prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import os import sys import numpy as np import json import random import trimesh from sklearn.decomposition import PCA BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(BASE_DIR, '..', 'code')) from pyquaternion import Quaternion def load_obj(fn): fin = open(fn, 'r') lines = [line.rstrip() for line in fin] fin.close() vertices = []; faces = []; for line in lines: if line.startswith('v '): vertices.append(np.float32(line.split()[1:4])) elif line.startswith('f '): faces.append(np.int32([item.split('/')[0] for item in line.split()[1:4]])) f_arr = np.vstack(faces) v_arr = np.vstack(vertices) mesh = dict() mesh['v'] = v_arr mesh['f'] = f_arr return mesh def export_obj(out, mesh): v = mesh['v']; f = mesh['f']; with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('v %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) for i in range(f.shape[0]): fout.write('f %d %d %d\n' % (f[i, 0], f[i, 1], f[i, 2])) def get_quaternion_from_axis_angle(axis, angle): return Quaternion(axis=axis, angle=angle) def get_quaternion_from_xy_axes(x, y): x /= np.linalg.norm(x) y /= np.linalg.norm(y) z = np.cross(x, y) z /= np.linalg.norm(z) y = np.cross(z, x) y /= np.linalg.norm(y) R = np.vstack([x, y, z]).T return Quaternion(matrix=R) def get_rot_mat_from_quaternion(q): return np.array(q.transformation_matrix, dtype=np.float32) # center: numpy array of length 3 # size: numpy array of length 3 # q: numpy array of length 4 for quaternion # output: mesh # v --> vertices # f --> faces # setting --> 4 x 4 numpy array containing the world coordinates for the cube center (0, 0, 0, 1) # and three local axes (1, 0, 0, 1), (0, 1, 0, 1), (0, 0, 1, 1) def gen_cuboid(center, size, q): cube_mesh = load_obj('cube.obj') cube_v = cube_mesh['v'] cube_f = cube_mesh['f'] n_vert = cube_v.shape[0] n_face = cube_f.shape[1] cube_v = np.concatenate([cube_v, np.ones((n_vert, 1))], axis=1) cube_control_v = np.array([[0, 0, 0, 1], [1, 0, 0, 1], [0, 1, 0, 1], [0, 0, 1, 1]], dtype=np.float32) S = np.array([[size[0], 0, 0, 0], [0, size[1], 0, 0], [0, 0, size[2], 0], [0, 0, 0, 1]], dtype=np.float32) R = q.transformation_matrix T = np.array([[1, 0, 0, center[0]], [0, 1, 0, center[1]], [0, 0, 1, center[2]], [0, 0, 0, 1]], dtype=np.float32) rot = T.dot(R).dot(S) cube_v = rot.dot(cube_v.T).T cube_control_v = rot.dot(cube_control_v.T).T mesh = dict() mesh['v'] = cube_v mesh['f'] = cube_f mesh['setting'] = cube_control_v return mesh def assemble_meshes(mesh_list): n_vert = 0 verts = []; faces = []; for mesh in mesh_list: verts.append(mesh['v']) faces.append(mesh['f']+n_vert) n_vert += mesh['v'].shape[0] vert_arr = np.vstack(verts) face_arr = np.vstack(faces) mesh = dict() mesh['v'] = vert_arr mesh['f'] = face_arr return mesh def export_settings(out_fn, setting_list): with open(out_fn, 'w') as fout: for setting in setting_list: for i in range(4): for j in range(4): fout.write('%f ' % setting[i, j]) fout.write('\n') def export_csg(out_fn, csg): with open(out_fn, 'w') as fout: json.dump(csg, fout) def export_meshes(out, mesh_list): with open(out, 'w') as fout: n_vert = 0 verts = []; faces = []; for idx, mesh in enumerate(mesh_list): fout.write('\ng %d\n' % idx) for i in range(mesh['v'].shape[0]): fout.write('v %f %f %f\n' % (mesh['v'][i, 0], mesh['v'][i, 1], mesh['v'][i, 2])) for i in range(mesh['f'].shape[0]): fout.write('f %d %d %d\n' % (mesh['f'][i, 0]+n_vert, mesh['f'][i, 1]+n_vert, mesh['f'][i, 2]+n_vert)) n_vert += mesh['v'].shape[0] def gen_cuboid_from_setting(setting): R = np.array([setting[1] - setting[0], setting[2] - setting[0], setting[3] - setting[0], setting[0]], dtype=np.float32).T cube_mesh = load_obj('cube.obj') cube_v = cube_mesh['v'] cube_f = cube_mesh['f'] n_vert = cube_v.shape[0] cube_v = np.concatenate([cube_v, np.ones((n_vert, 1))], axis=1) mesh = dict() mesh['v'] = R.dot(cube_v.T).T mesh['f'] = cube_f mesh['setting'] = setting return mesh def settings_to_meshes(settings): meshes = [] for setting in settings: meshes.append(gen_cuboid_from_setting(setting)) return meshes def create_axis_aligned_setting(x_min, x_max, y_min, y_max, z_min, z_max): setting = np.array([[(x_min+x_max)/2, (y_min+y_max)/2, (z_min+z_max)/2, 1], [x_max, (y_min+y_max)/2, (z_min+z_max)/2, 1], [(x_min+x_max)/2, y_max, (z_min+z_max)/2, 1], [(x_min+x_max)/2, (y_min+y_max)/2, z_max, 1]], dtype=np.float32) return setting def create_rotate_45_setting(x_min, x_max, y_min, y_max, z_min, z_max): l1 = (x_max - x_min) / 2 / np.sqrt(2) l2 = (z_max - z_min) / 2 / np.sqrt(2) setting = np.array([[(x_min+x_max)/2, (y_min+y_max)/2, (z_min+z_max)/2, 1], [(x_min+x_max)/2+l1, (y_min+y_max)/2, (z_min+z_max)/2+l1, 1], [(x_min+x_max)/2, y_max, (z_min+z_max)/2, 1], [(x_min+x_max)/2-l2, (y_min+y_max)/2, (z_min+z_max)/2+l2, 1]], dtype=np.float32) return setting def normalize_shape(settings): mesh = assemble_meshes(settings_to_meshes(settings)) pts = sample_pc(mesh['v'][:, :3], mesh['f'], n_points=200) center = np.mean(pts, axis=0) pts -= center scale = np.sqrt(np.max(np.sum(pts**2, axis=1))) T = np.array([[1, 0, 0, -center[0]], [0, 1, 0, -center[1]], [0, 0, 1, -center[2]], [0, 0, 0, 1]], dtype=np.float32) S = np.array([[1.0/scale, 0, 0, 0], [0, 1.0/scale, 0, 0], [0, 0, 1.0/scale, 0], [0, 0, 0, 1]], dtype=np.float32) rot_mat = S.dot(T) new_settings = [] for setting in settings: new_settings.append(rot_mat.dot(setting.T).T) return new_settings def random_rotate(settings): rotation_angle = random.random() * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval, 0], [0, 1, 0, 0], [-sinval, 0, cosval, 0], [0, 0, 0, 1]], dtype=np.float32) new_settings = [] for setting in settings: new_settings.append(rotation_matrix.dot(setting.T).T) return new_settings def gen_obb_mesh(obbs): # load cube cube_mesh = load_obj('cube.obj') cube_v = cube_mesh['v'] cube_f = cube_mesh['f'] all_v = []; all_f = []; vid = 0; for pid in range(obbs.shape[0]): p = obbs[pid, :] center = p[0: 3] lengths = p[3: 6] dir_1 = p[6: 9] dir_2 = p[9: ] dir_1 = dir_1/np.linalg.norm(dir_1) dir_2 = dir_2/np.linalg.norm(dir_2) dir_3 = np.cross(dir_1, dir_2) dir_3 = dir_3/np.linalg.norm(dir_3) v =
np.array(cube_v, dtype=np.float32)
numpy.array
import sys import os import pickle import argparse import copy import tqdm import fairseq import matplotlib import matplotlib.pyplot as plt from matplotlib.animation import FuncAnimation import matplotlib.colors as mcolors from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import from mplot3d_dragger import Dragger3D import torch import seaborn import numpy as np def plot_trigram_with_proj(plt_scores, plt_labels_x, plt_labels_y, plt_labels_z, plt_scores_xy=None, plt_scores_yz=None, save_path=None, beam_size=5, animate=False, use_ax=None, setaxis=True, use_norm=None): # invert x and z plt_labels_x = reversed(copy.deepcopy(plt_labels_x)) plt_labels_z = reversed(copy.deepcopy(plt_labels_z)) plt_scores = torch.flip(plt_scores.data.clone(), [0, 2]) if plt_scores_xy is not None: plt_scores_xy = torch.flip(plt_scores_xy.data.clone(), [1]) if plt_scores_yz is not None: plt_scores_yz = torch.flip(plt_scores_yz.data.clone(), [0]) x_label_pad = 22 y_label_pad = 30 z_label_pad = 47 proj_alpha = 1 cube_alpha = 1 mask_cube = plt_scores.ne(-float('inf')) mask_yz = mask_cube.any(0) mask_xy = mask_cube.any(-1) if not animate: seaborn.set_context("poster", font_scale=0.85) fig = plt.figure(figsize=(10,12), dpi=200) plt.rcParams['grid.linewidth'] = 0. plt.rcParams['figure.constrained_layout.use'] = False ax = fig.gca(projection='3d') ax.set_xticks(np.arange(0, beam_size, 1)) ax.set_yticks(np.arange(0, beam_size, 1)) ax.set_zticks(np.arange(0, beam_size, 1)) ax.set_xlim(0, beam_size) ax.set_ylim(0, beam_size) ax.set_zlim(0, beam_size) else: assert use_ax is not None ax = use_ax if plt_scores_xy is not None: X = np.arange(0, beam_size+1, 1) Y = np.arange(0, beam_size+1, 1) X, Y = np.meshgrid(X, Y) Z = X * 0 plt_mask = plt_scores_xy.eq(-float('inf')) | (~mask_xy.transpose(-1, -2)) #if (~plt_mask).float().sum().item() < 10: # sys.exit(1) plt_scores_xy[plt_mask] = plt_scores_xy.max() v = plt_scores_xy.cpu().numpy() norm = plt.Normalize() colors = plt.cm.cool(norm(v)) colors = torch.Tensor(colors) colors[:, :, -1] = proj_alpha colors[plt_mask] = 0 colors = colors.numpy() colors[:,:,0]=0.173 colors[:,:,1]=0.153 colors[:,:,2]=0.118 # Plot the surface. #surf = ax.plot_surface(X, Y, Z, facecolors=colors, #cmap=cm.coolwarm, # linewidth=0, zorder=-1e3, shade=True, edgecolors='none') for i in range(beam_size): for j in range(beam_size): if not plt_mask[j,i]: #print (j,i) color = np.zeros((1,1,4)) color = color + colors[j, i] * 0 color[:,:,-1]=1 color[:,:,0]=0.5 color[:,:,1]=0.5 color[:,:,2]=0.5 ddd = 0 if j == 0: linew = 0 #if i == 9: # ddd= 0.5 # print ('here') else: linew = 0.5 X2 = np.arange(i-ddd, i+2, 1+ddd) Y2 =
np.arange(j, j+2, 1)
numpy.arange
#!/usr/bin/env python import os import glob import numpy as np from astropy.io import fits from astropy.time import Time from astropy.table import Column, MaskedColumn import matplotlib.pyplot as plt from iminuit import Minuit from probfit import Chi2Regression, linear TessTimeBin_sec = 120.0 # sec TessTimeBin_day = TessTimeBin_sec / 24. / 60. / 60. MISSING_VALUE = -9999 class Hist1D(object): def __init__(self, edges): self.edges = edges self.hist, edges = np.histogram([], bins=self.edges) self.bins = (edges[:-1] + edges[1:]) / 2. def fill(self, arr): hist, edges = np.histogram(arr, bins=self.edges) self.hist += hist @property def data(self): return self.bins, self.hist def get_count_rate(cnt_array,exp_array): rate_list = [] error_list = [] for i in range(len(cnt_array.data[1])): cnt = cnt_array.data[1][i] exp = exp_array.data[1][i] if exp > 0: rate = float(cnt) / float(exp) error = float(np.sqrt(cnt)) / float(exp) #print(cnt,exp,rate) else: rate = 0 error = 0 rate_list.append(rate) error_list.append(error) return np.array(rate_list), np.array(error_list) class TessLightCurve(): def __init__(self,fitsfile): self.fitsfile = fitsfile print(self.fitsfile) self.hdu = fits.open(self.fitsfile) self.basename = os.path.splitext(os.path.basename(self.fitsfile))[0] print(self.basename) self.time_mjd = self.get_mjd() self.lc_orig_table = self.hdu['LIGHTCURVE'].data self.lc_orig_cols = self.lc_orig_table.columns self.edges = self.time_mjd+TessTimeBin_day/2.0 self.edges = np.insert(self.edges,0,self.time_mjd[0]-TessTimeBin_day/2.0) self.lc_list = {} def get_mjd(self): """ TUNIT1 = 'BJD - 2457000, days' / column units: Barycenter corrected TESS Julian TESS : BJD = TIME + 2457000 days # MJD = BJD - 2400 000.5 # https://en.wikipedia.org/wiki/Julian_day """ return self.hdu['LIGHTCURVE'].data['TIME'] + self.hdu['LIGHTCURVE'].header['BJDREFI'] + self.hdu['LIGHTCURVE'].header['BJDREFF'] - 2400000.5 def cadence2mjd(self,a=0.00138893,b=58226.94810026): return a * self.hdu['LIGHTCURVE'].data['CADENCENO'] + b def append_nicer_gti(self,input_niobs_list): self.niobsid_list = [] self.nigti_list = [] self.nimask = [] for mjd in self.time_mjd: #out_gtinum = np.nan out_gtinum = MISSING_VALUE out_niobs = MISSING_VALUE out_mask = True for niobs in input_niobs_list: out_gtinum = niobs.get_mjdnum(mjd) #if not np.isnan(out_gtinum): if out_gtinum != MISSING_VALUE: out_niobs = niobs.obsid out_mask = False break #if not np.isnan(out_gtinum): #if out_gtinum != MISSING_VALUE: # print(mjd,out_niobs,out_gtinum) self.niobsid_list.append(out_niobs) self.nigti_list.append(out_gtinum) self.nimask.append(out_mask) def append_nicer_count_rate(self,input_niobs_list,emin_keV,emax_keV): print(emin_keV) print(emax_keV) name_cnt = 'cnt_%s_%skeV' % (emin_keV,emax_keV) name_exp = 'exp_%s_%skeV' % (emin_keV,emax_keV) name_rate = 'cps_%s_%skeV' % (emin_keV,emax_keV) name_error = 'err_%s_%skeV' % (emin_keV,emax_keV) lc_hist_cnt = Hist1D(edges=self.edges) lc_hist_exp = Hist1D(edges=self.edges) for niobs in input_niobs_list: #print(niobs.obsid) mask_energy =
np.logical_and(niobs.keV>=emin_keV,niobs.keV<=emax_keV)
numpy.logical_and
from datetime import timedelta from astropy import units as u import numpy as np from sunpy.time import parse_time def get_sky_position(time, offset): """Code for converting solar offsets to pointing position. Parameters ---------- time: Date that is parsable by sunpy.time.parse_time() i.e., time='2016-07-26T19:53:15.00' offset: Offset from the center of the Sun. Must have units from astropy: i.e.: offset = np.array([1000, 150]) * u.arcsec Returns ---------- sky_position: Two-element array giving the [RA, Dec] coordinates of the Notes ---------- Syntax: sky_position = get_sky_position(time, offset) """ from astropy.coordinates import get_sun from astropy.time import Time # Replaced with newer sunpy v1 function # from sunpy import sun from sunpy.coordinates import sun # Convert the date into something that's usable by astropy. start_date = parse_time(time) astro_time = Time(start_date) # Use astropy get_sun for Sun sky position. # sunpy has a similar function, but it may be giving a different # epoch for the RA and dec. We need them in J2000 RA and dec. astro_sun_pos = get_sun(astro_time) # Get the solar north pole angle. cgs --> radians # Update for sunpy v1.0+ # sun_np=sun.solar_north(t=time).cgs sun_np=sun.P(time).cgs # Get the center of the Sun, and assign it degrees. # Doing it this was is necessary to do the vector math below. sun_pos = np.array([astro_sun_pos.ra.deg, astro_sun_pos.dec.deg])* u.deg # Rotation matrix for a counter-clockwise rotation since we're going # back to celestial north from solar north rotMatrix = np.array([[np.cos(sun_np), np.sin(sun_np)], [-np.sin(sun_np), np.cos(sun_np)]]) # Project the offset onto the Sun delta_offset = np.dot(offset, rotMatrix) # Scale to RA based on the declination. delta_offset = delta_offset * np.array([1. / np.cos(sun_pos[1]), 1.]) # Account for the fact that +Ra == East and we have defined +X = West delta_offset = delta_offset * [-1.0, 1.0] # Apply the offset and return the sky position. sky_position = sun_pos + delta_offset return sky_position def get_skyfield_position(time, offset, load_path=None, parallax_correction=False): """Code for converting solar coordinates to astrometric (J200) RA/Dec coordinates. Parameters ---------- time: Date that is parsable by sunpy.time.parse_time() i.e., time='2016-07-26T19:53:15.00' offset: Offset from the center of the Sun. Must have units from astropy: i.e.: offset = np.array([1000, 150]) * u.arcsec load_path (optional): Relative path from currently location to store bsp files parallax_correction: Use the NuSTAR TLE to correct for orbital parallax Returns ---------- sky_position: Two-element array giving the [RA, Dec] coordinates of the target location. Note this is given in astrometric (J2000) RA/Dec, which is what we need for the NuSTAR planning system. Notes ---------- Syntax: skyfield_position = get_skyfield_position(time, offset) """ from astropy.time import Time # Replaced with newer sunpy v1 function # from sunpy import sun from sunpy.coordinates import sun from nustar_pysolar.utils import skyfield_ephem start_date = parse_time(time) utc = Time(start_date) observer, sunephem, ts = skyfield_ephem(load_path=load_path, parallax_correction=parallax_correction, utc=utc) tcheck = ts.from_astropy(utc) geocentric = observer.at(tcheck).observe(sunephem) this_ra_geo, this_dec_geo, dist = geocentric.radec() # Get the solar north pole angle. cgs --> radians # sun_np = sunpy.sun.solar_north(t=time).cgs # Update for sunpy v1.0+ sun_np=sun.P(time).cgs # Get the center of the Sun, and assign it degrees. # Doing it this was is necessary to do the vector math below. sun_pos = np.array([this_ra_geo.to(u.deg).value, this_dec_geo.to(u.deg).value])*u.deg # Rotation matrix for a counter-clockwise rotation since we're going # back to celestial north from solar north rotMatrix = np.array([[np.cos(sun_np), np.sin(sun_np)], [-np.sin(sun_np), np.cos(sun_np)]]) # Project the offset onto the Sun delta_offset = np.dot(offset, rotMatrix) # Scale to RA based on the declination. delta_offset = delta_offset * np.array([1. / np.cos(sun_pos[1]), 1.]) # Account for the fact that +Ra == East and we have defined +X = West delta_offset = delta_offset * [-1.0, 1.0] # Apply the offset and return the sky position. sky_position = sun_pos + delta_offset return sky_position def get_nustar_roll(time, angle): """Code to determine the NuSTAR roll angle for a given field-of-view on the Sun for a given time. Parameters ---------- time: Date that is parsable by sunpy.time.parse_time() i.e. time='2016-07-26T19:53:15.00' angle: Desired roll offset from solar north in degrees. For a "square" field of view, use angle=0 / 90 / 180 / 270 to have DET0 at the NE / SE / SW / NW corners of a square field of view. For a "diamond" with DET0 to the south, use angle = 45. Returns ---------- nustar_roll: NuSTAR PA angle with respect to celestial north. """ # Replaced with newer sunpy v1 function # from sunpy import sun from sunpy.coordinates import sun # Get the solar north pole angle. cgs --> radians # sun_np=sun.solar_north(t=time).deg * u.deg # Update for sunpy v1.0+ sun_np=sun.P(time).deg*u.deg nustar_roll = np.mod(sun_np + angle, 360*u.deg) return nustar_roll; def _parse_timestamp(tstamp): """Convenience function for turning the SOC timestamp into a datetime object. """ date1 = tstamp.split('/') year=date1[0].strip() day, time=(date1[1].split()) stub = (year.strip()+'-01-01T00:00:00') year = parse_time(stub) hr, min, sec = time.split(':') dt = timedelta(int(day)-1, int(sec), 0, 0, int(min), int(hr)) return year+dt; def _parse_SOC_timestamp(tstamp): """Convenience function for turning the timestamp into a datetime object. """ date1 = tstamp.split(':') year = date1[0] day = date1[1] hr = date1[2] min = date1[3] sec = date1[4] stub = (year.strip()+'-01-01T00:00:00') year = parse_time(stub) # hr, min, sec = date1[2:4] dt = timedelta(int(day)-1, int(sec), 0, 0, int(min), int(hr)) return year+dt; def parse_occultations(infile): """Parse the shadow analysis file to determine the 'in Sun' times. Parameters ---------- infile: Input file to be parsed. Returns ---------- Returns a list of [ [start, stop], [start stop] ] times where start means you egress from Earth shadow into the sunlight, while stop means you re-enter Earth shadow. Notes --------- """ f = open(infile) all_pairs = [] start = 0 for ind,line in enumerate(f): # Little parser here to find the right place to start reading in... if (line.find("Shadow Begin") != -1): start=start+1 # Skips over additional lines of whitespace. if(start == 0): continue if(start <3): start+=1 continue # Get the first date string: fields = line.split('-') first = fields[0] dtfirst = _parse_timestamp(first) second = (fields[1].split('UTC'))[0].strip() dtsecond=_parse_timestamp(second) # Since the file actually gives the start/stop times of going into # earthshadow, we actually want the "In Sun" times, which is the egress # from earthshadow and the entry into the next earthshadow. # Note that this skips the first row. if(start == 3): start+=1 else: all_pairs.append([last, dtfirst]) # Store the last entry to add in the next time around... last=dtsecond f.close() return all_pairs def sunlight_periods(infile, tstart, tend): """Return the periods when NuSTAR is in Sunlight in the given timerange. Parameters ---------- tstart, tend: ISO formatted times or something else that sunpy.time.parse_time() can read. i.e. tstart='2017-03-11T23:09:10' infile: Input file to be parsed. This should the value returned by nustar_pysolar.download_occultation_times() Returns ---------- Returns a list of [ [start, stop], [start stop] ] times where start means you egress from Earth shadow into the sunlight, while stop means you re-enter Earth shadow. The list has been filtered to only include those epochs that span the given time range. Notes --------- """ import os.path if not(os.path.isfile(infile)): print('Error in nustar_pysolar.sunlight_periods.') print('Input file: '+infile+' does not exist.') return -1; all_pairs = parse_occultations(infile) checkstart = parse_time(tstart) checkend = parse_time(tend) in_range = [] set=0 for pair in all_pairs: dtmin = (pair[0] - checkstart) dtmax = (pair[1] - checkstart) if ( (pair[1] > checkstart) ): set=1 if (set == 0): continue if ( pair[1] > checkend ): break in_range.append(pair) if len(in_range) == 0: print('Error in function: '+sunlight_periods.__name__) print('No dates found in range. Pick a different occultation file.') return -1 else: return in_range def make_mosaic(orbit, outfile='mosaic.txt', write_output=False, make_regions=False, reg_pref='testbox', extra_roll=0.*u.deg, write_sun=False): ''' Code to make a mosaic for a 5x5 tiled array on the Sun. Input: tstart = '2018-05-28T15:37:00' tend = '2018-05-28T23:10:00' positions = make_mosaic(tstart, tend, write_output=True) Optional flags: write_output = [False] / True Write the output pointing positions in NuSTAR SOC readable formats in 'outfile' for all of the pointings. outfile = ['mosaic.txt'] Output file if write_output is used. make_regions: [False] / True Make ds9 region files for each tile so that you can see how the FoV moves with each mosaic location. reg_pref: 'testbox' The prefix for the region files. Useful if you want to make this meaningful. Output mosaic file has columns of: "Arrive By Time" RA DEC RA_SUN DEC_SUN ''' import numpy as np box_pa = get_nustar_roll(orbit[0], extra_roll) sun_pa = get_nustar_roll(orbit[0], 0.) pa = box_pa + 90*u.deg base = np.array([-1.45, -0.725, 0, 0.725, 1.45]) xsteps = np.append(base, np.flip(base, 0)) xsteps = np.append(xsteps, base) xsteps = np.append(xsteps, np.flip(base, 0)) xsteps = np.append(xsteps, base) ysteps = np.array(np.zeros(5) + 1.45) ysteps = np.append(ysteps, np.zeros(5) + 0.725) ysteps = np.append(ysteps, np.zeros(5)) ysteps = np.append(ysteps, np.zeros(5)-0.725) ysteps = np.append(ysteps, np.zeros(5)-1.45) # Rotation matrix for a clockwise rotation on the solar disk: rotMatrix = np.array([[np.cos(extra_roll),
np.sin(extra_roll)
numpy.sin
import cv2 import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import torchvision from torchvision.models.vgg import vgg19 import numpy as np class GANLoss(nn.Module): def __init__(self, real_label=1.0, fake_label=0.0): super(GANLoss, self).__init__() self.real_label = real_label self.fake_label = fake_label #self.loss = nn.BCELoss().to(device) self.lsgan = nn.MSELoss().to(device) def convert_tensor(self, input, is_real): if is_real: return Variable(torch.FloatTensor(input.size()).fill_(self.real_label)).to(device) else: return Variable(torch.FloatTensor(input.size()).fill_(self.fake_label)).to(device) def __call__(self, input, is_real): return self.lsgan(input, self.convert_tensor(input,is_real).to(device)) class AttentionLoss(nn.Module): def __init__(self, theta = 0.9, iteration = 5): super(AttentionLoss, self).__init__() self.theta = theta self.iteration = iteration self.loss = nn.MSELoss().to(device) def __call__(self, A_, M_): loss_ATT = None for i in range(1, self.iteration+1): if i == 1: loss_ATT = pow(self.theta, float(self.iteration-i)) * self.loss(A_[i-1],M_) else: loss_ATT += pow(self.theta, float(self.iteration-i)) * self.loss(A_[i-1],M_) return loss_ATT # VGG19 pretrained on Imagenet def trainable_(net, trainable): for param in net.parameters(): param.requires_grad = trainable class PerceptualLoss(nn.Module): def __init__(self): super(PerceptualLoss, self).__init__() self.model = (vgg19(pretrained = True).to(device)) trainable_(self.model, False) self.loss = nn.MSELoss().to(device) self.vgg_layers = self.model.features self.layer_names = { '0' : 'conv1_1', '3' : 'relu1_2', '6' : 'relu2_1', '8' : 'relu2_2', '11' : 'relu3_1' } def get_layer_output(self, x): output = [] for name, module in self.vgg_layers._modules.items(): if isinstance(module, nn.ReLU): module = nn.ReLU(inplace=False) x = module(x) if name in self.layer_names: output.append(x) return output def get_GTlayer_output(self, x): with torch.no_grad(): output = [] for name, module in self.vgg_layers._modules.items(): if isinstance(module, nn.ReLU): module = nn.ReLU(inplace=False) x = module(x) if name in self.layer_names: output.append(x) return output def __call__(self, O_, T_): o = self.get_layer_output(O_) t = self.get_GTlayer_output(T_) loss_PL = 0 for i in range(len(t)): if i ==0: loss_PL = self.loss(o[i],t[i]) else: loss_PL += self.loss(o[i],t[i]) loss_PL=loss_PL/float(len(t)) loss_PL = Variable(loss_PL,requires_grad=True) return loss_PL class MultiscaleLoss(nn.Module): def __init__(self, ld=[0.6, 0.8, 8], batch=1): super(MultiscaleLoss, self).__init__() self.loss = nn.L1Loss().to(device) self.ld = ld self.batch=batch def __call__(self, S_, gt): T_ = [] for i in range(S_[0].shape[0]): temp = [] x = (
np.array(gt[i])
numpy.array
