q3, notch_max, med, notch_min, q1] # make our median line vectors med_x = [cap_x_min, cap_x_max] med_y = [med, med] # calculate 'regular' plot else: # make our box vectors box_x = [box_x_min, box_x_max, box_x_max, box_x_min, box_x_min ] box_y = [q1, q1, q3, q3, q1 ] # make our median line vectors med_x = [box_x_min, box_x_max] def to_vc(xs,ys): # convert arguments to verts and codes verts = [] #codes = [] for xi,yi in zip(xs,ys): verts.append( (xi,yi) ) verts.append( (0,0) ) # ignored codes = [mpath.Path.MOVETO] + \ [mpath.Path.LINETO]*(len(verts)-2) + \ [mpath.Path.CLOSEPOLY] return verts,codes def patch_list(xs,ys): verts,codes = to_vc(xs,ys) path = mpath.Path( verts, codes ) patch = mpatches.PathPatch(path) self.add_artist(patch) return [patch] # vertical or horizontal plot? if vert: def doplot(*args): return self.plot(*args) def dopatch(xs,ys): return patch_list(xs,ys) else: def doplot(*args): shuffled = [] for i in xrange(0, len(args), 3): shuffled.extend([args[i+1], args[i], args[i+2]]) return self.plot(*shuffled) def dopatch(xs,ys): xs,ys = ys,xs # flip X, Y return patch_list(xs,ys) if patch_artist: median_color = 'k' else: median_color = 'r' whiskers.extend(doplot(wisk_x, [q1, wisk_lo], 'b--', wisk_x, [q3, wisk_hi], 'b--')) caps.extend(doplot(cap_x, [wisk_hi, wisk_hi], 'k-', cap_x, [wisk_lo, wisk_lo], 'k-')) if patch_artist: boxes.extend(dopatch(box_x, box_y)) else: boxes.extend(doplot(box_x, box_y, 'b-')) medians.extend(doplot(med_x, med_y, median_color+'-')) fliers.extend(doplot(flier_hi_x, flier_hi, sym, flier_lo_x, flier_lo, sym)) # fix our axes/ticks up a little if vert: setticks, setlim = self.set_xticks, self.set_xlim else: setticks, setlim = self.set_yticks, self.set_ylim newlimits = min(positions)-0.5, max(positions)+0.5 setlim(newlimits) setticks(positions) # reset hold status self.hold(holdStatus) return dict(whiskers=whiskers, caps=caps, boxes=boxes, medians=medians, fliers=fliers) @docstring.dedent_interpd def scatter(self, x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, faceted=True, verts=None, **kwargs): """ Make a scatter plot. Call signatures:: scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, **kwargs) Make a scatter plot of *x* versus *y*, where *x*, *y* are converted to 1-D sequences which must be of the same length, *N*. Keyword arguments: *s*: size in points^2. It is a scalar or an array of the same length as *x* and *y*. *c*: a color. *c* can be a single color format string, or a sequence of color specifications of length *N*, or a sequence of *N* numbers to be mapped to colors using the *cmap* and *norm* specified via kwargs (see below). Note that *c* should not be a single numeric RGB or RGBA sequence because that is indistinguishable from an array of values to be colormapped. *c* can be a 2-D array in which the rows are RGB or RGBA, however. *marker*: can be one of: %(MarkerTable)s Any or all of *x*, *y*, *s*, and *c* may be masked arrays, in which case all masks will be combined and only unmasked points will be plotted. Other keyword arguments: the color mapping and normalization arguments will be used only if *c* is an array of floats. *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance or registered name. If *None*, defaults to rc ``image.cmap``. *cmap* is only used if *c* is an array of floats. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0, 1. If *None*, use the default :func:`normalize`. *norm* is only used if *c* is an array of floats. *vmin*/*vmax*: *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a *norm* instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: ``0 <= scalar <= 1`` or *None* The alpha value for the patches *linewidths*: [ *None* | scalar | sequence ] If *None*, defaults to (lines.linewidth,). Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Optional kwargs control the :class:`~matplotlib.collections.Collection` properties; in particular: *edgecolors*: The string 'none' to plot faces with no outlines *facecolors*: The string 'none' to plot unfilled outlines Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s A :class:`~matplotlib.collections.Collection` instance is returned. """ if not self._hold: self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x = self.convert_xunits(x) y = self.convert_yunits(y) # np.ma.ravel yields an ndarray, not a masked array, # unless its argument is a masked array. x = np.ma.ravel(x) y = np.ma.ravel(y) if x.size != y.size: raise ValueError("x and y must be the same size") s = np.ma.ravel(s) # This doesn't have to match x, y in size. c_is_stringy = is_string_like(c) or is_sequence_of_strings(c) if not c_is_stringy: c = np.asanyarray(c) if c.size == x.size: c = np.ma.ravel(c) x, y, s, c = cbook.delete_masked_points(x, y, s, c) scales = s # Renamed for readability below. if c_is_stringy: colors = mcolors.colorConverter.to_rgba_array(c, alpha) else: # The inherent ambiguity is resolved in favor of color # mapping, not interpretation as rgb or rgba: if c.size == x.size: colors = None # use cmap, norm after collection is created else: colors = mcolors.colorConverter.to_rgba_array(c, alpha) if faceted: edgecolors = None else: edgecolors = 'none' warnings.warn( '''replace "faceted=False" with "edgecolors='none'"''', mplDeprecation) # 2008/04/18 sym = None symstyle = 0 # to be API compatible if marker is None and not (verts is None): marker = (verts, 0) verts = None marker_obj = mmarkers.MarkerStyle(marker) path = marker_obj.get_path().transformed( marker_obj.get_transform()) if not marker_obj.is_filled(): edgecolors = 'face' collection = mcoll.PathCollection( (path,), scales, facecolors = colors, edgecolors = edgecolors, linewidths = linewidths, offsets = zip(x,y), transOffset = kwargs.pop('transform', self.transData), ) collection.set_transform(mtransforms.IdentityTransform()) collection.set_alpha(alpha) collection.update(kwargs) if colors is None: if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_array(np.asarray(c)) collection.set_cmap(cmap) collection.set_norm(norm) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() # The margin adjustment is a hack to deal with the fact that we don't # want to transform all the symbols whose scales are in points # to data coords to get the exact bounding box for efficiency # reasons. It can be done right if this is deemed important. # Also, only bother with this padding if there is anything to draw. if self._xmargin < 0.05 and x.size > 0 : self.set_xmargin(0.05) if self._ymargin < 0.05 and x.size > 0 : self.set_ymargin(0.05) self.add_collection(collection) self.autoscale_view() return collection @docstring.dedent_interpd def hexbin(self, x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', extent = None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none', reduce_C_function = np.mean, mincnt=None, marginals=False, **kwargs): """ Make a hexagonal binning plot. Call signature:: hexbin(x, y, C = None, gridsize = 100, bins = None, xscale = 'linear', yscale = 'linear', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, edgecolors='none' reduce_C_function = np.mean, mincnt=None, marginals=True **kwargs) Make a hexagonal binning plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length, *N*. If *C* is *None* (the default), this is a histogram of the number of occurences of the observations at (x[i],y[i]). If *C* is specified, it specifies values at the coordinate (x[i],y[i]). These values are accumulated for each hexagonal bin and then reduced according to *reduce_C_function*, which defaults to numpy's mean function (np.mean). (If *C* is specified, it must also be a 1-D sequence of the same length as *x* and *y*.) *x*, *y* and/or *C* may be masked arrays, in which case only unmasked points will be plotted. Optional keyword arguments: *gridsize*: [ 100 | integer ] The number of hexagons in the *x*-direction, default is 100. The corresponding number of hexagons in the *y*-direction is chosen such that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the *x*-direction and the *y*-direction. *bins*: [ *None* | 'log' | integer | sequence ] If *None*, no binning is applied; the color of each hexagon directly corresponds to its count value. If 'log', use a logarithmic scale for the color map. Internally, :math:`log_{10}(i+1)` is used to determine the hexagon color. If an integer, divide the counts in the specified number of bins, and color the hexagons accordingly. If a sequence of values, the values of the lower bound of the bins to be used. *xscale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the horizontal axis. *scale*: [ 'linear' | 'log' ] Use a linear or log10 scale on the vertical axis. *mincnt*: [ *None* | a positive integer ] If not *None*, only display cells with more than *mincnt* number of points in the cell *marginals*: [ *True* | *False* ] if marginals is *True*, plot the marginal density as colormapped rectagles along the bottom of the x-axis and left of the y-axis *extent*: [ *None* | scalars (left, right, bottom, top) ] The limits of the bins. The default assigns the limits based on gridsize, x, y, xscale and yscale. Other keyword arguments controlling color mapping and normalization arguments: *cmap*: [ *None* | Colormap ] a :class:`matplotlib.colors.Colormap` instance. If *None*, defaults to rc ``image.cmap``. *norm*: [ *None* | Normalize ] :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. *vmin* / *vmax*: scalar *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. Note if you pass a norm instance, your settings for *vmin* and *vmax* will be ignored. *alpha*: scalar between 0 and 1, or *None* the alpha value for the patches *linewidths*: [ *None* | scalar ] If *None*, defaults to rc lines.linewidth. Note that this is a tuple, and if you set the linewidths argument you must set it as a sequence of floats, as required by :class:`~matplotlib.collections.RegularPolyCollection`. Other keyword arguments controlling the Collection properties: *edgecolors*: [ *None* | ``'none'`` | mpl color | color sequence ] If ``'none'``, draws the edges in the same color as the fill color. This is the default, as it avoids unsightly unpainted pixels between the hexagons. If *None*, draws the outlines in the default color. If a matplotlib color arg or sequence of rgba tuples, draws the outlines in the specified color. Here are the standard descriptions of all the :class:`~matplotlib.collections.Collection` kwargs: %(Collection)s The return value is a :class:`~matplotlib.collections.PolyCollection` instance; use :meth:`~matplotlib.collections.PolyCollection.get_array` on this :class:`~matplotlib.collections.PolyCollection` to get the counts in each hexagon. If *marginals* is *True*, horizontal bar and vertical bar (both PolyCollections) will be attached to the return collection as attributes *hbar* and *vbar*. **Example:** .. plot:: mpl_examples/pylab_examples/hexbin_demo.py """ if not self._hold: self.cla() self._process_unit_info(xdata=x, ydata=y, kwargs=kwargs) x, y, C = cbook.delete_masked_points(x, y, C) # Set the size of the hexagon grid if iterable(gridsize): nx, ny = gridsize else: nx = gridsize ny = int(nx/math.sqrt(3)) # Count the number of data in each hexagon x = np.array(x, float) y = np.array(y, float) if xscale=='log': if np.any(x <= 0.0): raise ValueError("x contains non-positive values, so can not" " be log-scaled") x = np.log10(x) if yscale=='log': if np.any(y <= 0.0): raise ValueError("y contains non-positive values, so can not" " be log-scaled") y = np.log10(y) if extent is not None: xmin, xmax, ymin, ymax = extent else: xmin = np.amin(x) xmax = np.amax(x) ymin = np.amin(y) ymax = np.amax(y) # In the x-direction, the hexagons exactly cover the region from # xmin to xmax. Need some padding to avoid roundoff errors. padding = 1.e-9 * (xmax - xmin) xmin -= padding xmax += padding sx = (xmax-xmin) / nx sy = (ymax-ymin) / ny if marginals: xorig = x.copy() yorig = y.copy() x = (x-xmin)/sx y = (y-ymin)/sy ix1 = np.round(x).astype(int) iy1 = np.round(y).astype(int) ix2 = np.floor(x).astype(int) iy2 = np.floor(y).astype(int) nx1 = nx + 1 ny1 = ny + 1 nx2 = nx ny2 = ny n = nx1*ny1+nx2*ny2 d1 = (x-ix1)**2 + 3.0 * (y-iy1)**2 d2 = (x-ix2-0.5)**2 + 3.0 * (y-iy2-0.5)**2 bdist = (d1<d2) if C is None: accum = np.zeros(n) # Create appropriate views into "accum" array. lattice1 = accum[:nx1*ny1] lattice2 = accum[nx1*ny1:] lattice1.shape = (nx1,ny1) lattice2.shape = (nx2,ny2) for i in xrange(len(x)): if bdist[i]: if ((ix1[i] >= 0) and (ix1[i] < nx1) and (iy1[i] >= 0) and (iy1[i] < ny1)): lattice1[ix1[i], iy1[i]]+=1 else: if ((ix2[i] >= 0) and (ix2[i] < nx2) and (iy2[i] >= 0) and (iy2[i] < ny2)): lattice2[ix2[i], iy2[i]]+=1 # threshold if mincnt is not None: for i in xrange(nx1): for j in xrange(ny1): if lattice1[i,j]<mincnt: lattice1[i,j] = np.nan for i in xrange(nx2): for j in xrange(ny2): if lattice2[i,j]<mincnt: lattice2[i,j] = np.nan accum = np.hstack(( lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = ~np.isnan(accum) else: if mincnt is None: mincnt = 0 # create accumulation arrays lattice1 = np.empty((nx1,ny1),dtype=object) for i in xrange(nx1): for j in xrange(ny1): lattice1[i,j] = [] lattice2 = np.empty((nx2,ny2),dtype=object) for i in xrange(nx2): for j in xrange(ny2): lattice2[i,j] = [] for i in xrange(len(x)): if bdist[i]: if ((ix1[i] >= 0) and (ix1[i] < nx1) and (iy1[i] >= 0) and (iy1[i] < ny1)): lattice1[ix1[i], iy1[i]].append( C[i] ) else: if ((ix2[i] >= 0) and (ix2[i] < nx2) and (iy2[i] >= 0) and (iy2[i] < ny2)): lattice2[ix2[i], iy2[i]].append( C[i] ) for i in xrange(nx1): for j in xrange(ny1): vals = lattice1[i,j] if len(vals)>mincnt: lattice1[i,j] = reduce_C_function( vals ) else: lattice1[i,j] = np.nan for i in xrange(nx2): for j in xrange(ny2): vals = lattice2[i,j] if len(vals)>mincnt: lattice2[i,j] = reduce_C_function( vals ) else: lattice2[i,j] = np.nan accum = np.hstack(( lattice1.astype(float).ravel(), lattice2.astype(float).ravel())) good_idxs = ~np.isnan(accum) offsets = np.zeros((n, 2), float) offsets[:nx1*ny1,0] = np.repeat(np.arange(nx1), ny1) offsets[:nx1*ny1,1] = np.tile(np.arange(ny1), nx1) offsets[nx1*ny1:,0] = np.repeat(np.arange(nx2) + 0.5, ny2) offsets[nx1*ny1:,1] = np.tile(np.arange(ny2), nx2) + 0.5 offsets[:,0] *= sx offsets[:,1] *= sy offsets[:,0] += xmin offsets[:,1] += ymin # remove accumulation bins with no data offsets = offsets[good_idxs,:] accum = accum[good_idxs] polygon = np.zeros((6, 2), float) polygon[:,0] = sx * np.array([ 0.5, 0.5, 0.0, -0.5, -0.5, 0.0]) polygon[:,1] = sy * np.array([-0.5, 0.5, 1.0, 0.5, -0.5, -1.0]) / 3.0 if edgecolors=='none': edgecolors = 'face' if xscale == 'log' or yscale == 'log': polygons = np.expand_dims(polygon, 0) + np.expand_dims(offsets, 1) if xscale == 'log': polygons[:, :, 0] = 10.0 ** polygons[:, :, 0] xmin = 10.0 ** xmin xmax = 10.0 ** xmax self.set_xscale(xscale) if yscale == 'log': polygons[:, :, 1] = 10.0 ** polygons[:, :, 1] ymin = 10.0 ** ymin ymax = 10.0 ** ymax self.set_yscale(yscale) collection = mcoll.PolyCollection( polygons, edgecolors=edgecolors, linewidths=linewidths, ) else: collection = mcoll.PolyCollection( [polygon], edgecolors=edgecolors, linewidths=linewidths, offsets=offsets, transOffset=mtransforms.IdentityTransform(), offset_position="data" ) if isinstance(norm, mcolors.LogNorm): if (accum==0).any(): # make sure we have not zeros accum += 1 # autoscale the norm with curren accum values if it hasn't # been set if norm is not None: if norm.vmin is None and norm.vmax is None: norm.autoscale(accum) # Transform accum if needed if bins=='log': accum = np.log10(accum+1) elif bins!=None: if not iterable(bins): minimum, maximum = min(accum), max(accum) bins-=1 # one less edge than bins bins = minimum + (maximum-minimum)*np.arange(bins)/bins bins = np.sort(bins) accum = bins.searchsorted(accum) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_array(accum) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_alpha(alpha) collection.update(kwargs) if vmin is not None or vmax is not None: collection.set_clim(vmin, vmax) else: collection.autoscale_None() corners = ((xmin, ymin), (xmax, ymax)) self.update_datalim( corners) self.autoscale_view(tight=True) # add the collection last self.add_collection(collection) if not marginals: return collection if C is None: C = np.ones(len(x)) def coarse_bin(x, y, coarse): ind = coarse.searchsorted(x).clip(0, len(coarse)-1) mus = np.zeros(len(coarse)) for i in range(len(coarse)): mu = reduce_C_function(y[ind==i]) mus[i] = mu return mus coarse = np.linspace(xmin, xmax, gridsize) xcoarse = coarse_bin(xorig, C, coarse) valid = ~np.isnan(xcoarse) verts, values = [], [] for i,val in enumerate(xcoarse): thismin = coarse[i] if i<len(coarse)-1: thismax = coarse[i+1] else: thismax = thismin + np.diff(coarse)[-1] if not valid[i]: continue verts.append([(thismin, 0), (thismin, 0.05), (thismax, 0.05), (thismax, 0)]) values.append(val) values = np.array(values) trans = mtransforms.blended_transform_factory( self.transData, self.transAxes) hbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face') hbar.set_array(values) hbar.set_cmap(cmap) hbar.set_norm(norm) hbar.set_alpha(alpha) hbar.update(kwargs) self.add_collection(hbar) coarse = np.linspace(ymin, ymax, gridsize) ycoarse = coarse_bin(yorig, C, coarse) valid = ~np.isnan(ycoarse) verts, values = [], [] for i,val in enumerate(ycoarse): thismin = coarse[i] if i<len(coarse)-1: thismax = coarse[i+1] else: thismax = thismin + np.diff(coarse)[-1] if not valid[i]: continue verts.append([(0, thismin), (0.0, thismax), (0.05, thismax), (0.05, thismin)]) values.append(val) values = np.array(values) trans = mtransforms.blended_transform_factory( self.transAxes, self.transData) vbar = mcoll.PolyCollection(verts, transform=trans, edgecolors='face') vbar.set_array(values) vbar.set_cmap(cmap) vbar.set_norm(norm) vbar.set_alpha(alpha) vbar.update(kwargs) self.add_collection(vbar) collection.hbar = hbar collection.vbar = vbar def on_changed(collection): hbar.set_cmap(collection.get_cmap()) hbar.set_clim(collection.get_clim()) vbar.set_cmap(collection.get_cmap()) vbar.set_clim(collection.get_clim()) collection.callbacksSM.connect('changed', on_changed) return collection @docstring.dedent_interpd def arrow(self, x, y, dx, dy, **kwargs): """ Add an arrow to the axes. Call signature:: arrow(x, y, dx, dy, **kwargs) Draws arrow on specified axis from (*x*, *y*) to (*x* + *dx*, *y* + *dy*). Uses FancyArrow patch to construct the arrow. Optional kwargs control the arrow construction and properties: %(FancyArrow)s **Example:** .. plot:: mpl_examples/pylab_examples/arrow_demo.py """ # Strip away units for the underlying patch since units # do not make sense to most patch-like code x = self.convert_xunits(x) y = self.convert_yunits(y) dx = self.convert_xunits(dx) dy = self.convert_yunits(dy) a = mpatches.FancyArrow(x, y, dx, dy, **kwargs) self.add_artist(a) return a def quiverkey(self, *args, **kw): qk = mquiver.QuiverKey(*args, **kw) self.add_artist(qk) return qk quiverkey.__doc__ = mquiver.QuiverKey.quiverkey_doc def quiver(self, *args, **kw): if not self._hold: self.cla() q = mquiver.Quiver(self, *args, **kw) self.add_collection(q, False) self.update_datalim(q.XY) self.autoscale_view() return q quiver.__doc__ = mquiver.Quiver.quiver_doc def stackplot(self, x, *args, **kwargs): return mstack.stackplot(self, x, *args, **kwargs) stackplot.__doc__ = mstack.stackplot.__doc__ def streamplot(self, x, y, u, v, density=1, linewidth=None, color=None, cmap=None, norm=None, arrowsize=1, arrowstyle='-|>', minlength=0.1, transform=None): if not self._hold: self.cla() stream_container = mstream.streamplot(self, x, y, u, v, density=density, linewidth=linewidth, color=color, cmap=cmap, norm=norm, arrowsize=arrowsize, arrowstyle=arrowstyle, minlength=minlength, transform=transform) return stream_container streamplot.__doc__ = mstream.streamplot.__doc__ @docstring.dedent_interpd def barbs(self, *args, **kw): """ %(barbs_doc)s **Example:** .. plot:: mpl_examples/pylab_examples/barb_demo.py """ if not self._hold: self.cla() b = mquiver.Barbs(self, *args, **kw) self.add_collection(b) self.update_datalim(b.get_offsets()) self.autoscale_view() return b @docstring.dedent_interpd def fill(self, *args, **kwargs): """ Plot filled polygons. Call signature:: fill(*args, **kwargs) *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional color format string; see :func:`~matplotlib.pyplot.plot` for details on the argument parsing. For example, to plot a polygon with vertices at *x*, *y* in blue.:: ax.fill(x,y, 'b' ) An arbitrary number of *x*, *y*, *color* groups can be specified:: ax.fill(x1, y1, 'g', x2, y2, 'r') Return value is a list of :class:`~matplotlib.patches.Patch` instances that were added. The same color strings that :func:`~matplotlib.pyplot.plot` supports are supported by the fill format string. If you would like to fill below a curve, eg. shade a region between 0 and *y* along *x*, use :meth:`fill_between` The *closed* kwarg will close the polygon when *True* (default). kwargs control the :class:`~matplotlib.patches.Polygon` properties: %(Polygon)s **Example:** .. plot:: mpl_examples/pylab_examples/fill_demo.py """ if not self._hold: self.cla() patches = [] for poly in self._get_patches_for_fill(*args, **kwargs): self.add_patch( poly ) patches.append( poly ) self.autoscale_view() return patches @docstring.dedent_interpd def fill_between(self, x, y1, y2=0, where=None, interpolate=False, **kwargs): """ Make filled polygons between two curves. Call signature:: fill_between(x, y1, y2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *y1* and *y2* where ``where==True`` *x* : An N-length array of the x data *y1* : An N-length array (or scalar) of the y data *y2* : An N-length array (or scalar) of the y data *where* : If *None*, default to fill between everywhere. If not *None*, it is an N-length numpy boolean array and the fill will only happen over the regions where ``where==True``. *interpolate* : If *True*, interpolate between the two lines to find the precise point of intersection. Otherwise, the start and end points of the filled region will only occur on explicit values in the *x* array. *kwargs* : Keyword args passed on to the :class:`~matplotlib.collections.PolyCollection`. kwargs control the :class:`~matplotlib.patches.Polygon` properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_between_demo.py .. seealso:: :meth:`fill_betweenx` for filling between two sets of x-values """ # Handle united data, such as dates self._process_unit_info(xdata=x, ydata=y1, kwargs=kwargs) self._process_unit_info(ydata=y2) # Convert the arrays so we can work with them x = ma.masked_invalid(self.convert_xunits(x)) y1 = ma.masked_invalid(self.convert_yunits(y1)) y2 = ma.masked_invalid(self.convert_yunits(y2)) if y1.ndim == 0: y1 = np.ones_like(x)*y1 if y2.ndim == 0: y2 = np.ones_like(x)*y2 if where is None: where = np.ones(len(x), np.bool) else: where = np.asarray(where, np.bool) if not (x.shape == y1.shape == y2.shape == where.shape): raise ValueError("Argument dimensions are incompatible") mask = reduce(ma.mask_or, [ma.getmask(a) for a in (x, y1, y2)]) if mask is not ma.nomask: where &= ~mask polys = [] for ind0, ind1 in mlab.contiguous_regions(where): xslice = x[ind0:ind1] y1slice = y1[ind0:ind1] y2slice = y2[ind0:ind1] if not len(xslice): continue N = len(xslice) X = np.zeros((2*N+2, 2), np.float) if interpolate: def get_interp_point(ind): im1 = max(ind-1, 0) x_values = x[im1:ind+1] diff_values = y1[im1:ind+1] - y2[im1:ind+1] y1_values = y1[im1:ind+1] if len(diff_values) == 2: if np.ma.is_masked(diff_values[1]): return x[im1], y1[im1] elif np.ma.is_masked(diff_values[0]): return x[ind], y1[ind] diff_order = diff_values.argsort() diff_root_x = np.interp( 0, diff_values[diff_order], x_values[diff_order]) diff_root_y = np.interp(diff_root_x, x_values, y1_values) return diff_root_x, diff_root_y start = get_interp_point(ind0) end = get_interp_point(ind1) else: # the purpose of the next two lines is for when y2 is a # scalar like 0 and we want the fill to go all the way # down to 0 even if none of the y1 sample points do start = xslice[0], y2slice[0] end = xslice[-1], y2slice[-1] X[0] = start X[N+1] = end X[1:N+1,0] = xslice X[1:N+1,1] = y1slice X[N+2:,0] = xslice[::-1] X[N+2:,1] = y2slice[::-1] polys.append(X) collection = mcoll.PolyCollection(polys, **kwargs) # now update the datalim and autoscale XY1 = np.array([x[where], y1[where]]).T XY2 = np.array([x[where], y2[where]]).T self.dataLim.update_from_data_xy(XY1, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(XY2, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection @docstring.dedent_interpd def fill_betweenx(self, y, x1, x2=0, where=None, **kwargs): """ Make filled polygons between two horizontal curves. Call signature:: fill_betweenx(y, x1, x2=0, where=None, **kwargs) Create a :class:`~matplotlib.collections.PolyCollection` filling the regions between *x1* and *x2* where ``where==True`` *y* : An N-length array of the y data *x1* : An N-length array (or scalar) of the x data *x2* : An N-length array (or scalar) of the x data *where* : If *None*, default to fill between everywhere. If not *None*, it is a N length numpy boolean array and the fill will only happen over the regions where ``where==True`` *kwargs* : keyword args passed on to the :class:`~matplotlib.collections.PolyCollection` kwargs control the :class:`~matplotlib.patches.Polygon` properties: %(PolyCollection)s .. plot:: mpl_examples/pylab_examples/fill_betweenx_demo.py .. seealso:: :meth:`fill_between` for filling between two sets of y-values """ # Handle united data, such as dates self._process_unit_info(ydata=y, xdata=x1, kwargs=kwargs) self._process_unit_info(xdata=x2) # Convert the arrays so we can work with them y = ma.masked_invalid(self.convert_yunits(y)) x1 = ma.masked_invalid(self.convert_xunits(x1)) x2 = ma.masked_invalid(self.convert_xunits(x2)) if x1.ndim == 0: x1 = np.ones_like(y)*x1 if x2.ndim == 0: x2 = np.ones_like(y)*x2 if where is None: where = np.ones(len(y), np.bool) else: where = np.asarray(where, np.bool) if not (y.shape == x1.shape == x2.shape == where.shape): raise ValueError("Argument dimensions are incompatible") mask = reduce(ma.mask_or, [ma.getmask(a) for a in (y, x1, x2)]) if mask is not ma.nomask: where &= ~mask polys = [] for ind0, ind1 in mlab.contiguous_regions(where): yslice = y[ind0:ind1] x1slice = x1[ind0:ind1] x2slice = x2[ind0:ind1] if not len(yslice): continue N = len(yslice) Y = np.zeros((2*N+2, 2), np.float) # the purpose of the next two lines is for when x2 is a # scalar like 0 and we want the fill to go all the way # down to 0 even if none of the x1 sample points do Y[0] = x2slice[0], yslice[0] Y[N+1] = x2slice[-1], yslice[-1] Y[1:N+1,0] = x1slice Y[1:N+1,1] = yslice Y[N+2:,0] = x2slice[::-1] Y[N+2:,1] = yslice[::-1] polys.append(Y) collection = mcoll.PolyCollection(polys, **kwargs) # now update the datalim and autoscale X1Y = np.array([x1[where], y[where]]).T X2Y = np.array([x2[where], y[where]]).T self.dataLim.update_from_data_xy(X1Y, self.ignore_existing_data_limits, updatex=True, updatey=True) self.dataLim.update_from_data_xy(X2Y, self.ignore_existing_data_limits, updatex=False, updatey=True) self.add_collection(collection) self.autoscale_view() return collection #### plotting z(x,y): imshow, pcolor and relatives, contour @docstring.dedent_interpd def imshow(self, X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, **kwargs): """ Display an image on the axes. Call signature:: imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, **kwargs) Display the image in *X* to current axes. *X* may be a float array, a uint8 array or a PIL image. If *X* is an array, *X* can have the following shapes: * MxN -- luminance (grayscale, float array only) * MxNx3 -- RGB (float or uint8 array) * MxNx4 -- RGBA (float or uint8 array) The value for each component of MxNx3 and MxNx4 float arrays should be in the range 0.0 to 1.0; MxN float arrays may be normalised. An :class:`matplotlib.image.AxesImage` instance is returned. Keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance, eg. cm.jet. If *None*, default to rc ``image.cmap`` value. *cmap* is ignored when *X* has RGB(A) information *aspect*: [ *None* | 'auto' | 'equal' | scalar ] If 'auto', changes the image aspect ratio to match that of the axes If 'equal', and *extent* is *None*, changes the axes aspect ratio to match that of the image. If *extent* is not *None*, the axes aspect ratio is changed to match that of the extent. If *None*, default to rc ``image.aspect`` value. *interpolation*: Acceptable values are *None*, 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos' If *interpolation* is *None*, default to rc ``image.interpolation``. See also the *filternorm* and *filterrad* parameters If *interpolation* is ``'none'``, then no interpolation is performed on the Agg, ps and pdf backends. Other backends will fall back to 'nearest'. *norm*: [ *None* | Normalize ] An :class:`matplotlib.colors.Normalize` instance; if *None*, default is ``normalization()``. This scales luminance -> 0-1 *norm* is only used for an MxN float array. *vmin*/*vmax*: [ *None* | scalar ] Used to scale a luminance image to 0-1. If either is *None*, the min and max of the luminance values will be used. Note if *norm* is not *None*, the settings for *vmin* and *vmax* will be ignored. *alpha*: scalar The alpha blending value, between 0 (transparent) and 1 (opaque) or *None* *origin*: [ *None* | 'upper' | 'lower' ] Place the [0,0] index of the array in the upper left or lower left corner of the axes. If *None*, default to rc ``image.origin``. *extent*: [ *None* | scalars (left, right, bottom, top) ] Data limits for the axes. The default assigns zero-based row, column indices to the *x*, *y* centers of the pixels. *shape*: [ *None* | scalars (columns, rows) ] For raw buffer images *filternorm*: A parameter for the antigrain image resize filter. From the antigrain documentation, if *filternorm* = 1, the filter normalizes integer values and corrects the rounding errors. It doesn't do anything with the source floating point values, it corrects only integers according to the rule of 1.0 which means that any sum of pixel weights must be equal to 1.0. So, the filter function must produce a graph of the proper shape. *filterrad*: The filter radius for filters that have a radius parameter, i.e. when interpolation is one of: 'sinc', 'lanczos' or 'blackman' Additional kwargs are :class:`~matplotlib.artist.Artist` properties. %(Artist)s **Example:** .. plot:: mpl_examples/pylab_examples/image_demo.py """ if not self._hold: self.cla() if norm is not None: assert(isinstance(norm, mcolors.Normalize)) if aspect is None: aspect = rcParams['image.aspect'] self.set_aspect(aspect) im = mimage.AxesImage(self, cmap, norm, interpolation, origin, extent, filternorm=filternorm, filterrad=filterrad, resample=resample, **kwargs) im.set_data(X) im.set_alpha(alpha) self._set_artist_props(im) if im.get_clip_path() is None: # image does not already have clipping set, clip to axes patch im.set_clip_path(self.patch) #if norm is None and shape is None: # im.set_clim(vmin, vmax) if vmin is not None or vmax is not None: im.set_clim(vmin, vmax) else: im.autoscale_None() im.set_url(url) # update ax.dataLim, and, if autoscaling, set viewLim # to tightly fit the image, regardless of dataLim. im.set_extent(im.get_extent()) self.images.append(im) im._remove_method = lambda h: self.images.remove(h) return im def _pcolorargs(self, funcname, *args): if len(args)==1: C = args[0] numRows, numCols = C.shape X, Y = np.meshgrid(np.arange(numCols+1), np.arange(numRows+1) ) elif len(args)==3: X, Y, C = args else: raise TypeError( 'Illegal arguments to %s; see help(%s)' % (funcname, funcname)) Nx = X.shape[-1] Ny = Y.shape[0] if len(X.shape) != 2 or X.shape[0] == 1: x = X.reshape(1,Nx) X = x.repeat(Ny, axis=0) if len(Y.shape) != 2 or Y.shape[1] == 1: y = Y.reshape(Ny, 1) Y = y.repeat(Nx, axis=1) if X.shape != Y.shape: raise TypeError( 'Incompatible X, Y inputs to %s; see help(%s)' % ( funcname, funcname)) return X, Y, C @docstring.dedent_interpd def pcolor(self, *args, **kwargs): """ Create a pseudocolor plot of a 2-D array. Note: pcolor can be very slow for large arrays; consider using the similar but much faster :func:`~matplotlib.pyplot.pcolormesh` instead. Call signatures:: pcolor(C, **kwargs) pcolor(X, Y, C, **kwargs) *C* is the array of color values. *X* and *Y*, if given, specify the (*x*, *y*) coordinates of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at:: (X[i, j], Y[i, j]), (X[i, j+1], Y[i, j+1]), (X[i+1, j], Y[i+1, j]), (X[i+1, j+1], Y[i+1, j+1]). Ideally the dimensions of *X* and *Y* should be one greater than those of *C*; if the dimensions are the same, then the last row and column of *C* will be ignored. Note that the the column index corresponds to the *x*-coordinate, and the row index corresponds to *y*; for details, see the :ref:`Grid Orientation <axes-pcolor-grid-orientation>` section below. If either or both of *X* and *Y* are 1-D arrays or column vectors, they will be expanded as needed into the appropriate 2-D arrays, making a rectangular grid. *X*, *Y* and *C* may be masked arrays. If either C[i, j], or one of the vertices surrounding C[i,j] (*X* or *Y* at [i, j], [i+1, j], [i, j+1],[i+1, j+1]) is masked, nothing is plotted. Keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, use rc settings. *norm*: [ *None* | Normalize ] An :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ *None* | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either is *None*, it is autoscaled to the respective min or max of the color array *C*. If not *None*, *vmin* or *vmax* passed in here override any pre-existing values supplied in the *norm* instance. *shading*: [ 'flat' | 'faceted' ] If 'faceted', a black grid is drawn around each rectangle; if 'flat', edges are not drawn. Default is 'flat', contrary to MATLAB. This kwarg is deprecated; please use 'edgecolors' instead: * shading='flat' -- edgecolors='none' * shading='faceted -- edgecolors='k' *edgecolors*: [ *None* | ``'none'`` | color | color sequence] If *None*, the rc setting is used by default. If ``'none'``, edges will not be visible. An mpl color or sequence of colors will set the edge color *alpha*: ``0 <= scalar <= 1`` or *None* the alpha blending value Return value is a :class:`matplotlib.collections.Collection` instance. .. _axes-pcolor-grid-orientation: The grid orientation follows the MATLAB convention: an array *C* with shape (*nrows*, *ncolumns*) is plotted with the column number as *X* and the row number as *Y*, increasing up; hence it is plotted the way the array would be printed, except that the *Y* axis is reversed. That is, *C* is taken as *C*(*y*, *x*). Similarly for :func:`meshgrid`:: x = np.arange(5) y = np.arange(3) X, Y = meshgrid(x,y) is equivalent to:: X = array([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]]) Y = array([[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]]) so if you have:: C = rand( len(x), len(y)) then you need:: pcolor(X, Y, C.T) or:: pcolor(C.T) MATLAB :func:`pcolor` always discards the last row and column of *C*, but matplotlib displays the last row and column if *X* and *Y* are not specified, or if *X* and *Y* have one more row and column than *C*. kwargs can be used to control the :class:`~matplotlib.collections.PolyCollection` properties: %(PolyCollection)s Note: the default *antialiaseds* is False if the default *edgecolors*="none" is used. This eliminates artificial lines at patch boundaries, and works regardless of the value of alpha. If *edgecolors* is not "none", then the default *antialiaseds* is taken from rcParams['patch.antialiased'], which defaults to *True*. Stroking the edges may be preferred if *alpha* is 1, but will cause artifacts otherwise. .. seealso:: :func:`~matplotlib.pyplot.pcolormesh` For an explanation of the differences between pcolor and pcolormesh. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', None) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat') X, Y, C = self._pcolorargs('pcolor', *args) Ny, Nx = X.shape # convert to MA, if necessary. C = ma.asarray(C) X = ma.asarray(X) Y = ma.asarray(Y) mask = ma.getmaskarray(X)+ma.getmaskarray(Y) xymask = mask[0:-1,0:-1]+mask[1:,1:]+mask[0:-1,1:]+mask[1:,0:-1] # don't plot if C or any of the surrounding vertices are masked. mask = ma.getmaskarray(C)[0:Ny-1,0:Nx-1]+xymask newaxis = np.newaxis compress = np.compress ravelmask = (mask==0).ravel() X1 = compress(ravelmask, ma.filled(X[0:-1,0:-1]).ravel()) Y1 = compress(ravelmask, ma.filled(Y[0:-1,0:-1]).ravel()) X2 = compress(ravelmask, ma.filled(X[1:,0:-1]).ravel()) Y2 = compress(ravelmask, ma.filled(Y[1:,0:-1]).ravel()) X3 = compress(ravelmask, ma.filled(X[1:,1:]).ravel()) Y3 = compress(ravelmask, ma.filled(Y[1:,1:]).ravel()) X4 = compress(ravelmask, ma.filled(X[0:-1,1:]).ravel()) Y4 = compress(ravelmask, ma.filled(Y[0:-1,1:]).ravel()) npoly = len(X1) xy = np.concatenate((X1[:,newaxis], Y1[:,newaxis], X2[:,newaxis], Y2[:,newaxis], X3[:,newaxis], Y3[:,newaxis], X4[:,newaxis], Y4[:,newaxis], X1[:,newaxis], Y1[:,newaxis]), axis=1) verts = xy.reshape((npoly, 5, 2)) C = compress(ravelmask, ma.filled(C[0:Ny-1,0:Nx-1]).ravel()) linewidths = (0.25,) if 'linewidth' in kwargs: kwargs['linewidths'] = kwargs.pop('linewidth') kwargs.setdefault('linewidths', linewidths) if shading == 'faceted': edgecolors = 'k', else: edgecolors = 'none' if 'edgecolor' in kwargs: kwargs['edgecolors'] = kwargs.pop('edgecolor') ec = kwargs.setdefault('edgecolors', edgecolors) # aa setting will default via collections to patch.antialiased # unless the boundary is not stroked, in which case the # default will be False; with unstroked boundaries, aa # makes artifacts that are often disturbing. if 'antialiased' in kwargs: kwargs['antialiaseds'] = kwargs.pop('antialiased') if 'antialiaseds' not in kwargs and (is_string_like(ec) and ec.lower() == "none"): kwargs['antialiaseds'] = False collection = mcoll.PolyCollection(verts, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_clim(vmin, vmax) collection.autoscale_None() self.grid(False) x = X.compressed() y = Y.compressed() # Transform from native to data coordinates? t = collection._transform if (not isinstance(t, mtransforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) if t and any(t.contains_branch_seperately(self.transData)): trans_to_data = t - self.transData pts = np.vstack([x, y]).T.astype(np.float) transformed_pts = trans_to_data.transform(pts) x = transformed_pts[..., 0] y = transformed_pts[..., 1] minx = np.amin(x) maxx = np.amax(x) miny = np.amin(y) maxy = np.amax(y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection @docstring.dedent_interpd def pcolormesh(self, *args, **kwargs): """ Plot a quadrilateral mesh. Call signatures:: pcolormesh(C) pcolormesh(X, Y, C) pcolormesh(C, **kwargs) Create a pseudocolor plot of a 2-D array. pcolormesh is similar to :func:`~matplotlib.pyplot.pcolor`, but uses a different mechanism and returns a different object; pcolor returns a :class:`~matplotlib.collections.PolyCollection` but pcolormesh returns a :class:`~matplotlib.collections.QuadMesh`. It is much faster, so it is almost always preferred for large arrays. *C* may be a masked array, but *X* and *Y* may not. Masked array support is implemented via *cmap* and *norm*; in contrast, :func:`~matplotlib.pyplot.pcolor` simply does not draw quadrilaterals with masked colors or vertices. Keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance. If *None*, use rc settings. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to :func:`normalize`. *vmin*/*vmax*: [ *None* | scalar ] *vmin* and *vmax* are used in conjunction with *norm* to normalize luminance data. If either is *None*, it is autoscaled to the respective min or max of the color array *C*. If not *None*, *vmin* or *vmax* passed in here override any pre-existing values supplied in the *norm* instance. *shading*: [ 'flat' | 'gouraud' ] 'flat' indicates a solid color for each quad. When 'gouraud', each quad will be Gouraud shaded. When gouraud shading, edgecolors is ignored. *edgecolors*: [ *None* | ``'None'`` | ``'face'`` | color | color sequence] If *None*, the rc setting is used by default. If ``'None'``, edges will not be visible. If ``'face'``, edges will have the same color as the faces. An mpl color or sequence of colors will set the edge color *alpha*: ``0 <= scalar <= 1`` or *None* the alpha blending value Return value is a :class:`matplotlib.collections.QuadMesh` object. kwargs can be used to control the :class:`matplotlib.collections.QuadMesh` properties: %(QuadMesh)s .. seealso:: :func:`~matplotlib.pyplot.pcolor` For an explanation of the grid orientation and the expansion of 1-D *X* and/or *Y* to 2-D arrays. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', None) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) shading = kwargs.pop('shading', 'flat').lower() antialiased = kwargs.pop('antialiased', False) kwargs.setdefault('edgecolors', 'None') X, Y, C = self._pcolorargs('pcolormesh', *args) Ny, Nx = X.shape # convert to one dimensional arrays if shading != 'gouraud': C = ma.ravel(C[0:Ny-1, 0:Nx-1]) # data point in each cell is value at # lower left corner else: C = C.ravel() X = X.ravel() Y = Y.ravel() coords = np.zeros(((Nx * Ny), 2), dtype=float) coords[:, 0] = X coords[:, 1] = Y collection = mcoll.QuadMesh( Nx - 1, Ny - 1, coords, antialiased=antialiased, shading=shading, **kwargs) collection.set_alpha(alpha) collection.set_array(C) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) collection.set_cmap(cmap) collection.set_norm(norm) collection.set_clim(vmin, vmax) collection.autoscale_None() self.grid(False) # Transform from native to data coordinates? t = collection._transform if (not isinstance(t, mtransforms.Transform) and hasattr(t, '_as_mpl_transform')): t = t._as_mpl_transform(self.axes) if t and any(t.contains_branch_seperately(self.transData)): trans_to_data = t - self.transData pts = np.vstack([X, Y]).T.astype(np.float) transformed_pts = trans_to_data.transform(pts) X = transformed_pts[..., 0] Y = transformed_pts[..., 1] minx = np.amin(X) maxx = np.amax(X) miny = np.amin(Y) maxy = np.amax(Y) corners = (minx, miny), (maxx, maxy) self.update_datalim( corners) self.autoscale_view() self.add_collection(collection) return collection @docstring.dedent_interpd def pcolorfast(self, *args, **kwargs): """ pseudocolor plot of a 2-D array Experimental; this is a pcolor-type method that provides the fastest possible rendering with the Agg backend, and that can handle any quadrilateral grid. It supports only flat shading (no outlines), it lacks support for log scaling of the axes, and it does not have a pyplot wrapper. Call signatures:: ax.pcolorfast(C, **kwargs) ax.pcolorfast(xr, yr, C, **kwargs) ax.pcolorfast(x, y, C, **kwargs) ax.pcolorfast(X, Y, C, **kwargs) C is the 2D array of color values corresponding to quadrilateral cells. Let (nr, nc) be its shape. C may be a masked array. ``ax.pcolorfast(C, **kwargs)`` is equivalent to ``ax.pcolorfast([0,nc], [0,nr], C, **kwargs)`` *xr*, *yr* specify the ranges of *x* and *y* corresponding to the rectangular region bounding *C*. If:: xr = [x0, x1] and:: yr = [y0,y1] then *x* goes from *x0* to *x1* as the second index of *C* goes from 0 to *nc*, etc. (*x0*, *y0*) is the outermost corner of cell (0,0), and (*x1*, *y1*) is the outermost corner of cell (*nr*-1, *nc*-1). All cells are rectangles of the same size. This is the fastest version. *x*, *y* are 1D arrays of length *nc* +1 and *nr* +1, respectively, giving the x and y boundaries of the cells. Hence the cells are rectangular but the grid may be nonuniform. The speed is intermediate. (The grid is checked, and if found to be uniform the fast version is used.) *X* and *Y* are 2D arrays with shape (*nr* +1, *nc* +1) that specify the (x,y) coordinates of the corners of the colored quadrilaterals; the quadrilateral for C[i,j] has corners at (X[i,j],Y[i,j]), (X[i,j+1],Y[i,j+1]), (X[i+1,j],Y[i+1,j]), (X[i+1,j+1],Y[i+1,j+1]). The cells need not be rectangular. This is the most general, but the slowest to render. It may produce faster and more compact output using ps, pdf, and svg backends, however. Note that the the column index corresponds to the x-coordinate, and the row index corresponds to y; for details, see the "Grid Orientation" section below. Optional keyword arguments: *cmap*: [ *None* | Colormap ] A :class:`matplotlib.colors.Colormap` instance from cm. If *None*, use rc settings. *norm*: [ *None* | Normalize ] A :class:`matplotlib.colors.Normalize` instance is used to scale luminance data to 0,1. If *None*, defaults to normalize() *vmin*/*vmax*: [ *None* | scalar ] *vmin* and *vmax* are used in conjunction with norm to normalize luminance data. If either are *None*, the min and max of the color array *C* is used. If you pass a norm instance, *vmin* and *vmax* will be *None*. *alpha*: ``0 <= scalar <= 1`` or *None* the alpha blending value Return value is an image if a regular or rectangular grid is specified, and a :class:`~matplotlib.collections.QuadMesh` collection in the general quadrilateral case. """ if not self._hold: self.cla() alpha = kwargs.pop('alpha', None) norm = kwargs.pop('norm', None) cmap = kwargs.pop('cmap', None) vmin = kwargs.pop('vmin', None) vmax = kwargs.pop('vmax', None) if norm is not None: assert(isinstance(norm, mcolors.Normalize)) C = args[-1] nr, nc = C.shape if len(args) == 1: style = "image" x = [0, nc] y = [0, nr] elif len(args) == 3: x, y = args[:2] x = np.asarray(x) y = np.asarray(y) if x.ndim == 1 and y.ndim == 1: if x.size == 2 and y.size == 2: style = "image" else: dx = np.diff(x) dy = np.diff(y) if (np.ptp(dx) < 0.01*np.abs(dx.mean()) and np.ptp(dy) < 0.01*np.abs(dy.mean())): style = "image" else: style = "pcolorimage" elif x.ndim == 2 and y.ndim == 2: style = "quadmesh" else: raise TypeError("arguments do not match valid signatures") else: raise TypeError("need 1 argument or 3 arguments") if style == "quadmesh": # convert to one dimensional arrays # This should also be moved to the QuadMesh class C = ma.ravel(C) # data point in each cell is value # at lower left corner X = x.ravel() Y = y.ravel() Nx = nc+1 Ny = nr+1 # The following needs to be cleaned up; the renderer # requires separate contiguous arrays for X and Y, # but the QuadMesh class requires the 2D array. coords = np.empty(((Nx * Ny), 2), np.float64) coords[:, 0] = X coords[:, 1] = Y # The QuadMesh class can also be changed to # handle relevant superclass kwargs; the initializer # should do much more than it does now. collection = mcoll.QuadMesh(nc, nr, coords, 0, edgecolors="None") collection.set_alpha(alpha) collection.set_array(C) collection.set_cmap(cmap) collection.set_norm(norm) self.add_collection(collection) xl, xr, yb, yt = X.min(), X.max(), Y.min(), Y.max() ret = collection else: # One of the image styles: xl, xr, yb, yt = x[0], x[-1], y[0], y[-1] if style == "image": im = mimage.AxesImage(self, cmap, norm, interpolation='nearest', origin='lower', extent=(xl, xr, yb, yt), **kwargs) im.set_data(C) im.set_alpha(alpha) self.images.append(im) ret = im if style == "pcolorimage": im = mimage.PcolorImage(self, x, y, C, cmap=cmap, norm=norm, alpha=alpha, **kwargs) self.images.append(im) ret = im self._set_artist_props(ret) if vmin is not None or vmax is not None: ret.set_clim(vmin, vmax) else: ret.autoscale_None() self.update_datalim(np.array([[xl, yb], [xr, yt]])) self.autoscale_view(tight=True) return ret def contour(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = False return mcontour.QuadContourSet(self, *args, **kwargs) contour.__doc__ = mcontour.QuadContourSet.contour_doc def contourf(self, *args, **kwargs): if not self._hold: self.cla() kwargs['filled'] = True return mcontour.QuadContourSet(self, *args, **kwargs) contourf.__doc__ = mcontour.QuadContourSet.contour_doc def clabel(self, CS, *args, **kwargs): return CS.clabel(*args, **kwargs) clabel.__doc__ = mcontour.ContourSet.clabel.__doc__ @docstring.dedent_interpd def table(self, **kwargs): """ Add a table to the current axes. Call signature:: table(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): Returns a :class:`matplotlib.table.Table` instance. For finer grained control over tables, use the :class:`~matplotlib.table.Table` class and add it to the axes with :meth:`~matplotlib.axes.Axes.add_table`. Thanks to <NAME> for providing the class and table. kwargs control the :class:`~matplotlib.table.Table` properties: %(Table)s """ return mtable.table(self, **kwargs) def _make_twin_axes(self, *kl, **kwargs): """ make a twinx axes of self. This is used for twinx and twiny. """ ax2 = self.figure.add_axes(self.get_position(True), *kl, **kwargs) return ax2 def twinx(self): """ Call signature:: ax = twinx() create a twin of Axes for generating a plot with a sharex x-axis but independent y axis. The y-axis of self will have ticks on left and the returned axes will have ticks on the right. .. note:: For those who are 'picking' artists while using twinx, pick events are only called for the artists in the top-most axes. """ ax2 = self._make_twin_axes(sharex=self, frameon=False) ax2.yaxis.tick_right() ax2.yaxis.set_label_position('right') ax2.yaxis.set_offset_position('right') self.yaxis.tick_left() ax2.xaxis.set_visible(False) return ax2 def twiny(self): """ Call signature:: ax = twiny() create a twin of Axes for generating a plot with a shared y-axis but independent x axis. The x-axis of self will have ticks on bottom and the returned axes will have ticks on the top. .. note:: For those who are 'picking' artists while using twiny, pick events are only called for the artists in the top-most axes. """ ax2 = self._make_twin_axes(sharey=self, frameon=False) ax2.xaxis.tick_top() ax2.xaxis.set_label_position('top') self.xaxis.tick_bottom() ax2.yaxis.set_visible(False) return ax2 def get_shared_x_axes(self): 'Return a copy of the shared axes Grouper object for x axes' return self._shared_x_axes def get_shared_y_axes(self): 'Return a copy of the shared axes Grouper object for y axes' return self._shared_y_axes #### Data analysis @docstring.dedent_interpd def hist(self, x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, **kwargs): """ Plot a histogram. Call signature:: hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, **kwargs) Compute and draw the histogram of *x*. The return value is a tuple (*n*, *bins*, *patches*) or ([*n0*, *n1*, ...], *bins*, [*patches0*, *patches1*,...]) if the input contains multiple data. Multiple data can be provided via *x* as a list of datasets of potentially different length ([*x0*, *x1*, ...]), or as a 2-D ndarray in which each column is a dataset. Note that the ndarray form is transposed relative to the list form. Masked arrays are not supported at present. Keyword arguments: *bins*: Either an integer number of bins or a sequence giving the bins. If *bins* is an integer, *bins* + 1 bin edges will be returned, consistent with :func:`numpy.histogram` for numpy version >= 1.3, and with the *new* = True argument in earlier versions. Unequally spaced bins are supported if *bins* is a sequence. *range*: The lower and upper range of the bins. Lower and upper outliers are ignored. If not provided, *range* is (x.min(), x.max()). Range has no effect if *bins* is a sequence. If *bins* is a sequence or *range* is specified, autoscaling is based on the specified bin range instead of the range of x. *normed*: If *True*, the first element of the return tuple will be the counts normalized to form a probability density, i.e., ``n/(len(x)*dbin)``. In a probability density, the integral of the histogram should be 1; you can verify that with a trapezoidal integration of the probability density function:: pdf, bins, patches = ax.hist(...) print np.sum(pdf * np.diff(bins)) .. note:: Until numpy release 1.5, the underlying numpy histogram function was incorrect with *normed*=*True* if bin sizes were unequal. MPL inherited that error. It is now corrected within MPL when using earlier numpy versions *weights*: An array of weights, of the same shape as *x*. Each value in *x* only contributes its associated weight towards the bin count (instead of 1). If *normed* is True, the weights are normalized, so that the integral of the density over the range remains 1. *cumulative*: If *True*, then a histogram is computed where each bin gives the counts in that bin plus all bins for smaller values. The last bin gives the total number of datapoints. If *normed* is also *True* then the histogram is normalized such that the last bin equals 1. If *cumulative* evaluates to less than 0 (e.g. -1), the direction of accumulation is reversed. In this case, if *normed* is also *True*, then the histogram is normalized such that the first bin equals 1. *histtype*: [ 'bar' | 'barstacked' | 'step' | 'stepfilled' ] The type of histogram to draw. - 'bar' is a traditional bar-type histogram. If multiple data are given the bars are aranged side by side. - 'barstacked' is a bar-type histogram where multiple data are stacked on top of each other. - 'step' generates a lineplot that is by default unfilled. - 'stepfilled' generates a lineplot that is by default filled. *align*: ['left' | 'mid' | 'right' ] Controls how the histogram is plotted. - 'left': bars are centered on the left bin edges. - 'mid': bars are centered between the bin edges. - 'right': bars are centered on the right bin edges. *orientation*: [ 'horizontal' | 'vertical' ] If 'horizontal', :func:`~matplotlib.pyplot.barh` will be used for bar-type histograms and the *bottom* kwarg will be the left edges. *rwidth*: The relative width of the bars as a fraction of the bin width. If *None*, automatically compute the width. Ignored if *histtype* = 'step' or 'stepfilled'. *log*: If *True*, the histogram axis will be set to a log scale. If *log* is *True* and *x* is a 1D array, empty bins will be filtered out and only the non-empty (*n*, *bins*, *patches*) will be returned. *color*: Color spec or sequence of color specs, one per dataset. Default (*None*) uses the standard line color sequence. *label*: String, or sequence of strings to match multiple datasets. Bar charts yield multiple patches per dataset, but only the first gets the label, so that the legend command will work as expected:: ax.hist(10+2*np.random.randn(1000), label='men') ax.hist(12+3*np.random.randn(1000), label='women', alpha=0.5) ax.legend() *stacked*: If *True*, multiple data are stacked on top of each other If *False* multiple data are aranged side by side if histtype is 'bar' or on top of each other if histtype is 'step' . kwargs are used to update the properties of the :class:`~matplotlib.patches.Patch` instances returned by *hist*: %(Patch)s **Example:** .. plot:: mpl_examples/pylab_examples/histogram_demo.py """ if not self._hold: self.cla() # xrange becomes range after 2to3 bin_range = range range = __builtins__["range"] # NOTE: the range keyword overwrites the built-in func range !!! # needs to be fixed in numpy !!! # Validate string inputs here so we don't have to clutter # subsequent code. if histtype not in ['bar', 'barstacked', 'step', 'stepfilled']: raise ValueError("histtype %s is not recognized" % histtype) if align not in ['left', 'mid', 'right']: raise ValueError("align kwarg %s is not recognized" % align) if orientation not in [ 'horizontal', 'vertical']: raise ValueError( "orientation kwarg %s is not recognized" % orientation) if kwargs.get('width') is not None: raise mplDeprecation( 'hist now uses the rwidth to give relative width ' 'and not absolute width') if histtype == 'barstacked' and not stacked: stacked=True # Massage 'x' for processing. # NOTE: Be sure any changes here is also done below to 'weights' if isinstance(x, np.ndarray) or not iterable(x[0]): # TODO: support masked arrays; x = np.asarray(x) if x.ndim == 2: x = x.T # 2-D input with columns as datasets; switch to rows elif x.ndim == 1: x = x.reshape(1, x.shape[0]) # new view, single row else: raise ValueError("x must be 1D or 2D") if x.shape[1] < x.shape[0]: warnings.warn('2D hist input should be nsamples x nvariables;\n ' 'this looks transposed (shape is %d x %d)' % x.shape[::-1]) else: # multiple hist with data of different length x = [np.asarray(xi) for xi in x] nx = len(x) # number of datasets if color is None: color = [self._get_lines.color_cycle.next() for i in xrange(nx)] else: color = mcolors.colorConverter.to_rgba_array(color) if len(color) != nx: raise ValueError("color kwarg must have one color per dataset") # We need to do to 'weights' what was done to 'x' if weights is not None: if isinstance(weights, np.ndarray) or not iterable(weights[0]) : w = np.array(weights) if w.ndim == 2: w = w.T elif w.ndim == 1: w.shape = (1, w.shape[0]) else: raise ValueError("weights must be 1D or 2D") else: w = [np.asarray(wi) for wi in weights] if len(w) != nx: raise ValueError('weights should have the same shape as x') for i in xrange(nx): if len(w[i]) != len(x[i]): raise ValueError( 'weights should have the same shape as x') else: w = [None]*nx # Save autoscale state for later restoration; turn autoscaling # off so we can do it all a single time at the end, instead # of having it done by bar or fill and then having to be redone. _saved_autoscalex = self.get_autoscalex_on() _saved_autoscaley = self.get_autoscaley_on() self.set_autoscalex_on(False) self.set_autoscaley_on(False) # Save the datalimits for the same reason: _saved_bounds = self.dataLim.bounds # Check whether bins or range are given explicitly. In that # case use those values for autoscaling. binsgiven = (cbook.iterable(bins) or bin_range != None) # If bins are not specified either explicitly or via range, # we need to figure out the range required for all datasets, # and supply that to np.histogram. if not binsgiven: xmin = np.inf xmax = -np.inf for xi in x: xmin = min(xmin, xi.min()) xmax = max(xmax, xi.max()) bin_range = (xmin, xmax) #hist_kwargs = dict(range=range, normed=bool(normed)) # We will handle the normed kwarg within mpl until we # get to the point of requiring numpy >= 1.5. hist_kwargs = dict(range=bin_range) if np.