from pprint import pprint import json import numpy as np import statistics import tensorflow as tf with open("/data/input", "r") as file: data = json.load(file) features = [] labels = [] for album_uri, album in data.items(): def aggregate_mean(): aggregated = { "anthony_score": float(album["anthony_score"]) / 10, "acousticness": 0, "danceability": 0, "duration_ms": 0, "energy": 0, "instrumentalness": 0, "key": 0, "liveness": 0, "loudness": 0, "mode": 0, "speechiness": 0, "tempo": 0, "time_signature": 0, "valence": 0, } for track_uri, track in album["tracks"].items(): if track is not None: aggregated["acousticness"] += track["acousticness"] aggregated["danceability"] += track["danceability"] aggregated["duration_ms"] += track["duration_ms"] aggregated["energy"] += track["energy"] aggregated["instrumentalness"] += track["instrumentalness"] aggregated["key"] += track["key"] aggregated["liveness"] += track["liveness"] aggregated["loudness"] += track["loudness"] aggregated["mode"] += track["mode"] aggregated["speechiness"] += track["speechiness"] aggregated["tempo"] += track["tempo"] aggregated["time_signature"] += track["time_signature"] aggregated["valence"] += track["valence"] aggregated["acousticness"] /= len(album["tracks"]) aggregated["danceability"] /= len(album["tracks"]) aggregated["duration_ms"] /= len(album["tracks"]) aggregated["energy"] /= len(album["tracks"]) aggregated["instrumentalness"] /= len(album["tracks"]) aggregated["key"] /= len(album["tracks"]) aggregated["liveness"] /= len(album["tracks"]) aggregated["loudness"] /= len(album["tracks"]) aggregated["mode"] /= len(album["tracks"]) aggregated["speechiness"] /= len(album["tracks"]) aggregated["tempo"] /= len(album["tracks"]) aggregated["time_signature"] /= len(album["tracks"]) aggregated["valence"] /= len(album["tracks"]) return aggregated def aggregate_meadian(): aggregated = { "anthony_score": float(album["anthony_score"]) / 10, "acousticness": [], "danceability": [], "duration_ms": [], "energy": [], "instrumentalness": [], "key": [], "liveness": [], "loudness": [], "mode": [], "speechiness": [], "tempo": [], "time_signature": [], "valence": [], } for track_uri, track in album["tracks"].items(): if track is not None: aggregated["acousticness"].append(track["acousticness"]) aggregated["danceability"].append(track["danceability"]) aggregated["duration_ms"].append(track["duration_ms"]) aggregated["energy"].append(track["energy"]) aggregated["instrumentalness"].append(track["instrumentalness"]) aggregated["key"].append(track["key"]) aggregated["liveness"].append(track["liveness"]) aggregated["loudness"].append(track["loudness"]) aggregated["mode"].append(track["mode"]) aggregated["speechiness"].append(track["speechiness"]) aggregated["tempo"].append(track["tempo"]) aggregated["time_signature"].append(track["time_signature"]) aggregated["valence"].append(track["valence"]) aggregated["acousticness"] = statistics.median(aggregated["acousticness"]) aggregated["danceability"] = statistics.median(aggregated["danceability"]) aggregated["duration_ms"] = statistics.median(aggregated["duration_ms"]) aggregated["energy"] = statistics.median(aggregated["energy"]) aggregated["instrumentalness"] = statistics.median( aggregated["instrumentalness"] ) aggregated["key"] = statistics.median(aggregated["key"]) aggregated["liveness"] = statistics.median(aggregated["liveness"]) aggregated["loudness"] = statistics.median(aggregated["loudness"]) aggregated["mode"] = statistics.median(aggregated["mode"]) aggregated["speechiness"] = statistics.median(aggregated["speechiness"]) aggregated["tempo"] = statistics.median(aggregated["tempo"]) aggregated["time_signature"] = statistics.median(aggregated["time_signature"]) aggregated["valence"] = statistics.median(aggregated["valence"]) return aggregated # aggregated = aggregate_mean() aggregated = aggregate_meadian() features.append([aggregated["danceability"], aggregated["instrumentalness"]]) labels.append([aggregated["anthony_score"]]) features = np.array(features) labels =
np.array(labels)
numpy.array
import os import copy import numpy as np from astropy.io import fits import astropy.units as u import astropy.constants as const from specutils import Spectrum1D from astropy.table import Table from scipy.interpolate import interp1d import matplotlib.pyplot as plt from spectres import spectres from paintbox.utils import broad2res, disp2vel import context def get_muse_fwhm(): """ Returns the FWHM of the MUSE spectrograph as a function of the wavelength. """ wave, R = np.loadtxt(os.path.join(os.path.dirname( os.path.abspath(__file__)), "muse_wave_R.dat")).T wave = wave * u.nm fwhm = wave.to("angstrom") / R # First interpolation to obtain extrapolated values f1 = interp1d(wave.to("angstrom"), fwhm, kind="linear", bounds_error=False, fill_value="extrapolate") # Second interpolation using spline wave = np.hstack((4000, wave.to("angstrom").value, 10000)) f = interp1d(wave, f1(wave), kind="cubic", bounds_error=False) return f def plot_muse_fwhm(): f = get_muse_fwhm() wave = np.linspace(4000, 10000, 1000) import matplotlib.pyplot as plt plt.style.use("seaborn-paper") plt.figure(1) plt.minorticks_on() plt.plot(wave, f(wave), "-") plt.xlabel("$\lambda$ ($\AA$)") plt.ylabel(r"Spectral resolution $\alpha$ FWHM (Angstrom)") plt.show() def plot_vel_resolution(): c = const.c f = get_muse_fwhm() wave = np.linspace(4000, 10000, 1000) plt.style.use("seaborn-paper") plt.figure(1) plt.minorticks_on() plt.plot(wave, c.to("km/s") * f(wave) / wave, "-") plt.xlabel("$\lambda$ ($\AA$)") plt.ylabel(r"Resolution FWHM (km/s)") plt.show() def review_masks(target_sigma=300): wdir = os.path.join(context.home_dir, f"paintbox/dr1_sig{target_sigma}") filenames = [_ for _ in os.listdir(wdir) if _.endswith(f"sig{target_sigma}.fits")] plt.figure(figsize=(20, 5)) plt.ion() plt.show() for filename in filenames: galaxy = filename.split("_")[0] table = Table.read(os.path.join(wdir, filename)) norm = fits.getval(os.path.join(wdir, filename), "NORM", ext=1) wave = table["wave"].data flux = table["flux"].data mask = table["mask"].data fluxerr = table["fluxerr"].data while True: plt.clf() flux_plot = flux flux_plot[mask == 1] = np.nan plt.plot(wave, flux_plot) plt.title(galaxy) plt.tight_layout() plt.draw() plt.pause(0.01) process = input("Update mask? (N/y): ") if process.lower() in ["", "n", "no"]: break plt.waitforbuttonpress() pts = np.asarray(plt.ginput(2, timeout=-1)) wmin = pts[:, 0].min() wmax = pts[:, 0].max() idx =
np.where((wave >= wmin) & (wave <= wmax))
numpy.where
import numpy as np import pytest from ndsys.features import VolterraFeatures, prepare_data def test_prepare_data(): x = np.vstack([1, 2, 3]) y = np.vstack([10, 11, 12]) x_out, y_out = prepare_data(x, y, (1, 1), None) assert (x_out == np.vstack([1, 2, 3])).all() assert (y_out == np.vstack([10, 11, 12])).all() x_out, y_out = prepare_data(x, y, (2, 1), None) assert (x_out == np.vstack([1, 2, 3])).all() assert (y_out == np.vstack([11, 12])).all() x_out, y_out = prepare_data(x, y, (3, 1), None) assert (x_out == np.vstack([1, 2, 3])).all() assert (y_out == np.vstack([12])).all() x_out, y_out = prepare_data(x, y, (1, 1), 'zeros') assert (x_out == np.vstack([1, 2, 3])).all() assert (y_out == np.vstack([10, 11, 12])).all() x_out, y_out = prepare_data(x, y, (2, 1), 'zeros') assert (x_out == np.vstack([0, 1, 2, 3])).all() assert (y_out == np.vstack([10, 11, 12])).all() x_out, y_out = prepare_data(x, y, (3, 1), 'zeros') assert (x_out == np.vstack([0, 0, 1, 2, 3])).all() assert (y_out == np.vstack([10, 11, 12])).all() x_out, y_out = prepare_data(x, y, (2, 1), np.vstack([-1])) assert (x_out == np.vstack([-1, 1, 2, 3])).all() assert (y_out == np.vstack([10, 11, 12])).all() x_out, y_out = prepare_data(x, y, (3, 1), np.vstack([-2, -1])) assert (x_out ==
np.vstack([-2, -1, 1, 2, 3])
numpy.vstack
import numpy as np import pandas as pd import pytest import numpy.testing as npt import matplotlib.pyplot as plt from pulse2percept.viz import scatter_correlation, correlation_matrix def test_scatter_correlation(): x = np.arange(100) _, ax = plt.subplots() ax = scatter_correlation(x, x, ax=ax) npt.assert_equal(len(ax.texts), 1) print(ax.texts) npt.assert_equal('$r$=1.000' in ax.texts[0].get_text(), True) # Ignore NaN: ax = scatter_correlation([0, 1, np.nan, 3], [0, 1, 2, 3]) npt.assert_equal('$r$=1.000' in ax.texts[0].get_text(), True) with pytest.raises(ValueError): scatter_correlation(np.arange(10), np.arange(11)) with pytest.raises(ValueError): scatter_correlation([1], [2]) def test_correlation_matrix(): df = pd.DataFrame() df['a'] = pd.Series(np.arange(100)) df['b'] = pd.Series(list(df['a'][::-1])) _, ax = plt.subplots() ax = correlation_matrix(df, ax=ax) with pytest.raises(TypeError): correlation_matrix(
np.zeros((10, 20))
numpy.zeros
#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np from matplotlib import cm from numpy.core.fromnumeric import argmin from startkit import * #Ridge regression constants # polyOrder = [ 2*i for i in range(1,7)] # for ridge regression # polyOrder = [ i for i in range(1,17)] # for kernelized ridge regression polyOrder = [ i for i in range(1,25)] # for kernelized ridge regression of circle batch_size = int(n_train/4) X_batches = [ X_train[k*batch_size:(k+1)*batch_size,:] for k in range(4)] y_batches = [ y_train[k*batch_size:(k+1)*batch_size] for k in range(4)] def plot(): pos = y[:] == +1.0 neg = y[:] == -1.0 plt.figure() plt.xlabel("$x_0$") plt.ylabel("$x_1$") plt.scatter(X[pos,0].ravel(), X[pos,1].ravel(),c='red',marker="v",label="$y=+1$") plt.scatter(X[neg,0].ravel(), X[neg,1].ravel(),c='blue',marker="+",label="$y=-1$") plt.legend() plt.show() def ridge_reg(): Train_Errors = [] Validate_Errors = [] for d in polyOrder: Ridges = [] Phi = assemble_feature(X_train,d) w_ridge = lstsq(Phi,y_train,LAMBDA) error = np.linalg.norm(Phi @ w_ridge - y_train) Train_Errors.append(error) Ridges.append(w_ridge) Phi = assemble_feature(X_valid,d) validate_error = np.linalg.norm(Phi @ w_ridge - y_valid) Validate_Errors.append(validate_error) heatmap(lambda x0,x1: assemble_feature(np.array([[x0,x1]]),d)@w_ridge,clip=1) Averaged_Train_Errors = [np.mean(Train_Errors[i]) for i in range(len(Train_Errors))] print("Averaged_Train_Errors: ",Averaged_Train_Errors) print("Validate_Errors: ",Validate_Errors) plt.figure() plt.plot(polyOrder,Averaged_Train_Errors,label="Training errors") plt.plot(polyOrder,Validate_Errors,label="Validation errors") plt.xlabel("Polynomial order") plt.ylabel("Errors") plt.legend() plt.show() def k(x1,x2,p): return((1+x1@x2)**p) def k_matrix(X_1data,X_2data,p): k_m = np.zeros((np.shape(X_1data)[0],np.shape(X_2data)[0])) for i in range(
np.shape(k_m)
numpy.shape
import numpy as np class Struct(dict): def __init__(self,**kw): dict.__init__(self,kw) self.__dict__ = self def load(name, ref, prec=np.float32): p0 = np.fromfile("output/%s_%d_p0.bin" % (name, ref), dtype=prec) p1 = np.fromfile("output/%s_%d_p1.bin" % (name, ref), dtype=prec) t = np.fromfile("output/%s_%d_t.bin" % (name, ref), dtype=prec) return p0, p1, t def parse_log(name, ref): import re lines = open("%s_%d.txt" % (name ,ref), "r").readlines() pattern = "Simulation took:\s([\d\.s]+)" for line in lines: match = re.findall(pattern, line) if match: return float(match[0]) def convergence_rates(errors): """ Compute convergence rates assuming factor of two refinement and that the error on the finest grid should be discarded. """ return ["-"] + list(np.log2(np.array(errors[:-2]) / np.array(errors[1:-1]))) def error(u, v, dt): """ l2 error """ return
np.linalg.norm(u - v)
numpy.linalg.norm
""" Code for loading and manipulating the arithmetic expression data """ import os import h5py import numpy as np from pathlib import Path from numpy import exp, sin from tqdm import tqdm from weighted_retraining.utils import print_flush def load_data_str(data_dir): """ load the arithmetic expression data in string format """ fname = 'equation2_15_dataset.txt' with open(data_dir / fname) as f: eqs = f.readlines() for i in range(len(eqs)): eqs[i] = eqs[i].strip().replace(' ', '') return eqs def load_data_enc(data_dir): """ load the arithmetic expression dataset in one-hot encoded format """ fname = 'eq2_grammar_dataset.h5' h5f = h5py.File(data_dir / fname, 'r') data = h5f['data'][:] h5f.close() return data def get_initial_dataset_and_weights(data_dir, ignore_percentile, n_data): """ get the initial dataset (with corresponding scores) and the sample weights """ # load equation dataset, both one-hot encoded and as plain strings, and compute corresponding scores data_str = load_data_str(data_dir) data_enc = load_data_enc(data_dir) data_scores = score_function(data_str) # subsample data based on the desired percentile and # of datapoints perc = np.percentile(data_scores, ignore_percentile) perc_idx = data_scores >= perc data_idx = np.random.choice(sum(perc_idx), min(n_data, sum(perc_idx)), replace=False) data_str = list(np.array(data_str)[perc_idx][data_idx]) data_enc = data_enc[perc_idx][data_idx] data_scores = data_scores[perc_idx][data_idx] return data_str, data_enc, data_scores def update_dataset_and_weights(new_inputs, new_scores, data_str, data_enc, data_scores, model): """ update the dataet and the sample weights """ # discard invalid (None) inputs and their corresponding scores valid_idx = np.array(new_inputs) != None valid_inputs = list(new_inputs[valid_idx]) valid_scores = new_scores[valid_idx] print_flush("\tDiscarding {}/{} new inputs that are invalid!".format(len(new_inputs) - len(valid_inputs), len(new_inputs))) # add new inputs and scores to dataset, both as plain string and one-hot vector print_flush("\tAppending new valid inputs to dataset...") data_str += valid_inputs new_inputs_one_hot = model.smiles_to_one_hot(valid_inputs) data_enc =
np.append(data_enc, new_inputs_one_hot, axis=0)
numpy.append
import numpy as np import torch import torch.nn.functional as F import skimage.measure as sk import time import pyrender import pymesh import trimesh from pyemd import emd_samples import chamfer_python import binvox_rw from glob import glob D2R = np.pi/180.0 voxsize = 32 sample_size = 2048 def RotatePhi(phi): return np.array([[1, 0, 0, 0], [0, np.cos(D2R*phi), np.sin(D2R*phi), 0], [0, -np.sin(D2R*phi), np.cos(D2R*phi), 0], [0, 0, 0, 1]]) def RotateAzimuth(phi): return np.array([[
np.cos(D2R*phi)
numpy.cos
import os import json import pickle from pathlib import Path import numpy as np from transformers import AutoTokenizer from torch.utils.data import Dataset, DataLoader class Vocab: def __init__(self, vocab_list, add_pad=True, add_unk=True): self._vocab_dict = dict() self._reverse_vocab_dict = dict() self._length = 0 if add_pad: # pad_id should be zero (for mask) self.pad_word = '<pad>' self.pad_id = self._length self._vocab_dict[self.pad_word] = self.pad_id self._length += 1 if add_unk: self.unk_word = '<unk>' self.unk_id = self._length self._vocab_dict[self.unk_word] = self.unk_id self._length += 1 for w in vocab_list: self._vocab_dict[w] = self._length self._length += 1 for w, i in self._vocab_dict.items(): self._reverse_vocab_dict[i] = w def word_to_id(self, word): if hasattr(self, 'unk_id'): return self._vocab_dict.get(word, self.unk_id) return self._vocab_dict[word] def id_to_word(self, idx): if hasattr(self, 'unk_word'): return self._reverse_vocab_dict.get(idx, self.unk_word) return self._reverse_vocab_dict[idx] def has_word(self, word): return word in self._vocab_dict def __len__(self): return self._length class Tokenizer: def __init__(self, vocab, lower, bert_name): self.vocab = vocab self.maxlen = 256 self.lower = lower self.bert_tokenizer = AutoTokenizer.from_pretrained(bert_name) if bert_name else None @classmethod def from_files(cls, fnames, lower=True): all_tokens = set() for fname in fnames: fdata = json.load(open(os.path.join('data', fname), 'r', encoding='utf-8')) for data in fdata: all_tokens.update([token.lower() if lower else token for token in Tokenizer.split_text(data['text'])]) return cls(vocab=Vocab(all_tokens), lower=lower, bert_name=None) @staticmethod def pad_sequence(sequence, pad_id, maxlen, dtype='int64', padding='post', truncating='post'): x = (
np.zeros(maxlen)
numpy.zeros
import math import numpy as np import multiprocessing """ Stochastic bit-streams are represented as NumPy arrays. Multi-dimensional arrays are used to encode numerical vectors and matrices. """ def scalar_next_int_power_of_2(x): """ Return the next integer power of 2 of x """ # return 1<<(int(math.ceil(abs(x))-1)).bit_length() return 2**(math.ceil(math.log(abs(x), 2))) def next_int_power_of_2(x): """ Vectorized form of scalar_next_int_power_of_2 """ return np.vectorize(pyfunc=scalar_next_int_power_of_2, otypes=[np.float32])(x) def sng(x,no_stoch_samples): """ Bipolar stochastic number generator Parameters ---------- x: Floating-point input value no_stoch_samples: Bit-stream length (int) Returns ------- 1D numpy array holding the bit-stream representing the input x """ # Draw samples from a uniform distribution r = np.random.uniform(-1.0,1.0,size=no_stoch_samples) # Bit-wise comparison y = x > r return y.astype(np.int8) def vec_sng(x,no_stoch_samples): """ Vectorised form of sng Parameters ---------- x: 1D numpy array of floating-point input values no_stoch_samples: Bit-stream length Returns ------- 2D numpy array holding the bit-streams representing the values in x """ # Initialise the output y = np.empty((x.size,no_stoch_samples),dtype=np.int8) for idx in range(x.size): y[idx,:] = sng(x[idx],no_stoch_samples) return y.astype(np.int8) def mat_sng(x,no_stoch_samples): """ Vectorised form of sng Parameters ---------- x: 2D numpy array of floating-point input values no_stoch_samples: Bit-stream length Returns ------- 2D numpy array holding the bit-streams representing the values in x """ rows = x.shape[0] cols = x.shape[1] y = np.empty((rows,cols,no_stoch_samples),dtype=np.int8) for row_idx in range(rows): for col_idx in range(cols): y[row_idx,col_idx,:] = sng(x[row_idx,col_idx],no_stoch_samples) return y.astype(np.int8) def get_value(x): """ Estimate the value of a stochastic bit-stream Parameters ---------- x: 1D numpy array holding the input bit-stream Returns ------- The value encoded by the bit-stream """ y = 2*np.mean(x) - 1 return np.array(y.astype(np.float32)) def vec_sc_value(x): """ Vectorised version of the get_value function Parameters ---------- x: 2D numpy array with stochastic bit-streams """ no_inputs = x.shape[0] # Initialise the output variable y = np.empty(no_inputs,dtype=np.float32) for idx in range(no_inputs): y[idx] = get_value(x[idx,:]) return y def mat_sc_value(x): """ Vectorised version of the get_value function Parameters ---------- x: 3D numpy array with stochastic bit-streams """ rows = x.shape[0] cols = x.shape[1] # Initialise the output variable y = np.empty((rows,cols),dtype=np.float32) for row_idx in range(rows): for col_idx in range(cols): y[row_idx,col_idx] = get_value(x[row_idx,col_idx,:]) return y def multiply(x,w): """ Stochastic XNOR multiplier Parameters ---------- x: Stochastic bit-stream w: Floating point weight Returns ------- A bit-stream representing the product of x and w """ w_seq = sng(w,x.size) product = np.logical_not(np.logical_xor(x,w_seq)) return np.array(product.astype(np.int8)) def square(x): # Stochastic squarring function x_shifted = np.roll(x,shift=1) sq = np.logical_not(np.logical_xor(x,x_shifted)) return np.array(sq.astype(np.int8)) def invert(x): # Change of sign return np.logical_not(x).astype(np.int8) def add(x,y,s_in,upscale=False,s_out=None): """ Scaled addition of two stochastic bit-streams Parameters ---------- x,y: 1D numpy arrays holding bit-streams to be added s_in: 1D numpy array holding the scalings of x and y respectively upsale: Boolean indicating whether saturation arithmetic should be applied Returns ------- A 1D numpy array holding the output bit-stream """ x_rescaled = np.empty(x.size, dtype=np.int8) y_rescaled = np.empty(y.size, dtype=np.int8) # Rescaling of the input bit-streams if (s_in[0] > s_in[1]): """ Rescale y """ max_scaling = s_in[0] s_ratio = s_in[1]/s_in[0] x_rescaled = x y_rescaled = multiply(y,s_ratio) elif (s_in[0] < s_in[1]): """ Rescale x """ max_scaling = s_in[1] s_ratio = s_in[0]/s_in[1] x_rescaled = multiply(x,s_ratio) y_rescaled = y else: """ Inputs have the same scaling """ max_scaling = s_in[0] x_rescaled = x y_rescaled = y # Perform addition with the re-scaled bit-streams select_val = 0 select_line = sng(select_val,x.size) x_plus_y =
np.empty(x.size, dtype=np.int8)
numpy.empty
#!/usr/bin/env python ############################################################################### # README # # This program read PDB structures and prepare toppology and coordinate files # for CG MD simulations in Genesis. # # PDB format: # 1. Atoms startswith "ATOM " # 2. Chains should end with "TER" and have different IDs # ############################################################################### import numpy as np import argparse from tqdm import tqdm ########################################################################### # Force Field Parameters # ########################################################################### # ____ _ ____ _ __ __ _____ _____ _____ ____ ____ # | _ \ / \ | _ \ / \ | \/ | ____|_ _| ____| _ \/ ___| # | |_) / _ \ | |_) | / _ \ | |\/| | _| | | | _| | |_) \___ \ # | __/ ___ \| _ < / ___ \| | | | |___ | | | |___| _ < ___) | # |_| /_/ \_\_| \_\/_/ \_\_| |_|_____| |_| |_____|_| \_\____/ # ########################################################################### # ================== # Physical Constants # ================== CAL2JOU = 4.184 # ===================================== # General Parameters: Mass, Charge, ... # ===================================== ATOM_MASS_DICT = { 'C' : 12.011, 'N' : 14.001, 'O' : 15.999, 'P' : 30.974, 'S' : 32.065, 'H' : 1.008 } RES_MASS_DICT = { "ALA" : 71.09, "ARG" : 156.19, "ASN" : 114.11, "ASP" : 115.09, "CYS" : 103.15, "CYM" : 103.15, "CYT" : 103.15, "GLN" : 128.14, "GLU" : 129.12, "GLY" : 57.05, "HIS" : 137.14, "ILE" : 113.16, "LEU" : 113.16, "LYS" : 128.17, "MET" : 131.19, "PHE" : 147.18, "PRO" : 97.12, "SER" : 87.08, "THR" : 101.11, "TRP" : 186.21, "TYR" : 163.18, "VAL" : 99.14, "DA" : 134.10, "DC" : 110.10, "DG" : 150.10, "DT" : 125.10, "DP" : 94.97, "DS" : 83.11, "RA" : 134.10, "RC" : 110.10, "RG" : 150.10, "RU" : 111.10, "RP" : 62.97, "RS" : 131.11 } RES_CHARGE_DICT = { "ALA" : 0.0, "ARG" : 1.0, "ASN" : 0.0, "ASP" : -1.0, "CYS" : 0.0, "CYM" : 0.0, "CYT" : 0.0, "GLN" : 0.0, "GLU" : -1.0, "GLY" : 0.0, "HIS" : 0.0, "ILE" : 0.0, "LEU" : 0.0, "LYS" : 1.0, "MET" : 0.0, "PHE" : 0.0, "PRO" : 0.0, "SER" : 0.0, "THR" : 0.0, "TRP" : 0.0, "TYR" : 0.0, "VAL" : 0.0, "DA" : 0.0, "DC" : 0.0, "DG" : 0.0, "DT" : 0.0, "DP" : -0.6, "DS" : 0.0, "RA" : 0.0, "RC" : 0.0, "RG" : 0.0, "RU" : 0.0, "RP" : -1.0, "RS" : 0.0 } RES_SHORTNAME_DICT = { "ALA" : "A", "ARG" : "R", "ASN" : "N", "ASP" : "D", "CYS" : "C", "CYM" : "C", "CYT" : "C", "GLN" : "Q", "GLU" : "E", "GLY" : "G", "HIS" : "H", "ILE" : "I", "LEU" : "L", "LYS" : "K", "MET" : "M", "PHE" : "F", "PRO" : "P", "SER" : "S", "THR" : "T", "TRP" : "W", "TYR" : "Y", "VAL" : "V", "DA" : "A", "DC" : "C", "DG" : "G", "DT" : "T", "RA" : "A", "RC" : "C", "RG" : "G", "RU" : "U" } RES_NAME_SET_PROTEIN = ( "ALA", "ARG", "ASN", "ASP", "CYS", "GLN", "GLU", "GLY", "HIS", "ILE", "LEU", "LYS", "MET", "PHE", "PRO", "SER", "THR", "TRP", "TYR", "VAL", "CYM", "CYT") RES_NAME_SET_DNA = ("DA", "DC", "DG", "DT") RES_NAME_SET_RNA = ("RA", "RC", "RG", "RU") # DNA CG residue atom names ATOM_NAME_SET_DP = ("P", "OP1", "OP2", "O5'", "O1P", "O2P") ATOM_NAME_SET_DS = ("C5'", "C4'", "C3'", "C2'", "C1'", "O4'", "O2'") # RNA CG residue atom names ATOM_NAME_SET_RP = ("P", "OP1", "OP2", "O1P", "O2P") ATOM_NAME_SET_RS = ("C5'", "C4'", "C3'", "C2'", "C1'", "O5'", "O4'", "O3'", "O2'") # ============== # Molecule Types # ============== MOL_DNA = 0 MOL_RNA = 1 MOL_PROTEIN = 2 MOL_OTHER = 3 MOL_TYPE_LIST = ["DNA", "RNA", "protein", "other", "unknown"] # =============================== # Protein AICG2+ Model Parameters # =============================== # AICG2+ bond force constant AICG_BOND_K = 110.40 * CAL2JOU * 100.0 * 2.0 # AICG2+ sigma for Gaussian angle AICG_13_SIGMA = 0.15 * 0.1 # nm # AICG2+ sigma for Gaussian dihedral AICG_14_SIGMA = 0.15 # Rad ?? # AICG2+ atomistic contact cutoff AICG_GO_ATOMIC_CUTOFF = 6.5 # AICG2+ pairwise interaction cutoff AICG_ATOMIC_CUTOFF = 5.0 # AICG2+ hydrogen bond cutoff AICG_HYDROGEN_BOND_CUTOFF = 3.2 # AICG2+ salt bridge cutoff AICG_SALT_BRIDGE_CUTOFF = 3.5 # AICG2+ energy cutoffs AICG_ENE_UPPER_LIM = -0.5 AICG_ENE_LOWER_LIM = -5.0 # average and general AICG2+ energy values AICG_13_AVE = 1.72 AICG_14_AVE = 1.23 AICG_CONTACT_AVE = 0.55 AICG_13_GEN = 1.11 AICG_14_GEN = 0.87 AICG_CONTACT_GEN = 0.32 # AICG2+ pairwise interaction pairs AICG_ITYPE_BB_HB = 1 # B-B hydrogen bonds AICG_ITYPE_BB_DA = 2 # B-B donor-accetor contacts AICG_ITYPE_BB_CX = 3 # B-B carbon-X contacts AICG_ITYPE_BB_XX = 4 # B-B other AICG_ITYPE_SS_HB = 5 # S-S hydrogen bonds AICG_ITYPE_SS_SB = 6 # S-S salty bridge AICG_ITYPE_SS_DA = 7 # S-S donor-accetor contacts AICG_ITYPE_SS_CX = 8 # S-S carbon-X contacts AICG_ITYPE_SS_QX = 9 # S-S charge-X contacts AICG_ITYPE_SS_XX = 10 # S-S other AICG_ITYPE_SB_HB = 11 # S-B hydrogen bonds AICG_ITYPE_SB_DA = 12 # S-B donor-accetor contacts AICG_ITYPE_SB_CX = 13 # S-B carbon-X contacts AICG_ITYPE_SB_QX = 14 # S-B charge-X contacts AICG_ITYPE_SB_XX = 15 # S-B other AICG_ITYPE_LR_CT = 16 # long range contacts AICG_ITYPE_OFFST = 0 # offset AICG_PAIRWISE_ENERGY = np.zeros(17) AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_HB] = - 1.4247 # B-B hydrogen bonds AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_DA] = - 0.4921 # B-B donor-accetor contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_CX] = - 0.2404 # B-B carbon-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_BB_XX] = - 0.1035 # B-B other AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_HB] = - 5.7267 # S-S hydrogen bonds AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_SB] = -12.4878 # S-S salty bridge AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_DA] = - 0.0308 # S-S donor-accetor contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_CX] = - 0.1113 # S-S carbon-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_QX] = - 0.2168 # S-S charge-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SS_XX] = 0.2306 # S-S other AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_HB] = - 3.4819 # S-B hydrogen bonds AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_DA] = - 0.1809 # S-B donor-accetor contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_CX] = - 0.1209 # S-B carbon-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_QX] = - 0.2984 # S-B charge-X contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_SB_XX] = - 0.0487 # S-B other AICG_PAIRWISE_ENERGY[AICG_ITYPE_LR_CT] = - 0.0395 # long range contacts AICG_PAIRWISE_ENERGY[AICG_ITYPE_OFFST] = - 0.1051 # offset # ============================ # DNA 3SPN.2C Model Parameters # ============================ # 3SPN.2C bond force constant DNA3SPN_BOND_K_2 = 60.0 * 2 # 3SPN.2C force constant for Gaussian dihedral DNA3SPN_DIH_G_K = 7.0 # 3SPN.2C sigma for Gaussian dihedral DNA3SPN_DIH_G_SIGMA = 0.3 # 3SPN.2C force constant for Gaussian dihedral DNA3SPN_DIH_P_K = 2.0 # ==================================== # RNA Structure-based Model Parameters # ==================================== # RNA atomistic contact cutoff RNA_GO_ATOMIC_CUTOFF = 5.5 # RNA stacking interaction dihedral cutoff RNA_STACK_DIH_CUTOFF = 40.0 # RNA stacking interaction distance cutoff RNA_STACK_DIST_CUTOFF = 6.0 # RNA stacking interaction epsilon RNA_STACK_EPSILON = 2.06 # RNA base pairing epsilon RNA_BPAIR_EPSILON_2HB = 2.94 RNA_BPAIR_EPSILON_3HB = 5.37 RNA_BOND_K_LIST = { "PS" : 26.5, "SR" : 40.3, "SY" : 62.9, "SP" : 84.1 } RNA_ANGLE_K_LIST = { "PSR" : 18.0, "PSY" : 22.8, "PSP" : 22.1, "SPS" : 47.8 } RNA_DIHEDRAL_K_LIST = { "PSPS" : 1.64, "SPSR" : 1.88, "SPSY" : 2.82, "SPSP" : 2.98 } RNA_PAIR_EPSILON_OTHER = { "SS" : 1.48, "BS" : 0.98, "SB" : 0.98, "BB" : 0.93 } # ================= # PWMcos parameters # ================= # PWMcos atomistic contact cutoff PWMCOS_ATOMIC_CUTOFF = 4.0 # ====================== # Protein-RNA parameters # ====================== # protein-RNA Go-term coefficient PRO_RNA_GO_EPSILON_B = 0.62 PRO_RNA_GO_EPSILON_S = 0.74 # ==================== # GRO TOP File Options # ==================== # "NREXCL" in "[moleculetype]" MOL_NR_EXCL = 3 # "CGNR" in "[atoms]" AICG_ATOM_FUNC_NR = 1 DNA3SPN_ATOM_FUNC_NR = 1 RNA_ATOM_FUNC_NR = 1 # "f" in "[bonds]" AICG_BOND_FUNC_TYPE = 1 DNA3SPN_BOND_FUNC2_TYPE = 1 DNA3SPN_BOND_FUNC4_TYPE = 21 RNA_BOND_FUNC_TYPE = 1 # "f" in AICG-type "[angles]" AICG_ANG_G_FUNC_TYPE = 21 # "f" in Flexible-type "[angles]" AICG_ANG_F_FUNC_TYPE = 22 # "f" in DNA "[angles]" DNA3SPN_ANG_FUNC_TYPE = 1 # "f" in RNA "[angles]" RNA_ANG_FUNC_TYPE = 1 # "f" in AICG-type "[dihedral]" AICG_DIH_G_FUNC_TYPE = 21 # "f" in Flexible-type "[dihedral]" AICG_DIH_F_FUNC_TYPE = 22 # "f" in DNA Gaussian "[dihedral]" DNA3SPN_DIH_G_FUNC_TYPE = 21 # "f" in DNA Periodic "[dihedral]" DNA3SPN_DIH_P_FUNC_TYPE = 1 DNA3SPN_DIH_P_FUNC_PERI = 1 # "f" in RNA Periodic "[dihedral]" RNA_DIH_FUNC_TYPE = 1 # "f" in Go-contacts "[pairs]" AICG_CONTACT_FUNC_TYPE = 2 # "f" in RNA Go-contacts "[pairs]" RNA_CONTACT_FUNC_TYPE = 2 # "f" in pro-RNA Go-contacts "[pairs]" RNP_CONTACT_FUNC_TYPE = 2 # "f" in protein-DNA PWMcos "[pwmcos]" PWMCOS_FUNC_TYPE = 1 ############################################################################### # Functions # ############################################################################### # ____ _ ____ ___ ____ _____ _ _ _ _ ____ # | __ ) / \ / ___|_ _/ ___| | ___| | | | \ | |/ ___| # | _ \ / _ \ \___ \| | | | |_ | | | | \| | | # | |_) / ___ \ ___) | | |___ | _| | |_| | |\ | |___ # |____/_/ \_\____/___\____| |_| \___/|_| \_|\____| # ############################################################################### # =================== # Geometric Functions # =================== # -------- # Distance # -------- def compute_distance(coor1, coor2): # d = coor1 - coor2 # return np.linalg.norm(d) dx = coor1[0] - coor2[0] dy = coor1[1] - coor2[1] dz = coor1[2] - coor2[2] dist = (dx * dx + dy * dy + dz * dz) ** 0.5 return dist # ----- # Angle # ----- def compute_angle(coor1, coor2, coor3): v1 = coor1 - coor2 v2 = coor3 - coor2 n1 = np.linalg.norm(v1) n2 = np.linalg.norm(v2) return np.arccos( np.dot(v1, v2) / n1 / n2) / np.pi * 180.0 def compute_vec_angle(vec1, vec2): n1 = np.linalg.norm(vec1) n2 = np.linalg.norm(vec2) return np.arccos( np.dot(vec1, vec2) / n1 / n2) / np.pi * 180.0 # -------- # Dihedral # -------- def compute_dihedral(coor1, coor2, coor3, coor4): v12 = coor2 - coor1 v23 = coor3 - coor2 v34 = coor4 - coor3 c123 = np.cross(v12, v23) c234 = np.cross(v23, v34) nc123 = np.linalg.norm(c123) nc234 = np.linalg.norm(c234) dih = np.arccos( np.dot(c123, c234) / nc123 / nc234) c1234 = np.cross(c123, c234) judge = np.dot(c1234, v23) dih = dih if judge > 0 else -dih return dih / np.pi * 180.0 # -------------- # Center of mass # -------------- def compute_center_of_mass(atom_indices, atom_names, atom_coors): total_mass = 0 tmp_coor = np.zeros(3) for i in atom_indices: a_mass = ATOM_MASS_DICT[atom_names[i][1]] a_coor = atom_coors[i, :] total_mass += a_mass tmp_coor += a_coor * a_mass com = tmp_coor / total_mass return com # =============================== # Structural Biological Functions # =============================== # -------------------- # AICG2+ Protein Model # -------------------- def is_protein_backbone(atom_name): if atom_name in ("N", "C", "O", "OXT", "CA"): return True return False def is_protein_hb_donor(atom_name, res_name): if atom_name[0] == 'N': return True elif atom_name[0] == 'S' and res_name == "CYS": return True elif atom_name[0] == 'O': if ( res_name == "SER" and atom_name == "OG" ) or \ ( res_name == "THR" and atom_name == "OG1" ) or \ ( res_name == "TYR" and atom_name == "OH" ): return True return False def is_protein_hb_acceptor(atom_name): if atom_name[0] == 'O' or atom_name[0] == 'S': return True return False def is_protein_cation(atom_name, res_name): if atom_name[0] == 'N': if ( res_name == "ARG" and atom_name == "NH1" ) or \ ( res_name == "ARG" and atom_name == "NH2" ) or \ ( res_name == "LYS" and atom_name == "NZ" ): return True return False def is_protein_anion(atom_name, res_name): if atom_name[0] == 'O': if ( res_name == "GLU" and atom_name == "OE1" ) or \ ( res_name == "GLU" and atom_name == "OE2" ) or \ ( res_name == "ASP" and atom_name == "OD1" ) or \ ( res_name == "ASP" and atom_name == "OD2" ): return True return False def is_protein_hb_pair(atom_name_1, res_name_1, atom_name_2, res_name_2): if is_protein_hb_acceptor (atom_name_1) and \ is_protein_hb_donor (atom_name_2, res_name_2): return True elif is_protein_hb_acceptor (atom_name_2) and \ is_protein_hb_donor (atom_name_1, res_name_1): return True return False def is_protein_sb_pair(atom_name_1, res_name_1, atom_name_2, res_name_2): if is_protein_cation (atom_name_1, res_name_1) and \ is_protein_anion (atom_name_2, res_name_2): return True elif is_protein_cation (atom_name_2, res_name_2) and \ is_protein_anion (atom_name_1, res_name_1): return True return False def is_protein_nonsb_charge_pair(atom_name_1, res_name_1, atom_name_2, res_name_2): if is_protein_cation (atom_name_1, res_name_1 ) or \ is_protein_anion (atom_name_1, res_name_1 ) or \ is_protein_cation (atom_name_2, res_name_2 ) or \ is_protein_anion (atom_name_2, res_name_2 ): return True return False def is_protein_go_contact(resid1, resid2, atom_names, atom_coors): for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < AICG_GO_ATOMIC_CUTOFF: return True return False def count_aicg_atomic_contact(resid1, resid2, res_name_1, res_name_2, atom_names, atom_coors): contact_count = np.zeros(( 17, ), dtype=int) contact_count[AICG_ITYPE_OFFST] = 1 num_short_range_contact = 0 for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) is_hb = is_protein_hb_pair (atom_name_1, res_name_1, atom_name_2, res_name_2) is_sb = is_protein_sb_pair (atom_name_1, res_name_1, atom_name_2, res_name_2) is_nonsb_charge = is_protein_nonsb_charge_pair (atom_name_1, res_name_1, atom_name_2, res_name_2) is_1_backbone = is_protein_backbone (atom_name_1) is_2_backbone = is_protein_backbone (atom_name_2) if dist_12 < AICG_GO_ATOMIC_CUTOFF: contact_count[AICG_ITYPE_LR_CT] += 1 if dist_12 < AICG_ATOMIC_CUTOFF: num_short_range_contact += 1 if is_1_backbone and is_2_backbone: if is_hb: if dist_12 < AICG_HYDROGEN_BOND_CUTOFF: contact_count[AICG_ITYPE_BB_HB] += 1 else: contact_count[AICG_ITYPE_BB_DA] += 1 elif atom_name_1[0] == 'C' or atom_name_2[0] == 'C': contact_count[AICG_ITYPE_BB_CX] += 1 else: contact_count[AICG_ITYPE_BB_XX] += 1 elif ( not is_1_backbone ) and ( not is_2_backbone ): if is_hb: if is_sb: if dist_12 < AICG_SALT_BRIDGE_CUTOFF: contact_count[AICG_ITYPE_SS_SB] += 1 else: contact_count[AICG_ITYPE_SS_QX] += 1 elif dist_12 < AICG_HYDROGEN_BOND_CUTOFF: contact_count[AICG_ITYPE_SS_HB] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SS_QX] += 1 else: contact_count[AICG_ITYPE_SS_DA] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SS_QX] += 1 elif atom_name_1[0] == 'C' or atom_name_2[0] == 'C': contact_count[AICG_ITYPE_SS_CX] += 1 else: contact_count[AICG_ITYPE_SS_XX] += 1 elif ( is_1_backbone and ( not is_2_backbone ) ) or \ ( is_2_backbone and ( not is_1_backbone ) ): if is_hb: if dist_12 < AICG_HYDROGEN_BOND_CUTOFF: contact_count[AICG_ITYPE_SB_HB] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SB_QX] += 1 else: contact_count[AICG_ITYPE_SB_DA] += 1 elif is_nonsb_charge: contact_count[AICG_ITYPE_SB_QX] += 1 elif atom_name_1[0] == 'C' or atom_name_2[0] == 'C': contact_count[AICG_ITYPE_SB_CX] += 1 else: contact_count[AICG_ITYPE_SB_XX] += 1 # control the number of long-range contacts if AICG_GO_ATOMIC_CUTOFF > AICG_ATOMIC_CUTOFF: contact_count[AICG_ITYPE_LR_CT] -= num_short_range_contact else: contact_count[AICG_ITYPE_LR_CT] = 0 # control the number of salty bridge if contact_count[AICG_ITYPE_SS_SB] >= 2: contact_count[AICG_ITYPE_SS_QX] += contact_count[AICG_ITYPE_SS_SB] - 1 contact_count[AICG_ITYPE_SS_SB] = 1 return contact_count # ----------------- # 3SPN.2C DNA model # ----------------- def get_DNA3SPN_angle_param(angle_type, base_step): # Base-Sugar-Phosphate BSP_params = { "AA" : 460, "AT" : 370, "AC" : 442, "AG" : 358, "TA" : 120, "TT" : 460, "TC" : 383, "TG" : 206, "CA" : 206, "CT" : 358, "CC" : 278, "CG" : 278, "GA" : 383, "GT" : 442, "GC" : 336, "GG" : 278 } # Phosphate-Sugar-Base PSB_params = { "AA" : 460, "TA" : 120, "CA" : 206, "GA" : 383, "AT" : 370, "TT" : 460, "CT" : 358, "GT" : 442, "AC" : 442, "TC" : 383, "CC" : 278, "GC" : 336, "AG" : 358, "TG" : 206, "CG" : 278, "GG" : 278 } # Phosphate-Sugar-Phosphate PSP_params = { "all" : 300 } # Sugar-Phosphate-Sugar SPS_params = { "AA" : 355, "AT" : 147, "AC" : 464, "AG" : 368, "TA" : 230, "TT" : 355, "TC" : 442, "TG" : 273, "CA" : 273, "CT" : 368, "CC" : 165, "CG" : 478, "GA" : 442, "GT" : 464, "GC" : 228, "GG" : 165 } angle_params = { "BSP" : BSP_params, "PSB" : PSB_params, "PSP" : PSP_params, "SPS" : SPS_params } return angle_params[angle_type][base_step] # ------------------------- # RNA structure-based model # ------------------------- def is_RNA_hydrogen_bond(atom_name_1, atom_name_2): special_atom_list = ['F', 'O', 'N'] if atom_name_1 in special_atom_list and atom_name_2 in special_atom_list: return True return False def compute_RNA_Go_contact(resid1, resid2, atom_names, atom_coors): hb_count = 0 min_dist = 1e50 for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < RNA_GO_ATOMIC_CUTOFF and is_RNA_hydrogen_bond(atom_name_1[0], atom_name_2[0]): hb_count += 1 if dist_12 < min_dist: min_dist = dist_12 return (min_dist, hb_count) # ------------------------ # protein-DNA interactions # ------------------------ def is_PWMcos_contact(resid1, resid2, atom_names, atom_coors): for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < PWMCOS_ATOMIC_CUTOFF: return True return False # ------------------------ # protein-RNA interactions # ------------------------ def is_protein_RNA_go_contact(resid1, resid2, atom_names, atom_coors): for i in resid1.atoms: atom_name_1 = atom_names[i] if atom_name_1[0] == 'H': continue coor_1 = atom_coors[i, :] for j in resid2.atoms: atom_name_2 = atom_names[j] if atom_name_2[0] == 'H': continue coor_2 = atom_coors[j, :] dist_12 = compute_distance(coor_1, coor_2) if dist_12 < AICG_GO_ATOMIC_CUTOFF: return True return False # ------------------ # Other file formats # ------------------ def read_modified_pfm(pfm_filename): pfm = {} with open(pfm_filename, 'r') as fin: for line in fin: words = split(line) if len(words) < 1: continue w1 = words[0] if w1 in "ACGT": local_list = [] for p in words[1:]: append(local_list, float(p)) pfm[w1] = local_list elif w1 in ["CHAIN_A", "CHAIN_B"]: local_list = [] for dna_id in words[1:]: append(local_list, int(dna_id)) pfm[w1] = local_list pfmat = np.array([pfm["A"], pfm["C"], pfm["G"], pfm["T"]]) ppmat = pfmat / pfmat.sum(axis=0) pwmat0 = -np.log(ppmat) pwmat = pwmat0 - pwmat0.sum(axis=0) / 4 return (pwmat, pfm["CHAIN_A"], pfm["CHAIN_B"]) # ============================= # Coarse-Graining Structures!!! # ============================= class AAResidue: def __init__(self, name, atoms): self.name = name self.atoms = atoms class AAChain: def __init__(self, chain_id, residues): self.chain_id = chain_id self.residues = residues class CGResidue: def __init__(self, residue_index, residue_name, atom_name, atoms): self.res_idx = residue_index self.res_name = residue_name self.atm_name = atom_name self.atoms = atoms class CGChain: def __init__(self, first, last, moltype): self.first = first self.last = last self.moltype = moltype ############################################################################### # ____ ___ ____ _____ # / ___/ _ \| _ \| ____| # | | | | | | |_) | _| # | |__| |_| | _ <| |___ # \____\___/|_| \_\_____| # ############################################################################### # core function def pdb_2_top(args): # ----------------- # Parsing arguments # ----------------- pdb_name = args.pdb protein_charge_filename = args.respac scale_scheme = args.aicg_scale gen_3spn_itp = args.dna_3spn_param gen_pwmcos_itp = args.pwmcos pwmcos_gamma = args.pwmcos_scale pwmcos_epsil = args.pwmcos_shift pfm_filename = args.pfm appendto_filename = args.patch do_output_psf = args.psf do_output_cgpdb = args.cgpdb do_debug = args.debug do_output_sequence = args.show_sequence # =============== # Step 0: numbers # =============== aa_num_atom = 0 aa_num_residue = 0 aa_num_chain = 0 num_chain_pro = 0 num_chain_DNA = 0 num_chain_RNA = 0 i_step = 0 # ================ # Step 1: open PDB # ================ i_step += 1 print("============================================================") print("> Step {0:>2d}: open PDB file.".format(i_step)) aa_pdb_lines = [] with open(pdb_name, "r") as fin_pdb: for line in fin_pdb: if line.startswith("ATOM"): aa_pdb_lines.append(line.ljust(80)) aa_num_atom += 1 elif line.startswith("TER") or line.startswith("END"): aa_pdb_lines.append(line.ljust(80)) aa_atom_name = [" " for _ in range(aa_num_atom)] aa_coor = np.zeros((aa_num_atom, 3)) aa_residues = [] aa_chains = [] i_atom = 0 i_resid = 0 curr_resid = None curr_chain = None curr_rname = " " residue_name = " " chain_id = '?' tmp_res_atoms = [] tmp_chain_res = [] for line in aa_pdb_lines: if line.startswith("TER") or line.startswith("END"): if len(tmp_res_atoms) > 0: aa_residues.append(AAResidue(residue_name, tmp_res_atoms[:])) tmp_res_atoms = [] if len(tmp_chain_res) > 0: aa_chains.append(AAChain(chain_id, tmp_chain_res[:])) tmp_chain_res = [] continue i_atom += 1 atom_name = line[12:16].strip() residue_name = line[17:21].strip() chain_id = line[21] atom_serial = int (line[6 :11]) residue_serial = int (line[22:26]) coor_x = float (line[30:38]) coor_y = float (line[38:46]) coor_z = float (line[46:54]) aa_atom_name [i_atom - 1 ] = atom_name aa_coor [i_atom - 1 ] = [ coor_x, coor_y, coor_z ] if residue_serial != curr_resid: i_resid += 1 tmp_chain_res.append(i_resid - 1) curr_resid = residue_serial if len(tmp_res_atoms) > 0: aa_residues.append(AAResidue(curr_rname, tmp_res_atoms[:])) tmp_res_atoms = [] curr_rname = residue_name tmp_res_atoms.append(i_atom - 1) aa_num_residue = len(aa_residues) aa_num_chain = len(aa_chains) print(" > Number of atoms : {0:>10d}".format(aa_num_atom)) print(" > Number of residues: {0:>10d}".format(aa_num_residue)) print(" > Number of chains : {0:>10d}".format(aa_num_chain)) # =============================== # Step 2: find out molecule types # =============================== i_step += 1 print("============================================================") print("> Step {0:>2d}: set molecular types for every chain.".format(i_step)) cg_num_particles = 0 cg_chain_mol_types = np.zeros(aa_num_chain, dtype=int) cg_chain_length = np.zeros(aa_num_chain, dtype=int) for i_chain in range( aa_num_chain ): chain = aa_chains[i_chain] mol_type = -1 for i_res in chain.residues: res_name = aa_residues[i_res].name if res_name in RES_NAME_SET_PROTEIN: tmp_mol_type = MOL_PROTEIN elif res_name in RES_NAME_SET_DNA: tmp_mol_type = MOL_DNA elif res_name in RES_NAME_SET_RNA: tmp_mol_type = MOL_RNA else: tmp_mol_type = MOL_OTHER if mol_type == -1: mol_type = tmp_mol_type elif tmp_mol_type != mol_type: errmsg = "BUG: Inconsistent residue types in chain {} ID - {} residue - {} : {} " print(errmsg.format(i_chain, chain.chain_id, i_res, res_name)) exit() cg_chain_mol_types[i_chain] = mol_type n_res = len(chain.residues) if mol_type == MOL_DNA: n_particles = 3 * n_res - 1 num_chain_DNA += 1 elif mol_type == MOL_RNA: n_particles = 3 * n_res - 1 num_chain_RNA += 1 elif mol_type == MOL_PROTEIN: n_particles = n_res num_chain_pro += 1 else: n_particles = 0 cg_chain_length[i_chain] = n_particles cg_num_particles += n_particles print(" > Chain {0:>3d} | {1:>7}".format( i_chain + 1, MOL_TYPE_LIST[ mol_type ] )) print("------------------------------------------------------------") print(" In total: {0:>5d} protein chains,".format(num_chain_pro)) print(" {0:>5d} DNA strands,".format(num_chain_DNA)) print(" {0:>5d} RNA strands.".format(num_chain_RNA)) # =========================== # Step 3: Assign CG particles # =========================== i_step += 1 print("============================================================") print("> Step {0:>2d}: assign coarse-grained particles.".format(i_step)) cg_residues = [] cg_chains = [] i_offset_cg_particle = 0 i_offset_cg_residue = 0 for i_chain in range(aa_num_chain): chain = aa_chains [i_chain] mol_type = cg_chain_mol_types [i_chain] i_bead = i_offset_cg_particle i_resi = i_offset_cg_residue if mol_type == MOL_PROTEIN: for i_res in chain.residues: cg_idx = [] res_name = aa_residues[i_res].name for i_atom in aa_residues[i_res].atoms: atom_name = aa_atom_name[i_atom] if atom_name[0] == 'H': continue else: cg_idx.append(i_atom) i_bead += 1 i_resi += 1 cg_residues.append(CGResidue(i_resi, res_name, "CA", cg_idx[:])) elif mol_type == MOL_DNA: tmp_atom_index_O3p = 0 for i_local_index, i_res in enumerate( chain.residues ): res_name = aa_residues[i_res].name cg_DP_idx = [tmp_atom_index_O3p] cg_DS_idx = [] cg_DB_idx = [] for i_atom in aa_residues[i_res].atoms: atom_name = aa_atom_name[i_atom] if atom_name[0] == 'H': continue elif atom_name in ATOM_NAME_SET_DP: cg_DP_idx.append(i_atom) elif atom_name in ATOM_NAME_SET_DS: cg_DS_idx.append(i_atom) elif atom_name == "O3'": tmp_atom_index_O3p = i_atom else: cg_DB_idx.append(i_atom) i_resi += 1 if i_local_index > 0: i_bead += 1 cg_residues.append(CGResidue(i_resi, res_name, "DP", cg_DP_idx[:])) i_bead += 1 cg_residues.append( CGResidue(i_resi, res_name, "DS", cg_DS_idx[:])) i_bead += 1 cg_residues.append( CGResidue(i_resi, res_name, "DB", cg_DB_idx[:])) elif mol_type == MOL_RNA: for i_local_index, i_res in enumerate( chain.residues ): res_name = aa_residues[i_res].name cg_RP_idx = [] cg_RS_idx = [] cg_RB_idx = [] for i_atom in aa_residues[i_res].atoms: atom_name = aa_atom_name[i_atom] if atom_name[0] == 'H': continue elif atom_name in ATOM_NAME_SET_RP: cg_RP_idx.append(i_atom) elif atom_name in ATOM_NAME_SET_RS: cg_RS_idx.append(i_atom) else: cg_RB_idx.append(i_atom) i_resi += 1 if i_local_index > 0: i_bead += 1 cg_residues.append( CGResidue(i_resi, res_name, "RP", cg_RP_idx[:])) i_bead += 1 cg_residues.append( CGResidue(i_resi, res_name, "RS", cg_RS_idx[:])) i_bead += 1 cg_residues.append( CGResidue(i_resi, res_name, "RB", cg_RB_idx[:])) cg_chains.append(CGChain(i_offset_cg_particle, i_bead - 1, mol_type)) i_offset_cg_particle += cg_chain_length[i_chain] i_offset_cg_residue += len(chain.residues) chain_info_str = " > Chain {0:>3d} | # particles: {1:>5d} | {2:>5d} -- {3:>5d} " for i_chain in range(aa_num_chain): print(chain_info_str.format(i_chain + 1, cg_chain_length[i_chain], cg_chains[i_chain].first + 1, cg_chains[i_chain].last + 1)) print("------------------------------------------------------------") print(" In total: {0} CG particles.".format(cg_num_particles)) # ========================================================================= # ____ ____ _____ ___ ____ ___ _ ___ ______ __ # / ___/ ___| |_ _/ _ \| _ \ / _ \| | / _ \ / ___\ \ / / # | | | | _ | || | | | |_) | | | | | | | | | | _ \ V / # | |__| |_| | | || |_| | __/| |_| | |__| |_| | |_| | | | # \____\____| |_| \___/|_| \___/|_____\___/ \____| |_| # # ========================================================================= cg_resid_name = [" " for _ in range(cg_num_particles)] cg_resid_index = np.zeros(cg_num_particles, dtype=int) cg_bead_name = [" " for _ in range(cg_num_particles)] cg_bead_type = [" " for _ in range(cg_num_particles)] cg_bead_charge = np.zeros(cg_num_particles) cg_bead_mass = np.zeros(cg_num_particles) cg_bead_coor = np.zeros((cg_num_particles, 3)) cg_chain_id = np.zeros(cg_num_particles, dtype=int) # protein top_cg_pro_bonds = [] top_cg_pro_angles = [] top_cg_pro_dihedrals = [] top_cg_pro_aicg13 = [] top_cg_pro_aicg14 = [] top_cg_pro_aicg_contact = [] param_cg_pro_e_13 = [] param_cg_pro_e_14 = [] param_cg_pro_e_contact = [] # DNA top_cg_DNA_bonds = [] top_cg_DNA_angles = [] top_cg_DNA_dih_Gaussian = [] top_cg_DNA_dih_periodic = [] # RNA top_cg_RNA_bonds = [] top_cg_RNA_angles = [] top_cg_RNA_dihedrals = [] top_cg_RNA_base_stack = [] top_cg_RNA_base_pair = [] top_cg_RNA_other_contact = [] # protein-DNA top_cg_pro_DNA_pwmcos = [] # protein-RNA top_cg_pro_RNA_contact = [] # ================================= # Step 4: AICG2+ model for proteins # ================================= # _ _ # _ __ _ __ ___ | |_ ___(_)_ __ # | '_ \| '__/ _ \| __/ _ \ | '_ \ # | |_) | | | (_) | || __/ | | | | # | .__/|_| \___/ \__\___|_|_| |_| # |_| # # ================================= if num_chain_pro > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: processing proteins.".format(i_step)) # -------------------------------- # Step 4.1: find out C-alpha atoms # -------------------------------- print("------------------------------------------------------------") print("> {0}.1: determine CA mass, charge, and coordinates.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range( chain.first, chain.last + 1 ): res_name = cg_residues[i_res].res_name for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom] == "CA": cg_resid_name [i_res] = res_name cg_resid_index [i_res] = cg_residues [i_res].res_idx cg_bead_name [i_res] = "CA" cg_bead_type [i_res] = res_name cg_bead_charge [i_res] = RES_CHARGE_DICT [res_name] cg_bead_mass [i_res] = RES_MASS_DICT [res_name] cg_bead_coor [i_res] = aa_coor [i_atom] cg_chain_id [i_res] = i_chain break if len(protein_charge_filename) > 0: try: with open(protein_charge_filename, 'r') as pro_c_fin: for line in pro_c_fin: charge_data = line.split() if len(charge_data) < 1: continue i = int(charge_data[0]) c = float(charge_data[1]) cg_bead_charge[i - 1] = c except: print("ERROR in user-defined charge distribution.\n") exit() print("> ... DONE!") # ------------------------- # Step 4.2: AICG2+ topology # ------------------------- print("------------------------------------------------------------") print("> {0}.2: AICG2+ topology.".format(i_step)) print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.1: AICG2+ local interactions.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range( chain.first, chain.last ): coor1 = cg_bead_coor[i_res] coor2 = cg_bead_coor[i_res + 1] dist12 = compute_distance(coor1, coor2) top_cg_pro_bonds.append((i_res, dist12)) print("> ... Bond: DONE!") e_ground_local = 0.0 e_ground_13 = 0.0 num_angle = 0 for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range(chain.first, chain.last - 1): coor1 = cg_bead_coor[i_res ] coor3 = cg_bead_coor[i_res + 2 ] dist13 = compute_distance (coor1, coor3) top_cg_pro_angles.append (i_res) top_cg_pro_aicg13.append ( (i_res, dist13)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res ], cg_residues [i_res + 2 ], cg_resid_name [i_res ], cg_resid_name [i_res + 2 ], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = np.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_local += e_local e_ground_13 += e_local num_angle += 1 param_cg_pro_e_13.append( e_local) print("> ... Angle: DONE!") e_ground_14 = 0.0 num_dih = 0 for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range(chain.first, chain.last - 2): coor1 = cg_bead_coor[i_res] coor2 = cg_bead_coor[i_res + 1] coor3 = cg_bead_coor[i_res + 2] coor4 = cg_bead_coor[i_res + 3] dihed = compute_dihedral(coor1, coor2, coor3, coor4) top_cg_pro_dihedrals.append(i_res) top_cg_pro_aicg14.append((i_res, dihed)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res ], cg_residues [i_res + 3 ], cg_resid_name [i_res ], cg_resid_name [i_res + 3 ], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = np.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_local += e_local e_ground_14 += e_local num_dih += 1 param_cg_pro_e_14.append( e_local) print("> ... Dihedral: DONE!") # ------------------------ # Normalize local energies # ------------------------ e_ground_local /= (num_angle + num_dih) e_ground_13 /= num_angle e_ground_14 /= num_dih if scale_scheme == 0: for i in range(len(param_cg_pro_e_13)): param_cg_pro_e_13[i] *= AICG_13_AVE / e_ground_13 for i in range(len(param_cg_pro_e_14)): param_cg_pro_e_14[i] *= AICG_14_AVE / e_ground_14 elif scale_scheme == 1: for i in range(len(param_cg_pro_e_13)): param_cg_pro_e_13[i] *= -AICG_13_GEN for i in range(len(param_cg_pro_e_14)): param_cg_pro_e_14[i] *= -AICG_14_GEN # ----------------------- # Go type native contacts # ----------------------- print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.2: AICG2+ Go-type native contacts.".format(i_step)) e_ground_contact = 0.0 num_contact = 0 # intra-molecular contacts print(" Calculating intra-molecular contacts...") for i_chain in tqdm( range(aa_num_chain) ): chain = cg_chains[i_chain] if chain.moltype != MOL_PROTEIN: continue for i_res in range(chain.first, chain.last - 3): coor_cai = cg_bead_coor[i_res] for j_res in range(i_res + 4, chain.last + 1): coor_caj = cg_bead_coor[j_res] if is_protein_go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): native_dist = compute_distance(coor_cai, coor_caj) num_contact += 1 top_cg_pro_aicg_contact.append((i_res, j_res, native_dist)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res], cg_residues [j_res], cg_resid_name [i_res], cg_resid_name [j_res], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = np.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_contact += e_local num_contact += 1 param_cg_pro_e_contact.append( e_local) print("> ... intra-molecular contacts: DONE!") # inter-molecular ( protein-protein ) contacts if num_chain_pro > 1: print(" Calculating inter-molecular contacts...") for i_chain in tqdm( range(aa_num_chain - 1) ): chain1 = cg_chains[i_chain] if chain1.moltype != MOL_PROTEIN: continue for j_chain in range(i_chain + 1, aa_num_chain): chain2 = cg_chains[j_chain] if chain2.moltype != MOL_PROTEIN: continue for i_res in range(chain1.first, chain1.last + 1): coor_cai = cg_bead_coor[i_res] for j_res in range(chain2.first, chain2.last + 1): coor_caj = cg_bead_coor[j_res] if is_protein_go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): native_dist = compute_distance(coor_cai, coor_caj) num_contact += 1 top_cg_pro_aicg_contact.append((i_res, j_res, native_dist)) # count AICG2+ atomic contact contact_counts = count_aicg_atomic_contact(cg_residues [i_res], cg_residues [j_res], cg_resid_name [i_res], cg_resid_name [j_res], aa_atom_name, aa_coor) # calculate AICG2+ pairwise energy e_local = np.dot(AICG_PAIRWISE_ENERGY, contact_counts) if e_local > AICG_ENE_UPPER_LIM: e_local = AICG_ENE_UPPER_LIM if e_local < AICG_ENE_LOWER_LIM: e_local = AICG_ENE_LOWER_LIM e_ground_contact += e_local num_contact += 1 param_cg_pro_e_contact.append( e_local) print("> ... inter-molecular contacts: DONE!") # normalize e_ground_contact /= num_contact if scale_scheme == 0: for i in range(len(param_cg_pro_e_contact)): param_cg_pro_e_contact[i] *= AICG_CONTACT_AVE / e_ground_contact elif scale_scheme == 1: for i in range(len(param_cg_pro_e_contact)): param_cg_pro_e_contact[i] *= -AICG_CONTACT_GEN print("------------------------------------------------------------") print(" > Total number of protein contacts: {0:>12d}".format(len( top_cg_pro_aicg_contact ))) # ============================= # Step 5: 3SPN.2C model for DNA # ============================= # _ # __| |_ __ __ _ # / _` | '_ \ / _` | # | (_| | | | | (_| | # \__,_|_| |_|\__,_| # # ============================= if num_chain_DNA > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: processing DNA.".format(i_step)) # ---------------------------------- # Step 5.1: determine P, S, B # ---------------------------------- print("------------------------------------------------------------") print("> {0}.1: determine P, S, B mass, charge, and coordinates.