__version__ < "1.3": # version 1.1 and 1.2 hist_kwargs['new'] = True n = [] mlast = bottom for i in xrange(nx): # this will automatically overwrite bins, # so that each histogram uses the same bins m, bins = np.histogram(x[i], bins, weights=w[i], **hist_kwargs) if mlast is None: mlast = np.zeros(len(bins)-1, m.dtype) if normed: db = np.diff(bins) m = (m.astype(float) / db) / m.sum() if stacked: m += mlast mlast[:] = m n.append(m) if cumulative: slc = slice(None) if cbook.is_numlike(cumulative) and cumulative < 0: slc = slice(None,None,-1) if normed: n = [(m * np.diff(bins))[slc].cumsum()[slc] for m in n] else: n = [m[slc].cumsum()[slc] for m in n] patches = [] if histtype.startswith('bar'): totwidth = np.diff(bins) if rwidth is not None: dr = min(1.0, max(0.0, rwidth)) elif len(n)>1: dr = 0.8 else: dr = 1.0 if histtype=='bar' and not stacked: width = dr*totwidth/nx dw = width if nx > 1: boffset = -0.5*dr*totwidth*(1.0-1.0/nx) else: boffset = 0.0 stacked = False elif histtype=='barstacked' or stacked: width = dr*totwidth boffset, dw = 0.0, 0.0 if align == 'mid' or align == 'edge': boffset += 0.5*totwidth elif align == 'right': boffset += totwidth if orientation == 'horizontal': _barfunc = self.barh else: # orientation == 'vertical' _barfunc = self.bar for m, c in zip(n, color): if bottom is None: bottom = np.zeros(len(m), np.float) if stacked: height = m - bottom else : height = m patch = _barfunc(bins[:-1]+boffset, height, width, align='center', log=log, color=c, bottom=bottom) patches.append(patch) if stacked: bottom[:] = m boffset += dw elif histtype.startswith('step'): # these define the perimeter of the polygon x = np.zeros( 4*len(bins)-3, np.float ) y = np.zeros( 4*len(bins)-3, np.float ) x[0:2*len(bins)-1:2], x[1:2*len(bins)-1:2] = bins, bins[:-1] x[2*len(bins)-1:] = x[1:2*len(bins)-1][::-1] if log: if orientation == 'horizontal': self.set_xscale('log', nonposx = 'clip') logbase = self.xaxis._scale.base else: # orientation == 'vertical' self.set_yscale('log', nonposy = 'clip') logbase = self.yaxis._scale.base # Setting a minimum of 0 results in problems for log plots if normed: # For normed data, set to log base * minimum data value # (gives 1 full tick-label unit for the lowest filled bin) ndata = np.array(n) minimum = (np.min(ndata[ndata>0])) / logbase else: # For non-normed data, set the min to log base, again so that # there is 1 full tick-label unit for the lowest bin minimum = 1.0 / logbase y[0], y[-1] = minimum, minimum else: minimum = np.min(bins) if align == 'left' or align == 'center': x -= 0.5*(bins[1]-bins[0]) elif align == 'right': x += 0.5*(bins[1]-bins[0]) # If fill kwarg is set, it will be passed to the patch collection, # overriding this fill = (histtype == 'stepfilled') xvals, yvals = [], [] for m in n: # starting point for drawing polygon y[0] = y[-1] # top of the previous polygon becomes the bottom y[2*len(bins)-1:] = y[1:2*len(bins)-1][::-1] # set the top of this polygon y[1:2*len(bins)-1:2], y[2:2*len(bins):2] = m, m if log: y[y<minimum]=minimum if orientation == 'horizontal': x,y = y,x xvals.append(x.copy()) yvals.append(y.copy()) # add patches in reverse order so that when stacking, # items lower in the stack are plottted on top of # items higher in the stack for x, y, c in reversed(zip(xvals, yvals, color)): if fill: patches.append( self.fill(x, y, closed=False, facecolor=c) ) else: patches.append( self.fill(x, y, closed=False, edgecolor=c, fill=False) ) # we return patches, so put it back in the expected order patches.reverse() # adopted from adjust_x/ylim part of the bar method if orientation == 'horizontal': xmin0 = max(_saved_bounds[0]*0.9, minimum) xmax = self.dataLim.intervalx[1] for m in n: xmin = np.amin(m[m!=0]) # filter out the 0 height bins xmin = max(xmin*0.9, minimum) xmin = min(xmin0, xmin) self.dataLim.intervalx = (xmin, xmax) elif orientation == 'vertical': ymin0 = max(_saved_bounds[1]*0.9, minimum) ymax = self.dataLim.intervaly[1] for m in n: ymin = np.amin(m[m!=0]) # filter out the 0 height bins ymin = max(ymin*0.9, minimum) ymin = min(ymin0, ymin) self.dataLim.intervaly = (ymin, ymax) if label is None: labels = [None] elif is_string_like(label): labels = [label] elif is_sequence_of_strings(label): labels = list(label) else: raise ValueError('invalid label: must be string or sequence of strings') if len(labels) < nx: labels += [None] * (nx - len(labels)) for (patch, lbl) in zip(patches, labels): if patch: p = patch[0] p.update(kwargs) if lbl is not None: p.set_label(lbl) p.set_snap(False) for p in patch[1:]: p.update(kwargs) p.set_label('_nolegend_') if binsgiven: if orientation == 'vertical': self.update_datalim([(bins[0],0), (bins[-1],0)], updatey=False) else: self.update_datalim([(0,bins[0]), (0,bins[-1])], updatex=False) self.set_autoscalex_on(_saved_autoscalex) self.set_autoscaley_on(_saved_autoscaley) self.autoscale_view() if nx == 1: return n[0], bins, cbook.silent_list('Patch', patches[0]) else: return n, bins, cbook.silent_list('Lists of Patches', patches) @docstring.dedent_interpd def hist2d(self, x, y, bins = 10, range=None, normed=False, weights=None, cmin=None, cmax=None, **kwargs): """ Make a 2D histogram plot. Call signature:: hist2d(x, y, bins = None, range=None, weights=None, cmin=None, cmax=None **kwargs) Make a 2d histogram plot of *x* versus *y*, where *x*, *y* are 1-D sequences of the same length. The return value is ``(counts, xedges, yedges, Image)``. Optional keyword arguments: *bins*: [None | int | [int, int] | array_like | [array, array]] The bin specification: - If int, the number of bins for the two dimensions (nx=ny=bins). - If [int, int], the number of bins in each dimension (nx, ny = bins). - If array_like, the bin edges for the two dimensions (x_edges=y_edges=bins). - If [array, array], the bin edges in each dimension (x_edges, y_edges = bins). The default value is 10. *range*: [*None* | array_like shape(2,2)] The leftmost and rightmost edges of the bins along each dimension (if not specified explicitly in the bins parameters): [[xmin, xmax], [ymin, ymax]]. All values outside of this range will be considered outliers and not tallied in the histogram. *normed*:[True|False] Normalize histogram. The default value is False *weights*: [*None* | array] An array of values w_i weighing each sample (x_i, y_i). *cmin* : [None| scalar] All bins that has count less than cmin will not be displayed and these count values in the return value count histogram will also be set to nan upon return *cmax* : [None| scalar] All bins that has count more than cmax will not be displayed (set to none before passing to imshow) and these count values in the return value count histogram will also be set to nan upon return Remaining keyword arguments are passed directly to :meth:`pcolorfast`. Rendering the histogram with a logarithmic color scale is accomplished by passing a :class:`colors.LogNorm` instance to the *norm* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/hist2d_demo.py """ # xrange becomes range after 2to3 bin_range = range range = __builtins__["range"] h,xedges,yedges = np.histogram2d(x, y, bins=bins, range=bin_range, normed=normed, weights=weights) if cmin is not None: h[h<cmin]=None if cmax is not None: h[h>cmax]=None pc = self.pcolorfast(xedges,yedges,h.T,**kwargs) self.set_xlim(xedges[0],xedges[-1]) self.set_ylim(yedges[0],yedges[-1]) return h,xedges,yedges,pc @docstring.dedent_interpd def psd(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot the power spectral density. Call signature:: psd(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The power spectral density by Welch's average periodogram method. The vector *x* is divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. *noverlap* gives the length of the overlap between segments. The :math:`|\mathrm{fft}(i)|^2` of each segment :math:`i` are averaged to compute *Pxx*, with a scaling to correct for power loss due to windowing. *Fs* is the sampling frequency. %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. Returns the tuple (*Pxx*, *freqs*). For plotting, the power is plotted as :math:`10\log_{10}(P_{xx})` for decibels, though *Pxx* itself is returned. References: <NAME> -- Random Data: Analysis and Measurement Procedures, <NAME> & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/psd_demo.py """ if not self._hold: self.cla() pxx, freqs = mlab.psd(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxx.shape = len(freqs), freqs += Fc if scale_by_freq in (None, True): psd_units = 'dB/Hz' else: psd_units = 'dB' self.plot(freqs, 10*np.log10(pxx), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Power Spectral Density (%s)' % psd_units) self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin logi = int(np.log10(intv)) if logi==0: logi=.1 step = 10*logi #print vmin, vmax, step, intv, math.floor(vmin), math.ceil(vmax)+1 ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxx, freqs @docstring.dedent_interpd def csd(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot cross-spectral density. Call signature:: csd(x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) The cross spectral density :math:`P_{xy}` by Welch's average periodogram method. The vectors *x* and *y* are divided into *NFFT* length segments. Each segment is detrended by function *detrend* and windowed by function *window*. The product of the direct FFTs of *x* and *y* are averaged over each segment to compute :math:`P_{xy}`, with a scaling to correct for power loss due to windowing. Returns the tuple (*Pxy*, *freqs*). *P* is the cross spectrum (complex valued), and :math:`10\log_{10}|P_{xy}|` is plotted. %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. References: Bendat & Piersol -- Random Data: Analysis and Measurement Procedures, <NAME> & Sons (1986) kwargs control the Line2D properties: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/csd_demo.py .. seealso: :meth:`psd` For a description of the optional parameters. """ if not self._hold: self.cla() pxy, freqs = mlab.csd(x, y, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) pxy.shape = len(freqs), # pxy is complex freqs += Fc self.plot(freqs, 10*np.log10(np.absolute(pxy)), **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Cross Spectrum Magnitude (dB)') self.grid(True) vmin, vmax = self.viewLim.intervaly intv = vmax-vmin step = 10*int(np.log10(intv)) ticks = np.arange(math.floor(vmin), math.ceil(vmax)+1, step) self.set_yticks(ticks) return pxy, freqs @docstring.dedent_interpd def cohere(self, x, y, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot the coherence between *x* and *y*. Call signature:: cohere(x, y, NFFT=256, Fs=2, Fc=0, detrend = mlab.detrend_none, window = mlab.window_hanning, noverlap=0, pad_to=None, sides='default', scale_by_freq=None, **kwargs) Plot the coherence between *x* and *y*. Coherence is the normalized cross spectral density: .. math:: C_{xy} = \\frac{|P_{xy}|^2}{P_{xx}P_{yy}} %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 0 (no overlap). *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the x extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. The return value is a tuple (*Cxy*, *f*), where *f* are the frequencies of the coherence vector. kwargs are applied to the lines. References: * <NAME> -- Random Data: Analysis and Measurement Procedures, <NAME> & Sons (1986) kwargs control the :class:`~matplotlib.lines.Line2D` properties of the coherence plot: %(Line2D)s **Example:** .. plot:: mpl_examples/pylab_examples/cohere_demo.py """ if not self._hold: self.cla() cxy, freqs = mlab.cohere(x, y, NFFT, Fs, detrend, window, noverlap, scale_by_freq) freqs += Fc self.plot(freqs, cxy, **kwargs) self.set_xlabel('Frequency') self.set_ylabel('Coherence') self.grid(True) return cxy, freqs @docstring.dedent_interpd def specgram(self, x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, **kwargs): """ Plot a spectrogram. Call signature:: specgram(x, NFFT=256, Fs=2, Fc=0, detrend=mlab.detrend_none, window=mlab.window_hanning, noverlap=128, cmap=None, xextent=None, pad_to=None, sides='default', scale_by_freq=None, **kwargs) Compute a spectrogram of data in *x*. Data are split into *NFFT* length segments and the PSD of each section is computed. The windowing function *window* is applied to each segment, and the amount of overlap of each segment is specified with *noverlap*. %(PSD)s *noverlap*: integer The number of points of overlap between blocks. The default value is 128. *Fc*: integer The center frequency of *x* (defaults to 0), which offsets the y extents of the plot to reflect the frequency range used when a signal is acquired and then filtered and downsampled to baseband. *cmap*: A :class:`matplotlib.colors.Colormap` instance; if *None*, use default determined by rc *xextent*: The image extent along the x-axis. xextent = (xmin,xmax) The default is (0,max(bins)), where bins is the return value from :func:`~matplotlib.mlab.specgram` *kwargs*: Additional kwargs are passed on to imshow which makes the specgram image Return value is (*Pxx*, *freqs*, *bins*, *im*): - *bins* are the time points the spectrogram is calculated over - *freqs* is an array of frequencies - *Pxx* is an array of shape `(len(times), len(freqs))` of power - *im* is a :class:`~matplotlib.image.AxesImage` instance Note: If *x* is real (i.e. non-complex), only the positive spectrum is shown. If *x* is complex, both positive and negative parts of the spectrum are shown. This can be overridden using the *sides* keyword argument. **Example:** .. plot:: mpl_examples/pylab_examples/specgram_demo.py """ if not self._hold: self.cla() Pxx, freqs, bins = mlab.specgram(x, NFFT, Fs, detrend, window, noverlap, pad_to, sides, scale_by_freq) Z = 10. * np.log10(Pxx) Z = np.flipud(Z) if xextent is None: xextent = 0, np.amax(bins) xmin, xmax = xextent freqs += Fc extent = xmin, xmax, freqs[0], freqs[-1] im = self.imshow(Z, cmap, extent=extent, **kwargs) self.axis('auto') return Pxx, freqs, bins, im def spy(self, Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs): """ Plot the sparsity pattern on a 2-D array. Call signature:: spy(Z, precision=0, marker=None, markersize=None, aspect='equal', **kwargs) ``spy(Z)`` plots the sparsity pattern of the 2-D array *Z*. If *precision* is 0, any non-zero value will be plotted; else, values of :math:`|Z| > precision` will be plotted. For :class:`scipy.sparse.spmatrix` instances, there is a special case: if *precision* is 'present', any value present in the array will be plotted, even if it is identically zero. The array will be plotted as it would be printed, with the first index (row) increasing down and the second index (column) increasing to the right. By default aspect is 'equal', so that each array element occupies a square space; set the aspect kwarg to 'auto' to allow the plot to fill the plot box, or to any scalar number to specify the aspect ratio of an array element directly. Two plotting styles are available: image or marker. Both are available for full arrays, but only the marker style works for :class:`scipy.sparse.spmatrix` instances. If *marker* and *markersize* are *None*, an image will be returned and any remaining kwargs are passed to :func:`~matplotlib.pyplot.imshow`; else, a :class:`~matplotlib.lines.Line2D` object will be returned with the value of marker determining the marker type, and any remaining kwargs passed to the :meth:`~matplotlib.axes.Axes.plot` method. If *marker* and *markersize* are *None*, useful kwargs include: * *cmap* * *alpha* .. seealso:: :func:`~matplotlib.pyplot.imshow` For image options. For controlling colors, e.g. cyan background and red marks, use:: cmap = mcolors.ListedColormap(['c','r']) If *marker* or *markersize* is not *None*, useful kwargs include: * *marker* * *markersize* * *color* Useful values for *marker* include: * 's' square (default) * 'o' circle * '.' point * ',' pixel .. seealso:: :func:`~matplotlib.pyplot.plot` For plotting options """ if precision is None: precision = 0 warnings.warn("Use precision=0 instead of None", mplDeprecation) # 2008/10/03 if marker is None and markersize is None and hasattr(Z, 'tocoo'): marker = 's' if marker is None and markersize is None: Z = np.asarray(Z) mask = np.absolute(Z)>precision if 'cmap' not in kwargs: kwargs['cmap'] = mcolors.ListedColormap(['w', 'k'], name='binary') nr, nc = Z.shape extent = [-0.5, nc-0.5, nr-0.5, -0.5] ret = self.imshow(mask, interpolation='nearest', aspect=aspect, extent=extent, origin='upper', **kwargs) else: if hasattr(Z, 'tocoo'): c = Z.tocoo() if precision == 'present': y = c.row x = c.col else: nonzero = np.absolute(c.data) > precision y = c.row[nonzero] x = c.col[nonzero] else: Z = np.asarray(Z) nonzero =
np.absolute(Z)
numpy.absolute
import pylab as plt; import numpy as np; import pandas as pd import math; import json; from numpy.random import random, normal, uniform, randint from scipy.interpolate import interp1d; from astropy_healpix import HEALPix; from astropy.coordinates import ICRS, SkyCoord; from astropy import units as u; from timeit import default_timer as timer start = timer() N = 1000 ##Change to alter the number of loops the code runs for placement = np.zeros(N) placement2 = np.zeros(N) placement3 = np.zeros(N) placement4 = np.zeros(N) placement5 = np.zeros(N) placement6 = np.zeros(N) placement7 = np.zeros(N) placement8 = np.zeros(N) placement9 = np.zeros(N) placement10 = np.zeros(N) placement11 = np.zeros(N) placement12 =
np.zeros(N)
numpy.zeros
import sys, time, os, json import numpy as np import matplotlib.pylab as plt import tensorflow as tf import keras.backend as K from PIL import Image, ImageOps from keras.models import * from keras.layers import * from keras.layers.merge import _Merge from keras.optimizers import * from google.colab import drive from functools import partial def Unet(img_shape, division, conv_num=7): def conv2d(x, conv, bn=True): x = conv(x) x = LeakyReLU(0.2)(x) if bn: x = BatchNormalization(momentum=0.8)(x) return x def deconv2d(x, conv, contracting_path): x = UpSampling2D(2)(x) x = conv(x) x = Activation('relu')(x) x = BatchNormalization(momentum=0.8)(x) return Concatenate()([x, contracting_path]) #重み共有 c = [Conv2D(min(512, 64*2**i), 4, strides=2, padding='same') for i in range(conv_num)] d = [Conv2D(min(512, 64*2**(conv_num-2-i)), 4, padding='same') for i in range(conv_num-1)] models = [] for k in range(division): img_B = Input((img_shape[0]//2**k, img_shape[1]//2**k, img_shape[-1])) #エンコーダー x = [Conv2D(32*2**k, 4, padding='same')(img_B) if k > 0 else img_B] for i in range(conv_num-k): x.append(conv2d(x[-1], c[i+k], not i)) #デコーダー y = x[-1] for i in range(conv_num-k-1): y = deconv2d(y, d[i], x[-2-i]) #元サイズ出力 y = UpSampling2D(2)(y) y = Conv2D(img_shape[-1], 4, padding='same', activation='tanh')(y) models.append(Model(img_B, y)) return models def Discriminator(img_shape, division, conv_num): def d_layer(x, conv, bn=True): x = conv(x) x = LeakyReLU(0.2)(x) if bn: x = BatchNormalization(momentum=0.8)(x) return x #重み共有 c = [Conv2D(min(512, 64*2**i), 4, strides=2, padding='same') for i in range(conv_num)] models = [] for k in range(division): div_shape = (img_shape[0]//2**k, img_shape[1]//2**k, img_shape[-1]) img_A = Input(div_shape) img_B = Input(div_shape) x = Concatenate()([img_A, img_B]) x = Conv2D(32*2**k, 4, padding='same')(x) if k > 0 else x #PatchGANのサイズまで畳み込み for i in range(conv_num-k): x = d_layer(x, c[i+k], not i) #真偽出力 x = Conv2D(1, 4, padding='same')(x) models.append(Model([img_A, img_B], x)) return models def create_models(gen_base_path, disc_base_path, img_shape, division, disc_conv_num): opt = Adam(0.0002, 0.5) gens = Unet(img_shape, division) discs = Discriminator(img_shape, division, disc_conv_num) g_trainers = [] for k in range(division): gen = gens[k] disc = discs[k] #生成訓練モデル disc.compile(loss='mean_squared_error', optimizer=opt) disc.trainable = False k_shape = (img_shape[0]//2**k, img_shape[1]//2**k, img_shape[-1]) img_A = Input(k_shape) img_B = Input(k_shape) fake_A = gen(img_B) valid = disc([fake_A, img_B]) g_trainer = Model([img_A, img_B], [valid, fake_A]) g_trainer.compile(loss=['mean_squared_error', 'mean_absolute_error'], loss_weights=[1, 100], optimizer=opt) g_trainers.append(g_trainer) #重みの復元 disc_path = "%s_%s.h5"%(disc_base_path,k) if os.path.isfile(disc_path): gen.load_weights("%s_%s.h5"%(gen_base_path,k)) disc.load_weights(disc_path) return gens, discs, g_trainers, discs def train_on_batch(gen, g_trainer, d_trainer, train_A, train_B, train_num, img_size, batch_size, patch_size): #PatchGAN patch_shape = (patch_size, patch_size, 1) real = np.ones((batch_size,) + patch_shape) fake = np.zeros((batch_size,) + patch_shape) #バッチ範囲をランダム選択 idx = np.random.choice(train_num, batch_size, replace=False) imgs_A = convert_rgb(resize_imgs(train_A[idx], img_size)).astype(np.float32) / 255 imgs_B = convert_rgb(resize_imgs(train_B[idx], img_size)).astype(np.float32) / 255 #識別訓練 fake_A = gen.predict(imgs_B) d_loss_real = d_trainer.train_on_batch([imgs_A, imgs_B], real) d_loss_fake = d_trainer.train_on_batch([fake_A, imgs_B], fake) d_loss = np.add(d_loss_real, d_loss_fake) * 0.5 #生成訓練 g_loss = g_trainer.train_on_batch([imgs_A, imgs_B], [real, imgs_A]) return d_loss, g_loss def train(name_B, name_A, train_num, test_num, img_size): #ドライブをマウントしてフォルダ作成 drive_root = '/content/drive' drive.mount(drive_root) my_drive = "%s/My Drive"%drive_root datasets_dir = "%s/datasets"%my_drive train_dir = "%s/train/%s_%s%d_%d_pg"%(my_drive,name_B,name_A,img_size,train_num) imgs_dir = "%s/imgs"%train_dir save_dir = "%s/save"%train_dir os.makedirs(imgs_dir, exist_ok=True) os.makedirs(save_dir, exist_ok=True) #教師データ img_shape = (img_size,img_size,3) shape_A = img_shape if name_A == "color" else (img_size,img_size) shape_B = img_shape if name_B == "color" else (img_size,img_size) data_num = train_num + test_num train_A = np.memmap("%s/%s%d_%d.npy"%(datasets_dir,name_A,img_size,data_num), dtype=np.uint8, mode="r", shape=(data_num,)+shape_A) train_B = np.memmap("%s/%s%d_%d.npy"%(datasets_dir,name_B,img_size,data_num), dtype=np.uint8, mode="r", shape=(data_num,)+shape_B) #訓練回数 batch_size = 100 disc_conv_num = 4 batch_num = train_num // batch_size division_epochs = [20, 20, 20, 20] epochs = sum(division_epochs) division = len(division_epochs) patch_size = img_size // 2**disc_conv_num #前回までの訓練情報 info_path = "%s/info.json"%train_dir info = json.load(open(info_path)) if os.path.isfile(info_path) else {"epoch":0} last_epoch = info["epoch"] #モデル gen_base_path = "%s/gen"%train_dir disc_base_path = "%s/disc"%train_dir gens, discs, g_trainers, d_trainers = create_models(gen_base_path, disc_base_path, img_shape, division, disc_conv_num) #エポック for kk, v in enumerate(division_epochs): k = division - kk - 1 gen = gens[k] disc = discs[k] d_trainer = d_trainers[k] g_trainer = g_trainers[k] div_size = img_size // 2**k for ee in range(v): e = sum(division_epochs[:kk]) + ee if e < last_epoch: continue start = time.time() #ミニバッチ for i in range(batch_num): #訓練 d_loss, g_loss = train_on_batch(gen, g_trainer, d_trainer, train_A, train_B, train_num, div_size, batch_size, patch_size) #ログ print("\repoch:%d/%d batch:%d/%d %ds d_loss:%s g_loss:%s" % (e+1,epochs, (i+1),batch_num, (time.time()-start), d_loss, g_loss), end="") sys.stdout.flush() print() #画像生成テスト if (e+1) % 10 == 0 or e == 0: print_img(gen, train_A, train_B, 0, train_num, div_size, "train", imgs_dir, e+1) print_img(gen, train_A, train_B, train_num, test_num, div_size, "test", imgs_dir, e+1) gen.save_weights("%s/gen_%s_%s.h5"%(save_dir,k,e+1)) disc.save_weights("%s/disc_%s_%s.h5"%(save_dir,k,e+1)) #重みの保存 gen.save_weights("%s_%s.h5"%(gen_base_path,k)) disc.save_weights("%s_%s.h5"%(disc_base_path,k)) info["epoch"] += 1 with open(info_path, "w") as f: json.dump(info, f) def mirror_imgs(train_B): return np.array([np.asarray(ImageOps.mirror(Image.fromarray(x))) for x in train_B]) def convert_rgb(train_B): if len(train_B.shape) == 3: return np.array([np.asarray(Image.fromarray(x).convert("RGB")) for x in train_B]) return train_B def resize_imgs(train_B, img_size): return np.array([np.asarray(Image.fromarray(x).resize((img_size, img_size))) for x in train_B]) def print_img(gen, train_A, train_B, offset, limit, img_size, title, imgs_dir, epoch): #データをランダム選択 num = 10 idx = np.random.choice(limit, num, replace=False) + offset imgs_A = convert_rgb(resize_imgs(train_A[idx], img_size)) imgs_B = convert_rgb(resize_imgs(train_B[idx], img_size)) #生成してみる fake_A = gen.predict(imgs_B.astype(np.float32) / 255) fake_A = (fake_A * 255).clip(0).astype(np.uint8) #繋げる imgs_A = np.concatenate(imgs_A, axis=1) imgs_B =
np.concatenate(imgs_B, axis=1)
numpy.concatenate
import unittest, os, glob # Eliminate TF warning in tests os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf from ovejero import data_tools import numpy as np import pandas as pd from helpers import dataset_comparison from matplotlib import pyplot as plt class TFRecordTests(unittest.TestCase): def setUp(self, *args, **kwargs): self.root_path = os.path.dirname(os.path.abspath(__file__))+'/test_data/' self.lens_params = ['external_shear_gamma_ext','external_shear_psi_ext', 'lens_mass_center_x','lens_mass_center_y', 'lens_mass_e1','lens_mass_e2', 'lens_mass_gamma','lens_mass_theta_E'] self.lens_params_path = self.root_path + 'metadata.csv' self.tf_record_path = self.root_path + 'test_record' self.baobab_config_path = self.root_path + 'test_baobab_cfg.py' def test_normalize_lens_parameters(self): # Test if normalizing the lens parameters works correctly. normalized_param_path = self.root_path + 'normed_metadata.csv' normalization_constants_path = self.root_path + 'norm.csv' train_or_test='train' data_tools.normalize_lens_parameters(self.lens_params, self.lens_params_path,normalized_param_path, normalization_constants_path,train_or_test=train_or_test) lens_params_csv = pd.read_csv(self.lens_params_path, index_col=None) norm_params_csv = pd.read_csv(normalized_param_path, index_col=None) norm_constants_csv = pd.read_csv(normalization_constants_path) for lens_param in self.lens_params: # Assert that the two lists agree once we factor for normalization self.assertAlmostEqual(np.sum(np.abs(lens_params_csv[lens_param] - (norm_params_csv[lens_param]*norm_constants_csv[lens_param][1]+ norm_constants_csv[lens_param][0]))),0) # Repeat the same, but with the tet time functionality normalized_param_path = self.root_path + 'test_normalization.csv' normalization_constants_path = self.root_path + 'norm.csv' train_or_test='test' data_tools.normalize_lens_parameters(self.lens_params, self.lens_params_path,normalized_param_path, normalization_constants_path,train_or_test=train_or_test) lens_params_csv = pd.read_csv(self.lens_params_path, index_col=None) norm_params_csv = pd.read_csv(normalized_param_path, index_col=None) for lens_param in self.lens_params: # Assert that the two lists agree once we factor for normalization self.assertAlmostEqual(np.sum(np.abs(lens_params_csv[lens_param] - (norm_params_csv[lens_param]*norm_constants_csv[lens_param][1]+ norm_constants_csv[lens_param][0]))),0) # Clean up the file now that we're done os.remove(normalized_param_path) os.remove(normalization_constants_path) def test_write_parameters_in_log_space(self): # Test if putting the lens parameters in log space works correctly. new_lens_params_path = self.root_path + 'metadata_log.csv' data_tools.write_parameters_in_log_space(['lens_mass_theta_E'], self.lens_params_path,new_lens_params_path) lens_params_csv = pd.read_csv(new_lens_params_path, index_col=None) self.assertTrue('lens_mass_theta_E_log' in lens_params_csv) # Assert that the two parameters agree once we factor for log self.assertAlmostEqual(np.sum(np.abs( lens_params_csv['lens_mass_theta_E_log'] - np.log(lens_params_csv['lens_mass_theta_E']))),0) # Clean up the file now that we're done os.remove(new_lens_params_path) def test_gampsi_2_g1g2(self): # Test if putting the lens parameters in excentricities works correctly. new_lens_params_path = self.root_path + 'metadata_e1e2.csv' data_tools.gampsi_2_g1g2('external_shear_gamma_ext', 'external_shear_psi_ext',self.lens_params_path,new_lens_params_path, 'external_shear') lens_params_csv = pd.read_csv(new_lens_params_path, index_col=None) self.assertTrue('external_shear_g1' in lens_params_csv) self.assertTrue('external_shear_g2' in lens_params_csv) # Assert that the two parameters agree once we factor for log gamma = lens_params_csv['external_shear_gamma_ext'] ang = lens_params_csv['external_shear_psi_ext'] g1 = gamma*
np.cos(2*ang)
numpy.cos
import os import sys import glob import h5py import numpy as np import torch from torch.utils.data import Dataset # change this to your data root DATA_DIR = "data/" os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" def download_modelnet40(): if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR) if not os.path.exists(os.path.join(DATA_DIR, "modelnet40_ply_hdf5_2048")): os.mkdir(os.path.join(DATA_DIR, "modelnet40_ply_hdf5_2048")) www = "https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip" zipfile = os.path.basename(www) os.system("wget %s --no-check-certificate; unzip %s" % (www, zipfile)) os.system("mv %s %s" % (zipfile[:-4], DATA_DIR)) os.system("rm %s" % (zipfile)) def download_shapenetpart(): if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR) if not os.path.exists(os.path.join(DATA_DIR)): os.mkdir(os.path.join(DATA_DIR)) www = "https://shapenet.cs.stanford.edu/media/shapenet_part_seg_hdf5_data.zip" zipfile = os.path.basename(www) os.system("wget %s --no-check-certificate; unzip %s" % (www, zipfile)) os.system("mv %s %s" % (zipfile[:-4], os.path.join(DATA_DIR))) os.system("rm %s" % (zipfile)) def load_data_normal(partition): f = h5py.File( os.path.join(DATA_DIR, "modelnet40_normal", "normal_%s.h5" % partition), "r+" ) data = f["xyz"][:].astype("float32") label = f["normal"][:].astype("float32") f.close() return data, label def load_data_cls(partition): download_modelnet40() all_data = [] all_label = [] for h5_name in glob.glob( os.path.join(DATA_DIR, "modelnet40*hdf5_2048", "*%s*.h5" % partition) ): f = h5py.File(h5_name, "r+") data = f["data"][:].astype("float32") label = f["label"][:].astype("int64") f.close() all_data.append(data) all_label.append(label) all_data = np.concatenate(all_data, axis=0) all_label = np.concatenate(all_label, axis=0) return all_data, all_label def load_data_partseg(partition): download_shapenetpart() all_data = [] all_label = [] all_seg = [] if partition == "trainval": file = glob.glob( os.path.join(DATA_DIR, "part_segmentation_data", "*train*.h5") ) + glob.glob(os.path.join(DATA_DIR, "part_segmentation_data", "*val*.h5")) else: file = glob.glob( os.path.join(DATA_DIR, "part_segmentation_data", "*%s*.h5" % partition) ) for h5_name in file: f = h5py.File(h5_name, "r+") data = f["data"][:].astype("float32") label = f["label"][:].astype("int64") seg = f["pid"][:].astype("int64") f.close() all_data.append(data) all_label.append(label) all_seg.append(seg) all_data = np.concatenate(all_data, axis=0) all_label = np.concatenate(all_label, axis=0) all_seg = np.concatenate(all_seg, axis=0) return all_data, all_label, all_seg def translate_pointcloud(pointcloud): xyz1 = np.random.uniform(low=2.0 / 3.0, high=3.0 / 2.0, size=[3]) xyz2 = np.random.uniform(low=-0.2, high=0.2, size=[3]) translated_pointcloud = np.add(
np.multiply(pointcloud, xyz1)
numpy.multiply
""" logreg.py This module contains functions to run and analyse logistic regressions to predict stimulus information from ROI activity for data generated by the Allen Institute OpenScope experiments for the Credit Assignment Project. Authors: <NAME> Date: October, 2018 Note: this code uses python 3.7. """ import os import copy import logging import warnings from matplotlib import pyplot as plt import numpy as np import pandas as pd import torch from analysis import quint_analys from util import data_util, file_util, gen_util, logger_util, logreg_util, \ math_util, plot_util from sess_util import sess_gen_util, sess_ntuple_util, sess_str_util from plot_fcts import logreg_plots from util import gen_util logger = logging.getLogger(__name__) TAB = " " #### ALWAYS SET TO FALSE - CHANGE ONLY FOR TESTING PURPOSES TEST_BRICKS_VARIATIONS = False ############################################# def get_comps(stimtype="gabors", q1v4=False, regvsurp=False): """ get_comps() Returns comparisons that fit the criteria. Optional args: - stimtype (str) : stimtype default: "gabors" - q1v4 (bool) : if True, analysis is trained on first and tested on last quintiles default: False - regvsurp (bool): if True, analysis is trained on regular and tested on regular sequences default: False Returns: - comps (list): list of comparisons that fit the criteria """ if stimtype == "gabors": if regvsurp: raise ValueError("regvsurp can only be used with bricks.") comps = ["surp", "AvB", "AvC", "BvC", "DvU", "Aori", "Bori", "Cori", "Dori", "Uori", "DoriU", "DoriA", "BCDoriA", "BCDoriU", "ABCoriD", "ABCoriU"] elif stimtype == "bricks": comps = ["surp", "dir_all", "dir_surp", "dir_reg", "half_right", "half_left", "half_diff"] if regvsurp: comps = gen_util.remove_if( comps, ["surp", "dir_surp", "dir_all", "half_right", "half_left", "half_diff"]) if q1v4: comps = gen_util.remove_if( comps, ["half_left", "half_right", "half_diff"]) else: gen_util.accepted_values_error( "stimtype", stimtype, ["gabors", "bricks"]) return comps ############################################# def get_class_pars(comp="surp", stimtype="gabors"): """ get_class_pars() Returns name of the class determining variable, and the surprise values to use for the classes. Optional args: - comp (str) : type of comparison default: "surp" - stimtype (str) : stimulus type default: "gabors" Returns: - class_var (str) : variable separating classes (e.g., "surps", "gab_ori", "bri_dir") - surps (str or list): surprise values (for each class, if list) """ if stimtype == "gabors": if comp == "surp": class_var = "surps" surps = [0, 1] elif comp == "DvU": class_var = "surps" surps = [0, 1] elif "ori" in comp: class_var = "gab_ori" gab_letts = [lett.upper() for lett in comp.split("ori") if len(lett) > 0] surps = [] for lett in gab_letts: if ("D" in lett) ^ ("U" in lett): # exclusive or surp_val = 1 if "U" in lett else 0 surps.append(surp_val) else: surps.append("any") if len(gab_letts) == 1: surps = surps[0] elif "dir" in comp: raise ValueError("dir comparison not valid for gabors.") else: class_var = "gabfr" surps = "any" elif stimtype == "bricks": class_var = "bri_dir" if comp == "dir_all": surps = "any" elif comp == "dir_reg": surps = 0 elif comp == "dir_surp": surps = 1 elif comp == "surp": surps = [0, 1] class_var = "surps" elif comp in ["half_right", "half_left", "half_diff"]: surps = "any" class_var = comp else: raise ValueError("Only surp, dir_all, dir_reg, dir_surp, " "samehalf, diffhalf comparisons supported for Bricks.") return class_var, surps ############################################# def get_stimpar(comp="surp", stimtype="gabors", bri_dir="both", bri_size=128, gabfr=0, gabk=16, gab_ori="all", bri_pre=0.0): """ get_stimpar() Returns a stimulus parameter named tuple based on the stimulus parameters passed and comparison type. Optional args: - comp (str) : type of comparison default: "surp" - stimtype (str) : stimulus type default: "gabors" - bri_dir (str or list) : brick direction default: "both" - bri_size (int or list): brick direction default: 128 - gabfr (int or list) : gabor frame of reference (may be a list depending on "comp") default: 0 - gabk (int or list) : gabor kappa default: 16 - gab_ori (str) : gabor orientations ("all" or "shared"), for comp values like DoriU, DoriA, etc. default: "all" - bri_pre (int) : pre parameter for Bricks default: 0.0 Returns: - stimpar (StimPar) : named tuple containing stimulus parameters """ if stimtype == "bricks" and "half" in bri_dir or "dir" in bri_dir: logger.info("Ignoring brick dir setting.") if not (len(comp.replace("ori", "").upper()) > 1): gab_ori = "all" [bri_dir, bri_size, gabfr, gabk, gab_ori] = sess_gen_util.get_params( stimtype, bri_dir, bri_size, gabfr, gabk, gab_ori) if stimtype == "gabors": # DO NOT ALLOW OVERLAPPING if comp == "surp": stimpar = sess_ntuple_util.init_stimpar( stimtype, bri_dir, bri_size, gabfr, gabk, gab_ori, 0, 1.5) elif comp == "DvU": gabfr = sess_str_util.gabfr_nbrs(comp[0]) stimpar = sess_ntuple_util.init_stimpar( stimtype, bri_dir, bri_size, gabfr, gabk, gab_ori, 0, 0.45) elif "ori" in comp: gab_letts = [lett.upper() for lett in comp.split("ori") if len(lett) > 0] act_gabfr = [[sess_str_util.gabfr_nbrs(lett) for lett in letts] for letts in gab_letts] if len(act_gabfr) == 1: pre, post = 0, 0.45 if comp in ["Dori", "Uori"]: pre, post = 0, 0.6 act_gabfr = act_gabfr[0] if act_gabfr != gabfr: logger.info( f"Setting gabfr to {act_gabfr} instead of {gabfr}.") else: pre, post = -0.15, 0.45 gab_ori = sess_gen_util.gab_oris_shared_U(gab_letts, gab_ori) stimpar = sess_ntuple_util.init_stimpar( stimtype, bri_dir, bri_size, act_gabfr, gabk, gab_ori, pre, post) elif "dir" in comp or "half" in comp: raise ValueError("dir/half comparison not valid for gabors.") else: gabfrs = sess_str_util.gabfr_nbrs([comp[0], comp[2]]) stimpar = sess_ntuple_util.init_stimpar( stimtype, bri_dir, bri_size, gabfrs, gabk, gab_ori, 0, 0.45) elif stimtype == "bricks": # DO NOT ALLOW OVERLAPPING if "right" in comp: bri_dir = "right" elif "left" in comp: bri_dir = "left" stimpar = sess_ntuple_util.init_stimpar( stimtype, bri_dir, bri_size, gabfr, gabk, gab_ori, bri_pre, 1.0) # for brick logreg test analyses if TEST_BRICKS_VARIATIONS: logger.warning("Setting bricks pre/post to 2 for testing purposes.") stimpar = sess_ntuple_util.init_stimpar( stimtype, bri_dir, bri_size, gabfr, gabk, gab_ori, 2, 2) return stimpar ############################################# def get_rundir(run_val, uniqueid=None, alg="sklearn"): """ get_rundir(run_val) Returns the name of the specific subdirectory in which an analysis is saved, based on a run number and unique ID. Required args: - run_val (int): run number ("pytorch" alg) or number of run ("sklearn" alg) Optional args: - uniqueid (str or int): unique ID for analysis default: None - alg (str) : algorithm used to run logistic regression ("sklearn" or "pytorch") default: "sklearn" Returns: - rundir (str): name of subdirectory to save analysis in """ if uniqueid is None: if alg == "sklearn": rundir = f"{run_val}_runs" elif alg == "pytorch": rundir = f"run_{run_val}" else: gen_util.accepted_values_error("alg", alg, ["sklearn", "pytorch"]) else: rundir = f"{uniqueid}_{run_val}" return rundir ############################################# def get_compdir_dict(rundir, no_lists=False): """ get_compdir_dict(rundir) Returns a dictionary with analysis parameters based on the full analysis path. Required args: - rundir (str): path of subdirectory in which analysis is saved, structured as ".../m_s_plane_stim_fluor_scaled_comp_shuffled/ uniqueid_run" Optional args: - no_lists (bool): if True, list parameters are replaced with a string, e.g. "both" False Returns: - compdir_dict (dict): parameter dictionary - bri_dir (str or list) : Bricks direction parameter ("right", "left", ["right", "left"] or "none") - bri_size (int or list): Bricks size parameter (128, 256, [128, 256] or "none") - comp (str) : comparison parameter ("surp", "AvB", "AvC", "BvC" or "DvU", None) - fluor (str) : fluorescence parameter ("raw" or "dff") - gabk (int or list) : Gabor kappa parameter (4, 16, [4, 16] or "none") - plane (str) : plane ("soma" or "dend") - mouse_n (int) : mouse number - sess_n (int) : session number - scale (bool) : scaling parameter - run_n (int) : run number - shuffle (bool) : shuffle parameter - stimtype (str) : stimulus type ("gabors" or "bricks") - uniqueid (str) : unique ID (datetime, 6 digit number or None) """ parts = rundir.split(os.sep) param_str = parts[-2] run_str = parts[-1] compdir_dict = sess_gen_util.get_params_from_str(param_str, no_lists) if "run" in run_str: compdir_dict["uniqueid"] = None compdir_dict["run_n"] = int(run_str.split("_")[1]) else: compdir_dict["uniqueid"] = "_".join( [str(sub) for sub in run_str.split("_")[:-1]]) compdir_dict["run_n"] = int(run_str.split("_")[-1]) return compdir_dict ############################################# def get_df_name(task="analyse", stimtype="gabors", comp="surp", ctrl=False, alg="sklearn"): """ get_df_name() Returns a dictionary with analysis parameters based on the full analysis path. Optional args: - task (str) : type of task for which to get the dataframe default: "analyse" - stimtype (str): type of stimulus default: "gabors" - comp (str) : type of comparison default: "surp" - ctrl (bool) : if True, control comparisons are analysed default: False - alg (str) : algorithm used to run logistic regression ("sklearn" or "pytorch") default: "sklearn" Returns: - df_name (str): name of the dataframe """ alg_str = "" if alg == "pytorch": alg_str = "_pt" elif alg != "sklearn": gen_util.accepted_values_error("alg", alg, ["pytorch", "sklearn"]) ctrl_str = sess_str_util.ctrl_par_str(ctrl) sub_str = f"{stimtype[0:3]}_{comp}{ctrl_str}{alg_str}" if task == "collate": df_name = f"{sub_str}_all_scores_df.csv" elif task == "analyse": df_name = f"{sub_str}_score_stats_df.csv" return df_name ############################################# def info_dict(analyspar=None, sesspar=None, stimpar=None, extrapar=None, comp="surp", alg="sklearn", n_rois=None, epoch_n=None): """ info_dict() Returns an info dictionary from the parameters. Includes epoch number if it is passed. Returns an ordered list of keys instead if any of the dictionaries or namedtuples are None. Required args: - analyspar (AnalysPar): named tuple containing analysis parameters default: None - sesspar (SessPar) : named tuple containing session parameters default: None - stimpar (StimPar) : named tuple containing stimulus parameters default: None - extrapar (dict) : dictionary with extra parameters default: None ["run_n"] (int) : run number ["shuffle"] (bool): whether data is shuffled ["uniqueid"] (str): uniqueid Optional args: - comp (str) : comparison type default: "surp" - alg (str) : algorithm used to run logistic regression ("sklearn" or "pytorch") default: "sklearn" - n_rois (int) : number of ROIs default: None - epoch_n (int): epoch number default: None Returns: if all namedtuples and dictionaries are passed: - info (dict): analysis dictionary else if any are None: - info (list): list of dictionary keys """ if not any(par is None for par in [analyspar, sesspar, stimpar, extrapar]): if stimpar.stimtype == "bricks": bri_dir = gen_util.list_if_not(stimpar.bri_dir) if len(bri_dir) == 2: bri_dir = "both" else: bri_dir = bri_dir[0] else: bri_dir = stimpar.bri_dir info = {"mouse_n" : sesspar.mouse_n, "sess_n" : sesspar.sess_n, "plane" : sesspar.plane, "line" : sesspar.line, "fluor" : analyspar.fluor, "scale" : analyspar.scale, "shuffle" : extrapar["shuffle"], "stimtype": stimpar.stimtype, "bri_dir" : bri_dir, "comp" : comp, "uniqueid": extrapar["uniqueid"], "runtype" : sesspar.runtype, "n_rois" : n_rois } if alg == "pytorch": info["run_n"] = extrapar["run_n"] if epoch_n is not None: info["epoch_n"] = epoch_n # if no args are passed, just returns keys else: info = ["mouse_n", "sess_n", "plane", "line", "fluor", "scale", "shuffle", "stimtype", "bri_dir", "comp", "uniqueid", "run_n", "runtype", "n_rois", "epoch_n"] return info ############################################# def save_hyperpar(analyspar, logregpar, sesspar, stimpar, extrapar): """ save_hyperpar(analyspar, logregpar, sesspar, stimpar, extrapar) Saves the hyperparameters for an analysis. Required args: - analyspar (AnalysPar): named tuple containing analysis parameters - logregpar (LogRegPar): named tuple containing logistic regression parameters - sesspar (SessPar) : named tuple containing session parameters - stimpar (StimPar) : named tuple containing stimulus parameters - extrapar (dict) : dictionary with extra parameters ["dirname"] (str): directory in which to save hyperparameters Returns: - hyperpars (dict): hyperparameter dictionary with inputs as keys and named tuples converted to dictionaries """ hyperpars = {"analyspar": analyspar._asdict(), "logregpar": logregpar._asdict(), "sesspar" : sesspar._asdict(), "stimpar" : stimpar._asdict(), "extrapar" : extrapar } file_util.saveinfo(hyperpars, "hyperparameters.json", extrapar["dirname"]) return hyperpars ############################################# def get_classes(comp="surp", gab_ori="shared"): """ get_classes() Returns names for classes based on the comparison type. Optional args: - comp (str) : type of comparison default: "surp" - gab_ori (str or list): Gabor orientations default: "all" Returns: - classes (list): list of class names """ if gab_ori == "all": gab_ori = [0, 45, 90, 135] if comp == "surp": classes = ["Regular", "Surprise"] elif comp in ["AvB", "AvC", "BvC", "DvU"]: classes = [f"Gabor {fr}" for fr in [comp[0], comp[2]]] elif "ori" in comp: deg_vals = gab_ori stripped = comp.replace("ori", "") if stripped == "U": deg_vals = [val + 90 for val in deg_vals] elif len(stripped) == 2: deg_vals = gab_ori[0] deg = u"\u00B0" classes = [f"{val}{deg}" for val in deg_vals] elif "dir" in comp: classes = [sess_str_util.dir_par_str( direc, str_type="print").replace( "bricks (", "").replace(", ", " (").capitalize() for direc in ["right", "left"]] elif "half" in comp: classes = ["First half", "Second half"] else: gen_util.accepted_values_error("comp", comp, ["surp", "AvB", "AvC", "BvC", "DvU", "dir...", "...ori..."]) return classes ############################################# def get_data(stim, analyspar, stimpar, quintpar, qu_i=0, surp=[0, 1], n=1, remconsec_surps=False, get_2nd=False): """ get_data(sess, quintpar, stimpar) Returns ROI data based on specified criteria. Required args: - stim (Stim) : stimulus object - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters - quintpar (QuintPar) : named tuple containing quintile parameters Optional args: - qu_i (int) : quintile index default: 0 - surp (list) : surprise values default: [0, 1] - n (int) : factor by which to multiply number of surprise values default: 1 - remconsec_surps (bool): whether consecutive segments are removed for surprise segments default: False - get_2nd (bool) : if True, every second segment is retained default: False Returns: - roi_data (3D array): ROI data, as sequences x frames x ROIs - surp_n (int) : Number of surprise sequences """ # data for single quintile # first number of surprises, then segs for t, surp_use in enumerate([1, surp]): remconsec = (remconsec_surps and surp_use == 1) segs = quint_analys.quint_segs( stim, stimpar, quintpar.n_quints, qu_i, surp_use, remconsec=remconsec)[0][0] # get alternating for consecutive segments if get_2nd and not remconsec: segs = gen_util.get_alternating_consec(segs, first=False) if t == 0: surp_n = len(segs) * n twop_fr = stim.get_twop_fr_by_seg(segs, first=True)["first_twop_fr"] # do not scale (scaling factors cannot be based on test data) roi_data = gen_util.reshape_df_data( stim.get_roi_data(twop_fr, stimpar.pre, stimpar.post, analyspar.fluor, remnans=True, scale=False), squeeze_cols=True) # for brick logreg test analyses if TEST_BRICKS_VARIATIONS: if remconsec_surps: # Normalize to first half mid = roi_data.shape[-1] // 2 div = np.median(roi_data[:, :, : mid], axis=-1) roi_data = roi_data - np.expand_dims(div, -1) # # Mean only if TEST_BRICKS_VARIATIONS == "mean": logger.warning("Using mean across ROIs, for testing purposes.") # 1 x seqs x frames roi_data = np.expand_dims(np.nanmean(roi_data, axis=0), axis=0) # Mean and std elif TEST_BRICKS_VARIATIONS == "mean_std": logger.warning("Using mean and standard deviation across ROIs, " "for testing purposes.") roi_data = np.stack([np.nanmean(roi_data, axis=0), np.nanstd(roi_data, axis=0)], axis=0) # transpose to seqs x frames x ROIs roi_data = np.transpose(roi_data, [1, 2, 0]) return roi_data, surp_n ############################################# def get_sess_data(sess, analyspar, stimpar, quintpar, class_var="surps", surps=[0, 1], regvsurp=False, split_oris=False): """ get_sess_data(sess, analyspar, stimpar, quintpar) Logs session information and returns ROI trace segments, target classes and class information and number of surprise segments in the dataset. Required args: - sess (Session) : session - analyspar (AnalysPar): named tuple containing analysis parameters - stimpar (StimPar) : named tuple containing stimulus parameters - quintpar (QuintPar) : named tuple containing quintile parameters Optional args: - class_var (str) : class determining variable ("surps" or stimpar attribute) default: "surps" - surps (list, str, int) : surprise value(s) (list if class_var is "surps", otherwise 0, 1 or "any") - regvsurp (bool) : if True, the first dataset will include regular sequences and the second will include surprise sequences default: False - split_oris (bool or list): List of Gabor frames for each split, or False if splitting orientation comparison is not applicable. default: False Returns: - roi_seqs (list) : list of 3D arrays of selected ROI trace seqs (1 or 2 if an additional test set is included), each structured as sequences x frames x ROIs - seq_classes (list): list of 2D arrays of sequence classes (1 or 2 if an additional test set is included), each structured as class values x 1 - n_surps (list) : list of lists of number of surprise sequences (doubled if "half" comparison), structured as datasets x class """ stim = sess.get_stim(stimpar.stimtype) split_oris = split_oris is not False # set to boolean if (regvsurp + (len(quintpar.qu_idx) > 1) + ("half" in class_var) + split_oris) > 1: raise ValueError("Cannot combine any of the following: separating " "quintiles, regvsurp, half comparisons, multiple Gabor frame " "orientation comparisons.") elif len(quintpar.qu_idx) > 2: raise ValueError("Max of 2 quintiles expected.") elif split_oris and len(stimpar.gabfr) > 2: raise ValueError("Max of 2 Gabor frame sets expected for orientation " "classification.") # check for stimulus pre/post problems pre_post_err = False get_2nd, remconsec_surps = False, False if stimpar.pre > 0: if stimpar.stimtype == "bricks": if class_var == "surps": remconsec_surps = True elif stimpar.pre == 1: get_2nd = True else: pre_post_err = True else: pre_post_err = True if stimpar.post > 1.0: if not stimpar.stimtype == "gabors" and stimpar.post <= 1.5: pre_post_err = True if pre_post_err: raise NotImplementedError("Not implemented to prevent sequence overlap " f"for {stimpar.stimtype}: {stimpar.pre} pre/{stimpar.post} post " f"for {class_var} classification") n = 1 if class_var == "surps": n_cl = len(surps) elif "half" in class_var: n_cl = 2 # DOUBLE surp ns to compensate for shorter blocks, if using control n = 2 if "diff" in class_var: quintpar = sess_ntuple_util.init_quintpar( 4, [[1, 2]], [None], [None]) if len(np.unique(stim.direcs)) != 2: raise ValueError( "Segments do not fit these criteria (missing directions).") else: quintpar = sess_ntuple_util.init_quintpar( 2, [[0, 1]], [None], [None]) else: n_cl = len(stimpar._asdict()[class_var]) # modify surps, qu_idx, gabfr to cycle through datasets if len(quintpar.qu_idx) == 2: surps = [surps, surps] gabfr_idxs = ["ignore", "ignore"] if regvsurp: raise ValueError( "Cannot set regvsurp to True if more than 1 quintile.") if "part" in class_var: raise ValueError("Cannot do half comparisons with quintiles.") elif regvsurp: surps = [surps, 1-surps] gabfr_idxs = ["ignore", "ignore"] quintpar = sess_ntuple_util.init_quintpar( 1, [0, 0], [None, None], [None, None]) elif split_oris: surps = surps gabfr_idxs = [0, 1] quintpar = sess_ntuple_util.init_quintpar( 1, [0, 0], [None, None], [None, None]) else: surps = [surps] gabfr_idxs = ["ignore"] gabfr_idxs = [0, 1] if split_oris else ["ignore", "ignore"] # cycle through classes roi_seqs = [[] for _ in range(len(quintpar.qu_idx))] seq_classes = [[] for _ in range(len(quintpar.qu_idx))] surp_ns = [[] for _ in range(len(quintpar.qu_idx))] # cycle through data groups (quint or regvsurp or gabfr for oris) for d, (qu_i, subsurps, gabfr_idx) in enumerate( zip(quintpar.qu_idx, surps, gabfr_idxs)): for cl in range(n_cl): use_qu_i = [qu_i] surp = subsurps stimpar_sp = stimpar if class_var == "surps": surp = subsurps[cl] elif "half" in class_var: use_qu_i = [qu_i[cl]] else: keys = class_var vals = stimpar._asdict()[class_var][cl] if split_oris: keys = [keys, "gabfr", "gab_ori"] vals = [vals, stimpar.gabfr[gabfr_idx], stimpar.gab_ori[gabfr_idx][cl]] # modify stimpar stimpar_sp = sess_ntuple_util.get_modif_ntuple( stimpar, keys, vals) roi_data, surp_n = get_data( stim, analyspar, stimpar_sp, quintpar, qu_i=use_qu_i, surp=surp, remconsec_surps=remconsec_surps, n=n, get_2nd=get_2nd) roi_seqs[d].append(roi_data) seq_classes[d].append(np.full(len(roi_data), cl)) surp_ns[d].append(surp_n) # concatenate data split by class along trial seqs axis roi_seqs[d] = np.concatenate(roi_seqs[d], axis=0) seq_classes[d] = np.concatenate(seq_classes[d], axis=0) # get logistic variance across datasets log_var = np.log(np.var(np.concatenate(roi_seqs, axis=0))) n_fr, nrois = roi_seqs[0].shape[1:] # in training set if stimpar.stimtype == "gabors": surp_use = surps[0] if surp_use == [0, 1] and not isinstance(stimpar.gabfr, list): surp_use = "any" if split_oris: gabfr_lett = [sess_str_util.gabfr_letters( gabfr, surp=surp_use) for gabfr in stimpar.gabfr] gabfr_lett = " -> ".join([str(lett) for lett in gabfr_lett]) else: gabfr_lett = sess_str_util.gabfr_letters( stimpar.gabfr, surp=surp_use) stim_info = f"\nGab fr: {gabfr_lett}\nGab K: {stimpar.gabk}" elif stimpar.stimtype == "bricks": stim_info = (f"\nBri dir: {stimpar.bri_dir}\n" f"Bri size: {stimpar.bri_size}") logger.info(f"Runtype: {sess.runtype}\nMouse: {sess.mouse_n}\n" f"Sess: {sess.sess_n}\nPlane: {sess.plane}\nLine: {sess.line}\n" f"Fluor: {analyspar.fluor}\nROIs: {nrois}{stim_info}\n" f"Frames per seg: {n_fr}\nLogvar: {log_var:.2f}", extra={"spacing": "\n"}) return roi_seqs, seq_classes, surp_ns ############################################# def sample_seqs(roi_seqs, seq_classes, n_surp): """ sample_seqs(roi_seqs, seq_classes, n_surp) Samples sequences to correspond to the ratio of surprise to regular sequences. Required args: - roi_seqs (3D array) : array of all ROI trace sequences, structured as: sequences x frames x ROIs - seq_classes (2D array): array of all sequence classes (0, 1), structured as class values x 1 - n_surp (int) : number of surprise sequences Returns: - roi_seqs (3D array) : array of selected ROI trace sequences, structured as sequences x frames x ROIs - seq_classes (2D array): array of sequence classes, structured as class values x 1 """ if np.unique(seq_classes).tolist() != [0, 1]: raise ValueError("Function expects classes 0 and 1 only.") class0_all = np.where(seq_classes == 0)[0] class1_all = np.where(seq_classes == 1)[0] n_reg = (len(class0_all) + len(class1_all))//2 - n_surp class0_idx = np.random.choice(class0_all, n_reg, replace=False) class1_idx =
np.random.choice(class1_all, n_surp, replace=False)
numpy.random.choice
import os import numpy import logging from primes.utils.custom_complex import CustomComplex logger = logging.getLogger(__name__) class Generator(object): """Super class for all Generators used within this application. This class provides utility functions for generators used when interacting with the cache, as well as setting up familiar attributes across all Generators. Attributes: minimum (int): The lower constraining value. maximum (int): The upper constraining value. path (string): Location of the generators data when saved in the cache, this will be unique for each unique Generator. datatype (type): The type of the data to be handled/generated. runnable (bool): Whether the generator is able to accurately generate a dataset. This is typically dictated by the imputed arguments. threshold (int): The maximum number of elements that can be missing from the cache before reverting to a full regeneration. If the number of missing elements is lower than the threshold, the class will use some form of check, such as a primality check in the case of prime generation. data (list): A list of elements of type `datatype' which have been generated by the class's `generate' function. Keyword Arguments: minimum -- The minimum value to be used in the dataset (default: 0) maximum -- The maximum value to be used in the dataset (default: 1) """ def __init__(self, minimum=0, maximum=1): self.minimum = minimum self.maximum = maximum self.path = "primes/generator/data/" self.datatype = int self.runnable = True # maximum number of elements missing from cache to do full generation self.threshold = 100 self.data = [] def generate(self): """(Stub) The function which generates the dataset. This is implemented uniquely by sub-classes of this super class. The process is however similar throughout all Generators. The class will initially attempt to read pre-existing data from the cache. If the full amount of data (or more) exists in the cache, then it is read and stored in the `data' instance variable and no generation is necessary. If the amount of data missing from the cache is lower than the threshold then we shall test all of the missing values against a determiner function. These new values will be imputed and sorted into the final dataset. If the amount of missing data exceeds the threshold, or no data exists in the cache, the program will typically revert to an algorithm or an optimised routine to more efficiently generate larger amounts of data. """ pass def get_data(self): """Return the data attribute""" return self.data def set_specifics(self, data): """(Stub) Some generators require additional data to function correctly. This function is used to set these additional values on an individual basis before running the generation. """ pass # cache read def data_files_from_dir(self): """Return a list of data files from a directory. This function uses the `path' instance variable for the directory to check. """ return filter(lambda x: ".dat" in x, list(os.walk(self.path))[0][2]) def read_cache(self): """Reads data pertinent to the specific (invoking) generator from that generator's specific cache directory. Returns: A list of data read from the cache if any exists, such that all elements e satisfy: minimum <= e <= maximum. An empty list if no data is found in the cache. """ # TODO: This may be optimised for better memory efficiency, either by # reading one file at a time and verifying the contents, or simply # stopping a file read if the data range required by the generator # has been satisfied. if os.path.exists(os.path.dirname(self.path)): files = self.data_files_from_dir() logger.info(files) data = None # `Total Data': All data from multiple files is stored here. tdata = [] logger.info("Checking cache") if any(files): for f_ in files: with open(self.path + f_, 'r') as f: # read the contents of each data file in the cache. # data files are comma separated. data = numpy.loadtxt(f, delimiter=',', dtype=self.datatype) logger.info("Finding pertinent data (%s - %s)", \ self.minimum, self.maximum) # add the data to the total data tdata += list(data) logger.info("Data length %s", str(len(data))) if tdata: logger.info("Removing duplicates") # set will remove duplicate values from the list. tdata = list(set(tdata)) # remove values lesser or greater than the minimum or maximum # respectively. tdata = filter(lambda x: self.minimum <= x <= self.maximum, \ tdata) logger.info("Sorting data") # more often than not, the visualisations require the data to be # sorted, so better safe than sorry for all cases. tdata.sort() else: logger.info("No data found in cache") return numpy.array(tdata) return [] def complex_range(self, minimum, maximum): """Utility function for constructing a range of complex numbers between two values, minimum and maximum. Arguments: minimum -- the lower value in the range maximum -- the upper value in the range Returns: A list of complex numbers constituting a range of concurrent values. """ if not isinstance(minimum, complex) or not isinstance(maximum, complex): return [] zs = [] for i in range(numpy.real(minimum), numpy.real(maximum)): for j in range(