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_DNA: continue for i_res in range(chain.first, chain.last + 1): res_name = cg_residues[i_res].res_name bead_name = cg_residues[i_res].atm_name bead_type = bead_name if bead_name == "DP" or bead_name == "DS" else res_name bead_coor = compute_center_of_mass(cg_residues[i_res].atoms, aa_atom_name, aa_coor) cg_resid_name [i_res] = res_name cg_resid_index [i_res] = cg_residues[i_res].res_idx cg_bead_name [i_res] = bead_name cg_bead_type [i_res] = bead_type cg_bead_charge [i_res] = RES_CHARGE_DICT [bead_type] cg_bead_mass [i_res] = RES_MASS_DICT [bead_type] cg_bead_coor [i_res] = bead_coor cg_chain_id [i_res] = i_chain print("> ... DONE!") # --------------------------------- # Step 5.2: 3SPN.2C topology # --------------------------------- if gen_3spn_itp: print("------------------------------------------------------------") print("> {0}.2: 3SPN.2C topology.".format(i_step)) print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.1: 3SPN.2C local interactions.".format(i_step)) print(" Calculating intra-molecular contacts...") for i_chain in tqdm( range(aa_num_chain) ): chain = cg_chains[i_chain] if chain.moltype != MOL_DNA: continue for i_res in range(chain.first, chain.last + 1): if cg_bead_name[i_res] == "DS": # bond S--B coor_s = cg_bead_coor[i_res] coor_b = cg_bead_coor[i_res + 1] r_sb = compute_distance(coor_s, coor_b) top_cg_DNA_bonds.append(( i_res, i_res + 1, r_sb )) if i_res + 3 < chain.last: # bond S--P+1 coor_p3 = cg_bead_coor[i_res + 2] r_sp3 = compute_distance(coor_s, coor_p3) top_cg_DNA_bonds.append(( i_res, i_res + 2, r_sp3 )) # Angle S--P+1--S+1 resname5 = cg_resid_name [i_res] [-1] resname3 = cg_resid_name [i_res + 3] [-1] coor_s3 = cg_bead_coor [i_res + 3] ang_sp3s3 = compute_angle(coor_s, coor_p3, coor_s3) k = get_DNA3SPN_angle_param("SPS", resname5 + resname3) top_cg_DNA_angles.append(( i_res, i_res + 2, i_res + 3, ang_sp3s3, k * 2 )) # Dihedral S--P+1--S+1--B+1 coor_b3 = cg_bead_coor[i_res + 4] dih_sp3s3b3 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_b3) top_cg_DNA_dih_periodic.append(( i_res, i_res + 2, i_res + 3, i_res + 4, dih_sp3s3b3 -180.0)) # Dihedral S--P+1--S+1--P+2 if i_res + 6 < chain.last: coor_p33 = cg_bead_coor[i_res + 5] dih_sp3s3p33 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_p33) top_cg_DNA_dih_periodic.append(( i_res, i_res + 2, i_res + 3, i_res + 5, dih_sp3s3p33 - 180.0)) top_cg_DNA_dih_Gaussian.append(( i_res, i_res + 2, i_res + 3, i_res + 5, dih_sp3s3p33 )) elif cg_bead_name[i_res] == "DP": # bond P--S coor_p = cg_bead_coor[i_res] coor_s = cg_bead_coor[i_res + 1] r_ps = compute_distance(coor_p, coor_s) top_cg_DNA_bonds.append(( i_res, i_res + 1, r_ps )) # angle P--S--B resname5 = cg_resid_name [i_res - 1] [-1] resname3 = cg_resid_name [i_res + 2] [-1] coor_b = cg_bead_coor [i_res + 2] ang_psb = compute_angle(coor_p, coor_s, coor_b) k = get_DNA3SPN_angle_param("PSB", resname5 + resname3) top_cg_DNA_angles.append(( i_res, i_res + 1, i_res + 2, ang_psb, k * 2 )) if i_res + 4 < chain.last: # angle P--S--P+1 coor_p3 = cg_bead_coor[i_res + 3] ang_psp3 = compute_angle(coor_p, coor_s, coor_p3) k = get_DNA3SPN_angle_param("PSP", "all") top_cg_DNA_angles.append(( i_res, i_res + 1, i_res + 3, ang_psp3, k * 2 )) # Dihedral P--S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 4] dih_psp3s3 = compute_dihedral(coor_p, coor_s, coor_p3, coor_s3) top_cg_DNA_dih_periodic.append(( i_res, i_res + 1, i_res + 3, i_res + 4, dih_psp3s3 - 180.0)) top_cg_DNA_dih_Gaussian.append(( i_res, i_res + 1, i_res + 3, i_res + 4, dih_psp3s3 )) elif cg_bead_name[i_res] == "DB": if i_res + 2 < chain.last: # angle B--S--P+1 resname5 = cg_resid_name [i_res] [-1] resname3 = cg_resid_name [i_res + 1] [-1] coor_b = cg_bead_coor [i_res] coor_s = cg_bead_coor [i_res - 1] coor_p3 = cg_bead_coor [i_res + 1] ang_bsp3 = compute_angle(coor_b, coor_s, coor_p3) k = get_DNA3SPN_angle_param("BSP", resname5 + resname3) top_cg_DNA_angles.append(( i_res, i_res - 1, i_res + 1, ang_bsp3, k * 2 )) # Dihedral B--S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 2] dih_bsp3s3 = compute_dihedral(coor_b, coor_s, coor_p3, coor_s3) top_cg_DNA_dih_periodic.append(( i_res, i_res - 1, i_res + 1, i_res + 2, dih_bsp3s3 - 180.0)) else: errmsg = "BUG: Wrong DNA particle type in chain {}, residue {} : {} " print(errmsg.format(i_chain, i_res, res_name)) exit() print("> ... Bond, Angle, Dihedral: DONE!") # ========================= # RNA structure based model # ========================= # ____ _ _ _ # | _ \| \ | | / \ # | |_) | \| | / _ \ # | _ <| |\ |/ ___ \ # |_| \_\_| \_/_/ \_\ # # ========================= if num_chain_RNA > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: processing RNA.".format(i_step)) # ---------------------------------- # determine P, S, B # ---------------------------------- print("------------------------------------------------------------") print("> {0}.1: determine P, S, B mass, charge, and coordinates.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_RNA: continue for i_res in range(chain.first, chain.last + 1): res_name = cg_residues[i_res].res_name bead_name = cg_residues[i_res].atm_name bead_type = bead_name if bead_name == "RP" or bead_name == "RS" else res_name cg_resid_name [i_res] = res_name cg_resid_index [i_res] = cg_residues [i_res].res_idx cg_bead_name [i_res] = bead_name cg_bead_type [i_res] = bead_type cg_bead_charge [i_res] = RES_CHARGE_DICT [bead_type] cg_bead_mass [i_res] = RES_MASS_DICT [bead_type] cg_chain_id [i_res] = i_chain if bead_name == "RP": for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom][0] == 'P': bead_coor = aa_coor[i_atom] elif bead_name == "RS": total_mass = 0 tmp_coor = np.zeros(3) for i_atom in cg_residues[i_res].atoms: a_name = aa_atom_name[i_atom] if a_name in ["C1'", "C2'", "C3'", "C4'", "O4'"]: a_mass = ATOM_MASS_DICT[a_name[0]] a_coor = aa_coor[i_atom] total_mass += a_mass tmp_coor += a_coor * a_mass bead_coor = tmp_coor / total_mass elif bead_name == "RB": if res_name[-1] == 'A' or res_name[-1] == 'G': for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom] == "N1": bead_coor = aa_coor[i_atom] else: for i_atom in cg_residues[i_res].atoms: if aa_atom_name[i_atom] == "N3": bead_coor = aa_coor[i_atom] cg_bead_coor[i_res] = bead_coor print("> ... DONE!") # ------------------------- # Step 6.2: RNA topology # ------------------------- print("------------------------------------------------------------") print("> {0}.2: RNA topology.".format(i_step)) print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.1: RNA local interactions.".format(i_step)) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_RNA: continue print(" Calculating intra-molecular contacts...") for i_res in tqdm( range(chain.first, chain.last + 1) ): if cg_bead_name[i_res] == "RS": # bond S--B coor_s = cg_bead_coor[i_res] coor_b = cg_bead_coor[i_res + 1] r_sb = compute_distance(coor_s, coor_b) base_type = "R" if cg_resid_name[i_res] in ["RA", "RG"] else "Y" bond_type = "S" + base_type k = RNA_BOND_K_LIST[bond_type] * CAL2JOU top_cg_RNA_bonds.append((i_res, i_res + 1, r_sb , k * 2 * 100.0)) # bond S--P+1 if i_res + 2 < chain.last: coor_p3 = cg_bead_coor[i_res + 2] r_sp3 = compute_distance(coor_s, coor_p3) k = RNA_BOND_K_LIST["SP"] * CAL2JOU top_cg_RNA_bonds.append((i_res, i_res + 2, r_sp3 , k * 2 * 100.0)) if i_res + 4 <= chain.last: # Angle S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 3] ang_sp3s3 = compute_angle(coor_s, coor_p3, coor_s3) k = RNA_ANGLE_K_LIST["SPS"] * CAL2JOU top_cg_RNA_angles.append((i_res, i_res + 2, i_res + 3, ang_sp3s3, k * 2)) # Dihedral S--P+1--S+1--B+1 coor_b3 = cg_bead_coor[i_res + 4] dih_sp3s3b3 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_b3) base_type = "R" if cg_resid_name[i_res + 4] in ["RA", "RG"] else "Y" dihe_type = "SPS" + base_type k = RNA_DIHEDRAL_K_LIST[dihe_type] * CAL2JOU top_cg_RNA_dihedrals.append((i_res, i_res + 2, i_res + 3, i_res + 4, dih_sp3s3b3, k)) # Dihedral S--P+1--S+1--P+2 if i_res + 5 < chain.last: coor_p33 = cg_bead_coor[i_res + 5] dih_sp3s3p33 = compute_dihedral(coor_s, coor_p3, coor_s3, coor_p33) k = RNA_DIHEDRAL_K_LIST["SPSP"] * CAL2JOU top_cg_RNA_dihedrals.append((i_res, i_res + 2, i_res + 3, i_res + 5, dih_sp3s3p33, k)) elif cg_bead_name[i_res] == "RP": # bond P--S coor_p = cg_bead_coor[i_res] coor_s = cg_bead_coor[i_res + 1] r_ps = compute_distance(coor_p, coor_s) k = RNA_BOND_K_LIST["PS"] * CAL2JOU top_cg_RNA_bonds.append((i_res, i_res + 1, r_ps , k * 2 * 100.0)) # angle P--S--B coor_b = cg_bead_coor[i_res + 2] ang_psb = compute_angle(coor_p, coor_s, coor_b) base_type = "R" if cg_resid_name[i_res + 2] in ["RA", "RG"] else "Y" angl_type = "PS" + base_type k = RNA_ANGLE_K_LIST[angl_type] * CAL2JOU top_cg_RNA_angles.append((i_res, i_res + 1, i_res + 2, ang_psb, k * 2)) if i_res + 4 < chain.last: # angle P--S--P+1 coor_p3 = cg_bead_coor[i_res + 3] ang_psp3 = compute_angle(coor_p, coor_s, coor_p3) k = RNA_ANGLE_K_LIST["PSP"] * CAL2JOU top_cg_RNA_angles.append((i_res, i_res + 1, i_res + 3, ang_psp3, k * 2)) # Dihedral P--S--P+1--S+1 coor_s3 = cg_bead_coor[i_res + 4] dih_psp3s3 = compute_dihedral(coor_p, coor_s, coor_p3, coor_s3) k = RNA_DIHEDRAL_K_LIST["PSPS"] * CAL2JOU top_cg_RNA_dihedrals.append((i_res, i_res + 1, i_res + 3, i_res + 4, dih_psp3s3, k)) elif cg_bead_name[i_res] == "RB": # do nothing... pass # ----------------------- # Go type native contacts # ----------------------- print(" - - - - - - - - - - - - - - - - - - - - - - - -") print("> {0}.2.2: RNA Go-type native contacts.".format(i_step)) print( " Calculating intra-molecular contacts..." ) for i_chain in range(aa_num_chain): chain = cg_chains[i_chain] if chain.moltype != MOL_RNA: continue for i_res in range(chain.first, chain.last - 2): if cg_bead_name[i_res] == "RP": continue coor_i = cg_bead_coor[i_res] for j_res in range(i_res + 3, chain.last + 1): if cg_bead_name[j_res] == "RP": continue if cg_bead_name[i_res] == "RS" or cg_bead_name[j_res] == "RS": if j_res < i_res + 6: continue coor_j = cg_bead_coor[j_res] native_dist = compute_distance(coor_i, coor_j) adist, nhb = compute_RNA_Go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor) if adist > RNA_GO_ATOMIC_CUTOFF: continue if j_res == i_res + 3 and cg_bead_name[i_res] == "RB": coor_i_sug = cg_bead_coor[i_res - 1] coor_j_sug = cg_bead_coor[j_res - 1] st_dih = compute_dihedral(coor_i, coor_i_sug, coor_j_sug, coor_j) if abs( st_dih ) < RNA_STACK_DIH_CUTOFF and adist < RNA_STACK_DIST_CUTOFF: top_cg_RNA_base_stack.append((i_res, j_res, native_dist, RNA_STACK_EPSILON)) else: top_cg_RNA_other_contact.append((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER["BB"])) elif cg_bead_name[i_res] == "RB" and cg_bead_name[j_res] == "RB": if nhb == 2: top_cg_RNA_base_pair.append((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_2HB)) elif nhb >= 3: top_cg_RNA_base_pair.append((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_3HB)) else: top_cg_RNA_other_contact.append((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER["BB"])) else: contact_type = cg_bead_name[i_res][-1] * cg_bead_name[j_res][-1] top_cg_RNA_other_contact.append((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER[contact_type])) if num_chain_RNA > 1: print( " Calculating inter-molecular contacts..." ) for i_chain in tqdm( range(aa_num_chain) ): chain_1 = cg_chains[i_chain] if chain_1.moltype != MOL_RNA: continue for i_res in range(chain_1.first, chain_1.last + 1): if cg_bead_name[i_res] == "RP": continue coor_i = cg_bead_coor[i_res] for j_chain in range(i_chain + 1, aa_num_chain): chain_2 = cg_chains[j_chain] if chain_2.moltype != MOL_RNA: continue for j_res in range(chain_2.first, chain_2.last + 1): if cg_bead_name[j_res] == "RP": continue coor_j = cg_bead_coor[j_res] native_dist = compute_distance(coor_i, coor_j) adist, nhb = compute_RNA_Go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor) if adist > RNA_GO_ATOMIC_CUTOFF: continue if cg_bead_name[i_res] == "RB" and cg_bead_name[j_res] == "RB": if nhb == 2: top_cg_RNA_base_pair.append((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_2HB)) elif nhb >= 3: top_cg_RNA_base_pair.append((i_res, j_res, native_dist, RNA_BPAIR_EPSILON_3HB)) else: top_cg_RNA_other_contact.append((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER["BB"])) else: contact_type = cg_bead_name[i_res][-1] * cg_bead_name[j_res][-1] top_cg_RNA_other_contact.append((i_res, j_res, native_dist, RNA_PAIR_EPSILON_OTHER[contact_type])) print("> ... DONE!") print("------------------------------------------------------------") num_rna_contacts = len(top_cg_RNA_base_stack) + len(top_cg_RNA_base_pair) + len(top_cg_RNA_other_contact) print(" > Total number of RNA contacts: {0:>12d}".format(num_rna_contacts)) # =========================================================== # Protein-RNA structure-based interactions: Go-like potential # =========================================================== # _ _ ____ _ _ _ # _ __ _ __ ___ | |_ ___(_)_ __ | _ \| \ | | / \ # | '_ \| '__/ _ \| __/ _ \ | '_ \ _____| |_) | \| | / _ \ # | |_) | | | (_) | or __/ | | | |_____| _ <| |\ |/ ___ \ # | .__/|_| \___/ \__\___|_|_| |_| |_| \_\_| \_/_/ \_\ # |_| # # ============================================================ if num_chain_RNA > 0 and num_chain_pro > 0: i_step += 1 print("============================================================") print("> Step {0:>2d}: Generating protein-RNA native contacts.".format(i_step)) print(" Calculating protein-RNA contacts...") for i_chain in tqdm( range(aa_num_chain) ): chain_pro = cg_chains[i_chain] if chain_pro.moltype != MOL_PROTEIN: continue for i_res in range(chain_pro.first, chain_pro.last + 1): coor_i = cg_bead_coor[i_res] for j_chain in range(1, aa_num_chain + 1): chain_RNA = cg_chains[j_chain] if chain_RNA.moltype != MOL_RNA: continue for j_res in range(chain_RNA.first, chain_RNA.last + 1): if cg_bead_name[j_res] == "RP": continue if not is_protein_RNA_go_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): continue coor_j = cg_bead_coor[j_res] native_dist = compute_distance(coor_i, coor_j) if cg_bead_name[j_res] == "RS": top_cg_pro_RNA_contact.append((i_res, j_res, native_dist, PRO_RNA_GO_EPSILON_S)) elif cg_bead_name[j_res] == "RB": top_cg_pro_RNA_contact.append((i_res, j_res, native_dist, PRO_RNA_GO_EPSILON_B)) print("> ... DONE!") print("------------------------------------------------------------") print(" > Total number of protein-RNA contacts: {0:>8d} \n".format( len(top_cg_pro_RNA_contact))) # ============================================================ # PWMcos parameters: protein-DNA sequence-specific interaction # ============================================================ # ______ ____ __ # | _ \ \ / / \/ | ___ ___ ___ # | |_) \ \ /\ / /| |\/| |/ __/ _ \/ __| # | __/ \ V V / | | | | (_| (_) \__ \ # |_| \_/\_/ |_| |_|\___\___/|___/ # # ============================================================ if gen_pwmcos_itp: pwmcos_native_contacts = [] if num_chain_pro == 0: error("Cannot generate PWMcos parameters without protein...") if num_chain_DNA != 2: error("Cannot generate PWMcos parameters from more or less than two DNA chains...") i_step += 1 print("============================================================") print("> Step {0:>2d}: Generating PWMcos parameters.".format(i_step)) # ---------------------------------- # Step 7.1: determine P, S, B # ---------------------------------- print("------------------------------------------------------------") print("> {0}.1: determine contacts between protein and DNA.".format(i_step)) i_count_DNA = 0 for i_chain in range(aa_num_chain): chain_pro = cg_chains[i_chain] if chain_pro.moltype != MOL_PROTEIN: continue for i_res in range(chain_pro.first, chain_pro.last + 1): i_res_N = i_res if i_res == chain_pro.first else i_res - 1 i_res_C = i_res if i_res == chain_pro.last else i_res + 1 coor_pro_i = cg_bead_coor [ i_res ] coor_pro_N = cg_bead_coor [ i_res_N ] coor_pro_C = cg_bead_coor [ i_res_C ] for j_chain in range(aa_num_chain): chain_DNA = cg_chains[j_chain] if chain_DNA.moltype != MOL_DNA: continue for j_res in range(chain_DNA.first + 3, chain_DNA.last - 2): if cg_bead_name[j_res] != "DB": continue if not is_PWMcos_contact(cg_residues[i_res], cg_residues[j_res], aa_atom_name, aa_coor): continue j_res_5, j_res_3 = j_res - 3, j_res + 3 coor_dna_j = cg_bead_coor[ j_res ] coor_dna_5 = cg_bead_coor[ j_res_5 ] coor_dna_3 = cg_bead_coor[ j_res_3 ] coor_dna_S = cg_bead_coor[ j_res - 1 ] vec0 = coor_pro_i - coor_dna_j vec1 = coor_dna_S - coor_dna_j vec2 = coor_dna_3 - coor_dna_5 vec3 = coor_pro_N - coor_pro_C r0 =
np.norm(vec0)
numpy.norm
from matplotlib import pyplot as plt from astropy.io.fits import getheader, getdata from astropy.wcs import WCS from astropy.coordinates import SkyCoord as SkyCoord from spectral_cube import SpectralCube import astropy import pickle import astropy.units as u from astropy.wcs.utils import skycoord_to_pixel import numpy as np def yso_asgn_structures(cube_location, YSO_RA, YSO_DEC,name): cube,header = (getdata(cube_location,header=True)) wcs = WCS(header) pixel_ra,pixel_dec = skycoord_to_pixel(SkyCoord(YSO_RA,YSO_DEC), wcs) pixel_ra = pixel_ra.data.tolist() pixel_dec = pixel_dec.data.tolist() p1 = [cube[i][int(np.floor(pixel_dec))][int(np.floor(pixel_ra))] for i in range(len(cube))] p2 = [cube[i][int(np.ceil(pixel_dec))][int(np.ceil(pixel_ra))] for i in range(len(cube))] p3 = [cube[i][int(np.ceil(pixel_dec))][int(np.floor(pixel_ra))] for i in range(len(cube))] p4 = [cube[i][int(np.floor(pixel_dec))][int(
np.ceil(pixel_ra)
numpy.ceil
from __future__ import print_function, division import os, sys, warnings, platform from time import time import numpy as np #if "PyPy" not in platform.python_implementation(): # from scipy.io import loadmat, savemat from Kuru.Tensor import unique2d, itemfreq, in2d, makezero #from Florence.Utils import insensitive #from .vtk_writer import write_vtu #try: # import meshpy.triangle as triangle # has_meshpy = True #except ImportError: # has_meshpy = False from .HigherOrderMeshing import * from .NodeArrangement import * #from .GeometricPath import * from warnings import warn from copy import deepcopy """ Mesh class providing most of the pre-processing functionalities of the Core module <NAME> - 13/06/2015 """ class Mesh(object): """Mesh class provides the following functionalities: 1. Generating higher order meshes based on a linear mesh, for tris, tets, quads and hexes 2. Generating linear tri and tet meshes based on meshpy back-end 3. Generating linear tri meshes based on distmesh back-end 4. Finding bounary edges and faces for tris and tets, in case they are not provided by the mesh generator 5. Reading Salome meshes in binary (.dat/.txt/etc) format 6. Reading gmsh files .msh 7. Checking for node numbering order of elements and fixing it if desired 8. Writing meshes to unstructured vtk file format (.vtu) in xml and binary formats, including high order elements """ def __init__(self, element_type=None): super(Mesh, self).__init__() # self.faces and self.edges ARE BOUNDARY FACES # AND BOUNDARY EDGES, RESPECTIVELY self.degree = None self.ndim = None self.edim = None self.nelem = None self.nnode = None self.elements = None self.points = None self.corners = None self.edges = None self.faces = None self.element_type = element_type self.face_to_element = None self.edge_to_element = None self.boundary_edge_to_element = None self.boundary_face_to_element = None self.all_faces = None self.all_edges = None self.interior_faces = None self.interior_edges = None # TYPE OF BOUNDARY FACES/EDGES self.boundary_element_type = None # FOR GEOMETRICAL CURVES/SURFACES self.edge_to_curve = None self.face_to_surface = None self.spatial_dimension = None self.reader_type = None self.reader_type_format = None self.reader_type_version = None self.writer_type = None self.filename = None self.element_to_set = None def GetEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetEdgesTri() elif self.element_type == "quad": self.GetEdgesQuad() elif self.element_type == "pent": self.GetEdgesPent() elif self.element_type == "tet": self.GetEdgesTet() elif self.element_type == "hex": self.GetEdgesHex() else: raise ValueError('Type of element not understood') return self.all_edges def GetBoundaryEdges(self): assert self.element_type is not None if self.element_type == "tri": self.GetBoundaryEdgesTri() elif self.element_type == "quad": self.GetBoundaryEdgesQuad() elif self.element_type == "pent": self.GetBoundaryEdgesPent() elif self.element_type == "tet": self.GetBoundaryEdgesTet() elif self.element_type == "hex": self.GetBoundaryEdgesHex() else: raise ValueError('Type of element not understood') return self.edges def GetEdgesQuad(self): """Find the all edges of a quadrilateral mesh. Sets all_edges property and returns it returns: arr: numpy ndarray of all edges""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_edges,np.ndarray): if self.all_edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_edges.shape[1]==2 and p > 1: pass else: return self.all_edges node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # REMOVE DUPLICATES edges, idx = unique2d(edges,consider_sort=True,order=False,return_index=True) edge_to_element = np.zeros((edges.shape[0],2),np.int64) edge_to_element[:,0] = idx % self.elements.shape[0] edge_to_element[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_to_element # DO NOT SET all_edges IF THE CALLER FUNCTION IS GetBoundaryEdgesHex import inspect curframe = inspect.currentframe() calframe = inspect.getouterframes(curframe, 2)[1][3] if calframe != "GetBoundaryEdgesHex": self.all_edges = edges return edges def GetBoundaryEdgesQuad(self): """Find boundary edges (lines) of a quadrilateral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.uint64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.edges = self.elements[boundary_edge_to_element[:,0][:,None],node_arranger[boundary_edge_to_element[:,1],:]] self.edges = self.edges.astype(np.uint64) self.boundary_edge_to_element = boundary_edge_to_element return self.edges def GetBoundaryEdgesHex(self): """Find boundary edges (lines) of hexahedral mesh. """ p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.edges,np.ndarray): if self.edges.