numpy.imag(minimum)
numpy.imag
#Data structures that contain the fields of the system from functools import reduce import copy import numpy import pdb import sys from vtk.util.numpy_support import vtk_to_numpy import accelerated_functions as af import constants as c from mesh import Mesh_recursive from pic import PIC_recursive import solver as slv from timing import Timing #Field (Abstract): # #Definition = Indicate the attributes and methods that all fields have to implement. The fields obtain the functions to compute the fields from 'solver.py' #Attributes: # +type (string) = some string that describes the source and type of the field (created by the interaction plasma-spacecraft, user-defined, constant, etc.) # +pic (PIC) = Class that contains PIC methods. # +boundaries ([Boundary]) = Class that represents the methods which apply boundaries to the fields. # +nPoints (int) = number of nodes in the mesh (Same as mesh class). # +field ([double, double]) = components (columns) of field at each node. #Methods: # +__init__(...) = This function, for each subclass, will take care of the initial condition of the field. # +computeField([Species] species) = Computes the updated field values. # +fieldAtParticles([double,double] position) [double,double] = return an array indicating by component (columns) and particles (rows) the field at every position. # +saveVTK(Mesh mesh): dictionary = Return the attributes of field to be printed in the VTK file. # The process is handled inside each particular field, and the final result can be constructed from the output of different subclasses. # +loadVTK(Mesh mesh, output) = Takes information of the field from a VTK file through 'output' and stores it in the corresponding attributes. # The process is handled inside each particular field, and the final result can be constructed from the output of different subclasses. class Field(object): def __init__(self, n_pic, field_dim, n_type): self.type = n_type self.pic = n_pic self.field = numpy.zeros((self.pic.mesh.nPoints, field_dim)) self.ind_calc = self.getIndexCalculation(self.pic.mesh) def __add__(self, obj2): try: self.field += obj2.field return self except ValueError: print("Both Field objects must have the same array size") print(sys.exc_info()) raise def getIndexCalculation(self, mesh): pass def computeField(self, species): pass def fieldAtParticles(self, position): return self.pic.gather(position, self.field) def saveVTK(self, mesh): return {self.type+"-field" : mesh.vtkOrdering(self.field)} def loadVTK(self, mesh, output): self.field = mesh.reverseVTKOrdering(vtk_to_numpy(output.GetPointData().GetArray(self.type+"-field"))) #Field_recursive(Abstract, Inherits from Field): # #Definition = Abstract class that gives to its children the blueprint for including recursive behavior. It should be added as the first parent of its children classes, so that its methods # are chosen by default when invoking super(). #Attributes: # +children ([Field]) = Objects that are the children of this instance. # +root (Boolean) = Indicates whether the object is the root Field (True) or not (False). #Methods: # +__init__ = adds " - Recursive" and initialize the list of children. # + total_field(): [Double, Double] = This method creates an array containing all the values of the field in all the meshes of the domain, organized by the flat indexation rule. # +Field methods. class Field_recursive(Field): def __init__(self, n_children, n_root, n_type): n_type += " - Recursive" self.children = n_children self.root = n_root def __add__(self, obj2): try: for i in range(len(self.children)): self.children[i].__add__(ob2.children[i]) super().__add__(self, obj2) except (IndexError, ValueError): print("Both Field objects must have the same Tree structure, referring to the same underlying meshes") print(sys.exc_info()) raise def assignValuesToArray_recursive(self, name, indices, values, accIndex = None): if self.root: indices = self.pic.mesh.sortIndexByMeshes(indices) accIndex = [0] ind = indices.pop(0) array_t = self.__getattribute__(name) array_t[ind] = values[accIndex[0]:accIndex[0]+len(ind)] self.__setattr__(name, array_t) accIndex[0] += len(ind) for child in self.children: child.assignValuesToArray_recursive(name, indices, values, accIndex = accIndex) def getTotalArray(self, name, seedList = None, index = None): field = self.__getattribute__(name) if self.root: dims = list(numpy.shape(field)) dims[0] = self.pic.mesh.accPoints seedList = numpy.zeros(dims) index = [0] temp = index[0] index[0] += self.pic.mesh.nPoints seedList[temp:index[0]] += field for child in self.children: child.getTotalArray(name, seedList = seedList, index = index) return seedList def getTotalField(self): return self.getTotalArray("field") def fieldAtParticles(self, position): if self.root: tot_field = self.getTotalField() return self.pic.gather(position, tot_field) else: raise Exception('This instance of the functions should not have been executed') def saveVTK(self, mesh): return {self.type+"-field" : mesh.vtkOrdering(self.getTotalField())} #Fix this. The 'field' value from the vtr file is not coming with the information of all the meshes def loadVTK(self, mesh, output): temp = mesh.reverseVTKOrdering(vtk_to_numpy(output.GetPointData().GetArray(self.type+"-field"))) self.assignValuesToArray_recursive("field", numpy.arange(self.pic.mesh.accPoints, dtype ='uint'), temp) #Electric_Field (Inherits from Field): # #Definition = Electric field #Attributes: # +potential ([double]) = Electric potential at each node of the mesh. # +Field attributes. #Methods: # +Field methods. class Electric_Field(Field): def __init__(self, n_pic, field_dim, n_string): self.potential = numpy.zeros((n_pic.mesh.nPoints)) super().__init__(n_pic, field_dim, "Electric"+n_string) def getIndexCalculation(self, mesh): pass def computeField(self, species): pass def saveVTK(self, mesh): dic = super().saveVTK(mesh) dic[self.type+"-potential"] = mesh.vtkOrdering(self.potential) return dic def loadVTK(self, mesh, output): self.potential = mesh.reverseVTKOrdering(vtk_to_numpy(output.GetPointData().GetArray(self.type+"-potential"))) super().loadVTK(mesh, output) #Constant_Electric_Field(Electric_Field): # #Definition = Constant electric field impsoed by the user. Does not change through time. #Attributes: # +type (string) = "Electric field - Constant". # +Electric_Field attributes. #Methods: # +Electric_Field methods. class Constant_Electric_Field(Electric_Field): def __init__(self, n_pic, field_dim): super().__init__(n_pic, field_dim, " - Constant") self.field[:,0] += 0.27992 def computeField(self, species): pass #Electrostatic_2D_rm_Electric_Field (Inherits from Electric_Field): # #Definition = Electric field for a 2D rectangular mesh, detached from the magnetic field. Uses methods from "solver.py" to calculate electric potential, and then electric field. #Attributes: # +type (string) = "Electric - Electrostatic_2D_rm". # +Elctric_Field attributes. #Methods: # +Electric_Field methods. class Electrostatic_2D_rm(Electric_Field): def __init__(self, n_pic, field_dim): super().__init__(n_pic, field_dim, " - Electrostatic_2D_rm") def getIndexCalculation(self, mesh): temp = numpy.arange((mesh.nPoints)) loc = numpy.unique(mesh.location) return numpy.delete(temp, loc) @Timing def computeField(self, species): #Prepare the right-hand-side of the Poisson equation loc = numpy.unique(self.pic.mesh.location_sat) rho = numpy.zeros_like(species[0].mesh_values.density) for specie in species: rho += specie.mesh_values.density*specie.q rho[loc] += specie.mesh_values.accDensity*specie.q rho /= -c.EPS_0 slv.poissonSolver_2D_rm_SORCA_p(self.pic.mesh, self.potential, rho, self.ind_calc) self.field = -slv.derive_2D_rm(self.pic.mesh, self.potential, self.ind_calc) for boundary in self.pic.mesh.boundaries: boundary.applyElectricBoundary(self) # +Computation of Dirichlet boundary condition at every node in location ([ind]). Every row in value ([double]) corresponds to one node in location. # boundary indicates whether the boundary is an 'inner' or 'outer' boundary. This is used for the calculation of the electric field. def dirichlet(self, values, boundary, nx, ny, dx, dy): #Dirichlet location, u_ind = numpy.unique(boundary.location, return_index = True) self.potential[location] = values[u_ind] #Electric field trough Pade 2nd order in the boundaries self.field[location, :] = -slv.derive_2D_rm_boundaries(self.potential, boundary, nx, ny, dx, dy) # +Neumann([ind] location, [double] valus) = Set Neumann conditions in the nodes at 'location'. # +values account for the values of the e_field normal to the border. # +Note: The Function doesn't handle the situation of the corners. def neumann(self, location, values): # Variables at hand nx = self.pic.mesh.nx ny = self.pic.mesh.ny dx = self.pic.mesh.dx dy = self.pic.mesh.dy #Field and potential for i in range(len(location)): if location[i] < nx: self.field[location[i],1] = values[i] self.potential[location[i]] = self.field[location[i],1]*dy+self.potential[location[i]+nx] elif location[i] > nx*(ny-1): self.field[location[i],1] = values[i] self.potential[location[i]] = -self.field[location[i],1]*dy+self.potential[location[i]-nx] elif location[i]%nx == 0: self.field[location[i],0] = values[i] self.potential[location[i]] = self.field[location[i],0]*dx+self.potential[location[i]+1] else: self.field[location[i],0] = values[i] self.potential[location[i]] = -self.field[location[i], 0]*dx+self.potential[location[i]-1] #Electrostatic_2D_rm_sat (Inherits from Electrostatic_2D_rm): # #Definition = Same characteristics as Electrostatic_2D_rm but with an inner boundary representing the satellite. # For the class it is assumed that the satellite is stored as the second boundary in mesh. The surface is treated as a dielectric. #Attributes: # +type (string) = "Electric - Electrostatic_2D_rm_sat". # +inv_capacity ([double,double]) = Inverse of the Capacity matrix for the nodes of the satellite. # The matrix is organized such that V = C^{-1}*q[location], with 'location' being the location of the nodes in the mesh in sorted order. # +Elctric_Field attributes. #Methods: # +floating_potential([Species] species) = Computes the floating potential in a dielectric surface, updating the involved nodes of the 'potential' array. # This is done through the Capacity matrix method. # +computeField([Species] species) = First, the floating potential of a dielectric surface is calculated based on the accumulated charge. # Then, is the same behavior as the method in parent class. # +Electrostatic_2D_rm methods. class Electrostatic_2D_rm_sat(Electrostatic_2D_rm): def __init__(self, n_pic, field_dim, capacity_file = c.CAPACITY_FILE): Electric_Field.__init__(self, n_pic, field_dim, " - Electrostatic_2D_rm_sat") tot_loc = len(numpy.unique(self.pic.mesh.location_sat)) self.inv_capacity = numpy.zeros((tot_loc, tot_loc)) if capacity_file is None: slv.capacity_Inv_Matrix_asym(self) else: self.inv_capacity = numpy.loadtxt('./data/'+capacity_file) try: self.capacity = numpy.linalg.inv(self.inv_capacity) att = 5e-4 self.capacity *= c.EPS_0*att self.inv_capacity /= c.EPS_0*att except numpy.linalg.LinAlgError: print("Problem in Capacity Matrix") print(sys.exc_info()) pdb.set_trace() def getIndexCalculation(self, mesh, border = False): temp = numpy.arange((mesh.nPoints)) mask = numpy.ones((mesh.nPoints), dtype = bool) for boundary in mesh.boundaries: if "Inner - 2D" in boundary.type: mask[boundary.ind_inner] = False if not border: mask[boundary.location] = False return temp[mask] @Timing def computeField(self, species): self.floating_potential(species) super().computeField(species) def floating_potential(self, species): loc = numpy.unique(self.pic.mesh.location_sat) charges = [specie.q*specie.mesh_values.accDensity*self.pic.mesh.volumes[loc] for specie in species] self.potential[loc] = numpy.matmul(self.inv_capacity, reduce(lambda x,y: x+y, charges).T) #Electrostatic_2D_rm_sat_cond (Inherits from Electrostatic_2D_rm_sat): # #Definition = Same characteristics as Electrostatic_2D_rm_sat but the surface is conductive, as opposed to dielectric as in Electrostatic_2D_rm_sat. # For the class it is assumed that the satellite is stored as the second boundary in mesh. #Attributes: # +type (string) = "Electric - Electrostatic_2D_rm_sat_cond". # +inv_capacity ([double,double]) = Inverse of the Capacity matrix for the nodes of the satellite. # The matrix is organized such that V = C^{-1}*q[location], with 'location' being the location of the nodes in the mesh in sorted order. # +capacity ([double,double]) = Capacity matrix for the nodes of the satellite. It is organized the same way as inv_caparcity. # +Electric_Field attributes. #Methods: # +floating_potential([Species] species) = Computes the floating potential in a conductive surface, updating the involved nodes of the 'potential' array. # This is done through the Capacity matrix method. # WARNING: Here, first, the charges are accumuated as the particles impact or leave the surface. Then, the charges are redistributed to account for the # conductive surface. The change in densities in the surface is updated in 'Electron - Solar wind' class. In reality, all the electrons in the surface # can move, including, for example, photoelectrons that return to the surface. However, since this code does not track the movement of particles # in the surface, it is impossible to distingish among different types of electrons. Thus, changes are accumulated in the aforementioned class. # +Electrostatic_2D_rm_sat methods. class Electrostatic_2D_rm_sat_cond(Electrostatic_2D_rm_sat): def __init__(self, n_pic, field_dim): super().__init__(n_pic, field_dim) self.type += "_cond" @Timing def computeField(self, species): #Potential at the material surfaces self.floating_potential(species) #Prepare the right-hand-side of the Poisson equation loc = numpy.unique(self.pic.mesh.location_sat) rho = numpy.zeros_like(species[0].mesh_values.density) for specie in species: rho += specie.mesh_values.density*specie.q rho[loc] += specie.mesh_values.accDensity*specie.q rho /= -c.EPS_0 slv.poissonSolver_2D_rm_SORCA_p(self.pic.mesh, self.potential, rho, self.ind_calc) self.field = -slv.derive_2D_rm(self.pic.mesh, self.potential, self.ind_calc) for boundary in self.pic.mesh.boundaries: boundary.applyElectricBoundary(self) def floating_potential(self, species): super().floating_potential(species) loc = numpy.unique(self.pic.mesh.location_sat) phi_c = numpy.sum(numpy.matmul(self.capacity, self.potential[loc].T))/numpy.sum(self.capacity) d_q = numpy.matmul(self.capacity, (phi_c-self.potential[loc]).T) #assert abs(numpy.sum(d_q)) < -c.QE or numpy.sum(d_q)/numpy.max(numpy.abs(d_q)) < 1e-4, "The redistribution of charge is creating or eliminating charge" #WARNING: See class documentation for more explanation. electron = list(filter(lambda specie: specie.name == "Electron - Solar wind", species))[0] #d_n = d_q/electron.q/self.pic.mesh.volumes[loc] #electron.mesh_values.accDensity += d_n self.potential[loc] = phi_c for boundary in self.pic.mesh.boundaries: if boundary.type == 'Inner - 2D_Rectangular': self.potential[boundary.ind_inner] = phi_c #Electrostatic_2D_cm_Electric_Field (Inherits from Electrostatic_2D_rm): # #Definition = Electric field for a 2D cylindrical mesh (z-r), detached from the magnetic field. Uses methods from "solver.py" to calculate electric potential, and then electric field. #Attributes: # +type (string) = "Electric - Electrostatic_2D_rm". # +Electric_Field attributes. #Methods: # +Electric_Field methods. #NOTE: In the current state of the code, the Dirichlet function is working such that the electric field at r = 0 is 0. class Electrostatic_2D_cm(Electrostatic_2D_rm): def __init__(self, n_pic, field_dim): Electric_Field.__init__(self, n_pic, field_dim, " - Electrostatic_2D_cm") @Timing def computeField(self, species): #Prepare the right-hand-side of the Poisson equation loc = numpy.unique(self.pic.mesh.location_sat) rho =
numpy.zeros_like(species[0].mesh_values.density)
numpy.zeros_like
import cv2 import os import numpy as np import torch def create_lr_image(img, is_fp16): if img.shape[2] == 3: img = img[:, :, [2, 1, 0]] elif img.shape[2] == 4: img = img[:, :, [2, 1, 0, 3]] img = torch.from_numpy(np.transpose(img, (2, 0, 1))).float() if is_fp16: img = img.half() return img.unsqueeze(0) def reshape_output(output): if output.shape[0] == 3: output = output[[2, 1, 0], :, :] elif output.shape[0] == 4: output = output[[2, 1, 0, 3], :, :] return np.transpose(output, (1, 2, 0)) def process_image(img, device, model, is_fp16): ''' Does the processing part of ESRGAN. This method only exists because the same block of code needs to be ran twice for images with transparency. Parameters: img (array): The image to process Returns: rlt (array): The processed image ''' img_LR = create_lr_image(img, is_fp16) img_LR = img_LR.to(device) output = model(img_LR).data.squeeze(0).float().cpu().clamp_(0, 1).numpy() return reshape_output(output) def make_alpha_black_and_white(img, device, model, is_fp16): img1 = np.copy(img[:, :, :3]) img2 = np.copy(img[:, :, :3]) for c in range(3): img1[:, :, c] *= img[:, :, 3] img2[:, :, c] = (img2[:, :, c] - 1) * img[:, :, 3] + 1 output1 = process_image(img1, device, model, is_fp16) output2 = process_image(img2, device, model, is_fp16) alpha = 1 - np.mean(output2-output1, axis=2) output = np.dstack((output1, alpha)) return np.clip(output, 0, 1) def upscale_alpha(img, device, model, is_fp16): img1 = np.copy(img[:, :, :3]) img2 = cv2.merge((img[:, :, 3], img[:, :, 3], img[:, :, 3])) output1 = process_image(img1, device, model, is_fp16) output2 = process_image(img2, device, model, is_fp16) return cv2.merge((output1[:, :, 0], output1[:, :, 1], output1[:, :, 2], output2[:, :, 0])) def make_regular_alpha(img, device, model, is_fp16): img1 = cv2.merge((img[:, :, 0], img[:, :, 1], img[:, :, 2])) img2 = cv2.merge((img[:, :, 1], img[:, :, 2], img[:, :, 3])) output1 = process_image(img1, device, model, args.fp16) output2 = process_image(img2, device, model, args.fp16) return cv2.merge((output1[:, :, 0], output1[:, :, 1], output1[:, :, 2], output2[:, :, 2])) def remove_alpha(img, device, model, is_fp16): img1 = np.copy(img[:, :, :3]) output = process_image(img1, device, model, args.fp16) return cv2.cvtColor(output, cv2.COLOR_BGR2BGRA) def crop_seamless(img, scale): img_height, img_width = img.shape[:2] y, x = 16 * scale, 16 * scale h, w = img_height - (32 * scale), img_width - (32 * scale) img = img[y:y+h, x:x+w] return img def make_alpha_binary(alpha, threshold): _, alpha = cv2.threshold(alpha, threshold, 1, cv2.THRESH_BINARY) return alpha def make_alpha_ternery(alpha, threshold, boundry_offset): half_transparent_lower_bound = threshold - boundry_offset half_transparent_upper_bound = threshold + boundary_offset return np.where(alpha < half_transparent_lower_bound, 0, np.where( alpha <= half_transparent_upper_bound, .5, 1)) def upscale_image(img, device, model, args, in_channels, out_channels): ''' Upscales the image passed in with the specified model Parameters: img: The image to upscale model_path (string): The model to use Returns: output: The processed image ''' img = img * 1. /
np.iinfo(img.dtype)
numpy.iinfo
import requests import numpy as np from numpy.random import randn from bruges.rockphysics import smith_fluidsub from modelr.constants import WAVELETS from bruges.filters import rotate_phase from bruges.rockphysics import moduli_dict as moduli class modelrAPIException(Exception): pass class modelrAPI(object): """ API for accessing the modelr app database. Class attributes: auth: The private access key provided by modelr host: The host url for the database server """ host = "http://localhost:8080" auth = 0 @classmethod def ls(cls): """ List all available authorized class entities Returns: A list of simple entity descriptions. example: [{"name": "NAME", "description": "DESCR", "key": "DATABASEKEY"}, {"name": "NAME", "description": "DESCR", "key": "DATABASEKEY"}] """ # payload = {"ls": True, "auth": cls.auth} r = requests.get(cls.url() + "?ls") if r.status_code == 200: return r.json() else: raise modelrAPIException @classmethod def get(cls, keys): """ Retrieves data from the modelr database and returns python objects. Inputs: keys (list): A list of database keys to retrieve. Returns: A list of python objects corresponding to the database keys. Keys with failed queries will be None. """ payload = {"keys": keys, "auth": cls.auth} r = requests.get(cls.url(), params=payload) if r.status_code == 200: data = r.json() if type(data) is list: output = [cls.from_json(d) for d in data] else: output = cls.from_json(data) else: raise modelrAPIException return output @classmethod def from_json(cls, json): return cls(**json) @classmethod def url(cls): return modelrAPI.host + '/' + cls.handler class Rock(modelrAPI): handler = 'rock' def __init__(self, vp=3500, vs=2000, rho=3000, porosity=.2, vclay=None, kclay=None, kqtz=None, vp_std=0.0, vs_std=0.0, rho_std=0.0, fluid=None, name="", *args, **kwargs): self.vp = vp self.vs = vs self.rho = rho self.porosity = porosity self.vclay = vclay self.kclay = kclay self.kqtz = kqtz self.name = name if type(fluid) is dict: self.fluid = Fluid.from_json(fluid) else: self.fluid = fluid # uncertainties self.vp_std = vp_std self.rho_std = rho_std self.vs_std = vs_std @property def phi(self): return self.porosity @property def moduli(self): return moduli(self.vp, self.vs, self.rho) class Fluid(modelrAPI): handler = 'fluid' def __init__(self, rho_w, rho_hc, Kw, Khc, Sw): self.rho_w = rho_w self.rho_hc = rho_hc self.Kw = Kw self.Khc = Khc self.Sw = Sw @classmethod def from_json(cls, data): return cls(data["rho_w"], data["rho_hc"], data["k_w"], data["k_hc"], data["sw"]) class FluidSub1D(modelrAPI): handler = None def __init__(self, layers, dz): self.layers = layers self.dz = dz self._set_data() def _set_data(self): depth = sum([layer["thickness"] for layer in self.layers]) n_samps = int(depth / self.dz) self.z = np.arange(n_samps) * self.dz names = ['vp', 'vs', 'rho', 'phi', 'vclay', 'Kclay', 'Kqtz', 'rhow', 'rhohc', 'Kw', 'Khc', 'Sw', 'rhow_sub', 'rhohc_sub', 'Kw_sub', 'Khc_sub', 'Sw_sub'] output = np.zeros((n_samps,), dtype={"names": names, "formats": ['f4' for item in names]}) i = 0 for layer in self.layers: j = i + np.ceil(layer["thickness"] / self.dz) if j > n_samps: j = n_samps rock = layer["rock"] output["vp"][i:j] = randn(j - i) * rock.vp_std + rock.vp output["vs"][i:j] = randn(j - i) * rock.vs_std + rock.vs output["rho"][i:j] = randn(j - i) * rock.rho_std + rock.rho output["phi"][i:j] = rock.phi output["vclay"][i:j] = rock.vclay output["Kclay"] = rock.kclay output["Kqtz"] = rock.kqtz if rock.fluid: output["rhow"][i:j] = rock.fluid.rho_w output["rhohc"][i:j] = rock.fluid.rho_hc output["Kw"][i:j] = rock.fluid.Kw output["Khc"][i:j] = rock.fluid.Khc output["Sw"][i:j] = rock.fluid.Sw output["rhow"][i:j] = rock.fluid.rho_w output["rhohc"][i:j] = rock.fluid.rho_hc output["Kw"][i:j] = rock.fluid.Kw output["Khc"][i:j] = rock.fluid.Khc output["Sw"][i:j] = rock.fluid.Sw # fill in the substitution fluids k = i for subfluid in layer["subfluids"]: l = k + np.ceil(subfluid["thickness"] / self.dz) fluid = subfluid["fluid"] output["rhow_sub"][k:l] = fluid.rho_w output["rhohc_sub"][k:l] = fluid.rho_hc output["Kw_sub"][k:l] = fluid.Kw output["Khc_sub"][k:l] = fluid.Khc output["Sw_sub"][k:l] = fluid.Sw # TODO use a generator k = l # TODO use a generator i = j self.data = output def get(self, keys): """ Not implemented """ raise modelrAPIException @classmethod def from_json(cls, data): """ data: json structure. example {"dz": 1.0, "layers": [{"rock": rock_json, "thickness": 100.0, "subfluids": [{'fluid': fluid_json, "thickness": 50.0}, {'fluid_key': fluid_json, "thickness": 50.0}]}, {"rock_key": rock_json, "thickness": 100.0, "subfluids":[{'fluid_key': fluid_json, "thickness": 50.0}, {'fluid_key': fluid_json, "thickness": 50.0}]}]} """ layers = [] for layer in data["layers"]: rock = Rock.from_json(layer["rock"]) thickness = float(layer["thickness"]) subfluids = [{"fluid": Fluid.from_json(subfluid["fluid"]), "thickness": float(subfluid["thickness"])} for subfluid in layer["subfluids"]] layer_dict = {"rock": rock, "thickness": thickness, "subfluids": subfluids} layers.append(layer_dict) return cls(layers, data["dz"]) def smith_sub(self): """ Returns vp, vs, rho using smith fluid substition """ vp, vs, rho = smith_fluidsub( self.vp, self.vs, self.rho, self.phi, self.rhow, self.rhohc, self.Sw, self.Sw_sub, self.Kw, self.Khc, self.Kclay, self.Kqtz, vclay=self.vclay, rhownew=self.rhow_sub, rhohcnew=self.rhohc_sub, kwnew=self.Kw_sub, khcnew=self.Khc_sub) vp[~np.isfinite(vp)] = self.vp[~
np.isfinite(vp)
numpy.isfinite
# coding: utf-8 from PIL import Image import numpy as np import pickle import pandas as pd def Normalize(image,mean,std): for channel in range(3): image[:,:,channel]=(image[:,:,channel]-mean[channel])/std[channel] return image id_to_data={} id_to_size={} imgs = pd.read_csv("/media/teejay/TJ HDD2/data/training.csv") images = imgs.image_name for i in range(64): path=images[i] image=Image.open("/media/teejay/TJ HDD2/data/images/"+path).convert('RGB') id_to_size[i]=np.array(image,dtype=np.float32).shape[0:2] # image=image.resize((224,224)) image=np.array(image,dtype=np.float32) # image=image/255 # image=Normalize(image,[0.485,0.456,0.406],[0.229,0.224,0.225]) id_to_data[i]=image l=list(id_to_data.values()) m=list(id_to_size.values()) id_to_data=np.array(l) id_to_size=np.array(m) f=open("/media/teejay/TJ HDD2/data/id_to_data","wb+") pickle.dump(id_to_data,f) f=open("/media/teejay/TJ HDD2/data/id_to_size","wb+") pickle.dump(id_to_size,f) # id_to_box={} # with open("./data/images.txt") as f: # lines=f.read().splitlines() # for line in lines: # id,path=line.split(" ",1) # image=Image.open("./data/images/"+path).convert('RGB') # id_to_size[int(id)]=np.array(image,dtype=np.float32).shape[0:2] # image=image.resize((224,224)) # image=np.array(image,dtype=np.float32) # image=image/255 # image=Normalize(image,[0.485,0.456,0.406],[0.229,0.224,0.225]) # id_to_data[int(id)]=image # id_to_data=np.array(list(id_to_data.values())) # id_to_size=np.array(list(id_to_size.values())) # f=open("./id_to_data","wb+") # pickle.dump(id_to_data,f,protocol=4) # f=open("./id_to_size","wb+") # pickle.dump(id_to_size,f,protocol=4) id_to_box={} # print (id_to_size.shape[0]) # for i in range(id_to_size.shape[0]): imgs.x1 = imgs.x1/id_to_size[1][1] imgs.x2 = imgs.x2/id_to_size[0][0] imgs.y1 = imgs.y1/id_to_size[1][1] imgs.y2 = imgs.y2/id_to_size[0][0] for i in range(id_to_size.shape[0]): id_to_box[i] = np.array([imgs.x1[i],imgs.x2[i],imgs.y1[i],imgs.y2[i]]) # imgs.head(5) # with open("./data/bounding_boxes.txt") as f: # lines=f.read().splitlines() # for line in lines: # id,box=line.split(" ",1) # box=np.array([float(i) for i in box.split(" ")],dtype=np.float32) # box[0]=box[0]/id_to_size[int(id)-1][1]*224 # box[1]=box[1]/id_to_size[int(id)-1][0]*224 # box[2]=box[2]/id_to_size[int(id)-1][1]*224 # box[3]=box[3]/id_to_size[int(id)-1][0]*224 # id_to_box[int(id)]=box n=list(id_to_box.values()) id_to_box=
np.array(n)
numpy.array
import matplotlib # %matplotlib inline import matplotlib.patches as patches import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import skimage.measure as measure import sys from step1 import * from full_prep import lumTrans from layers import nms,iou resolution = np.array([1, 1, 1]) datapath = '/home/zhaojie/zhaojie/Lung/DSB_Code/DSB2017-master/training/Data/ForTest/TestSet/' Preprocesspath = '/home/zhaojie/zhaojie/Lung/DSB_Code/DSB2017-master/training/Data/ForTest/Preprocess/' pbbpath = '/home/zhaojie/zhaojie/Lung/code/detector_py3/results/dpn3d26/Test_Prediction_GGO/TestBbox-16-128-160/' ct_lungsegpath = '/home/zhaojie/zhaojie/Lung/DSB_Code/DSB2017-master/training/Data/ForTest/TestLungSeg/' def GetCenterOfNodule(seg_array): NoduleBox_list = [] seg_array = measure.label(seg_array, 4) # print(np.max(pred_seg)) for indexx in range(np.max(seg_array)): indexxx = indexx+1 seg_array_copy = seg_array.copy() seg_array_copy[seg_array == indexxx] = 1 seg_array_copy[seg_array != indexxx] = 0 z1 = np.any(seg_array_copy, axis=(1, 2)) ZDstart_slice, ZUend_slice = np.where(z1)[0][[0, -1]] z2 = np.any(seg_array_copy, axis=(0, 1)) Lstart_slice, Rend_slice = np.where(z2)[0][[0, -1]] z3 = np.any(seg_array_copy, axis=(0, 2)) Dstart_slice, Uend_slice = np.where(z3)[0][[0, -1]] NoduleBox = [(ZUend_slice + ZDstart_slice)//2,(Uend_slice + Dstart_slice)//2, (Rend_slice + Lstart_slice)//2, max((Uend_slice-Dstart_slice)//2, (Rend_slice-Lstart_slice)//2)] # print(ZDstart_slice,ZUend_slice,Dstart_slice,Uend_slice,Lstart_slice,Rend_slice + 1) # print('NoduleBox',NoduleBox) if NoduleBox[-1] !=0: NoduleBox_list.append(NoduleBox) return NoduleBox_list def VoxelToWorldCoord(voxelCoord, origin, spacing): strechedVocelCoord = voxelCoord * spacing worldCoord = strechedVocelCoord + origin return worldCoord imglist = sorted([f for f in os.listdir(pbbpath) if f.endswith('_pbb.npy')]) print('imglist',len(imglist)) for i in range(len(imglist)): Image, Origin, Spacing,isflip = load_itk_image(os.path.join(datapath,imglist[i].split('_')[0] + '.mhd')) imgLungmask = np.load(os.path.join(ct_lungsegpath,imglist[i].split('_')[0] + '_Lungmask.npy')) # print(Image.shape,imgLungmask.shape) pbb5 = np.load(os.path.join(pbbpath,imglist[i])) extendbox = np.load(Preprocesspath + imglist[i].split('_')[0]+'_extendbox.npy', mmap_mode='r') save_dir = os.path.join('./GGONodulePrediction',imglist[i].split('_')[0]) if not os.path.exists(save_dir): os.makedirs(save_dir) ##########将结节金标准保存 # noduleMask = np.load(os.path.join(ct_lungsegpath,imglist[i].split('_')[0] + '_Nodulemask.npy'))[0] # NoduleBox_list = GetCenterOfNodule(noduleMask) # print('-----------------------------') # for seg_num in range(len(NoduleBox_list)): # boxS = NoduleBox_list[seg_num] # boxXYZ = np.array(boxS[:-1])#去掉直径 # print('NoduleBox',boxXYZ, extendbox)# # boxXYZ = np.array(boxXYZ + np.expand_dims(extendbox[0], 1).T)#对输出加上拓展box的坐标,其实就是恢复为原来的坐标 # boxXYZ = np.array(boxXYZ * np.expand_dims(resolution, 1).T / np.expand_dims(spacing, 1).T)#将输出恢复为原来的分辨率,这样就对应了原始数据中的体素坐标 # pos = VoxelToWorldCoord(boxXYZ, origin, spacing)#将输出转换为世界坐标 # print('boxXYZ,pos',boxXYZ,pos) # ax = plt.subplot(1,1,1) # plt.imshow(img[0,boxS[0]],'gray') # plt.axis('off') # rect = patches.Rectangle((boxS[2]-boxS[3],boxS[1]-boxS[3]),boxS[3]*2,boxS[3]*2,linewidth=2,edgecolor='blue',facecolor='none') # ax.add_patch(rect) # plt.savefig(os.path.join(save_dir,imglist[i].split('_')[0] + '---' + str(boxS[0]) + '.png')) # plt.close() if pbb5.shape[0] != 0 : max = np.max(pbb5[:,0]) thes = -10 # thes = -1 if max < -1: thes = max pbb5 = pbb5[pbb5[:,0]>=thes] pbb5 = nms(pbb5,0.1) # print('pbb5',imglist[i].split('_')[0],pbb5.shape, Image.shape, extendbox.shape) pbb = np.array(pbb5[:, :-1])#去掉直径 print('pbb5', pbb5, Spacing) pbb[:, 1:] = np.array(pbb[:, 1:] + np.expand_dims(extendbox[:,0], 1).T)#对输出加上拓展box的坐标,其实就是恢复为原来的坐标,我对这个拓展box深恶痛绝 pbb[:, 1:] = np.array(pbb[:, 1:] * np.expand_dims(resolution, 1).T / np.expand_dims(Spacing, 1).T)#将输出恢复为原来的分辨率,这样就对应了原始数据中的体素坐标 pbb5[:, 2:] = np.array(pbb5[:, 2:] * np.expand_dims(resolution, 1).T /
np.expand_dims(Spacing, 1)
numpy.expand_dims
from moai.export.local.image2d import Image2d from moai.monads.execution.cascade import _create_accessor import torch import pyrender import typing import logging import numpy as np import math import trimesh import itertools from PIL import Image log = logging.getLogger(__name__) __all__ = ["RenderedMesh"] class RenderedMesh(Image2d): def __init__(self, path: str, vertices: typing.Union[str, typing.Sequence[str]], faces: typing.Union[str, typing.Sequence[str]], image: typing.Union[str, typing.Sequence[str]], colormap: typing.Union[str, typing.Sequence[str]], transform: typing.Union[str, typing.Sequence[str]], translation: typing.Union[str, typing.Sequence[str]]=None, rotation: typing.Union[str, typing.Sequence[str]]=None, focal_length: typing.Union[float, typing.Tuple[float, float]]=5000.0, extension: typing.Union[str, typing.Sequence[str]]=["png"], # jpg or png or exr scale: float=1.0, batch_percentage: float=1.0, ): super(RenderedMesh, self).__init__( path=path, image=image, extension=extension, type=list(itertools.repeat('color', len([vertices] if isinstance(vertices, str) else vertices))), transform=transform, batch_percentage=batch_percentage, colormap=colormap, ) self.focal_length = (float(focal_length), float(focal_length)) \ if isinstance(focal_length, float) or isinstance(focal_length, int) else focal_length self.material = pyrender.MetallicRoughnessMaterial( metallicFactor=0.0, alphaMode='OPAQUE', baseColorFactor=(1.0, 1.0, 0.9, 1.0) ) self.vertices = [vertices] if isinstance(vertices, str) else list(vertices) self.vertices = [_create_accessor(k) for k in self.vertices] self.faces = [faces] if isinstance(faces, str) else list(faces) self.faces = [_create_accessor(k) for k in self.faces] self.scene = pyrender.Scene( bg_color=[0.0, 0.0, 0.0, 0.0], ambient_light=(0.3, 0.3, 0.3) ) for light in self._create_raymond_lights(): self.scene.add_node(light) self.translation = list(itertools.repeat('', len(self.keys)) if translation is None else\ ([translation] if isinstance(translation, str) else list(translation))) self.rotation = list(itertools.repeat('', len(self.keys)) if rotation is None else\ ([rotation] if isinstance(rotation, str) else list(rotation))) self.scale = scale self.renderer = None def _get_renderer(self, width: int, height: int) -> pyrender.OffscreenRenderer: if self.renderer is None or self.renderer.viewport_width != width\ or self.renderer.viewport_height != height: self.renderer = pyrender.OffscreenRenderer( viewport_width=width, viewport_height=height, point_size=1.0 ) return self.renderer def __call__(self, tensors: typing.Dict[str, torch.Tensor]) -> None: for v, f, r, t, k, _, tf, c, f in zip( self.vertices, self.faces, self.rotation, self.translation, self.keys, self.types, self.transforms, self.colormaps, self.formats ): take = int(math.ceil(self.batch_percentage * tensors[k].shape[0])) background = self.colorize_map[c]( self.transform_map[tf](tensors, k, take) ) b, c, h, w = background.shape renderer = self._get_renderer(width=w, height=h) results = [] for i in range(b): rotation = tensors[r][i].detach().cpu().numpy().squeeze() if r else np.eye(3) translation = tensors[t][i].detach().cpu().numpy().squeeze() if t else np.zeros(3) tmesh = trimesh.Trimesh( v(tensors).detach().cpu().numpy().squeeze(), f(tensors).detach().cpu().numpy().squeeze(), process=False ) rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0]) tmesh.apply_transform(rot) mesh = pyrender.Mesh.from_trimesh(tmesh, material=self.material) node = self.scene.add(mesh, 'mesh') # Equivalent to 180 degrees around the y-axis. Transforms the fit to # OpenGL compatible coordinate system. translation[0] *= -1.0 camera_pose = np.eye(4) camera_pose[:3, :3] = rotation camera_pose[:3, 3] = translation camera = pyrender.camera.IntrinsicsCamera( fx=self.focal_length[0], cx=w // 2, fy=self.focal_length[1], cy=h // 2, ) cam = self.scene.add(camera, pose=camera_pose) color, _ = renderer.render(self.scene, flags=pyrender.RenderFlags.RGBA) color = color.astype(np.float32) / 255.0 valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis] input_img = background.detach().cpu().numpy().squeeze().transpose(1, 2, 0) output_img = (color[:, :, :-1] * valid_mask + (1 - valid_mask) * input_img) if self.scale != 1.0: output_img = np.array( Image.fromarray( (output_img * 255.0).astype(np.uint8) ).resize( (int(w * self.scale), int(h * self.scale)), Image.ANTIALIAS ) ) results.append(output_img) self.scene.remove_node(node) self.scene.remove_node(cam) self.save_map['color']( np.stack(results).transpose(0, 3, 1, 2), f"{k}_overlay", self.index, f ) self.index = 0 if self.mode == "overwrite" else self.index + b def _create_raymond_lights(self): thetas = np.pi *
np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])
numpy.array
import pytest import numpy as np from compas.datastructures import Mesh from directional_clustering.fields import VectorField from directional_clustering.clustering import KMeans from directional_clustering.clustering import CosineKMeans from directional_clustering.clustering import VariationalKMeans # ============================================================================== # Fixtures # ============================================================================== @pytest.fixture def random_array(): """ A 2x2 array with random float values. """ return np.random.rand(2, 2) @pytest.fixture def cosine_array(): """ A 3x2 array with float values. """ return np.array([[1.0, 0.0], [1.0, 1.0], [0.0, 1.0]]) @pytest.fixture def cosine_centroids(): """ A 2x2 array of floats that represents the centers of two 2D clusters. """ return np.array([[1.0, 0.0], [1.0, 1.0]]) @pytest.fixture def vectors(): """ A list with three 3d vectors. """ return [[0.0, 0.0, 1.0], [0.0, 0.0, 2.0], [0.0, 2.0, 0.0]] @pytest.fixture def seeds(): """ A list with two 3d vectors. """ return [[0.0, 0.0, 1.0], [0.0, 2.0, 0.0]] @pytest.fixture def seed_array(seeds): """ A numpy array with two 3d vectors. """ return
np.array(seeds)
numpy.array
import re import numpy as np # parser for 4 states def analyze_diabatic(output, print_data=False, state_threshold=0.2, n_mon=6): # Coordinates n = output.find('$molecule') n2 = output[n:].find('$end') molecule_region = output[n:n+n2-1].replace('\t', ' ').split('\n')[1:] coordinates = np.array([ np.array(line.split()[1:4], dtype=float) for line in molecule_region[1:]]) symbols = [line.split()[0].capitalize() for line in molecule_region[1:]] n_atoms = len(coordinates) # Diabatic states for i, line in enumerate(output.split('\n')): if 'adiabatic states' in line.lower(): print('x') loc_diab = [int(num) for num in output.split('\n')[i+1].split()] if print_data: print('-------------------------------') print('Mulliken') state_order = [] for m in re.finditer('Mulliken analysis of TDA State', output): #print output[m.end():m.end()+800].split() data = output[m.end():m.end()+37*(n_atoms+3)].split() state_number = int(data[0]) state_info = [] for i in range(n_atoms): # print(data[7+i*4:7+i*4+4][1:4]) dat = data[7+i*4:7+i*4+4][1:4] state_info.append([float(d) for d in dat]) state_info =
np.array(state_info)
numpy.array
import numpy as np from scipy.integrate import odeint from sgp4.api import Satrec from astropy.time import Time import astropy from astropy import units as u from astropy.coordinates import EarthLocation, ITRS, FK5, CartesianDifferential, CartesianRepresentation if float(astropy.__version__[0:3]) > 4.1: from astropy.coordinates import TEME from orbitdeterminator.doppler.utils.constants import * from orbitdeterminator.doppler.utils.utils import * import json def get_satellite_sgp4(tle, epoch_start, epoch_end, step): """ Auxiliary function to obtain SGP4-propagated satellite coordinates within the specified epoch. # TODO: Different start/end Julian Days Args: tle (array): two-line element string array. epoch_start (astropy.time.Time): starting epoch. epoch_end (astropy.time.Time): ending epich. step (float): step in Julian Day fractions. verbose (bool): debug output. Defaults to False. Returns: e (np.ndarray): vector of SGP4 error codes. r (np.ndarray): vector of satellite positions (TEME). v (np.ndarray): vector of satellite velocities (TEME). jd (np.ndarray): vector of Julian Day numbers. fr (np.ndarray): vector of Julian Day fractions. """ satellite = Satrec.twoline2rv(tle[0], tle[1]) fr = np.arange(epoch_start.jd2, epoch_end.jd2, step) jd = np.ones(fr.shape[0]) * epoch_start.jd1 e, r, v = satellite.sgp4_array(jd, fr) return e, r, v, jd, fr def get_satellite(tle, epoch_start, epoch_end, step, frame='itrs'): """ Auxiliary function to get satellite coordinates in the specified frame (ITRS or TEME), propagated using SGP with given Two-Line Element (TLE). Coordinates are returned as numpy array. Args: tle (array): two-line element string array. epoch_start (astropy.time.Time): starting epoch. epoch_end (astropy.time.Time): ending epich. step (float): step in Julian Day fractions. verbose (bool): debug output. Defaults to False. frame (str): frame (teme or itrs). Defaults to 'teme'. Returns: itrs (astropy.coordinates.builtin_frames.itrs.ITRS): satellite position in ITRS. t (astropy.time.core.Time): corresponding times """ _, r, v, jd, fr = get_satellite_sgp4(tle, epoch_start, epoch_end, 1.0/86400.0) t = Time(jd + fr, format='jd') r_teme = CartesianRepresentation(r[:,0], r[:,1], r[:,2], unit=u.km) v_teme = CartesianDifferential(v[:,0], v[:,1], v[:,2], unit=u.km/u.s) # Temporary workaround until astropy version 4.1 that supports TEME astropy_version = float(astropy.__version__[0:3]) if astropy_version < 4.1: print(f"Warning: astropy version {astropy_version} < 4.1, treating SGP4 output (TEME) as FK5") eci = FK5(r_teme.with_differentials(v_teme), obstime=t) frame = 'fk5' else: eci = TEME(r_teme.with_differentials(v_teme), obstime=t) # Coordinate frame transformations if frame=='teme': x_sat = np.array([eci.x.value, eci.y.value, eci.z.value, eci.v_x.value, eci.v_y.value, eci.v_z.value]) if frame=='fk5': # If the astropy version < 4.1, keep it there if astropy_version < 4.1: x_sat = np.array([eci.x.value, eci.y.value, eci.z.value, eci.v_x.value, eci.v_y.value, eci.v_z.value]) # If the astropy vesion >= 4.1, transform TEME to FK5 else: fk5 = eci.transform_to(FK5(obstime=t)) x_sat = np.array([fk5.x.value, fk5.y.value, fk5.z.value, fk5.v_x.value, fk5.v_y.value, fk5.v_z.value]) elif frame=='itrs': itrs = eci.transform_to(ITRS(obstime=t)) x_sat = np.array([itrs.x.value, itrs.y.value, itrs.z.value, itrs.v_x.value, itrs.v_y.value, itrs.v_z.value]) return x_sat, t def get_site(lat, lon, height, obstime, frame='teme'): """ Auxiliary function to obtain site coordinates in ITRS or TEME frame. Args: lat (float): latitude (degrees). lon (float): longitude (degrees). height (float): altitude (m). obstime (astropy.time.Time): time array (n, ). frame (str): frame (teme or itrs). Defaults to 'teme'. Returns: x_obs (np.ndarray): array with site positions in ITRS/TEME frame (6, n). """ v = np.zeros(obstime.shape[0]) # Temporary variable # Switch to FK5 if astropy version doesn't support TEME frame if float(astropy.__version__[0:3]) < 4.1: frame='fk5' if frame == 'itrs': site = EarthLocation(lat=lat*u.deg, lon=lon*u.deg, height=height*u.m) site_itrs_temp = site.get_itrs(obstime=obstime) x_obs = np.array([site_itrs_temp.x.value, site_itrs_temp.y.value, site_itrs_temp.z.value, v, v, v]) elif frame == 'teme': # Need some workaround conversions for TEME frame site = EarthLocation(lat=lat*u.deg, lon=lon*u.deg, height=height/1e3*u.km) site_itrs_temp = site.get_itrs(obstime=obstime) r_itrs = site_itrs_temp.cartesian v_itrs = CartesianDifferential(v, v, v, unit=u.km/u.s) site_itrs = ITRS(r_itrs.with_differentials(v_itrs), obstime=obstime) site_teme = site_itrs.transform_to(TEME(obstime=obstime)) x_obs = np.array([site_teme.x.value, site_teme.y.value, site_teme.z.value, site_teme.v_x.value, site_teme.v_y.value, site_teme.v_z.value])*1e3 # Meters elif frame == 'fk5': # Need some workaround conversions for TEME frame # TODO: Check units for FK5(m/km) site = EarthLocation(lat=lat*u.deg, lon=lon*u.deg, height=height/1e3*u.km) site_itrs_temp = site.get_itrs(obstime=obstime) r_itrs = CartesianRepresentation( site_itrs_temp.data.xyz.value[0,:], site_itrs_temp.data.xyz.value[1,:], site_itrs_temp.data.xyz.value[2,:], unit=u.km) v_itrs = CartesianDifferential(v, v, v, unit=u.km/u.s) site_itrs = ITRS(r_itrs.with_differentials(v_itrs), obstime=obstime) site_fk5 = site_itrs.transform_to(FK5(obstime=obstime)) x_obs = np.array([site_fk5.x.value, site_fk5.y.value, site_fk5.z.value, site_fk5.v_x.value, site_fk5.v_y.value, site_fk5.v_z.value])*1e3 # Meters return x_obs def get_x_sat_odeint_stm(x_0, t): """ Auxiliary function to get odeint propagations of state vector and state transition matrix. Args: x_0 (np.ndarray): initial conditions (6, 1). t (np.ndarray): time array (n,). Returns: x_sat_orbdyn_stm (np.ndarray): odeint propagated position of the satellite (6, n). Phi (np.ndarray): array of corresponding state transition matrices (6, 6, n). """ x_Phi_0 = np.concatenate([x_0.squeeze(), np.eye(x_0.shape[0]).flatten()]) x_Phi = np.transpose(odeint(orbdyn_2body_stm, x_Phi_0, t, args=(MU,))) x_sat_orbdyn_stm = x_Phi[0:6,] Phi = x_Phi[6:,].reshape((x_0.shape[0], x_0.shape[0], t.shape[0])) return x_sat_orbdyn_stm, Phi def get_6_oe_from_tle(tle): """ Get six orbital elements from given TLE. This function is used in the process of generating possible orbital configurations. Args: tle (list[str]): Two-line element set Returns: oe (np.ndarray): Array containing eccentricity, semi-major axis, inclination, right ascension of the ascending node, argument of perigee and mean anomaly """ sat = Satrec.twoline2rv(tle[0], tle[1]) # Orbitral elements oe = np.array([sat.ecco, # Eccentricity sat.a, # Semi-major axis sat.inclo, # Inclination sat.nodeo, # Right ascension of the ascending node sat.argpo, # Argument of perigee sat.mo]) # Mean anomaly return oe def get_example_scenario(id=0, frame='teme'): """ Auxiliary function to obtain example scenario variables. Scenario 1 or 2 works. Args: id (int): Scenario id. frame (str): frame (teme or itrs). Defaults to 'teme'. Returns: x_0 (np.ndarray): initial satellite position in ITRF frame. t_sec (np.ndarray): time array (seconds). x_sat_orbdyn_stm (np.ndarray): odeint propagated position of the satellite. x_obs_1 (np.ndarray): observer 1 position. x_obs_multiple (np.ndarray): multiple observer positions. f_downlink (float): downlink frequency of the satellite. """ f_downlink = [435.103, 145.980, 137.620, 435.103] epoch_start = [Time('2020-05-27 23:46:00'), Time('2020-06-25 06:30:00'), Time('2020-07-01 05:00:00'), Time('2020-05-27 23:46:00')] epoch_end = [Time('2020-05-27 23:50:00'), Time('2020-06-25 06:37:00'), Time('2020-07-01 05:45:00'), Time('2020-05-27 23:50:00')] tle = dict.fromkeys(range(4), []) # Scenario 0 - FALCONSAT-3, Sites: Atlanta, Jacksonville, Charlotte tle[0] = [ '1 30776U 07006E 20146.24591950 .00002116 00000-0 57170-4 0 9998', '2 30776 35.4350 68.4822 0003223 313.1473 46.8985 15.37715972733265'] # Scenario 1 - FOX-1A (AO-85), Sites: Santiago, La Serena, ~La Silla tle[1] = [ '1 40967U 15058D 20175.33659500 +.00000007 +00000+0 +20124-4 0 687', '2 40967 64.7742 112.9087 0170632 72.3744 289.5913 14.76130447162443'] # Scenario 2 - tle[2] = [ '1 40069U 14037A 20182.71359025 -.00000046 00000-0 -19083-5 0 9997', '2 40069 98.5008 219.7482 0004702 237.2338 122.8403 14.20673317310092'] # Scenario 3 = Scenario 1, 4 stations tle[3] = [ '1 30776U 07006E 20146.24591950 .00002116 00000-0 57170-4 0 9998', '2 30776 35.4350 68.4822 0003223 313.1473 46.8985 15.37715972733265'] x_sat, t = get_satellite(tle[id], epoch_start[id], epoch_end[id], 1.0/86400.0, frame=frame) # Set first position x_0 = np.expand_dims(x_sat[:,0] * 1e3, axis=1) t_sec = t.to_value('unix') t_sec -= t_sec[0] # Propagate in order to get range rate measurements x_sat_orbdyn_stm, _ = get_x_sat_odeint_stm(x_0, t_sec) # Set observer position # Ids 0, 1, 2 - batch if id==0: x_obs_1 = get_site(33.7743331, -84.3970209, 288, obstime=t, frame=frame) # Atlanta x_obs_2 = get_site(30.3449153, -81.8231881, 100, obstime=t, frame=frame) # Jacksonville x_obs_3 = get_site(35.2030728, -80.9799098, 100, obstime=t, frame=frame) # Charlotte x_obs_multiple = np.transpose(np.concatenate([[x_obs_1], [x_obs_2], [x_obs_3]]), (1,2,0)) elif id==1: x_obs_1 = get_site(-33.43, -70.61, 500, obstime=t, frame=frame) # Santiago x_obs_2 = get_site(-30.02, -70.70, 700, obstime=t, frame=frame) # Vicuna x_obs_3 = get_site(-28.92, -70.58, 2000, obstime=t, frame=frame) # ~La Silla x_obs_multiple = np.transpose(np.concatenate([[x_obs_1], [x_obs_2], [x_obs_3]]), (1,2,0)) elif id==2: # TODO: Fix x_obs_1 = get_site(51.1483578, -1.4384458, 100, obstime=t, frame=frame) # Santiago x_obs_2 = get_site(44.075, 5.5346, 50, obstime=t, frame=frame) # Vicuna x_obs_3 = get_site(48.835, 2.280, 50, obstime=t, frame=frame) # ~La Silla x_obs_multiple = np.transpose(np.concatenate([[x_obs_1], [x_obs_2], [x_obs_3]]), (1,2,0)) # TDoA simulation elif id==3: x_obs_1 = get_site(33.7743331, -84.3970209, 288, obstime=t, frame=frame) # Atlanta x_obs_2 = get_site(30.3449153, -81.8231881, 100, obstime=t, frame=frame) # Jacksonville x_obs_3 = get_site(35.2030728, -80.9799098, 100, obstime=t, frame=frame) # Charlotte x_obs_4 = get_site(36.1755204, -86.8595446, 100, obstime=t, frame=frame) # Test x_obs_multiple = np.transpose(np.concatenate([[x_obs_1], [x_obs_2], [x_obs_3], [x_obs_4]]), (1,2,0)) return x_0, t_sec, x_sat_orbdyn_stm, x_obs_multiple, f_downlink[id] def parse_json_data(filename:str): """ Temporary function to process the data from json file (end of project simulation.) Args: filename (str): path to the file that contains simulation data for the final evaluation """ json_file = open(filename) data_json = json.load(json_file) n_s = len(data_json['observation']) # Number of stations t_start =
np.zeros(n_s)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Thu Jun 29 12:53:17 2017 @author: Alex """ # Basic imports import pandas as pd import numpy as np from datetime import timedelta import os.path import astropy.units as u # Advanced imports import flarepy.utils as utils import flarepy.flare_detection as det import flarepy.plotting as plot from sunpy.lightcurve import GOESLightCurve from sunpy.time import TimeRange # Parameters # Specify the start/end times str_start = '2012-07-05 00:00:00' str_mid = '2012-07-06 00:00:00' # Only necessary because only DL GOES for single days str_end = '2012-07-07 00:00:00' str_save_path = 'D:\\flare_outputs\\2017-08-16\\' str_plots_dir = 'plots\\' str_comparisons_dir = 'comparisons\\' str_detections_dir = 'detections\\' str_file_prefix = '2012_july_5-6th___' str_day_1_prefix = '2012_july_5th___' str_day_2_prefix = '2012_july_6th___' str_heading = '5-6th July 2012' str_day_1_heading = '5th July 2012' str_day_2_heading = '6th July 2012' ############ # # Download GOES XRS Data # ############ # Get and open GOES data #str_year = str_start[0:4] #h5 = pd.HDFStore('C:\\goes_h5\\str_year_goes.h5') lc_goes_5th = GOESLightCurve.create(TimeRange(str_start, str_mid)) lc_goes_6th = GOESLightCurve.create(TimeRange(str_mid, str_end)) df_goes_XRS = pd.concat([lc_goes_5th.data, lc_goes_6th.data]) ############ # # XRSA Data Pre-Processing # Note: not used in the flare detection, just for the plots. # ############ # Get raw dataset as a series and make a mask ser_xrsa_raw = df_goes_XRS['xrsa'].truncate(str_start, str_end) ser_xrsa_raw_mask = pd.Series(data=np.logical_or(
np.isnan(ser_xrsa_raw.values)
numpy.isnan
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,0,-1,1,0,0,0,-1,0])
numpy.array
import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset import torchvision.transforms as transforms from botorch.sampling.qmc import NormalQMCEngine import numpy as np import math from sklearn.linear_model import LinearRegression import math import os import glob from tqdm import tqdm from PIL import Image from scipy import linalg from inception import * class randn_sampler(): """ Generates z~N(0,1) using random sampling or scrambled Sobol sequences. Args: ndim: (int) The dimension of z. use_sobol: (bool) If True, sample z from scrambled Sobol sequence. Else, sample from standard normal distribution. Default: False use_inv: (bool) If True, use inverse CDF to transform z from U[0,1] to N(0,1). Else, use Box-Muller transformation. Default: True cache: (bool) If True, we cache some amount of Sobol points and reorder them. This is mainly used for training GANs when we use two separate Sobol generators which helps stabilize the training. Default: False Examples:: >>> sampler = randn_sampler(128, True) >>> z = sampler.draw(10) # Generates [10, 128] vector """ def __init__(self, ndim, use_sobol=False, use_inv=True, cache=False): self.ndim = ndim self.cache = cache if use_sobol: self.sampler = NormalQMCEngine(d=ndim, inv_transform=use_inv) self.cached_points = torch.tensor([]) else: self.sampler = None def draw(self, batch_size): if self.sampler is None: return torch.randn([batch_size, self.ndim]) else: if self.cache: if len(self.cached_points) < batch_size: # sample from sampler and reorder the points self.cached_points = self.sampler.draw(int(1e6))[torch.randperm(int(1e6))] # Sample without replacement from cached points samples = self.cached_points[:batch_size] self.cached_points = self.cached_points[batch_size:] return samples else: return self.sampler.draw(batch_size) def calculate_FID_infinity(gen_model, ndim, batch_size, gt_path, num_im=50000, num_points=15): """ Calculates effectively unbiased FID_inf using extrapolation Args: gen_model: (nn.Module) The trained generator. Generator takes in z~N(0,1) and outputs an image of [-1, 1]. ndim: (int) The dimension of z. batch_size: (int) The batch size of generator gt_path: (str) Path to saved FID statistics of true data. num_im: (int) Number of images we are generating to evaluate FID_inf. Default: 50000 num_points: (int) Number of FID_N we evaluate to fit a line. Default: 15 """ # load pretrained inception model inception_model = load_inception_net() # define a sobol_inv sampler z_sampler = randn_sampler(ndim, True) # get all activations of generated images activations, _ = accumulate_activations(gen_model, inception_model, num_im, z_sampler, batch_size) fids = [] # Choose the number of images to evaluate FID_N at regular intervals over N fid_batches = np.linspace(5000, num_im, num_points).astype('int32') # Evaluate FID_N for fid_batch_size in fid_batches: # sample with replacement np.random.shuffle(activations) fid_activations = activations[:fid_batch_size] fids.append(calculate_FID(inception_model, fid_activations, gt_path)) fids = np.array(fids).reshape(-1, 1) # Fit linear regression reg = LinearRegression().fit(1/fid_batches.reshape(-1, 1), fids) fid_infinity = reg.predict(np.array([[0]]))[0,0] return fid_infinity def calculate_FID_infinity_path(real_path, fake_path, batch_size=50, min_fake=5000, num_points=15): """ Calculates effectively unbiased FID_inf using extrapolation given paths to real and fake data Args: real_path: (str) Path to real dataset or precomputed .npz statistics. fake_path: (str) Path to fake dataset. batch_size: (int) The batch size for dataloader. Default: 50 min_fake: (int) Minimum number of images to evaluate FID on. Default: 5000 num_points: (int) Number of FID_N we evaluate to fit a line. Default: 15 """ # load pretrained inception model inception_model = load_inception_net() # get all activations of generated images if real_path.endswith('.npz'): real_m, real_s = load_path_statistics(real_path) else: real_act, _ = compute_path_statistics(real_path, batch_size, model=inception_model) real_m, real_s = np.mean(real_act, axis=0), np.cov(real_act, rowvar=False) fake_act, _ = compute_path_statistics(fake_path, batch_size, model=inception_model) num_fake = len(fake_act) assert num_fake > min_fake, \ 'number of fake data must be greater than the minimum point for extrapolation' fids = [] # Choose the number of images to evaluate FID_N at regular intervals over N fid_batches = np.linspace(min_fake, num_fake, num_points).astype('int32') # Evaluate FID_N for fid_batch_size in fid_batches: # sample with replacement np.random.shuffle(fake_act) fid_activations = fake_act[:fid_batch_size] m, s = np.mean(fid_activations, axis=0), np.cov(fid_activations, rowvar=False) FID = numpy_calculate_frechet_distance(m, s, real_m, real_s) fids.append(FID) fids = np.array(fids).reshape(-1, 1) # Fit linear regression reg = LinearRegression().fit(1/fid_batches.reshape(-1, 1), fids) fid_infinity = reg.predict(np.array([[0]]))[0,0] return fid_infinity def calculate_IS_infinity(gen_model, ndim, batch_size, num_im=50000, num_points=15): """ Calculates effectively unbiased IS_inf using extrapolation Args: gen_model: (nn.Module) The trained generator. Generator takes in z~N(0,1) and outputs an image of [-1, 1]. ndim: (int) The dimension of z. batch_size: (int) The batch size of generator num_im: (int) Number of images we are generating to evaluate IS_inf. Default: 50000 num_points: (int) Number of IS_N we evaluate to fit a line. Default: 15 """ # load pretrained inception model inception_model = load_inception_net() # define a sobol_inv sampler z_sampler = randn_sampler(ndim, True) # get all activations of generated images _, logits = accumulate_activations(gen_model, inception_model, num_im, z_sampler, batch_size) IS = [] # Choose the number of images to evaluate IS_N at regular intervals over N IS_batches = np.linspace(5000, num_im, num_points).astype('int32') # Evaluate IS_N for IS_batch_size in IS_batches: # sample with replacement np.random.shuffle(logits) IS_logits = logits[:IS_batch_size] IS.append(calculate_inception_score(IS_logits)[0]) IS =
np.array(IS)
numpy.array