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.edges.shape[1] == 2 and p > 1: pass else: return # FIRST GET BOUNDARY FACES if not isinstance(self.faces,np.ndarray): self.GetBoundaryFacesHex() # BUILD A 2D MESH tmesh = Mesh() tmesh.element_type = "quad" tmesh.elements = self.faces tmesh.nelem = tmesh.elements.shape[0] del tmesh.faces del tmesh.points # ALL THE EDGES CORRESPONDING TO THESE BOUNDARY FACES ARE BOUNDARY EDGES self.edges = tmesh.GetEdgesQuad() @property def Bounds(self): """Returns bounds of a mesh i.e. the minimum and maximum coordinate values in every direction """ assert self.points is not None if self.points.shape[1] == 3: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1]), np.min(self.points[:,2])], [np.max(self.points[:,0]), np.max(self.points[:,1]), np.max(self.points[:,2])]]) makezero(bounds) return bounds elif self.points.shape[1] == 2: bounds = np.array([[np.min(self.points[:,0]), np.min(self.points[:,1])], [np.max(self.points[:,0]), np.max(self.points[:,1])]]) makezero(bounds) return bounds elif self.points.shape[1] == 1: bounds = np.array([[np.min(self.points[:,0])], [np.max(self.points[:,0])]]) makezero(bounds) return bounds else: raise ValueError("Invalid dimension for mesh coordinates") def GetElementsEdgeNumberingQuad(self): """Finds edges of elements and their flags saying which edge they are [0,1,2,3]. At most a quad can have all its four edges on the boundary. output: edge_elements: [1D array] array containing elements which have edges on the boundary Note that this method sets the self.edge_to_element to edge_elements, so the return value is not strictly necessary """ if isinstance(self.edge_to_element,np.ndarray): if self.edge_to_element.shape[0] > 1: return self.edge_to_element # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY if self.all_edges is None: self.GetEdgesQuad() p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(np.int64) all_edges, idx = unique2d(all_edges,consider_sort=True,order=False, return_index=True) edge_elements = np.zeros((all_edges.shape[0],2),dtype=np.int64) # edge_elements = np.zeros((self.edges.shape[0],2),dtype=np.int64) edge_elements[:,0] = idx % self.elements.shape[0] edge_elements[:,1] = idx // self.elements.shape[0] self.edge_to_element = edge_elements return self.edge_to_element def GetFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetFacesTet() elif self.element_type == "hex": self.GetFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.all_faces def GetBoundaryFaces(self): assert self.element_type is not None if self.element_type == "tet": self.GetBoundaryFacesTet() elif self.element_type == "hex": self.GetBoundaryFacesHex() elif self.element_type=="tri" or self.element_type=="quad": raise ValueError("2D mesh does not have faces") else: raise ValueError('Type of element not understood') return self.faces def GetBoundaryFacesHex(self): """Find boundary faces (surfaces) of a hexahedral mesh""" p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.faces,np.ndarray): if self.faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.faces.shape[1] == 4 and p > 1: pass else: return node_arranger = NodeArrangementHex(p-1)[0] # CONCATENATE ALL THE FACES MADE FROM ELEMENTS all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_faces,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY FACES freqs_inv = itemfreq(inv) faces_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED self.faces = uniques[faces_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_face_to_element = np.zeros((faces_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF FACES all_faces_in_faces = in2d(all_faces,self.faces,consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] # boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.faces = self.elements[boundary_face_to_element[:,0][:,None],node_arranger[boundary_face_to_element[:,1],:]] self.faces = self.faces.astype(np.uint64) self.boundary_face_to_element = boundary_face_to_element def GetElementsWithBoundaryEdgesQuad(self): """Finds elements which have edges on the boundary. At most a quad can have all its four edges on the boundary. output: boundary_edge_to_element: [2D array] array containing elements which have face on the boundary [cloumn 0] and a flag stating which edges they are [column 1] """ if isinstance(self.boundary_edge_to_element,np.ndarray): if self.boundary_edge_to_element.shape[1] > 1 and self.boundary_edge_to_element.shape[0] > 1: return self.boundary_edge_to_element # DO NOT COMPUTE EDGES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.edges is not None p = self.InferPolynomialDegree() # FIND WHICH FACE NODES ARE IN WHICH ELEMENT node_arranger = NodeArrangementQuad(p-1)[0] # GET ALL EDGES FROM THE ELEMENT CONNECTIVITY all_edges = np.concatenate((self.elements[:,node_arranger[0,:]],self.elements[:,node_arranger[1,:]], self.elements[:,node_arranger[2,:]],self.elements[:,node_arranger[3,:]]),axis=0).astype(self.edges.dtype) # GET UNIQUE ROWS uniques, idx, inv = unique2d(all_edges,consider_sort=True,order=False,return_index=True,return_inverse=True) # ROWS THAT APPEAR ONLY ONCE CORRESPOND TO BOUNDARY EDGES freqs_inv = itemfreq(inv) edges_ext_flags = freqs_inv[freqs_inv[:,1]==1,0] # NOT ARRANGED edges = uniques[edges_ext_flags,:] # DETERMINE WHICH FACE OF THE ELEMENT THEY ARE boundary_edge_to_element = np.zeros((edges_ext_flags.shape[0],2),dtype=np.int64) # FURTHER RE-ARRANGEMENT / ARANGE THE NODES BASED ON THE ORDER THEY APPEAR # IN ELEMENT CONNECTIVITY # THIS STEP IS NOT NECESSARY INDEED - ITS JUST FOR RE-ARANGMENT OF EDGES all_edges_in_edges = in2d(all_edges,self.edges,consider_sort=True) all_edges_in_edges = np.where(all_edges_in_edges==True)[0] boundary_edge_to_element[:,0] = all_edges_in_edges % self.elements.shape[0] boundary_edge_to_element[:,1] = all_edges_in_edges // self.elements.shape[0] # ARRANGE FOR ANY ORDER OF BASES/ELEMENTS AND ASSIGN DATA MEMBERS self.boundary_edge_to_element = boundary_edge_to_element return self.boundary_edge_to_element def GetElementsWithBoundaryFacesHex(self): """Finds elements which have faces on the boundary. At most a hexahedral can have all its 8 faces on the boundary. output: boundary_face_to_element: [2D array] array containing elements which have face on the boundary [column 0] and a flag stating which faces they are [column 1] """ # DO NOT COMPUTE FACES AND RAISE BECAUSE OF CYCLIC DEPENDENCIES assert self.elements is not None assert self.faces is not None if self.boundary_face_to_element is not None: return self.boundary_face_to_element # THIS METHOD ALWAYS RETURNS THE FACE TO ELEMENT ARRAY, AND DOES NOT CHECK # IF THIS HAS BEEN COMPUTED BEFORE, THE REASON BEING THAT THE FACES CAN COME # EXTERNALLY WHOSE ARRANGEMENT WOULD NOT CORRESPOND TO THE ONE USED INTERNALLY # HENCE THIS MAPPING BECOMES NECESSARY C = self.InferPolynomialDegree() - 1 node_arranger = NodeArrangementHex(C)[0] all_faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(self.faces.dtype) all_faces_in_faces = in2d(all_faces,self.faces[:,:4],consider_sort=True) all_faces_in_faces = np.where(all_faces_in_faces==True)[0] boundary_face_to_element = np.zeros((all_faces_in_faces.shape[0],2),dtype=np.int64) boundary_face_to_element[:,0] = all_faces_in_faces % self.elements.shape[0] boundary_face_to_element[:,1] = all_faces_in_faces // self.elements.shape[0] # SO FAR WE HAVE COMPUTED THE ELEMENTS THAT CONTAIN FACES, HOWEVER # NOTE THAT WE STILL HAVE NOT COMPUTED A MAPPING BETWEEN ELEMENTS AND # FACES. WE ONLY KNOW WHICH ELEMENTS CONTAIN FACES FROM in2d. # WE NEED TO FIND THIS MAPPING NOW # WE NEED TO DO THIS DUMMY RECONSTRUCTION OF FACES BASED ON ELEMENTS faces = self.elements[boundary_face_to_element[:,0][:,None], node_arranger[boundary_face_to_element[:,1],:]].astype(self.faces.dtype) # CHECK FOR THIS CONDITION AS ARRANGEMENT IS NO LONGER MAINTAINED assert np.sum(faces[:,:4].astype(np.int64) - self.faces[:,:4].astype(np.int64)) == 0 # NOW GET THE ROW MAPPING BETWEEN OLD FACES AND NEW FACES from Kuru.Tensor import shuffle_along_axis row_mapper = shuffle_along_axis(faces[:,:4],self.faces[:,:4],consider_sort=True) # UPDATE THE MAP boundary_face_to_element[:,:] = boundary_face_to_element[row_mapper,:] self.boundary_face_to_element = boundary_face_to_element return self.boundary_face_to_element def GetFacesHex(self): """Find all faces (surfaces) in the hexahedral mesh (boundary & interior). Sets all_faces property and returns it returns: arr: numpy ndarray of all faces """ # DETERMINE DEGREE p = self.InferPolynomialDegree() # DO NOT COMPUTE IF ALREADY COMPUTED if isinstance(self.all_faces,np.ndarray): if self.all_faces.shape[0] > 1: # IF LINEAR VERSION IS COMPUTED, DO COMPUTE HIGHER VERSION if self.all_faces.shape[1] == 4 and p > 1: pass else: return self.all_faces node_arranger = NodeArrangementHex(p-1)[0] fsize = int((p+1)**3) # GET ALL FACES FROM THE ELEMENT CONNECTIVITY faces = np.concatenate((np.concatenate(( np.concatenate((np.concatenate((np.concatenate((self.elements[:,node_arranger[0,:]], self.elements[:,node_arranger[1,:]]),axis=0),self.elements[:,node_arranger[2,:]]),axis=0), self.elements[:,node_arranger[3,:]]),axis=0),self.elements[:,node_arranger[4,:]]),axis=0), self.elements[:,node_arranger[5,:]]),axis=0).astype(np.int64) # REMOVE DUPLICATES self.all_faces, idx = unique2d(faces,consider_sort=True,order=False,return_index=True) face_to_element = np.zeros((self.all_faces.shape[0],2),np.int64) face_to_element[:,0] = idx % self.elements.shape[0] face_to_element[:,1] = idx // self.elements.shape[0] self.face_to_element = face_to_element return self.all_faces def GetHighOrderMesh(self,p=1, silent=True, **kwargs): """Given a linear tri, tet, quad or hex mesh compute high order mesh based on it. This is a static method linked to the HigherOrderMeshing module""" if not isinstance(p,int): raise ValueError("p must be an integer") else: if p < 1: raise ValueError("Value of p={} is not acceptable. Provide p>=1.".format(p)) if self.degree is None: self.InferPolynomialDegree() C = p-1 if 'C' in kwargs.keys(): if kwargs['C'] != p - 1: raise ValueError("Did not understand the specified interpolation degree of the mesh") del kwargs['C'] # DO NOT COMPUTE IF ALREADY COMPUTED FOR THE SAME ORDER if self.degree == None: self.degree = self.InferPolynomialDegree() if self.degree == p: return # SITUATIONS WHEN ANOTHER HIGH ORDER MESH IS REQUIRED, WITH ONE HIGH # ORDER MESH ALREADY AVAILABLE if self.degree != 1 and self.degree - 1 != C: dum = self.GetLinearMesh(remap=True) self.__dict__.update(dum.__dict__) if not silent: print('Generating p = '+str(C+1)+' mesh based on the linear mesh...') t_mesh = time() # BUILD A NEW MESH BASED ON THE LINEAR MESH if self.element_type == 'line': nmesh = HighOrderMeshLine(C,self,**kwargs) if self.element_type == 'tri': if self.edges is None: self.GetBoundaryEdgesTri() # nmesh = HighOrderMeshTri(C,self,**kwargs) nmesh = HighOrderMeshTri_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'tet': # nmesh = HighOrderMeshTet(C,self,**kwargs) nmesh = HighOrderMeshTet_SEMISTABLE(C,self,**kwargs) elif self.element_type == 'quad': if self.edges is None: self.GetBoundaryEdgesTri() nmesh = HighOrderMeshQuad(C,self,**kwargs) elif self.element_type == 'hex': nmesh = HighOrderMeshHex(C,self,**kwargs) self.points = nmesh.points self.elements = nmesh.elements.astype(np.uint64) if isinstance(self.corners,np.ndarray): # NOT NECESSARY BUT GENERIC self.corners = nmesh.corners.astype(np.uint64) if isinstance(self.edges,np.ndarray): self.edges = nmesh.edges.astype(np.uint64) if isinstance(self.faces,np.ndarray): if isinstance(nmesh.faces,np.ndarray): self.faces = nmesh.faces.astype(np.uint64) self.nelem = nmesh.nelem self.nnode = self.points.shape[0] self.element_type = nmesh.info self.degree = C+1 self.ChangeType() if not silent: print('Finished generating the high order mesh. Time taken', time()-t_mesh,'sec') def Line(self, left_point=0., right_point=1., n=10, p=1): """Creates a mesh of on a line for 1D rods/beams""" self.__reset__() assert p > 0 if not isinstance(left_point,float): if not isinstance(left_point,int): raise ValueError("left_point must be a number") if not isinstance(right_point,float): if not isinstance(right_point,int): raise ValueError("right_point must be a number") left_point = float(left_point) right_point = float(right_point) n = int(n) if n <= 0: raise ValueError("Number of discretisation cannot be zero or negative: n={}".format(n)) self.element_type = "line" self.points = np.linspace(left_point,right_point,p*n+1)[:,None] self.elements = np.zeros((n,p+1),dtype=np.int64) for i in range(p+1): self.elements[:,i] = p*np.arange(0,n)+i self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] def Rectangle(self,lower_left_point=(0,0), upper_right_point=(2,1), nx=5, ny=5, element_type="tri"): """Creates a quad/tri mesh of a rectangle""" if element_type != "tri" and element_type != "quad": raise ValueError("Element type should either be tri or quad") if self.elements is not None and self.points is not None: self.__reset__() if (lower_left_point[0] > upper_right_point[0]) or \ (lower_left_point[1] > upper_right_point[1]): raise ValueError("Incorrect coordinate for lower left and upper right vertices") nx, ny = int(nx), int(ny) if nx <= 0 or ny <= 0: raise ValueError("Number of discretisation cannot be zero or negative: nx={} ny={}".format(nx,ny)) from scipy.spatial import Delaunay x=np.linspace(lower_left_point[0],upper_right_point[0],nx+1) y=np.linspace(lower_left_point[1],upper_right_point[1],ny+1) X,Y = np.meshgrid(x,y) coordinates = np.dstack((X.ravel(),Y.ravel()))[0,:,:] if element_type == "tri": tri_func = Delaunay(coordinates) self.element_type = "tri" self.elements = tri_func.simplices self.nelem = self.elements.shape[0] self.points = tri_func.points self.nnode = self.points.shape[0] self.GetBoundaryEdgesTri() elif element_type == "quad": self.nelem = int(nx*ny) elements = np.zeros((self.nelem,4),dtype=np.int64) dum_0 = np.arange((nx+1)*ny) dum_1 = np.array([(nx+1)*i+nx for i in range(ny)]) col0 = np.delete(dum_0,dum_1) elements[:,0] = col0 elements[:,1] = col0 + 1 elements[:,2] = col0 + nx + 2 elements[:,3] = col0 + nx + 1 self.nnode = int((nx+1)*(ny+1)) self.element_type = "quad" self.elements = elements self.points = coordinates self.nnode = self.points.shape[0] self.GetBoundaryEdgesQuad() self.GetEdgesQuad() def GetNodeCommonality(self): """Finds the elements sharing a node. The return values are linked lists [list of numpy of arrays]. Each numpy array within the list gives the elements that contain a given node. As a result the size of the linked list is nnode outputs: els: [list of numpy arrays] element numbers containing nodes pos: [list of numpy arrays] elemental positions of the nodes res_flat: [list of numpy arrays] position of nodes in the flattened element connectivity. """ self.__do_essential_memebers_exist__() elements = self.elements.ravel() idx_sort = np.argsort(elements) sorted_elements = elements[idx_sort] vals, idx_start = np.unique(sorted_elements, return_index=True) # Sets of indices flat_pos = np.split(idx_sort, idx_start[1:]) els = np.split(idx_sort // int(self.elements.shape[1]), idx_start[1:]) pos = np.split(idx_sort % int(self.elements.shape[1]), idx_start[1:]) # In case one wants to return only the duplicates i.e. filter keeping only items occurring more than once # vals, idx_start, count = np.unique(sorted_elements, return_counts=True, return_index=True) # vals = vals[count > 1] # res = filter(lambda x: x.size > 1, res) return els, pos, flat_pos def Read(self, filename=None, element_type="tri", reader_type=None, reader_type_format=None, reader_type_version=None, order=0, read_surface_info=False, read_curve_info=False, **kwargs): """Convenience mesh reader method to dispatch call to subsequent apporpriate methods""" if not isinstance(filename,str): raise ValueError("filename must be a string") return if reader_type is not None: if not isinstance(filename,str): raise ValueError("filename must be a string") return if reader_type is None: if filename.split('.')[-1] == "msh": reader_type = "gmsh" elif filename.split('.')[-1] == "obj": reader_type = "obj" elif filename.split('.')[-1] == "unv": reader_type = "unv" elif filename.split('.')[-1] == "fro": reader_type = "fro" elif filename.split('.')[-1] == "dat": for key in kwargs.keys(): inkey = insensitive(key) if "connectivity" in inkey and "delimiter" not in inkey: reader_type = "read_separate" break if reader_type is None: raise ValueError("Mesh file format was not undertood. Please specify it using reader_type keyword") self.filename = filename self.reader_type = reader_type self.reader_type_format = reader_type_format self.reader_type_version = reader_type_version if self.reader_type is 'salome': #self.ReadSalome(filename, element_type=element_type, read_surface_info=read_surface_info) raise ValueError("Reader not implemented yet") elif reader_type is 'GID': #self.ReadGIDMesh(filename, element_type, order) raise ValueError("Reader not implemented yet") elif self.reader_type is 'gmsh': self.ReadGmsh(filename, element_type=element_type, read_surface_info=read_surface_info, read_curve_info=read_curve_info) elif self.reader_type is 'obj': self.ReadOBJ(filename, element_type=element_type, read_surface_info=read_surface_info) elif self.reader_type is 'fenics': #self.ReadFenics(filename, element_type) raise ValueError("Reader not implemented yet") elif self.reader_type is 'vtu': self.ReadVTK(filename) elif self.reader_type is 'abaqus': self.ReadAbaqus(filename) elif self.reader_type is 'unv': #self.ReadUNV(filename, element_type) raise ValueError("Reader not implemented yet") elif self.reader_type is 'fro': #self.ReadFRO(filename, element_type) raise ValueError("Reader not implemented yet") elif self.reader_type is 'read_separate': # READ MESH FROM SEPARATE FILES FOR CONNECTIVITY AND COORDINATES raise ValueError("Reader not implemented yet") from Kuru.Utils import insensitive # return insensitive(kwargs.keys()) #for key in kwargs.keys(): # inkey = insensitive(key) # if "connectivity" in inkey and "delimiter" not in inkey: # connectivity_file = kwargs.get(key) # if "coordinate" in insensitive(key) and "delimiter" not in inkey: # coordinates_file = kwargs.get(key) #self.ReadSeparate(connectivity_file,coordinates_file,element_type, # delimiter_connectivity=',',delimiter_coordinates=',') elif self.reader_type is 'ReadHDF5': #self.ReadHDF5(filename) raise ValueError("Reader not implemented yet") self.nnode = self.points.shape[0] # MAKE SURE MESH DATA IS CONTIGUOUS self.points = np.ascontiguousarray(self.points) self.elements = np.ascontiguousarray(self.elements) return def ReadVTK(self, filename, element_type=None): """Read mesh from a vtu file""" try: import vtk except IOError: raise IOError("vtk is not installed. Please install it first using 'pip install vtk'") self.__reset__() reader = vtk.vtkXMLUnstructuredGridReader() reader.SetFileName(filename) reader.Update() vmesh = reader.GetOutput() npieces = vmesh.GetNumberOfPieces() if npieces > 1: raise IOError("VTK reader is not prepare to read more than one piece.") piece = vmesh.GetPiece() flat_elements, celltypes, element_to_set = [], [], [] for cellid in range(vmesh.GetNumberOfCells()): cell = vmesh.GetCell(cellid) celltypes.append(vmesh.GetCellType(cellid)) element_to_set.append(piece) for ptid in range(cell.GetNumberOfPoints()): flat_elements.append(cell.GetPointId(ptid)) celltypes = np.array(celltypes, copy=True) flat_elements = np.array(flat_elements, copy=True) if not np.all(celltypes == celltypes[0]): raise IOError("Cannot read VTK files with hybrid elements") cellflag = celltypes[0] if cellflag == 5: self.element_type = "tri" divider = 3 elif cellflag == 9: self.element_type = "quad" divider = 4 elif cellflag == 10: self.element_type = "tet" divider = 4 elif cellflag == 12: self.element_type = "hex" divider = 8 elif cellflag == 3: self.element_type = "line" divider = 2 else: raise IOError("VTK element type not understood") if element_type is not None: if self.element_type != element_type: raise ValueError("VTK file does not contain {} elements".format(element_type)) points = np.array([vmesh.GetPoint(ptid) for ptid in range(vmesh.GetNumberOfPoints())]) self.elements = np.ascontiguousarray(flat_elements.reshape(int(flat_elements.shape[0]/divider),divider), dtype=np.uint64) self.points = np.ascontiguousarray(points, dtype=np.float64) self.nelem = self.elements.shape[0] self.nnode = self.points.shape[0] if self.points.shape[1] == 3: if np.allclose(self.points[:,2],0.): self.points = np.ascontiguousarray(self.points[:,:2]) if self.element_type == "tri" or self.element_type == "quad": self.GetEdges() self.GetBoundaryEdges() elif self.element_type == "tet" or self.element_type == "hex": self.GetFaces() self.GetBoundaryFaces() self.GetBoundaryEdges() # SET OF SETS TO EACH ELEMENTS element_to_set =
np.array(element_to_set, dtype=np.int64, copy=True)
numpy.array
import numpy as np import pf_dynamic_sph as pfs import pf_dynamic_cart as pfc class LDA_PolaronHamiltonian: # """ This is a class that stores information about the Hamiltonian""" def __init__(self, coherent_state, Params, LDA_funcs, fParams, trapParams, toggleDict): # Params = [aIBi, mI, mB, n0, gBB] self.Params = Params self.LDA_funcs = LDA_funcs self.fParams = fParams self.trapParams = trapParams self.grid = coherent_state.kgrid self.coordinate_system = coherent_state.coordinate_system self.kz = coherent_state.kzg_flat self.k0mask = coherent_state.k0mask self.k2 = coherent_state.k2_flat self.dynamicsType = toggleDict['Dynamics'] self.couplingType = toggleDict['Coupling'] self.BEC_density_var = toggleDict['BEC_density'] self.BEC_density_osc = toggleDict['BEC_density_osc'] self.CS_Dyn = toggleDict['CS_Dyn'] self.Pol_Potential = toggleDict['Polaron_Potential'] self.a_osc = trapParams['a_osc'] if self.couplingType == 'frohlich': [aIBi, mI, mB, n0, gBB] = self.Params self.gnum = (2 * np.pi / pfs.ur(mI, mB)) * (1 / aIBi) if(self.coordinate_system == "SPHERICAL_2D"): self.gnum = pfs.g(self.grid, *Params[0:]) self.Omega0_grid = pfs.Omega(self.grid, 0, *Params[1:]) self.Wk_grid = pfs.Wk(self.grid, *Params[2:]) # self.Wk_grid[self.k0mask] = 1 # k0mask should be all False in the Spherical case so the second line shouldn't do anything self.Wki_grid = 1 / self.Wk_grid if(self.coordinate_system == "CARTESIAN_3D"): self.kxg, self.kyg, self.kzg = coherent_state.kxg, coherent_state.kyg, coherent_state.kzg self.gnum = pfc.g(self.kxg, self.kyg, self.kzg, coherent_state.dVk[0], *Params[0:]) self.Omega0_grid = pfc.Omega(self.kxg, self.kyg, self.kzg, 0, *Params[1:]).flatten() self.Wk_grid = pfc.Wk(self.kxg, self.kyg, self.kzg, *Params[2:]).flatten(); self.Wk_grid[self.k0mask] = 1 # this is where |k| = 0 -> changing this value to 1 arbitrarily shouldn't affect the actual calculation as we are setting Beta_k = 0 here too self.Wki_grid = 1 / self.Wk_grid # @profile def update(self, t, system_vars, coherent_state): amplitude = system_vars[0:-3] phase = system_vars[-3].real.astype(float) P = system_vars[-2].real.astype(float) X = system_vars[-1].real.astype(float) XLab = X + pfs.x_BEC_osc(t, self.trapParams['omega_BEC_osc'], self.trapParams['RTF_BEC_X'], self.trapParams['a_osc']) [aIBi, mI, mB, n0, gBB] = self.Params F_ext_func = self.LDA_funcs['F_ext']; F_pol_func = self.LDA_funcs['F_pol']; F_BEC_osc_func = self.LDA_funcs['F_BEC_osc']; F_Imp_trap_func = self.LDA_funcs['F_Imp_trap'] dP = self.fParams['dP_ext']; F = self.fParams['Fext_mag'] RTF_X = self.trapParams['RTF_BEC_X']; RTF_Y = self.trapParams['RTF_BEC_Y']; RTF_Z = self.trapParams['RTF_BEC_Z']; RG_X = self.trapParams['RG_BEC_X']; RG_Y = self.trapParams['RG_BEC_Y']; RG_Z = self.trapParams['RG_BEC_Z'] n0_TF = self.trapParams['n0_TF_BEC']; n0_thermal = self.trapParams['n0_thermal_BEC'] # omega_BEC_osc = self.trapParams['omega_BEC_osc'] # if self.BEC_density_osc == 'on': # Xeff = X + pfs.x_BEC_osc(t, omega_BEC_osc, RTF_X, self.a_osc) # else: # Xeff = X # Update BEC density dependent quantities if self.BEC_density_var == 'on': # n = pfs.n_BEC(Xeff, 0, 0, n0_TF, n0_thermal, RTF_X, RTF_Y, RTF_Z, RG_X, RG_Y, RG_Z) # ASSUMING PARTICLE IS IN CENTER OF TRAP IN Y AND Z DIRECTIONS n = pfs.n_BEC(X, 0, 0, n0_TF, n0_thermal, RTF_X, RTF_Y, RTF_Z, RG_X, RG_Y, RG_Z) # ASSUMING PARTICLE IS IN CENTER OF TRAP IN Y AND Z DIRECTIONS if np.abs(X) >= RTF_X: n = 0 if(self.coordinate_system == "SPHERICAL_2D"): self.Omega0_grid = pfs.Omega(self.grid, 0, mI, mB, n, gBB) self.Wk_grid = pfs.Wk(self.grid, mB, n, gBB) self.Wki_grid = 1 / self.Wk_grid if(self.coordinate_system == "CARTESIAN_3D"): self.Omega0_grid = pfc.Omega(self.kxg, self.kyg, self.kzg, 0, mI, mB, n, gBB).flatten() self.Wk_grid = pfc.Wk(self.kxg, self.kyg, self.kzg, mB, n, gBB).flatten(); self.Wk_grid[self.k0mask] = 1 self.Wki_grid = 1 / self.Wk_grid else: n = n0 # Calculate updates amplitude[self.k0mask] = 0 # set Beta_k = 0 where |k| = 0 to avoid numerical issues (this is an unphysical point) system_vars_new = np.zeros(system_vars.size, dtype=complex) dVk = coherent_state.dVk betaSum = amplitude + np.conjugate(amplitude) xp = 0.5 * np.dot(self.Wk_grid, betaSum * dVk) betaDiff = amplitude -
np.conjugate(amplitude)
numpy.conjugate
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np import scipy.optimize as opt # curve_fit, fmin, fmin_tnc import jams.functions as functions # from jams from jams.mad import mad # from jams import warnings # import pdb # ---------------------------------------------------------------------- def nee2gpp(dates, nee, t, isday, rg=False, vpd=False, undef=np.nan, method='reichstein', shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data. It uses either 1. a fit of Reco vs. temperature to all nighttime data, or 2. several fits over the season of Reco vs. temperature as in Reichstein et al. (2005), or 3. the daytime method of Lasslop et al. (2010), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp(dates, nee, t, isday, rg=False, vpd=False, undef=np.nan, method='reichstein', shape=False, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Optional Input -------------- If method = 'day' | 'lasslop', extra inputs are rg global radiation, i.e. shortwave down [W m-2] vpd vapour pressure deficit [Pa] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask method if 'global' | 'falge': fit of Reco vs. temperature to all nighttime data if 'local' | 'reichstein': method of Reichstein et al. (2005) if 'day' | 'lasslop': method of Lasslop et al. (2010) shape if False then outputs are 1D arrays; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef if True: return masked arrays where outputs would be undef If method = 'night' | 'reichstein', extra parameters are nogppnight if True: Resp=NEE, GPP=0 at night, GPP always positive if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ Negative respiration possible at night when gpp is forced to 0 with nogppnight=True Literature ---------- Falge et al. (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange Acricultural and Forest Meteorology 107, 43-69 Lasslop et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation Global Change Biology 16, 187-208 Reichstein et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> print(Reco[1120:1128]) [1.68311981 1.81012431 1.9874173 2.17108871 2.38759152 2.64372415 2.90076664 3.18592735] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='global') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.33166157e+00 8.18228013e+00 1.04092252e+01 8.19395317e+00 1.08427448e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='Reichstein', masked=True) >>> print(GPP[1120:1128]) [-- -- -- 4.406068706013192 8.319421516040766 10.624254150217764 8.492456637225963 11.238197347837367] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='reichstein', shape=(np.size(NEE),1)) >>> print(GPP[1120:1128]) [[-9.99900000e+03] [-9.99900000e+03] [-9.99900000e+03] [ 4.40606871e+00] [ 8.31942152e+00] [ 1.06242542e+01] [ 8.49245664e+00] [ 1.12381973e+01]] >>> VPD = np.squeeze(dat[8,:]) >>> vpd = np.where(VPD == undef, undef, VPD*100.) >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, rg, vpd, undef=undef, method='day') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 2.78457540e+00 6.63212545e+00 8.88902165e+00 6.74243873e+00 9.51364527e+00] >>> print(Reco[1120:1128]) [0.28786696 0.34594516 0.43893276 0.5495954 0.70029545 0.90849165 1.15074873 1.46137527] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2014 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - wrapper for individual routines nee2gpp_reichstein etc. MC, Feb 2013 - ported to Python 3 MC, May 2013 - replaced cost functions by generel cost function cost_abs if possible AP, Aug 2014 - replaced fmin with fmin_tnc to permit params<0, permit gpp<0 at any time if nogppnight=True """ # Global relationship in Reichstein et al. (2005) if ((method.lower() == 'global') | (method.lower() == 'falge')): return nee2gpp_falge(dates, nee, t, isday, undef=undef, shape=shape, masked=masked) # Local relationship = Reichstein et al. (2005) elif ((method.lower() == 'local') | (method.lower() == 'reichstein')): return nee2gpp_reichstein(dates, nee, t, isday, undef=undef, shape=shape, masked=masked, nogppnight=nogppnight) # Lasslop et al. (2010) method elif ((method.lower() == 'day') | (method.lower() == 'lasslop')): return nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=undef, shape=shape, masked=masked, nogppnight=nogppnight) # Include new methods here else: raise ValueError('Error nee2gpp: method not implemented yet.') # ---------------------------------------------------------------------- def nee2gpp_falge(dates, nee, t, isday, undef=np.nan, shape=False, masked=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using a fit of Reco vs. temperature to all nighttime data, in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_falge(dates, nee, t, isday, undef=np.nan, shape=False, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask shape if False then outputs are 1D arrays; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef if True: return masked arrays where outputs would be undef Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Falge et al. (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange Acricultural and Forest Meteorology 107, 43-69 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='global') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.33166157e+00 8.18228013e+00 1.04092252e+01 8.19395317e+00 1.08427448e+01] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any inshape = nee.shape dates = np.squeeze(dates) nee = np.squeeze(nee) t = np.squeeze(t) isday = np.squeeze(isday) # Check squeezed shape if dates.ndim != 1: raise Error('Error nee2gpp_falge: squeezed dates must be 1D array.') if nee.ndim != 1: raise Error('Error nee2gpp_falge: squeezed nee must be 1D array.') if t.ndim != 1: raise Error('Error nee2gpp_falge: squeezed t must be 1D array.') if isday.ndim != 1: raise Error('Error nee2gpp_falge: squeezed isday must be 1D array.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise Error('Error nee2gpp_falge: inputs must have the same size.') # Transform to masked array with 1D mask nee = np.ma.array(nee, mask=False) t = np.ma.array(t, mask=False) isday = np.ma.array(isday, mask=False) # mask also undef if np.isnan(undef): if np.ma.any(np.isnan(nee)): nee[np.isnan(nee)] = np.ma.masked if np.ma.any(np.isnan(t)): t[np.isnan(t)] = np.ma.masked if np.ma.any(np.isnan(isday)): isday[np.isnan(isday)] = np.ma.masked else: if np.ma.any(nee==undef): nee[nee==undef] = np.ma.masked if np.ma.any(t==undef): t[t==undef] = np.ma.masked if np.ma.any(isday==undef): isday[isday==undef] = np.ma.masked # Partition - Global relationship as in Falge et al. (2001) # Select valid nighttime mask = isday | nee.mask | t.mask | isday.mask ii = np.where(~mask)[0] tt = np.ma.compressed(t[ii]) net = np.ma.compressed(nee[ii]) # p, c = opt.curve_fit(functions.lloyd_fix, tt, net, p0=[2.,200.]) # global parameter, global cov matrix #p = opt.fmin(functions.cost_lloyd_fix, [2.,200.], args=(tt, net), disp=False) p = opt.fmin(functions.cost_abs, [2.,200.], args=(functions.lloyd_fix_p, tt, net), disp=False) Reco = np.ones(ndata)*undef ii = np.where(~t.mask)[0] Reco[ii] = functions.lloyd_fix(t[ii], p[0], p[1]) # GPP GPP = np.ones(ndata)*undef ii = np.where(~(t.mask | nee.mask))[0] GPP[ii] = Reco[ii] - nee[ii] # Return if masked: if np.isnan(undef): GPP = np.ma.array(GPP, mask=np.isnan(GPP)) Reco = np.ma.array(Reco, mask=np.isnan(Reco)) else: GPP = np.ma.array(GPP, mask=(GPP == undef)) Reco = np.ma.array(Reco, mask=(Reco == undef)) if shape != False: if shape != True: return np.reshape(GPP,shape), np.reshape(Reco,shape) else: return np.reshape(GPP,inshape), np.reshape(Reco,inshape) else: return GPP, Reco # ---------------------------------------------------------------------- def nee2gpp_reichstein(dates, nee, t, isday, rg=False, vpd=False, undef=np.nan, shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using several fits of Reco vs. temperature of nighttime data over the season, as in Reichstein et al. (2005), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_reichstein(dates, nee, t, isday, undef=np.nan, shape=None, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask shape if False then outputs are 1D arrays (default) if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef (default) if True: return masked arrays where outputs would be undef nogppnight if True: Resp=NEE, GPP=0 at night if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Reichstein et al. (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> print(Reco[1120:1128]) [1.68311981 1.81012431 1.9874173 2.17108871 2.38759152 2.64372415 2.90076664 3.18592735] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='local') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 4.40606871e+00 8.31942152e+00 1.06242542e+01 8.49245664e+00 1.12381973e+01] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='Reichstein', masked=True) >>> print(GPP[1120:1128]) [-- -- -- 4.406068706013192 8.319421516040766 10.624254150217764 8.492456637225963 11.238197347837367] >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, undef=undef, method='reichstein', shape=(np.size(NEE),1)) >>> print(GPP[1120:1128]) [[-9.99900000e+03] [-9.99900000e+03] [-9.99900000e+03] [ 4.40606871e+00] [ 8.31942152e+00] [ 1.06242542e+01] [ 8.49245664e+00] [ 1.12381973e+01]] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any if shape != False: if shape != True: inshape = shape else: inshape = nee.shape dates = np.squeeze(dates) nee = np.squeeze(nee) t = np.squeeze(t) isday = np.squeeze(isday) if shape == False: inshape = nee.shape # Check squeezed shape if dates.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed dates must be 1D array.') if nee.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed nee must be 1D array.') if t.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed t must be 1D array.') if isday.ndim != 1: raise ValueError('Error nee2gpp_reichstein: squeezed isday must be 1D array.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise ValueError('Error nee2gpp_reichstein: inputs must have the same size.') # Transform to masked array with 1D mask nee = np.ma.array(nee, mask=False) t = np.ma.array(t, mask=False) isday = np.ma.array(isday, mask=False) # mask also undef if np.isnan(undef): if np.ma.any(np.isnan(nee)): nee[np.isnan(nee)] = np.ma.masked if np.ma.any(np.isnan(t)): t[np.isnan(t)] = np.ma.masked if np.ma.any(np.isnan(isday)): isday[np.isnan(isday)] = np.ma.masked else: if np.ma.any(nee==undef): nee[nee==undef] = np.ma.masked if np.ma.any(t==undef): t[t==undef] = np.ma.masked if np.ma.any(isday==undef): isday[isday==undef] = np.ma.masked # Partition - Local relationship = Reichstein et al. (2005) # Select valid nighttime mask = isday | nee.mask | t.mask | isday.mask ii = np.where(~mask)[0] if (ii.size==0): print('Warning nee2gpp_reichstein: no valid nighttime data.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco jul = dates[ii] tt = np.ma.compressed(t[ii]) net = np.ma.compressed(nee[ii]) # 1. each 5 days, in 15 day period, fit if range of T > 5 locp = [] # local param locs = [] # local err dmin = np.floor(np.amin(jul)).astype(int) # be aware that julian days starts at noon, i.e. 1.0 is 12h dmax = np.ceil(np.amax(jul)).astype(int) # so the search will be from noon to noon and thus includes all nights for i in range(dmin,dmax,5): iii = np.where((jul>=i) & (jul<(i+14)))[0] niii = iii.size if niii > 6: tt1 = tt[iii] net1 = net[iii] mm = ~mad(net1, z=4.5) # make fit more robust by removing outliers if (np.ptp(tt[iii]) >= 5.) & (np.sum(mm) > 6): # print(i) #p = opt.fmin(functions.cost_lloyd_fix, [2.,200.], args=(tt1[mm], net1[mm]), disp=False) # robust params p, temp1, temp2 = opt.fmin_tnc(functions.cost_lloyd_fix, [2.,200.], bounds=[[0.,None],[0.,None]], args=(tt1[mm], net1[mm]), approx_grad=True, disp=False) try: p1, c = opt.curve_fit(functions.lloyd_fix, tt1[mm], net1[mm], p0=p, maxfev=10000) # params, covariance if np.all(np.isfinite(c)): # possible return of curvefit: c=inf s = np.sqrt(np.diag(c)) else: s = 10.*np.abs(p) except: s = 10.*np.abs(p) locp += [p] locs += [s] # if ((s[1]/p[1])<0.5) & (p[1] > 0.): pdb.set_trace() if len(locp) == 0: raise ValueError('Error nee2gpp_reichstein: No local relationship found.') print('Warning nee2gpp_reichstein: No local relationship found.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco locp = np.squeeze(np.array(locp).astype(float)) locs = np.squeeze(np.array(locs).astype(float)) # 2. E0 = avg of best 3 # Reichstein et al. (2005), p. 1430, 1st paragraph. with warnings.catch_warnings(): warnings.simplefilter("ignore") iii = np.where((locp[:,1] > 0.) & (locp[:,1] < 450.) & (np.abs(locs[:,1]/locp[:,1]) < 0.5))[0] niii = iii.size if niii==0: # raise ValueError('Error nee2gpp_reichstein: No good local relationship found.') # loosen the criteria: take the best three estimates anyway iii = np.where((locp[:,1] > 0.))[0] niii = iii.size if niii<1: raise ValueError('Error nee2gpp_reichstein: No E0>0 found.') print('Warning nee2gpp_reichstein: No E0>0 found.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco lp = locp[iii,:] ls = locs[iii,:] iis = np.argsort(ls[:,1]) bestp = np.mean(lp[iis[0:np.minimum(3,niii)],:],axis=0) bests = np.mean(ls[iis[0:np.minimum(3,niii)],:],axis=0) elif niii==1: bestp = np.squeeze(locp[iii,:]) bests = np.squeeze(locs[iii,:]) elif niii==2: bestp = np.mean(locp[iii,:],axis=0) bests = np.mean(locs[iii,:],axis=0) # ls = locs[iii,:] # iis = np.argsort(ls[:,1]) else: lp = locp[iii,:] ls = locs[iii,:] iis = np.argsort(ls[:,1]) bestp = np.mean(lp[iis[0:3],:],axis=0) bests = np.mean(ls[iis[0:3],:],axis=0) # 3. Refit Rref with fixed E0, each 4 days refp = [] # Rref param refii = [] # mean index of data points E0 = bestp[1] et = functions.lloyd_fix(tt, 1., E0) for i in range(dmin,dmax,4): iii = np.where((jul>=i) & (jul<(i+4)))[0] niii = iii.size if niii > 3: # Calc directly minisation of (nee-p*et)**2 # p = np.sum(net[iii]*et[iii])/np.sum(et[iii]**2) # p, c = opt.curve_fit(functions.lloyd_only_rref, et[iii], net[iii], p0=[2.]) #p = opt.fmin(functions.cost_lloyd_only_rref, [2.], args=(et[iii], net[iii]), disp=False) #p = opt.fmin(functions.cost_abs, [2.], args=(functions.lloyd_only_rref_p, et[iii], net[iii]), disp=False) p, temp1, temp2 = opt.fmin_tnc(functions.cost_abs, [2.], bounds=[[0.,None]], args=(functions.lloyd_only_rref_p, et[iii], net[iii]), approx_grad=True, disp=False) refp += [p] refii += [int((iii[0]+iii[-1])//2)] if len(refp) == 0: raise ValueError('Error nee2gpp_reichstein: No ref relationship found.') print('Warning nee2gpp_reichstein: No ref relationship found.') if masked: GPP = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) Reco = np.ma.array(np.reshape(nee,inshape), mask=np.ones(inshape, dtype=bool)) else: GPP = np.ones(np.reshape(nee,inshape))*undef Reco = np.ones(np.reshape(nee,inshape))*undef return GPP, Reco refp = np.squeeze(np.array(refp)) refii = np.squeeze(np.array(refii)) # 4. Interpol Rref Rref = np.interp(dates, jul[refii], refp) # 5. Calc Reco Reco = np.ones(ndata)*undef ii = np.where(~t.mask)[0] Reco[ii] = functions.lloyd_fix(t[ii], Rref[ii], E0) # 6. Calc GPP GPP = np.ones(ndata)*undef ii = np.where(~(t.mask | nee.mask))[0] GPP[ii] = Reco[ii] - nee[ii] # 7. Set GPP=0 at night, if wanted if nogppnight: mask = isday | nee.mask | t.mask | isday.mask # night ii = np.where(~mask)[0] Reco[ii] = nee[ii] GPP[ii] = 0. # and prohibit negative gpp at any time mask = nee.mask | t.mask | (GPP>0.) ii = np.where(~mask)[0] Reco[ii] -= GPP[ii] GPP[ii] = 0. if masked: if np.isnan(undef): GPP = np.ma.array(GPP, mask=np.isnan(GPP)) Reco = np.ma.array(Reco, mask=np.isnan(Reco)) else: GPP = np.ma.array(GPP, mask=(GPP==undef)) Reco = np.ma.array(Reco, mask=(Reco==undef)) return GPP.reshape(inshape), Reco.reshape(inshape) # ---------------------------------------------------------------------- def nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=np.nan, shape=False, masked=False, nogppnight=False): """ Calculate photosynthesis (GPP) and ecosystem respiration (Reco) from original Eddy flux data, using the daytime method of Lasslop et al. (2010), in order to calculate Reco and then GPP = Reco - NEE. Definition ---------- def nee2gpp_lasslop(dates, nee, t, isday, rg, vpd, undef=np.nan, shape=False, masked=False): Input ----- Inputs are 1D arrays that can be masked or not. dates julian days nee net ecosystem exchange (uptake is <0) [umol m-2 s-1] t temperature [K] rg global radiation, i.e. shortwave down [W m-2] vpd vapour pressure deficit [Pa] Parameters ---------- undef undefined values in data (default: np.nan) Input arrays will be masked at undef, keeping the original mask shape if False then outputs are 1D arrays; if True, output have the same shape as datain if a shape tuple is given, then this tuple is used to reshape masked if False: outputs are undef where nee and t are masked or undef if True: return masked arrays where outputs would be undef nogppnight if True: Resp=NEE, GPP=0 at night if False: Resp=lloyd_taylor, GPP=Resp-NEE at night (default) Ouput ----- GPP, Reco photosynthesis, ecosystem respiration Restrictions ------------ None. Literature ---------- Lasslop et al. (2010) Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: critical issues and global evaluation Global Change Biology 16, 187-208 Examples -------- >>> from jams.fread import fread # from jams >>> from jams.date2dec import date2dec # from jams >>> dat = fread('test_nee2gpp.csv', skip=2, transpose=True) >>> dates = date2dec(dy=dat[0,:], mo=dat[1,:], yr=dat[2,:], hr=dat[3,:], mi=dat[4,:]) >>> NEE = np.squeeze(dat[5,:]) >>> rg = np.squeeze(dat[6,:]) >>> tair = np.squeeze(dat[7,:]) >>> undef = -9999. >>> isday = np.where(rg > 10., True, False) >>> tt = np.where(tair == undef, undef, tair+273.15) >>> VPD = np.squeeze(dat[8,:]) >>> vpd = np.where(VPD == undef, undef, VPD*100.) >>> # partition >>> GPP, Reco = nee2gpp(dates, NEE, tt, isday, rg, vpd, undef=undef, method='day') >>> print(GPP[1120:1128]) [-9.99900000e+03 -9.99900000e+03 -9.99900000e+03 2.78457540e+00 6.63212545e+00 8.88902165e+00 6.74243873e+00 9.51364527e+00] >>> print(Reco[1120:1128]) [0.28786696 0.34594516 0.43893276 0.5495954 0.70029545 0.90849165 1.15074873 1.46137527] License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2012-2013 <NAME>, <NAME> - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written MC, Mar 2012 Modified AP, Mar 2012 - undef=np.nan MC, Nov 2012 - individual routine MC, Feb 2013 - ported to Python 3 """ # Checks # remember shape if any inshape = nee.shape dates = np.squeeze(dates) nee = np.squeeze(nee) t = np.squeeze(t) isday = np.squeeze(isday) # Check squeezed shape if dates.ndim != 1: raise ValueError('Error nee2gpp_lasslop: squeezed dates must be 1D array.') if nee.ndim != 1: raise ValueError('Error nee2gpp_lasslop: squeezed nee must be 1D array.') if t.ndim != 1: raise ValueError('Error nee2gpp_lasslop: squeezed t must be 1D array.') if isday.ndim != 1: raise ValueError('Error nee2gpp_lasslop: squeezed isday must be 1D array.') ndata = dates.size if ((nee.size != ndata) | (t.size != ndata) | (isday.size != ndata)): raise ValueError('Error nee2gpp_lasslop: inputs must have the same size.') if rg.ndim != 1: raise ValueError('Error nee2gpp_lasslop: squeezed rg must be 1D array.') if vpd.ndim != 1: raise ValueError('Error nee2gpp_lasslop: squeezed vpd must be 1D array.') if ((rg.size != ndata) | (vpd.size != ndata)): raise ValueError('Error nee2gpp_lasslop: lasslop inputs must have the same size as other inputs.') # Transform to masked array with 1D mask nee = np.ma.array(nee, mask=False) t = np.ma.array(t, mask=False) isday = np.ma.array(isday, mask=False) rg = np.ma.array(rg, mask=False) vpd = np.ma.array(vpd, mask=False) # mask also undef if np.isnan(undef): if np.ma.any(np.isnan(nee)): nee[np.isnan(nee)] = np.ma.masked if np.ma.any(np.isnan(t)): t[np.isnan(t)] = np.ma.masked if np.ma.any(
np.isnan(isday)
numpy.isnan
# -*- coding: utf-8 -*- import numpy as np import skimage.data import unittest from numpy.testing import (assert_allclose, assert_array_equal, assert_array_almost_equal) from Sandbox.jpeg.jpeg import JpegCompressor class TestImageFormatTransforms(unittest.TestCase): """Test conversions between RGB and other image array formats""" def setUp(self): self.data = skimage.data.astronaut() def test_rgb_to_ypbpr(self): """Test RGB to Y'PbPr converter""" jpeg = JpegCompressor() ypbpr_out = jpeg.rgb_to_ypbpr(self.data) # Shape should be the same self.assertEqual(ypbpr_out.shape, self.data.shape) # Test Y'PbPr range of values self.assertGreaterEqual(np.min(ypbpr_out[:, :, 0]), 0) self.assertLessEqual(np.max(ypbpr_out[:, :, 0]), 1) self.assertGreaterEqual(np.min(ypbpr_out[:, :, 1:3]), -0.5) self.assertLessEqual(np.max(ypbpr_out[:, :, 1:3]), 0.5) k_r = jpeg._k_r k_g = jpeg._k_g k_b = jpeg._k_b # Test data correctness (Red) red_rgb = np.array([[[1, 0, 0]]]) jpeg = JpegCompressor() red_ycbcr = jpeg.rgb_to_ypbpr(red_rgb) assert_allclose(red_ycbcr, [[[k_r, -0.5 * k_r / (1 - k_b), 0.5]]]) # Test data correctness (Green) green_rgb = np.array([[[0, 1, 0]]]) jpeg = JpegCompressor() green_ycbcr = jpeg.rgb_to_ypbpr(green_rgb) assert_allclose(green_ycbcr, [[[k_g, -0.5 * k_g / (1 - k_b), -0.5 * k_g / (1 - k_r)]]]) # Test data correctness (Blue) blue_rgb = np.array([[[0, 0, 1]]]) jpeg = JpegCompressor() blue_ycbcr = jpeg.rgb_to_ypbpr(blue_rgb) assert_allclose(blue_ycbcr, [[[k_b, 0.5, -0.5 * k_b / (1 - k_r)]]]) # Test data correctness (White) white_rgb = np.array([[[1, 1, 1]]]) jpeg = JpegCompressor() white_ycbcr = jpeg.rgb_to_ypbpr(white_rgb) assert_allclose(white_ycbcr, [[[1, 0, 0]]], atol=1e-10) def test_gamma_correction(self): """Test gamma correction function""" jpeg = JpegCompressor() rgb_prime = jpeg.gamma_correct(self.data) self.assertEqual(rgb_prime.shape, self.data.shape) self.assertGreaterEqual(np.min(rgb_prime), 0) self.assertLessEqual(np.max(rgb_prime), 1) # Test different values of gamma test_gammas = [.25, .5, .75, 1, 1.25] for gamma in test_gammas: y = jpeg.gamma_correct(127, gamma=gamma) self.assertAlmostEqual(y, (127 / 255)**gamma) def test_gamma_expansion(self): """Test that gamma_expand inverts gamma correct""" jpeg = JpegCompressor() rgb_prime = jpeg.gamma_correct(self.data) rgb_image = jpeg.gamma_expand(rgb_prime) rms_error = np.sqrt(np.mean((rgb_image - self.data)**2)) # Check that RMS error after decompression is arbitrarily small self.assertLess(rms_error, 1) def test_rgb_to_ycbcr(self): jpeg = JpegCompressor() ycbcr_image = jpeg.rgb_to_ycbcr(self.data) # Test size, value ranges, and type self.assertEqual(ycbcr_image.shape, self.data.shape) self.assertGreaterEqual(np.min(ycbcr_image), 0) self.assertLessEqual(
np.max(ycbcr_image)
numpy.max
""" Produces figure 2, the distribution of mReasoner parameters. """ import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Parse command line arguments if len(sys.argv) != 2: print('usage: python3 plot_fig2_mReasoner_params.py <mReasoner-fit-out>') sys.exit(99) output_filename = sys.argv[1] # Load the output content mreasoner_data = [] with open(output_filename) as out_file: modelname = None mreas_params = None for line in out_file.readlines(): line = line.strip() # Identify current model if line.startswith('Evaluating '): if 'ccobra_mreasoner.py' in line: modelname = 'mReasoner' elif 'phm' in line: modelname = 'PHM' continue # Accommodate for PHM output (which is discarded later on) line = line.replace('p_entailm', '\'p_entailm\'').replace('direction', '\'direction\'').replace('max_confi', '\'max_confi\'') line = line.split() if line[0] == 'Fit': # Read the fit result line content = [x.split('=') for x in line if '=' in x] content = dict([(x, eval(y)) for x, y in content]) content['params'] = dict(content['params']) # Populate result data if modelname == 'mReasoner': mreas_params = content['params'] mreasoner_data.append({ 'id': content['id'], 'model': modelname, 'score': content['score'], 'epsilon': content['params']['epsilon'], 'lambda': content['params']['lambda'], 'omega': content['params']['omega'], 'sigma': content['params']['sigma'] }) elif line[0].startswith('[('): assert len(line) == 1 and modelname == 'mReasoner' content = dict(eval(line[0])) # Omit the duplicate parameterization if content == mreas_params: continue # Read the alternative parameter line mreasoner_data.append({ 'id': mreasoner_data[-1]['id'], 'model': modelname, 'score': mreasoner_data[-1]['score'], 'epsilon': content['epsilon'], 'lambda': content['lambda'], 'omega': content['omega'], 'sigma': content['sigma'] }) # Create dataframe from mReasoner data mreasoner_df = pd.DataFrame(mreasoner_data)[[ 'id', 'model', 'score', 'epsilon', 'lambda', 'omega', 'sigma']] # Initialize plotting sns.set(style='whitegrid', palette='colorblind') fig, axs = plt.subplots(2, 2, figsize=(9, 4.5)) # Bin definition bins01 = np.arange(0, 1.2, 0.1) - 0.05 space08 = (8 - 0.1) / 11 bins08 = np.array(list(np.linspace(0.1, 8, 11)) + [8 + space08]) - (0.5 * space08) # Plot epsilon sns.distplot(mreasoner_df['epsilon'], hist=True, bins=bins01, color='C0', ax=axs[0,0]) axs[0,0].set_title(r'Parameter $\epsilon$') axs[0,0].set_xlabel('') axs[0,0].set_ylabel('Density') axs[0,0].set_xticks(
np.linspace(0, 1, 11)
numpy.linspace
import numpy as np def CP(x,deg,d=0): N = np.size(x) One = np.ones((N,1)) Zero = np.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = np.hstack((Zero,Zero)) elif d > 0: F = np.hstack((Zero,One)) else: F = np.hstack((One,x)) return F else: F = np.hstack((One,x,np.zeros((N,deg-1)))) for k in range(2,deg+1): F[:,k:k+1] = 2.*x*F[:,k-1:k]-F[:,k-2:k-1] def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = np.hstack((Zero,One,np.zeros((N,deg-1)))) else: dark2 = np.zeros((N,deg+1)) for k in range(2,deg+1): dark2[:,k:k+1] = (2.+2.*dCurr)*dark[:,k-1:k]+2.*x*dark2[:,k-1:k]-dark2[:,k-2:k-1] dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def LeP(x,deg,d=0): N = np.size(x) One = np.ones((N,1)) Zero = np.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = np.hstack((Zero,Zero)) elif d > 0: F = np.hstack((Zero,One)) else: F = np.hstack((One,x)) return F else: F = np.hstack((One,x,np.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = ((2.*k+1.)*x*F[:,k:k+1]-k*F[:,k-1:k])/(k+1.) def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = np.hstack((Zero,One,np.zeros((N,deg-1)))) else: dark2 = np.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = ((2.*k+1.)*((dCurr+1.)*dark[:,k:k+1]+x*dark2[:,k:k+1])-k*dark2[:,k-1:k])/(k+1.) dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def LaP(x,deg,d=0): N = np.size(x) One = np.ones((N,1)) Zero = np.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = np.hstack((Zero,Zero)) elif d > 0: F = np.hstack((Zero,-One)) else: F = np.hstack((One,1.-x)) return F else: F = np.hstack((One,1.-x,np.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = ((2.*k+1.-x)*F[:,k:k+1]-k*F[:,k-1:k])/(k+1.) def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = np.hstack((Zero,-One,np.zeros((N,deg-1)))) else: dark2 = np.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = ((2.*k+1.-x)*dark2[:,k:k+1]-(dCurr+1.)*dark[:,k:k+1]-k*dark2[:,k-1:k])/(k+1.) dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def HoPpro(x,deg,d=0): N = np.size(x) One = np.ones((N,1)) Zero = np.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = np.hstack((Zero,Zero)) elif d > 0: F = np.hstack((Zero,One)) else: F = np.hstack((One,x)) return F else: F = np.hstack((One,x,np.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = x*F[:,k:k+1]-k*F[:,k-1:k] def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = np.hstack((Zero,One,np.zeros((N,deg-1)))) else: dark2 = np.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = (dCurr+1.)*dark[:,k:k+1]+x*dark2[:,k:k+1]-k*dark2[:,k-1:k] dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def HoPphy(x,deg,d=0): N = np.size(x) One = np.ones((N,1)) Zero = np.zeros((N,1)) if deg == 0: if d > 0: F = Zero else: F = One return F elif deg == 1: if d > 1: F = np.hstack((Zero,Zero)) elif d > 0: F = np.hstack((Zero,2.*One)) else: F = np.hstack((One,2.*x)) return F else: F = np.hstack((One,2.*x,np.zeros((N,deg-1)))) for k in range(1,deg): F[:,k+1:k+2] = 2.*x*F[:,k:k+1]-2.*k*F[:,k-1:k] def Recurse(dark,d,dCurr=0): if dCurr == d: return dark else: if dCurr == 0: dark2 = np.hstack((Zero,2.*One,np.zeros((N,deg-1)))) else: dark2 = np.zeros((N,deg+1)) for k in range(1,deg): dark2[:,k+1:k+2] = 2.*(dCurr+1.)*dark[:,k:k+1]+2.*x*dark2[:,k:k+1]-2.*k*dark2[:,k-1:k] dCurr += 1 return Recurse(dark2,d,dCurr=dCurr) F = Recurse(F,d) return F def FS(x,deg,d=0): N = np.size(x) F = np.zeros((N,deg+1)) if d == 0: F[:,0] = 1. for k in range(1,deg+1): g = np.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = np.cos(g*x) else: F[:,k:k+1] = np.sin(g*x) else: F[:,0] = 0. if d%4 == 0: for k in range(1,deg+1): g = np.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = g**d*np.cos(g*x) else: F[:,k:k+1] = g**d*np.sin(g*x) elif d%4 == 1: for k in range(1,deg+1): g = np.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = -g**d*np.sin(g*x) else: F[:,k:k+1] = g**d*np.cos(g*x) elif d%4 == 2: for k in range(1,deg+1): g = np.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = -g**d*np.cos(g*x) else: F[:,k:k+1] = -g**d*np.sin(g*x) else: for k in range(1,deg+1): g = np.ceil(k/2.) if k%2 == 0: F[:,k:k+1] = g**d*np.sin(g*x) else: F[:,k:k+1] = -g**d*np.cos(g*x) return F def nCP(X,deg,d,nC): # Define functions for use in generating the CP sheet def MultT(vec): tout = np.ones((N,1)) for k in range(dim): tout *= T[:,vec[k]:vec[k]+1,k] return tout def Recurse(nC,deg,dim,out,vec,n=0): if dim > 0: for x in range(deg+1): vec[dim] = x out,n = Recurse(nC,deg,dim-1,out,vec,n=n) else: for x in range(deg+1): vec[dim] = x if (any(vec>=nC) and
np.sum(vec)
numpy.sum