import numpy as np import scipy import scipy.io import pickle from scipy.special import lpmv, spherical_jn, spherical_yn class Directivity: def __init__(self, data_path, rho0, c0, freq_vec, simulated_ir_duration, measurement_radius, sh_order, type, sample_rate=44100, **kwargs): ''' This script encodes the measured impulse responses, representing the directivity of a source into sperical harmonic coefficients source_data_path -> path that leads to the .mat file that contains the source data source_name -> string. It is gonna be used as the name of the file where the solution is gonna be saved rho0 -> air density c0 -> speed of sound simulated_ir_duration -> length of simulation [s] measurement_radius -> distance from source to measurement positions [m] existing_pre_delay -> delay before direct sound arrives as provided in GRAS dataset [samples] ''' self.data_path = data_path self.rho0 = rho0 self.c0 = c0 self.freq_vec = freq_vec self.simulated_ir_duration = simulated_ir_duration self.measurement_radius = measurement_radius self.sh_order = sh_order self.type = type self.sample_rate = sample_rate try: self.existing_pre_delay = kwargs["existing_pre_delay"] except: pass def encode_directivity (self, file_name): self.file_name = file_name # Derived parameters: nfft = self.sample_rate*self.simulated_ir_duration # Number of FFT points f_list = self.sample_rate*np.arange(nfft)/nfft # List of FFT frequencies fi_lim_lo = np.argmin(np.abs(f_list - self.freq_vec[0])) # FFT bins above which to encode fi_lim_hi = np.argmin(np.abs(f_list - self.freq_vec[-1])) # FFT bins below which to encode (Hz) f_list = f_list[fi_lim_lo:fi_lim_hi + 1] # Only retain frequencies to be encoded if self.type == "source": ## Load and adjust meaured impulse responses: # Load measured impulse responses: print ('Loading source data. It might be computationally costing...') source_data = scipy.io.loadmat(self.data_path) # loads variables IR, Phi, Theta ir = np.array (source_data['IR']) # Convert measurement angles from degrees to radians & ensure are column vectors beta = np.array(source_data['Theta']) * np.pi/180 beta = beta.reshape((np.size(beta), 1)) alpha = np.array(source_data['Phi']) * np.pi/180 alpha = alpha.reshape((np.size(alpha), 1)) del source_data # Correct initial time delay for measurement distance and window: desired_pre_delay = round(self.sample_rate * self.measurement_radius / self.c0) # Delay before direct sound arrives based on measurement radius (#samples) half_window = np.concatenate((np.array(0.5-0.5*np.cos(np.pi*np.linspace(0, 1, self.existing_pre_delay))).conj().T, np.array(np.ones((np.size(ir,0) - self.existing_pre_delay))))) # Rising window half_window = half_window.reshape((np.size(half_window), 1)) ir = np.concatenate((np.zeros((desired_pre_delay - self.existing_pre_delay, np.size(ir,1))), np.multiply(ir, half_window))) half_window = np.concatenate((np.ones((np.ceil(np.size(ir,0)/2).astype(int),1)), 0.5+0.5*np.cos(np.pi*np.linspace(0, 1, np.floor(np.size(ir,0)/2).astype(int)).conj().T.reshape(np.floor(np.size(ir,0)/2).astype(int),1)))) # Falling window ir = np.multiply(ir, half_window); # Derived parameters: num_meas = np.size(ir,1); # Number of measurment points ## Fourier transform the impulse responses: # Loop over measurement points and FFT: phi_meas = np.zeros((fi_lim_hi-fi_lim_lo+1, num_meas), dtype = np.complex128) print ('Computing FFTs') for iMeas in range(num_meas): fft_ir = np.conj(np.fft.fft(ir[:,iMeas], n = nfft)) # conj used because project uses exp(-1i*w*t) Fourier Transform phi_meas[:,iMeas] = np.array([fft_ir[fi_lim_lo:fi_lim_hi + 1]]) # Only retain frequencies to be encoded del ir, fft_ir, iMeas, fi_lim_lo, fi_lim_hi # Transpose to optimise memory access for encoding step: print ('Transposing transfer function array...') phi_meas = np.transpose(phi_meas) print ('Complete.') ## Encoding: # Create weighting vector: w = np.pi/180*(np.cos(beta-np.pi/360)-np.cos(beta+np.pi/360)); w[0] = 2*np.pi*(1-np.cos(np.pi/360)); w[-1] = w[0]; w = w.reshape((np.size(w), )) print ('Weight addition error = %s.' % abs(np.sum(w) - (4*np.pi))) # Pre-calculate spherical harmonic functions: y_nm, dy_dbeta, dy_dalpha = spherical_harmonic_all(self.sh_order, alpha,beta); # Loop over frequency: self.sh_coefficients = [] i = 0 for fi, f in enumerate (f_list): if f == self.freq_vec[i]: # Calculate spherical Hankel functions: hnOut = np.zeros(((self.sh_order+1)**2, 1), dtype = np.complex128); for n in np.arange(self.sh_order+1): for m in np.arange(-n, n + 1): hnOut[sub2indSH(m,n),0] = spherical_hankel_out(n, self.measurement_radius*2*np.pi*f/self.c0) # Calculate b_nm coefficients via a mode-matching approach (Eq. 9 in paper): sh_coefficients_f = np.matmul(y_nm.conj().T, np.transpose(np.divide(np.multiply(w, phi_meas[:,fi]), hnOut))) sh_coefficients_f = np.diagonal(sh_coefficients_f) self.sh_coefficients.append(sh_coefficients_f) i+=1 elif self.type == "receiver": # Load measured impulse responses: print ('Loading receiver directionality data. It might be computationally costing...') receiver_data = scipy.io.loadmat(self.data_path) # loads variables HRIR_R,HRIR_L, Phi, Theta hrir_l = np.array(receiver_data['HRIR_L']) hrir_r = np.array(receiver_data['HRIR_R']) azimuth = np.array(receiver_data['azimuth']) azimuth = azimuth.reshape((np.size(azimuth), 1)) elevation = np.array(receiver_data['elevation']) elevation = elevation.reshape((np.size(elevation), 1)) # Convert measurement angles from degrees to radians, and from elevation to polar alpha = np.multiply(np.divide(azimuth, 360), (2*np.pi)) beta = np.multiply(np.divide(np.subtract(90, elevation), 360), (2*np.pi)) del receiver_data, azimuth, elevation # Derived parameters: ir_length = np.size(hrir_l, 0) # Length of recorded impulse response (#samples) num_meas = np.size(hrir_l, 1) # Number of measurment points ## Fourier transform the impulse responses - left: # The IR is windowed with a half-Hanning window applied to its last 25%, to # avoid a wrap-around discontinity of and then zero-padded to achieve the # required frequency resolution. half_window = np.concatenate((np.ones((np.ceil(ir_length/2).astype(int),1)), np.array(0.5+0.5*np.cos(np.pi*np.linspace(0, 1, np.floor(ir_length/2).astype(int)).conj().T)).reshape((np.size(np.linspace(0, 1, np.floor(ir_length/2).astype(int))), 1)))) half_window = half_window.reshape((np.size(half_window), )) ## Encoding: # Pre-calculate spherical harmonic functions: y_nm, dy_dbeta, dy_dalpha = spherical_harmonic_all(self.sh_order, alpha, beta) # Pre-calculate spherical Hankel functions: hnOut = np.zeros(((self.sh_order+1)**2, np.size(f_list)), dtype = np.complex128) for fi, f in enumerate(f_list): for n in np.arange(self.sh_order + 1): for m in np.arange(-n, n + 1): hnOut[sub2indSH(m,n),fi] = spherical_hankel_out(n, self.measurement_radius*2*np.pi*f/self.c0) # Loop over measurement points and FFT - left: hrtf = np.zeros((fi_lim_hi-fi_lim_lo+1, num_meas), dtype = np.complex128) for i_meas in range(num_meas): fft_hrir = np.conj(np.fft.fft(np.multiply(half_window, hrir_l[:,i_meas]), n = nfft)) # conj used because project uses exp(-1i*w*t) Fourier Transform hrtf[:,i_meas] = np.array([fft_hrir[fi_lim_lo:fi_lim_hi + 1]]) # Only retain frequencies to be encoded del hrir_l, fft_hrir, i_meas # Transpose to optimise memory access for encoding step: print('\tTransposing transfer function array...') hrtf = np.transpose(hrtf) print('Complete.\n') # Loop over frequency - left: self.sh_coefficients_left = [] i = 0 for fi, f in enumerate (f_list): if f == self.freq_vec[i]: # Calculate Lnm coefficients by a least-squares fit approach: A = np.multiply(4*np.pi*np.transpose(hnOut[:,fi])/hnOut[0,fi], np.conj(y_nm)) sh_coefficients_left_f = np.linalg.lstsq (A, hrtf[:,fi]) self.sh_coefficients_left.append(sh_coefficients_left_f[0]) i+=1 # Loop over measurement points and FFT - right: hrtf = np.zeros((fi_lim_hi-fi_lim_lo+1, num_meas), dtype = np.complex128) for i_meas in range(num_meas): fft_hrir = np.conj(np.fft.fft(np.multiply(half_window, hrir_r[:,i_meas]), n = nfft)) # conj used because project uses exp(-1i*w*t) Fourier Transform hrtf[:,i_meas] = np.array([fft_hrir[fi_lim_lo:fi_lim_hi + 1]]) # Only retain frequencies to be encoded del hrir_r, fft_hrir, i_meas # Transpose to optimise memory access for encoding right: print('\tTransposing transfer function array...') hrtf = np.transpose(hrtf) print('Complete.\n') # Loop over frequency - right: self.sh_coefficients_right = [] i = 0 for fi, f in enumerate (f_list): if f == self.freq_vec[i]: # Calculate Lnm coefficients by a least-squares fit approach: A = np.multiply(4*np.pi*np.transpose(hnOut[:,fi])/hnOut[0,fi], np.conj(y_nm)) sh_coefficients_right_f = np.linalg.lstsq (A, hrtf[:,fi]) self.sh_coefficients_right.append(sh_coefficients_right_f[0]) i+=1 else: raise ValueError("Type is not valid. It must be source or receiver.") save_name = "%s.pickle" % self.file_name pickle_obj = open(save_name, "wb") pickle.dump(self, pickle_obj) pickle_obj.close() print ("Saved results to %s.pickle" % self.file_name) #### Functions ##### def sub2indSH (m,n): """ i = sub2indSH(m,n) Convert Spherical Harmonic (m,n) indices to array index i Assumes that i iterates from 0 (Python style) """ i = n**2 + n + m return i def spherical_harmonic_all (max_order, alpha, beta): """ (y, dy_dbeta, dy_dalpha) = spherical_harmonic_all(max_order, alpha, sinbeta, cosbeta) Computes a Spherical Harmonic function and it's angular derivatives for all (m,n) up to the given maximum order. The algorithm is equivalent to that implemented in SphericalHarmonic, but this version avoids repeated calls to lpmv, since that is very time consuming. Arguments - these should all be scalars: r is radius alpha is azimuth angle (angle in radians from the positive x axis, with rotation around the positive z axis according to the right-hand screw rule) beta is polar angle, but it is specified as two arrays of its cos and sin values. max_order is maximum Spherical Harmonic order and should be a non-negative real integer scalar Returned data will be vectors of length (max_order+1)^2. """ cosbeta = np.cos(beta) sinbeta = np.sin(beta) # Preallocate output arrays: y = np.zeros((np.size(alpha),(max_order+1)**2), np.complex128) dy_dbeta = np.zeros((np.size(alpha),(max_order+1)**2), np.complex128) dy_dalpha = np.zeros((np.size(alpha),(max_order+1)**2), np.complex128) #% Loop over n and calculate spherical harmonic functions y_nm for n in range(max_order+1): # Compute Legendre function and its derivatives for all m: p_n = lpmv(range(0,n+1), n, cosbeta) #print (np.shape(p_n)) #shape_p_n = np.shape(p_n) #p_n = p_n.reshape((shape_p_n[1], shape_p_n[0])) for m in range(-n, n+1): # Legendre function its derivatives for |m|: p_nm = p_n[:, np.absolute(m)] p_nm = p_nm.reshape((np.size(p_nm), )) if n==0: dPmn_dbeta = 0 elif m==0: dPmn_dbeta = p_n[:,1] elif abs(m)<n: dPmn_dbeta = 0.5*p_n[:,abs(m)+1] - 0.5*(n+abs(m))*(n-abs(m)+1)*p_n[:,abs(m)-1]; dPmn_dbeta = dPmn_dbeta.reshape((np.size(dPmn_dbeta), )) elif (abs(m)==1) and (n==1): dPmn_dbeta = -cosbeta dPmn_dbeta = dPmn_dbeta.reshape((np.size(dPmn_dbeta), )) #elif sinbeta<=np.finfo(float).eps: #dPmn_dbeta = 0 else: dPmn_dbeta = -abs(m)*cosbeta.reshape((np.size(cosbeta), ))*p_nm/sinbeta.reshape((
np.size(sinbeta)
numpy.size
# methods for balls hitting bats and other balls, and going out of bounds from cmu_112_graphics import * from utilities import * from batter import * import math import numpy import random #runs label class class RunsLabel(object): dRadius = 0.05 dSize = 0.1 def __init__(self, runs, x, y, color): self.time = 0 self.runs = runs self.x = x self.y = y self.color = color self.radius = 10 self.size = 12 #ball class class Ball(object): ballInContact = set() ballContactBat = set() radius = 10 mass = 1 def __init__(self, x, y, dx=0, dy=0): self.cx = x self.cy = y self.dx = dx self.time = 0 self.dy = dy self.collided = False #draws ball using image def drawBalls(mode, canvas): for ball in mode.balls: canvas.create_image(ball.cx, ball.cy, image=ImageTk.PhotoImage(mode.ballImage)) #generates new ball def bowlBall(mode): cy = random.randint(mode.height//2 -75, mode.height//2 ) dx = random.randint(-1800, -1500) dy = random.randint(0, 30) newBall = Ball(mode.width - 2 * mode.margin, cy, dx, dy) mode.balls.append(newBall) mode.ballsBowled += 1 #used when ball collides def ballCollision(b1, b2): Ball.ballInContact.add((b1,b2)) ############################################################################ # Physics formula from https://www.vobarian.com/collisions/2dcollisions2.pdf ############################################################################ normal = (b2.cx - b1.cx, b2.cy - b1.cy) unitNormal = normal /
numpy.sqrt((b2.cx - b1.cx)**2 + (b2.cy - b1.cy)**2)
numpy.sqrt
import os import pickle import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np from tensorflow import keras import tensorflow_addons as tfa from loss import dice_loss, nerve_segmentation_loss, tversky_loss, iou_score, focal_tversky_loss, focal_loss, custom_loss from eval import predict_mask, get_model_prediction from stats import get_samples, calculate_regions, compute_bins, get_image_histogram, get_dataset_histogram from augmentation import get_random_affine_transformation from post_processing import draw_outliers_regions from config import initialise_run, model_path, minimum_fascicle_area, watershed_coeff custom = {'iou_score': iou_score, 'dice_loss': dice_loss, 'nerve_segmentation_loss': nerve_segmentation_loss, 'tversky_loss': tversky_loss, 'focal_tversky_loss': focal_tversky_loss, 'SigmoidFocalCrossEntropy': tfa.losses.SigmoidFocalCrossEntropy(), 'focal_loss': focal_loss, 'custom_loss': custom_loss} def plot_color_histogram(path_list, dataset_path_list, save=False, show=True): """ Plot the color histogram of images agains that of the whole dataset Parameters --------------- path_list: [str] paths to the input images dataset_path_list: [str] path to training dataset folder save: bool, optional flag for saving the plot show: bool, optional flag for showing the plot """ if save: output_folder = os.path.join(os.getcwd(), 'results/visualisations/distributions') os.makedirs(output_folder, exist_ok=True) out_fname = output_folder set_hist = get_dataset_histogram(dataset_path_list) xticks = [i for i in range(256)] color = ('r', 'g', 'b') fig, axs = plt.subplots(len(path_list) + 1, 4, figsize=(10, (len(path_list)+1) * 2)) # color histogram of original dataset axs[0, 0].text(0.5, 0.5, 'Average on\ntraining set', horizontalalignment='center', verticalalignment='center', transform=axs[0, 0].transAxes) axs[0, 0].axis('off') for i, col in enumerate(color): axs[0, i+1].plot(xticks, set_hist[i], color=col) axs[0, i+1].set_xlabel('Colour value') axs[0, 1].set_ylabel('% of pixels') for k, path in enumerate(path_list): k = k+1 img = np.load(path) img_hist = get_image_histogram(img) axs[k, 0].imshow(img) axs[k, 0].axis('off') for i, col in enumerate(color): axs[k, i+1].plot(xticks, img_hist[i], color=col) axs[k, 1].set_ylabel('% of pixels') # histogram of rgb channel axs[0, 1].set_title('Histogram of\nR channel') axs[0, 2].set_title('Histogram of\nG channel') axs[0, 3].set_title('Histogram of\nB channel') axs[-1, 1].set_xlabel('Colour value') axs[-1, 2].set_xlabel('Colour value') axs[-1, 3].set_xlabel('Colour value') if save: plt.savefig(out_fname + '/color_histograms.png') if show: plt.show() def plot_augmented_images(img_path, num_aug=4, num_aug_wcolor=2, save=False, show=True): """ Visualize the different augmentations from a given image Parameters --------------- img_path: str path to the input image num_aug: int, optional number of augmentations to be displayed num_aug_wcolor: int, optional number of augmentations with color transformation to be displayed save: bool, optional flag for saving the plot show: bool, optional flag for showing the plot """ img = np.load(img_path) if save: output_folder = os.path.join(os.getcwd(), 'results/visualisations/augmentations') os.makedirs(output_folder, exist_ok=True) out_fname = output_folder # augmented images augmented_imgs = [] augmented_imgs_wcolor = [] for _ in range(num_aug): transform = get_random_affine_transformation() augmented_imgs.append(transform(img, do_colour_transform=False)) for _ in range(num_aug_wcolor): transform = get_random_affine_transformation() augmented_imgs_wcolor.append(transform(img)) # reshape np array to fit in the plot augmented_imgs= np.reshape(augmented_imgs, (2, num_aug // 2, 512, 512, 3)) augmented_imgs_wcolor = np.reshape(augmented_imgs_wcolor, (2, num_aug_wcolor // 2, 512, 512, 3)) # plot layouts # the last columns always belongs to colored transformations num_col = (num_aug + num_aug_wcolor) // 2 + 2 fig, axs = plt.subplots(2, num_col, figsize=(num_col * 3, 6)) gs = axs[0][0].get_gridspec() for row in range(2): for ax in axs[row][0:2]: ax.remove() original_ax = fig.add_subplot(gs[0:2, 0:2]) original_ax.imshow(img) for x in range(2): # normal augmentation for y in range(2, num_aug // 2 + 2): axs[x][y].imshow(augmented_imgs[x][y - 2]) axs[x][y].axis('off') # colored augmentation for y_wcolor in range(-num_aug_wcolor // 2, 0): axs[x][y_wcolor].imshow(augmented_imgs_wcolor[x][y_wcolor + num_aug_wcolor // 2]) axs[x][y_wcolor].axis('off') plt.axis('off') if save: plt.savefig(out_fname + '/augmentations_visualization.png') if show: plt.show() def plot_masks_vs_predictions(path_list, trained_model_checkpoint=None, wstats=False, save=False, show=True): """ Visualize the original images, the annotated masks, and the predicted masks Parameters --------------- path_list: [str] paths to the input images trained_model_checkpoint: str trained model to load and make prediction wstats: bool, optional flag to display the metrics stats within the plot save: bool, optional flag for saving the plot show: bool, optional flag for showing the plot """ if trained_model_checkpoint is not None: trained_model = keras.models.load_model(trained_model_checkpoint, custom_objects=custom) if wstats: sub_folder = 'wstats' else: sub_folder = 'default' fig, axs = plt.subplots(len(path_list), 4, figsize=(7, len(path_list) * 2)) if save: output_folder = os.path.join(os.getcwd(), 'results/visualisations/predictions/', sub_folder) os.makedirs(output_folder, exist_ok=True) out_fname = output_folder for k, path in enumerate(path_list): img = np.load(path[0]) mask = np.load(path[1]) pred = predict_mask(trained_model, img) # original image axs[k, 0].imshow(img) # annotated mask axs[k, 1].imshow(mask, cmap='gray', interpolation='none') # predicted mask axs[k, 2].imshow(pred, cmap='gray', interpolation='none') # predicted overlayed on annotated mask axs[k, 3].imshow(mask, cmap='gray', interpolation='none') axs[k, 3].imshow(pred, cmap='viridis', alpha=0.5, interpolation='none') if wstats: iou = str(np.around(iou_score(mask, pred, logits=False).numpy(), decimals=3)) axs[k, 3].set_xlabel('IoU = ' + iou) for i in range(4): axs[k, i].xaxis.set_major_locator(ticker.NullLocator()) axs[k, i].yaxis.set_major_locator(ticker.NullLocator()) axs[0, 0].set_title('Input image') axs[0, 1].set_title('Ground truth') axs[0, 2].set_title('Prediction') axs[0, 3].set_title('Prediction overlayed\n on ground truth') plt.tight_layout() if save: plt.savefig(out_fname + '/sample_predictions_' + sub_folder + '.png') if show: plt.show() def plot_image_vs_predictions(path_list, trained_model_checkpoint=None, save=False, show=True): """ Visualize the original images, the predicted masks and the predicted masks overlayed onto the original image Parameters --------------- path_list: [str] paths to the input images trained_model_checkpoint: str trained model to load and make prediction save: bool, optional flag for saving the plot show: bool, optional flag for showing the plot """ if trained_model_checkpoint is not None: trained_model = keras.models.load_model(trained_model_checkpoint, custom_objects=custom) sub_folder = 'unlabelled' fig, axs = plt.subplots(len(path_list), 3, figsize=(6, len(path_list) * 2)) if save: output_folder = os.path.join(os.getcwd(), 'results/visualisations/predictions/', sub_folder) os.makedirs(output_folder, exist_ok=True) out_fname = output_folder for k, path in enumerate(path_list): img = np.load(path) pred = predict_mask(trained_model, img) # original image axs[k, 0].imshow(img) # prediction axs[k, 1].imshow(pred, cmap='gray', interpolation='none') # orediction overlayed on image axs[k, 2].imshow(img) axs[k, 2].imshow(pred, cmap='gray', alpha=0.5, interpolation='none') for i in range(3): axs[k, i].xaxis.set_major_locator(ticker.NullLocator()) axs[k, i].yaxis.set_major_locator(ticker.NullLocator()) axs[0, 0].set_title('Input image') axs[0, 1].set_title('Prediction') axs[0, 2].set_title('Prediction overlayed\n on input image') plt.tight_layout() if save: plt.savefig(out_fname + '/sample_predictions_' + sub_folder + '.png') if show: plt.show() def plot_fascicles_distribution(path_list, test=False, trained_model_checkpoint=None, save=False, show=True, postprocessing=False): """ Plot the the distribution of the stats of the train dataset Stats including: fascicles' area, number of fascicle, fascicles' eccentricity Parameters --------------- path_list: [str] paths to the input images test: bool, optional flag to plot the distribution of the annotated masks or not trained_model_checkpoint: str trained model to load and make prediction save: bool, optional flag for saving the plot show: bool, optional flag for showing the plot postprocessing: bool, optional flag to postprocess the prediction or not """ if trained_model_checkpoint is not None: trained_model = keras.models.load_model(trained_model_checkpoint, custom_objects = custom) if save: output_folder = os.path.join(os.getcwd(), 'results/visualisations/distributions') os.makedirs(output_folder, exist_ok=True) if test: fname = 'distribution_unlabelled_test_set' else: fname = 'distribution_training_set' out_fname = os.path.join(output_folder, fname) if not test: areas_mask = [] num_fascicles_mask = [] eccentricity_mask = [] areas_pred = [] num_fascicles_pred = [] eccentricity_pred = [] areas_post = [] num_fascicles_post = [] eccentricity_post = [] for p in path_list: if not test: img_path, mask_path = p mask =
np.load(mask_path)
numpy.load
import numpy as np from matplotlib import pyplot as plt from sklearn import datasets X, y = datasets.make_blobs(n_samples=150, n_features=2, centers=2, cluster_std=1.05, random_state=2) plt.plot(X[:, 0][y == 0], X[:, 1][y == 0], 'r^') plt.plot(X[:, 0][y == 1], X[:, 1][y == 1], 'bs') plt.xlabel("Feature 1") plt.ylabel("Feature 2") plt.title('Random Classification Data with 2 classes') plt.show() def step_func(z): return 1.0 if (z > 0) else 0.0 def perceptron(X, y, lr, epochs): m, n = X.shape theta = np.zeros((n + 1, 1)) n_miss_list = [] for epoch in range(epochs): n_miss = 0 for idx, x_i in enumerate(X): x_i = np.insert(x_i, 0, 1).reshape(-1, 1) y_hat = step_func(np.dot(x_i.T, theta)) if (
np.squeeze(y_hat)
numpy.squeeze
''' Descripttion: version: Company: http://www.shinetek.com.cn/ Author: bupengju Date: 2020-08-04 13:49:49 LastEditors: bupengju LastEditTime: 2020-08-04 15:19:15 ''' import warnings warnings.filterwarnings("ignore") import numpy as np from tensorflow.keras import Input from tensorflow.keras import Model from tensorflow.keras import layers from tensorflow.keras import optimizers from tensorflow.keras import backend as K class PRECNN(object): def __init__(self): pass def _conv2d_bn(self, x, filters, num_row, num_col, padding='same', strides=(1, 1), use_bias=False): x = layers.Conv2D(filters, (num_row, num_col), strides=strides, padding=padding, use_bias=use_bias)(x) x = layers.BatchNormalization(scale=False)(x) x = layers.Activation('relu')(x) return x def _build(self, main_input_shape, valid_rain): valid_rain =
np.asarray(valid_rain)
numpy.asarray
# # A wrapper script that trains the SELDnet. The training stops when the SELD error (check paper) stops improving. # import os import sys import numpy as np import matplotlib.pyplot as plot import cls_data_generator import evaluation_metrics import keras_model import parameter import utils import time import datetime import simple_plotter from keras.models import load_model from IPython import embed plot.switch_backend('agg') from evaluation_metrics import compute_confidence, compute_doa_confidence def collect_test_labels(_data_gen_test, _data_out, classification_mode, quick_test): # Collecting ground truth for test data params = parameter.get_params('1') nb_batch = params['quick_test_nb_batch'] if quick_test else _data_gen_test.get_total_batches_in_data() batch_size = _data_out[0][0] gt_sed = np.zeros((nb_batch * batch_size, _data_out[0][1], _data_out[0][2])) gt_doa = np.zeros((nb_batch * batch_size, _data_out[0][1], _data_out[1][2])) print("nb_batch in test: {}".format(nb_batch)) cnt = 0 for tmp_feat, tmp_label in _data_gen_test.generate(): gt_sed[cnt * batch_size:(cnt + 1) * batch_size, :, :] = tmp_label[0] gt_doa[cnt * batch_size:(cnt + 1) * batch_size, :, :] = tmp_label[1] cnt = cnt + 1 print(cnt) if cnt == nb_batch: break return gt_sed.astype(int), gt_doa def plot_functions(fig_name, _tr_loss, _val_loss, _sed_loss, _doa_loss, _sed_score, _doa_score, _seld_score): plot.figure() nb_epoch = len(_tr_loss) plot.subplot(311) plot.plot(range(nb_epoch), _tr_loss, label='train loss') plot.plot(range(nb_epoch), _val_loss, label='val loss') plot.legend() plot.grid(True) plot.subplot(312) plot.plot(range(nb_epoch), _sed_score, label='sed_score') plot.plot(range(nb_epoch), _sed_loss[:, 0], label='er') plot.plot(range(nb_epoch), _sed_loss[:, 1], label='f1') plot.legend() plot.grid(True) plot.subplot(313) plot.plot(range(nb_epoch), _doa_score, label='doa_score') plot.plot(range(nb_epoch), _doa_loss[:, 1], label='gt_thres') plot.plot(range(nb_epoch), _doa_loss[:, 2], label='pred_thres') plot.legend() plot.grid(True) plot.savefig(fig_name) plot.close() # New scores plot plot.figure() plot.plot(range(nb_epoch), _sed_score, label='sed_score') plot.plot(range(nb_epoch), _doa_score, label='doa_score') plot.plot(range(nb_epoch), _seld_score, label='seld_score') plot.legend() plot.grid(True) plot.savefig(fig_name+'_scores') plot.close() def main(argv): """ Main wrapper for training sound event localization and detection network. :param argv: expects two optional inputs. first input: job_id - (optional) all the output files will be uniquely represented with this. (default) 1 second input: task_id - (optional) To chose the system configuration in parameters.py. (default) uses default parameters """ if len(argv) != 3: print('\n\n') print('-------------------------------------------------------------------------------------------------------') print('The code expected two inputs') print('\t>> python seld.py <job-id> <task-id>') print('\t\t<job-id> is a unique identifier which is used for output filenames (models, training plots). ' 'You can use any number or string for this.') print('\t\t<task-id> is used to choose the user-defined parameter set from parameter.py') print('Using default inputs for now') print('-------------------------------------------------------------------------------------------------------') print('\n\n') # use parameter set defined by user task_id = '1' if len(argv) < 3 else argv[-1] params = parameter.get_params(task_id) job_id = 1 if len(argv) < 2 else argv[1] model_dir = 'models/' utils.create_folder(model_dir) unique_name = '{}_train{}_validation{}_seq{}'.format(params['dataset'], params['train_split'], params['val_split'], params['sequence_length']) unique_name = os.path.join(model_dir, unique_name) print("unique_name: {}\n".format(unique_name)) # Cycling over overlaps for ov in range(1, params['overlap']+1): data_gen_test = cls_data_generator.DataGenerator( dataset=params['dataset'], ov=params['overlap'], ov_num=ov, split=params['test_split'], db=params['db'], nfft=params['nfft'], batch_size=params['batch_size'], seq_len=params['sequence_length'], classifier_mode=params['mode'], weakness=params['weakness'], datagen_mode='test', cnn3d=params['cnn_3d'], xyz_def_zero=params['xyz_def_zero'], azi_only=params['azi_only'], shuffle=False ) data_in, data_out = data_gen_test.get_data_sizes() n_classes = data_out[0][2] print( 'FEATURES:\n' '\tdata_in: {}\n' '\tdata_out: {}\n'.format( data_in, data_out ) ) gt = collect_test_labels(data_gen_test, data_out, params['mode'], params['quick_test']) sed_gt = evaluation_metrics.reshape_3Dto2D(gt[0]) doa_gt = evaluation_metrics.reshape_3Dto2D(gt[1]) print("#### Saving DOA and SED GT Values ####") f = open("models/doa_gt.txt", "w+") for elem in doa_gt: f.write(str(list(elem)) + "\n") f.close() f = open("models/sed_gt.txt", "w+") for elem in sed_gt: f.write(str(elem)+"\n") f.close() print("######################################") print( 'MODEL:\n' '\tdropout_rate: {}\n' '\tCNN: nb_cnn_filt: {}, pool_size{}\n' '\trnn_size: {}, fnn_size: {}\n'.format( params['dropout_rate'], params['nb_cnn3d_filt'] if params['cnn_3d'] else params['nb_cnn2d_filt'], params['pool_size'], params['rnn_size'], params['fnn_size'] ) ) model = keras_model.get_model(data_in=data_in, data_out=data_out, dropout_rate=params['dropout_rate'], nb_cnn2d_filt=params['nb_cnn2d_filt'], pool_size=params['pool_size'], rnn_size=params['rnn_size'], fnn_size=params['fnn_size'], classification_mode=params['mode'], weights=params['loss_weights'], summary=False) if(os.path.exists('{}_model.ckpt'.format(unique_name))): print("Model found!") model.load_weights('{}_model.ckpt'.format(unique_name)) for i in range(10): print("###") sed_score = np.zeros(params['nb_epochs']) doa_score = np.zeros(params['nb_epochs']) seld_score =
np.zeros(params['nb_epochs'])
numpy.zeros
import time import shutil import os import sys import subprocess import math import pickle import glob import json from copy import deepcopy import warnings import random from multiprocessing import Pool # import emukit.multi_fidelity as emf # from emukit.model_wrappers.gpy_model_wrappers import GPyMultiOutputWrapper # from emukit.multi_fidelity.convert_lists_to_array import convert_x_list_to_array, convert_xy_lists_to_arrays try: moduleName = "emukit" import emukit.multi_fidelity as emf from emukit.model_wrappers.gpy_model_wrappers import GPyMultiOutputWrapper from emukit.multi_fidelity.convert_lists_to_array import convert_x_list_to_array, convert_xy_lists_to_arrays moduleName = "pyDOE" from pyDOE import lhs moduleName = "GPy" import GPy as GPy moduleName = "scipy" from scipy.stats import lognorm, norm moduleName = "numpy" import numpy as np error_tag=False except: error_tag=True class GpFromModel(object): def __init__(self, work_dir, run_type, os_type, inp, errlog): t_init = time.time() self.errlog = errlog self.work_dir = work_dir self.os_type = os_type self.run_type = run_type # # From external READ JSON FILE # rv_name = list() self.g_name = list() x_dim = 0 y_dim = 0 for rv in inp['randomVariables']: rv_name = rv_name + [rv['name']] x_dim += 1 if x_dim == 0: msg = 'Error reading json: RV is empty' errlog.exit(msg) for g in inp['EDP']: if g['length']==1: # scalar self.g_name = self.g_name + [g['name']] y_dim += 1 else: # vector for nl in range(g['length']): self.g_name = self.g_name + ["{}_{}".format(g['name'],nl+1)] y_dim += 1 if y_dim == 0: msg = 'Error reading json: EDP(QoI) is empty' errlog.exit(msg) # Accuracy is also sensitive to the range of X self.id_sim = 0 self.x_dim = x_dim self.y_dim = y_dim self.rv_name = rv_name self.do_predictive = False automate_doe = False surrogateInfo = inp["UQ_Method"]["surrogateMethodInfo"] try: self.do_parallel = surrogateInfo["parallelExecution"] except: self.do_parallel = True if self.do_parallel: if self.run_type.lower() == 'runninglocal': self.n_processor = os.cpu_count() from multiprocessing import Pool self.pool = Pool(self.n_processor) else: # Always from mpi4py import MPI from mpi4py.futures import MPIPoolExecutor self.world = MPI.COMM_WORLD self.pool = MPIPoolExecutor() self.n_processor = self.world.Get_size() #self.n_processor =20 print("nprocessor :") print(self.n_processor) #self.cal_interval = 5 self.cal_interval = self.n_processor else: self.pool = 0 self.cal_interval = 5 if surrogateInfo["method"] == "Sampling and Simulation": self.do_mf = False do_sampling = True do_simulation = True self.use_existing = surrogateInfo["existingDoE"] if self.use_existing: self.inpData = os.path.join(work_dir, "templatedir/inpFile.in") self.outData = os.path.join(work_dir, "templatedir/outFile.in") thr_count = surrogateInfo['samples'] # number of samples if surrogateInfo["advancedOpt"]: self.doe_method = surrogateInfo["DoEmethod"] if surrogateInfo["DoEmethod"] == "None": do_doe = False user_init = thr_count else: do_doe = True user_init = surrogateInfo["initialDoE"] else: self.doe_method = "pareto" #default do_doe = True user_init = -100 elif surrogateInfo["method"] == "Import Data File": self.do_mf = False do_sampling = False do_simulation = not surrogateInfo["outputData"] self.doe_method = "None" # default do_doe = False # self.inpData = surrogateInfo['inpFile'] self.inpData = os.path.join(work_dir, "templatedir/inpFile.in") if not do_simulation: # self.outData = surrogateInfo['outFile'] self.outData = os.path.join(work_dir, "templatedir/outFile.in") elif surrogateInfo["method"] == "Import Multi-fidelity Data File": self.do_mf = True self.doe_method = "None" # default self.hf_is_model = surrogateInfo['HFfromModel'] self.lf_is_model = surrogateInfo['LFfromModel'] if self. hf_is_model: self.use_existing_hf = surrogateInfo["existingDoE_HF"] self.samples_hf = surrogateInfo["samples_HF"] if self.use_existing_hf: self.inpData = os.path.join(work_dir, "templatedir/inpFile_HF.in") self.outData = os.path.join(work_dir, "templatedir/outFile_HF.in") else: self.inpData_hf = os.path.join(work_dir, "templatedir/inpFile_HF.in") self.outData_hf = os.path.join(work_dir, "templatedir/outFile_HF.in") self.X_hf = read_txt(self.inpData_hf, errlog) self.Y_hf = read_txt(self.outData_hf, errlog) if self.X_hf.shape[0] != self.Y_hf.shape[0]: msg = 'Error reading json: high fidelity input and output files should have the same number of rows' errlog.exit(msg) if self.lf_is_model: self.use_existing_lf = surrogateInfo["existingDoE_LF"] self.samples_lf = surrogateInfo["samples_LF"] if self.use_existing_lf: self.inpData = os.path.join(work_dir, "templatedir/inpFile_LF.in") self.outData = os.path.join(work_dir, "templatedir/outFile_LF.in") else: self.inpData_lf = os.path.join(work_dir, "templatedir/inpFile_LF.in") self.outData_lf = os.path.join(work_dir, "templatedir/outFile_LF.in") self.X_lf = read_txt(self.inpData_lf, errlog) self.Y_lf = read_txt(self.outData_lf, errlog) if self.X_lf.shape[0] != self.Y_lf.shape[0]: msg = 'Error reading json: low fidelity input and output files should have the same number of rows' errlog.exit(msg) if (not self.hf_is_model) and self.lf_is_model: self.mf_case = "data-model" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] self.use_existing = self.use_existing_lf if self.lf_is_model: if self.use_existing_lf: self.inpData = self.inpData_lf self.oupData = self.outData_lf else: self.inpData = self.inpData_lf self.outData = self.outData_lf if do_doe: user_init = -100 else: user_init = self.samples_lf thr_count = self.samples_lf # number of samples elif self.hf_is_model and (not self.lf_is_model): self.mf_case = "model-data" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] self.use_existing = self.use_existing_hf if self.hf_is_model: if self.use_existing_hf: self.inpData = self.inpData_hf self.oupData = self.outData_hf else: self.inpData = self.inpData_hf self.outData = self.outData_hf if do_doe: user_init = -100 else: user_init = self.samples_hf thr_count = self.samples_hf # number of samples elif self.hf_is_model and self.lf_is_model: self.mf_case = "model-model" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] elif (not self.hf_is_model) and (not self.lf_is_model): self.mf_case = "data-data" do_sampling = False do_simulation = False do_doe = False self.inpData = self.inpData_lf self.outData = self.outData_lf else: msg = 'Error reading json: either select "Import Data File" or "Sampling and Simulation"' errlog.exit(msg) if surrogateInfo["advancedOpt"]: self.do_logtransform = surrogateInfo["logTransform"] kernel = surrogateInfo["kernel"] do_linear = surrogateInfo["linear"] nugget_opt = surrogateInfo["nuggetOpt"] try: self.nuggetVal = np.array(json.loads("[{}]".format(surrogateInfo["nuggetString"]))) except json.decoder.JSONDecodeError: msg = 'Error reading json: improper format of nugget values/bounds. Provide nugget values/bounds of each QoI with comma delimiter' errlog.exit(msg) if self.nuggetVal.shape[0]!=self.y_dim and self.nuggetVal.shape[0]!=0 : msg = 'Error reading json: Number of nugget quantities ({}) does not match # QoIs ({})'.format(self.nuggetVal.shape[0],self.y_dim) errlog.exit(msg) if nugget_opt == "Fixed Values": for Vals in self.nuggetVal: if (not np.isscalar(Vals)): msg = 'Error reading json: provide nugget values of each QoI with comma delimiter' errlog.exit(msg) elif nugget_opt == "Fixed Bounds": for Bous in self.nuggetVal: if (np.isscalar(Bous)): msg = 'Error reading json: provide nugget bounds of each QoI in brackets with comma delimiter, e.g. [0.0,1.0],[0.0,2.0],...' errlog.exit(msg) elif (isinstance(Bous,list)): msg = 'Error reading json: provide both lower and upper bounds of nugget' errlog.exit(msg) elif Bous.shape[0]!=2: msg = 'Error reading json: provide nugget bounds of each QoI in brackets with comma delimiter, e.g. [0.0,1.0],[0.0,2.0],...' errlog.exit(msg) elif Bous[0]>Bous[1]: msg = 'Error reading json: the lower bound of a nugget value should be smaller than its upper bound' errlog.exit(msg) # if self.do_logtransform: # mu = 0 # sig2 = self.nuggetVal # #median = np.exp(mu) # #mean = np.exp(mu + sig2/2) # self.nuggetVal = np.exp(2*mu + sig2)*(np.exp(sig2)-1) else: self.do_logtransform = False kernel = 'Matern 5/2' do_linear = False #do_nugget = True nugget_opt = "optimize" if not self.do_mf: if do_simulation: femInfo = inp["fem"] self.inpFile = femInfo["inputFile"] self.postFile = femInfo["postprocessScript"] self.appName = femInfo["program"] # # get x points # if do_sampling: thr_NRMSE = surrogateInfo["accuracyLimit"] thr_t = surrogateInfo["timeLimit"] * 60 np.random.seed(surrogateInfo['seed']) random.seed(surrogateInfo['seed']) self.xrange = np.empty((0, 2), float) for rv in inp['randomVariables']: if "lowerbound" not in rv: msg = 'Error in input RV: all RV should be set to Uniform distribution' errlog.exit(msg) self.xrange = np.vstack((self.xrange, [rv['lowerbound'], rv['upperbound']])) self.len = np.abs(np.diff(self.xrange).T[0]) if sum(self.len == 0) > 0: msg = 'Error in input RV: training range of RV should be greater than 0' errlog.exit(msg) # # Read existing samples # if self.use_existing: X_tmp = read_txt(self.inpData,errlog) Y_tmp = read_txt(self.outData,errlog) n_ex = X_tmp.shape[0] if self.do_mf: if X_tmp.shape[1] != self.X_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} RV column(s) but low fidelity model have {}.'.format( self.X_hf.shape[1], X_tmp.shape[1]) errlog.exit(msg) if Y_tmp.shape[1] != self.Y_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} QoI column(s) but low fidelity model have {}.'.format( self.Y_hf.shape[1], Y_tmp.shape[1]) errlog.exit(msg) if X_tmp.shape[1] != x_dim: msg = 'Error importing input data: dimension inconsistent: have {} RV(s) but have {} column(s).'.format( x_dim, X_tmp.shape[1]) errlog.exit(msg) if Y_tmp.shape[1] != y_dim: msg = 'Error importing input data: dimension inconsistent: have {} QoI(s) but have {} column(s).'.format( y_dim, Y_tmp.shape[1]) errlog.exit(msg) if n_ex != Y_tmp.shape[0]: msg = 'Error importing input data: numbers of samples of inputs ({}) and outputs ({}) are inconsistent'.format(n_ex, Y_tmp.shape[0]) errlog.exit(msg) else: n_ex = 0 if user_init ==0: #msg = 'Error reading json: # of initial DoE should be greater than 0' #errlog.exit(msg) user_init = -1; X_tmp = np.zeros((0, x_dim)) Y_tmp = np.zeros((0, y_dim)) if user_init < 0: n_init_ref = min(4 * x_dim, thr_count + n_ex - 1, 500) if self.do_parallel: n_init_ref = int(np.ceil(n_init_ref/self.n_processor)*self.n_processor) # Let's not waste resource if n_init_ref > n_ex: n_init = n_init_ref - n_ex else: n_init = 0 else: n_init = user_init n_iter = thr_count - n_init def FEM_batch(Xs, id_sim): return run_FEM_batch(Xs, id_sim, self.rv_name, self.do_parallel, self.y_dim, self.os_type, self.run_type, self.pool, t_init, thr_t) # check validity of datafile if n_ex > 0: #Y_test, self.id_sim = FEM_batch(X_tmp[0, :][np.newaxis], self.id_sim) # TODO : Fix this print(X_tmp[0, :][np.newaxis].shape) X_test, Y_test ,self.id_sim= FEM_batch(X_tmp[0, :][np.newaxis] ,self.id_sim) if np.sum(abs((Y_test - Y_tmp[0, :][np.newaxis]) / Y_test) > 0.01, axis=1) > 0: msg = 'Consistency check failed. Your data is not consistent to your model response.' errlog.exit(msg) if n_init>0: n_init -= 1 else: n_iter -= 1 # # generate initial samples # if n_init>0: U = lhs(x_dim, samples=(n_init)) X = np.vstack([X_tmp, np.zeros((n_init, x_dim))]) for nx in range(x_dim): X[n_ex:n_ex+n_init, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] else: X = X_tmp if sum(abs(self.len / self.xrange[:, 0]) < 1.e-7) > 1: msg = 'Error : upperbound and lowerbound should not be the same' errlog.exit(msg) n_iter = thr_count - n_init else: n_ex = 0 thr_NRMSE = 0.02 # default thr_t = float('inf') # # Read sample locations from directory # X = read_txt(self.inpData,errlog) if self.do_mf: if X.shape[1] != self.X_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} RV column(s) but low fidelity model have {}.'.format( self.X_hf.shape[1], X.shape[1]) errlog.exit(msg) if X.shape[1] != x_dim: msg = 'Error importing input data: Number of dimension inconsistent: have {} RV(s) but {} column(s).' \ .format(x_dim, X.shape[1]) errlog.exit(msg) self.xrange = np.vstack([np.min(X, axis=0), np.max(X, axis=0)]).T self.len = 2 * np.std(X, axis=0) thr_count = X.shape[0] n_init = thr_count n_iter = 0 # give error if thr_count <= 2: msg = 'Number of samples should be greater than 2.' errlog.exit(msg) if do_doe: ac = 1 # pre-screening time = time*ac ar = 1 # cluster n_candi = min(200 * x_dim, 2000) # candidate points n_integ = min(200 * x_dim, 2000) # integration points if user_init > thr_count: msg = 'Number of DoE cannot exceed total number of simulation' errlog.exit(msg) else: ac = 1 # pre-screening time = time*ac ar = 1 # cluster n_candi = 1 # candidate points n_integ = 1 # integration points user_init = thr_count # # get y points # if do_simulation: # # SimCenter workflow setting # if os.path.exists('{}/workdir.1'.format(work_dir)): is_left = True idx = 0 def change_permissions_recursive(path, mode): for root, dirs, files in os.walk(path, topdown=False): for dir in [os.path.join(root, d) for d in dirs]: os.chmod(dir, mode) for file in [os.path.join(root, f) for f in files]: os.chmod(file, mode) while is_left: idx = idx + 1 try: if os.path.exists('{}/workdir.{}/workflow_driver.bat'.format(work_dir, idx)): #os.chmod('{}/workdir.{}'.format(work_dir, idx), 777) change_permissions_recursive('{}/workdir.{}'.format(work_dir, idx), 0o777) my_dir = '{}/workdir.{}'.format(work_dir, idx) os.chmod(my_dir, 0o777) shutil.rmtree(my_dir) #shutil.rmtree('{}/workdir.{}'.format(work_dir, idx), ignore_errors=False, onerror=handleRemoveReadonly) except Exception as ex: print(ex) is_left = True break print("Cleaned the working directory") else: print("Work directory is clean") if os.path.exists('{}/dakotaTab.out'.format(work_dir)): os.remove('{}/dakotaTab.out'.format(work_dir)) if os.path.exists('{}/inputTab.out'.format(work_dir)): os.remove('{}/inputTab.out'.format(work_dir)) if os.path.exists('{}/outputTab.out'.format(work_dir)): os.remove('{}/outputTab.out'.format(work_dir)) if os.path.exists('{}/SimGpModel.pkl'.format(work_dir)): os.remove('{}/SimGpModel.pkl'.format(work_dir)) if os.path.exists('{}/verif.out'.format(work_dir)): os.remove('{}/verif.out'.format(work_dir)) # func = self.__run_FEM(X,self.id_sim, self.rv_name) # # Generate initial samples # t_tmp = time.time() X_fem, Y_fem ,self.id_sim= FEM_batch(X[n_ex:, :],self.id_sim) Y = np.vstack((Y_tmp,Y_fem)) X = np.vstack((X[0:n_ex, :],X_fem)) t_sim_all = time.time() - t_tmp if automate_doe: self.t_sim_each = t_sim_all / n_init else: self.t_sim_each = float("inf") # # Generate predictive samples # if self.do_predictive: n_pred = 100 Xt = np.zeros((n_pred, x_dim)) U = lhs(x_dim, samples=n_pred) for nx in range(x_dim): Xt[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] # # Yt = np.zeros((n_pred, y_dim)) # for ns in range(n_pred): # Yt[ns, :],self.id_sim = run_FEM(Xt[ns, :][np.newaxis],self.id_sim, self.rv_name) Yt = np.zeros((n_pred, y_dim)) Xt, Yt ,self.id_sim= FEM_batch(Xt,self.id_sim) else: # # READ SAMPLES FROM DIRECTORY # Y = read_txt(self.outData,errlog) if self.do_mf: if Y.shape[1] != self.Y_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} QoI column(s) but low fidelity model have {}.'.format( self.Y_hf.shape[1], Y.shape[1]) errlog.exit(msg) if Y.shape[1] != y_dim: msg = 'Error importing input data: Number of dimension inconsistent: have {} QoI(s) but {} column(s).' \ .format(y_dim, Y.shape[1]) errlog.exit(msg) if X.shape[0] != Y.shape[0]: msg = 'Error importing input data: numbers of samples of inputs ({}) and outputs ({}) are inconsistent'.format(X.shape[0], Y.shape[0]) errlog.exit(msg) thr_count = 0 self.t_sim_each = float("inf") # # GP function # if kernel == 'Radial Basis': kr = GPy.kern.RBF(input_dim=x_dim, ARD=True) elif kernel == 'Exponential': kr = GPy.kern.Exponential(input_dim=x_dim, ARD=True) elif kernel == 'Matern 3/2': kr = GPy.kern.Matern32(input_dim=x_dim, ARD=True) elif kernel == 'Matern 5/2': kr = GPy.kern.Matern52(input_dim=x_dim, ARD=True) if do_linear: kr = kr + GPy.kern.Linear(input_dim=x_dim, ARD=True) if not self.do_mf: kg = kr self.m_list = list() for i in range(y_dim): self.m_list = self.m_list + [GPy.models.GPRegression(X, Y[:, i][np.newaxis].transpose(), kernel=kg.copy(),normalizer=True)] for parname in self.m_list[i].parameter_names(): if parname.endswith('lengthscale'): exec('self.m_list[i].' + parname + '=self.len') else: kgs = emf.kernels.LinearMultiFidelityKernel([kr.copy(), kr.copy()]) if not self.hf_is_model: if not X.shape[1]==self.X_hf.shape[1]: msg = 'Error importing input data: dimension of low ({}) and high ({}) fidelity models (datasets) are inconsistent'.format(X.shape[1], self.X_hf.shape[1]) errlog.exit(msg) if not self.lf_is_model: if not X.shape[1]==self.X_lf.shape[1]: msg = 'Error importing input data: dimension of low ({}) and high ({}) fidelity models (datasets) are inconsistent'.format(X.shape[1], self.X_hf.shape[1]) errlog.exit(msg) if self.mf_case == 'data-model' or self.mf_case=='data-data': X_list, Y_list = emf.convert_lists_to_array.convert_xy_lists_to_arrays([X, self.X_hf], [Y, self.Y_hf]) elif self.mf_case == 'model-data': X_list, Y_list = emf.convert_lists_to_array.convert_xy_lists_to_arrays([self.X_lf, X], [self.Y_lf, Y]) self.m_list = list() for i in range(y_dim): self.m_list = self.m_list + [GPyMultiOutputWrapper(emf.models.GPyLinearMultiFidelityModel(X_list, Y_list, kernel=kgs.copy(), n_fidelities=2), 2, n_optimization_restarts=15)] # # Verification measures # self.NRMSE_hist = np.zeros((1, y_dim), float) self.NRMSE_idx = np.zeros((1, 1), int) #leng_hist = np.zeros((1, self.m_list[0]._param_array_.shape[0]), int) if self.do_predictive: self.NRMSE_pred_hist = np.empty((1, y_dim), float) # # Run DoE # break_doe = False print("======== RUNNING GP DoE ===========") exit_code = 'count' # num iter i = 0 x_new = np.zeros((0,x_dim)) n_new = 0 doe_off = False # false if true while not doe_off: t = time.time() if self.doe_method == "random": do_cal = True elif self.doe_method == "pareto": do_cal = True elif np.mod(i, self.cal_interval) == 0: do_cal = True else: do_cal = False t_tmp = time.time() [x_new, self.m_list, err, idx, Y_cv, Y_cv_var] = self.__design_of_experiments(X, Y, ac, ar, n_candi, n_integ, self.m_list, do_cal, nugget_opt, do_doe) t_doe = time.time() - t_tmp print('DoE Time: {:.2f} s'.format(t_doe)) if automate_doe: if t_doe > self.t_sim_each: break_doe = True print('========>> DOE OFF') n_left = n_iter - i break if not self.do_mf: NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': NRMSE_val = self.__normalized_mean_sq_error(Y_cv, self.Y_hf) elif self.mf_case == 'model-data' : NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) self.NRMSE_hist = np.vstack((self.NRMSE_hist, np.array(NRMSE_val))) self.NRMSE_idx =
np.vstack((self.NRMSE_idx, i))
numpy.vstack
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=3, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_diff = rng.difference(other) tm.assert_index_equal(result_diff, expected) def test_sub_isub(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) expected = pd.date_range('1999-12-31 22:00', '2000-01-31 22:00', tz=tz) result = rng - delta tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng - 1 expected = pd.date_range('2000-01-01 08:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_sub_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now changed to # return subtraction -> TimeDeltaIndex (GH ...) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') dti_tz2 = date_range('20130101', periods=3).tz_localize('UTC') expected = TimedeltaIndex([0, 0, 0]) result = dti - dti tm.assert_index_equal(result, expected) result = dti_tz - dti_tz tm.assert_index_equal(result, expected) with tm.assertRaises(TypeError): dti_tz - dti with tm.assertRaises(TypeError): dti - dti_tz with tm.assertRaises(TypeError): dti_tz - dti_tz2 # isub dti -= dti tm.assert_index_equal(dti, expected) # different length raises ValueError dti1 = date_range('20130101', periods=3) dti2 = date_range('20130101', periods=4) with tm.assertRaises(ValueError): dti1 - dti2 # NaN propagation dti1 = DatetimeIndex(['2012-01-01', np.nan, '2012-01-03']) dti2 = DatetimeIndex(['2012-01-02', '2012-01-03', np.nan]) expected = TimedeltaIndex(['1 days', np.nan, np.nan]) result = dti2 - dti1 tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'D']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_comp_nat(self): left = pd.DatetimeIndex([pd.Timestamp('2011-01-01'), pd.NaT, pd.Timestamp('2011-01-03')]) right = pd.DatetimeIndex([pd.NaT, pd.NaT, pd.Timestamp('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 for tz in self.tz: idx = pd.date_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = DatetimeIndex(np.repeat(idx.values, range(1, len(idx) + 1)), tz=tz) exp_idx = pd.date_range('2011-01-01 18:00', freq='-1H', periods=10, tz=tz) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.date_range('2011-01-01 09:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(idx.unique(), expected) idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], tz=tz) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00'], tz=tz) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = DatetimeIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], tz=tz) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(DatetimeIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['2015', '2015', '2016'], ['2015', '2015', '2014'])): tm.assertIn(idx[0], idx) def test_order(self): # with freq idx1 = DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D', name='idx') idx2 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo', name='tzidx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assert_numpy_array_equal(indexer, np.array([2, 1, 0]), check_dtype=False) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) # without freq for tz in self.tz: idx1 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx1') exp1 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx1') idx2 = DatetimeIndex(['2011-01-01', '2011-01-03', '2011-01-05', '2011-01-02', '2011-01-01'], tz=tz, name='idx2') exp2 = DatetimeIndex(['2011-01-01', '2011-01-01', '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx2') idx3 = DatetimeIndex([pd.NaT, '2011-01-03', '2011-01-05', '2011-01-02', pd.NaT], tz=tz, name='idx3') exp3 = DatetimeIndex([pd.NaT, pd.NaT, '2011-01-02', '2011-01-03', '2011-01-05'], tz=tz, name='idx3') for idx, expected in [(idx1, exp1), (idx2, exp2), (idx3, exp3)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx[0] self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx[0:5] expected = pd.date_range('2011-01-01', '2011-01-05', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.date_range('2011-01-01', '2011-01-09', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.date_range('2011-01-12', '2011-01-24', freq='3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = DatetimeIndex(['2011-01-05', '2011-01-04', '2011-01-03', '2011-01-02', '2011-01-01'], freq='-1D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx2 = pd.date_range('2011-01-01', '2011-01-31', freq='D', tz='Asia/Tokyo', name='idx') for idx in [idx1, idx2]: result = idx.take([0]) self.assertEqual(result, Timestamp('2011-01-01', tz=idx.tz)) result = idx.take([0, 1, 2]) expected = pd.date_range('2011-01-01', '2011-01-03', freq='D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.date_range('2011-01-01', '2011-01-05', freq='2D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.date_range('2011-01-08', '2011-01-02', freq='-3D', tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = DatetimeIndex(['2011-01-04', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = DatetimeIndex(['2011-01-29', '2011-01-03', '2011-01-06'], freq=None, tz=idx.tz, name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.date_range('2011-01-01', '2011-01-31', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['A', '2A', '-2A', 'Q', '-1Q', 'M', '-1M', 'D', '3D', '-3D', 'W', '-1W', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S']: idx = pd.date_range('2011-01-01 09:00:00', freq=freq, periods=10) result = pd.DatetimeIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.date_range('2011-01-01', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.DatetimeIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 for tz in self.tz: idx = pd.DatetimeIndex([], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.DatetimeIndex(['2011-01-01 10:00', '2011-01-01 11:00' '2011-01-01 12:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.DatetimeIndex(['2011-01-01 13:00', '2011-01-01 14:00' '2011-01-01 15:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.DatetimeIndex(['2011-01-01 07:00', '2011-01-01 08:00' '2011-01-01 09:00'], name='xxx', tz=tz) tm.assert_index_equal(idx.shift(-3, freq='H'), exp) def test_nat(self): self.assertIs(pd.DatetimeIndex._na_value, pd.NaT) self.assertIs(pd.DatetimeIndex([])._na_value, pd.NaT) for tz in [None, 'US/Eastern', 'UTC']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.DatetimeIndex(['2011-01-01', 'NaT'], tz=tz) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 for tz in [None, 'UTC', 'US/Eastern', 'Asia/Tokyo']: idx = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', 'NaT'], tz='US/Pacific') self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) # same internal, different tz idx3 = pd.DatetimeIndex._simple_new(idx.asi8, tz='US/Pacific') tm.assert_numpy_array_equal(idx.asi8, idx3.asi8) self.assertFalse(idx.equals(idx3)) self.assertFalse(idx.equals(idx3.copy())) self.assertFalse(idx.equals(idx3.asobject)) self.assertFalse(idx.asobject.equals(idx3)) self.assertFalse(idx.equals(list(idx3))) self.assertFalse(idx.equals(pd.Series(idx3))) class TestTimedeltaIndexOps(Ops): def setUp(self): super(TestTimedeltaIndexOps, self).setUp() mask = lambda x: isinstance(x, TimedeltaIndex) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [] def test_ops_properties(self): self.check_ops_properties(['days', 'hours', 'minutes', 'seconds', 'milliseconds']) self.check_ops_properties(['microseconds', 'nanoseconds']) def test_asobject_tolist(self): idx = timedelta_range(start='1 days', periods=4, freq='D', name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), Timedelta('3 days'), Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = TimedeltaIndex([timedelta(days=1), timedelta(days=2), pd.NaT, timedelta(days=4)], name='idx') expected_list = [Timedelta('1 days'), Timedelta('2 days'), pd.NaT, Timedelta('4 days')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): # monotonic idx1 = TimedeltaIndex(['1 days', '2 days', '3 days']) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = TimedeltaIndex(['1 days', np.nan, '3 days', 'NaT']) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timedelta('1 days')), self.assertEqual(idx.max(), Timedelta('3 days')), self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = TimedeltaIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = TimedeltaIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') td = TimedeltaIndex(np.asarray(dr)) self.assertEqual(np.min(td), Timedelta('16815 days')) self.assertEqual(np.max(td), Timedelta('16820 days')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, td, out=0) self.assertEqual(np.argmin(td), 0) self.assertEqual(np.argmax(td), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, td, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, td, out=0) def test_round(self): td = pd.timedelta_range(start='16801 days', periods=5, freq='30Min') elt = td[1] expected_rng = TimedeltaIndex([ Timedelta('16801 days 00:00:00'), Timedelta('16801 days 00:00:00'), Timedelta('16801 days 01:00:00'), Timedelta('16801 days 02:00:00'), Timedelta('16801 days 02:00:00'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(td.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with self.assertRaisesRegexp(ValueError, msg): td.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, td.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_representation(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex([], dtype='timedelta64[ns]', freq='D')""" exp2 = ("TimedeltaIndex(['1 days'], dtype='timedelta64[ns]', " "freq='D')") exp3 = ("TimedeltaIndex(['1 days', '2 days'], " "dtype='timedelta64[ns]', freq='D')") exp4 = ("TimedeltaIndex(['1 days', '2 days', '3 days'], " "dtype='timedelta64[ns]', freq='D')") exp5 = ("TimedeltaIndex(['1 days 00:00:01', '2 days 00:00:00', " "'3 days 00:00:00'], dtype='timedelta64[ns]', freq=None)") with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """Series([], dtype: timedelta64[ns])""" exp2 = """0 1 days dtype: timedelta64[ns]""" exp3 = """0 1 days 1 2 days dtype: timedelta64[ns]""" exp4 = """0 1 days 1 2 days 2 3 days dtype: timedelta64[ns]""" exp5 = """0 1 days 00:00:01 1 2 days 00:00:00 2 3 days 00:00:00 dtype: timedelta64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = TimedeltaIndex([], freq='D') idx2 = TimedeltaIndex(['1 days'], freq='D') idx3 = TimedeltaIndex(['1 days', '2 days'], freq='D') idx4 = TimedeltaIndex(['1 days', '2 days', '3 days'], freq='D') idx5 = TimedeltaIndex(['1 days 00:00:01', '2 days', '3 days']) exp1 = """TimedeltaIndex: 0 entries Freq: D""" exp2 = """TimedeltaIndex: 1 entries, 1 days to 1 days Freq: D""" exp3 = """TimedeltaIndex: 2 entries, 1 days to 2 days Freq: D""" exp4 = """TimedeltaIndex: 3 entries, 1 days to 3 days Freq: D""" exp5 = ("TimedeltaIndex: 3 entries, 1 days 00:00:01 to 3 days " "00:00:00") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5], [exp1, exp2, exp3, exp4, exp5]): result = idx.summary() self.assertEqual(result, expected) def test_add_iadd(self): # only test adding/sub offsets as + is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng + delta expected = timedelta_range('1 days 02:00:00', '10 days 02:00:00', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng + 1 expected = timedelta_range('1 days 10:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_sub_isub(self): # only test adding/sub offsets as - is now numeric # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = timedelta_range('1 days', '10 days') result = rng - delta expected = timedelta_range('0 days 22:00:00', '9 days 22:00:00') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) # int rng = timedelta_range('1 days 09:00:00', freq='H', periods=10) result = rng - 1 expected = timedelta_range('1 days 08:00:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) idx = TimedeltaIndex(['1 day', '2 day']) msg = "cannot subtract a datelike from a TimedeltaIndex" with tm.assertRaisesRegexp(TypeError, msg): idx - Timestamp('2011-01-01') result = Timestamp('2011-01-01') + idx expected = DatetimeIndex(['2011-01-02', '2011-01-03']) tm.assert_index_equal(result, expected) def test_ops_compat(self): offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] rng = timedelta_range('1 days', '10 days', name='foo') # multiply for offset in offsets: self.assertRaises(TypeError, lambda: rng * offset) # divide expected = Int64Index((np.arange(10) + 1) * 12, name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected, exact=False) # divide with nats rng = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') expected = Float64Index([12, np.nan, 24], name='foo') for offset in offsets: result = rng / offset tm.assert_index_equal(result, expected) # don't allow division by NaT (make could in the future) self.assertRaises(TypeError, lambda: rng / pd.NaT) def test_subtraction_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') self.assertRaises(TypeError, lambda: tdi - dt) self.assertRaises(TypeError, lambda: tdi - dti) self.assertRaises(TypeError, lambda: td - dt) self.assertRaises(TypeError, lambda: td - dti) result = dt - dti expected = TimedeltaIndex(['0 days', '-1 days', '-2 days'], name='bar') tm.assert_index_equal(result, expected) result = dti - dt expected = TimedeltaIndex(['0 days', '1 days', '2 days'], name='bar') tm.assert_index_equal(result, expected) result = tdi - td expected = TimedeltaIndex(['0 days', pd.NaT, '1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = td - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '-1 days'], name='foo') tm.assert_index_equal(result, expected, check_names=False) result = dti - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], name='bar') tm.assert_index_equal(result, expected, check_names=False) result = dt - tdi expected = DatetimeIndex(['20121231', pd.NaT, '20121230'], name='foo') tm.assert_index_equal(result, expected) def test_subtraction_ops_with_tz(self): # check that dt/dti subtraction ops with tz are validated dti = date_range('20130101', periods=3) ts = Timestamp('20130101') dt = ts.to_pydatetime() dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') ts_tz = Timestamp('20130101').tz_localize('US/Eastern') ts_tz2 = Timestamp('20130101').tz_localize('CET') dt_tz = ts_tz.to_pydatetime() td = Timedelta('1 days') def _check(result, expected): self.assertEqual(result, expected) self.assertIsInstance(result, Timedelta) # scalars result = ts - ts expected = Timedelta('0 days') _check(result, expected) result = dt_tz - ts_tz expected = Timedelta('0 days') _check(result, expected) result = ts_tz - dt_tz expected = Timedelta('0 days') _check(result, expected) # tz mismatches self.assertRaises(TypeError, lambda: dt_tz - ts) self.assertRaises(TypeError, lambda: dt_tz - dt) self.assertRaises(TypeError, lambda: dt_tz - ts_tz2) self.assertRaises(TypeError, lambda: dt - dt_tz) self.assertRaises(TypeError, lambda: ts - dt_tz) self.assertRaises(TypeError, lambda: ts_tz2 - ts) self.assertRaises(TypeError, lambda: ts_tz2 - dt) self.assertRaises(TypeError, lambda: ts_tz - ts_tz2) # with dti self.assertRaises(TypeError, lambda: dti - ts_tz) self.assertRaises(TypeError, lambda: dti_tz - ts) self.assertRaises(TypeError, lambda: dti_tz - ts_tz2) result = dti_tz - dt_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = dt_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = dti_tz - ts_tz expected = TimedeltaIndex(['0 days', '1 days', '2 days']) tm.assert_index_equal(result, expected) result = ts_tz - dti_tz expected = TimedeltaIndex(['0 days', '-1 days', '-2 days']) tm.assert_index_equal(result, expected) result = td - td expected = Timedelta('0 days') _check(result, expected) result = dti_tz - td expected = DatetimeIndex( ['20121231', '20130101', '20130102'], tz='US/Eastern') tm.assert_index_equal(result, expected) def test_dti_tdi_numeric_ops(self): # These are normally union/diff set-like ops tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') # TODO(wesm): unused? # td = Timedelta('1 days') # dt = Timestamp('20130101') result = tdi - tdi expected = TimedeltaIndex(['0 days', pd.NaT, '0 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '4 days'], name='foo') tm.assert_index_equal(result, expected) result = dti - tdi # name will be reset expected = DatetimeIndex(['20121231', pd.NaT, '20130101']) tm.assert_index_equal(result, expected) def test_sub_period(self): # GH 13078 # not supported, check TypeError p = pd.Period('2011-01-01', freq='D') for freq in [None, 'H']: idx = pd.TimedeltaIndex(['1 hours', '2 hours'], freq=freq) with tm.assertRaises(TypeError): idx - p with tm.assertRaises(TypeError): p - idx def test_addition_ops(self): # with datetimes/timedelta and tdi/dti tdi = TimedeltaIndex(['1 days', pd.NaT, '2 days'], name='foo') dti = date_range('20130101', periods=3, name='bar') td = Timedelta('1 days') dt = Timestamp('20130101') result = tdi + dt expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = dt + tdi expected = DatetimeIndex(['20130102', pd.NaT, '20130103'], name='foo') tm.assert_index_equal(result, expected) result = td + tdi expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) result = tdi + td expected = TimedeltaIndex(['2 days', pd.NaT, '3 days'], name='foo') tm.assert_index_equal(result, expected) # unequal length self.assertRaises(ValueError, lambda: tdi + dti[0:1]) self.assertRaises(ValueError, lambda: tdi[0:1] + dti) # random indexes self.assertRaises(TypeError, lambda: tdi + Int64Index([1, 2, 3])) # this is a union! # self.assertRaises(TypeError, lambda : Int64Index([1,2,3]) + tdi) result = tdi + dti # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dti + tdi # name will be reset expected = DatetimeIndex(['20130102', pd.NaT, '20130105']) tm.assert_index_equal(result, expected) result = dt + td expected = Timestamp('20130102') self.assertEqual(result, expected) result = td + dt expected = Timestamp('20130102') self.assertEqual(result, expected) def test_comp_nat(self): left = pd.TimedeltaIndex([pd.Timedelta('1 days'), pd.NaT, pd.Timedelta('3 days')]) right = pd.TimedeltaIndex([pd.NaT, pd.NaT, pd.Timedelta('3 days')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = timedelta_range('1 days 09:00:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = TimedeltaIndex(np.repeat(idx.values, range(1, len(idx) + 1))) exp_idx = timedelta_range('1 days 18:00:00', freq='-1H', periods=10) expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = timedelta_range('1 days 09:00:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = TimedeltaIndex(['1 days 09:00:00', '1 days 09:00:00', '1 days 09:00:00', '1 days 08:00:00', '1 days 08:00:00', pd.NaT]) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00']) expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = TimedeltaIndex(['1 days 09:00:00', '1 days 08:00:00', pd.NaT]) expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_nonunique_contains(self): # GH 9512 for idx in map(TimedeltaIndex, ([0, 1, 0], [0, 0, -1], [0, -1, -1], ['00:01:00', '00:01:00', '00:02:00'], ['00:01:00', '00:01:00', '00:00:01'])): tm.assertIn(idx[0], idx) def test_unknown_attribute(self): # GH 9680 tdi = pd.timedelta_range(start=0, periods=10, freq='1s') ts = pd.Series(np.random.normal(size=10), index=tdi) self.assertNotIn('foo', ts.__dict__.keys()) self.assertRaises(AttributeError, lambda: ts.foo) def test_order(self): # GH 10295 idx1 = TimedeltaIndex(['1 day', '2 day', '3 day'], freq='D', name='idx') idx2 = TimedeltaIndex( ['1 hour', '2 hour', '3 hour'], freq='H', name='idx') for idx in [idx1, idx2]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) self.assertEqual(ordered.freq, idx.freq) ordered = idx.sort_values(ascending=False) expected = idx[::-1] self.assert_index_equal(ordered, expected) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer, np.array([0, 1, 2]), check_dtype=False) self.assertEqual(ordered.freq, idx.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, idx[::-1]) self.assertEqual(ordered.freq, expected.freq) self.assertEqual(ordered.freq.n, -1) idx1 = TimedeltaIndex(['1 hour', '3 hour', '5 hour', '2 hour ', '1 hour'], name='idx1') exp1 = TimedeltaIndex(['1 hour', '1 hour', '2 hour', '3 hour', '5 hour'], name='idx1') idx2 = TimedeltaIndex(['1 day', '3 day', '5 day', '2 day', '1 day'], name='idx2') # TODO(wesm): unused? # exp2 = TimedeltaIndex(['1 day', '1 day', '2 day', # '3 day', '5 day'], name='idx2') # idx3 = TimedeltaIndex([pd.NaT, '3 minute', '5 minute', # '2 minute', pd.NaT], name='idx3') # exp3 = TimedeltaIndex([pd.NaT, pd.NaT, '2 minute', '3 minute', # '5 minute'], name='idx3') for idx, expected in [(idx1, exp1), (idx1, exp1), (idx1, exp1)]: ordered = idx.sort_values() self.assert_index_equal(ordered, expected) self.assertIsNone(ordered.freq) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, expected[::-1]) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, expected) exp = np.array([0, 4, 3, 1, 2]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) ordered, indexer = idx.sort_values(return_indexer=True, ascending=False) self.assert_index_equal(ordered, expected[::-1]) exp = np.array([2, 1, 3, 4, 0]) self.assert_numpy_array_equal(indexer, exp, check_dtype=False) self.assertIsNone(ordered.freq) def test_getitem(self): idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx[0] self.assertEqual(result, pd.Timedelta('1 day')) result = idx[0:5] expected = pd.timedelta_range('1 day', '5 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[0:10:2] expected = pd.timedelta_range('1 day', '9 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[-20:-5:3] expected = pd.timedelta_range('12 day', '24 day', freq='3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx[4::-1] expected = TimedeltaIndex(['5 day', '4 day', '3 day', '2 day', '1 day'], freq='-1D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) self.assertIsNone(idx_dup.freq) # freq is reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertIsNone(result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_take(self): # GH 10295 idx1 = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') for idx in [idx1]: result = idx.take([0]) self.assertEqual(result, pd.Timedelta('1 day')) result = idx.take([-1]) self.assertEqual(result, pd.Timedelta('31 day')) result = idx.take([0, 1, 2]) expected = pd.timedelta_range('1 day', '3 day', freq='D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([0, 2, 4]) expected = pd.timedelta_range('1 day', '5 day', freq='2D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([7, 4, 1]) expected = pd.timedelta_range('8 day', '2 day', freq='-3D', name='idx') self.assert_index_equal(result, expected) self.assertEqual(result.freq, expected.freq) result = idx.take([3, 2, 5]) expected = TimedeltaIndex(['4 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) result = idx.take([-3, 2, 5]) expected = TimedeltaIndex(['29 day', '3 day', '6 day'], name='idx') self.assert_index_equal(result, expected) self.assertIsNone(result.freq) def test_take_invalid_kwargs(self): idx = pd.timedelta_range('1 day', '31 day', freq='D', name='idx') indices = [1, 6, 5, 9, 10, 13, 15, 3] msg = r"take\(\) got an unexpected keyword argument 'foo'" tm.assertRaisesRegexp(TypeError, msg, idx.take, indices, foo=2) msg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, out=indices) msg = "the 'mode' parameter is not supported" tm.assertRaisesRegexp(ValueError, msg, idx.take, indices, mode='clip') def test_infer_freq(self): # GH 11018 for freq in ['D', '3D', '-3D', 'H', '2H', '-2H', 'T', '2T', 'S', '-3S' ]: idx = pd.timedelta_range('1', freq=freq, periods=10) result = pd.TimedeltaIndex(idx.asi8, freq='infer') tm.assert_index_equal(idx, result) self.assertEqual(result.freq, freq) def test_nat_new(self): idx = pd.timedelta_range('1', freq='D', periods=5, name='x') result = idx._nat_new() exp = pd.TimedeltaIndex([pd.NaT] * 5, name='x') tm.assert_index_equal(result, exp) result = idx._nat_new(box=False) exp = np.array([tslib.iNaT] * 5, dtype=np.int64) tm.assert_numpy_array_equal(result, exp) def test_shift(self): # GH 9903 idx = pd.TimedeltaIndex([], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) tm.assert_index_equal(idx.shift(3, freq='H'), idx) idx = pd.TimedeltaIndex(['5 hours', '6 hours', '9 hours'], name='xxx') tm.assert_index_equal(idx.shift(0, freq='H'), idx) exp = pd.TimedeltaIndex(['8 hours', '9 hours', '12 hours'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='H'), exp) exp = pd.TimedeltaIndex(['2 hours', '3 hours', '6 hours'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='H'), exp) tm.assert_index_equal(idx.shift(0, freq='T'), idx) exp = pd.TimedeltaIndex(['05:03:00', '06:03:00', '9:03:00'], name='xxx') tm.assert_index_equal(idx.shift(3, freq='T'), exp) exp = pd.TimedeltaIndex(['04:57:00', '05:57:00', '8:57:00'], name='xxx') tm.assert_index_equal(idx.shift(-3, freq='T'), exp) def test_repeat(self): index = pd.timedelta_range('1 days', periods=2, freq='D') exp = pd.TimedeltaIndex(['1 days', '1 days', '2 days', '2 days']) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = TimedeltaIndex(['1 days', 'NaT', '3 days']) exp = TimedeltaIndex(['1 days', '1 days', '1 days', 'NaT', 'NaT', 'NaT', '3 days', '3 days', '3 days']) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_nat(self): self.assertIs(pd.TimedeltaIndex._na_value, pd.NaT) self.assertIs(pd.TimedeltaIndex([])._na_value, pd.NaT) idx = pd.TimedeltaIndex(['1 days', '2 days']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, False])) self.assertFalse(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([], dtype=np.intp)) idx = pd.TimedeltaIndex(['1 days', 'NaT']) self.assertTrue(idx._can_hold_na) tm.assert_numpy_array_equal(idx._isnan, np.array([False, True])) self.assertTrue(idx.hasnans) tm.assert_numpy_array_equal(idx._nan_idxs, np.array([1], dtype=np.intp)) def test_equals(self): # GH 13107 idx = pd.TimedeltaIndex(['1 days', '2 days', 'NaT']) self.assertTrue(idx.equals(idx)) self.assertTrue(idx.equals(idx.copy())) self.assertTrue(idx.equals(idx.asobject)) self.assertTrue(idx.asobject.equals(idx)) self.assertTrue(idx.asobject.equals(idx.asobject)) self.assertFalse(idx.equals(list(idx))) self.assertFalse(idx.equals(pd.Series(idx))) idx2 = pd.TimedeltaIndex(['2 days', '1 days', 'NaT']) self.assertFalse(idx.equals(idx2)) self.assertFalse(idx.equals(idx2.copy())) self.assertFalse(idx.equals(idx2.asobject)) self.assertFalse(idx.asobject.equals(idx2)) self.assertFalse(idx.asobject.equals(idx2.asobject)) self.assertFalse(idx.equals(list(idx2))) self.assertFalse(idx.equals(pd.Series(idx2))) class TestPeriodIndexOps(Ops): def setUp(self): super(TestPeriodIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['qyear'], lambda x: isinstance(x, PeriodIndex)) def test_asobject_tolist(self): idx = pd.period_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [pd.Period('2013-01-31', freq='M'), pd.Period('2013-02-28', freq='M'), pd.Period('2013-03-31', freq='M'), pd.Period('2013-04-30', freq='M')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = PeriodIndex(['2013-01-01', '2013-01-02', 'NaT', '2013-01-04'], freq='D', name='idx') expected_list = [pd.Period('2013-01-01', freq='D'), pd.Period('2013-01-02', freq='D'), pd.Period('NaT', freq='D'), pd.Period('2013-01-04', freq='D')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) tm.assert_index_equal(result, expected) for i in [0, 1, 3]: self.assertEqual(result[i], expected[i]) self.assertIs(result[2], pd.NaT) self.assertEqual(result.name, expected.name) result_list = idx.tolist() for i in [0, 1, 3]: self.assertEqual(result_list[i], expected_list[i]) self.assertIs(result_list[2], pd.NaT) def test_minmax(self): # monotonic idx1 = pd.PeriodIndex([pd.NaT, '2011-01-01', '2011-01-02', '2011-01-03'], freq='D') self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.PeriodIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], freq='D') self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), pd.Period('2011-01-01', freq='D')) self.assertEqual(idx.max(), pd.Period('2011-01-03', freq='D')) self.assertEqual(idx1.argmin(), 1) self.assertEqual(idx2.argmin(), 0) self.assertEqual(idx1.argmax(), 3) self.assertEqual(idx2.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = PeriodIndex([], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) obj = PeriodIndex([pd.NaT, pd.NaT, pd.NaT], freq='M') result = getattr(obj, op)() self.assertIs(result, tslib.NaT) def test_numpy_minmax(self): pr = pd.period_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(pr), Period('2016-01-15', freq='D')) self.assertEqual(np.max(pr), Period('2016-01-20', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, pr, out=0) self.assertEqual(np.argmin(pr), 0) self.assertEqual(np.argmax(pr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, pr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, pr, out=0) def test_representation(self): # GH 7601 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") idx10 = PeriodIndex(['2011-01-01', '2011-02-01'], freq='3D') exp1 = """PeriodIndex([], dtype='period[D]', freq='D')""" exp2 = """PeriodIndex(['2011-01-01'], dtype='period[D]', freq='D')""" exp3 = ("PeriodIndex(['2011-01-01', '2011-01-02'], dtype='period[D]', " "freq='D')") exp4 = ("PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='period[D]', freq='D')") exp5 = ("PeriodIndex(['2011', '2012', '2013'], dtype='period[A-DEC]', " "freq='A-DEC')") exp6 = ("PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], " "dtype='period[H]', freq='H')") exp7 = ("PeriodIndex(['2013Q1'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp8 = ("PeriodIndex(['2013Q1', '2013Q2'], dtype='period[Q-DEC]', " "freq='Q-DEC')") exp9 = ("PeriodIndex(['2013Q1', '2013Q2', '2013Q3'], " "dtype='period[Q-DEC]', freq='Q-DEC')") exp10 = ("PeriodIndex(['2011-01-01', '2011-02-01'], " "dtype='period[3D]', freq='3D')") for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9, idx10], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9, exp10]): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(idx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): # GH 10971 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex(['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex(['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """Series([], dtype: object)""" exp2 = """0 2011-01-01 dtype: object""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: object""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: object""" exp5 = """0 2011 1 2012 2 2013 dtype: object""" exp6 = """0 2011-01-01 09:00 1 2012-02-01 10:00 2 NaT dtype: object""" exp7 = """0 2013Q1 dtype: object""" exp8 = """0 2013Q1 1 2013Q2 dtype: object""" exp9 = """0 2013Q1 1 2013Q2 2 2013Q3 dtype: object""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = repr(pd.Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = PeriodIndex([], freq='D') idx2 = PeriodIndex(['2011-01-01'], freq='D') idx3 = PeriodIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = PeriodIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = PeriodIndex(['2011', '2012', '2013'], freq='A') idx6 = PeriodIndex( ['2011-01-01 09:00', '2012-02-01 10:00', 'NaT'], freq='H') idx7 = pd.period_range('2013Q1', periods=1, freq="Q") idx8 = pd.period_range('2013Q1', periods=2, freq="Q") idx9 = pd.period_range('2013Q1', periods=3, freq="Q") exp1 = """PeriodIndex: 0 entries Freq: D""" exp2 = """PeriodIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """PeriodIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """PeriodIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = """PeriodIndex: 3 entries, 2011 to 2013 Freq: A-DEC""" exp6 = """PeriodIndex: 3 entries, 2011-01-01 09:00 to NaT Freq: H""" exp7 = """PeriodIndex: 1 entries, 2013Q1 to 2013Q1 Freq: Q-DEC""" exp8 = """PeriodIndex: 2 entries, 2013Q1 to 2013Q2 Freq: Q-DEC""" exp9 = """PeriodIndex: 3 entries, 2013Q1 to 2013Q3 Freq: Q-DEC""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7, idx8, idx9], [exp1, exp2, exp3, exp4, exp5, exp6, exp7, exp8, exp9]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): idx = pd.period_range(start='2013-04-01', periods=30, freq=freq) self.assertEqual(idx.resolution, expected) def test_union(self): # union rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=10) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=8) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = pd.PeriodIndex(['2000-01-01 09:00', '2000-01-01 10:00', '2000-01-01 11:00', '2000-01-01 12:00', '2000-01-01 13:00', '2000-01-02 09:00', '2000-01-02 10:00', '2000-01-02 11:00', '2000-01-02 12:00', '2000-01-02 13:00'], freq='H') rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:05' '2000-01-01 09:08'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05', '2000-01-01 09:08'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=10) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('1998-01-01', freq='A', periods=10) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) # previously performed setop union, now raises TypeError (GH14164) with tm.assertRaises(TypeError): rng + other with tm.assertRaises(TypeError): rng += other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng + pd.offsets.YearEnd(5) expected = pd.period_range('2019', '2029', freq='A') tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng + pd.offsets.MonthEnd(5) expected = pd.period_range('2014-06', '2017-05', freq='M') tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365), Timedelta(days=365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h'), Timedelta('72:00:00')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng + delta expected = pd.period_range('2014-05-04', '2014-05-18', freq='D') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23), Timedelta('23:00:00')]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng + o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm'), Timedelta(minutes=120)] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng + delta expected = pd.period_range('2014-01-01 12:00', '2014-01-05 12:00', freq='H') tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's'), Timedelta(seconds=30)]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng + 1 expected = pd.period_range('2000-01-01 10:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) def test_difference(self): # diff rng1 = pd.period_range('1/1/2000', freq='D', periods=5) other1 = pd.period_range('1/6/2000', freq='D', periods=5) expected1 = pd.period_range('1/1/2000', freq='D', periods=5) rng2 = pd.period_range('1/1/2000', freq='D', periods=5) other2 = pd.period_range('1/4/2000', freq='D', periods=5) expected2 = pd.period_range('1/1/2000', freq='D', periods=3) rng3 = pd.period_range('1/1/2000', freq='D', periods=5) other3 = pd.PeriodIndex([], freq='D') expected3 = pd.period_range('1/1/2000', freq='D', periods=5) rng4 = pd.period_range('2000-01-01 09:00', freq='H', periods=5) other4 = pd.period_range('2000-01-02 09:00', freq='H', periods=5) expected4 = rng4 rng5 = pd.PeriodIndex(['2000-01-01 09:01', '2000-01-01 09:03', '2000-01-01 09:05'], freq='T') other5 = pd.PeriodIndex( ['2000-01-01 09:01', '2000-01-01 09:05'], freq='T') expected5 = pd.PeriodIndex(['2000-01-01 09:03'], freq='T') rng6 = pd.period_range('2000-01-01', freq='M', periods=7) other6 = pd.period_range('2000-04-01', freq='M', periods=7) expected6 = pd.period_range('2000-01-01', freq='M', periods=3) rng7 = pd.period_range('2003-01-01', freq='A', periods=5) other7 = pd.period_range('1998-01-01', freq='A', periods=8) expected7 = pd.period_range('2006-01-01', freq='A', periods=2) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3), (rng4, other4, expected4), (rng5, other5, expected5), (rng6, other6, expected6), (rng7, other7, expected7), ]: result_union = rng.difference(other) tm.assert_index_equal(result_union, expected) def test_sub_isub(self): # previously performed setop, now raises TypeError (GH14164) # TODO needs to wait on #13077 for decision on result type rng = pd.period_range('1/1/2000', freq='D', periods=5) other = pd.period_range('1/6/2000', freq='D', periods=5) with tm.assertRaises(TypeError): rng - other with tm.assertRaises(TypeError): rng -= other # offset # DateOffset rng = pd.period_range('2014', '2024', freq='A') result = rng - pd.offsets.YearEnd(5) expected = pd.period_range('2009', '2019', freq='A') tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014', '2024', freq='A') msg = ('Input has different freq(=.+)? ' 'from PeriodIndex\\(freq=A-DEC\\)') with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o rng = pd.period_range('2014-01', '2016-12', freq='M') result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range('2013-08', '2016-07', freq='M') tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(365, 'D'), timedelta(365)]: rng = pd.period_range('2014-01', '2016-12', freq='M') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=M\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o # Tick offsets = [pd.offsets.Day(3), timedelta(days=3), np.timedelta64(3, 'D'), pd.offsets.Hour(72), timedelta(minutes=60 * 24 * 3), np.timedelta64(72, 'h')] for delta in offsets: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') result = rng - delta expected = pd.period_range('2014-04-28', '2014-05-12', freq='D') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for o in [pd.offsets.YearBegin(2), pd.offsets.MonthBegin(1), pd.offsets.Minute(), np.timedelta64(4, 'h'), timedelta(hours=23)]: rng = pd.period_range('2014-05-01', '2014-05-15', freq='D') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=D\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng - o offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), pd.offsets.Minute(120), timedelta(minutes=120), np.timedelta64(120, 'm')] for delta in offsets: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') result = rng - delta expected = pd.period_range('2014-01-01 08:00', '2014-01-05 08:00', freq='H') tm.assert_index_equal(result, expected) rng -= delta tm.assert_index_equal(rng, expected) for delta in [pd.offsets.YearBegin(2), timedelta(minutes=30), np.timedelta64(30, 's')]: rng = pd.period_range('2014-01-01 10:00', '2014-01-05 10:00', freq='H') msg = 'Input has different freq(=.+)? from PeriodIndex\\(freq=H\\)' with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): result = rng + delta with tm.assertRaisesRegexp(period.IncompatibleFrequency, msg): rng += delta # int rng = pd.period_range('2000-01-01 09:00', freq='H', periods=10) result = rng - 1 expected = pd.period_range('2000-01-01 08:00', freq='H', periods=10) tm.assert_index_equal(result, expected) rng -= 1 tm.assert_index_equal(rng, expected) def test_comp_nat(self): left = pd.PeriodIndex([pd.Period('2011-01-01'), pd.NaT, pd.Period('2011-01-03')]) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period('2011-01-03')]) for l, r in [(left, right), (left.asobject, right.asobject)]: result = l == r expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = l != r expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == r, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(l != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != l, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(l < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > l, expected) def test_value_counts_unique(self): # GH 7735 idx = pd.period_range('2011-01-01 09:00', freq='H', periods=10) # create repeated values, 'n'th element is repeated by n+1 times idx = PeriodIndex(np.repeat(idx.values, range(1, len(idx) + 1)), freq='H') exp_idx = PeriodIndex(['2011-01-01 18:00', '2011-01-01 17:00', '2011-01-01 16:00', '2011-01-01 15:00', '2011-01-01 14:00', '2011-01-01 13:00', '2011-01-01 12:00', '2011-01-01 11:00', '2011-01-01 10:00', '2011-01-01 09:00'], freq='H') expected = Series(range(10, 0, -1), index=exp_idx, dtype='int64') for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) expected = pd.period_range('2011-01-01 09:00', freq='H', periods=10) tm.assert_index_equal(idx.unique(), expected) idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 09:00', '2013-01-01 08:00', '2013-01-01 08:00', pd.NaT], freq='H') exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00'], freq='H') expected = Series([3, 2], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(), expected) exp_idx = PeriodIndex(['2013-01-01 09:00', '2013-01-01 08:00', pd.NaT], freq='H') expected = Series([3, 2, 1], index=exp_idx) for obj in [idx, Series(idx)]: tm.assert_series_equal(obj.value_counts(dropna=False), expected) tm.assert_index_equal(idx.unique(), exp_idx) def test_drop_duplicates_metadata(self): # GH 10115 idx = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') result = idx.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) idx_dup = idx.append(idx) # freq will not be reset result = idx_dup.drop_duplicates() self.assert_index_equal(idx, result) self.assertEqual(idx.freq, result.freq) def test_drop_duplicates(self): # to check Index/Series compat base = pd.period_range('2011-01-01', '2011-01-31', freq='D', name='idx') idx = base.append(base[:5]) res = idx.drop_duplicates() tm.assert_index_equal(res, base) res = Series(idx).drop_duplicates() tm.assert_series_equal(res, Series(base)) res = idx.drop_duplicates(keep='last') exp = base[5:].append(base[:5]) tm.assert_index_equal(res, exp) res = Series(idx).drop_duplicates(keep='last') tm.assert_series_equal(res, Series(exp, index=np.arange(5, 36))) res = idx.drop_duplicates(keep=False) tm.assert_index_equal(res, base[5:]) res = Series(idx).drop_duplicates(keep=False) tm.assert_series_equal(res, Series(base[5:], index=np.arange(5, 31))) def test_order_compat(self): def _check_freq(index, expected_index): if isinstance(index, PeriodIndex): self.assertEqual(index.freq, expected_index.freq) pidx = PeriodIndex(['2011', '2012', '2013'], name='pidx', freq='A') # for compatibility check iidx = Index([2011, 2012, 2013], name='idx') for idx in [pidx, iidx]: ordered = idx.sort_values() self.assert_index_equal(ordered, idx) _check_freq(ordered, idx) ordered = idx.sort_values(ascending=False) self.assert_index_equal(ordered, idx[::-1]) _check_freq(ordered, idx[::-1]) ordered, indexer = idx.sort_values(return_indexer=True) self.assert_index_equal(ordered, idx) self.assert_numpy_array_equal(indexer,
np.array([0, 1, 2])
numpy.array
#!/usr/bin/env python # Copyright 2019 Division of Medical Image Computing, German Cancer Research Center (DKFZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ Parts are based on https://github.com/multimodallearning/pytorch-mask-rcnn published under MIT license. """ import warnings warnings.filterwarnings('ignore', '.*From scipy 0.13.0, the output shape of zoom()*') import numpy as np import scipy.misc import scipy.ndimage import scipy.interpolate from scipy.ndimage.measurements import label as lb import torch import tqdm from custom_extensions.nms import nms from custom_extensions.roi_align import roi_align ############################################################ # Segmentation Processing ############################################################ def sum_tensor(input, axes, keepdim=False): axes = np.unique(axes) if keepdim: for ax in axes: input = input.sum(ax, keepdim=True) else: for ax in sorted(axes, reverse=True): input = input.sum(int(ax)) return input def get_one_hot_encoding(y, n_classes): """ transform a numpy label array to a one-hot array of the same shape. :param y: array of shape (b, 1, y, x, (z)). :param n_classes: int, number of classes to unfold in one-hot encoding. :return y_ohe: array of shape (b, n_classes, y, x, (z)) """ dim = len(y.shape) - 2 if dim == 2: y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3])).astype('int32') elif dim == 3: y_ohe = np.zeros((y.shape[0], n_classes, y.shape[2], y.shape[3], y.shape[4])).astype('int32') else: raise Exception("invalid dimensions {} encountered".format(y.shape)) for cl in np.arange(n_classes): y_ohe[:, cl][y[:, 0] == cl] = 1 return y_ohe def dice_per_batch_inst_and_class(pred, y, n_classes, convert_to_ohe=True, smooth=1e-8): ''' computes dice scores per batch instance and class. :param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1) :param y: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes] :param n_classes: int :return: dice scores of shape (b, c) ''' if convert_to_ohe: pred = get_one_hot_encoding(pred, n_classes) y = get_one_hot_encoding(y, n_classes) axes = tuple(range(2, len(pred.shape))) intersect = np.sum(pred*y, axis=axes) denominator = np.sum(pred, axis=axes)+np.sum(y, axis=axes) dice = (2.0*intersect + smooth) / (denominator + smooth) return dice def dice_per_batch_and_class(pred, targ, n_classes, convert_to_ohe=True, smooth=1e-8): ''' computes dice scores per batch and class. :param pred: prediction array of shape (b, 1, y, x, (z)) (e.g. softmax prediction with argmax over dim 1) :param targ: ground truth array of shape (b, 1, y, x, (z)) (contains int [0, ..., n_classes]) :param n_classes: int :param smooth: Laplacian smooth, https://en.wikipedia.org/wiki/Additive_smoothing :return: dice scores of shape (b, c) ''' if convert_to_ohe: pred = get_one_hot_encoding(pred, n_classes) targ = get_one_hot_encoding(targ, n_classes) axes = (0, *list(range(2, len(pred.shape)))) #(0,2,3(,4)) intersect = np.sum(pred * targ, axis=axes) denominator = np.sum(pred, axis=axes) + np.sum(targ, axis=axes) dice = (2.0 * intersect + smooth) / (denominator + smooth) assert dice.shape==(n_classes,), "dice shp {}".format(dice.shape) return dice def batch_dice(pred, y, false_positive_weight=1.0, smooth=1e-6): ''' compute soft dice over batch. this is a differentiable score and can be used as a loss function. only dice scores of foreground classes are returned, since training typically does not benefit from explicit background optimization. Pixels of the entire batch are considered a pseudo-volume to compute dice scores of. This way, single patches with missing foreground classes can not produce faulty gradients. :param pred: (b, c, y, x, (z)), softmax probabilities (network output). :param y: (b, c, y, x, (z)), one hote encoded segmentation mask. :param false_positive_weight: float [0,1]. For weighting of imbalanced classes, reduces the penalty for false-positive pixels. Can be beneficial sometimes in data with heavy fg/bg imbalances. :return: soft dice score (float).This function discards the background score and returns the mena of foreground scores. ''' if len(pred.size()) == 4: axes = (0, 2, 3) intersect = sum_tensor(pred * y, axes, keepdim=False) denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False) return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) #only fg dice here. elif len(pred.size()) == 5: axes = (0, 2, 3, 4) intersect = sum_tensor(pred * y, axes, keepdim=False) denom = sum_tensor(false_positive_weight*pred + y, axes, keepdim=False) return torch.mean(( (2*intersect + smooth) / (denom + smooth))[1:]) #only fg dice here. else: raise ValueError('wrong input dimension in dice loss') ############################################################ # Bounding Boxes ############################################################ def compute_iou_2D(box, boxes, box_area, boxes_area): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2] THIS IS THE GT BOX boxes: [boxes_count, (y1, x1, y2, x2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) union = box_area + boxes_area[:] - intersection[:] iou = intersection / union return iou def compute_iou_3D(box, boxes, box_volume, boxes_volume): """Calculates IoU of the given box with the array of the given boxes. box: 1D vector [y1, x1, y2, x2, z1, z2] (typically gt box) boxes: [boxes_count, (y1, x1, y2, x2, z1, z2)] box_area: float. the area of 'box' boxes_area: array of length boxes_count. Note: the areas are passed in rather than calculated here for efficency. Calculate once in the caller to avoid duplicate work. """ # Calculate intersection areas y1 = np.maximum(box[0], boxes[:, 0]) y2 = np.minimum(box[2], boxes[:, 2]) x1 = np.maximum(box[1], boxes[:, 1]) x2 = np.minimum(box[3], boxes[:, 3]) z1 = np.maximum(box[4], boxes[:, 4]) z2 = np.minimum(box[5], boxes[:, 5]) intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0) * np.maximum(z2 - z1, 0) union = box_volume + boxes_volume[:] - intersection[:] iou = intersection / union return iou def compute_overlaps(boxes1, boxes2): """Computes IoU overlaps between two sets of boxes. boxes1, boxes2: [N, (y1, x1, y2, x2)]. / 3D: (z1, z2)) For better performance, pass the largest set first and the smaller second. :return: (#boxes1, #boxes2), ious of each box of 1 machted with each of 2 """ # Areas of anchors and GT boxes if boxes1.shape[1] == 4: area1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) area2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(overlaps.shape[1]): box2 = boxes2[i] #this is the gt box overlaps[:, i] = compute_iou_2D(box2, boxes1, area2[i], area1) return overlaps else: # Areas of anchors and GT boxes volume1 = (boxes1[:, 2] - boxes1[:, 0]) * (boxes1[:, 3] - boxes1[:, 1]) * (boxes1[:, 5] - boxes1[:, 4]) volume2 = (boxes2[:, 2] - boxes2[:, 0]) * (boxes2[:, 3] - boxes2[:, 1]) * (boxes2[:, 5] - boxes2[:, 4]) # Compute overlaps to generate matrix [boxes1 count, boxes2 count] # Each cell contains the IoU value. overlaps = np.zeros((boxes1.shape[0], boxes2.shape[0])) for i in range(boxes2.shape[0]): box2 = boxes2[i] # this is the gt box overlaps[:, i] = compute_iou_3D(box2, boxes1, volume2[i], volume1) return overlaps def box_refinement(box, gt_box): """Compute refinement needed to transform box to gt_box. box and gt_box are [N, (y1, x1, y2, x2)] / 3D: (z1, z2)) """ height = box[:, 2] - box[:, 0] width = box[:, 3] - box[:, 1] center_y = box[:, 0] + 0.5 * height center_x = box[:, 1] + 0.5 * width gt_height = gt_box[:, 2] - gt_box[:, 0] gt_width = gt_box[:, 3] - gt_box[:, 1] gt_center_y = gt_box[:, 0] + 0.5 * gt_height gt_center_x = gt_box[:, 1] + 0.5 * gt_width dy = (gt_center_y - center_y) / height dx = (gt_center_x - center_x) / width dh = torch.log(gt_height / height) dw = torch.log(gt_width / width) result = torch.stack([dy, dx, dh, dw], dim=1) if box.shape[1] > 4: depth = box[:, 5] - box[:, 4] center_z = box[:, 4] + 0.5 * depth gt_depth = gt_box[:, 5] - gt_box[:, 4] gt_center_z = gt_box[:, 4] + 0.5 * gt_depth dz = (gt_center_z - center_z) / depth dd = torch.log(gt_depth / depth) result = torch.stack([dy, dx, dz, dh, dw, dd], dim=1) return result def unmold_mask_2D(mask, bbox, image_shape): """Converts a mask generated by the neural network into a format similar to it's original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ y1, x1, y2, x2 = bbox out_zoom = [y2 - y1, x2 - x1] zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)] mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32) # Put the mask in the right location. full_mask = np.zeros(image_shape[:2]) #only y,x full_mask[y1:y2, x1:x2] = mask return full_mask def unmold_mask_2D_torch(mask, bbox, image_shape): """Converts a mask generated by the neural network into a format similar to it's original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ y1, x1, y2, x2 = bbox out_zoom = [(y2 - y1).float(), (x2 - x1).float()] zoom_factor = [i / j for i, j in zip(out_zoom, mask.shape)] mask = mask.unsqueeze(0).unsqueeze(0) mask = torch.nn.functional.interpolate(mask, scale_factor=zoom_factor) mask = mask[0][0] #mask = scipy.ndimage.zoom(mask.cpu().numpy(), zoom_factor, order=1).astype(np.float32) #mask = torch.from_numpy(mask).cuda() # Put the mask in the right location. full_mask = torch.zeros(image_shape[:2]) # only y,x full_mask[y1:y2, x1:x2] = mask return full_mask def unmold_mask_3D(mask, bbox, image_shape): """Converts a mask generated by the neural network into a format similar to it's original shape. mask: [height, width] of type float. A small, typically 28x28 mask. bbox: [y1, x1, y2, x2, z1, z2]. The box to fit the mask in. Returns a binary mask with the same size as the original image. """ y1, x1, y2, x2, z1, z2 = bbox out_zoom = [y2 - y1, x2 - x1, z2 - z1] zoom_factor = [i/j for i,j in zip(out_zoom, mask.shape)] mask = scipy.ndimage.zoom(mask, zoom_factor, order=1).astype(np.float32) # Put the mask in the right location. full_mask = np.zeros(image_shape[:3]) full_mask[y1:y2, x1:x2, z1:z2] = mask return full_mask def nms_numpy(box_coords, scores, thresh): """ non-maximum suppression on 2D or 3D boxes in numpy. :param box_coords: [y1,x1,y2,x2 (,z1,z2)] with y1<=y2, x1<=x2, z1<=z2. :param scores: ranking scores (higher score == higher rank) of boxes. :param thresh: IoU threshold for clustering. :return: """ y1 = box_coords[:, 0] x1 = box_coords[:, 1] y2 = box_coords[:, 2] x2 = box_coords[:, 3] assert np.all(y1 <= y2) and np.all(x1 <= x2), """"the definition of the coordinates is crucially important here: coordinates of which maxima are taken need to be the lower coordinates""" areas = (x2 - x1) * (y2 - y1) is_3d = box_coords.shape[1] == 6 if is_3d: # 3-dim case z1 = box_coords[:, 4] z2 = box_coords[:, 5] assert np.all(z1<=z2), """"the definition of the coordinates is crucially important here: coordinates of which maxima are taken need to be the lower coordinates""" areas *= (z2 - z1) order = scores.argsort()[::-1] keep = [] while order.size > 0: # order is the sorted index. maps order to index: order[1] = 24 means (rank1, ix 24) i = order[0] # highest scoring element yy1 = np.maximum(y1[i], y1[order]) # highest scoring element still in >order<, is compared to itself, that is okay. xx1 = np.maximum(x1[i], x1[order]) yy2 = np.minimum(y2[i], y2[order]) xx2 =
np.minimum(x2[i], x2[order])
numpy.minimum
""" Tests for Factor terms. """ from nose_parameterized import parameterized from numpy import arange, array, empty, eye, nan, ones, datetime64 from numpy.random import randn, seed from zipline.errors import UnknownRankMethod from zipline.pipeline import Factor, Filter, TermGraph from zipline.pipeline.factors import RSI from zipline.utils.test_utils import check_allclose, check_arrays from .base import BasePipelineTestCase class F(Factor): inputs = () window_length = 0 class Mask(Filter): inputs = () window_length = 0 class FactorTestCase(BasePipelineTestCase): def setUp(self): super(FactorTestCase, self).setUp() self.f = F() def test_bad_input(self): with self.assertRaises(UnknownRankMethod): self.f.rank("not a real rank method") def test_rank_ascending(self): # Generated with: # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]], dtype=float) expected_ranks = { 'ordinal': array([[1., 3., 4., 5., 2.], [2., 4., 5., 1., 3.], [3., 5., 1., 2., 4.], [4., 1., 2., 3., 5.], [1., 3., 4., 5., 2.]]), 'average': array([[1.5, 3., 4., 5., 1.5], [2.5, 4., 5., 1., 2.5], [3.5, 5., 1., 2., 3.5], [4.5, 1., 2., 3., 4.5], [1.5, 3., 4., 5., 1.5]]), 'min': array([[1., 3., 4., 5., 1.], [2., 4., 5., 1., 2.], [3., 5., 1., 2., 3.], [4., 1., 2., 3., 4.], [1., 3., 4., 5., 1.]]), 'max': array([[2., 3., 4., 5., 2.], [3., 4., 5., 1., 3.], [4., 5., 1., 2., 4.], [5., 1., 2., 3., 5.], [2., 3., 4., 5., 2.]]), 'dense': array([[1., 2., 3., 4., 1.], [2., 3., 4., 1., 2.], [3., 4., 1., 2., 3.], [4., 1., 2., 3., 4.], [1., 2., 3., 4., 1.]]), } def check(terms): graph = TermGraph(terms) results = self.run_graph( graph, initial_workspace={self.f: data}, mask=self.build_mask(ones((5, 5))), ) for method in terms: check_arrays(results[method], expected_ranks[method]) check({meth: self.f.rank(method=meth) for meth in expected_ranks}) check({ meth: self.f.rank(method=meth, ascending=True) for meth in expected_ranks }) # Not passing a method should default to ordinal. check({'ordinal': self.f.rank()}) check({'ordinal': self.f.rank(ascending=True)}) def test_rank_descending(self): # Generated with: # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]], dtype=float) expected_ranks = { 'ordinal': array([[4., 3., 2., 1., 5.], [3., 2., 1., 5., 4.], [2., 1., 5., 4., 3.], [1., 5., 4., 3., 2.], [4., 3., 2., 1., 5.]]), 'average': array([[4.5, 3., 2., 1., 4.5], [3.5, 2., 1., 5., 3.5], [2.5, 1., 5., 4., 2.5], [1.5, 5., 4., 3., 1.5], [4.5, 3., 2., 1., 4.5]]), 'min': array([[4., 3., 2., 1., 4.], [3., 2., 1., 5., 3.], [2., 1., 5., 4., 2.], [1., 5., 4., 3., 1.], [4., 3., 2., 1., 4.]]), 'max': array([[5., 3., 2., 1., 5.], [4., 2., 1., 5., 4.], [3., 1., 5., 4., 3.], [2., 5., 4., 3., 2.], [5., 3., 2., 1., 5.]]), 'dense': array([[4., 3., 2., 1., 4.], [3., 2., 1., 4., 3.], [2., 1., 4., 3., 2.], [1., 4., 3., 2., 1.], [4., 3., 2., 1., 4.]]), } def check(terms): graph = TermGraph(terms) results = self.run_graph( graph, initial_workspace={self.f: data}, mask=self.build_mask(ones((5, 5))), ) for method in terms: check_arrays(results[method], expected_ranks[method]) check({ meth: self.f.rank(method=meth, ascending=False) for meth in expected_ranks }) # Not passing a method should default to ordinal. check({'ordinal': self.f.rank(ascending=False)}) def test_rank_after_mask(self): # data = arange(25).reshape(5, 5).transpose() % 4 data = array([[0, 1, 2, 3, 0], [1, 2, 3, 0, 1], [2, 3, 0, 1, 2], [3, 0, 1, 2, 3], [0, 1, 2, 3, 0]], dtype=float) mask_data = ~eye(5, dtype=bool) initial_workspace = {self.f: data, Mask(): mask_data} graph = TermGraph( { "ascending_nomask": self.f.rank(ascending=True), "ascending_mask": self.f.rank(ascending=True, mask=Mask()), "descending_nomask": self.f.rank(ascending=False), "descending_mask": self.f.rank(ascending=False, mask=Mask()), } ) expected = { "ascending_nomask": array([[1., 3., 4., 5., 2.], [2., 4., 5., 1., 3.], [3., 5., 1., 2., 4.], [4., 1., 2., 3., 5.], [1., 3., 4., 5., 2.]]), "descending_nomask": array([[4., 3., 2., 1., 5.], [3., 2., 1., 5., 4.], [2., 1., 5., 4., 3.], [1., 5., 4., 3., 2.], [4., 3., 2., 1., 5.]]), # Diagonal should be all nans, and anything whose rank was less # than the diagonal in the unmasked calc should go down by 1. "ascending_mask": array([[nan, 2., 3., 4., 1.], [2., nan, 4., 1., 3.], [2., 4., nan, 1., 3.], [3., 1., 2., nan, 4.], [1., 2., 3., 4., nan]]), "descending_mask": array([[nan, 3., 2., 1., 4.], [2., nan, 1., 4., 3.], [2., 1., nan, 4., 3.], [1., 4., 3., nan, 2.], [4., 3., 2., 1., nan]]), } results = self.run_graph( graph, initial_workspace, mask=self.build_mask(
ones((5, 5))
numpy.ones
import os import numpy as np from matplotlib.collections import LineCollection import matplotlib.pyplot as plt from skimage.measure import regionprops from skimage import segmentation def _dff(mean_int_over_time, window=40, percentile=20): traceBL = [np.percentile(mean_int_over_time[i:i + window], percentile) for i in range(1, len(mean_int_over_time) - window)] missing = np.percentile(mean_int_over_time[-window:], percentile) missing = np.repeat(missing, window + 1) traceBL = np.concatenate((traceBL, missing)) #fig, (ax) = plt.subplots(1,1, figsize=(8,16)) #ax.plot(traceBL, color="red") #ax.plot(mean_int_over_time) return np.divide((mean_int_over_time-traceBL), traceBL) def create_traces(ch2_reg,seg_ch1, window=40, to_remove=None): regions_ch2 = [regionprops(seg_ch1, ch2) for ch2 in ch2_reg] labels = [regions_ch2[0][i]['label'] for i in range(len(regions_ch2[0]))] # Removing cell that we don't want cleaned = np.copy(seg_ch1) if to_remove is not None: for label, region in zip(labels, regions_ch2[0]): if label == to_remove: cleaned[tuple(region.coords.T)] = 0 regions_ch2 = [regionprops(cleaned, ch2) for ch2 in ch2_reg] labels = [regions_ch2[0][i]['label'] for i in range(len(regions_ch2[0]))] cell_position = [regions_ch2[0][i]['centroid'] for i in range(len(regions_ch2[0]))] list_intensity =[] for i in range(len(regions_ch2[0])): list_intensity.append(np.asarray([regions[i]['mean_intensity'] for regions in regions_ch2])) list_dff=[] for mean_int in list_intensity: list_dff.append(_dff(mean_int, window=window)) d=
np.asarray(list_dff)
numpy.asarray
""" Mostly copied from wandb client code Modified "next_sample" code to do the following: -accepts a 'failure_cost' argument -if failure cost 'c' is nonzero, modifies expected improvement of each sample according to: e' = p e / (p (1-c) + c) where 'p' is probability of success and 'e' is unmodified expected improvement -returns expected improvements for whole sample Bayesian Search Check out https://arxiv.org/pdf/1206.2944.pdf for explanation of bayesian optimization We do bayesian optimization and handle the cases where some X values are integers as well as the case where X is very large. """ import numpy as np #from sklearn.gaussian_process import GaussianProcessRegressor #from sklearn.gaussian_process.kernels import Matern #import scipy.stats as stats import math #from wandb.util import get_module #from wandb.sweeps.base import Search #from wandb.sweeps.params import HyperParameter, HyperParameterSet #sklearn.gaussian = get_module('sklearn.gaussian_process') #sklearn.linear = get_module('sklearn.linear_model') #sklearn.svm = get_module('sklearn.svm') #sklearn.discriminant = get_module('sklearn.discriminant_analysis') #scipy.stats = get_module('scipy.stats') import sklearn.gaussian_process as gaussian import sklearn.linear_model as linear_model import sklearn.svm as svm import sklearn.discriminant_analysis as discriminant import scipy.stats def fit_normalized_gaussian_process(X, y, nu=1.5): """ We fit a gaussian process but first subtract the mean and divide by stddev. To undo at prediction tim, call y_pred = gp.predict(X) * y_stddev + y_mean """ gp = gaussian.GaussianProcessRegressor( kernel=gaussian.kernels.Matern(nu=nu), n_restarts_optimizer=2, alpha=0.0000001, random_state=2 ) if len(y) == 1: y = np.array(y) y_mean = y[0] y_stddev = 1 else: y_mean = np.mean(y) y_stddev = np.std(y) + 0.0001 y_norm = (y - y_mean) / y_stddev gp.fit(X, y_norm) return gp, y_mean, y_stddev def train_logistic_regression(X, y): lr = linear.LogisticRegression() lr.fit(X, y.astype(int)) return lambda X : lr.predict_proba(X)[...,1], 0, 1 def train_rbf_svm(X, y): svc = svm.SVC(probability=True) svc.fit(X, y.astype(int)) return lambda X : svc.predict_proba(X)[...,1], 0, 1 def train_qda(X,y): qda = discriminant.QuadraticDiscriminantAnalysis() qda.fit(X, y.astype(int)) return lambda X : qda.predict_proba(X)[...,1], 0, 1 def sigmoid(x): return np.exp(-np.logaddexp(0, -x)) def random_sample(X_bounds, num_test_samples): num_hyperparameters = len(X_bounds) test_X = np.empty((num_test_samples, num_hyperparameters)) for ii in range(num_test_samples): for jj in range(num_hyperparameters): if type(X_bounds[jj][0]) == int: assert (type(X_bounds[jj][1]) == int) test_X[ii, jj] = np.random.randint( X_bounds[jj][0], X_bounds[jj][1]) else: test_X[ii, jj] = np.random.uniform() * ( X_bounds[jj][1] - X_bounds[jj][0] ) + X_bounds[ jj ][ 0 ] return test_X def predict(X, y, test_X, nu=1.5): gp, norm_mean, norm_stddev = fit_normalized_gaussian_process(X, y, nu=nu) y_pred, y_std = gp.predict([test_X], return_std=True) y_std_norm = y_std * norm_stddev y_pred_norm = (y_pred * norm_stddev) + norm_mean return y_pred_norm[0], y_std_norm[0] def train_runtime_model(sample_X, runtimes, X_bounds, nu=1.5, model='gaussian'): if sample_X.shape[0] != runtimes.shape[0]: raise ValueError("Sample X and runtimes must be the same length") if model=='gaussian': return train_gaussian_process(sample_X, runtimes, X_bounds, nu=nu) elif model=='logistic' and runtimes.any() and not runtimes.all(): return train_logistic_regression(sample_X, runtimes) elif model=='rbf_svm' and runtimes.any() and not runtimes.all(): return train_rbf_svm(sample_X, runtimes) elif model=='qda' and runtimes.sum() > 1 and runtimes.sum() < len(runtimes) - 1: return train_qda(sample_X, runtimes) else: return None, 0, 1 #def train_failure_model(sample_X, failures, X_bounds): # if sample_X.shape[0] != failures.shape[0]: # raise ValueError("Sample X and runtimes must be the same length") # # return train_gaussian_process(sample_X, runtimes, X_bounds) def train_gaussian_process( sample_X, sample_y, X_bounds, current_X=None, nu=1.5, max_samples=100 ): """ Trains a Gaussian Process function from sample_X, sample_y data Handles the case where there are other training runs in flight (current_X) Arguments: sample_X - vector of already evaluated sets of hyperparameters sample_y - vector of already evaluated loss function values X_bounds - minimum and maximum values for every dimension of X current_X - hyperparameters currently being explored nu - input to the Matern function, higher numbers make it smoother 0.5, 1.5, 2.5 are good values see http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html Returns: gp - the gaussian process function y_mean - mean y_stddev - stddev To make a prediction with gp on real world data X, need to call: (gp.predict(X) * y_stddev) + y_mean """ if current_X is not None: current_X = np.array(current_X) if len(current_X.shape) != 2: raise ValueError("Current X must be a 2 dimensional array") # we can't let the current samples be bigger than max samples # because we need to use some real samples to build the curve if current_X.shape[0] > max_samples - 5: print( "current_X is bigger than max samples - 5 so dropping some currently running parameters" ) current_X = current_X[:(max_samples - 5), :] if len(sample_y.shape) != 1: raise ValueError("Sample y must be a 1 dimensional array") if sample_X.shape[0] != sample_y.shape[0]: raise ValueError( "Sample X and sample y must be the same size {} {}".format( sample_X.shape[0], sample_y.shape[0] ) ) if X_bounds is not None and sample_X.shape[1] != len(X_bounds): raise ValueError( "Bounds must be the same length as Sample X's second dimension" ) # gaussian process takes a long time to train, so if there's more than max_samples # we need to sample from it if sample_X.shape[0] > max_samples: sample_indices = np.random.randint(sample_X.shape[0], size=max_samples) X = sample_X[sample_indices] y = sample_y[sample_indices] else: X = sample_X y = sample_y gp, y_mean, y_stddev = fit_normalized_gaussian_process(X, y, nu=nu) if current_X is not None: # if we have some hyperparameters running, we pretend that they return # the prediction of the function we've fit X = np.append(X, current_X, axis=0) current_y_fantasy = (gp.predict(current_X) * y_stddev) + y_mean y = np.append(y, current_y_fantasy) gp, y_mean, y_stddev = fit_normalized_gaussian_process(X, y, nu=nu) return gp.predict, y_mean, y_stddev def filter_weird_values(sample_X, sample_y): is_row_finite = ~(np.isnan(sample_X).any(axis=1) | np.isnan(sample_y)) sample_X = sample_X[is_row_finite, :] sample_y = sample_y[is_row_finite] return sample_X, sample_y def next_sample( sample_X, sample_y, X_bounds=None, runtimes=None, failures=None, current_X=None, nu=1.5, max_samples_for_gp=100, improvement=0.01, num_points_to_try=1000, opt_func="expected_improvement", failure_cost=0, test_X=None, ): """ Calculates the best next sample to look at via bayesian optimization. Check out https://arxiv.org/pdf/1206.2944.pdf for explanation of bayesian optimization Arguments: sample_X - 2d array of already evaluated sets of hyperparameters sample_y - 1d array of already evaluated loss function values X_bounds - 2d array minimum and maximum values for every dimension of X runtimes - vector of length sample_y - should be the time taken to train each model in sample X failures - vector of length sample_y - should be True for models where training failed and False where training succeeded. This model will throw out NaNs and Infs so if you want it to avaoid failure values for X, use this failure vector. current_X - hyperparameters currently being explored nu - input to the Matern function, higher numbers make it smoother 0.5, 1.5, 2.5 are good values see http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.kernels.Matern.html max_samples_for_gp - maximum samples to consider (since algo is O(n^3)) for performance, but also adds some randomness improvement - amount of improvement to optimize for -- higher means take more exploratory risks num_points_to_try - number of X values to try when looking for value with highest expected probability of improvement opt_func - one of {"expected_improvement", "prob_of_improvement"} - whether to optimize expected improvement of probability of improvement. Expected improvement is generally better - may want to remove probability of improvement at some point. (But I think prboability of improvement is a little easier to calculate) test_X - X values to test when looking for the best values to try Returns: suggested_X - X vector to try running next suggested_X_prob_of_improvement - probability of the X vector beating the current best suggested_X_predicted_y - predicted output of the X vector test_X - 2d array of length num_points_to_try by num features: tested X values y_pred - 1d array of length num_points_to_try: predicted values for test_X y_pred_std - 1d array of length num_points_to_try: predicted std deviation for test_X e_i - expected improvement prob_of_improve 1d array of lenth num_points_to_try: predicted porbability of improvement prob_of_failure 1d array of predicted probabilites of failure suggested_X_prob_of_failure expected_runtime 1d array of expected runtimes """ # Sanity check the data sample_X = np.array(sample_X) sample_y = np.array(sample_y) failures = np.array(failures) if test_X is not None: test_X = np.array(test_X) if len(sample_X.shape) != 2: raise ValueError("Sample X must be a 2 dimensional array") if len(sample_y.shape) != 1: raise ValueError("Sample y must be a 1 dimensional array") if sample_X.shape[0] != sample_y.shape[0]: raise ValueError("Sample X and y must be same length") if test_X is not None: # if test_X is set, usually this is for simulation/testing if X_bounds is not None: raise ValueError("Can't set test_X and X_bounds") else: # normal case where we randomly sample our test_X if X_bounds is None: raise ValueError("Must pass in test_X or X_bounds") filtered_X, filtered_y = filter_weird_values(sample_X, sample_y) # We train our runtime prediction model on *filtered_X* throwing out the sample points with # NaN values because they might break our runtime predictor runtime_model = None if runtimes is not None: runtime_filtered_X, runtime_filtered_runtimes = filter_weird_values( sample_X, runtimes ) if runtime_filtered_X.shape[0] >= 2: runtime_model, runtime_model_mean, runtime_model_stddev = train_runtime_model( runtime_filtered_X, runtime_filtered_runtimes, X_bounds ) # We train our failure model on *sample_X*, all the data including NaNs # This is *different* than the runtime model. failure_model = None if failures is not None and sample_X.shape[0] >= 2: failure_filtered_X, failure_filtered_y = filter_weird_values( sample_X, failures ) if failure_filtered_X.shape[0] >= 2: failure_model, failure_model_mean, failure_model_stddev = train_runtime_model( failure_filtered_X, failure_filtered_y, X_bounds, model='rbf_svm'#'logistic' ) # we can't run this algothim with less than two sample points, so we'll # just return a random point if filtered_X.shape[0] < 2: if test_X is not None: # pick a random row from test_X row = np.random.choice(test_X.shape[0]) X = test_X[row, :] else: X = random_sample(X_bounds, 1)[0] if filtered_X.shape[0] < 1: prediction = 0.0 else: prediction = filtered_y[0] return X, 1.0, prediction, None, None, None, None, None, None, None # build the acquisition function gp, y_mean, y_stddev, = train_gaussian_process( filtered_X, filtered_y, X_bounds, current_X, nu, max_samples_for_gp ) # Look for the minimum value of our fitted-target-function + (kappa * fitted-target-std_dev) if test_X is None: # this is the usual case test_X = random_sample(X_bounds, num_points_to_try) y_pred, y_pred_std = gp(test_X, return_std=True) if failure_model is None: prob_of_failure = np.zeros(len(test_X)) else: prob_of_failure = failure_model( test_X ) * failure_model_stddev + failure_model_mean #print(f"prob_of_failure: {prob_of_failure}") k = 2 a = 2 prob_of_failure = a * prob_of_failure**k / (a * prob_of_failure**k + (1 - prob_of_failure)**k) if runtime_model is None: expected_runtime = [0.0] * len(test_X) else: expected_runtime = runtime_model( test_X ) * runtime_model_stddev + runtime_model_mean # best value of y we've seen so far. i.e. y* min_unnorm_y = np.min(filtered_y) # hack for dealing with predicted std of 0 epsilon = 0.00000001 if opt_func == "probability_of_improvement": # might remove the norm_improvement at some point # find best chance of an improvement by "at least norm improvement" # so if norm_improvement is zero, we are looking for best chance of any # improvment over the best result observerd so far. #norm_improvement = improvement / y_stddev min_norm_y = (min_unnorm_y - y_mean) / y_stddev - improvement distance = (y_pred - min_norm_y) std_dev_distance = (y_pred - min_norm_y) / (y_pred_std + epsilon) prob_of_improve = sigmoid(-std_dev_distance) if failure_cost > 0: prob_of_success = 1 - prob_of_failure prob_of_improve *= prob_of_success best_test_X_index = np.argmax(prob_of_improve) e_i = np.zeros_like(prob_of_improve) elif opt_func == "expected_improvement": min_norm_y = (min_unnorm_y - y_mean) / y_stddev Z = -(y_pred - min_norm_y) / (y_pred_std + epsilon) prob_of_improve = scipy.stats.norm.cdf(Z) e_i = -(y_pred - min_norm_y) * scipy.stats.norm.cdf(Z) + y_pred_std * scipy.stats.norm.pdf( Z ) if failure_cost != 0: prob_of_success = 1 - prob_of_failure e_i = e_i * prob_of_success / (prob_of_failure * failure_cost + prob_of_success) #e_i = e_i * (prob_of_failure < failure_cost) best_test_X_index =