import datetime import numpy as np import matplotlib.pyplot as plt from numpy.lib.function_base import append import sympy as sp from multiprocessing import Pool import os import cppsolver as cs from tqdm import tqdm from ..filter import Magnet_UKF, Magnet_KF from ..solver import Solver, Solver_jac class Simu_Data: def __init__(self, gt, snr, result): self.gt = gt self.snr = snr self.result = result def __len__(self): return self.gt.shape[0] def store(self): np.savez('result/test.npz', gt=self.gt, data=self.result) class expression: def __init__(self, mag_count=1): if mag_count == 1: x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs = sp.symbols( 'x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) vecR = sp.Matrix([xs - x, ys - y, zs - z]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0]**2 + vecR[1]**2 + vecR[2]**2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecM = 1e-7 * sp.exp(M) * sp.Matrix([ sp.sin(theta) * sp.cos(phy), sp.sin(theta) * sp.sin(phy), sp.cos(theta) ]) VecB = 3 * vecR * (VecM.T * vecR) / dis**5 - VecM / dis**3 + G VecB *= 1e6 # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x, y, z, M, theta, phy], VecB, 'numpy') elif mag_count == 2: x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1, gx, gy, gz, xs, ys, zs = sp.symbols( 'x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) x = [x0, x1] y = [y0, y1] z = [z0, z1] M = [M0, M1] theta = [theta0, theta1] phy = [phy0, phy1] VecB = G for i in range(mag_count): vecR = sp.Matrix( [xs - x[i], ys - y[i], zs - z[i]]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0] ** 2 + vecR[1] ** 2 + vecR[2] ** 2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecMi = 1e-7 * sp.exp(M[i]) * sp.Matrix([sp.sin(theta[i]) * sp.cos( phy[i]), sp.sin(theta[i]) * sp.sin(phy[i]), sp.cos(theta[i])]) VecBi = 3 * vecR * (VecMi.T * vecR) / \ dis ** 5 - VecMi / dis ** 3 VecB += VecBi VecB = 1e6 * VecB # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x0, y0, z0, M0, theta0, phy0, x1, y1, z1, M1, theta1, phy1], VecB, 'numpy') class Result_Handler: def __init__(self, simu_data, scale): self.track_result = [] self.simu_data = simu_data self.scale = scale def __add__(self, new): self.track_result.append(new) return self def get_gt_result(self): a = self.simu_data.gt b = [] for i in range(len(self.track_result)): b.append(np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ])) b = np.stack(b) return [a, b] def cal_loss(self): dist = [] loss = [] for i in range(len(self.simu_data)): point_gt = self.simu_data.gt[i] point_estimate = np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ]) dist.append(np.linalg.norm(point_gt, 2)) loss.append(np.linalg.norm(point_gt - point_estimate, 2)) dist = 1e2 * np.array(dist) loss = 1e2 * np.array(loss) return [self.scale, dist, loss] def gt_and_route(self): dist = [] route = [] for i in range(len(self.simu_data)): point_gt = self.simu_data.gt[i] dist.append(np.linalg.norm(point_gt, 2)) route.append(np.array([ self.track_result[i]['X0'], self.track_result[i]['Y0'], self.track_result[i]['Z0'] ])) dist = np.array(dist) route = np.stack(route, axis=0) idx = np.argsort(dist) gt = self.simu_data.gt[idx] route = route[idx] return [gt, route] # plt.plot(dist, loss, label='scale = {}'.format(self.scale)) # plt.legend() # print('debug') class Simu_Test: def __init__(self, start, stop, scales, pSensor=None, resolution=100): self.scales = scales self.M = 2.7 self.build_route(start, stop, resolution) if pSensor is None: self.build_psensor() else: self.pSensor = pSensor # self.build_expression() self.params = { 'm': np.log(self.M), 'theta': 0, 'phy': 0, 'gx': 50 / np.sqrt(2) * 1e-6, 'gy': 50 / np.sqrt(2) * 1e-6, 'gz': 0, } def build_expression(self): x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs = sp.symbols( 'x, y, z, M, theta, phy, gx, gy, gz, xs, ys, zs', real=True) G = sp.Matrix([[gx], [gy], [gz]]) # theta2 = sp.tanh(theta) # phy2 = sp.tanh(phy) vecR = sp.Matrix([xs - x, ys - y, zs - z]).reshape(3, 1) # vecR = sp.Matrix([x, y, z]).reshape(3, 1) dis = sp.sqrt(vecR[0]**2 + vecR[1]**2 + vecR[2]**2) # VecM = M*sp.Matrix([sp.sin(theta2)*sp.cos(phy2), # sp.sin(theta2)*sp.sin(phy2), sp.cos(theta2)]) VecM = 1e-7 * sp.exp(M) * sp.Matrix([ sp.sin(theta) * sp.cos(phy), sp.sin(theta) * sp.sin(phy), sp.cos(theta) ]) VecB = 3 * vecR * (VecM.T * vecR) / dis**5 - VecM / dis**3 + G VecB *= 1e6 # convert to function for faster evaluation self.VecB = sp.lambdify( [gx, gy, gz, xs, ys, zs, x, y, z, M, theta, phy], VecB, 'numpy') def build_route(self, start, stop, resolution): # linear route theta = 90 / 180.0 * np.pi route = np.linspace(start, stop, resolution) route = np.stack([route * np.cos(theta), route * np.sin(theta)]).T route = np.pad(route, ((0, 0), (1, 0)), mode='constant', constant_values=0) self.route = 1e-2 * route # curvy route tmp = np.linspace(start, stop, resolution) route = np.stack([np.sin((tmp-start)/(stop-start) * np.pi * 5), np.cos((tmp-start)/(stop-start) * np.pi * 5), tmp], axis=0).T self.route = 1e-2 * route def build_psensor(self): self.pSensor = 1e-2 * np.array([ [1, 1, 1], [-1, 1, 1], [-1, -1, 1], [1, -1, 1], [1, 1, -1], [-1, 1, -1], [-1, -1, -1], [1, -1, -1], ]) def simulate_process(self, scale): print(scale) pSensori = scale * self.pSensor simu = self.estimate_B(pSensori) simu.store() model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result return results.cal_loss() def gt_and_result(self): pSensori = 1 * self.pSensor simu = self.estimate_B(pSensori) simu.store() model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, 1) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result return results.get_gt_result() def compare_noise_thread(self, choice): scale = 5 pSensori = scale * self.pSensor if choice == 1: simu = self.estimate_B(pSensori) elif choice == 0: simu = self.estimate_B_even_noise(pSensori) elif choice == 2: simu = self.estimate_B_singular_noise(pSensori) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [choice, dist, loss] def compare_3_noise(self, loop): results = [] pool = Pool() for i in range(loop): # self.calculate_process(scale) results.append( pool.apply_async(self.compare_noise_thread, args=(0, ))) results.append( pool.apply_async(self.compare_noise_thread, args=(1, ))) results.append( pool.apply_async(self.compare_noise_thread, args=(2, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['Even Noise', 'Raw Noise', 'Single Noise'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') plt.savefig('result/butterfly.jpg', dpi=900) def compare_noise_type(self, loop): results = [] pool = Pool() for i in range(loop): # self.calculate_process(scale) results.append( pool.apply_async(self.compare_noise_type_thread, args=(0, ))) results.append( pool.apply_async(self.compare_noise_type_thread, args=(1, ))) results.append( pool.apply_async(self.compare_noise_type_thread, args=(2, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['ALL Noise', 'Only Noise', 'Only Precision'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') plt.savefig('result/compare_noise_type.jpg', dpi=900) def compare_noise_type_thread(self, choice): scale = 5 pSensori = scale * self.pSensor simu = self.estimate_B(pSensori, choice) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, scale) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [choice, dist, loss] def simulate(self, loop=1): results = [] pool = Pool() for scale in self.scales: # self.calculate_process(scale) # test(self, scale) for i in range(loop): # self.simulate_process(scale) results.append( pool.apply_async(self.simulate_process, args=(scale, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label='scale = {} cm'.format(int(key) * 2)) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') plt.savefig('result/compare_scale/{}.jpg'.format(name), dpi=900) def simu_readings(self, pSensor): simu = self.estimate_B(pSensor, noise_type=3) simu.store() def simu_gt_and_result(self, pSensor, route, path, name): pSensori = pSensor simu = self.estimate_B(pSensori, route=route) # simu.store() # params = np.array([40 / np.sqrt(2) * 1e-6, 40 / np.sqrt(2) * 1e-6, 0, np.log( # self.M), 1e-2 * route[0, 0], 1e-2 * (route[0, 1]), 1e-2 * (route[0, # 2]), 0, 0]) model = Solver_jac(1, route[0, 0], route[0, 1], route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False gt_ang = [] rec_ang = [] results = Result_Handler(simu, 1) for i in tqdm(range(simu.result.shape[0])): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result gt_ang.append(np.array([0, 0, 1])) t1 = result['theta0'].value t2 = result['phy0'].value rec_ang.append( np.array( [np.sin(t1) * np.cos(t2), np.sin(t1) * np.sin(t2), np.cos(t1)])) [gt, route] = results.gt_and_route() gt_ang = np.stack(gt_ang) rec_ang = np.stack(rec_ang) if not os.path.exists(path): os.makedirs(path) np.savez(os.path.join(path, name), gt=gt * 1e2, result=route * 1e2, gt_ang=gt_ang, result_ang=rec_ang) def compare_layout_thread(self, index, pSensori): overall_noise = np.random.randn(3) simu = self.estimate_B(pSensori) model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, 1) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result [tmp, dist, loss] = results.cal_loss() return [index, dist, loss] def compare_layouts(self, pSensors, loop=1): results = [] pool = Pool() for index, pSensor in enumerate(pSensors): # self.calculate_process(scale) # test(self, scale) for i in range(loop): # self.calculate_process(scale) # self.compare_layout_thread(index, pSensor) results.append( pool.apply_async(self.compare_layout_thread, args=(index, pSensor))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss # msg = ['Plane Layout(MIT)', 'Our Current Layout', 'Cube Layout'] msg = ['Best Layout', 'Current Layout'] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') # plt.savefig('result/compare_layout/{}.jpg'.format(name), dpi=900) plt.show() def estimate_B( self, pSensor, route=None, noise_type=0, overall_noise=None): # noise type: 0: noise+precision, 1:only noise, 2: only precision # 3:none result = [] exp = expression() if route is None: route = self.route for i in range(route.shape[0]): routei = route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = 0.8 * np.random.randn(result.shape[0]) Noise_y = 0.8 * np.random.randn(result.shape[0]) Noise_z = 1.2 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T if noise_type != 3: if noise_type != 2: result += Noise if overall_noise is not None: result += overall_noise # add sensor resolution if noise_type != 1: result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(np.power(result - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) result = result.reshape(-1, pSensor.size) SNR = SNR.reshape(-1, pSensor.shape[0]) # print('Debug') return Simu_Data(route, SNR, result) def estimate_B_even_noise(self, pSensor): result = [] exp = expression() for i in range(self.route.shape[0]): routei = self.route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = np.sqrt(2) / 2 * np.random.randn(result.shape[0]) Noise_y = np.sqrt(2) / 2 * np.random.randn(result.shape[0]) Noise_z = np.sqrt(2) / 2 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T result += Noise # add sensor resolution result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(np.power(result - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) result = result.reshape(-1, pSensor.size) SNR = SNR.reshape(-1, pSensor.shape[0]) # print('Debug') return Simu_Data(self.route, SNR, result) def compare_method_thread(self, choice): pSensori = 5 * self.pSensor simu = self.estimate_B(pSensori) if choice == 0: model = Solver_jac(1, self.route[0, 0], self.route[0, 1], self.route[0, 2]) model.fit_params['m0'].value = np.log(self.M) model.fit_params['m0'].vary = False results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = model.solve(datai, pSensori, not model.fit_params['m0'].vary) results += result if choice == 1: sensor_count = pSensori.shape[0] my_filter = Magnet_UKF( 1, pSensori, R_std=[0.8, 0.8, 1.5] * sensor_count) my_filter.lm_model.fit_params['m0'].value = np.log(self.M) my_filter.lm_model.fit_params['m0'].vary = False my_filter.lm_model.fit_params['X0'].value = self.route[0, 0] my_filter.lm_model.fit_params['Y0'].value = self.route[0, 1] my_filter.lm_model.fit_params['Z0'].value = self.route[0, 2] my_filter.ukf.x[0] = self.params['gx'] my_filter.ukf.x[1] = self.params['gy'] my_filter.ukf.x[2] = self.params['gz'] my_filter.kf.x[0] = self.params['gx'] my_filter.kf.x[1] = self.params['gy'] my_filter.kf.x[2] = self.params['gz'] my_filter.kf.x[3] = self.route[0, 0] my_filter.ukf.x[3] = self.route[0, 0] my_filter.kf.x[5] = self.route[0, 1] my_filter.ukf.x[5] = self.route[0, 1] my_filter.kf.x[7] = self.route[0, 2] my_filter.ukf.x[7] = self.route[0, 2] my_filter.kf.x[9] = self.params['theta'] my_filter.ukf.x[9] = self.params['theta'] my_filter.kf.x[11] = self.params['phy'] my_filter.ukf.x[11] = self.params['phy'] results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): my_filter.predict() datai = simu.result[i].reshape(-1) result = my_filter.update(datai) results += result if choice == 2: # simple kf sensor_count = pSensori.shape[0] my_filter = Magnet_KF(1, pSensori, R_std=[ 0.8, 0.8, 1.5] * sensor_count) my_filter.lm_model.fit_params['m0'].value = np.log(self.M) my_filter.lm_model.fit_params['m0'].vary = False my_filter.lm_model.fit_params['X0'].value = self.route[0, 0] my_filter.lm_model.fit_params['Y0'].value = self.route[0, 1] my_filter.lm_model.fit_params['Z0'].value = self.route[0, 2] my_filter.kf.x[0] = self.params['gx'] my_filter.kf.x[1] = self.params['gy'] my_filter.kf.x[2] = self.params['gz'] my_filter.kf.x[3] = self.route[0, 0] my_filter.kf.x[5] = self.route[0, 1] my_filter.kf.x[7] = self.route[0, 2] my_filter.kf.x[9] = self.params['theta'] my_filter.kf.x[11] = self.params['phy'] results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): my_filter.predict() datai = simu.result[i].reshape(-1, 3) result = my_filter.update(datai) results += result if choice == 3: # simple kf sensor_count = pSensori.shape[0] my_filter = Magnet_KF( 1, pSensori, R_std=[0.8, 0.8, 1.5] * sensor_count, ord=3) my_filter.lm_model.fit_params['m0'].value = np.log(self.M) my_filter.lm_model.fit_params['m0'].vary = False my_filter.lm_model.fit_params['X0'].value = self.route[0, 0] my_filter.lm_model.fit_params['Y0'].value = self.route[0, 1] my_filter.lm_model.fit_params['Z0'].value = self.route[0, 2] my_filter.kf.x[0] = self.params['gx'] my_filter.kf.x[1] = self.params['gy'] my_filter.kf.x[2] = self.params['gz'] my_filter.kf.x[3] = self.route[0, 0] my_filter.kf.x[6] = self.route[0, 1] my_filter.kf.x[9] = self.route[0, 2] my_filter.kf.x[12] = self.params['theta'] my_filter.kf.x[15] = self.params['phy'] results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): my_filter.predict() datai = simu.result[i].reshape(-1, 3) result = my_filter.update(datai) results += result return results.cal_loss() def compare_method(self, loop): results = [] pool = Pool() for i in range(loop): # self.compare_method_thread(1) results.append( pool.apply_async(self.compare_method_thread, args=(0, ))) results.append( pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(3, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['LM', 'MY UKF', "KF on LM results", "KF on LM results ord=3"] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') plt.savefig('result/compare_method/{}.jpg'.format(name), dpi=600) def compare_softiron(self, loop): results = [] pool = Pool() for i in range(loop): # self.compare_method_thread(1) results.append( pool.apply_async(self.compare_softiron_thread, args=(0, ))) results.append( pool.apply_async(self.compare_softiron_thread, args=(1, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(3, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['origin', 'Add softiron', ] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') root = 'result/compare_softiron' if not os.path.exists(root): os.makedirs(root) plt.savefig(os.path.join(root, '{}.jpg'.format(name)), dpi=600) def compare_softiron_thread(self, choice): pSensori = 5 * self.pSensor simu = self.estimate_B(pSensori) if choice == 0: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} if choice == 1: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) soft_iron_param = 0.05 * np.random.randn( simu.result.size//simu.result.shape[0])+1 for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1) datai *= soft_iron_param result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} return results.cal_loss() def compare_hardiron(self, loop): results = [] pool = Pool() for i in range(loop): # self.compare_method_thread(1) results.append( pool.apply_async(self.compare_hardiron_thread, args=(0, ))) results.append( pool.apply_async(self.compare_hardiron_thread, args=(1, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(2, ))) # results.append( # pool.apply_async(self.compare_method_thread, args=(3, ))) pool.close() pool.join() # print('debug') loss_dict = {} dist_dict = {} for result in results: [scale, dist, loss] = result.get() if not str(scale) in loss_dict.keys(): loss_dict[str(scale)] = loss dist_dict[str(scale)] = dist else: loss_dict[str(scale)] += loss msg = ['origin', 'Add hardiron', ] for key in dist_dict.keys(): plt.plot(dist_dict[key], loss_dict[key] / loop, label=msg[int(key)]) plt.legend() plt.ylabel('Error(cm)') plt.xlabel('Distance(cm)') name = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S') root = 'result/compare_hardiron' if not os.path.exists(root): os.makedirs(root) plt.savefig(os.path.join(root, '{}.jpg'.format(name)), dpi=600) def compare_hardiron_thread(self, choice): pSensori = 5 * self.pSensor simu = self.estimate_B(pSensori, noise_type=0) if choice == 0: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1, 3) result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} if choice == 1: init_param = np.array([0, 0, 0, np.log( self.M), self.route[0, 0], self.route[0, 1], self.route[0, 2], 0, 0]) param = init_param.copy() results = Result_Handler(simu, choice) soft_iron_param = 5.0 * np.random.randn( simu.result.size//simu.result.shape[0])+1 for i in range(simu.result.shape[0]): datai = simu.result[i].reshape(-1) datai += soft_iron_param result = cs.solve_1mag( datai.reshape(-1), pSensori.reshape(-1), param) param = result.copy() results += {'X0': param[4], 'Y0': param[5], 'Z0': param[6]} return results.cal_loss() def estimate_B_singular_noise(self, pSensor): result = [] exp = expression() for i in range(self.route.shape[0]): routei = self.route[i] tmp = [] for j in range(pSensor.shape[0]): param = [ self.params['gx'], self.params['gy'], self.params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], routei[0], routei[1], routei[2], self.params['m'], self.params['theta'], self.params['phy'] ] tmp.append(exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0).reshape(-1) result.append(tmp) result = np.concatenate(result, axis=0).reshape(-1, 3) Noise_x = np.sqrt(1.5) * np.random.randn(result.shape[0]) Noise_y = 0 * np.random.randn(result.shape[0]) Noise_z = 0 * np.random.randn(result.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T result += Noise # add sensor resolution result = np.floor(result * 100.0) result = result - np.mod(result, 15) result = 1e-2 * result # compute SNR G = 1e6 * np.array( [self.params['gx'], self.params['gy'], self.params['gz']]) signal_power = np.sum(np.power(result - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) result = result.reshape(-1, pSensor.size) SNR = SNR.reshape(-1, pSensor.shape[0]) # print('Debug') return Simu_Data(self.route, SNR, result) def simulate_2mag_3type_thread(pSensor, params, typ, i): tmp = [] for j in range(pSensor.shape[0]): param = [ params['gx'], params['gy'], params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], params['X0'], params['Y0'], params['Z0'], params['m'], params['theta0'], params['phy0'], params['X1'], params['Y1'], params['Z1'], params['m'], params['theta1'], params['phy1'], ] tmp.append(simulate_2mag_3type.exp.VecB(*param).squeeze()) tmp = np.concatenate(tmp, axis=0) tmp = tmp.reshape(-1) print(i, ' finished ') return [tmp, typ] def simulate_2mag_3type_delta_thread(pSensor, params, typ, i): tmp = [] for j in range(pSensor.shape[0]): param = [ params['gx'], params['gy'], params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], params['X0'], params['Y0'], params['Z0'], params['m'], params['theta0'], params['phy0'], params['X1'], params['Y1'], params['Z1'], params['m'], params['theta1'], params['phy1'], ] # the result after a short period of time r = 1 * 1e-2 * np.random.rand() theta = np.random.rand() * np.pi phy = np.random.rand() * 2 * np.pi dx0 = r * np.sin(theta) * np.cos(phy) dy0 = r * np.sin(theta) * np.sin(phy) dz0 = r * np.cos(theta) r = 1 * 1e-2 * np.random.rand() theta = np.random.rand() * np.pi phy = np.random.rand() * 2 * np.pi dx1 = r * np.sin(theta) * np.cos(phy) dy1 = r * np.sin(theta) * np.sin(phy) dz1 = r * np.cos(theta) param2 = [ params['gx'], params['gy'], params['gz'], pSensor[j][0], pSensor[j][1], pSensor[j][2], params['X0'] + dx0, params['Y0'] + dy0, params['Z0'] + dz0, params['m'], params['theta0'], params['phy0'], params['X1'] + dx1, params['Y1'] + dy1, params['Z1'] + dz1, params['m'], params['theta1'], params['phy1'], ] aaa = np.concatenate( [simulate_2mag_3type.exp.VecB(*param).squeeze(), simulate_2mag_3type.exp.VecB(*param2).squeeze() - simulate_2mag_3type.exp.VecB(*param).squeeze()], axis=0) tmp.append(aaa) print(aaa.shape) tmp = np.concatenate(tmp, axis=0) tmp = tmp.reshape(-1) print(i, ' finished ') return [tmp, typ] def simulate_2mag_3type(pSensor, size=1000, cls=3, edge=20): size = int(size) results = [] types = [] simulate_2mag_3type.exp = expression(2) pool = Pool() pool_results = [] i = 0 # for i in range(size * cls): while(i < size * cls): # G's Spherical Coordinates t1 = np.pi * np.random.rand() t2 = 2 * np.pi * np.random.rand() # P1's Spherical Coordinates tt1 = np.pi * np.random.rand() pp1 = 2 * np.pi * np.random.rand() # P2's Spherical Coordinates tt2 = np.pi * np.random.rand() pp2 = 2 * np.pi * np.random.rand() typ = i % cls G = 38.6600 # G = 0.0 if cls == 3: if typ == 0: r1 = np.random.rand() * 20 + edge r2 = np.random.rand() * 20 + edge params = { 'm': np.log(2.7), 'gx': G * np.sin(t1) * np.cos(t2) * 1e-6, 'gy': G * np.sin(t1) * np.sin(t2) * 1e-6, 'gz': G * np.cos(t1) * 1e-6, 'X0': 1e-2 * r1 * np.sin(tt1) * np.cos(pp1), 'Y0': 1e-2 * r1 * np.sin(tt1) * np.sin(pp1), 'Z0': 1e-2 * r1 * np.cos(tt1), 'theta0': np.pi * np.random.rand(), 'phy0': 2 * np.pi * np.random.rand(), 'X1': 1e-2 * r2 * np.sin(tt2) * np.cos(pp2), 'Y1': 1e-2 * r2 * np.sin(tt2) * np.sin(pp2), 'Z1': 1e-2 * r2 * np.cos(tt2), 'theta1': np.pi * np.random.rand(), 'phy1': 2 * np.pi * np.random.rand(), } elif typ == 1: r1 = np.random.rand() * 20 + edge r2 = np.random.rand() * (edge - 5) + 5 params = { 'm': np.log(2.7), 'gx': G * np.sin(t1) * np.cos(t2) * 1e-6, 'gy': G * np.sin(t1) * np.sin(t2) * 1e-6, 'gz': G * np.cos(t1) * 1e-6, 'X0': 1e-2 * r1 * np.sin(tt1) * np.cos(pp1), 'Y0': 1e-2 * r1 * np.sin(tt1) * np.sin(pp1), 'Z0': 1e-2 * r1 * np.cos(tt1), 'theta0': np.pi * np.random.rand(), 'phy0': 2 * np.pi * np.random.rand(), 'X1': 1e-2 * r2 * np.sin(tt2) * np.cos(pp2), 'Y1': 1e-2 * r2 * np.sin(tt2) * np.sin(pp2), 'Z1': 1e-2 * r2 * np.cos(tt2), 'theta1': np.pi * np.random.rand(), 'phy1': 2 * np.pi * np.random.rand(), } elif typ == 2: r1 = np.random.rand() * (edge - 5) + 5 r2 = np.random.rand() * (edge - 5) + 5 params = { 'm': np.log(2.7), 'gx': G * np.sin(t1) * np.cos(t2) * 1e-6, 'gy': G * np.sin(t1) * np.sin(t2) * 1e-6, 'gz': G * np.cos(t1) * 1e-6, 'X0': 1e-2 * r1 * np.sin(tt1) * np.cos(pp1), 'Y0': 1e-2 * r1 * np.sin(tt1) * np.sin(pp1), 'Z0': 1e-2 * r1 * np.cos(tt1), 'theta0': np.pi * np.random.rand(), 'phy0': 2 * np.pi * np.random.rand(), 'X1': 1e-2 * r2 * np.sin(tt2) * np.cos(pp2), 'Y1': 1e-2 * r2 * np.sin(tt2) * np.sin(pp2), 'Z1': 1e-2 * r2 * np.cos(tt2), 'theta1': np.pi * np.random.rand(), 'phy1': 2 * np.pi * np.random.rand(), } elif cls == 2: if typ == 0: r1 = np.random.rand() * 20 + 30 r2 = np.random.rand() * 20 + 10 params = { 'm': np.log(2.7), 'gx': G * np.sin(t1) * np.cos(t2) * 1e-6, 'gy': G * np.sin(t1) * np.sin(t2) * 1e-6, 'gz': G * np.cos(t1) * 1e-6, 'X0': 1e-2 * r1 * np.sin(tt1) * np.cos(pp1), 'Y0': 1e-2 * r1 * np.sin(tt1) * np.sin(pp1), 'Z0': 1e-2 * r1 * np.cos(tt1), 'theta0': np.pi * np.random.rand(), 'phy0': 2 * np.pi * np.random.rand(), 'X1': 1e-2 * r2 * np.sin(tt2) * np.cos(pp2), 'Y1': 1e-2 * r2 * np.sin(tt2) * np.sin(pp2), 'Z1': 1e-2 * r2 * np.cos(tt2), 'theta1': np.pi * np.random.rand(), 'phy1': 2 * np.pi * np.random.rand(), } elif typ == 1: r1 = np.random.rand() * 20 + 10 r2 = np.random.rand() * 20 + 10 params = { 'm': np.log(2.7), 'gx': G * np.sin(t1) * np.cos(t2) * 1e-6, 'gy': G * np.sin(t1) * np.sin(t2) * 1e-6, 'gz': G * np.cos(t1) * 1e-6, 'X0': 1e-2 * r1 * np.sin(tt1) * np.cos(pp1), 'Y0': 1e-2 * r1 * np.sin(tt1) * np.sin(pp1), 'Z0': 1e-2 * r1 * np.cos(tt1), 'theta0': np.pi * np.random.rand(), 'phy0': 2 * np.pi * np.random.rand(), 'X1': 1e-2 * r2 * np.sin(tt2) * np.cos(pp2), 'Y1': 1e-2 * r2 * np.sin(tt2) * np.sin(pp2), 'Z1': 1e-2 * r2 * np.cos(tt2), 'theta1': np.pi * np.random.rand(), 'phy1': 2 * np.pi * np.random.rand(), } # check G and R # GG = np.linalg.norm(np.array([params['gx'],params['gy'],params['gz']]), ord=2) # print(GG) # check if two point are too close to each other dis = np.linalg.norm( np.array( [params['X0'] - params['X1'], params['Y0'] - params['Y1'], params['Z0'] - params['Z1']]), ord=2) # if dis < 5*1e-2: # print(dis) # continue i += 1 # [tmp, typ] = simulate_2mag_3type_thread(pSensor, params, typ, i) pool_results.append(pool.apply_async( simulate_2mag_3type_thread, args=(pSensor, params, typ, i))) pool.close() pool.join() for pool_result in pool_results: [tmp, typ] = pool_result.get() results.append(tmp) types.append(typ) results = np.concatenate(results, axis=0).reshape(-1, 3) Noise_x = 0.7 * np.random.randn(results.shape[0]) Noise_y = 0.7 * np.random.randn(results.shape[0]) Noise_z = 1.2 * np.random.randn(results.shape[0]) Noise = np.stack([Noise_x, Noise_y, Noise_z]).T # TODO: Desides whether to use the noise # results += Noise # results = np.floor(results * 100.0) # results = results - np.mod(results, 15) # results = 1e-2 * results # compute SNR G = 1e6 * np.array( [params['gx'], params['gy'], params['gz']]) signal_power = np.sum(np.power(results - Noise, 2), 1) noise_power = np.sum(np.power(G + Noise, 2), 1) SNR = 10 * np.log(signal_power / noise_power) results = results.reshape(size * cls, -1) # np.save('result/3types.npy', result) types = np.array(types) return results, types def simulate_2mag_3type_test(pSensor, size=1000, cls=3): size = int(size) results = [] types = [] simulate_2mag_3type.exp = expression(2) pool = Pool() pool_results = [] for i in range(size * cls): # G's Spherical Coordinates t1 = np.pi *
np.random.rand()
numpy.random.rand
from __future__ import division import numpy as np # import matplotlib.pyplot as plt # from mpl_toolkits.mplot3d import Axes3D import bpy ### Plot the red and blue circular pulses. ##### PARAMETERS c = 299792458 def Efield(times=np.linspace(-30e-15, 30e-15, 5000), pdur=20e-15, A1=1, lambda1=7.90e-7, ellip=1): def gauss(x, A=1, x0=0, width=1): return A*np.exp(-(x-x0)**2/(2*(width/2.35482)**2)) w1 = c/lambda1 * 2 * np.pi x = A1 * np.sin(w1 * times) * gauss(times, width=pdur) y = ellip * A1 * np.cos(w1 * times) * gauss(times, width=pdur) return times, x, y def make_field(x, y, z, bevel_obj='', name=''): # Create the data block for the curve. curveD = bpy.data.curves.new(name, type='CURVE') curveD.dimensions = '3D' curveD.resolution_u = 2 coords =
np.vstack((x,y,z))
numpy.vstack