np.argmax(e_i)
numpy.argmax
import numpy as np from robosuite.models.arenas import Arena from robosuite.utils.mjcf_utils import xml_path_completion from robosuite.utils.mjcf_utils import array_to_string, string_to_array class TableArena(Arena): """Workspace that contains an empty table.""" def __init__( self, table_full_size=(0.8, 0.8, 0.8), table_friction=(1, 0.005, 0.0001) ): """ Args: table_full_size: full dimensions of the table friction: friction parameters of the table """ super().__init__(xml_path_completion("arenas/table_arena.xml")) self.table_full_size = np.array(table_full_size) self.table_half_size = self.table_full_size / 2 self.table_friction = table_friction self.floor = self.worldbody.find("./geom[@name='floor']") self.table_body = self.worldbody.find("./body[@name='table']") self.table_collision = self.table_body.find("./geom[@name='table_collision']") self.table_visual = self.table_body.find("./geom[@name='table_visual']") self.table_top = self.table_body.find("./site[@name='table_top']") self.configure_location() def configure_location(self): self.bottom_pos = np.array([0, 0, 0]) self.floor.set("pos", array_to_string(self.bottom_pos)) self.center_pos = self.bottom_pos + np.array([0, 0, self.table_half_size[2]]) # a good simulation pose self.table_body.set("pos", array_to_string(self.center_pos)) self.table_collision.set("size", array_to_string(self.table_half_size)) self.table_collision.set("friction", array_to_string(self.table_friction)) self.table_visual.set("size", array_to_string(self.table_half_size)) self.table_top.set( "pos", array_to_string(
np.array([0, 0, self.table_half_size[2]])
numpy.array
from sklearn.metrics import confusion_matrix import pandas as pd import numpy as np import argparse import classifiers from sklearn.ensemble import ExtraTreesClassifier from sklearn.model_selection import GridSearchCV from sklearn.feature_selection import RFE from sklearn.svm import SVC from sklearn import preprocessing from sklearn.feature_selection import RFECV from sklearn.decomposition import PCA from classifiers import * import pickle # Read in the aggregated features provided by the cnn on the IEMOCAP database features_train = pd.read_csv('../data/allFeatures_standardized.csv') features_test = pd.read_csv('../data/allYoutubeFeaturesStandardized.csv') features_train = features_train.replace([np.inf, -np.inf], np.nan) features_test = features_test.replace([np.inf, -np.inf], np.nan) # pca = PCA(n_components=8) # pca.fit(features_train) # features_train = pca.transform(features_train) # features_test = pca.transform(features_test) #features = features.fillna(0) #features = features.iloc[:,[0,1,4,10,16,20,31,33,37,42,43,44,45,46,50,55,57,58,61,63,65]] # X = features.iloc[:,:8] #nb = pd.read_csv('./probs/classic_nb.csv') svm = pd.read_csv('./probs/svm_train.csv', header = None) rf = pd.read_csv('./probs/rf_train.csv', header = None) cnn_svm = pd.read_csv('./probs/svmcnn_train.csv', header = None) cnn_rf = pd.read_csv('./probs/rfcnn_train.csv', header = None) #cnn_gnb = pd.read_csv('./probs/gnbcnn_train.csv', header = None) svm = np.array(svm) rf = np.array(rf) cnn_svm = np.array(cnn_svm) cnn_rf =
np.array(cnn_rf)
numpy.array
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,0,-1,1,0,0,0,1,0])
numpy.array
import os import pickle import torch import numpy as np from PIL import Image from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler from pycocotools.coco import COCO class ZoomDataset(Dataset): """ZoomDataset [summary] [extended_summary] :param path_to_pkl: Path to PKL file with Images :type path_to_pkl: str :param path_to_labels: path to file with labels :type path_to_labels: str """ def __init__(self, path_to_image_ids, path_to_images, path_to_labels): self.coco = coco=COCO(path_to_labels) with open(path_to_image_ids, "rb") as fp: image_ids = pickle.load(fp) self.image_ids = image_ids self.image_dir = path_to_images self.num_images = len(image_ids) def __len__(self): """__len__ [summary] [extended_summary] """ ## TODO: Returns the length of the dataset. return self.num_images def __getitem__(self, index): """__getitem__ [summary] [extended_summary] :param index: [description] :type index: [type] """ img_id = self.image_ids[index] img_dict = self.coco.loadImgs([img_id])[0] img_path = os.path.join(self.image_dir, img_dict["file_name"]) img = Image.open(img_path).resize((224,224), Image.BILINEAR) img = img.convert("RGB") img = np.array(img).transpose(2, 0, 1) catIds = self.coco.getCatIds(catNms=['person']) annIds = self.coco.getAnnIds(imgIds=img_dict['id'], catIds=catIds, iscrowd=None) anns = self.coco.loadAnns(annIds) maskArr = np.zeros((img_dict['height'], img_dict['width'])) for i in range(len(anns)): maskArr = np.maximum(self.coco.annToMask(anns[i]), maskArr) mask = Image.fromarray(maskArr).resize((224,224), Image.BILINEAR) mask = np.expand_dims(
np.array(mask)
numpy.array
import numpy as np import pandas as pd from sklearn import preprocessing import math def load_datasets_feature(filename): features_df = pd.read_csv(filename, delimiter='\\s*,\\s*', header=0) return features_df def load_join_data3(features_df, result_file, histograms_path, num_rows, num_columns): cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] # Result DF contains dataset names, result cardinality, # of MBR tests, and duration in seconds result_df = pd.read_csv(result_file, delimiter='\\s*,\\s*', header=None, names=cols) # result_df = result_df.sample(frac=1) # Add dataset information of the first (left) dataset result_df = pd.merge(result_df, features_df, left_on='dataset1', right_on='dataset_name') # Add dataset information for the second (right) dataset result_df = pd.merge(result_df, features_df, left_on='dataset2', right_on='dataset_name') # Load histograms ds1_histograms, ds2_histograms, ds1_original_histograms, ds2_original_histograms, ds_all_histogram, ds_bops_histogram = load_histograms( result_df, histograms_path, num_rows, num_columns) #print(ds1_histograms.shape) #print(result_df.shape) #exit(0) # Compute BOPS # First, do an element-wise multiplication of the two histograms bops = np.multiply(ds1_original_histograms, ds2_original_histograms) # Reshape into a two dimensional array. First dimension represents the dataset number, e.g., first entry # represents the first dataset of each. Second dimension represents the values in the multiplied histograms bops = bops.reshape((bops.shape[0], num_rows * num_columns)) # Sum the values in each row to compute the final BOPS value bops_values = np.sum(bops, axis=1) # The final reshape puts each BOPS value in an array with a single value. Thus it produces a 2D array. bops_values = bops_values.reshape((bops_values.shape[0], 1)) result_df['bops'] = bops_values cardinality_x = result_df['cardinality_x'] cardinality_y = result_df['cardinality_y'] result_size = result_df['result_size'] mbr_tests = result_df['mbr_tests'] # Compute the join selectivity as result_cardinality/(cardinality x * cardinality y) result_df['join_selectivity'] = result_size / (cardinality_x * cardinality_y) # Compute the MBR selectivity in the same way result_df['mbr_tests_selectivity'] = mbr_tests / (cardinality_x * cardinality_y) # Apply MinMaxScaler to normalize numeric columns used in either training or testing to the range [0, 1] # The following transformation tries to adjust relevant columns to be scaled together column_groups = [ ['duration'], ['AVG area_x', 'AVG area_y'], ['AVG x_x', 'AVG y_x', 'AVG x_y', 'AVG y_y'], ['E0_x', 'E2_x', 'E0_y', 'E2_y'], ['join_selectivity'], ['mbr_tests_selectivity'], ['cardinality_x', 'cardinality_y', 'result_size'], ['bops', 'mbr_tests'] ] for column_group in column_groups: input_data = result_df[column_group].to_numpy() original_shape = input_data.shape reshaped = input_data.reshape(input_data.size, 1) reshaped = preprocessing.minmax_scale(reshaped) result_df[column_group] = reshaped.reshape(original_shape) #result_df[column_group] = scaler.fit_transform(result_df[column_group]) return result_df, ds1_histograms, ds2_histograms, ds_all_histogram, ds_bops_histogram def load_join_data(features_df, result_file, histograms_path, num_rows, num_columns): cols = ['dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] # Result DF contains dataset names, result cardinality, # of MBR tests, and duration in seconds result_df = pd.read_csv(result_file, delimiter=',', header=None, names=cols) # result_df = result_df.sample(frac=1) # Add dataset information of the first (left) dataset result_df = pd.merge(result_df, features_df, left_on='dataset1', right_on='dataset_name') # Add dataset information for the second (right) dataset result_df = pd.merge(result_df, features_df, left_on='dataset2', right_on='dataset_name') # Load histograms ds1_histograms, ds2_histograms, ds1_original_histograms, ds2_original_histograms, ds_all_histogram, ds_bops_histogram = load_histograms( result_df, histograms_path, num_rows, num_columns) # Compute BOPS # First, do an element-wise multiplication of the two histograms bops = np.multiply(ds1_original_histograms, ds2_original_histograms) # Reshape into a two dimensional array. First dimension represents the dataset number, e.g., first entry # represents the first dataset of each. Second dimension represents the values in the multiplied histograms bops = bops.reshape((bops.shape[0], num_rows * num_columns)) # Sum the values in each row to compute the final BOPS value bops_values = np.sum(bops, axis=1) # The final reshape puts each BOPS value in an array with a single value. Thus it produces a 2D array. bops_values = bops_values.reshape((bops_values.shape[0], 1)) # result_df['bops'] = bops_values cardinality_x = result_df[' cardinality_x'] cardinality_y = result_df[' cardinality_y'] result_size = result_df['result_size'] mbr_tests = result_df['mbr_tests'] # Compute the join selectivity as result_cardinality/(cardinality x * cardinality y) * 10E+9 join_selectivity = result_size / (cardinality_x * cardinality_y) join_selectivity = join_selectivity * 1E5 # Compute the MBR selectivity in the same way mbr_tests_selectivity = mbr_tests / (cardinality_x * cardinality_y) mbr_tests_selectivity = mbr_tests_selectivity * 1E5 duration = result_df['duration'] dataset1 = result_df['dataset1'] dataset2 = result_df['dataset2'] # result_df = result_df.drop(columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', ' cardinality_x', ' cardinality_y']) # result_df = result_df.drop( # columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y']) result_df = result_df.drop( columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', ' cardinality_x', ' cardinality_y', 'mbr_tests', 'duration']) # Normalize all the values using MinMax scaler # These values are [AVG area_x, AVG x_x, AVG y_x, E0_x, E2_x, AVG area_y, AVG x_y, AVG y_y, E0_y, E2_y] x = result_df.values min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) result_df = pd.DataFrame(x_scaled, columns=result_df.columns) result_df['cardinality_x'] = cardinality_x result_df['cardinality_y'] = cardinality_y result_df['bops'] = bops_values result_df['dataset1'] = dataset1 result_df['dataset2'] = dataset2 result_df.insert(len(result_df.columns), 'result_size', result_size, True) result_df.insert(len(result_df.columns), 'join_selectivity', join_selectivity, True) result_df.insert(len(result_df.columns), 'mbr_tests', mbr_tests, True) result_df.insert(len(result_df.columns), 'mbr_tests_selectivity', mbr_tests_selectivity, True) result_df.insert(len(result_df.columns), 'duration', duration, True) return result_df, ds1_histograms, ds2_histograms, ds_all_histogram, ds_bops_histogram def load_join_data2(features_df, result_file, histograms_path, num_rows, num_columns): cols = ['count', 'dataset1', 'dataset2', 'result_size', 'mbr_tests', 'duration'] result_df = pd.read_csv(result_file, delimiter=',', header=None, names=cols) # result_df = result_df.sample(frac=1) result_df = pd.merge(result_df, features_df, left_on='dataset1', right_on='dataset_name') result_df = pd.merge(result_df, features_df, left_on='dataset2', right_on='dataset_name') # Load histograms ds1_histograms, ds2_histograms, ds1_original_histograms, ds2_original_histograms, ds_all_histogram, ds_bops_histogram = load_histograms2( result_df, histograms_path, num_rows, num_columns) # Compute BOPS bops = np.multiply(ds1_original_histograms, ds2_original_histograms) # print (bops) bops = bops.reshape((bops.shape[0], num_rows * num_columns)) bops_values = np.sum(bops, axis=1) bops_values = bops_values.reshape((bops_values.shape[0], 1)) # result_df['bops'] = bops_values cardinality_x = result_df[' cardinality_x'] cardinality_y = result_df[' cardinality_y'] result_size = result_df['result_size'] mbr_tests = result_df['mbr_tests'] join_selectivity = result_size / (cardinality_x * cardinality_y) join_selectivity = join_selectivity * math.pow(10, 9) dataset1 = result_df['dataset1'] dataset2 = result_df['dataset2'] # result_df = result_df.drop(columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', ' cardinality_x', ' cardinality_y']) # result_df = result_df.drop( # columns=['result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y']) result_df = result_df.drop( columns=['count', 'result_size', 'dataset1', 'dataset2', 'dataset_name_x', 'dataset_name_y', ' cardinality_x', ' cardinality_y', 'mbr_tests', 'duration']) x = result_df.values min_max_scaler = preprocessing.MinMaxScaler() x_scaled = min_max_scaler.fit_transform(x) result_df = pd.DataFrame(x_scaled) result_df['cardinality_x'] = cardinality_x result_df['cardinality_y'] = cardinality_y result_df['bops'] = bops_values result_df['dataset1'] = dataset1 result_df['dataset2'] = dataset2 result_df.insert(len(result_df.columns), 'result_size', result_size, True) result_df.insert(len(result_df.columns), 'join_selectivity', join_selectivity, True) result_df.insert(len(result_df.columns), 'mbr_tests', join_selectivity, True) # print (len(result_df)) # result_df.to_csv('result_df.csv') return result_df, ds1_histograms, ds2_histograms, ds_all_histogram, ds_bops_histogram def load_histogram(histograms_path, num_rows, num_columns, dataset): hist = np.genfromtxt('{}/{}x{}/{}'.format(histograms_path, num_rows, num_columns, dataset), delimiter=',') normalized_hist = hist / hist.max() normalized_hist = normalized_hist.reshape((hist.shape[0], hist.shape[1], 1)) hist = hist.reshape((hist.shape[0], hist.shape[1], 1)) return normalized_hist, hist def load_histogram2(histograms_path, num_rows, num_columns, count, dataset): hist = np.genfromtxt('{}/{}x{}/{}/{}'.format(histograms_path, num_rows, num_columns, count, dataset), delimiter=',') normalized_hist = hist / hist.max() normalized_hist = normalized_hist.reshape((hist.shape[0], hist.shape[1], 1)) hist = hist.reshape((hist.shape[0], hist.shape[1], 1)) return normalized_hist, hist def load_histograms(result_df, histograms_path, num_rows, num_columns): ds1_histograms = [] ds2_histograms = [] ds1_original_histograms = [] ds2_original_histograms = [] ds_all_histogram = [] ds_bops_histogram = [] for dataset in result_df['dataset1']: normalized_hist, hist = load_histogram(histograms_path, num_rows, num_columns, dataset) ds1_histograms.append(normalized_hist) ds1_original_histograms.append(hist) for dataset in result_df['dataset2']: normalized_hist, hist = load_histogram(histograms_path, num_rows, num_columns, dataset) ds2_histograms.append(normalized_hist) ds2_original_histograms.append(hist) for i in range(len(ds1_histograms)): hist1 = ds1_original_histograms[i] hist2 = ds2_original_histograms[i] combined_hist = np.dstack((hist1, hist2)) combined_hist = combined_hist / combined_hist.max() ds_all_histogram.append(combined_hist) for i in range(len(ds1_histograms)): hist1 = ds1_original_histograms[i] hist2 = ds2_original_histograms[i] bops_hist = np.multiply(hist1, hist2) if bops_hist.max() > 0: bops_hist = bops_hist / bops_hist.max() ds_bops_histogram.append(bops_hist) return np.array(ds1_histograms), np.array(ds2_histograms), np.array(ds1_original_histograms), np.array( ds2_original_histograms), np.array(ds_all_histogram), np.array(ds_bops_histogram) def load_histograms2(result_df, histograms_path, num_rows, num_columns): ds1_histograms = [] ds2_histograms = [] ds1_original_histograms = [] ds2_original_histograms = [] ds_all_histogram = [] ds_bops_histogram = [] for index, row in result_df.iterrows(): count = row['count'] dataset1 = row['dataset1'] dataset2 = row['dataset2'] normalized_hist, hist = load_histogram2(histograms_path, num_rows, num_columns, count, dataset1) ds1_histograms.append(normalized_hist) ds1_original_histograms.append(hist) normalized_hist, hist = load_histogram2(histograms_path, num_rows, num_columns, count, dataset2) ds2_histograms.append(normalized_hist) ds2_original_histograms.append(hist) # count = 0 # for dataset in result_df['dataset1']: # count += 1 # normalized_hist, hist = load_histogram2(histograms_path, num_rows, num_columns, count, dataset) # ds1_histograms.append(normalized_hist) # ds1_original_histograms.append(hist) # # count = 0 # for dataset in result_df['dataset2']: # count += 1 # normalized_hist, hist = load_histogram2(histograms_path, num_rows, num_columns, count, dataset) # ds2_histograms.append(normalized_hist) # ds2_original_histograms.append(hist) for i in range(len(ds1_histograms)): hist1 = ds1_original_histograms[i] hist2 = ds2_original_histograms[i] combined_hist = np.dstack((hist1, hist2)) combined_hist = combined_hist / combined_hist.max() ds_all_histogram.append(combined_hist) for i in range(len(ds1_histograms)): hist1 = ds1_original_histograms[i] hist2 = ds2_original_histograms[i] bops_hist = np.multiply(hist1, hist2) if bops_hist.max() > 0: bops_hist = bops_hist / bops_hist.max() ds_bops_histogram.append(bops_hist) return np.array(ds1_histograms), np.array(ds2_histograms), np.array(ds1_original_histograms), np.array( ds2_original_histograms),
np.array(ds_all_histogram)
numpy.array
""" Tests for tools Author: <NAME> License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd from scipy.linalg import solve_discrete_lyapunov from statsmodels.tsa.statespace import tools from statsmodels.tsa.api import acovf # from .results import results_sarimax from numpy.testing import ( assert_allclose, assert_equal, assert_array_equal, assert_almost_equal, assert_raises ) class TestCompanionMatrix(object): cases = [ (2, np.array([[0,1],[0,0]])), ([1,-1,-2], np.array([[1,1], [2,0]])), ([1,-1,-2,-3], np.array([[1,1,0], [2,0,1], [3,0,0]])), ([1,-np.array([[1,2],[3,4]]),-np.array([[5,6],[7,8]])], np.array([[1,2,5,6], [3,4,7,8], [1,0,0,0], [0,1,0,0]]).T) ] def test_cases(self): for polynomial, result in self.cases: assert_equal(tools.companion_matrix(polynomial), result) class TestDiff(object): x = np.arange(10) cases = [ # diff = 1 ([1,2,3], 1, None, 1, [1, 1]), # diff = 2 (x, 2, None, 1, [0]*8), # diff = 1, seasonal_diff=1, k_seasons=4 (x, 1, 1, 4, [0]*5), (x**2, 1, 1, 4, [8]*5), (x**3, 1, 1, 4, [60, 84, 108, 132, 156]), # diff = 1, seasonal_diff=2, k_seasons=2 (x, 1, 2, 2, [0]*5), (x**2, 1, 2, 2, [0]*5), (x**3, 1, 2, 2, [24]*5), (x**4, 1, 2, 2, [240, 336, 432, 528, 624]), ] def test_cases(self): # Basic cases for series, diff, seasonal_diff, k_seasons, result in self.cases: # Test numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Series series = pd.Series(series) # Rewrite to test as n-dimensional array series = np.c_[series, series] result = np.c_[result, result] # Test Numpy array x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) # Test as Pandas Dataframe series = pd.DataFrame(series) x = tools.diff(series, diff, seasonal_diff, k_seasons) assert_almost_equal(x, result) class TestSolveDiscreteLyapunov(object): def solve_dicrete_lyapunov_direct(self, a, q, complex_step=False): # This is the discrete Lyapunov solver as "real function of real # variables": the difference between this and the usual, complex, # version is that in the Kronecker product the second argument is # *not* conjugated here. if not complex_step: lhs = np.kron(a, a.conj()) lhs = np.eye(lhs.shape[0]) - lhs x = np.linalg.solve(lhs, q.flatten()) else: lhs = np.kron(a, a) lhs = np.eye(lhs.shape[0]) - lhs x = np.linalg.solve(lhs, q.flatten()) return np.reshape(x, q.shape) def test_univariate(self): # Real case a = np.array([[0.5]]) q = np.array([[10.]]) actual = tools.solve_discrete_lyapunov(a, q) desired = solve_discrete_lyapunov(a, q) assert_allclose(actual, desired) # Complex case (where the Lyapunov equation is taken as a complex # function) a = np.array([[0.5+1j]]) q = np.array([[10.]]) actual = tools.solve_discrete_lyapunov(a, q) desired = solve_discrete_lyapunov(a, q) assert_allclose(actual, desired) # Complex case (where the Lyapunov equation is taken as a real # function) a = np.array([[0.5+1j]]) q = np.array([[10.]]) actual = tools.solve_discrete_lyapunov(a, q, complex_step=True) desired = self.solve_dicrete_lyapunov_direct(a, q, complex_step=True) assert_allclose(actual, desired) def test_multivariate(self): # Real case a = tools.companion_matrix([1, -0.4, 0.5]) q = np.diag([10., 5.]) actual = tools.solve_discrete_lyapunov(a, q) desired = solve_discrete_lyapunov(a, q) assert_allclose(actual, desired) # Complex case (where the Lyapunov equation is taken as a complex # function) a = tools.companion_matrix([1, -0.4+0.1j, 0.5]) q = np.diag([10., 5.]) actual = tools.solve_discrete_lyapunov(a, q, complex_step=False) desired = self.solve_dicrete_lyapunov_direct(a, q, complex_step=False) assert_allclose(actual, desired) # Complex case (where the Lyapunov equation is taken as a real # function) a = tools.companion_matrix([1, -0.4+0.1j, 0.5]) q = np.diag([10., 5.]) actual = tools.solve_discrete_lyapunov(a, q, complex_step=True) desired = self.solve_dicrete_lyapunov_direct(a, q, complex_step=True) assert_allclose(actual, desired) class TestConcat(object): x = np.arange(10) valid = [ (((1,2,3),(4,)), (1,2,3,4)), (((1,2,3),[4]), (1,2,3,4)), (([1,2,3],np.r_[4]), (1,2,3,4)), ((np.r_[1,2,3],pd.Series([4])), 0, True, (1,2,3,4)), ((pd.Series([1,2,3]),pd.Series([4])), 0, True, (1,2,3,4)), ((np.c_[x[:2],x[:2]], np.c_[x[2:3],x[2:3]]), np.c_[x[:3],x[:3]]), ((np.c_[x[:2],x[:2]].T, np.c_[x[2:3],x[2:3]].T), 1, np.c_[x[:3],x[:3]].T), ((pd.DataFrame(np.c_[x[:2],x[:2]]), np.c_[x[2:3],x[2:3]]), 0, True, np.c_[x[:3],x[:3]]), ] invalid = [ (((1,2,3), pd.Series([4])), ValueError), (((1,2,3), np.array([[1,2]])), ValueError) ] def test_valid(self): for args in self.valid: assert_array_equal(tools.concat(*args[:-1]), args[-1]) def test_invalid(self): for args in self.invalid: assert_raises(args[-1], tools.concat, *args[:-1]) class TestIsInvertible(object): cases = [ ([1, -0.5], True), ([1, 1-1e-9], True), ([1, 1], False), ([1, 0.9,0.1], True), (np.array([1,0.9,0.1]), True), (pd.Series([1,0.9,0.1]), True) ] def test_cases(self): for polynomial, invertible in self.cases: assert_equal(tools.is_invertible(polynomial), invertible) class TestConstrainStationaryUnivariate(object): cases = [ (np.array([2.]), -2./((1+2.**2)**0.5)) ] def test_cases(self): for unconstrained, constrained in self.cases: result = tools.constrain_stationary_univariate(unconstrained) assert_equal(result, constrained) class TestUnconstrainStationaryUnivariate(object): cases = [ (np.array([-2./((1+2.**2)**0.5)]), np.array([2.])) ] def test_cases(self): for constrained, unconstrained in self.cases: result = tools.unconstrain_stationary_univariate(constrained) assert_allclose(result, unconstrained) class TestStationaryUnivariate(object): # Test that the constraint and unconstraint functions are inverses constrained_cases = [ np.array([0]), np.array([0.1]), np.array([-0.5]), np.array([0.999])] unconstrained_cases = [ np.array([10.]), np.array([-40.42]), np.array([0.123])] def test_cases(self): for constrained in self.constrained_cases: unconstrained = tools.unconstrain_stationary_univariate(constrained) reconstrained = tools.constrain_stationary_univariate(unconstrained) assert_allclose(reconstrained, constrained) for unconstrained in self.unconstrained_cases: constrained = tools.constrain_stationary_univariate(unconstrained) reunconstrained = tools.unconstrain_stationary_univariate(constrained) assert_allclose(reunconstrained, unconstrained) class TestValidateMatrixShape(object): # name, shape, nrows, ncols, nobs valid = [ ('TEST', (5,2), 5, 2, None), ('TEST', (5,2), 5, 2, 10), ('TEST', (5,2,10), 5, 2, 10), ] invalid = [ ('TEST', (5,), 5, None, None), ('TEST', (5,1,1,1), 5, 1, None), ('TEST', (5,2), 10, 2, None), ('TEST', (5,2), 5, 1, None), ('TEST', (5,2,10), 5, 2, None), ('TEST', (5,2,10), 5, 2, 5), ] def test_valid_cases(self): for args in self.valid: # Just testing that no exception is raised tools.validate_matrix_shape(*args) def test_invalid_cases(self): for args in self.invalid: assert_raises( ValueError, tools.validate_matrix_shape, *args ) class TestValidateVectorShape(object): # name, shape, nrows, ncols, nobs valid = [ ('TEST', (5,), 5, None), ('TEST', (5,), 5, 10), ('TEST', (5,10), 5, 10), ] invalid = [ ('TEST', (5,2,10), 5, 10), ('TEST', (5,), 10, None), ('TEST', (5,10), 5, None), ('TEST', (5,10), 5, 5), ] def test_valid_cases(self): for args in self.valid: # Just testing that no exception is raised tools.validate_vector_shape(*args) def test_invalid_cases(self): for args in self.invalid: assert_raises( ValueError, tools.validate_vector_shape, *args ) def test_multivariate_acovf(): _acovf = tools._compute_multivariate_acovf_from_coefficients # Test for a VAR(1) process. From Lutkepohl (2007), pages 27-28. # See (2.1.14) for Phi_1, (2.1.33) for Sigma_u, and (2.1.34) for Gamma_0 Sigma_u = np.array([[2.25, 0, 0], [0, 1.0, 0.5], [0, 0.5, 0.74]]) Phi_1 = np.array([[0.5, 0, 0], [0.1, 0.1, 0.3], [0, 0.2, 0.3]]) Gamma_0 = np.array([[3.0, 0.161, 0.019], [0.161, 1.172, 0.674], [0.019, 0.674, 0.954]]) assert_allclose(_acovf([Phi_1], Sigma_u)[0], Gamma_0, atol=1e-3) # Test for a VAR(2) process. From Lutkepohl (2007), pages 28-29 # See (2.1.40) for Phi_1, Phi_2, (2.1.14) for Sigma_u, and (2.1.42) for # Gamma_0, Gamma_1 Sigma_u = np.diag([0.09, 0.04]) Phi_1 = np.array([[0.5, 0.1], [0.4, 0.5]]) Phi_2 = np.array([[0, 0], [0.25, 0]]) Gamma_0 = np.array([[0.131, 0.066], [0.066, 0.181]]) Gamma_1 = np.array([[0.072, 0.051], [0.104, 0.143]]) Gamma_2 = np.array([[0.046, 0.040], [0.113, 0.108]]) Gamma_3 = np.array([[0.035, 0.031], [0.093, 0.083]]) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=0), [Gamma_0], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=1), [Gamma_0, Gamma_1], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u), [Gamma_0, Gamma_1], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=2), [Gamma_0, Gamma_1, Gamma_2], atol=1e-3) assert_allclose( _acovf([Phi_1, Phi_2], Sigma_u, maxlag=3), [Gamma_0, Gamma_1, Gamma_2, Gamma_3], atol=1e-3) # Test sample acovf in the univariate case against sm.tsa.acovf x = np.arange(20)*1.0 assert_allclose( np.squeeze(tools._compute_multivariate_sample_acovf(x, maxlag=4)), acovf(x)[:5]) def test_multivariate_pacf(): # Test sample acovf in the univariate case against sm.tsa.acovf np.random.seed(1234) x = np.arange(10000) y = np.random.normal(size=10000) # Note: could make this test more precise with higher nobs, but no need to assert_allclose( tools._compute_multivariate_sample_pacf(np.c_[x, y], maxlag=1)[0], np.diag([1, 0]), atol=1e-2) class TestConstrainStationaryMultivariate(object): cases = [ # This is the same test as the univariate case above, except notice # the sign difference; this is an array input / output (np.array([[2.]]), np.eye(1), np.array([[2./((1+2.**2)**0.5)]])), # Same as above, but now a list input / output ([np.array([[2.]])], np.eye(1), [np.array([[2./((1+2.**2)**0.5)]])]) ] eigval_cases = [ [np.array([[0]])], [np.array([[100]]), np.array([[50]])], [np.array([[30, 1], [-23, 15]]), np.array([[10, .3], [.5, -30]])], ] def test_cases(self): # Test against known results for unconstrained, error_variance, constrained in self.cases: result = tools.constrain_stationary_multivariate( unconstrained, error_variance) assert_allclose(result[0], constrained) # Test that the constrained results correspond to companion matrices # with eigenvalues less than 1 in modulus for unconstrained in self.eigval_cases: if type(unconstrained) == list: cov = np.eye(unconstrained[0].shape[0]) else: cov = np.eye(unconstrained.shape[0]) constrained, _ = tools.constrain_stationary_multivariate(unconstrained, cov) companion = tools.companion_matrix( [1] + [-constrained[i] for i in range(len(constrained))] ).T assert_equal(np.max(np.abs(np.linalg.eigvals(companion))) < 1, True) class TestUnconstrainStationaryMultivariate(object): cases = [ # This is the same test as the univariate case above, except notice # the sign difference; this is an array input / output (np.array([[2./((1+2.**2)**0.5)]]), np.eye(1), np.array([[2.]])), # Same as above, but now a list input / output ([np.array([[2./((1+2.**2)**0.5)]])], np.eye(1), [np.array([[2.]])]) ] def test_cases(self): for constrained, error_variance, unconstrained in self.cases: result = tools.unconstrain_stationary_multivariate( constrained, error_variance) assert_allclose(result[0], unconstrained) class TestStationaryMultivariate(object): # Test that the constraint and unconstraint functions are inverses constrained_cases = [ np.array([[0]]), np.array([[0.1]]), np.array([[-0.5]]), np.array([[0.999]]), [np.array([[0]])], np.array([[0.8, -0.2]]), [np.array([[0.8]]), np.array([[-0.2]])], [np.array([[0.3, 0.01], [-0.23, 0.15]]), np.array([[0.1, 0.03], [0.05, -0.3]])], np.array([[0.3, 0.01, 0.1, 0.03], [-0.23, 0.15, 0.05, -0.3]]) ] unconstrained_cases = [ np.array([[0]]), np.array([[-40.42]]), np.array([[0.123]]), [np.array([[0]])], np.array([[100, 50]]), [np.array([[100]]), np.array([[50]])], [np.array([[30, 1], [-23, 15]]), np.array([[10, .3], [.5, -30]])], np.array([[30, 1, 10, .3], [-23, 15, .5, -30]]) ] def test_cases(self): for constrained in self.constrained_cases: if type(constrained) == list: cov =
np.eye(constrained[0].shape[0])
numpy.eye
#Copyright 2013 <NAME> (<EMAIL>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Some parts of this script where written by other authors and in some cases # modified by <NAME>. The original authors are #quoted in each routine. # import os, glob from pylab import * import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.mlab as mlab import re from scipy import interpolate import time import os from scipy import ndimage from numpy import sin,cos,round,isscalar,array,ndarray,ones_like,pi from astropy.io.fits import open from astropy.io import fits as pf from astropy.table import Table ############################################################################ # # # Convert coodinates from equatorial to galactic coordinates. # # Author: <NAME> # Modified by <NAME> # Modified by <NAME>, introducing a correction on the DE Calculation. Not fully tested yet # ############################################################################ def hms2deg(RA,DE): ''' Convert RA= [hh,mm,ss] and DEC = [DD,mm,ss] to degres. Usage: hms2deg(RA,DEC). Adapted by: <NAME> ''' RA0 = array(RA).reshape(-1,3) DE0 = array(DE).reshape(-1,3) RA = 15.*RA0[:,0] + 15./60.*RA0[:,1] + 15./3600.*RA0[:,2] # DE = DE0[:,0] + 1./60.*DE0[:,1] + 1./3600.*DE0[:,2] if DE0[:,0] >=0.: DE=((DE0[:,2]/60+DE0[:,1])/60 + DE0[:,0]) elif DE0[:,0][0] <0.: DE=(-1*(DE0[:,2]/60+DE0[:,1])/60 + DE0[:,0]) return RA,DE def eq2galCoords(RA,DE,units='observers'): deg2rad = pi/180. rad2deg = 180./pi kpc2km = 3.085678e16 yr2s = 31557600. # Direction to the North Galactic Pole in Equatorial coordinates RA_GP = 15*(12.+49./60.+ 8.13e-4 *(2000.-1950.)) * deg2rad DE_GP = (27.4 - 5.44e-3 *(2000.-1950.)) * deg2rad # Galactic longitude of the North Celestial Pole l_NCP = (123. - 1.33e-3 *(2000.-1950.)) * deg2rad if units == 'observers': (RA,DE)=hms2deg(RA,DE) if units == 'deg': RA = array(RA).reshape(-1) DE = array(DE).reshape(-1) sdp =
sin(DE_GP)
numpy.sin
#!/usr/bin/python3 from mpi4py import MPI from pylamp_const import * import pylamp_stokes import pylamp_trac import pylamp_diff import numpy as np import sys import scipy.sparse.linalg from scipy.stats import gaussian_kde import cProfile, pstats, io from pylamp_tool import * ### PyLamp # # Python code to solve the conservation of energy, momentum and mass # incompressible viscous flow # # – implicit (scipy direct solver) # – marker-in-cell for material and temperature advection # – linear (Newtonian) viscosity # – temperature dependent viscosity and density (buoyancy) # # #### MAIN #### if __name__ == "__main__": MPICOMM = MPI.COMM_WORLD IPROC = MPICOMM.Get_rank() NPROC = MPICOMM.Get_size() pprint("=== Running on", NPROC, "processors ===") # Configurable options nx = [200+1,40+1] # use order z,x,y L = [1, 0.2] tracdens = 45 # how many tracers per element on average tracdens_min = 25 # minimum number of tracers per element tracs_fence_enabled = True # stop tracers at the boundary # if they are about to flow out do_stokes = True do_advect = True do_heatdiff = True do_subgrid_heatdiff = True tstep_adv_max = 50e9 * SECINYR tstep_adv_min = 50e-9 * SECINYR tstep_dif_max = 50e9 * SECINYR tstep_dif_min = 50e-9 * SECINYR tstep_modifier = 0.67 # coefficient for automatic tsteps output_numpy = True output_stride = 1 output_stride_ma = 1 # used if output_stride < 0: output fields every x million years output_outdir = "out" tdep_rho = True tdep_eta = True etamin = 1e17 etamax = 1e23 Tref = 1623 force_trac2grid_T = False # force tracer to grid interpolation even in the case when there is no advection max_it = 1e10 max_time = SECINMYR * 5000 bc_internal_type = 0 # 0 = disabled # 1 = keep material zero at constant temperature T=273K surface_stabilization = False # use if "sticky air" free surface present surfstab_theta = 0.5 surfstab_tstep = -1 #1*SECINKYR # if negative, a dynamic tstep is used do_profiling = False choose_model = 5 # Profiling if do_profiling: pr = cProfile.Profile() pr.enable() # Derived options # dx for regular grid dx = [L[i]/(nx[i]-1) for i in range(DIM)] # Form the grids grid = [np.linspace(0, L[i], nx[i]) for i in range(DIM)] mesh = np.meshgrid(*grid, indexing='ij') gridmp = [(grid[i][1:nx[i]] + grid[i][0:(nx[i]-1)]) / 2 for i in range(DIM)] for i in range(DIM): gridmp[i] = np.append(gridmp[i], gridmp[i][-1] + (gridmp[i][-1]-gridmp[i][-2])) meshmp = np.meshgrid(*gridmp, indexing='ij') # Variable fields f_vel = [np.zeros(nx) for i in range(DIM)] # vx in z-midpoint field # vz in x-midpoint field f_etas = np.zeros(nx) # viscosity in main grid points f_T = np.zeros(nx) # temperature in main grid points f_rho = np.zeros(nx) # rho in main grid points f_Cp = np.zeros(nx) # Cp in main grid points f_P = np.zeros(nx) # pressure in xy-midpoints f_etan = np.zeros(nx) # viscosity in xy-midpoints f_k = [np.zeros(nx) for i in range(DIM)] # kz in z-midpoint field # kx in x-midpoint field f_H = np.zeros(nx) # internal heating f_mat = np.zeros(nx) # material numbers f_sgc = np.zeros(nx) # subgrid diffusion correction term # Tracers ntrac = np.prod(nx)*tracdens if IPROC == 0: tr_x = np.random.rand(ntrac, DIM) # tracer coordinates else: tr_x = np.zeros((ntrac, DIM)) MPICOMM.Bcast(tr_x, root=0) tr_x = np.multiply(tr_x, L) tr_f = np.zeros((ntrac, NFTRAC)) # tracer functions (values) tr_f[:, TR__ID] = np.arange(0, ntrac) bcstokes = [[]] * 4 bcheat = [[]] * 4 bcheatvals = [[]] * 4 ## Some material values and initial values if choose_model == 1 or choose_model == 11: if choose_model == 1: zair = tr_x[:,IZ] < 0 zcrust = tr_x[:,IZ] < 50e3 else: zair = tr_x[:,IZ] < 50e3 extraidx = (tr_x[:, IZ] > 100e3) & (tr_x[:, IZ] < 150e3) & (tr_x[:, IX] < 600e3) & (tr_x[:, IX] > 200e3) zcrust = (tr_x[:,IZ] < 100e3) | extraidx tstep_modifier = 0.33 # Stagnant lid? tr_f[:, TR_RH0] = 3300 tr_f[:, TR_ALP] = 3.5e-5 tr_f[:, TR_MAT] = 2 tr_f[:, TR_ET0] = 1e20 tr_f[:, TR_HCD] = 4.0 tr_f[:, TR_HCP] = 1250 tr_f[:, TR_TMP] = 1623 tr_f[:, TR_ACE] = 120e3 tr_f[:, TR_IHT] = 0.02e-6 / 3300 tr_f[zcrust, TR_IHT] = 2.5e-6 / 2900 #1e-6 tr_f[zcrust, TR_RH0] = 2900 tr_f[zcrust, TR_MAT] = 1 tr_f[zcrust, TR_ET0] = 1e22 tr_f[zcrust, TR_HCD] = 2.5 tr_f[zcrust, TR_HCP] = 1000 tr_f[zcrust, TR_TMP] = 273 tr_f[zair, TR_RH0] = 1000 tr_f[zair, TR_ALP] = 0 tr_f[zair, TR_ET0] = 1e18 tr_f[zair, TR_ACE] = 0 tr_f[zair, TR_TMP] = 273 tr_f[zair, TR_MAT] = 0 tr_f[zair, TR_HCD] = 40 tr_f[zair, TR_IHT] = 0.0 tr_f[zair, TR_HCP] = 1000 elif choose_model == 2: # Falling block do_heatdiff = False tdep_rho = False tdep_eta = False tr_f[:, TR_RH0] = 3300 tr_f[:, TR_MAT] = 1 tr_f[:, TR_ET0] = 1e19 idxb = (tr_x[:, IZ] > 200e3) & (tr_x[:, IZ] < 300e3) & (tr_x[:, IX] > 280e3) & (tr_x[:, IX] < 380e3) tr_f[idxb, TR_RH0] = 3350 tr_f[idxb, TR_MAT] = 2 tr_f[idxb, TR_ET0] = 1e22 elif choose_model == 3: # Rising block with free surface do_heatdiff = False tdep_rho = False tdep_eta = False tr_f[:, TR_RH0] = 3300 tr_f[:, TR_MAT] = 1 tr_f[:, TR_ET0] = 1e20 idxb = (tr_x[:, IZ] > 400e3) & (tr_x[:, IZ] < 500e3) & (tr_x[:, IX] > 280e3) & (tr_x[:, IX] < 380e3) tr_f[idxb, TR_RH0] = 3280 tr_f[idxb, TR_MAT] = 2 tr_f[idxb, TR_ET0] = 1e22 idxa = (tr_x[:, IZ] < 50e3) tr_f[idxa, TR_RH0] = 1000 tr_f[idxa, TR_MAT] = 0 tr_f[idxa, TR_ET0] = 1e18 elif choose_model == 4: tdep_eta = True tdep_rho = True tr_f[:, TR_RH0] = 3300 tr_f[:, TR_ALP] = 3.5e-5 tr_f[:, TR_HCD] = 4 tr_f[:, TR_HCP] = 1250 tr_f[:, TR_TMP] = 273 tr_f[:, TR_MAT] = 1 idx = (tr_x[:, IZ] < 300e3) & (tr_x[:, IZ] > 200e3) & (tr_x[:, IX] > 200e3) & (tr_x[:, IX] < 600e3) tr_f[idx, TR_TMP] = 1623 tr_f[idx, TR_HCD] = 15 tr_f[idx, TR_RH0] = 2900 tr_f[idx, TR_HCP] = 1000 tr_f[idx, TR_MAT] = 0 elif choose_model == 5: # prob dims: # w: 0.1 m # h: 1.0 m # ball r: 0.015 # midp: x: 0.05 # y: 0.8 md_bx = 0.1 md_by = 0.2 md_br = 0.01 tdep_eta = False tdep_rho = False do_heatdiff = False tr_f[:, TR_RH0] = 1420 tr_f[:, TR_MAT] = 1 tr_f[:, TR_ET0] = 1e2 idx = (tr_x[:, IX] - md_bx)**2 + (tr_x[:, IZ] - md_by)**2 < md_br**2 tr_f[idx, TR_RH0] = 1470 tr_f[idx, TR_MAT] = 2 tr_f[idx, TR_ET0] = 1e12 bcstokes[DIM*0 + IZ] = pylamp_stokes.BC_TYPE_FREESLIP bcstokes[DIM*1 + IZ] = pylamp_stokes.BC_TYPE_FREESLIP bcstokes[DIM*0 + IX] = pylamp_stokes.BC_TYPE_FREESLIP bcstokes[DIM*1 + IX] = pylamp_stokes.BC_TYPE_FREESLIP ## Boundary conditions bcheat[DIM*0 + IZ] = pylamp_diff.BC_TYPE_FIXTEMP bcheat[DIM*1 + IZ] = pylamp_diff.BC_TYPE_FIXTEMP bcheat[DIM*0 + IX] = pylamp_diff.BC_TYPE_FIXFLOW bcheat[DIM*1 + IX] = pylamp_diff.BC_TYPE_FIXFLOW bcheatvals[DIM*0 + IZ] = 273 bcheatvals[DIM*1 + IZ] = 1623 bcheatvals[DIM*0 + IX] = 0 bcheatvals[DIM*1 + IX] = 0 ## Passive markers inixdiv = np.linspace(0, L[IX], 10) inizdiv = np.linspace(0, L[IZ], 10) for i in range(0,9,2): tr_f[(tr_x[:,IZ] >= inizdiv[i]) & (tr_x[:,IZ] < inizdiv[i+1]), TR_MRK] += 1 for i in range(1,9,2): tr_f[(tr_x[:,IZ] >= inizdiv[i]) & (tr_x[:,IZ] < inizdiv[i+1]), TR_MRK] += 2 for i in range(0,9,2): tr_f[(tr_x[:,IX] >= inixdiv[i]) & (tr_x[:,IX] < inixdiv[i+1]), TR_MRK] *= -1 if do_advect ^ do_stokes: raise Exception("Not implemented yet. Both do_advect and do_stokes need to be either disabled or enabled.") it = 0 totaltime = 0 time_last_output = 0 while ((it < max_it) and (totaltime < max_time)): it += 1 pprint(" --- Time step:", it, "---") #if bc_internal_type > 0: # if bc_internal_type == 1: # # force material zero (water, air) to constant temperature # idxmat = tr_f[:, TR_MAT] == 0 # tr_f[idxmat, TR_TMP] = 273 # elif bc_internal_type == 2: # idx = (tr_x[:, IZ] < 300e3) & (tr_x[:, IZ] > 250e3) & (tr_x[:, IX] > 300e3) & (tr_x[:,IX] < 350e3) # tr_f[idx, TR_TMP] = 273 # elif bc_internal_type == 3: # idxmat = tr_f[:, TR_MAT] <= 1 # tr_f[idxmat, TR_TMP] = 273 pprint("Calculate physical properties") if tdep_rho: # Effective density, rho=rho(T, inherent density) tr_f[:, TR_RHO] = ((tr_f[:, TR_ALP] * (tr_f[:, TR_TMP] - Tref) + 1) / tr_f[:, TR_RH0])**(-1) else: tr_f[:, TR_RHO] = tr_f[:, TR_RH0] if tdep_eta: # Effective viscosity, eta=eta(T, inherent viscosity) tr_f[:, TR_ETA] = tr_f[:, TR_ET0] * np.exp(tr_f[:, TR_ACE] / (GASR * tr_f[:, TR_TMP]) - tr_f[:, TR_ACE] / (GASR * Tref)) tr_f[tr_f[:, TR_ETA] < etamin, TR_ETA] = etamin tr_f[tr_f[:, TR_ETA] > etamax, TR_ETA] = etamax else: tr_f[:, TR_ETA] = tr_f[:, TR_ET0] pprint("Properties trac2grid") if do_advect and do_heatdiff: # Interpolation done once on each different grid, multiple value fields at once pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_RHO, TR_ETA, TR_HCP, TR_TMP, TR_IHT, TR_MAT]], mesh, grid, [f_rho, f_etas, f_Cp, f_T, f_H, f_mat], nx, \ avgscheme=[pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_GEOMW, pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_ARITHW]) pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_ETA]], meshmp, gridmp, [f_etan], nx, avgscheme=[pylamp_trac.INTERP_AVG_GEOMW]) pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_HCD]], [meshmp[IZ], mesh[IX]], [gridmp[IZ], grid[IX]], [f_k[IZ]], nx, avgscheme=[pylamp_trac.INTERP_AVG_ARITHW]) pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_HCD]], [mesh[IZ], meshmp[IX]], [grid[IZ], gridmp[IX]], [f_k[IX]], nx, avgscheme=[pylamp_trac.INTERP_AVG_ARITHW]) elif do_advect: pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_RHO, TR_ETA]], mesh, grid, [f_rho, f_etas], nx, \ avgscheme=[pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_GEOMW]) pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_ETA]], meshmp, gridmp, [f_etan], nx, avgscheme=[pylamp_trac.INTERP_AVG_GEOMETRIC]) elif do_heatdiff: if it == 1 or tdep_rho or force_trac2grid_T: pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_RHO, TR_HCP, TR_TMP, TR_MAT]], mesh, grid, [f_rho, f_Cp, f_T, f_mat], nx, avgscheme=[pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_ARITHW, pylamp_trac.INTERP_AVG_ARITHW]) pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_HCD]], [meshmp[IZ], mesh[IX]], [gridmp[IZ], grid[IX]], [f_k[IZ]], nx, avgscheme=[pylamp_trac.INTERP_AVG_ARITHW]) pylamp_trac.trac2grid(tr_x, tr_f[:,[TR_HCD]], [mesh[IZ], meshmp[IX]], [grid[IZ], gridmp[IX]], [f_k[IX]], nx, avgscheme=[pylamp_trac.INTERP_AVG_ARITHW]) else: ### after the first time step (if no temperature dependent rho) we only need to interpolate temperature, since there is no advection ### actually, let's skip that, too, and copy the grid directly f_T = np.copy(newtemp) if do_heatdiff and it > 1: f_T[:, 0] = newtemp[:, 0] f_T[:, -1] = newtemp[:, -1] f_T[0, :] = newtemp[0, :] f_T[-1, :] = newtemp[-1, :] if do_heatdiff: diffusivity = f_k[IZ] / (f_rho * f_Cp) tstep_temp = tstep_modifier * np.min(dx)**2 / np.max(2*diffusivity) tstep_temp = min(tstep_temp, tstep_dif_max) tstep_temp = max(tstep_temp, tstep_dif_min) newvel = 0 newpres = 0 tstep_limiter = "" if do_stokes: pprint("Build stokes") if surface_stabilization == False or surfstab_tstep < 0: (A, rhs) = pylamp_stokes.makeStokesMatrix(nx, grid, f_etas, f_etan, f_rho, bcstokes, surfstab=False) else: (A, rhs) = pylamp_stokes.makeStokesMatrix(nx, grid, f_etas, f_etan, f_rho, bcstokes, surfstab=True, tstep=surfstab_tstep, surfstab_theta=surfstab_theta) pprint("Solve stokes") # Solve it! #x = scipy.sparse.linalg.bicgstab(scipy.sparse.csc_matrix(A), rhs)[0] x = scipy.sparse.linalg.spsolve(scipy.sparse.csc_matrix(A), rhs) (newvel, newpres) = pylamp_stokes.x2vp(x, nx) tstep_stokes = tstep_modifier * np.min(dx) / np.max(newvel) tstep_stokes = min(tstep_stokes, tstep_adv_max) tstep_stokes = max(tstep_stokes, tstep_adv_min) if surfstab_tstep > 0: if tstep_stokes < surfstab_tstep: pprint ("WARNING: tstep_stokes " + str(tstep_stokes/SECINKYR) + " kyrs < surfstab_tstep " + str(surfstab_tstep/SECINKYR) + " kyrs") pprint (" using surfstab_tstep") tstep_stokes = surfstab_tstep if do_heatdiff and do_advect: if tstep_temp < tstep_stokes: tstep_limiter = "H" else: tstep_limiter = "S" tstep = min(tstep_temp, tstep_stokes) elif do_heatdiff: tstep = tstep_temp tstep_limiter = "H" else: tstep = tstep_stokes tstep_limiter = "S" if do_stokes and surface_stabilization and surfstab_tstep < 0: stabRedoDone = False while not stabRedoDone: pprint ("Redo stokes with surface stabilization") (A, rhs) = pylamp_stokes.makeStokesMatrix(nx, grid, f_etas, f_etan, f_rho, bcstokes, surfstab=True, tstep=tstep, surfstab_theta=surfstab_theta) print ("Resolve stokes") x = scipy.sparse.linalg.spsolve(scipy.sparse.csc_matrix(A), rhs) #(x, Aerr) = scipy.sparse.linalg.bicgstab(scipy.sparse.csc_matrix(A), rhs, x0=x) #print (" resolve error: ", Aerr) (newvel, newpres) = pylamp_stokes.x2vp(x, nx) check_tstep_stokes = tstep_modifier * np.min(dx) /
np.max(newvel)
numpy.max
import os import numpy as np import matplotlib.pyplot as plt from scipy import special from scipy.interpolate import interp2d from spectractor.tools import plot_image_simple from spectractor import parameters from spectractor.config import set_logger from spectractor.fit.fitter import FitWorkspace, run_minimisation from numba import njit @njit(fastmath=True, cache=True) def evaluate_moffat1d_unnormalized(y, amplitude, y_c, gamma, alpha): # pragma: nocover r"""Compute a 1D Moffat function, whose integral is not normalised to unity. .. math :: f(y) \propto \frac{A}{\left[ 1 +\left(\frac{y-y_c}{\gamma}\right)^2 \right]^\alpha} \quad\text{with}, \alpha > 1/2 Note that this function is defined only for :math:`alpha > 1/2`. The normalisation factor :math:`\frac{\Gamma(alpha)}{\gamma \sqrt{\pi} \Gamma(alpha -1/2)}` is not included as special functions are not supported by numba library. Parameters ---------- y: array_like 1D array of pixels :math:`y`, regularly spaced. amplitude: float Integral :math:`A` of the function. y_c: float Center :math:`y_c` of the function. gamma: float Width :math:`\gamma` of the function. alpha: float Exponent :math:`\alpha` of the Moffat function. Returns ------- output: array_like 1D array of the function evaluated on the y pixel array. Examples -------- >>> Ny = 50 >>> y = np.arange(Ny) >>> amplitude = 10 >>> alpha = 2 >>> gamma = 5 >>> a = evaluate_moffat1d_unnormalized(y, amplitude=amplitude, y_c=Ny/2, gamma=gamma, alpha=alpha) >>> norm = gamma * np.sqrt(np.pi) * special.gamma(alpha - 0.5) / special.gamma(alpha) >>> a = a / norm >>> print(f"{np.sum(a):.6f}") 9.967561 .. doctest:: :hide: >>> assert np.isclose(np.argmax(a), Ny/2, atol=0.5) >>> assert np.isclose(np.argmax(a), Ny/2, atol=0.5) .. plot:: import numpy as np import matplotlib.pyplot as plt from spectractor.extractor.psf import * Ny = 50 y = np.arange(Ny) amplitude = 10 a = evaluate_moffat1d(y, amplitude=amplitude, y_c=Ny/2, gamma=5, alpha=2) plt.plot(a) plt.grid() plt.xlabel("y") plt.ylabel("Moffat") plt.show() """ rr = (y - y_c) * (y - y_c) rr_gg = rr / (gamma * gamma) a = (1 + rr_gg) ** -alpha # dx = y[1] - y[0] # integral = np.sum(a) * dx # norm = amplitude # if integral != 0: # a /= integral # a *= amplitude a *= amplitude return a @njit(fastmath=True, cache=True) def evaluate_moffatgauss1d_unnormalized(y, amplitude, y_c, gamma, alpha, eta_gauss, sigma): # pragma: nocover r"""Compute a 1D Moffat-Gaussian function, whose integral is not normalised to unity. .. math :: f(y) \propto A \left\lbrace \frac{1}{\left[ 1 +\left(\frac{y-y_c}{\gamma}\right)^2 \right]^\alpha} - \eta e^{-(y-y_c)^2/(2\sigma^2)}\right\rbrace \quad\text{ and } \quad \eta < 0, \alpha > 1/2 Note that this function is defined only for :math:`alpha > 1/2`. The normalisation factor for the Moffat :math:`\frac{\Gamma(alpha)}{\gamma \sqrt{\pi} \Gamma(alpha -1/2)}` is not included as special functions are not supproted by the numba library. Parameters ---------- y: array_like 1D array of pixels :math:`y`, regularly spaced. amplitude: float Integral :math:`A` of the function. y_c: float Center :math:`y_c` of the function. gamma: float Width :math:`\gamma` of the Moffat function. alpha: float Exponent :math:`\alpha` of the Moffat function. eta_gauss: float Relative negative amplitude of the Gaussian function. sigma: float Width :math:`\sigma` of the Gaussian function. Returns ------- output: array_like 1D array of the function evaluated on the y pixel array. Examples -------- >>> Ny = 50 >>> y = np.arange(Ny) >>> amplitude = 10 >>> gamma = 5 >>> alpha = 2 >>> eta_gauss = -0.1 >>> sigma = 1 >>> a = evaluate_moffatgauss1d_unnormalized(y, amplitude=amplitude, y_c=Ny/2, gamma=gamma, alpha=alpha, ... eta_gauss=eta_gauss, sigma=sigma) >>> norm = gamma*np.sqrt(np.pi)*special.gamma(alpha-0.5)/special.gamma(alpha) + eta_gauss*np.sqrt(2*np.pi)*sigma >>> a = a / norm >>> print(f"{np.sum(a):.6f}") 9.966492 .. doctest:: :hide: >>> assert np.isclose(np.sum(a), amplitude, atol=0.5) >>> assert np.isclose(np.argmax(a), Ny/2, atol=0.5) .. plot:: import numpy as np import matplotlib.pyplot as plt from spectractor.extractor.psf import * Ny = 50 y = np.arange(Ny) amplitude = 10 a = evaluate_moffatgauss1d(y, amplitude=amplitude, y_c=Ny/2, gamma=5, alpha=2, eta_gauss=-0.1, sigma=1) plt.plot(a) plt.grid() plt.xlabel("y") plt.ylabel("Moffat") plt.show() """ rr = (y - y_c) * (y - y_c) rr_gg = rr / (gamma * gamma) a = (1 + rr_gg) ** -alpha + eta_gauss * np.exp(-(rr / (2. * sigma * sigma))) # dx = y[1] - y[0] # integral = np.sum(a) * dx # norm = amplitude # if integral != 0: # norm /= integral # a *= norm a *= amplitude return a @njit(fastmath=True, cache=True) def evaluate_moffat2d(x, y, amplitude, x_c, y_c, gamma, alpha): # pragma: nocover r"""Compute a 2D Moffat function, whose integral is normalised to unity. .. math :: f(x, y) = \frac{A (\alpha - 1)}{\pi \gamma^2} \frac{1}{ \left[ 1 +\frac{\left(x-x_c\right)^2+\left(y-y_c\right)^2}{\gamma^2} \right]^\alpha} \quad\text{with}\quad \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x, y) \mathrm{d}x \mathrm{d}y = A Note that this function is defined only for :math:`alpha > 1`. Note that the normalisation of a 2D Moffat function is analytical so it is not expected that the sum of the output array is equal to :math:`A`, but lower. Parameters ---------- x: array_like 2D array of pixels :math:`x`, regularly spaced. y: array_like 2D array of pixels :math:`y`, regularly spaced. amplitude: float Integral :math:`A` of the function. x_c: float X axis center :math:`x_c` of the function. y_c: float Y axis center :math:`y_c` of the function. gamma: float Width :math:`\gamma` of the function. alpha: float Exponent :math:`\alpha` of the Moffat function. Returns ------- output: array_like 2D array of the function evaluated on the y pixel array. Examples -------- >>> Nx = 50 >>> Ny = 50 >>> yy, xx = np.mgrid[:Ny, :Nx] >>> amplitude = 10 >>> a = evaluate_moffat2d(xx, yy, amplitude=amplitude, x_c=Nx/2, y_c=Ny/2, gamma=5, alpha=2) >>> print(f"{np.sum(a):.6f}") 9.683129 .. doctest:: :hide: >>> assert not np.isclose(np.sum(a), amplitude) .. plot:: import numpy as np import matplotlib.pyplot as plt from spectractor.extractor.psf import * Nx = 50 Ny = 50 yy, xx = np.mgrid[:Nx, :Ny] amplitude = 10 a = evaluate_moffat2d(xx, yy, amplitude=amplitude, y_c=Ny/2, x_c=Nx/2, gamma=5, alpha=2) im = plt.pcolor(xx, yy, a) plt.grid() plt.xlabel("x") plt.ylabel("y") plt.colorbar(im, label="Moffat 2D") plt.show() """ rr_gg = ((x - x_c) * (x - x_c) / (gamma * gamma) + (y - y_c) * (y - y_c) / (gamma * gamma)) a = (1 + rr_gg) ** -alpha norm = (np.pi * gamma * gamma) / (alpha - 1) a *= amplitude / norm return a @njit(fastmath=True, cache=True) def evaluate_moffatgauss2d(x, y, amplitude, x_c, y_c, gamma, alpha, eta_gauss, sigma): # pragma: nocover r"""Compute a 2D Moffat-Gaussian function, whose integral is normalised to unity. .. math :: f(x, y) = \frac{A}{\frac{\pi \gamma^2}{\alpha-1} + 2 \pi \eta \sigma^2}\left\lbrace \frac{1}{ \left[ 1 +\frac{\left(x-x_c\right)^2+\left(y-y_c\right)^2}{\gamma^2} \right]^\alpha} + \eta e^{-\left[ \left(x-x_c\right)^2+\left(y-y_c\right)^2\right]/(2 \sigma^2)} \right\rbrace .. math :: \quad\text{with}\quad \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(x, y) \mathrm{d}x \mathrm{d}y = A \quad\text{and} \quad \eta < 0 Note that this function is defined only for :math:`alpha > 1`. Parameters ---------- x: array_like 2D array of pixels :math:`x`, regularly spaced. y: array_like 2D array of pixels :math:`y`, regularly spaced. amplitude: float Integral :math:`A` of the function. x_c: float X axis center :math:`x_c` of the function. y_c: float Y axis center :math:`y_c` of the function. gamma: float Width :math:`\gamma` of the function. alpha: float Exponent :math:`\alpha` of the Moffat function. eta_gauss: float Relative negative amplitude of the Gaussian function. sigma: float Width :math:`\sigma` of the Gaussian function. Returns ------- output: array_like 2D array of the function evaluated on the y pixel array. Examples -------- >>> Nx = 50 >>> Ny = 50 >>> yy, xx = np.mgrid[:Ny, :Nx] >>> amplitude = 10 >>> a = evaluate_moffatgauss2d(xx, yy, amplitude=amplitude, x_c=Nx/2, y_c=Ny/2, gamma=5, alpha=2, ... eta_gauss=-0.1, sigma=1) >>> print(f"{np.sum(a):.6f}") 9.680573 .. doctest:: :hide: >>> assert not np.isclose(np.sum(a), amplitude) .. plot:: import numpy as np import matplotlib.pyplot as plt from spectractor.extractor.psf import * Nx = 50 Ny = 50 yy, xx = np.mgrid[:Nx, :Ny] amplitude = 10 a = evaluate_moffatgauss2d(xx, yy, amplitude, Nx/2, Ny/2, gamma=5, alpha=2, eta_gauss=-0.1, sigma=1) im = plt.pcolor(xx, yy, a) plt.grid() plt.xlabel("x") plt.ylabel("y") plt.colorbar(im, label="Moffat 2D") plt.show() """ rr = ((x - x_c) * (x - x_c) + (y - y_c) * (y - y_c)) rr_gg = rr / (gamma * gamma) a = (1 + rr_gg) ** -alpha + eta_gauss * np.exp(-(rr / (2. * sigma * sigma))) norm = (np.pi * gamma * gamma) / (alpha - 1) + eta_gauss * 2 * np.pi * sigma * sigma a *= amplitude / norm return a class PSF: """Generic PSF model class. The PSF models must contain at least the "amplitude", "x_c" and "y_c" parameters as the first three parameters (in this order) and "saturation" parameter as the last parameter. "amplitude", "x_c" and "y_c" stands respectively for the general amplitude of the model, the position along the dispersion axis and the transverse position with respect to the dispersion axis (assumed to be the X axis). Last "saturation" parameter must be express in the same units as the signal to model and as the "amplitude" parameter. The PSF models must be normalized to one in total flux divided by the first parameter (amplitude). Then the PSF model integral is equal to the "amplitude" parameter. """ def __init__(self, clip=False): """ Parameters ---------- clip: bool, optional If True, PSF evaluation is clipped between 0 and saturation level (slower) (default: False) """ self.my_logger = set_logger(self.__class__.__name__) self.p = np.array([]) self.param_names = ["amplitude", "x_c", "y_c", "saturation"] self.axis_names = ["$A$", r"$x_c$", r"$y_c$", "saturation"] self.bounds = [[]] self.p_default = np.array([1, 0, 0, 1]) self.max_half_width = np.inf self.clip = clip def evaluate(self, pixels, p=None): # pragma: no cover if p is not None: self.p = np.asarray(p).astype(float) if pixels.ndim == 3 and pixels.shape[0] == 2: return np.zeros_like(pixels) elif pixels.ndim == 1: return np.zeros_like(pixels) else: raise ValueError(f"Pixels array must have dimension 1 or shape=(2,Nx,Ny). Here pixels.ndim={pixels.shape}.") def apply_max_width_to_bounds(self, max_half_width=None): # pragma: no cover pass def fit_psf(self, data, data_errors=None, bgd_model_func=None): """ Fit a PSF model on 1D or 2D data. Parameters ---------- data: array_like 1D or 2D array containing the data. data_errors: np.array, optional The 1D or 2D array of uncertainties. bgd_model_func: callable, optional A 1D or 2D function to model the extracted background (default: None -> null background). Returns ------- fit_workspace: PSFFitWorkspace The PSFFitWorkspace instance to get info about the fitting. Examples -------- Build a mock PSF2D without background and with random Poisson noise: >>> p0 = np.array([200000, 20, 30, 5, 2, -0.1, 2, 400000]) >>> psf0 = MoffatGauss(p0) >>> yy, xx = np.mgrid[:50, :60] >>> data = psf0.evaluate(np.array([xx, yy]), p0) >>> data = np.random.poisson(data) >>> data_errors = np.sqrt(data+1) Fit the data in 2D: >>> p = np.array([150000, 19, 31, 4.5, 2.5, -0.1, 3, 400000]) >>> psf = MoffatGauss(p) >>> w = psf.fit_psf(data, data_errors=data_errors, bgd_model_func=None) >>> w.plot_fit() .. doctest:: :hide: >>> assert w.model is not None >>> residuals = (w.data-w.model)/w.err >>> assert w.costs[-1] / w.pixels.size < 1.3 >>> assert np.abs(np.mean(residuals)) < 0.4 >>> assert np.std(residuals) < 1.2 >>> assert np.all(np.isclose(psf.p[1:3], p0[1:3], atol=1e-1)) Fit the data in 1D: >>> data1d = data[:,int(p0[1])] >>> data1d_err = data_errors[:,int(p0[1])] >>> p = np.array([10000, 20, 32, 4, 3, -0.1, 2, 400000]) >>> psf1d = MoffatGauss(p) >>> w = psf1d.fit_psf(data1d, data_errors=data1d_err, bgd_model_func=None) >>> w.plot_fit() .. doctest:: :hide: >>> assert w.model is not None >>> residuals = (w.data-w.model)/w.err >>> assert w.costs[-1] / w.pixels.size < 1.2 >>> assert np.abs(np.mean(residuals)) < 0.2 >>> assert np.std(residuals) < 1.2 >>> assert np.all(np.isclose(w.p[2], p0[2], atol=1e-1)) .. plot:: import numpy as np import matplotlib.pyplot as plt from spectractor.extractor.psf import * p = np.array([200000, 20, 30, 5, 2, -0.1, 2, 400000]) psf = MoffatGauss(p) yy, xx = np.mgrid[:50, :60] data = psf.evaluate(np.array([xx, yy]), p) data = np.random.poisson(data) data_errors = np.sqrt(data+1) data = np.random.poisson(data) data_errors = np.sqrt(data+1) psf = MoffatGauss(p) w = psf.fit_psf(data, data_errors=data_errors, bgd_model_func=None) w.plot_fit() """ w = PSFFitWorkspace(self, data, data_errors, bgd_model_func=bgd_model_func, verbose=False, live_fit=False) run_minimisation(w, method="newton", ftol=1 / w.pixels.size, xtol=1e-6, niter=50, fix=w.fixed) self.p = np.copy(w.p) return w class Moffat(PSF): def __init__(self, p=None, clip=False): PSF.__init__(self, clip=clip) self.p_default = np.array([1, 0, 0, 3, 2, 1]).astype(float) if p is not None: self.p = np.asarray(p).astype(float) else: self.p = np.copy(self.p_default) self.param_names = ["amplitude", "x_c", "y_c", "gamma", "alpha", "saturation"] self.axis_names = ["$A$", r"$x_c$", r"$y_c$", r"$\gamma$", r"$\alpha$", "saturation"] self.bounds = np.array([(0, np.inf), (-np.inf, np.inf), (-np.inf, np.inf), (0.1, np.inf), (1.1, 100), (0, np.inf)]) def apply_max_width_to_bounds(self, max_half_width=None): if max_half_width is not None: self.max_half_width = max_half_width self.bounds = np.array([(0, np.inf), (-np.inf, np.inf), (0, 2 * self.max_half_width), (0.1, self.max_half_width), (1.1, 100), (0, np.inf)]) def evaluate(self, pixels, p=None): r"""Evaluate the Moffat function. The function is normalized to have an integral equal to amplitude parameter, with normalisation factor: .. math:: f(y) \propto \frac{A \Gamma(alpha)}{\gamma \sqrt{\pi} \Gamma(alpha -1/2)}, \quad \int_{y_{\text{min}}}^{y_{\text{max}}} f(y) \mathrm{d}y = A Parameters ---------- pixels: list List containing the X abscisse 2D array and the Y abscisse 2D array. p: array_like The parameter array. If None, the array used to instanciate the class is taken. If given, the class instance parameter array is updated. Returns ------- output: array_like The PSF function evaluated. Examples -------- >>> p = [2,20,30,4,2,10] >>> psf = Moffat(p, clip=True) >>> yy, xx = np.mgrid[:50, :60] >>> out = psf.evaluate(pixels=np.array([xx, yy])) .. plot:: import matplotlib.pyplot as plt import numpy as np from spectractor.extractor.psf import Moffat p = [2,20,30,4,2,10] psf = Moffat(p) yy, xx = np.mgrid[:50, :60] out = psf.evaluate(pixels=np.array([xx, yy])) fig = plt.figure(figsize=(5,5)) plt.imshow(out, origin="lower") plt.xlabel("X [pixels]") plt.ylabel("Y [pixels]") plt.show() """ if p is not None: self.p = np.asarray(p).astype(float) amplitude, x_c, y_c, gamma, alpha, saturation = self.p if pixels.ndim == 3 and pixels.shape[0] == 2: x, y = pixels # .astype(np.float32) # float32 to increase rapidity out = evaluate_moffat2d(x, y, amplitude, x_c, y_c, gamma, alpha) if self.clip: out = np.clip(out, 0, saturation) return out elif pixels.ndim == 1: y = np.array(pixels) norm = gamma * np.sqrt(np.pi) * special.gamma(alpha - 0.5) / special.gamma(alpha) out = evaluate_moffat1d_unnormalized(y, amplitude, y_c, gamma, alpha) / norm if self.clip: out = np.clip(out, 0, saturation) return out else: # pragma: no cover raise ValueError(f"Pixels array must have dimension 1 or shape=(2,Nx,Ny). Here pixels.ndim={pixels.shape}.") class MoffatGauss(PSF): def __init__(self, p=None, clip=False): PSF.__init__(self, clip=clip) self.p_default = np.array([1, 0, 0, 3, 2, 0, 1, 1]).astype(float) if p is not None: self.p = np.asarray(p).astype(float) else: self.p = np.copy(self.p_default) self.param_names = ["amplitude", "x_c", "y_c", "gamma", "alpha", "eta_gauss", "stddev", "saturation"] self.axis_names = ["$A$", r"$x_c$", r"$y_c$", r"$\gamma$", r"$\alpha$", r"$\eta$", r"$\sigma$", "saturation"] self.bounds = np.array([(0, np.inf), (-np.inf, np.inf), (-np.inf, np.inf), (0.1, np.inf), (1.1, 100), (-1, 0), (0.1, np.inf), (0, np.inf)]) def apply_max_width_to_bounds(self, max_half_width=None): if max_half_width is not None: self.max_half_width = max_half_width self.bounds = np.array([(0, np.inf), (-np.inf, np.inf), (0, 2 * self.max_half_width), (0.1, self.max_half_width), (1.1, 100), (-1, 0), (0.1, self.max_half_width), (0, np.inf)]) def evaluate(self, pixels, p=None): r"""Evaluate the MoffatGauss function. The function is normalized to have an integral equal to amplitude parameter, with normalisation factor: .. math:: f(y) \propto \frac{A}{ \frac{\Gamma(alpha)}{\gamma \sqrt{\pi} \Gamma(alpha -1/2)}+\eta\sqrt{2\pi}\sigma}, \quad \int_{y_{\text{min}}}^{y_{\text{max}}} f(y) \mathrm{d}y = A Parameters ---------- pixels: list List containing the X abscisse 2D array and the Y abscisse 2D array. p: array_like The parameter array. If None, the array used to instanciate the class is taken. If given, the class instance parameter array is updated. Returns ------- output: array_like The PSF function evaluated. Examples -------- >>> p = [2,20,30,4,2,-0.5,1,10] >>> psf = MoffatGauss(p) >>> yy, xx = np.mgrid[:50, :60] >>> out = psf.evaluate(pixels=np.array([xx, yy])) .. plot:: import matplotlib.pyplot as plt import numpy as np from spectractor.extractor.psf import MoffatGauss p = [2,20,30,4,2,-0.5,1,10] psf = MoffatGauss(p) yy, xx = np.mgrid[:50, :60] out = psf.evaluate(pixels=np.array([xx, yy])) fig = plt.figure(figsize=(5,5)) plt.imshow(out, origin="lower") plt.xlabel("X [pixels]") plt.ylabel("Y [pixels]") plt.show() """ if p is not None: self.p = np.asarray(p).astype(float) amplitude, x_c, y_c, gamma, alpha, eta_gauss, stddev, saturation = self.p if pixels.ndim == 3 and pixels.shape[0] == 2: x, y = pixels # .astype(np.float32) # float32 to increase rapidity out = evaluate_moffatgauss2d(x, y, amplitude, x_c, y_c, gamma, alpha, eta_gauss, stddev) if self.clip: out = np.clip(out, 0, saturation) return out elif pixels.ndim == 1: y = np.array(pixels) norm = gamma * np.sqrt(np.pi) * special.gamma(alpha - 0.5) / special.gamma(alpha) + eta_gauss * np.sqrt( 2 * np.pi) * stddev out = evaluate_moffatgauss1d_unnormalized(y, amplitude, y_c, gamma, alpha, eta_gauss, stddev) / norm if self.clip: out = np.clip(out, 0, saturation) return out else: # pragma: no cover raise ValueError(f"Pixels array must have dimension 1 or shape=(2,Nx,Ny). Here pixels.ndim={pixels.shape}.") class Order0(PSF): def __init__(self, target, p=None, clip=False): PSF.__init__(self, clip=clip) self.p_default = np.array([1, 0, 0, 1, 1]).astype(float) if p is not None: self.p = np.asarray(p).astype(float) else: self.p = np.copy(self.p_default) self.param_names = ["amplitude", "x_c", "y_c", "gamma", "saturation"] self.axis_names = ["$A$", r"$x_c$", r"$y_c$", r"$\gamma$", "saturation"] self.bounds = np.array([(0, np.inf), (-np.inf, np.inf), (-np.inf, np.inf), (0.5, 5), (0, np.inf)]) self.psf_func = self.build_interpolated_functions(target=target) def build_interpolated_functions(self, target): """Interpolate the order 0 image and make 1D and 2D functions centered on its centroid, with varying width and normalized to get an integral equal to unity. Parameters ---------- target: Target The target with a target.image attribute to interpolate. Returns ------- func: Callable The 2D interpolated function centered in (target.image_x0, target.image_y0). """ xx = np.arange(0, target.image.shape[1]) - target.image_x0 yy = np.arange(0, target.image.shape[0]) - target.image_y0 data = target.image / np.sum(target.image) tmp_func = interp2d(xx, yy, data, bounds_error=False, fill_value=None) def func(x, y, amplitude, x_c, y_c, gamma): return amplitude * tmp_func((x - x_c)/gamma, (y - y_c)/gamma) return func def apply_max_width_to_bounds(self, max_half_width=None): if max_half_width is not None: self.max_half_width = max_half_width self.bounds = np.array([(0, np.inf), (-np.inf, np.inf), (0, 2 * self.max_half_width), (0.5, 5), (0, np.inf)]) def evaluate(self, pixels, p=None): r"""Evaluate the Order 0 interpolated function. The function is normalized to have an integral equal to amplitude parameter. Parameters ---------- pixels: list List containing the X abscisse 2D array and the Y abscisse 2D array. p: array_like The parameter array. If None, the array used to instanciate the class is taken. If given, the class instance parameter array is updated. Returns ------- output: array_like The PSF function evaluated. Examples -------- >>> from spectractor.extractor.images import Image, find_target >>> im = Image('tests/data/reduc_20170605_028.fits', target_label="PNG321.0+3.9") >>> im.plot_image() >>> guess = [820, 580] >>> parameters.VERBOSE = True >>> parameters.DEBUG = True >>> x0, y0 = find_target(im, guess) >>> p = [1,40,50,1,1e20] >>> psf = Order0(target=im.target, p=p) 2D evaluation: >>> yy, xx = np.mgrid[:80, :100] >>> out = psf.evaluate(pixels=np.array([xx, yy])) 1D evaluation: >>> out = psf.evaluate(pixels=np.arange(100)) .. plot:: import matplotlib.pyplot as plt import numpy as np from spectractor.extractor.psf import Moffat, Order0 from spectractor.extractor.images import Image, find_target im = Image('tests/data/reduc_20170605_028.fits', target_label="PNG321.0+3.9") im.plot_image() guess = [820, 580] parameters.VERBOSE = True parameters.DEBUG = True x0, y0 = find_target(im, guess) p = [1,40,50,1,1e20] psf = Order0(target=im.target, p=p) yy, xx = np.mgrid[:80, :100] out = psf.evaluate(pixels=np.array([xx, yy])) fig = plt.figure(figsize=(5,5)) plt.imshow(out, origin="lower") plt.xlabel("X [pixels]") plt.ylabel("Y [pixels]") plt.grid() plt.show() """ if p is not None: self.p = np.asarray(p).astype(float) amplitude, x_c, y_c, gamma, saturation = self.p if pixels.ndim == 3 and pixels.shape[0] == 2: x, y = pixels # .astype(np.float32) # float32 to increase rapidity out = self.psf_func(x[0], y[:, 0], amplitude, x_c, y_c, gamma) if self.clip: out = np.clip(out, 0, saturation) return out elif pixels.ndim == 1: y = np.array(pixels) out = self.psf_func(x_c, y, amplitude, x_c, y_c, gamma).T[0] out *= amplitude / np.sum(out) if self.clip: out =
np.clip(out, 0, saturation)
numpy.clip
import pytest import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import networkx as nx from mossspider import NetworkTMLE @pytest.fixture def sm_network(): """Loads a small network for short test runs and checks of data set creations""" G = nx.Graph() G.add_nodes_from([(1, {'W': 1, 'A': 1, 'Y': 1, 'C': 1}), (2, {'W': 0, 'A': 0, 'Y': 0, 'C': -1}), (3, {'W': 0, 'A': 1, 'Y': 0, 'C': 5}), (4, {'W': 0, 'A': 0, 'Y': 1, 'C': 0}), (5, {'W': 1, 'A': 0, 'Y': 0, 'C': 0}), (6, {'W': 1, 'A': 0, 'Y': 1, 'C': 0}), (7, {'W': 0, 'A': 1, 'Y': 0, 'C': 10}), (8, {'W': 0, 'A': 0, 'Y': 0, 'C': -5}), (9, {'W': 1, 'A': 1, 'Y': 0, 'C': -5})]) G.add_edges_from([(1, 2), (1, 3), (1, 9), (2, 3), (2, 6), (3, 4), (4, 7), (5, 7), (5, 9) ]) return G @pytest.fixture def r_network(): """Loads network from the R library tmlenet for comparison""" df = pd.read_csv("tests/tmlenet_r_data.csv") df['IDs'] = df['IDs'].str[1:].astype(int) df['NETID_split'] = df['Net_str'].str.split() G = nx.DiGraph() G.add_nodes_from(df['IDs']) for i, c in zip(df['IDs'], df['NETID_split']): if type(c) is list: for j in c: G.add_edge(i, int(j[1:])) # Adding attributes for node in G.nodes(): G.nodes[node]['W'] = np.int(df.loc[df['IDs'] == node, 'W1']) G.nodes[node]['A'] = np.int(df.loc[df['IDs'] == node, 'A']) G.nodes[node]['Y'] = np.int(df.loc[df['IDs'] == node, 'Y']) return G class TestNetworkTMLE: def test_error_node_ids(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 1, 'Y': 1}), (2, {'A': 0, 'Y': 1}), ("N", {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_self_loops(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 1, 'Y': 1}), (2, {'A': 0, 'Y': 1}), (3, {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) G.add_edges_from([(1, 1), (1, 2), (3, 4)]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_nonbinary_a(self): G = nx.Graph() G.add_nodes_from([(1, {'A': 2, 'Y': 1}), (2, {'A': 5, 'Y': 1}), (3, {'A': 1, 'Y': 0}), (4, {'A': 0, 'Y': 0})]) with pytest.raises(ValueError): NetworkTMLE(network=G, exposure='A', outcome='Y') def test_error_degree_restrictions(self, r_network): with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=2) with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=[0, 1, 2]) with pytest.raises(ValueError): NetworkTMLE(network=r_network, exposure='A', outcome='Y', degree_restrict=[2, 0]) def test_error_fit_gimodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') # tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_fit_gsmodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') # tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_gs_distributions(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') with pytest.raises(ValueError): tmle.exposure_map_model('W', measure='mean', distribution=None) with pytest.raises(ValueError): tmle.exposure_map_model('W', measure='mean', distribution='multinomial') def test_error_fit_qmodel(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) # tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=0.0, samples=10) def test_error_p_bound(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') # For single 'p' with pytest.raises(ValueError): tmle.fit(p=1.5, samples=10) # For multiple 'p' with pytest.raises(ValueError): tmle.fit(p=[0.1, 1.5, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1], samples=100) def test_error_p_type(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.fit(p=5, samples=10) def test_error_summary(self, r_network): tmle = NetworkTMLE(network=r_network, exposure='A', outcome='Y') tmle.exposure_model('W') tmle.exposure_map_model('W', distribution=None) tmle.outcome_model('A + W') with pytest.raises(ValueError): tmle.summary() def test_df_creation(self, sm_network): columns = ["_original_id_", "W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"] expected = pd.DataFrame([[1, 1, 1, 1, 2, 2/3, 1, 1/3, 3], [2, 0, 0, 0, 2, 2/3, 2, 2/3, 3], [3, 0, 1, 0, 1, 1/3, 1, 1/3, 3], [4, 0, 0, 1, 2, 1, 0, 0, 2], [5, 1, 0, 0, 2, 1, 1, 1/2, 2], [6, 1, 0, 1, 0, 0, 0, 0, 1], [7, 0, 1, 0, 0, 0, 1, 1/2, 2], [8, 0, 0, 0, 0, 0, 0, 0, 0], [9, 1, 1, 0, 1, 1/2, 2, 1, 2]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is False pdt.assert_frame_equal(expected, created[columns], check_dtype=False) def test_df_creation_restricted(self, sm_network): expected = pd.DataFrame([[1, 1, 1, 2, 2/3, 1, 1/3, 3], [0, 0, 0, 2, 2/3, 2, 2/3, 3], [0, 1, 0, 1, 1/3, 1, 1/3, 3], [0, 0, 1, 2, 1, 0, 0, 2], [1, 0, 0, 2, 1, 1, 1/2, 2], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1/2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1/2, 2, 1, 2]], columns=["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) expected_r = pd.DataFrame([[0, 0, 1, 2, 1, 0, 0, 2], [1, 0, 0, 2, 1, 1, 1/2, 2], [1, 0, 1, 0, 0, 0, 0, 1], [0, 1, 0, 0, 0, 1, 1/2, 2], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1/2, 2, 1, 2]], columns=["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[0, 2]) created = tmle.df created_r = tmle.df_restricted # Checking that expected is the same as the created pdt.assert_frame_equal(expected, created[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) pdt.assert_frame_equal(expected_r, created_r[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) def test_restricted_number(self, sm_network): tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[0, 2]) n_created = tmle.df.shape[0] n_created_r = tmle.df_restricted.shape[0] assert 6 == n_created_r assert 3 == n_created - n_created_r tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y', degree_restrict=[1, 3]) n_created = tmle.df.shape[0] n_created_r = tmle.df_restricted.shape[0] assert 8 == n_created_r assert 1 == n_created - n_created_r def test_continuous_processing(self): G = nx.Graph() y_list = [1, -1, 5, 0, 0, 0, 10, -5] G.add_nodes_from([(1, {'A': 0, 'Y': y_list[0]}), (2, {'A': 1, 'Y': y_list[1]}), (3, {'A': 1, 'Y': y_list[2]}), (4, {'A': 0, 'Y': y_list[3]}), (5, {'A': 1, 'Y': y_list[4]}), (6, {'A': 1, 'Y': y_list[5]}), (7, {'A': 0, 'Y': y_list[6]}), (8, {'A': 0, 'Y': y_list[7]})]) tmle = NetworkTMLE(network=G, exposure='A', outcome='Y', continuous_bound=0.0001) # Checking all flagged parts are correct assert tmle._continuous_outcome is True assert tmle._continuous_min_ == -5.0001 assert tmle._continuous_max_ == 10.0001 assert tmle._cb_ == 0.0001 # Checking that TMLE bounding works as intended maximum = 10.0001 minimum = -5.0001 y_bound = (np.array(y_list) - minimum) / (maximum - minimum) pdt.assert_series_equal(pd.Series(y_bound, index=[0, 1, 2, 3, 4, 5, 6, 7]), tmle.df['Y'], check_dtype=False, check_names=False) def test_df_creation_continuous(self, sm_network): expected = pd.DataFrame([[1, 1, 2, 1, 3], [0, 0, 2, 2, 3], [0, 1, 1, 1, 3], [0, 0, 2, 0, 2], [1, 0, 2, 1, 2], [1, 0, 0, 0, 1], [0, 1, 0, 1, 2], [0, 0, 0, 0, 0], [1, 1, 1, 2, 2]], columns=["W", "A", "A_sum", "W_sum", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) expected["C"] = [4.00001333e-01, 2.66669778e-01, 6.66664444e-01, 3.33335556e-01, 3.33335556e-01, 3.33335556e-01, 9.99993333e-01, 6.66657778e-06, 6.66657778e-06] tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='C', continuous_bound=0.0001) created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is True pdt.assert_frame_equal(expected[["W", "A", "C", "A_sum", "W_sum", "degree"]], created[["W", "A", "C", "A_sum", "W_sum", "degree"]], check_dtype=False) def test_no_consecutive_ids(self): G = nx.Graph() G.add_nodes_from([(1, {'W': 1, 'A': 1, 'Y': 1}), (2, {'W': 0, 'A': 0, 'Y': 0}), (3, {'W': 0, 'A': 1, 'Y': 0}), (4, {'W': 0, 'A': 0, 'Y': 1}), (5, {'W': 1, 'A': 0, 'Y': 0}), (7, {'W': 1, 'A': 0, 'Y': 1}), (9, {'W': 0, 'A': 1, 'Y': 0}), (11, {'W': 0, 'A': 0, 'Y': 0}), (12, {'W': 1, 'A': 1, 'Y': 0})]) G.add_edges_from([(1, 2), (1, 3), (1, 12), (2, 3), (2, 7), (3, 4), (4, 9), (5, 9), (5, 12)]) expected = pd.DataFrame([[1, 1, 1, 1, 2, 2 / 3, 1, 1 / 3, 3], [2, 0, 0, 0, 2, 2/3, 2, 2/3, 3], [3, 0, 1, 0, 1, 1 / 3, 1, 1 / 3, 3], [4, 0, 0, 1, 2, 1, 0, 0, 2], [5, 1, 0, 0, 2, 1, 1, 1 / 2, 2], [7, 1, 0, 1, 0, 0, 0, 0, 1], [8, 0, 1, 0, 0, 0, 1, 1 / 2, 2], [11, 0, 0, 0, 0, 0, 0, 0, 0], [12, 1, 1, 0, 1, 1 / 2, 2, 1, 2] ], columns=["_original_id_", "W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"], index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=G, exposure='A', outcome='Y') created = tmle.df.sort_values(by='_original_id_').reset_index() pdt.assert_frame_equal(expected[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], created[["W", "A", "Y", "A_sum", "A_mean", "W_sum", "W_mean", "degree"]], check_dtype=False) def test_df_creation_nonparametric(self, sm_network): columns = ["_original_id_", "A", "A_map1", "A_map2", "A_map3"] expected = pd.DataFrame([[1, 1, 0, 1, 1], [2, 0, 1, 1, 0], [3, 1, 1, 0, 0], [4, 0, 1, 1, 0], [5, 0, 1, 1, 0], [6, 0, 0, 0, 0], [7, 1, 0, 0, 0], [8, 0, 0, 0, 0], [9, 1, 1, 0, 0]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df.sort_values(by='_original_id_').reset_index() # Checking that expected is the same as the created pdt.assert_frame_equal(expected[columns], created[columns], check_dtype=False) def test_summary_measures_creation(self, sm_network): columns = ["_original_id_", "A_sum", "A_mean", "A_var", "W_sum", "W_mean", "W_var"] neighbors_w = {1: np.array([0, 0, 1]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([0, 0]), 5: np.array([0, 1]), 6: np.array([0]), 7: np.array([0, 1]), 9: np.array([1, 1])} neighbors_a = {1: np.array([0, 1, 1]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([1, 1]), 5: np.array([1, 1]), 6: np.array([0]), 7: np.array([0, 0]), 9: np.array([0, 1])} expected = pd.DataFrame([[1, np.sum(neighbors_a[1]), np.mean(neighbors_a[1]), np.var(neighbors_a[1]), np.sum(neighbors_w[1]), np.mean(neighbors_w[1]), np.var(neighbors_w[1])], [2, np.sum(neighbors_a[2]), np.mean(neighbors_a[2]), np.var(neighbors_a[2]), np.sum(neighbors_w[2]), np.mean(neighbors_w[2]), np.var(neighbors_w[2])], [3, np.sum(neighbors_a[3]), np.mean(neighbors_a[3]), np.var(neighbors_a[3]), np.sum(neighbors_w[3]), np.mean(neighbors_w[3]), np.var(neighbors_w[3])], [4, np.sum(neighbors_a[4]), np.mean(neighbors_a[4]), np.var(neighbors_a[4]), np.sum(neighbors_w[4]), np.mean(neighbors_w[4]), np.var(neighbors_w[4])], [5, np.sum(neighbors_a[5]), np.mean(neighbors_a[5]), np.var(neighbors_a[5]), np.sum(neighbors_w[5]), np.mean(neighbors_w[5]), np.var(neighbors_w[5])], [6, np.sum(neighbors_a[6]), np.mean(neighbors_a[6]), np.var(neighbors_a[6]), np.sum(neighbors_w[6]), np.mean(neighbors_w[6]), np.var(neighbors_w[6])], [7, np.sum(neighbors_a[7]), np.mean(neighbors_a[7]), np.var(neighbors_a[7]), np.sum(neighbors_w[7]), np.mean(neighbors_w[7]), np.var(neighbors_w[7])], [8, 0, 0, 0, 0, 0, 0], # Isolates are = 0 [9, np.sum(neighbors_a[9]), np.mean(neighbors_a[9]), np.var(neighbors_a[9]), np.sum(neighbors_w[9]), np.mean(neighbors_w[9]), np.var(neighbors_w[9])]], columns=columns, index=[0, 1, 2, 3, 4, 5, 6, 7, 8]) tmle = NetworkTMLE(network=sm_network, exposure='A', outcome='Y') created = tmle.df # Checking that expected is the same as the created assert tmle._continuous_outcome is False pdt.assert_frame_equal(expected, created[columns], check_dtype=False) def test_distance_measures_creation(self, sm_network): columns = ["_original_id_", "A_mean_dist", "A_var_dist", "W_mean_dist", "W_var_dist"] neighbors_w = {1: np.array([-1, -1, 0]), 2: np.array([0, 1, 1]), 3: np.array([0, 0, 1]), 4: np.array([0, 0]), 5: np.array([-1, 0]), 6: np.array([-1]), 7: np.array([0, 1]), 9: np.array([0, 0])} neighbors_a = {1: np.array([-1, 0, 0]), 2: np.array([0, 1, 1]), 3: np.array([-1, -1, 0]), 4: np.array([1, 1]), 5: np.array([1, 1]), 6: np.array([0]), 7:
np.array([-1, -1])
numpy.array
import numpy as np from def_get_mags import get_zdistmod, get_kcorrect2, aper_and_comov, abs2lum, lumdensity, abs_mag from scipy import interpolate import math from halflight_second import meanlum2, get_errors from def_halflight_math import get_halfrad def upper_rad_cut(loglum, lograd, logden, m, proof=False): from def_halflight_math import get_halfrad nloglum=[] nlograd=[] nlogden=[] mult=m print(len(loglum), len(lograd)) N=len(lograd) for n in range(0,N): loglums=loglum[n] lograds=lograd[n] logdens=logden[n] L=10**loglums R=10**lograds r12=get_halfrad(R, L) r412=mult*r12 logr12=np.log10(r12) logr412=np.log10(r412) #the upper limit if proof == True: print('logr1/2= ', logr12) print('log4r1/2= ', logr412) print('The radii are ', lograds) print(logr412) if np.max(lograds) >= logr412: logrcut=lograds[(lograds>=logr12)&(lograds<=logr412)] #logrcut=lograds[(lograds>=logr12)&(lograds<=logr412)] if proof == True: print('Cut Radius range= ', logrcut) if len(logrcut)>=4: nloglum.append(loglums) nlograd.append(lograds) nlogden.append(logdens) print('good') else: print('not enough data points') else: print('Upper limit out of range') #break nloglum=np.array(nloglum) nlograd=np.array(nlograd) nlogden=np.array(nlogden) return nloglum, nlograd, nlogden def get_ind_lums(newdata, bands, aperture, scale=''): import numpy as np from def_get_mags import get_zdistmod, get_kcorrect2, aper_and_comov, abs2lum, lumdensity, abs_mag import math from defclump import meanlum2 from my_def_plots import halflight_plot, scatter_fit from scipy import interpolate import matplotlib.pyplot as plt from def_mymath import halflight Naps=len(aperture) Ndat=len(newdata) try: redshifts=newdata['Z'] DM= get_zdistmod(newdata, 'Z') except: redshifts=newdata['Z_2'] DM= get_zdistmod(newdata, 'Z_2') kcorrect=get_kcorrect2(newdata,'mag_forced_cmodel', '_err', bands, '','hsc_filters.dat',redshifts) fig=plt.figure() bigLI=[] bigrad=[] bigden=[] for n in range(0, Ndat): LI=[] LI2=[] lumdi=[] string=str(n) radkpc=aper_and_comov(aperture, redshifts[n]) #print('redshifts is ', redshifts[n]) for a in range(0, Naps): #this goes through every aperture ns=str(a) #print('aperture0',ns) absg, absr, absi, absz, absy= abs_mag(newdata[n], 'mag_aperture0', kcorrect, DM[n], bands, ns, n) Lumg, Lumr, Lumi, Lumz, Lumy=abs2lum(absg, absr, absi, absz, absy) Lg, Lr, Li, Lz, Ly=lumdensity(Lumg, Lumr, Lumi, Lumz, Lumy, radkpc[a]) if scale== 'log': #print('getting logs') logLumi=math.log10(Lumi) logLi=math.log10(Li) LI.append(logLumi) lumdi.append(logLi) else: LI.append(Lumi) lumdi.append(Li) #print('LI for ',n,' galaxy is ', LI) bigLI.append(LI) bigden.append(lumdi) if scale== 'log': lograd=[math.log10(radkpc[n]) for n in range(len(radkpc))] bigrad.append(lograd) else: bigrad.append(radkpc) bigLIs=np.array(bigLI) bigrads=np.array(bigrad) lumdensi=np.array(bigden) return bigLIs, bigrads, lumdensi def get_avg_lums(logLs, lograds, logLDs, gr=[], type='', scale=''): print('get_avg_lums is in halflight first') sc=scale #sc is whether or nto we stack the linear data or log data Naps=0.0 if type=='mean': meanlum, radavg, bb=meanlum2(logLs, lograds, Naps,grange=gr,scale=sc) meandens, radavg, bb=meanlum2(logLDs, lograds,Naps,grange=gr,scale=sc) err='bootstrap_stdv' lumdenerr=get_errors(logLDs, lograds, bb, meandens, error=err, scale=sc) print('Mean Luminosity= ', meanlum) print('Mean LumDensity=', meandens) print('Binned Radii= ', radavg) print('Standard Deviation= ', lumdenerr) return meanlum, meandens, radavg, lumdenerr #outputs logmeans and log mean_errors if type== 'median': medlum, radavg, bb=medlum2(bigLIs, bigrads) medens, radavg, bb=medlum2(lumdensi, bigrads) err='bootstrap_stdv' lumdenerr=get_error(lumdensi, bigrads, bb, error=err) print('Median Luminosity= ', medlum) print('Median LumDensity=', medens) print('Binned Radii= ', radavg) print('Standard Deviation= ', lumdenerr) return medlum, medens, radavg, lumdenerr def get_halflight(logLs, lograds): from scipy import interpolate import math import numpy as np print('not from halflight_math') N=np.ndim(lograds) if N==2: logr12=[] for n in range(0, len(lograds)): logL=logLs[n] logr=lograds[n] L=10**logL R=10**logr maxL=np.max(L) halfL=maxL/2 f=interpolate.interp1d(L,R, kind='linear', axis=-1) r12=f(halfL) alogr12=np.log10(r12) logr12.append(alogr12) logr12=np.array(logr12) else: logL=logLs logr=lograds maxL=10**np.max(logL) halfL=maxL/2 logL12=np.log10(halfL) f=interpolate.interp1d(logL,logr, kind='linear', axis=-1) logr12=f(logL12) return logr12 def get_halflight2(logLs, lograds, mult): import math import numpy as np print('not from halflight_math') N=np.ndim(lograds) if N==2: logr12=[] logr412=[] for n in range(0, len(lograds)): logL=logLs[n] logr=lograds[n] L=10**logL R=10**logr r12=get_halfrad(R, L) r412=r12*mult alogr12=np.log10(r12) alogr412=np.log10(r412) logr12.append(alogr12) logr412.append(alogr412) logr12=np.array(logr12) logr412=np.array(logr412) else: L=10**logLs R=10**lograds r12=get_halfrad(R, L) r412=r12*mult logr12=np.log10(r12) logr412=np.log10(r412) return logr12, logr412 def get_slopes(logr12s, lograd, logld, error=None, smax=False): import scipy.stats as stats from def_halflight_math import my_linregress3 from my_def_plots import scatter_fit, simple_hist print('slopes from halflight_first') mult=4 Ndim=np.ndim(lograd) N=len(lograd) if error is None: print('No error was given') error=np.ones((N, len(lograd[0]))) N=np.ndim(lograd) logrcut=[] logldcut=[] errcut=[] if N==2: for i in range(len(lograd)): logrrow=lograd[i] logldrow=logld[i] errow=error[i] logr12=logr12s[i] if smax== True: r12=10**logr12 r412=mult*r12 logr412=np.log10(r412) #print(hhx2, np.max(xrow)) if np.max(logrrow) >= logr412: mlogr=logrrow[(logrrow>=logr12)&(logrrow<=logr412)] mlogld=logldrow[(logrrow>=logr12)&(logrrow<=logr412)] merr=errow[(logrrow>=logr12)&(logrrow<=logr412)] if len(mlogr) >=4: #print('check=good') logrcut.append(mlogr) logldcut.append(mlogld) errcut.append(merr) else: print('Upper Cut is Out of the Radius Range') else: merr=errow[logrrow>=logr12] mlogr=logrrow[logrrow>=logr12] mlogld=logldrow[logrrow>=logr12] if len(mlogr) >=4: print('good') logrcut.append(mlogr) logldcut.append(mlogld) errcut.append(merr) slopes=[] intercepts=[] errs=[] for n in range(len(logrcut)): slope, int, std_err=my_linregress3(logrcut[n], logldcut[n], errcut[n]) slopes.append(slope) intercepts.append(int) errs.append(std_err) return slopes, intercepts, errs else: #for arrays of 1D *aka* the stacked profile lograd=np.array(lograd) logr12=logr12s print('r1/2 limit is ', logr12s) print('xrange for stacked is ', lograd) if error is None: error=np.ones(N) if smax== True: r12=10**logr12 r412=mult*r12 logr412=np.log10(r412) print('upper limit is ', logr412) if np.max(lograd) <= logr412: print('Upper cut is out of the Radius range') else: logrcut=lograd[(lograd>=logr12)&(lograd<=logr412)] logldcut=logld[(lograd>=logr12)&(lograd<=logr412)] errcut=error[(lograd>=logr12)&(lograd<=logr412)] else: logrcut=lograd[lograd>=logr12] logldcut=logld[lograd>=logr12] errcut=error[lograd>=logr12] print('Log Radii are= ', lograd) print('LogR1/2 is= ', logr12) sl3, C3, std_err3=my_linregress3(logrcut, logldcut, errcut) return sl3, C3, logrcut, logldcut, std_err3, errcut def get_slopes1(logr12s, logr412s, lograd, logld, error=None, smax=False): import scipy.stats as stats from def_halflight_math import my_linregress3 from my_def_plots import scatter_fit, simple_hist print('slopes from halflight_first') mult=4 Ndim=np.ndim(lograd) N=len(lograd) if error is None: print('No error was given') error=np.ones((N, len(lograd[0]))) N=np.ndim(lograd) logrcut=[] logldcut=[] errcut=[] if N==2: for i in range(len(lograd)): logrrow=lograd[i] logldrow=logld[i] errow=error[i] logr12=logr12s[i] logr412=logr412s[i] if smax== True: if
np.max(logrrow)
numpy.max
# -*- coding: utf-8 -*- # Copyright 1996-2015 PSERC. All rights reserved. # Use of this source code is governed by a BSD-style # license that can be found in the LICENSE file. # Copyright (c) 2016-2022 by University of Kassel and Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel. All rights reserved. import numpy as np from numba import jit from scipy.sparse import csr_matrix, coo_matrix from pandapower.pypower.idx_brch import F_BUS, T_BUS from pandapower.pypower.idx_bus import GS, BS from pandapower.pypower.makeYbus import branch_vectors @jit(nopython=True, cache=False) def gen_Ybus(Yf_x, Yt_x, Ysh, col_Y, f, t, f_sort, t_sort, nb, nl, r_nl): # pragma: no cover """ Fast calculation of Ybus """ r_nb = range(nb) # allocate data of Ybus in CSR format # Note: More space is allocated than needed with empty. # The matrix size will be reduced afterwards alloc_size = nl * 2 + nb Yx = np.empty(alloc_size, dtype=np.complex128) # data Yp = np.zeros(nb + 1, dtype=np.int64) # row pointer Yj = np.empty(alloc_size, dtype=np.int64) # colum indices # index iterators # a = iterator of f, b = iterator of t, curRow = current Row a, b, curRow = 0, 0, 0 # number of nonzeros (total), number of nonzeros per row nnz, nnz_row = 0, 0 # flag checks if diagonal entry was added YshAdded = False for curRow in r_nb: nnz_row = 0 # iterate rows of Ybus # add entries from Yf while a < nl and f[f_sort[a]] == curRow: # Entries from f_sort[a] in current row of Ybus for col in (r_nl[f_sort[a]], r_nl[f_sort[a]] + nl): # 'Has entry at column in Yf: %i ' % col if col_Y[col] == curRow and not YshAdded: # add Ysh and Yf_x (diagonal element). If not already added curVal = Yf_x[col] + Ysh[curRow] YshAdded = True else: # add only Yf_x curVal = Yf_x[col] for k in range(Yp[curRow], Yp[curRow] + nnz_row): if col_Y[col] == Yj[k]: # if entry at column already exists add value Yx[k] += curVal break else: # new entry in Ybus Yx[nnz] = curVal Yj[nnz] = col_Y[col] nnz += 1 nnz_row += 1 a += 1 # add entries from Yt while b < nl and t[t_sort[b]] == curRow: # Entries from t_sort[b] in current row of Ybus for col in (r_nl[t_sort[b]], r_nl[t_sort[b]] + nl): # 'Has entry at column in Yt: %i ' % col if col_Y[col] == curRow and not YshAdded: # add Ysh and Yf_x (diagonal element). If not already added curVal = Yt_x[col] + Ysh[curRow] YshAdded = True else: # add only Yt_x curVal = Yt_x[col] for k in range(Yp[curRow], Yp[curRow] + nnz_row): if col_Y[col] == Yj[k]: # if entry at column already exists add value Yx[k] += curVal break else: # new entry in Ybus Yx[nnz] = curVal Yj[nnz] = col_Y[col] nnz += 1 nnz_row += 1 b += 1 if not YshAdded: # check if diagonal entry was added. If not -> add if not zero if Ysh[curRow]: Yx[nnz] = Ysh[curRow] Yj[nnz] = curRow nnz += 1 nnz_row += 1 YshAdded = False # add number of nonzeros in row to row pointer Yp[curRow + 1] = nnz_row + Yp[curRow] curRow += 1 return Yx, Yj, Yp, nnz def makeYbus(baseMVA, bus, branch): """Builds the bus admittance matrix and branch admittance matrices. Returns the full bus admittance matrix (i.e. for all buses) and the matrices C{Yf} and C{Yt} which, when multiplied by a complex voltage vector, yield the vector currents injected into each line from the "from" and "to" buses respectively of each line. Does appropriate conversions to p.u. @see: L{makeSbus} @author: <NAME> (PSERC Cornell) @author: <NAME> modified by <NAME> (to use numba) (<EMAIL>) """ ## constants nb = bus.shape[0] ## number of buses nl = branch.shape[0] ## number of lines ## for each branch, compute the elements of the branch admittance matrix where ## ## | If | | Yff Yft | | Vf | ## | | = | | * | | ## | It | | Ytf Ytt | | Vt | ## Ytt, Yff, Yft, Ytf = branch_vectors(branch, nl) ## compute shunt admittance ## if Psh is the real power consumed by the shunt at V = 1.0 p.u. ## and Qsh is the reactive power injected by the shunt at V = 1.0 p.u. ## then Psh - j Qsh = V * conj(Ysh * V) = conj(Ysh) = Gs - j Bs, ## i.e. Ysh = Psh + j Qsh, so ... ## vector of shunt admittances Ysh = (bus[:, GS] + 1j * bus[:, BS]) / baseMVA ## build connection matrices f = np.real(branch[:, F_BUS]).astype(int) ## list of "from" buses t = np.real(branch[:, T_BUS]).astype(int) ## list of "to" buses ## build Yf and Yt such that Yf * V is the vector of complex branch currents injected ## at each branch's "from" bus, and Yt is the same for the "to" bus end i = np.hstack([np.arange(nl), np.arange(nl)]) ## double set of row indices Yf_x = np.hstack([Yff, Yft]) Yt_x = np.hstack([Ytf, Ytt]) col_Y = np.hstack([f, t]) Yf = coo_matrix((Yf_x, (i, col_Y)), (nl, nb)).tocsr() Yt = coo_matrix((Yt_x, (i, col_Y)), (nl, nb)).tocsr() Yx, Yj, Yp, nnz = gen_Ybus(Yf_x, Yt_x, Ysh, col_Y, f, t,
np.argsort(f)
numpy.argsort
#Copyright (C) 2021 <NAME>, <NAME>, University of California, Berkeley #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '../external')) sys.path.append(os.path.join(os.path.dirname(__file__), '../src')) import vtk from vtk.util.numpy_support import vtk_to_numpy, numpy_to_vtk import numpy as np #np.random.seed(42) from vtk_utils.vtk_utils import * from pre_process import * import argparse from datetime import datetime import scipy.sparse as sp import pickle from scipy.sparse.linalg.eigen.arpack import eigsh def build_transform_matrix(image): matrix = np.eye(4) matrix[:-1,:-1] = np.matmul(np.reshape(image.GetDirection(), (3,3)), np.diag(image.GetSpacing())) matrix[:-1,-1] = np.array(image.GetOrigin()) return matrix def map_polydata_coords(poly, displacement, transform, size): coords = vtk_to_numpy(poly.GetPoints().GetData()) coords += displacement coords = np.concatenate((coords,np.ones((coords.shape[0],1))), axis=-1) coords = np.matmul(np.linalg.inv(transform), coords.transpose()).transpose()[:,:3] coords /= np.array(size) return coords def transform_polydata(poly, displacement, transform, size): coords = map_polydata_coords(poly, displacement, transform, size) poly.GetPoints().SetData(numpy_to_vtk(coords)) return poly def get_image_patch(image_py, coords): """ return a patch of the image defined under coords, the coords should be in [0,1]R^3 """ dim_x, dim_y, dim_z = image_py.shape indices = coords * np.array([[dim_x, dim_y, dim_z]]) x1 = np.floor(indices[:,0]).astype(int) y1 = np.floor(indices[:,1]).astype(int) z1 = np.floor(indices[:,2]).astype(int) x2 = np.ceil(indices[:,0]).astype(int) y2 = np.ceil(indices[:,1]).astype(int) z2 = np.ceil(indices[:,2]).astype(int) q11 = image_py[x1, y1, z1] q21 = image_py[x2, y1, z1] q12 = image_py[x1, y2, z1] q22 = image_py[x2, y2, z1] wx = indices[:, 0] - x1 wx2 = x2 - indices[:, 0] lerp_x1 = q21 * wx + q11 * wx2 lerp_x2 = q12 * wx + q22 * wx2 wy = indices[:, 1] - y1 wy2 = y2 - indices[:, 1] lerp_y1 = lerp_x2 * wy + lerp_x1 * wy2 q112 = image_py[x1, y1, z2] q212 = image_py[x2, y1, z2] q122 = image_py[x1, y2, z2] q222 = image_py[x2, y2, z2] lerp_x12 = q212 * wx + q112 * wx2 lerp_x22 = q122 * wx + q222 * wx2 lerp_y12 = lerp_x22 * wy + lerp_x12 * wy2 wz = indices[:, 2] - z1 wz2 = z2 - indices[:,2] lerp_z = lerp_y12 * wz + lerp_y1 * wz2 return lerp_z def make_grid_vtk(ctrl_points, diagonal=True): # assume equal number of control points along each dim num_pts = int(round(len(ctrl_points)**(1/3))) # points grid = vtk.vtkPolyData() vtk_points = vtk.vtkPoints() vtk_points.SetData(numpy_to_vtk(ctrl_points)) grid.SetPoints(vtk_points) # edges lines = vtk.vtkCellArray() for i in range(num_pts): for j in range(num_pts): for k in range(num_pts-1): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append(i*num_pts*num_pts+j*num_pts +k+1) if diagonal: if j<num_pts-1: ids.append(i*num_pts*num_pts+(j+1)*num_pts +k+1) if i < num_pts-1: ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k+1) if i >0: ids.append((i-1)*num_pts*num_pts+(j+1)*num_pts +k+1) if j>0: ids.append(i*num_pts*num_pts+(j-1)*num_pts +k+1) if i < num_pts-1: ids.append((i+1)*num_pts*num_pts+(j-1)*num_pts +k+1) if i >0: ids.append((i-1)*num_pts*num_pts+(j-1)*num_pts +k+1) #if i<num_pts-1: # ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) for i in range(num_pts): for j in range(num_pts-1): for k in range(num_pts): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append(i*num_pts*num_pts+(j+1)*num_pts +k) if diagonal: if i<num_pts-1: ids.append((i+1)*num_pts*num_pts+(j+1)*num_pts +k) if i>0: ids.append((i-1)*num_pts*num_pts+(j+1)*num_pts +k) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) for i in range(num_pts-1): for j in range(num_pts): for k in range(num_pts): id1 = i*num_pts*num_pts+j*num_pts +k ids = [] ids.append((i+1)*num_pts*num_pts+j*num_pts +k) if diagonal: if k<num_pts-1: ids.append((i+1)*num_pts*num_pts+j*num_pts +k+1) if k>0: ids.append((i+1)*num_pts*num_pts+j*num_pts +k-1) for id_p in ids: line = vtk.vtkLine() line.GetPointIds().SetId(0, id1) line.GetPointIds().SetId(1, id_p) lines.InsertNextCell(line) grid.SetLines(lines) return grid def make_grid(num_pts, bounds, diagonal=True): # compute bounding box of the template min_bound, max_bound = bounds # create control points x = np.linspace(min_bound[0], max_bound[0], num_pts, endpoint=True) y = np.linspace(min_bound[1], max_bound[1], num_pts, endpoint=True) z = np.linspace(min_bound[2], max_bound[2], num_pts, endpoint=True) # create vtk polydata u, v, w =
np.meshgrid(x, y, z, indexing='ij')
numpy.meshgrid
import math from collections import defaultdict import numpy as np import scipy.io as scio import json import pathlib from tqdm import tqdm from datetime import datetime from pipeline import lab from pipeline import experiment from pipeline import ephys from pipeline import histology from pipeline import psth ''' Notes: - export includes behavior for trials without ephys data. how to handle? if exclude, this means trial indices will be non-contiguous w/r/t database if include, this means .mat cell arrays will vary by shape and need handling locally. - Photostim Data (task_stimulation): - Experimental data doesn't contain actual start/end/power times; Start is captured per trial with power/duration modelled as session parameters. This implies that power+off time in export data are synthetic. ''' def mkfilename(insert_key): ''' create a filename for the given insertion key. filename will be of the format map-export_h2o_YYYYMMDD_HHMMSS_SN_PN.mat where: - h2o: water restriction number - YYYYMMDD_HHMMSS: session recording datetime - SN: session number for this subject - PN: probe number for this session ''' fvars = ((lab.WaterRestriction * experiment.Session.proj(session_datetime="cast(concat(session_date, ' ', session_time) as datetime)") * ephys.ProbeInsertion) & insert_key).fetch1() return 'map-export_{}_{}_s{}_p{}.mat'.format( fvars['water_restriction_number'], fvars['session_datetime'].strftime('%Y%m%d_%H%M%S'), fvars['session'], fvars['insertion_number']) def export_recording(insert_keys, output_dir='./', filename=None, overwrite=False): ''' Export a 'recording' (or a list of recording) (probe specific data + related events) to a file. Parameters: - insert_keys: one or a list of ephys.ProbeInsertion.primary_key currently: {'subject_id', 'session', 'insertion_number'}) - output_dir: directory to save the file at (default to be the current working directory) - filename: an optional output file path string. If not provided, filename will be autogenerated using the 'mkfilename' function. Note: if exporting a list of probe keys, filename will be auto-generated ''' if not isinstance(insert_keys, list): _export_recording(insert_keys, output_dir=output_dir, filename=filename, overwrite=overwrite) else: filename = None for insert_key in insert_keys: try: _export_recording(insert_key, output_dir=output_dir, filename=filename, overwrite=overwrite) except Exception as e: print(str(e)) pass def _export_recording(insert_key, output_dir='./', filename=None, overwrite=False): ''' Export a 'recording' (probe specific data + related events) to a file. Parameters: - insert_key: an ephys.ProbeInsertion.primary_key currently: {'subject_id', 'session', 'insertion_number'}) - output_dir: directory to save the file at (default to be the current working directory) - filename: an optional output file path string. If not provided, filename will be autogenerated using the 'mkfilename' function. ''' if filename is None: filename = mkfilename(insert_key) filepath = pathlib.Path(output_dir) / filename if filepath.exists() and not overwrite: print('{} already exists, skipping...'.format(filepath)) return print('exporting {} to {}'.format(insert_key, filepath)) print('fetching spike/behavior data') insertion = (ephys.ProbeInsertion.InsertionLocation & insert_key).fetch1() units = (ephys.Unit & insert_key).fetch() trial_spikes = (ephys.Unit.TrialSpikes & insert_key).fetch(order_by='trial asc') behav = (experiment.BehaviorTrial & insert_key).fetch(order_by='trial asc') trials = behav['trial'] exports = ['neuron_single_units', 'neuron_unit_info', 'behavior_report', 'behavior_early_report', 'behavior_lick_times', 'task_trial_type', 'task_stimulation', 'task_cue_time'] edata = {k: None for k in exports} print('reshaping/processing for export') # neuron_single_units # ------------------- # [[u0t0.spikes, ..., u0tN.spikes], ..., [uNt0.spikes, ..., uNtN.spikes]] print('... neuron_single_units:', end='') _su = defaultdict(list) ts = trial_spikes[['unit', 'trial', 'spike_times']] for u, t in ((u, t) for t in trials for u in units['unit']): ud = ts[np.logical_and(ts['unit'] == u, ts['trial'] == t)] if ud: _su[u].append(ud['spike_times'][0]) else: _su[u].append(np.array([])) ndarray_object = np.empty((len(_su.keys()), 1), dtype=np.object) for idx, i in enumerate(sorted(_su.keys())): ndarray_object[idx, 0] = np.array(_su[i], ndmin=2).T edata['neuron_single_units'] = ndarray_object print('ok.') # neuron_unit_info # ---------------- # # [[depth_in_um, cell_type, recording_location] ...] print('... neuron_unit_info:', end='') dv = float(insertion['depth']) if insertion['depth'] else np.nan loc = (ephys.ProbeInsertion & insert_key).aggr(ephys.ProbeInsertion.RecordableBrainRegion.proj( brain_region='CONCAT(hemisphere, " ", brain_area)'), brain_regions='GROUP_CONCAT(brain_region SEPARATOR ", ")').fetch1('brain_regions') cell_types = {u['unit']: u['cell_type'] for u in (ephys.UnitCellType & insert_key).fetch(as_dict=True)} _ui = [] for u in units: typ = cell_types[u['unit']] if u['unit'] in cell_types else 'unknown' _ui.append([u['unit_posy'] + dv, typ, loc]) edata['neuron_unit_info'] = np.array(_ui, dtype='O') print('ok.') # behavior_report # --------------- print('... behavior_report:', end='') behavior_report_map = {'hit': 1, 'miss': 0, 'ignore': 0} # XXX: ignore ok? edata['behavior_report'] = np.array([ behavior_report_map[i] for i in behav['outcome']]) print('ok.') # behavior_early_report # --------------------- print('... behavior_early_report:', end='') early_report_map = {'early': 1, 'no early': 0} edata['behavior_early_report'] = np.array([ early_report_map[i] for i in behav['early_lick']]) print('ok.') # behavior_touch_times # -------------------- behavior_touch_times = None # NOQA no data (see ActionEventType()) # behavior_lick_times # ------------------- print('... behavior_lick_times:', end='') _lt = [] licks = (experiment.ActionEvent() & insert_key & "action_event_type in ('left lick', 'right lick')").fetch() for t in trials: _lt.append([float(i) for i in # decimal -> float licks[licks['trial'] == t]['action_event_time']] if t in licks['trial'] else []) edata['behavior_lick_times'] = np.array(_lt) behavior_whisker_angle = None # NOQA no data behavior_whisker_dist2pol = None # NOQA no data print('ok.') # task_trial_type # --------------- print('... task_trial_type:', end='') task_trial_type_map = {'left': 'l', 'right': 'r'} edata['task_trial_type'] = np.array([ task_trial_type_map[i] for i in behav['trial_instruction']], dtype='O') print('ok.') # task_stimulation # ---------------- print('... task_stimulation:', end='') _ts = [] # [[power, type, on-time, off-time], ...] photostim = (experiment.Photostim * experiment.PhotostimBrainRegion.proj( stim_brain_region='CONCAT(stim_laterality, " ", stim_brain_area)') & insert_key).fetch() photostim_map = {} photostim_dat = {} photostim_keys = ['left ALM', 'right ALM', 'both ALM'] photostim_vals = [1, 2, 6] # XXX: we don't detect duplicate presence of photostim_keys in data for fk, rk in zip(photostim_keys, photostim_vals): i = np.where(photostim['stim_brain_region'] == fk)[0][0] j = photostim[i]['photo_stim'] photostim_map[j] = rk photostim_dat[j] = photostim[i] photostim_ev = (experiment.PhotostimEvent & insert_key).fetch() for t in trials: if t in photostim_ev['trial']: ev = photostim_ev[np.where(photostim_ev['trial'] == t)] ps = photostim_map[ev['photo_stim'][0]] pd = photostim_dat[ev['photo_stim'][0]] _ts.append([float(ev['power']), ps, float(ev['photostim_event_time']), float(ev['photostim_event_time'] + pd['duration'])]) else: _ts.append([0, math.nan, math.nan, math.nan]) edata['task_stimulation'] = np.array(_ts) print('ok.') # task_pole_time # -------------- task_pole_time = None # NOQA no data # task_cue_time # ------------- print('... task_cue_time:', end='') _tct = (experiment.TrialEvent() & {**insert_key, 'trial_event_type': 'go'}).fetch( 'trial_event_time') edata['task_cue_time'] = np.array([float(i) for i in _tct]) print('ok.') # savemat # ------- print('... saving to {}:'.format(filepath), end='') scio.savemat(filepath, edata) print('ok.') def write_to_activity_viewer_json(probe_insertion, filepath=None, per_period=False): probe_insertion = probe_insertion.proj() key = (probe_insertion * lab.WaterRestriction * experiment.Session).proj('session_date', 'water_restriction_number').fetch1() uid = f'{key["subject_id"]}({key["water_restriction_number"]})/{datetime.strftime(key["session_date"], "%m-%d-%Y")}({key["session"]})/{key["insertion_number"]}' units = (ephys.UnitStat * ephys.Unit * lab.ElectrodeConfig.Electrode * histology.ElectrodeCCFPosition.ElectrodePosition & probe_insertion & 'unit_quality != "all"').fetch( 'unit', 'ccf_x', 'ccf_y', 'ccf_z', 'avg_firing_rate', order_by='unit') if len(units[0]) == 0: print('The units in the specified ProbeInsertion do not have CCF data yet') return penetration_group = {'id': uid, 'points': []} for unit, x, y, z, spk_rate in tqdm(zip(*units)): contra_frate, ipsi_frate = (psth.PeriodSelectivity & probe_insertion & f'unit={unit}' & 'period in ("sample", "delay", "response")').fetch( 'contra_firing_rate', 'ipsi_firing_rate') # (red: #FF0000), (blue: #0000FF) if per_period: sel_color = ['#FF0000' if i_rate > c_rate else '#0000FF' for c_rate, i_rate in zip(contra_frate, ipsi_frate)] radius = [
np.mean([c_rate, i_rate])
numpy.mean
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2021 Scipp contributors (https://github.com/scipp) # @file # @author <NAME> import numpy as np import pytest import scipp as sc def test_shape(): a = sc.Variable(value=1) d = sc.Dataset(data={'a': a}) assert d.shape == [] a = sc.Variable(['x'], shape=[2]) b = sc.Variable(['y', 'z'], shape=[3, 4]) d = sc.Dataset(data={'a': a, 'b': b}) assert not bool(set(d.shape) - set([2, 3, 4])) def test_sizes(): d = sc.Dataset(data={'a': sc.scalar(value=1)}) assert d.sizes == {} a = sc.Variable(['x'], shape=[2]) b = sc.Variable(['y', 'z'], shape=[3, 4]) d = sc.Dataset(data={'a': a, 'b': b}) assert d.sizes == {'x': 2, 'y': 3, 'z': 4} def test_create_empty(): d = sc.Dataset() assert len(d) == 0 assert len(d.coords) == 0 assert len(d.dims) == 0 def test_create(): x = sc.Variable(dims=['x'], values=np.arange(3)) y = sc.Variable(dims=['y'], values=np.arange(4)) xy = sc.Variable(dims=['x', 'y'], values=np.arange(12).reshape(3, 4)) d = sc.Dataset({'xy': xy, 'x': x}, coords={'x': x, 'y': y}) assert len(d) == 2 assert sc.identical(d.coords['x'], x) assert sc.identical(d.coords['y'], y) assert sc.identical(d['xy'].data, xy) assert sc.identical(d['x'].data, x) assert set(d.dims) == set(['y', 'x']) def test_create_from_data_array(): var = sc.Variable(dims=['x'], values=np.arange(4)) da = sc.DataArray(var, coords={'x': var, 'aux': var}) d = sc.Dataset({da.name: da}) assert sc.identical(d[''], da) def test_create_from_data_arrays(): var1 = sc.Variable(dims=['x'], values=np.arange(4)) var2 = sc.Variable(dims=['x'], values=np.ones(4)) da1 = sc.DataArray(var1, coords={'x': var1, 'aux': var2}) da2 = sc.DataArray(var1, coords={'x': var1, 'aux': var2}) d = sc.Dataset() d['a'] = da1 d['b'] = da2 assert sc.identical( d, sc.Dataset(data={ 'a': var1, 'b': var1 }, coords={ 'x': var1, 'aux': var2 })) def test_create_from_data_array_and_variable_mix(): var_1 = sc.Variable(dims=['x'], values=np.arange(4)) var_2 = sc.Variable(dims=['x'], values=np.arange(4)) da = sc.DataArray(data=var_1, coords={'x': var_1, 'aux': var_1}) d = sc.Dataset({'array': da, 'variable': var_2}) assert sc.identical(d['array'], da) assert sc.identical(d['variable'].data, var_2) def test_create_with_data_array_and_additional_coords(): var = sc.Variable(dims=['x'], values=np.arange(4)) coord = sc.Variable(dims=['x'], values=np.arange(4)) da = sc.DataArray(data=var, coords={'x': var, 'aux': var}) d = sc.Dataset(data={'array': da}, coords={'y': coord}) da.coords['y'] = coord assert sc.identical(d['array'], da) assert sc.identical(d.coords['y'], coord) assert sc.identical(d.coords['x'], var) assert sc.identical(d.coords['aux'], var) def test_clear(): d = sc.Dataset() d['a'] = sc.Variable(dims=['x'], values=np.arange(3)) assert 'a' in d d.clear() assert len(d) == 0 def test_setitem(): d = sc.Dataset() d['a'] = sc.Variable(1.0) assert len(d) == 1 assert sc.identical(d['a'].data, sc.Variable(1.0)) assert len(d.coords) == 0 def test_del_item(): d = sc.Dataset() d['a'] = sc.Variable(1.0) assert 'a' in d del d['a'] assert 'a' not in d def test_del_item_missing(): d = sc.Dataset() with pytest.raises(RuntimeError): del d['not an item'] def test_coord_setitem(): var = sc.Variable(dims=['x'], values=np.arange(4)) d = sc.Dataset({'a': var}, coords={'x': var}) with pytest.raises(RuntimeError): d['x', 2:3].coords['y'] = sc.Variable(1.0) assert 'y' not in d.coords d.coords['y'] = sc.Variable(1.0) assert len(d) == 1 assert len(d.coords) == 2 assert sc.identical(d.coords['y'], sc.Variable(1.0)) def test_contains_coord(): d = sc.Dataset() assert 'x' not in d.coords d.coords['x'] = sc.Variable(1.0) assert 'x' in d.coords def test_coords_keys(): d = sc.Dataset() d.coords['x'] = sc.Variable(1.0) assert len(d.coords.keys()) == 1 assert 'x' in d.coords.keys() def test_slice_item(): d = sc.Dataset( coords={'x': sc.Variable(dims=['x'], values=np.arange(4, 8))}) d['a'] = sc.Variable(dims=['x'], values=np.arange(4)) assert sc.identical(d['a']['x', 2:4].data, sc.Variable(dims=['x'], values=np.arange(2, 4))) assert sc.identical(d['a']['x', 2:4].coords['x'], sc.Variable(dims=['x'], values=np.arange(6, 8))) def test_set_item_slice_from_numpy(): d = sc.Dataset( coords={'x': sc.Variable(dims=['x'], values=np.arange(4, 8))}) d['a'] = sc.Variable(dims=['x'], values=np.arange(4)) d['a']['x', 2:4] = np.arange(2) assert sc.identical(d['a'].data, sc.Variable(dims=['x'], values=np.array([0, 1, 0, 1]))) def test_set_item_slice_with_variances_from_numpy(): d = sc.Dataset( coords={'x': sc.Variable(dims=['x'], values=np.arange(4, 8))}) d['a'] = sc.Variable(dims=['x'], values=np.arange(4.0), variances=np.arange(4.0)) d['a']['x', 2:4].values = np.arange(2) d['a']['x', 2:4].variances = np.arange(2, 4) assert np.array_equal(d['a'].values, np.array([0.0, 1.0, 0.0, 1.0])) assert np.array_equal(d['a'].variances, np.array([0.0, 1.0, 2.0, 3.0])) def test_iadd_slice(): d = sc.Dataset( coords={'x': sc.Variable(dims=['x'], values=np.arange(4, 8))}) d['a'] = sc.Variable(dims=['x'], values=np.arange(4)) d['a']['x', 1] += d['a']['x', 2] assert sc.identical(d['a'].data, sc.Variable(dims=['x'], values=np.array([0, 3, 2, 3]))) def test_iadd_range(): d = sc.Dataset( coords={'x': sc.Variable(dims=['x'], values=np.arange(4, 8))}) d['a'] = sc.Variable(dims=['x'], values=np.arange(4)) with pytest.raises(RuntimeError): d['a']['x', 2:4] += d['a']['x', 1:3] d['a']['x', 2:4] += d['a']['x', 2:4] assert sc.identical(d['a'].data, sc.Variable(dims=['x'], values=np.array([0, 1, 4, 6]))) def test_contains(): d = sc.Dataset() assert 'a' not in d d['a'] = sc.Variable(1.0) assert 'a' in d assert 'b' not in d d['b'] = sc.Variable(1.0) assert 'a' in d assert 'b' in d def test_slice(): d = sc.Dataset( { 'a': sc.Variable(dims=['x'], values=np.arange(10.0)), 'b': sc.Variable(1.0) }, coords={'x': sc.Variable(dims=['x'], values=np.arange(10.0))}) expected = sc.Dataset({ 'a': sc.DataArray(1.0 * sc.units.one, attrs={'x': 1.0 * sc.units.one}), 'b': sc.Variable(1.0) }) assert sc.identical(d['x', 1], expected) def test_chained_slicing(): x = sc.Variable(dims=['x'], values=np.arange(11.0)) y = sc.Variable(dims=['y'], values=np.arange(11.0)) z = sc.Variable(dims=['z'], values=np.arange(11.0)) d = sc.Dataset( { 'a': sc.Variable(dims=['z', 'y', 'x'], values=np.arange(1000.0).reshape(10, 10, 10)), 'b': sc.Variable(dims=['x', 'z'], values=np.arange(0.0, 10.0, 0.1).reshape(10, 10)) }, coords={ 'x': x, 'y': y, 'z': z }) expected = sc.Dataset() expected['a'] = sc.Variable(dims=['y'], values=np.arange(501.0, 600.0, 10.0)) expected['b'] = sc.Variable(1.5) expected['a'].attrs['x'] = x['x', 1:3] expected['b'].attrs['x'] = x['x', 1:3] expected['a'].attrs['z'] = z['z', 5:7] expected['b'].attrs['z'] = z['z', 5:7] expected.coords['y'] = sc.Variable(dims=['y'], values=np.arange(11.0)) assert sc.identical(d['x', 1]['z', 5], expected) def test_coords_view_comparison_operators(): d = sc.Dataset( { 'a': sc.Variable(dims=['x'], values=np.arange(10.0)), 'b': sc.Variable(1.0) }, coords={'x': sc.Variable(dims=['x'], values=np.arange(10.0))}) d1 = sc.Dataset( { 'a': sc.Variable(dims=['x'], values=np.arange(10.0)), 'b': sc.Variable(1.0) }, coords={'x': sc.Variable(dims=['x'], values=np.arange(10.0))}) assert d1['a'].coords == d['a'].coords def test_sum_mean(): d = sc.Dataset( { 'a': sc.Variable(dims=['x', 'y'], values=np.arange(6, dtype=np.int64).reshape(2, 3)), 'b': sc.Variable(dims=['y'], values=np.arange(3, dtype=np.int64)) }, coords={ 'x': sc.Variable(dims=['x'], values=np.arange(2, dtype=np.int64)), 'y': sc.Variable(dims=['y'], values=np.arange(3, dtype=np.int64)), 'l1': sc.Variable(dims=['x', 'y'], values=np.arange(6, dtype=np.int64).reshape(2, 3)), 'l2': sc.Variable(dims=['x'], values=np.arange(2, dtype=np.int64)) }) d_ref = sc.Dataset( { 'a': sc.Variable(dims=['x'], values=np.array([3, 12], dtype=np.int64)), 'b': sc.Variable(3) }, coords={ 'x': sc.Variable(dims=['x'], values=np.arange(2, dtype=np.int64)), 'l2': sc.Variable(dims=['x'], values=np.arange(2, dtype=np.int64)) }) assert sc.identical(sc.sum(d, 'y'), d_ref) assert (sc.mean(d, 'y')['a'].values == [1.0, 4.0]).all() assert sc.mean(d, 'y')['b'].value == 1.0 def test_sum_masked(): d = sc.Dataset({ 'a': sc.Variable(dims=['x'], values=np.array([1, 5, 4, 5, 1], dtype=np.int64)) }) d['a'].masks['m1'] = sc.Variable(dims=['x'], values=np.array( [False, True, False, True, False])) d_ref = sc.Dataset({'a': sc.Variable(np.int64(6))}) result = sc.sum(d, 'x')['a'] assert sc.identical(result, d_ref['a']) def test_sum_all(): da = sc.DataArray(sc.Variable(['x', 'y'], values=np.ones(10).reshape(5, 2))) ds = sc.Dataset({'a': da}) assert sc.identical(sc.sum(da).data, sc.Variable(value=10.0)) assert sc.identical(sc.sum(da), sc.sum(ds)['a']) def test_nansum_masked(): d = sc.Dataset({ 'a': sc.Variable(dims=['x'], values=np.array([1, 5, np.nan, np.nan, 1], dtype=np.float64)) }) d['a'].masks['m1'] = sc.Variable(dims=['x'], values=np.array( [False, True, False, True, False])) d_ref = sc.Dataset({'a': sc.Variable(
np.float64(2)
numpy.float64
import numpy as np for i in range(4,11): print(i) validation_score = np.zeros((1,)) data_nn = np.zeros((1,)) data_em = np.zeros((1,)) for j in range(1,13): data = np.genfromtxt(str(i)+"/simple_validation_"+str(j)+".txt", usecols=(0,1)) data_nn = np.append(data_nn, data[:,0]) data_em = np.append(data_em, data[:,1]) data =
np.abs(data[:,0]-data[:,1])
numpy.abs
from classes import State, Agent, Cell, Transitions, Map from simulation import split_population, get_durations, get_current_state_durations, get_transitions_ids, evaluate from simulation import get_cell_positions, get_cell_attractivities, get_cell_unsafeties, get_transitions, get_p_moves, draw_lognormal import numpy as np from time import time import os, json from pprint import pprint from datetime import datetime CALIBRATION_DIR = os.path.join(*['..', '..', 'calibrations']) if not os.path.isdir(CALIBRATION_DIR): os.makedirs(CALIBRATION_DIR) # FIXED N_AGENT_INFECTED_START = 1000 DAY = datetime(2020, 4, 20) N_PERIODS = 12 N_AGENTS = 700000 AVG_AGENTS_HOME = 2.2 N_HOME_CELLS = int(N_AGENTS / AVG_AGENTS_HOME) PROP_PUBLIC_CELLS = 1 / 70 # there is one public place for 70 people in France N_CELLS = int(N_HOME_CELLS + N_AGENTS * PROP_PUBLIC_CELLS) MEAN_HOSP_T = 10 # irrelevant here MEAN_ICU_T = 18 # irrelevant here split_pop = split_population(N_AGENTS) states = ['healthy', 'asymptomatic', 'asympcont', 'infected', 'hosp', 'icu', 'death', 'recovercont', 'recovered'] states2ids = {state: i for i, state in enumerate(states)} ids2states = {v: k for k, v in states2ids.items()} def get_random_parameters(): pdict = {} """ pdict['n_moves_per_period'] = np.random.choice(np.arange(8, 12)).astype(np.uint16) avg_agent_move = np.random.uniform(1.5, 2.5) pdict['avg_p_move'] = avg_agent_move / pdict['n_moves_per_period'] pdict['dscale'] = np.random.uniform(42, 48) pdict['density_factor'] = np.random.uniform(6, 8) pdict['avg_unsafety'] = np.random.uniform(.8, .9) # scenario where nothing implemented to secure places pdict['avg_attractivity'] = np.random.uniform(.2, .8) pdict['contagiousity_infected'] = np.random.uniform(.5, .9) pdict['contagiousity_asympcont'] = np.random.uniform(0, pdict['contagiousity_infected'] / 2) pdict['contagiousity_recovercont'] = np.random.uniform(0, pdict['contagiousity_infected'] / 2) pdict['mean_infected_t'] = np.random.uniform(4.5, 7.5) pdict['severity_infected'] = np.random.uniform(.6, .75) # the value of quarantine time could be kept after pdict['severity_recovercont'] = np.random.uniform(0, (2/3) * pdict['severity_infected']) pdict['mean_asymptomatic_t'] = np.random.uniform(3.5, 4.5) pdict['n_squares_axis'] = int(np.random.uniform(73, 115)) pdict['prop_cont_factor'] = np.random.uniform(7, 9) """ pdict['n_moves_per_period'] = np.random.choice(np.arange(5, 12)).astype(np.uint16) avg_agent_move = np.random.uniform(1.5, pdict['n_moves_per_period'] - 1) pdict['avg_p_move'] = avg_agent_move / pdict['n_moves_per_period'] pdict['dscale'] = np.random.uniform(.01, 2) pdict['density_factor'] = np.random.uniform(1, 5) pdict['avg_unsafety'] = np.random.uniform(.8, .9) # scenario where nothing implemented to secure places pdict['avg_attractivity'] = np.random.uniform(.2, .8) pdict['contagiousity_infected'] = np.random.uniform(.7, .9) pdict['contagiousity_asympcont'] = np.random.uniform(0, pdict['contagiousity_infected'] / 2) pdict['contagiousity_recovercont'] = np.random.uniform(0, pdict['contagiousity_infected'] / 2) pdict['mean_infected_t'] =
np.random.uniform(4.5, 8)
numpy.random.uniform
from datetime import timedelta import functools import numpy as np import pandas as pd from . import common from . import indexing from . import ops from . import utils from .pycompat import basestring, OrderedDict, zip import xray # only for Dataset and DataArray def as_variable(obj, key=None, strict=True): """Convert an object into an Variable - If the object is already an `Variable`, return it. - If the object is a `DataArray`, return it if `strict=False` or return its variable if `strict=True`. - Otherwise, if the object has 'dims' and 'data' attributes, convert it into a new `Variable`. - If all else fails, attempt to convert the object into an `Variable` by unpacking it into the arguments for `Variable.__init__`. """ # TODO: consider extending this method to automatically handle Iris and # pandas objects. if strict and hasattr(obj, 'variable'): # extract the primary Variable from DataArrays obj = obj.variable if not isinstance(obj, (Variable, xray.DataArray)): if hasattr(obj, 'dims') and hasattr(obj, 'values'): obj = Variable(obj.dims, obj.values, getattr(obj, 'attrs', None), getattr(obj, 'encoding', None)) elif isinstance(obj, tuple): try: obj = Variable(*obj) except TypeError: raise TypeError('cannot convert argument into an Variable') elif utils.is_scalar(obj): obj = Variable([], obj) elif getattr(obj, 'name', None) is not None: obj = Variable(obj.name, obj) elif key is not None: obj = Variable(key, obj) else: raise TypeError('cannot infer Variable dimensions') return obj def _maybe_wrap_data(data): """ Put pandas.Index and numpy.ndarray arguments in adapter objects to ensure they can be indexed properly. NumpyArrayAdapter, PandasIndexAdapter and LazilyIndexedArray should all pass through unmodified. """ if isinstance(data, pd.Index): # check pd.Index first since it may be an ndarray subclass return PandasIndexAdapter(data) if isinstance(data, np.ndarray): return NumpyArrayAdapter(data) return data def _as_compatible_data(data, fastpath=False): """Prepare and wrap data to put in a Variable. - If data does not have the necessary attributes, convert it to ndarray. - If data has dtype=datetime64, ensure that it has ns precision. If it's a pandas.Timestamp, convert it to datetime64. - If data is already a pandas or xray object (other than an Index), just use the values. Finally, wrap it up with an adapter if necessary. """ if fastpath and getattr(data, 'ndim', 0) > 0: # can't use fastpath (yet) for scalars return _maybe_wrap_data(data) if isinstance(data, pd.Index): if isinstance(data, pd.MultiIndex): raise NotImplementedError( 'no support yet for using a pandas.MultiIndex in an ' 'xray.Coordinate') return _maybe_wrap_data(data) if isinstance(data, pd.Timestamp): # TODO: convert, handle datetime objects, too data = np.datetime64(data.value, 'ns') if isinstance(data, timedelta): data = np.timedelta64(getattr(data, 'value', data), 'ns') # don't check for __len__ or __iter__ so as not to cast if data is a numpy # numeric type like np.float32 required = ['dtype', 'shape', 'size', 'ndim'] if (any(not hasattr(data, attr) for attr in required) or isinstance(data, (np.string_, np.datetime64, np.timedelta64))): # data must be ndarray-like data = np.asarray(data) # we don't want nested self-described arrays data = getattr(data, 'values', data) if isinstance(data, np.ma.MaskedArray): mask =
np.ma.getmaskarray(data)
numpy.ma.getmaskarray
import cv2 import numpy as np def convolve(dest, src, i, j, kernel): krows, kcols = kernel.shape srctmp = src[i:i + krows, j:j + kcols] dest[i, j] = (srctmp * kernel[:, :, np.newaxis]).sum(axis=(0, 1)) def execute(): # Load an image img = cv2.imread("sonic.jpg", cv2.IMREAD_ANYCOLOR) rows, cols, channels = img.shape # Kernel size / radius ksize = 100 kradi = ksize // 2 # Create the kernel manually # kernel = np.array([ # [1., 4., 7., 4., 1.], # [4., 16., 26., 16., 4.], # [7., 26., 41., 26., 7.], # [4., 16., 26., 16., 4.], # [1., 4., 7., 4., 1.] # ]) # Creating the kernel with opencv kradi = ksize // 2 sigma = np.float64(kradi) / 2 kernel = cv2.getGaussianKernel(ksize, sigma) kernel = np.repeat(kernel, ksize, axis=1) kernel = kernel * kernel.transpose() kernel = kernel / kernel.sum() # Create a copy with black padding imgpadding =
np.zeros((rows + 2 * kradi, cols + 2 * kradi, channels))
numpy.zeros
#!/usr/bin/env python """Delete/split/merge/... labels in a labelvolume. """ import sys import argparse import os import numpy as np from skimage.measure import label, regionprops from wmem import parse, utils, LabelImage, MaskImage def main(argv): """Delete/split/merge/... labels in a labelvolume.""" parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser = parse.parse_remap_labels(parser) parser = parse.parse_common(parser) args = parser.parse_args() remap_labels( args.inputfile, args.delete_labels, args.delete_files, args.except_files, args.merge_labels, args.merge_files, args.split_labels, args.split_files, args.aux_labelvolume, args.min_labelsize, args.min_segmentsize, args.keep_only_largest, args.conncomp, args.nifti_output, args.nifti_transpose, args.outputfile, args.save_steps, args.protective, ) def remap_labels( image_in, delete_labels=[], delete_files=[], except_files=[], merge_labels=[], merge_files=[], split_labels=[], split_files=[], aux_labelvolume='', min_labelsize=0, min_segmentsize=0, keep_only_largest=False, conncomp=False, nifti_output=False, nifti_transpose=False, outputpath='', save_steps=False, protective=False, ): """Delete/split/merge/... labels in a labelvolume.""" im = utils.get_image(image_in, imtype='Label') mo = LabelImage(outputpath, **im.get_props()) mo.create() # comps = mo.split_path() # root = comps['base'] # filter labels on size # ls_small = utils.filter_on_size(ds_out[:], min_labelsize, False, # save_steps, root, ds_out.name[1:], # outpaths, elsize, axlab)[1] # delete_labels = set(delete_labels) | ls_small # TODO: to LabelImage method # delete labels delete_labelsets(im, mo, delete_labels, delete_files, except_files) # print('writing') # mo.write() # if save_steps: # FIXME! # save_diff(ds_in[:], ds_out[:], 'deleted', outpaths, elsize, axlab) # # split labels # split_labelsets(ds_out, split_labels, split_files, aux_labelvolume, conncomp) # if save_steps: # save_diff(ds_in[:], ds_out[:], 'split', outpaths, elsize, axlab) # # merge labels # merge_labelsets(ds_out, merge_labels, merge_files) # if save_steps: # save_diff(ds_in[:], ds_out[:], 'merged', outpaths, elsize, axlab) # # remove small, non-contiguous segments of labels # if min_segmentsize or keep_only_largest: # filter_segments(ds_out[:], min_segmentsize, keep_only_largest) # if nifti_output: # if nifti_transpose: # ds_out[:] = np.transpose(ds_out[:]) # elsize = elsize[::-1] # axlab = axlab[::-1] # fpath = '{}_{}.nii.gz'.format(root, ds_out.name[1:]) # utils.write_to_nifti(fpath, ds_out[:], elsize) im.close() mo.close() return mo def delete_labelsets(labels_in, labels_out, delete_labels=[], delete_files=[], except_files=[]): """Delete labels from a labelvolume.""" # add labels in delete_files to delete_labels list for delfile in delete_files: delsets = utils.read_labelsets(delfile) dellist = [d for _, dv in delsets.items() for d in list(dv)] delete_labels = set(dellist) | set(delete_labels) if delete_labels: # remove labels that are in except files for excfile in except_files: excsets = utils.read_labelsets(excfile) exclist = [d for _, dv in excsets.items() for d in list(dv)] delete_labels = delete_labels - set(exclist) # delete the labels fw = np.zeros(labels_in.maxlabel + 1, dtype='bool') for dl in delete_labels: fw[dl] = True labels = labels_in.ds[:] mask = np.array(fw)[labels] labels[mask] = 0 labels_out.write(labels) # print('deleting ', delete_labels) # labels = labels_in.forward_map(labelsets={0: delete_labels}, # delete_labelsets=True) # labels_out.write(labels) # labels_out.set_maxlabel() def split_labelsets(labels, split_labels=[], split_files=[], aux_labelvolume='', conncomp=False): """Split labels in a labelvolume.""" for splfile in split_files: splsets = utils.read_labelsets(splfile) spllist = [d for _, sv in splsets.items() for d in list(sv)] split_labels = spllist + split_labels if split_labels: print('splitting ', split_labels) ulabels = np.unique(labels) maxlabel = np.amax(ulabels) if aux_labelvolume: aux_labels = read_vol(datadir, dset_name, aux_labelvolume, inlayout)[0] if not conncomp: # get the labels from different labelvolume for sl in split_labels: mask = labels == sl aux_ulabels = np.trim_zeros(np.unique(aux_labels[mask])) print(sl, aux_ulabels) for au in aux_ulabels: if au == sl: continue aux_mask = aux_labels == au if au in ulabels: maxlabel += 1 au = maxlabel labels[aux_mask] = au else: # this relabeling method requires that labels have been disconnected manually if aux_labelvolume: rp = regionprops(aux_labels, labels) print(len(rp)) else: rp = regionprops(labels) rp = [prop for prop in rp if prop.label in split_labels] for prop in rp: print(prop.label) z, y, x, Z, Y, X = tuple(prop.bbox) mask = prop.image split_label, num = label(mask, return_num=True) imregion = labels[z:Z, y:Y, x:X] if aux_labelvolume: uimregion = np.unique(prop.intensity_image[prop.image]) nullmask = prop.image for uim in uimregion: nullmask = nullmask | (imregion == uim) nullmask = nullmask - prop.image imregion[nullmask] = 0 imregion[mask] = split_label[mask] + maxlabel maxlabel += num return labels def merge_labelsets(labels, merge_labels=[], merge_files=[]): """Merge labels in a labelvolume.""" if merge_files: ulabels = np.unique(labels) fw = [l if l in ulabels else 0 for l in range(0, np.amax(ulabels) + 1)] for merfile in merge_files: mersets = utils.read_labelsets(merfile) print('merging ', mersets) labels[:] = utils.forward_map(np.array(fw), labels[:], mersets) if merge_labels: merge_labels = np.reshape(np.array(merge_labels), (-1, 2)) print('merging ', merge_labels) ulabels = np.unique(labels) fw = [l if l in ulabels else 0 for l in range(0, np.amax(ulabels) + 1)] for ml in merge_labels: fw[ml[1]] = ml[0] labels[:] = np.array(fw)[labels[:]] return labels, fw def filter_segments(labels, min_segmentsize=0, keep_only_largest=False): """Remove small, non-contiguous segments of labels.""" rp = regionprops(labels) for prop in rp: z, y, x, Z, Y, X = tuple(prop.bbox) mask = prop.image split_label = label(mask, return_num=True)[0] counts = np.bincount(split_label.ravel()) if keep_only_largest: if len(counts) > 2: largest = np.argmax(counts[1:]) + 1 imregion = labels[z:Z, y:Y, x:X] nullmask = np.zeros_like(prop.image) for i in range(1, len(counts)): if (i != largest): nullmask = nullmask | (split_label == i) elif min_segmentsize: nulllabels = [l for sl in
np.argwhere(counts < min_segmentsize)
numpy.argwhere
#================================================================================================================ #---------------------------------------------------------------------------------------------------------------- # SIMPLE LINEAR REGRESSION #---------------------------------------------------------------------------------------------------------------- #================================================================================================================ #Simple linear regression is applied to stock data, where the x values are time and y values are the stock closing price. #This is not an ideal application of simple linear regression, but it suffices to be a good experiment. import math import numpy as np import matplotlib.pyplot as plt from matplotlib import style import pandas import datetime #Quandl for getting stock data import quandl #for plotting plt.style.use('ggplot') class CustomLinearRegression: def __init__(self): self.intercept = 0 self.slope = 0 #arithmetic mean def am(self, arr): tot = 0.0 for i in arr: tot+= i return tot/len(arr) #finding the slope in best fit line def best_fit(self, dimOne, dimTwo): self.slope = ( (self.am(dimOne) * self.am(dimTwo) ) - self.am(dimOne*dimTwo) ) / ( self.am(dimOne)**2 - self.am(dimOne**2) ) #formula for finding slope return self.slope #finding the best fit intercept def y_intercept(self, dimOne ,dimTwo): self.intercept = self.am( dimTwo ) - ( self.slope * self.am(dimOne) ) return self.intercept #predict for future values based on model def predict(self, ip): ip =
np.array(ip)
numpy.array
from __future__ import division import numpy as np import matplotlib.pyplot as plt import sys import scipy unit_M = 1 unit_D = 1 unit_E = 1 unit_t = 1 e_charge = 1 initialized = False def __init__(): """ Initialize module """ pass def init(unit_M_, unit_D_, unit_E_): """ Initialize units """ global initialized global unit_M, unit_D, unit_E, unit_t, e_charge unit_M = unit_M_ unit_D = unit_D_ unit_E = unit_E_ unit_t = np.sqrt(unit_M*unit_D**2/unit_E) # in s #Charge through Gaussian units: unit_Q = np.sqrt(unit_E*1e7*unit_D*1e2) # Coulombs unit_Qe = unit_Q/4.8032068e-10 # e, unit charge in units of elementary charge e e_charge = 1/unit_Qe # electron charge in units of unit_Q initialized = True def phi_1(x): """Function phi(x) for x < 1 """ if len(np.where(x >= 1)[0]) > 0: raise ValueError("argument of phi_1 must be x < 1") A = 1 - x**2 return -1/A + A**(-1.5)*np.log((1 + A**0.5)/x) def phi_2(x): """Function phi(x) for x > 1 """ if len(np.where(x <= 1)[0]) > 0: raise ValueError("argument of phi_2 must be x > 1") B = x**2 - 1 return 1/B - B**(-1.5) * np.arctan(np.sqrt(B)) def phi_x(x): """ Function phi(x) from <NAME>., et.al. Phys. Rev. B 55.24 (1997): 16249. Equations (89)-(90) """ res = np.zeros(x.shape) g1_ind = np.where(x > 1)[0] l1_ind = np.where(x < 1)[0] eq1_ind = np.where(x == 1)[0] res[l1_ind] = phi_1(x[l1_ind]) res[g1_ind] = phi_2(x[g1_ind]) res[eq1_ind] = phi_1(0.9999)*np.ones(eq1_ind.shape) return res def w_theta(N_theta, T, k): """ Calculate scattering rate vs angle w(\theta) \param N_theta number of theta points spanning [0, 2\pi] \param T temperature in hoomd units (K) \param k electron wavevector in hoomd units (1/micron) return w(theta) and theta arrays, each of size N_theta Only polarization part of the interaction is taken. Pressing field leads to forward scattering, so we want to ignore it. <NAME>., et.al. Phys. Rev. B 55.24 (1997): 16249. Equations (89)-(90) """ if not initialized: raise RuntimeError('RSM module not initialized') #theta_arr = np.linspace(2*np.pi/N_theta, 2*np.pi*(1 - 1/N_theta), N_theta) theta_arr = np.linspace(0, 2*np.pi, N_theta) #prm = 1.057 #permittivity of helium prm = 1.06 m_e = 1 hbar = 1.0545726e-27/(unit_E*1e7)/unit_t alpha = 0.37*1e-3/unit_E*unit_D**2 # 0.37 erg/cm^2 Lambda_0 = 0.25*e_charge**2*(prm - 1)/(prm + 1) lmbd = hbar**2/m_e/Lambda_0 q_arr = k*np.sqrt(2*(1 - np.cos(theta_arr))) w_arr_res = np.zeros(theta_arr.shape) # exclude theta=0 and 2\pi to avoid dividing by zero in calculating w(\theta) w_arr_res[1:-1] = T*hbar/(8*np.pi*alpha*m_e*lmbd**2)*(q_arr[1:-1]*phi_x(0.5*q_arr[1:-1]*lmbd))**2 return w_arr_res, theta_arr def compute_w_k(k_arr, T, N_theta): """ Compute scattering probability for each k from k_arr \param T temperature in hoomd units \param N_theta number of theta-points return w_k_res - total scattering rate vs k (array of size N_k) w_k_theta - 2D array, each row w_k_theta[i,:] is w(theta) distribution for k_i """ if not initialized: raise RuntimeError('RSM module not initialized') N_k = len(k_arr) w_k_res =
np.zeros(k_arr.shape)
numpy.zeros
""" this code calculate the F1 loss of the segmentation: F1 score = 2*TP/(FN+FP+2*TP) """ import numpy as np def calculate_f1_score_cpu(prediction, ground_truth, strict=False): # this is the patient level acc function. # the input for prediction and ground_truth must be the same, and the shape should be [height, width, thickness] # the ground_truth should in range 0 and 1 if np.max(prediction) > 1 or np.min(prediction) < 0: print("prediction is not probabilistic distribution") exit(0) if not strict: ground_truth = np.array(ground_truth > 0, 'float32') TP = np.sum(prediction * ground_truth) FN = np.sum((1 - prediction) * ground_truth) FP = np.sum(prediction) - TP else: difference = prediction - ground_truth TP = np.sum(prediction) - np.sum(np.array(difference > 0, 'float32') * difference) FN = np.sum(np.array(-difference > 0, 'float32') * (-difference)) FP = np.sum(np.array(difference > 0, 'float32') * difference) eps=1e-6 F1_score = (2*TP+eps)/(FN+FP+2*TP+eps) Precision=(TP+eps)/(TP+FP+eps) Recall=(TP+eps)/(TP+FN+eps) return Precision, Recall, F1_score def strict_f1(prediction, ground_truth): # this is the patient level acc function. # the input for prediction and ground_truth must be the same, and the shape should be [height, width, thickness] # the ground_truth should in range 0 and 1 height = np.shape(ground_truth)[0] width = np.shape(ground_truth)[1] if not (width == np.shape(prediction)[1] and height == np.shape(prediction)[0]): print('shape error') exit(0) if
np.max(prediction)
numpy.max
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 14 09:01:45 2020 @author: <NAME> """ import numpy as np def extract_fridges(tf_transf,frequency_scales,penalty=2.0,num_ridges=1,BW=25): # tracks frequency ridges by performing forward-backward # ridge tracking algorithm: # Arguments: tf_transf - complex time frequency representation # fs - frequency scales to calculate distance penalty term # penalty - integer value to penalise frequency jumps # num_ridges - number of ridges to be calculated # BW - decides how many bins will be subtracted around max # energy frequency bins when extracting multiple ridges (2 is standard for syncrosqueezed transform) # outputs: max_Energy (vector) along time axis # ridge_idx - indexes for maximum frequency ridge(s) # fridge - frequencies traccking maximum frequency ridge(s) def generate_penalty_matrix(frequency_scales,penalty): # penalty matrix describes all potential penalties of jumping from current frequency # (first axis) to one or several new frequencies (second axis) # Arguments: frequency_scales - Frequency scale vector from time-freq transform # penalty - user set penalty for freqency jumps (standard =1.0) # outputs: dist_matrix -penalty matrix # freq_scale=frequency_scales.copy() dist_matrix= np.square(np.subtract.outer(freq_scale,freq_scale))*penalty return dist_matrix def calculate_accumulated_penalty_energy_forwards(Energy_to_track,penalty_matrix): # Calculates acummulated penalty in forward direction (t=0...end) # Arguments: Energy - squared abs time-frequency transform # penalty_matrix - pre calculated penalty for all potential jumps between two frequencies # outputs: penalised_energy - new energy with added forward penalty # ridge_idx - calculated initial ridge with only forward penalty penalised_energy=Energy_to_track.copy() for idx_time in range(1,np.shape(penalised_energy)[1],1): for idx_freq in range(0,np.shape(penalised_energy)[0],1): penalised_energy[idx_freq,idx_time]+=
np.amin(penalised_energy[:,idx_time-1]+penalty_matrix[idx_freq,:])
numpy.amin
import io import numpy as np from tqdm import tqdm from scipy import linalg from Evaluator import Evaluator from prettytable import PrettyTable class AnalogyEvaluator(Evaluator): def preprocess(self,vectors: dict): print("Preprocessing the vector file for Analogy test") words=list(vectors.keys()) vocab_size = len(words) vocab = {w: idx for idx, w in enumerate(words)} ivocab = {idx: w for idx, w in enumerate(words)} vector_dim = len(vectors[ivocab[0]]) W_norm = np.zeros((vocab_size, vector_dim)) for word, v in vectors.items(): if word == '<unk>': continue vec = np.array(v) d = (np.sum((vec) ** 2, ) ** (0.5)) norm = (vec.T / d).T W_norm[vocab[word], :] = norm return (W_norm, vocab, ivocab, words) def distance(self,W, vocab, input_term): vecs = {} for idx, term in enumerate(input_term): vecs[idx] = W[vocab[term], :] vec_result = vecs[1] - vecs[0] + vecs[2] vec_norm = np.zeros(vec_result.shape) d = (np.sum(vec_result ** 2,) ** (0.5)) vec_norm = (vec_result.T / d).T dist = np.dot(W, vec_norm.T) for term in input_term: index = vocab[term] dist[index] = -np.Inf a = np.argsort(-dist)[:20] return a,dist def cosmul(self, W, vocab, input_term): vecs = {} for idx, term in enumerate(input_term): vecs[idx] = W[vocab[term], :] A =
np.zeros(vecs[0].shape)
numpy.zeros
""" Testing code. Updated BSM February 2017 """ import sys import os import numpy as np import pytest from pytest import approx from numpy.testing import assert_allclose from scipy.spatial.distance import cdist from pykrige import kriging_tools as kt from pykrige import core from pykrige import variogram_models from pykrige.ok import OrdinaryKriging from pykrige.uk import UniversalKriging from pykrige.ok3d import OrdinaryKriging3D from pykrige.uk3d import UniversalKriging3D BASE_DIR = os.path.abspath(os.path.dirname(__file__)) allclose_pars = {"rtol": 1e-05, "atol": 1e-08} @pytest.fixture def validation_ref(): data = np.genfromtxt(os.path.join(BASE_DIR, "test_data/test_data.txt")) ok_test_answer, ok_test_gridx, ok_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test1_answer.asc"), footer=2 ) uk_test_answer, uk_test_gridx, uk_test_gridy, cellsize, no_data = kt.read_asc_grid( os.path.join(BASE_DIR, "test_data/test2_answer.asc"), footer=2 ) return ( data, (ok_test_answer, ok_test_gridx, ok_test_gridy), (uk_test_answer, uk_test_gridx, uk_test_gridy), ) @pytest.fixture def sample_data_2d(): data = np.array( [ [0.3, 1.2, 0.47], [1.9, 0.6, 0.56], [1.1, 3.2, 0.74], [3.3, 4.4, 1.47], [4.7, 3.8, 1.74], ] ) gridx = np.arange(0.0, 6.0, 1.0) gridx_2 = np.arange(0.0, 5.5, 0.5) gridy = np.arange(0.0, 5.5, 0.5) xi, yi = np.meshgrid(gridx, gridy) mask =
np.array(xi == yi)
numpy.array
#!/usr/bin/env python3 # -*- coding = utf-8 -*- import os import random import cv2 import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.models import load_model from testing.image import get_testing_image, create_displayable_test_output from testing.process import postprocess_output from preprocessing.dataset import AgricultureVisionDataset from model.loss import dice_loss_2d, surface_channel_loss_2d # Load the dataset and model. dataset = AgricultureVisionDataset() dataset.construct() model = load_model(os.path.join(os.path.dirname(os.path.dirname(__file__)), 'logs/save/Model-Dice-SCL-Dice-60.hdf5'), custom_objects = {'dice_loss_2d': dice_loss_2d}) def draw_segmentation_map(main_image, predictions): """Draws the segmentation map onto the main image.""" # Dictionary of colors. _COLORS = {5: (0, 38, 255), 2: (0, 128, 255), 3: (50, 168, 82), 1: (234, 255, 0), 0: (13, 255, 174), 4: (200, 123, 201)} # Convert the main image into a usable "display" image. if len(main_image) >= 4: main_image =
np.squeeze(main_image)
numpy.squeeze
import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from scipy.signal import find_peaks from scipy.constants import speed_of_light, atomic_mass, Boltzmann from matplotlib.ticker import FormatStrFormatter from lmfit.models import GaussianModel, VoigtModel, LinearModel from scipy.integrate import simps, quad from cherab.core.atomic import deuterium, carbon from cherab.openadas import OpenADAS import matplotlib from ProcessingFunction import * adas = OpenADAS(permit_extrapolation=True) SimName = 'file_9209_CX' #Simulation result fileBE = 'Data/Outputs/%s.npy' % (SimName[:-2]+'BE') #_18 dataBE = np.load(fileBE) fileCX = 'Data/Outputs/%s.npy' % SimName #_18 dataCX = np.load(fileCX) wavelengthBE = dataBE[0,:,:] signalBE = dataBE[1,:,:] wavelengthCX = dataCX[0,:,:] signalCX = dataCX[1,:,:] signal_variance = dataCX[2,:,:] # power filePower = 'Data/Outputs/%sPower.npy' % SimName dataPower = np.squeeze(np.load(filePower)) ###### Input parameters inputfile = np.load('Data/Inputs/InputData%s.npz' %SimName) #velocity input indata = inputfile['velocity'] inR = indata[1,:] inV = indata[0,:] # Temperature indata = inputfile['temperature'] inRT = indata[1,:] inT = indata[0,:] #carbon density input density_input = inputfile['density'] E_density_input = inputfile['edensity']# second axis is Fiber_to_R #E_density_input = np.load('Data/Fibers/EDensity2000.npy') D_density_input = inputfile['ddensity'] #E_density_input = D_density_input inRden = density_input [1,:] inden = density_input [0,:] #Zeff Zeff = inputfile['zeff'] Bfield = inputfile['b_field'] #Beam density Beam_n = np.load('Data/Inputs/BeamDensity%s.npy' %SimName) ### geometrical factros paramfile = np.load('Data/Inputs/LOS%s.npz' %SimName) #LOS radius and distance LOS_r = paramfile['r_at_beam_save'] LOS_area = np.pi*LOS_r**2 D_to_Beam = paramfile['d_to_beam'] #print(D_to_Beam) #LOS and Beam angle AngleLB = paramfile['angle_LB'] # fiber acceptance angle''' Ac_angle = paramfile['ac_angle'] # vertical cos factor cosFV = paramfile['cos_ver'] cosFH = paramfile['cos_hor'] #Fiber number to R mapping Fiber_to_R = paramfile['R_beam'] ### #color palette palette = plt.get_cmap('plasma') #style plt.style.use('seaborn-darkgrid') ######multiple line plot ### fitting peaks peak_wave_fit = [] peak_int_fit = [] FWHM = [] #integration Integrated_intCX = [] integrated_BE_2 =
np.empty((0,3),float)
numpy.empty
####################################################################### # Config file: parameters for Wetropolis full system ####################################################################### ''' Wetropolis v1: fixed parameters -- general -- river (including ensembles) -- canals -- reservoir -- moor (groundwater model) ''' import numpy as np from init_cond import init_cond_wetro0 ########################################## ## Output directory ########################################## outdir = '/config#3' ########################################## ## Ensembles ########################################## N = 10 #no. of ensemble members ########################################## ## General ########################################## g = 9.81 # acceleration of gravity cfl = 0.5 # CFL number for stable time-stepping Cf = (2/3)**(3/2) # constant in weir relations ########################################## ## Time ########################################## tn = 0 wd = 10 #wetropolis day = 10s tmax = 50 Nmeas = int(tmax/wd) ########################################## ## River ########################################## Neq = 2 # U = (A, Au) for river dynamics ### cross-section channel geometry hr = 0.015 # depth river wr = 0.05 # width hf = 0.005 # flood plain depth # hc = 0.02 # depth city hc = hr+hf # depth city wf = 0.1 # width flood plain wc = 0.1 # width city tana = hf/wf # flood plain angle ### spatial coordinate and lengths LR1 = 3.8 # length upto city region LR2 = 4.2 # length from end of city region LR3 = 5.2 # total length of channel LR11 = 3.6 # transition zone from fp to c [LR11, LR1] LR22 = 4.4 # transition zone from c to fp [LR2, LR22] tr = 50 # severity of transition Nk = int(25*LR3) # number of cells on computational mesh (25 times the domain length) ### coupling locations s_r = 0.932 #reservoir influx loc s_m = 2.038 #moor influx loc ### model parameters dbds = -0.01 # mean slope river bed Cm = 0.02 # Manning coefficient ### INITIAL and BOUNDARY CONDITIONS ic = init_cond_wetro0 # Periodic BC = 1 # Neumann BC = 2 # specified inflow BC = 3 BC = 3 ########################################## ## Canals ########################################## Lc3 = 1.724 # m distance to lock 3 Lc2 = 3.608 # m distance to lock 2 Lc1 = 3.858 # distance along canal of first lock in m Lsec3 = Lc3 # length third canal section in m Lsec2 = Lc2-Lc3 # length second canal section in m Lsec1 = Lc1-Lc2 # length first canal section wc1 = 0.02 # width of canal in m Pw3 = 0.0125 # depth weir in canal section 3 Pw2 = 0.0125 # depth weir in canal section 2 Pw1 = 0.01 # depth weir in canal section 1 canalmaxdepth = 0.02 Hcc3 = 0.06 # dike height along canal segment 2, canal max depth 0.0175m before overflow in river Hcc2 = 0.04 # dike height along canal segment 2, canal max depth 0.0175m before overflow in river Hcc1 = 0.021 # dike height along canal segment 1, canal max depth 0.0175m before overflow in river ########################################## ## Reservoir ########################################## gam_r = 0.2 # proportion of water entering canal from reservoir (unknown) ### Geometry wres = 0.123 # m Lres = 0.293 # length reservoir in m Pwr = 0.10 # weir height ########################################## ## Moor ########################################## gam_m = 0.0 # proportion of water entering canal from moor (zero in physical model) hr0 = 0.0135 # initial depth m? ### Geometry Ly = 0.925 # length in m wv = 0.095 # width Hele-Shaw moor cell in m ### Model parameters sigm = 0.8 # fraction of moor pores filled sigm0 = 0.1 # fraction of water remaining in moor pores after water has seeped out sigme = sigm # mpor = 0.3 # porosity moor nu = 10**(-6) # viscosity water m^2/s kperm = 10**(-8) # permeability alph = kperm/(mpor*nu*sigm) ### connecting intermdeiate (canal) channel between moor and river channel hcm = 0.0 # initial depth Pwm = 0.02 # weir height Lc = 0.1 # length ### Grid Ny = 10 # grid res: no. of cells ########################################## ## Rainfall ########################################## Rain0 = 1.5*0.00013656 # This is r0 Eq. 17 in HESS article rainfac =
np.array([0,1,2,4,8,9,18])
numpy.array
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Script for running PPCA on the emotion dataset and generating plots. The goal of this analysis is to understand which dimensions of the emotion label space are significant via Principal Preserved Component Analysis (Cowen et al., 2019). PPCA seeks to identify dimensions of the latent space that maximally covary across two datasets (in our case, randomly split raters). Reference: <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2019). The primacy of categories in the recognition of 12 emotions in speech prosody across two cultures. Nature human behaviour, 3(4), 369. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import os import random from absl import app from absl import flags import altair as alt import matplotlib.pyplot as plt import numpy as np from numpy import linalg as LA import pandas as pd from scipy.stats import spearmanr from scipy.stats import wilcoxon import seaborn as sns from sklearn.manifold import TSNE from statsmodels.stats.multitest import multipletests sns.set_style("whitegrid") plt.rcParams["xtick.major.size"] = 0 plt.rcParams["ytick.major.size"] = 0 plt.rcParams["figure.dpi"] = 1000 FLAGS = flags.FLAGS flags.DEFINE_string("data", "data/full_dataset", "Directory containing full dataset.") flags.DEFINE_string("plot_dir", "plots", "Directory for saving plots.") flags.DEFINE_string("emotion_file", "data/emotions.txt", "File containing list of emotions.") flags.DEFINE_string("rgb_colors", "plots/colors.tsv", "File containing list of distinctive rgb colors.") flags.DEFINE_string( "emotion_color_order", "plots/color_order.txt", "File containing emotions in order for coloring based on FLAGS.rgb_colors.") def PPCA(x, y): """Function that returns PPCA weights for x and y.""" x = x - x.mean(axis=0) # demean x y = y - y.mean(axis=0) # demean y crosscov = np.matmul(x.transpose(), y) + np.matmul( y.transpose(), x) # symmetrized cross-covariance # v is the eigenvalues (or component covariances) # w is the eigenvectors (or PPCs) v, w = LA.eigh(crosscov) w = np.flip(w, 1) # reverse w so it is in descending order of eigenvalue v = np.flip(v) # reverse v so it is in descending order return w, v def Demean(m): return m - m.mean(axis=0) def PartialCorr(x, y, covar): """Calculate partial correlation.""" cvar = np.atleast_2d(covar) beta_x = np.linalg.lstsq(cvar, x, rcond=None)[0] beta_y = np.linalg.lstsq(cvar, y, rcond=None)[0] res_x = x - np.dot(cvar, beta_x) res_y = y - np.dot(cvar, beta_y) return spearmanr(res_x, res_y) def Varimax(phi, gamma=1, q=20, tol=1e-6): """Source: https://stackoverflow.com/questions/17628589/perform-varimax-rotation-in-python-using-numpy.""" p, k = phi.shape r = np.eye(k) d = 0 for _ in range(q): d_old = d l = np.dot(phi, r) u, s, vh = LA.svd( np.dot( phi.T, np.asarray(l)**3 - (gamma / p) * np.dot(l, np.diag(np.diag(np.dot(l.T, l)))))) r = np.dot(u, vh) d = np.sum(s) if d / d_old < tol: break return
np.dot(phi, r)
numpy.dot
import time import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import math as m import numpy as np import pandas as pd import tensorflow_probability as tfp import matplotlib.pyplot as plt import math from tensorflow import keras from tensorflow.keras import layers from random import shuffle from keras import backend as K import numpy as np import keras.datasets from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.models import Sequential from sklearn import model_selection import scipy import time from footprints_and_cutouts import preprocess_scenes (train_cutouts_blended_allScenes, train_cutouts_unblended_allScenes, train_blended_mag_filters_allScenes, train_unblended_mag_filters_allScenes) = preprocess_scenes(train=True,use_pipeline_segmap=True) (test_cutouts_blended_allScenes, test_cutouts_unblended_allScenes, test_blended_mag_filters_allScenes, test_unblended_mag_filters_allScenes) = preprocess_scenes(train=False,use_pipeline_segmap=True) train_cutouts_allScenes = [] train_cutouts_labels = [] train_mag_filter = [] count=0 for i in train_cutouts_unblended_allScenes: train_cutouts_allScenes.append(i) train_cutouts_labels.append([1,0]) if train_unblended_mag_filters_allScenes[21.5][count]: train_mag_filter.append(21.5) elif train_unblended_mag_filters_allScenes[22.5][count]: train_mag_filter.append(22.5) elif train_unblended_mag_filters_allScenes[23.5][count]: train_mag_filter.append(23.5) elif train_unblended_mag_filters_allScenes[24.5][count]: train_mag_filter.append(24.5) elif train_unblended_mag_filters_allScenes[25.5][count]: train_mag_filter.append(25.5) elif train_unblended_mag_filters_allScenes[26.5][count]: train_mag_filter.append(26.5) else: train_mag_filter.append(0) count+=1 count = 0 for i in train_cutouts_blended_allScenes: train_cutouts_allScenes.append(i) train_cutouts_labels.append([0,1]) if train_blended_mag_filters_allScenes[21.5][count]: train_mag_filter.append(21.5) elif train_blended_mag_filters_allScenes[22.5][count]: train_mag_filter.append(22.5) elif train_blended_mag_filters_allScenes[23.5][count]: train_mag_filter.append(23.5) elif train_blended_mag_filters_allScenes[24.5][count]: train_mag_filter.append(24.5) elif train_blended_mag_filters_allScenes[25.5][count]: train_mag_filter.append(25.5) elif train_blended_mag_filters_allScenes[26.5][count]: train_mag_filter.append(26.5) else: train_mag_filter.append(0) count+=1 test_cutouts_allScenes = [] test_cutouts_labels = [] test_mag_filter = [] count=0 for i in test_cutouts_unblended_allScenes: test_cutouts_allScenes.append(i) test_cutouts_labels.append([1,0]) if test_unblended_mag_filters_allScenes[21.5][count]: test_mag_filter.append(21.5) elif test_unblended_mag_filters_allScenes[22.5][count]: test_mag_filter.append(22.5) elif test_unblended_mag_filters_allScenes[23.5][count]: test_mag_filter.append(23.5) elif test_unblended_mag_filters_allScenes[24.5][count]: test_mag_filter.append(24.5) elif test_unblended_mag_filters_allScenes[25.5][count]: test_mag_filter.append(25.5) elif test_unblended_mag_filters_allScenes[26.5][count]: test_mag_filter.append(26.5) else: test_mag_filter.append(0) count+=1 count = 0 for i in test_cutouts_blended_allScenes: test_cutouts_allScenes.append(i) test_cutouts_labels.append([0,1]) if test_blended_mag_filters_allScenes[21.5][count]: test_mag_filter.append(21.5) elif test_blended_mag_filters_allScenes[22.5][count]: test_mag_filter.append(22.5) elif test_blended_mag_filters_allScenes[23.5][count]: test_mag_filter.append(23.5) elif test_blended_mag_filters_allScenes[24.5][count]: test_mag_filter.append(24.5) elif test_blended_mag_filters_allScenes[25.5][count]: test_mag_filter.append(25.5) elif test_blended_mag_filters_allScenes[26.5][count]: test_mag_filter.append(26.5) else: test_mag_filter.append(0) count+=1 for _ in np.arange(23): trainx,testx,trainy,testy,trainmag,testmag = train_cutouts_allScenes,test_cutouts_allScenes,train_cutouts_labels,test_cutouts_labels,train_mag_filter,test_mag_filter trainx2 = np.log10(np.array(trainx)+10**-8) testx2 = np.log10(np.array(testx)+10**-8) trainxnorm = (trainx2 - np.min(trainx2))/(np.max(trainx2)-np.min(trainx2)) testxnorm = (testx2 - np.min(testx2))/(np.max(testx2)-np.min(testx2)) input_shape = (23, 23, 1) num_classes=2 model = keras.Sequential() model.add(Conv2D(128, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, kernel_size=(3, 3), activation="relu")) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) model.add(Dense(800,activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(400,activation = 'relu')) model.add(Dropout(0.2)) model.add(Dense(200,activation = 'relu')) model.add(Dense(num_classes, activation="softmax")) epochs=20 model.compile(loss="binary_crossentropy", optimizer='adam', metrics=["accuracy"]) time_start = time.time() model.fit(np.reshape(trainxnorm,(len(trainx),23,23,1)), np.array(trainy), epochs=15,verbose=True,batch_size=200,validation_split = .1) train_time = time.time()-time_start mean_loss_xxx = model.evaluate(np.array(np.reshape(testxnorm,(len(testx),23,23,1))),np.array(testy)) bce=[] count = 0 for i in testxnorm: bce.append(model.evaluate(np.array(np.reshape(i,(1,23,23,1))),np.array([testy[count]]))[0]) count+=1 standard_error_bce = scipy.stats.sem(bce) classified = [] blended_predict = [] count = [] for i in model.predict(np.reshape(testxnorm,(len(testx),23,23,1))): if i[0]>i[1]: classified.append([1,0]) else: classified.append([0,1]) blended_predict.append(i[1]) blended_predict arr_21 = [] arr_22 = [] arr_23 = [] arr_24 = [] arr_25 = [] arr_26 = [] count = 0 for i in np.array(testy)==classified: if testmag[count] == 21.5: arr_21.append([i[0],testy[count]]) if testmag[count] == 22.5: arr_22.append([i[0],testy[count]]) if testmag[count] == 23.5: arr_23.append([i[0],testy[count]]) if testmag[count] == 24.5: arr_24.append([i[0],testy[count]]) if testmag[count] == 25.5: arr_25.append([i[0],testy[count]]) if testmag[count] == 26.5: arr_26.append([i[0],testy[count]]) count+=1 arr_21_unblended = [] arr_21_blended = [] for i in arr_21: if i[1] == [1,0]: arr_21_unblended.append(i[0]) else: arr_21_blended.append(i[0]) arr_22_unblended = [] arr_22_blended = [] for i in arr_22: if i[1] == [1,0]: arr_22_unblended.append(i[0]) else: arr_22_blended.append(i[0]) arr_23_unblended = [] arr_23_blended = [] for i in arr_23: if i[1] == [1,0]: arr_23_unblended.append(i[0]) else: arr_23_blended.append(i[0]) arr_24_unblended = [] arr_24_blended = [] for i in arr_24: if i[1] == [1,0]: arr_24_unblended.append(i[0]) else: arr_24_blended.append(i[0]) arr_25_unblended = [] arr_25_blended = [] for i in arr_25: if i[1] == [1,0]: arr_25_unblended.append(i[0]) else: arr_25_blended.append(i[0]) arr_26_unblended = [] arr_26_blended = [] for i in arr_26: if i[1] == [1,0]: arr_26_unblended.append(i[0]) else: arr_26_blended.append(i[0]) unblended = [['accuracy','# of samples', 'variance of # of accurately classified samples'],[np.count_nonzero(arr_21_unblended)/len(arr_21_unblended),len(arr_21_unblended)], [np.count_nonzero(arr_22_unblended)/len(arr_22_unblended),len(arr_22_unblended)], [np.count_nonzero(arr_23_unblended)/len(arr_23_unblended),len(arr_23_unblended)], [np.count_nonzero(arr_24_unblended)/len(arr_24_unblended),len(arr_24_unblended)], [np.count_nonzero(arr_25_unblended)/len(arr_25_unblended),len(arr_25_unblended)], [np.count_nonzero(arr_26_unblended)/len(arr_26_unblended),len(arr_26_unblended)]] blended = [['accuracy','# of samples', 'variance of # of accurately classified samples'],[
np.count_nonzero(arr_21_blended)
numpy.count_nonzero
""" This module is for computation of theoretical amplitude spectrum methods. """ import numpy as np from obspy.geodetics.base import gps2dist_azimuth OUTPUT_UNITS = ["ACC", "VEL", "DISP"] M_TO_KM = 1.0 / 1000 # ----------------------------------------------------------------------------- # Some constantts; probably should put these in a config file at some point: # Radiation pattern factor (Boore and Boatwright, 1984)) RP = 0.55 # Partition of shear-wave energy into horizontal components VHC = 1 / np.sqrt(2.0) # Free surface effect FSE = 2.0 # Density at source (gm/cc) DENSITY = 2.8 # Shear-wave velocity at source (km/s) SHEAR_VEL = 3.7 # Reference distance (km) R0 = 1.0 # Trial values for fitting the spectra TRIAL_STRESS_DROPS = np.logspace(0, 3, 13) # For fitting spectra, only include frequencies above FMIN_FAC * f0 FMIN_FAC = 0.5 # For fitting spectra, only include frequencies below the frequency where # FMAX_FAC equals the site diminution factor, thus it is a function of kappa, # so higher frequencies will be included in lower kappa regions. FMAX_FAC = 0.5 def fit_spectra(st, origin, kappa=0.035): """ Fit spectra vaying stress_drop and kappa. Args: st (StationStream): Stream of data. origin (ScalarEvent): ScalarEvent object. kappa (float): Site diminution factor (sec). Typical value for active cruststal regions is about 0.03-0.04, and stable continental regions is about 0.006. Returns: StationStream with fitted spectra parameters. """ for tr in st: # Only do this for horizontal channels for which the smoothed spectra # has been computed. if ('Z' not in tr.stats['channel'].upper()) & \ tr.hasParameter('smooth_signal_spectrum'): event_mag = origin.magnitude event_lon = origin.longitude event_lat = origin.latitude dist = gps2dist_azimuth( lat1=event_lat, lon1=event_lon, lat2=tr.stats['coordinates']['latitude'], lon2=tr.stats['coordinates']['longitude'] )[0] * M_TO_KM # Use the smoothed spectra for fitting smooth_signal_dict = tr.getParameter('smooth_signal_spectrum') freq = np.array(smooth_signal_dict['freq']) obs_spec = np.array(smooth_signal_dict['spec']) # Loop over trial stress drops and kappas compute RMS fit # of the spectra rms = [] rms_stress = [] rms_f0 = [] for i in range(len(TRIAL_STRESS_DROPS)): # Pick min f for cost function that is slightly less than # corner frequency. f0 = brune_f0(event_mag, TRIAL_STRESS_DROPS[i]) fmin = FMIN_FAC * f0 fmax = -np.log(FMAX_FAC) / np.pi / kappa rms_f0.append(f0) mod_spec = model( freq, dist, kappa, event_mag, TRIAL_STRESS_DROPS[i] ) # Comput rms fit in log space, append to list log_residuals = ( np.log(obs_spec[(freq >= fmin) & (freq <= fmax)]) - np.log(mod_spec[(freq >= fmin) & (freq <= fmax)]) ) rms.append(np.sqrt(np.mean((log_residuals)**2))) # Track the values of kappa and stress rms_stress.append(TRIAL_STRESS_DROPS[i]) # Find the kappa-stress pair with best fit if not np.all(np.isnan(rms)): idx = np.where(rms == np.nanmin(rms))[0][0] fit_spectra_dict = { 'stress_drop': rms_stress[idx], 'epi_dist': dist, 'kappa': kappa, 'magnitude': event_mag, 'f0': rms_f0[idx] } tr.setParameter('fit_spectra', fit_spectra_dict) return st def model(freq, dist, kappa, magnitude, stress_drop=150, gs_mod="REA99", q_mod="REA99", crust_mod="BT15"): """ Piece together a model of the ground motion spectrum. Args: freq (array): Numpy array of frequencies for computing spectra (Hz). dist (float): Distance (km). kappa (float): Site diminution factor (sec). Typical value for active cruststal regions is about 0.03-0.04, and stable continental regions is about 0.006. magnitude (float): Earthquake moment magnitude. stress_drop (float): Earthquake stress drop (bars). gs_model (str): Name of model for geometric attenuation. Currently only supported value: - 'REA99' for Raoof et al. (1999) q_model (str): Name of model for anelastic attenuation. Currently only supported value: - 'REA99' for Raoof et al. (1999) - 'none' for no anelastic attenuation crust_mod (str): Name of model for crustal amplification. Currently only supported value: - 'BT15' for Boore and Thompson (2015) - 'none' for no crustal amplification model. Returns: Array of spectra model. """ source_mod = brune(freq, magnitude, stress_drop) path_mod = path(freq, dist, gs_mod, q_mod) site_mod = site(freq, kappa, crust_mod) return source_mod * path_mod * site_mod def brune_f0(magnitude, stress_drop): """ Compute Brune's corner frequency. Args: magnitude (float): Earthquake moment magnitude. stress_drop (float): Earthquake stress drop (bars). Returns: float: Corner frequency (Hz). """ M0 = moment_from_magnitude(magnitude) f0 = 4.906e6 * SHEAR_VEL * (stress_drop / M0)**(1.0 / 3.0) return f0 def moment_from_magnitude(magnitude): """ Compute moment from moment magnitude. Args: magnitude (float): Moment magnitude. Returns: float: Seismic moment (dyne-cm). """ # As given in Boore (2003): # return 10**(1.5 * magnitude + 10.7) # But this appears to be correct: return 10**(1.5 * magnitude + 16.05) def brune(freq, magnitude, stress_drop=150, output_units="ACC"): """ Compute Brune (1970, 1971) earthquake source spectrum. Args: freq (array): Numpy array of frequencies for computing spectra (Hz). magnitude (float): Earthquake moment magnitude. stress_drop (float): Earthquake stress drop (bars). output_units (str): Time domain equivalent units for the output spectrum. One of: - "ACC" for acceleration, giving Fourier spectra units of cm/s. - "VEL" for velocity, giving Fourier spectra units of cm. - "DISP" Returns: Array of source spectra. """ if output_units not in OUTPUT_UNITS: raise ValueError("Unsupported value for output_units.") M0 = moment_from_magnitude(magnitude) f0 = brune_f0(magnitude, stress_drop) S = 1 / (1 + (freq / f0)**2) # pf_a = 2 # pd_a = 1 C = RP * VHC * FSE / (4 * np.pi * DENSITY * SHEAR_VEL**3 * R0) * 1e-20 if output_units == "ACC": fpow = 2.0 elif output_units == "VEL": fpow = 1.0 elif output_units == "DISP": fpow = 0.0 displacement = C * M0 * S return (2 * np.pi * freq)**fpow * displacement def path(freq, dist, gs_mod="REA99", q_mod="REA99"): """ Path term, including geometric and anelastic attenuation. Args: freq (array): Numpy array of frequencies for computing spectra (Hz). dist (float): Distance (km). gs_model (str): Name of model for geometric attenuation. Currently only supported value: - 'REA99' for Raoof et al. (1999) q_model (str): Name of model for anelastic attenuation. Currently only supported value: - 'REA99' for Raoof et al. (1999) - 'none' for no anelastic attenuation Returns: Array of path effects. """ geom_spread = geometrical_spreading(freq, dist, model=gs_mod) ae_att = anelastic_attenuation(freq, dist, model=q_mod) return geom_spread * ae_att def site(freq, kappa, crust_mod='BT15'): """ Site term, including crustal amplificaiton and kappa. Args: freq (array): Numpy array of frequencies for computing spectra (Hz). kappa (float): Site diminution factor (sec). Typical value for active cruststal regions is about 0.03-0.04, and stable continental regions is about 0.006. crust_mod (str): Name of model for crustal amplification. Currently only supported value: - 'BT15' for Boore and Thompson (2015) - 'none' for no crustal amplification model. """ crust_amp = crustal_amplification(freq, model=crust_mod) dim = np.exp(-np.pi * kappa * freq) return crust_amp * dim def crustal_amplification(freq, model="BT15"): """ Crustal amplificaiton model. Args: freq (array): Numpy array of frequencies for computing spectra (Hz). model (str): Name of model for crustal amplification. Currently only supported value: - 'BT15' for Boore and Thompson (2015) - 'none' for no crustal amplification model. """ if model == 'BT15': freq_tab = np.array([ 0.001, 0.009, 0.025, 0.049, 0.081, 0.15, 0.37, 0.68, 1.11, 2.36, 5.25, 60.3 ]) amplificaiton_tab = np.array([ 1.00, 1.01, 1.03, 1.06, 1.10, 1.19, 1.39, 1.58, 1.77, 2.24, 2.75, 4.49 ]) # Interpolation should be linear freq, log amplification log_amp_tab =
np.log(amplificaiton_tab)
numpy.log
# caclculate the cost bw import os import pandas as pd import numpy as np import time # store the matrix A def store_bw_e2u(df_ct, store_path, n): user_path = store_path + '/user_' + str(n) if not os.path.exists(user_path): os.makedirs(user_path) df_ct.to_csv(user_path + '/cost_e.csv', index=False) return # generate the cost_e vector for a given set of cached tiles of a given user n # calculate the DT in BT sizes and store them # we user the derive eq:2 in the paper. def generate_cost_e(cached_tiles_m, bt_size_arr, n, data_store_path, ena_store): start_time = time.time() all_dt_sizes = [] for t_ind, t in enumerate(cached_tiles_m): # get sum of basic tiles tot_bts_size = 0 l_l_m = int(t[0]) l_l_n = int(t[1]) u_r_m = int(t[2]) u_r_n = int(t[3]) for r in range(l_l_m, u_r_m): for c in range(l_l_n, u_r_n): bt_ind = r * 20 + c tot_bts_size += bt_size_arr[bt_ind] tot_bts_size = tot_bts_size / 1000000 dt_size_mb = 0.432 * tot_bts_size * tot_bts_size + 0.306 * tot_bts_size + 0.0025 all_dt_sizes.append(dt_size_mb) stop_time = time.time() # store the data ct_col_name = np.repeat(['ct_'], len(all_dt_sizes)) cts = np.arange(len(all_dt_sizes)).astype(str) ct_cols = np.core.defchararray.add(ct_col_name, cts) df_cost_bw_e2u = pd.DataFrame(columns=ct_cols, data=
np.asarray(all_dt_sizes)
numpy.asarray
#from numba import jit import numpy as np #from joblib import Parallel, delayed, parallel_backend #from joblib import load, dump #import tempfile #import shutil #import os # #import sys #sys.path.append('pyunicorn_timeseries') #from pyunicorn_timeseries.surrogates import Surrogates def set_model_constants(xx=50.E3,nx=100,va=10.,tmax=60*360*24*3600.,avep=24*3600.,dt=3600.,period=3600*24*360*1,B=2.,T0=273.15+6,dT=2.,Cs=1.E-3,Cp=1030.,ra=1.5,ro=1030.,ri=900.,Cpo=4.E3,Cpi=2.9E3,H=200.,vo=0.2,Hb=1.E3,Li=3.3E6,Tf=273.15-1.8,SW0=50.,SW_anom=100.,emissivity=0.99,Da=1.E6,Do=5.E2,tau_entrainment=30*24*3600.,**args): '''Setup model constants. All of the constants have fixed values, but one can pass in own values or even some arbitrary values via **args.''' # C={} C['xx'] = xx #grid size in [m] C['nx'] = nx #number of grid cell - the total width of the domain is xx*nx long C['va'] = va #wind in m/s # C['tmax'] = tmax #tmax seconds C['dt'] = dt #timestep # C['avep'] = avep #averaging period in seconds # C['period'] = period #period of boundary restoring C['Cs'] = Cs #exchange coefficient for bulk formula C['Cp'] = Cp #air heat capacity C['ra'] = ra #density of air [kg/m3] C['ro'] = ro #density of sea water [kg/m3] C['ri'] = ri #density of sea ice [kg/m3] C['Cpo'] = Cpo #sea water heat capacity C['T0'] = T0 #initial temp in degC C['dT'] = dT #initial temp perturbationHb=2E3 C['H'] = H #mixed layer depth in ocean [m] C['vo'] = vo #ocean current speed [m/s] C['Hb'] = Hb #boundary layer height in the atmosphere [m] C['Cpi'] = Cpi #sea ice heat capacity [J/ Kg K] C['Li'] = Li #Latent heat of fusion of sea water [J / kg K] C['Tf'] = Tf #Freezing point of sea water [C] C['B'] = B # long-wave radiation constant [W/m2] C['emissivity'] = emissivity #surface emissivity C['SW0'] = SW0 # background net downwelling SW radiation C['SW_anom']= SW_anom # amplitude of annual cycle in SW radiation C['Da'] = Da # atmospheric diffusion [m2/s] C['Do'] = Do # ocean diffusion [m2/s] C['tau_entrainment'] = tau_entrainment # ocean entrainment/damping timescale for var in args.keys(): C[var]=args[var] # return C def CoupledChannel(C,forcing, T_boundary=None, dt_f=30*24*3600, restoring=False,ice_model=True,atm_adv=True,spatial_pattern=None,atm_DA_tendencies=None,ocn_DA_tendencies=None, return_coupled_fluxes=False,random_amp=0.1): ''' This is the main function for the coupled ocean--atm channel model. ## INPUT VARIABLES ## tmax: running time in seconds avep: averaging period for the ouput T0: initial temperature forcing: dimensionless scaling for the heat flux forcing - default strength is 5 W/m2 dt_f: timestep of the forcing atm_adv: boolean, advective atmosphere atm_ocn: boolean, advective ocean ''' # # number of simulation timesteps and output timesteps nt = int(C['tmax']/C['dt']) #simulation nt1 = int(C['tmax']/C['avep']) #output # rtas = np.random.rand(C['nx']) # intitialize the model variables, first dimension is due to 2 timesteps deep scheme sst = C['T0']*np.ones((2,C['nx'])) tas = C['T0']*
np.ones((2,C['nx']))
numpy.ones
import numpy as np import pandas as pd import wget import pickle as pk from utils.format_regressors import format_regressors as frmt from mbtr.mbtr import MBT import matplotlib.pyplot as plt from utils.benchmark_regressors import MIMO, MISO from utils.cross_val import cv from collections import deque from utils.hierarchical_reconciliation import reconcile_hts try: with open("data/hierarchical_cv_preliminar.npy", "rb") as f: all_cv_res = np.load(f,allow_pickle=True).item() except: try: nwp_data = pd.read_hdf('data/meteo_data.h5', 'df') power_data = pk.load(open("data/power_data.p", "rb")) except: wget.download('https://zenodo.org/record/3463137/files/power_data.p?download=1', 'data/power_data.p') wget.download('https://zenodo.org/record/3463137/files/nwp_data.h5?download=1','data/meteo_data.h5') nwp_data = pd.read_hdf('data/meteo_data.h5', 'df') power_data = pk.load(open("data/power_data.p", "rb")) aggregations = np.tile(np.arange(24).reshape(-1,1),6).ravel() format_pars = {'h_f':144, 'h_b':144, 'x_reduction': {'type':'aggregated_selection', 'values':aggregations}, 'y_reduction': {'type': 'aggregated_selection', 'values': aggregations}, 'f_reduction': None, 'hour':True, 'week_day':True, 'vacation':False } series = power_data['P_mean'].keys() n_boosts = 50 k = 3 all_cv_res = {} for s in series: x_pd,y_pd,x,y,t,x_0,y_0,y_hat_persistence = frmt(d=power_data,target_names={'P_mean': [s]},var_names= {'P_mean': [s]}, pars=format_pars, f=nwp_data,forecasts_names=['temperature', 'ghi_backwards']) m = MISO(n_boosts) def cv_function(x_tr,y_tr,x_te,y_te): m.fit(x_tr,y_tr) y_hat_tr = m.predict(x_tr) y_hat_te = m.predict(x_te) results = {'y_hat_te': y_hat_te, 'y_hat_tr': y_hat_tr, 'y_tr': y_tr, 'y_te': y_te, 'x_te': x_te[:,-2:], 'x_tr': x_tr[:, -2:] } return results cv_res = cv(x,y,k,cv_function) all_cv_res[s] = cv_res np.save('data/hierarchical_cv_preliminar.npy',all_cv_res) series = list(all_cv_res.keys()) series = deque(series) series.rotate(7) print(series) rec_pars = {'method': 'minT', 'cov_method': 'shrunk'} A1l = np.ones((1, len(series) - 7)) A2l = np.kron(
np.eye(2)
numpy.eye
#!/usr/bin/env python """ Copyright 2020 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ import sys import os from jsonargparse import ( ArgumentParser, ActionConfigFile, ActionParser, namespace_to_dict, ) import time import logging import numpy as np import torch import torch.nn as nn from hyperion.hyp_defs import config_logger, float_cpu, set_float_cpu from hyperion.io import RandomAccessDataReaderFactory as DRF from hyperion.io import RandomAccessAudioReader as AR from hyperion.utils import Utt2Info, TrialNdx, TrialKey, TrialScores from hyperion.utils.list_utils import ismember from hyperion.io import VADReaderFactory as VRF from hyperion.classifiers import BinaryLogisticRegression as LR from hyperion.torch.utils import open_device from hyperion.torch.layers import LinBinCalibrator as Calibrator from hyperion.torch.narchs import AudioFeatsMVN as AF from hyperion.torch.utils.misc import l2_norm from hyperion.torch import TorchModelLoader as TML def init_device(use_gpu): set_float_cpu("float32") num_gpus = 1 if use_gpu else 0 logging.info("initializing devices num_gpus={}".format(num_gpus)) device = open_device(num_gpus=num_gpus) return device def init_feats(device, **kwargs): feat_args = AF.filter_args(**kwargs["feats"]) logging.info("feat args={}".format(feat_args)) logging.info("initializing feature extractor") feat_extractor = AF(trans=False, **feat_args) logging.info("feat-extractor={}".format(feat_extractor)) feat_extractor.eval() feat_extractor.to(device) return feat_extractor def load_model(model_path, device): logging.info("loading model {}".format(model_path)) model = TML.load(model_path) logging.info("xvector-model={}".format(model)) model.to(device) model.eval() return model def load_calibrator(cal_file, device): logging.info("loading calibration params {}".format(cal_file)) lr = LR.load(cal_file) calibrator = Calibrator(lr.A[0, 0], lr.b[0]) calibrator.to(device) calibrator.eval() return calibrator def read_data(v_file, ndx_file, enroll_file, seg_part_idx, num_seg_parts): r = DRF.create(v_file) enroll = Utt2Info.load(enroll_file) try: ndx = TrialNdx.load(ndx_file) except: ndx = TrialKey.load(ndx_file).to_ndx() if num_seg_parts > 1: ndx = ndx.split(1, 1, seg_part_idx, num_seg_parts) x_e = r.read(enroll.key, squeeze=True) f, idx = ismember(ndx.model_set, enroll.info) assert np.all(f) x_e = x_e[idx] return ndx, x_e def eval_cosine_scoring( v_file, ndx_file, enroll_file, test_wav_file, vad_spec, vad_path_prefix, model_path, embed_layer, score_file, cal_file, max_test_length, use_gpu, seg_part_idx, num_seg_parts, **kwargs ): device = init_device(use_gpu) feat_extractor = init_feats(device, **kwargs) model = load_model(model_path, device) calibrator = None if cal_file is not None: calibrator = load_calibrator(cal_file, device) logging.info("loading ndx and enrollment x-vectors") ndx, y_e = read_data(v_file, ndx_file, enroll_file, seg_part_idx, num_seg_parts) audio_args = AR.filter_args(**kwargs) audio_reader = AR(test_wav_file, **audio_args) if vad_spec is not None: logging.info("opening VAD stream: %s" % (vad_spec)) v_reader = VRF.create(vad_spec, path_prefix=vad_path_prefix, scp_sep=" ") scores = np.zeros((ndx.num_models, ndx.num_tests), dtype="float32") with torch.no_grad(): for j in range(ndx.num_tests): t1 = time.time() logging.info("scoring test utt %s" % (ndx.seg_set[j])) s, fs = audio_reader.read([ndx.seg_set[j]]) s = s[0] fs = fs[0] if max_test_length is not None: max_samples = int(fs * max_test_length) if len(s) > max_samples: s = s[:max_samples] t2 = time.time() s = torch.as_tensor(s[None, :], dtype=torch.get_default_dtype()).to(device) x_t = feat_extractor(s) t4 = time.time() tot_frames = x_t.shape[1] if vad_spec is not None: vad = torch.as_tensor( v_reader.read([ndx.seg_set[j]], num_frames=x_t.shape[1])[0].astype( np.uint8, copy=False ), dtype=torch.uint8, ).to(device) x_t = x_t[:, vad] logging.info( "utt %s detected %d/%d (%.2f %%) speech frames" % ( ndx.seg_set[j], x_t.shape[1], tot_frames, x_t.shape[1] / tot_frames * 100, ) ) t5 = time.time() x_t = x_t.transpose(1, 2).contiguous() y_t = model.extract_embed(x_t, embed_layer=embed_layer) y_t = l2_norm(y_t) t6 = time.time() for i in range(ndx.num_models): if ndx.trial_mask[i, j]: y_e_i = torch.as_tensor(y_e[i], dtype=torch.get_default_dtype()).to( device ) y_e_i = l2_norm(y_e_i) scores_ij = torch.sum(y_e_i * y_t, dim=-1) if calibrator is None: scores[i, j] = scores_ij else: scores[i, j] = calibrator(scores_ij) t7 = time.time() num_trials =
np.sum(ndx.trial_mask[:, j])
numpy.sum