""" Created on 10:25 at 08/07/2021/ @author: bo """ import argparse import os import numpy as np import pickle import data.rruff as rruff from sklearn.metrics import roc_curve, auc from scipy.special import expit, softmax import const import test import vis_utils as vis_utils import data.prepare_data as pdd import matplotlib import matplotlib.ticker as ticker # matplotlib.use("pgf") # matplotlib.rcParams.update({ # "pgf.texsystem": "pdflatex", # 'text.usetex': True, # }) matplotlib.rcParams.update({ 'font.family': 'serif', "font.size": 7, "legend.fontsize": 7, "xtick.labelsize": 7, "ytick.labelsize": 7, "legend.title_fontsize": 7, "axes.titlesize": 7, }) import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter, StrMethodFormatter, NullFormatter import matplotlib.ticker as mticker TEXTWIDTH = 6.75133 def give_args(): """This function is used to give the argument""" parser = argparse.ArgumentParser(description='Reproduce figures in the paper') parser.add_argument('--dir2read_exp', type=str, default="../exp_data/exp_group/") parser.add_argument('--dir2read_data', type=str, default="../data_group/") parser.add_argument('--dir2save', type=str, default="figures/") parser.add_argument('--index', type=str, default="figure_1", help="which figure or table do you want to produce?") parser.add_argument("--save", type=const.str2bool, default=False, help="whether to save the image or not") parser.add_argument("--pdf_pgf", type=str, default="pgf", help="in what kind of format will I save the image?") return parser.parse_args() # ------------------------------------------------------------------------------------ def set_size(width, fraction=1, enlarge=0): """ Args: width: inches fraction: float """ # Width of figure (in pts) fig_width_in = width * fraction golden_ratio = (5 ** .5 - 1) / 2 if enlarge != 0: golden_ratio *= enlarge fig_height_in = fig_width_in * golden_ratio fig_dim = (fig_width_in, fig_height_in) return fig_dim def give_figure_specify_size(fraction, enlarge=0): fig = plt.figure() fig.set_size_inches(set_size(TEXTWIDTH, fraction, enlarge)) return fig # -------------- First figure --------------------# def give_data_augmentation_example(tds_dir_use="../exp_data/eerst_paper_figures/", save=False, pdf_pgf="pgf", data_path="../data_group/"): args = const.give_args_test(raman_type="excellent_unoriented") args["pre_define_tt_filenames"] = False tr_data, _, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", dir2read=data_path) show_data_augmentation_example(args, tr_data[0], tr_data[1], label_name_tr, tds_dir_use, save, pdf_pgf) def show_data_augmentation_example(args, tr_spectrum, tr_label, label_name_tr, tds_dir_use="../exp_data/eerst_paper_figures/", save=False, pdf_pgf="pdf"): """Illustrate the data augmentation process Args: args: the arguments that can tell me the maximum and minimum wavenumber tr_spectrum: [num_spectra, wavenumbers] tr_label: [num_spectra] label_name_tr: corresponding names for each class in the tr label tds_dir_use: the directory to save the data. save: bool, whether to save the figure """ select_index = np.where(label_name_tr == "AlumNa")[0] #AlumNa tr_select = tr_spectrum[np.where(tr_label == select_index)[0]] u_spectrum = tr_select[np.random.choice(len(tr_select), 1)[0]] std_s_spectrum = rruff.calc_std(u_spectrum, 10) rand_noise = np.random.normal(0, 3, [3, len(u_spectrum)]) # 5 before generate = abs(np.expand_dims(u_spectrum, 0) + rand_noise * np.expand_dims(std_s_spectrum, 0)) generate = generate / np.max(generate, axis=-1, keepdims=True) wavenumber = np.arange(args["max_wave"])[args["min_wave"]:] text_use = ["%s" % label_name_tr[select_index][0], "Synthetic"] fig = give_figure_specify_size(0.5, 1.1) ax = fig.add_subplot(111) for i, s_c in enumerate(["r", "g"]): ax.plot([], [], color=s_c) ax.plot(wavenumber, u_spectrum, 'r', lw=0.8) ax.text(250, 0.5, text_use[0]) for i, s in enumerate(generate): ax.plot(wavenumber, s + i + 1, 'g', lw=0.8) ax.text(250, 0.5 + i + 1, text_use[-1]) ax.yaxis.set_major_formatter(plt.NullFormatter()) ax.set_xlabel("Wavenumber (cm" + r"$^{-1})$") ax.set_ylabel("Intensity (a.u.)") if save: plt.savefig( tds_dir_use + "/augmentation_example_on_RRUFF_%s.%s" % (label_name_tr[select_index][0], pdf_pgf), pad_inches=0, bbox_inches='tight') # --------------------------- second & third figure ------------------------------# def show_example_spectra(tds_dir="../exp_data/eerst_paper_figures/", save=False, pdf_pgf="pgf", data_path="../data_group/"): """This function shows the example spectra from each dataset. It should also show the distribution of the classes """ dataset = ["RRUFF", "RRUFF", "ORGANIC", "ORGANIC", "BACTERIA"] raman_type = ["raw", "excellent_unoriented", "organic_target_raw", "organic_target", "bacteria_reference_finetune"] color_group = ['r', 'g'] fig = give_figure_specify_size(0.5, 3.0) ax_global = vis_utils.ax_global_get(fig) ax_global.set_xticks([]) ax_global.set_yticks([]) im_index = 0 title_group = ["Mineral (r)", "Mineral (p)", "Organic (r)", "Organic (p)", "Bacteria"] tr_frequency_count = [] for s_data, s_raman in zip(dataset, raman_type): ax = fig.add_subplot(5, 1, im_index + 1) args = const.give_args_test(raman_type=s_raman) args["pre_define_tt_filenames"] = False if s_data == "RRUFF" or s_data == "ORGANIC": tr_data, _, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", dir2read=data_path) else: tr_data, _, _, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", dir2read=data_path) tr_spectra, tr_label = tr_data unique_label, unique_count = np.unique(tr_label, return_counts=True) if s_data == "RRUFF": tr_frequency_count.append(unique_count) if s_data == "RRUFF": class_name = "Beryl" select_label = np.where(label_name_tr == class_name)[0] index = np.where(tr_label == select_label)[0] else: select_label = unique_label[np.argmax(unique_count)] if s_data == "ORGANIC": select_label = 1 class_name = label_name_tr[select_label] if s_data == "ORGANIC": class_name = "Benzidine" index = np.where(tr_label == select_label)[0] if len(index) > 15: index = np.random.choice(index, 5, replace=False) _spectra = tr_spectra[index] if s_data == "RRUFF": wavenumber = np.arange(args["max_wave"])[args["min_wave"]:] ax.set_xlim((0, 1500)) elif s_data == "BACTERIA": wavenumber = np.load("../bacteria/wavenumbers.npy") elif s_data == "ORGANIC": wavenumber = np.linspace(106.62457839661, 3416.04065695651, np.shape(tr_spectra)[1]) for j, s in enumerate(_spectra): ax.plot(wavenumber, s, alpha=0.8, lw=0.8) ax.set_title(title_group[im_index] + ": " + class_name) im_index += 1 if s_raman == "bacteria_finetune": ax.set_xlabel("Wavenumber (cm" + r"$^{-1})$") ax_global.set_ylabel("Intensity (a.u.)\n\n") plt.subplots_adjust(hspace=0.47) if save: plt.savefig(tds_dir + "/example_spectra.%s" % pdf_pgf, pad_inches=0, bbox_inches='tight') title_group = ["Mineral (r)", "Mineral (p)"] fig = give_figure_specify_size(0.5, 0.8) ax_global = vis_utils.ax_global_get(fig) ax_global.set_xticks([]) ax_global.set_yticks([]) max_count = np.max([np.max(np.unique(v, return_counts=True)[1]) for v in tr_frequency_count]) for i, s in enumerate(tr_frequency_count): ax = fig.add_subplot(1, 2, i + 1) ax.hist(s, bins=np.max(s), ec="white", lw=0.4) ax.set_yscale("symlog") ax.set_ylim((0, max_count)) if i == 1: ax.yaxis.set_ticks_position('none') ax.yaxis.set_major_formatter(plt.NullFormatter()) else: ax.yaxis.set_major_formatter(StrMethodFormatter('{x:.0f}')) ax.set_title(title_group[i]) plt.subplots_adjust(wspace=0.04) ax_global.set_xlabel("\n\n Number of spectra per class") ax_global.set_ylabel("Number of classes \n\n") if save: plt.savefig(tds_dir + "/class_distribution_on_RRUFF.%s" % pdf_pgf, pad_inches=0, bbox_inches='tight') # -------------------- figure 4 -------------------------- def give_uncertainty_distribution_figure_with_confidence_interval(tds_dir="../exp_data/eerst_paper_figures/", save=False, pdf_pgf="pgf", path_init="../", use_nll_or_prob="prob", data_path="../data_group/", strategy="sigmoid"): _, rruff_raw_avg, rruff_raw_std = get_multiple_rruff_uncertainty("raw", path_init, use_nll_or_prob=use_nll_or_prob, data_path=data_path, strategy=strategy) _, rruff_pre_avg, rruff_pre_std = get_multiple_rruff_uncertainty("excellent_unoriented", path_init, use_nll_or_prob=use_nll_or_prob, data_path=data_path, strategy=strategy) _, organic_raw_avg, organic_raw_std = get_multiple_organic_uncertainty("organic_target_raw", data_path=data_path, path_init=path_init, use_nll_or_prob="prob", strategy=strategy) _, organic_pre_avg, organic_pre_std = get_multiple_organic_uncertainty("organic_target", data_path=data_path, path_init=path_init, use_nll_or_prob="prob", strategy=strategy) _, bacteria_avg, bacteria_std = get_multiple_bacteria_uncertainty(path_init, use_nll_or_prob=use_nll_or_prob, data_path=data_path, strategy=strategy) color_use = ["r", "g", "b", "orange", "m"] title_group = "Correct match (%)" dataset = ["Mineral (r)", "Mineral (p)", "Organic (r)", "Organic (p)", "Bacteria"] fig = give_figure_specify_size(0.5, 1.25) ax = fig.add_subplot(111) for j, stat in enumerate([[rruff_raw_avg, rruff_raw_std], [rruff_pre_avg, rruff_pre_std], [organic_raw_avg, organic_raw_std], [organic_pre_avg, organic_pre_std], [bacteria_avg, bacteria_std]]): if strategy != "none": plot_fillx_filly(stat[0][0]*100, stat[1][0], stat[0][1]*100, stat[1][1], ax, color_use=color_use[j]) else: plot_fillx_filly(stat[0][0], stat[1][0], stat[0][1]*100, stat[1][1], ax, color_use=color_use[j]) ax.legend(dataset, loc='best', handlelength=1.1, handletextpad=0.5, borderpad=0.25) # bbox_to_anchor=(1.0, 0.8), loc="upper left", if strategy == "softmax" or strategy == "sigmoid": ax.plot([0, 100], [0, 100], ls='--', color='black') ax.set_xlim((0, 100)) ax.set_ylim((0, 100)) ax.set_ylabel(title_group) ax.yaxis.set_major_formatter(FuncFormatter(form3)) ax.set_xlabel("Similarity score") if save: plt.savefig(tds_dir + "/uncertainty_distribution_for_the_test_dataset_with_confidence_interval_%s.%s" % (strategy, pdf_pgf), pad_inches=0, bbox_inches='tight') def motivation_for_conformal_prediction_bacteria(save=False, pdf_pgf="pgf", path_init="../exp_data/exp_group/", path2save="../exp_data/eerst_paper_figures/", data_path="../data_group/"): dataset = ["BACTERIA"] output_bacteria = motivation_for_conformal_prediction(dataset[0], select_length=1, show=False, path_init=path_init, data_path=data_path) two_select_index = np.where(np.array([len(v) for v in output_bacteria[4]]) == 2)[0] fig = give_figure_specify_size(1.1, 0.8) ax_global = vis_utils.ax_global_get(fig) ax_global.set_xticks([]) ax_global.set_yticks([]) ax = fig.add_subplot(2, 2, 1) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=579, ax=ax, save=False, pdf_pgf="None", path2save=path2save) ax = fig.add_subplot(2, 2, 3) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=two_select_index[5], ax=ax, save=False, pdf_pgf="None", path2save=path2save) ax = fig.add_subplot(1, 2, 2) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=463, ax=ax, save=False, pdf_pgf="None", path2save=path2save) plt.subplots_adjust(wspace=0.04) ax_global.set_xlabel("\nWavenumber (cm" + r"$^{-1}$" + ")") ax_global.set_ylabel("Intensity (a.u.) \n") return output_bacteria def motivation_for_conformal_prediction_multiple_datasets(save=False, pdf_pgf="pgf", path_init="../exp_data/exp_group/", path2save="../exp_data/eerst_paper_figures/", data_path="../data_group/"): dataset = ["RRUFF_excellent_unoriented", "RRUFF_raw", "BACTERIA"] fig = give_figure_specify_size(1.1, 0.8) ax_global = vis_utils.ax_global_get(fig) ax_global.set_xticks([]) ax_global.set_yticks([]) output_rruff_r = motivation_for_conformal_prediction(dataset[1], select_length=1, show=False, path_init=path_init, data_path=data_path) output_rruff_p = motivation_for_conformal_prediction(dataset[0], select_length=1, show=False, path_init=path_init, data_path=data_path) output_bacteria = motivation_for_conformal_prediction(dataset[2], select_length=1, show=False, path_init=path_init, data_path=data_path) ax = fig.add_subplot(2, 3, 1) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=579, ax=ax, save=False, pdf_pgf="None", path2save=path2save) ax = fig.add_subplot(2, 3, 4) _show_motivation_for_conformal_prediction(*output_rruff_p, select_index=25, ax=ax, save=False, pdf_pgf="None", path2save=path2save) ax = fig.add_subplot(1, 3, 2) _show_motivation_for_conformal_prediction(*output_rruff_r, select_index=145, ax=ax, save=False, pdf_pgf="None", path2save=path2save) ax = fig.add_subplot(1, 3, 3) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=463, ax=ax, save=False, pdf_pgf="None", path2save=path2save) plt.subplots_adjust(wspace=0.04) ax_global.set_xlabel("\nWavenumber (cm" + r"$^{-1}$" + ")") ax_global.set_ylabel("Intensity (a.u.) \n") if save: plt.savefig(path2save + "conformal_motivation.%s" % pdf_pgf, pad_inches=0, bbox_inches='tight') def _calc_motivation_for_conformal_prediction(alpha_use=0.05, use_original_weight="original", dataset="BACTERIA", path_init="../exp_data/exp_group/", data_path="../data_group/"): if dataset == "BACTERIA": wavenumbers = np.load("../bacteria/wavenumbers.npy") raman_type = "bacteria_random_reference_finetune" args = const.give_args_test(raman_type=raman_type) args["pre_define_tt_filenames"] = False tr_data, val_data, tt_data, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", print_info=False, dir2read=data_path) tr_spectra, tt_spectra = tr_data[0], tt_data[0] tr_label_group = [tr_data[1], tr_data[1]] val_label, tt_label = val_data[1], tt_data[1] path2load = path_init + "bacteria_reference_finetune/tds/" s_split = 1 path = path2load + [v for v in os.listdir(path2load) if "split_%d" % s_split in v and ".txt" not in v][0] + "/" val_prediction = pickle.load(open(path + "validation_prediction.obj", "rb")) tt_prediction = pickle.load(open(path + "test_prediction.obj", "rb")) elif "RRUFF" in dataset: raman_type = dataset.split("RRUFF_")[1] dataset = "RRUFF" args = const.give_args_test(raman_type=raman_type) wavenumbers = np.arange(args["max_wave"])[args["min_wave"]:] args["pre_define_tt_filenames"] = False tr_data, tt_data, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", print_info=False, dir2read=data_path) [_, reference_val_label], [_, val_label] = pdd.get_fake_reference_and_test_data(tr_data, 1, data=dataset) tr_label_group = [reference_val_label, tr_data[1]] tr_spectra, tt_spectra = tr_data[0], tt_data[0] tt_label = tt_data[1] path2load = path_init + "%s/tds/" % raman_type s_split = 1 path = path2load + [v for v in os.listdir(path2load) if "split_%d" % s_split in v and '.txt' not in v][0] + "/" val_prediction = pickle.load(open(path + "validation_prediction.obj", "rb")) tt_prediction = pickle.load(open(path + "test_prediction.obj", "rb")) if use_original_weight == "original": val_pred_en, tt_pred_en = val_prediction[0]["ensemble_avg"], tt_prediction[0]["ensemble_avg"] else: val_pred_en, tt_pred_en = val_prediction[1]["ensemble_avg"], tt_prediction[1]["ensemble_avg"] val_pred_baseon_cls, _ = test.reorganize_similarity_score(val_pred_en, tr_label_group[0]) tt_pred_baseon_cls, tt_corr_tr_index = test.reorganize_similarity_score(tt_pred_en, tr_label_group[1]) val_prediction_score = give_calibration_single_score_prediction(val_pred_baseon_cls, True, val_label) threshold = np.quantile(val_prediction_score, alpha_use) tt_top1 = np.argmax(tt_pred_baseon_cls, axis=-1) accu = [v == q for v, q in zip(tt_top1, tt_label)] tt_prediction, \ tt_accuracy = give_test_prediction_baseon_single_score_threshold(tt_pred_baseon_cls, True, tt_label, threshold) tt_pred_softmax = softmax(tt_pred_baseon_cls, axis=-1) tt_correct_or_wrong = [1 if tt_label[i] in v else 0 for i, v in enumerate(tt_prediction)] return tr_label_group, [val_label, tt_label], [tr_spectra, tt_spectra], \ tt_pred_softmax, tt_prediction, tt_correct_or_wrong, tt_corr_tr_index, label_name_tr, wavenumbers def _show_motivation_for_conformal_prediction(tr_label_group, tt_label, tr_spectra, tt_spectra, tt_prediction, tt_pred_baseon_cls_softmax, tt_corr_tr_index, label_name, wavenumbers, select_index, ax, save, pdf_pgf, path2save): """Args select_index: a single index save: bool variable """ _tr_corr_index = np.where(tr_label_group[1] == tt_label[select_index])[0] if len(tt_prediction[select_index]) >= 3: height = 1.5 elif len(tt_prediction[select_index]) == 2: height = 1.2 else: height = 1.0 if not ax: fig = give_figure_specify_size(0.5, height) ax = fig.add_subplot(111) color_input = 'r' color_group = ['g', 'b', 'orange', "c", "tab:blue"] select_prediction = tt_prediction[select_index] score = tt_pred_baseon_cls_softmax[select_index] score_select = score[select_prediction] score_select_sort_index = np.argsort(score_select)[::-1] select_prediction = select_prediction[score_select_sort_index] score_select_sorted = score_select[score_select_sort_index] input_name = "Input: %s" % label_name[tt_label[select_index]] scale = 1.4 ax.plot(wavenumbers, tt_spectra[select_index] + len(select_prediction) * scale, color=color_input) if len(label_name) == 30: x_loc = 450 else: x_loc = 100 ax.text(x_loc, len(select_prediction) * scale + 0.95, input_name, color=color_input) for i, s in enumerate(select_prediction): if s == tt_label[select_index]: color_use = color_input else: color_use = color_group[i] _tr_corr_index = tt_corr_tr_index[select_index][s] match_name = "Match: %s (p=%.2f)" % (label_name[s], score_select_sorted[i]) ax.plot(wavenumbers, tr_spectra[_tr_corr_index] + (len(select_prediction) - i - 1) * scale, color=color_use) ax.text(x_loc, (len(select_prediction) - i - 1) * scale + 1, match_name, color=color_use) ax.yaxis.set_major_formatter(plt.NullFormatter()) if save: _name = label_name[tt_label[select_index]] plt.savefig(path2save + "conformal_motivation_%s_%d.%s" % (_name, select_index, pdf_pgf), pad_inches=0, bbox_inches='tight') def motivation_for_conformal_prediction(dataset="RRUFF_excellent_unoriented", select_length=3, path_init="../", show=False, save=False, pdf_pgf="pgf", data_path="../data_group/"): if dataset == "RRUFF_excellent_unoriented": alpha_use = 0.01 elif dataset == "RRUFF_raw": alpha_use = 0.0005 elif dataset == "BACTERIA": alpha_use = 0.05 tr_label_group, [val_label, tt_label], [tr_spectra, tt_spectra], \ tt_pred_softmax, tt_prediction, tt_correct_or_wrong, \ tt_corr_tr_index, label_name, wavenumbers = _calc_motivation_for_conformal_prediction(alpha_use=alpha_use, dataset=dataset, path_init=path_init, data_path=data_path) def filter_index(select_length): tt_index = [] for i, v in enumerate(tt_prediction): prob_subset = tt_pred_softmax[i, v] prob_subset_sort_index = np.argsort(prob_subset)[::-1] _pred_label = np.array(v)[prob_subset_sort_index] if len(v) == select_length and tt_correct_or_wrong[i] == 1 and _pred_label[-1] == tt_label[i]: tt_index.append(i) return tt_index if select_length != 0: tt_index = filter_index(select_length) select_index = np.random.choice(tt_index, 1) else: if dataset == "RRUFF_raw": select_index = [191, 182, 145] elif dataset == "RRUFF_excellent_unoriented": select_index = [25, 594, 312, 1213, 53] elif dataset == "BACTERIA": select_index = [463] if show: for _select_index in select_index: _show_motivation_for_conformal_prediction(tr_label_group, tt_label, tr_spectra, tt_spectra, tt_prediction, tt_pred_softmax, tt_corr_tr_index, label_name, wavenumbers, _select_index, ax=None, save=save, pdf_pgf=pdf_pgf, path2save=None) return tr_label_group, tt_label, tr_spectra, tt_spectra, tt_prediction, tt_pred_softmax, tt_corr_tr_index, \ label_name, wavenumbers def give_conformal_prediction_for_bacteria_paper(path_init="../", use_original_weight="original", tds_dir=None, save=False, pdf_pgf="pdf", data_path="../data_group/", apply_softmax="none"): alpha_group = np.linspace(0, 0.20, 10) path2load, split_version = get_path_for_conformal(path_init, "bacteria_reference_finetune") stat_bacteria = main_plot_for_scoring_rule(path2load, split_version, "bacteria_random_reference_finetune", "BACTERIA", use_original_weight, alpha_group, show=False, data_path=data_path, apply_softmax=apply_softmax) fig = give_figure_specify_size(1.0, 0) title_group = ["Bacteria: 82.71"] loc = [[0.80, 0.92]] orig_perf = [82.71] orig_perf = [v - 1 for v in orig_perf] for i, stat in enumerate([stat_bacteria]): stat_avg = np.mean(stat, axis=0) ax = fig.add_subplot(2, 2, 1) x_axis = 100 - alpha_group * 100 ax.plot(x_axis, stat_avg[:, 0] * 100, color='r', marker='.') ax.plot(x_axis, x_axis, color='g', ls=':') ax.yaxis.set_major_formatter(FuncFormatter(form3)) ax.set_xlim(np.min(x_axis), np.max(x_axis)) ax.set_ylim(np.min(x_axis), np.max(x_axis)) ax.set_ylabel("Empirical coverage (%)") ax.xaxis.set_major_formatter(plt.NullFormatter()) # plt.axis('square') ax.set_title(title_group[i]) ax = fig.add_subplot(2, 2, 3) ax.plot(x_axis, stat_avg[:, 1], color='b', marker='.') # plt.axis('square') # ax.set_yscale("symlog") ax.set_ylabel("Average set size") ax.set_xlabel("Theoretical coverage (1 - " + r'$\alpha$' + ")" + "(%)") ax.yaxis.set_major_formatter(FuncFormatter(form3)) ax.xaxis.set_major_formatter(FuncFormatter(form3)) dataset = ["BACTERIA"] output_bacteria = motivation_for_conformal_prediction(dataset[0], select_length=1, show=False, path_init=path_init, data_path=data_path) two_select_index = np.where(np.array([len(v) for v in output_bacteria[4]]) == 2)[0] # fig = give_figure_specify_size(1.1, 0.8) # ax_global = vis_utils.ax_global_get(fig) # ax_global.set_xticks([]) # ax_global.set_yticks([]) # ax = fig.add_subplot(3, 2, 2) # _show_motivation_for_conformal_prediction(*output_bacteria, select_index=579, ax=ax, save=False, pdf_pgf="None", # path2save=None) # ax.xaxis.set_major_formatter(plt.NullFormatter()) ax = fig.add_subplot(2, 2, 2) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=two_select_index[-4], ax=ax, save=False, pdf_pgf="None", path2save=None) ax.xaxis.set_major_formatter(plt.NullFormatter()) ax.set_title("Example prediction set") ax.set_ylabel("Intensity (a.u.)") ax = fig.add_subplot(2, 2, 4) _show_motivation_for_conformal_prediction(*output_bacteria, select_index=463, ax=ax, save=False, pdf_pgf="None", path2save=None) ax.set_ylabel("Intensity (a.u.)") ax.set_xlabel("Wavenumber") # plt.subplots_adjust(wspace=0.23) # ax_global.set_xlabel("\nWavenumber (cm" + r"$^{-1}$" + ")") # ax_global.set_ylabel("Intensity (a.u.) \n") plt.subplots_adjust(hspace=0.1, wspace=0.2) if save: if pdf_pgf == "pdf": plt.savefig(tds_dir + "/correlation_between_alpha_and_accuracy_and_set_size_%s.pdf" % apply_softmax, pad_inches=0, bbox_inches='tight') elif pdf_pgf == "pgf": plt.savefig(tds_dir + "/correlation_between_alpha_and_accuracy_and_set_size.pgf", pad_inches=0, bbox_inches='tight') def give_conformal_prediction_for_multiple_datasets(path_init="../", use_original_weight="weighted", tds_dir=None, save=False, pdf_pgf="pdf", data_path="../data_group/"): # rruff raw alpha_group_group = [] alpha_group = np.linspace(0, 0.03, 10) alpha_group_group.append(alpha_group) path2load, split_version = get_path_for_conformal(path_init, "raw") stat_rruff_raw = main_plot_for_scoring_rule(path2load, split_version, "raw", "RRUFF", use_original_weight, alpha_group, show=False, data_path=data_path) alpha_group = np.linspace(0, 0.05, 10) alpha_group_group.append(alpha_group) path2load, split_version = get_path_for_conformal(path_init, "excellent_unoriented") stat_rruff_preprocess = main_plot_for_scoring_rule(path2load, split_version, "excellent_unoriented", "RRUFF", "original", alpha_group, show=False, data_path=data_path) alpha_group = np.linspace(0, 0.011, 10) alpha_group_group.append(alpha_group) path2load, split_version = get_path_for_conformal(path_init, "organic_target_raw") stat_organic_raw = main_plot_for_scoring_rule(path2load, split_version, "organic_target_raw", "ORGANIC", "original", alpha_group, show=False, data_path=data_path) alpha_group = np.linspace(0, 0.04, 10) alpha_group_group.append(alpha_group) path2load, split_version = get_path_for_conformal(path_init, "organic_target") stat_organic = main_plot_for_scoring_rule(path2load, split_version, "organic_target", "ORGANIC", "original", alpha_group, show=False, data_path=data_path) alpha_group = np.linspace(0, 0.20, 10) alpha_group_group.append(alpha_group) path2load, split_version = get_path_for_conformal(path_init, "bacteria_reference_finetune") stat_bacteria = main_plot_for_scoring_rule(path2load, split_version, "bacteria_random_reference_finetune", "BACTERIA", use_original_weight, alpha_group, show=False, data_path=data_path) fig = give_figure_specify_size(0.5, 4.0) ax_global = vis_utils.ax_global_get(fig) ax_global.set_xticks([]) ax_global.set_yticks([]) ax_global.spines['top'].set_visible(False) ax_global.spines['right'].set_visible(False) ax_global.spines['bottom'].set_visible(False) ax_global.spines['left'].set_visible(False) title_group = ["Mineral (r): 94.48", "Mineral (p): 91.86", "Organic (r): 98.26", "Organic (p): 98.26", "Bacteria: 82.71"] loc = [[0.97, 0.958], [0.95, 0.95], [0.989, 0.987], [0.96, 0.987], [0.80, 0.92]] orig_perf = [94.48, 91.86, 98.26, 98.26, 82.71] orig_perf = [v - 1 for v in orig_perf] for i, stat in enumerate([stat_rruff_raw, stat_rruff_preprocess, stat_organic_raw, stat_organic, stat_bacteria]): stat_avg = np.mean(stat, axis=0) ax = fig.add_subplot(len(title_group), 1, i + 1) vis_utils.show_twinx(alpha_group_group[i] * 100, stat_avg[:, 0] * 100, stat_avg[:, 1], ax=ax) ax.set_title(title_group[i]) ax.set_ylim(bottom=orig_perf[i]) ax.set_yticks(np.linspace(orig_perf[i], 100, 4)) ax.yaxis.set_major_formatter(FuncFormatter(form3)) ax.xaxis.set_major_formatter(FuncFormatter(form3)) ax_global.set_ylabel("Empirical coverage (%) \n\n\n", color='r') ax_global_t = ax_global.twinx() ax_global_t.set_yticks([]) ax_global_t.spines['top'].set_visible(False) ax_global_t.spines['right'].set_visible(False) ax_global_t.spines['bottom'].set_visible(False) ax_global_t.spines['left'].set_visible(False) # ax_global_t.grid(None) ax_global_t.set_ylabel("\n\n\n Average set size", color='g') ax_global.set_xlabel("\n \n Theoretical coverage (1 - " + r'$\alpha$' + ")" + "(%)") plt.subplots_adjust(hspace=0.47) if save: if pdf_pgf == "pdf": plt.savefig(tds_dir + "/correlation_between_alpha_and_accuracy_and_set_size.pdf", pad_inches=0, bbox_inches='tight') elif pdf_pgf == "pgf": plt.savefig(tds_dir + "/correlation_between_alpha_and_accuracy_and_set_size.pgf", pad_inches=0, bbox_inches='tight') def give_qualitative_result_allinone(path_init, tds_dir="../exp_data/eerst_paper_figures/", save=False, pdf_pgf="pdf", data_path="../data_group/"): fig = give_figure_specify_size(1.2, 0.5) ax_global = vis_utils.ax_global_get(fig) ax_global.set_xticks([]) ax_global.set_yticks([]) dataset_names = ["Mineral (r)", "Mineral (p)", "Organic", "Bacteria"] for i in range(4): ax_g_0 = fig.add_subplot(2, 4, i + 1) ax_g_1 = fig.add_subplot(2, 4, i + 1 + 4) if i == 0: give_qualitative_result_rruff_raw(path_init, [ax_g_0, ax_g_1], data_path=data_path) elif i == 1: give_qualitative_result_rruff_preprocess(path_init, [ax_g_0, ax_g_1], data_path=data_path) elif i == 2: give_qualitative_result_organic(path_init, [ax_g_0, ax_g_1], data_path=data_path) elif i == 3: give_qualitative_result_bacteria(path_init, [ax_g_0, ax_g_1], data_path=data_path) if i == 0: ax_g_0.set_ylabel("Correct") ax_g_1.set_ylabel("Wrong") ax_g_0.set_title(dataset_names[i]) ax_global.set_xlabel("\n Wavenumber (cm" + r"$^{-1})$") ax_global.set_ylabel("Intensity (a.u.)\n\n") plt.subplots_adjust(wspace=0.05, hspace=0.05) if save: plt.savefig(tds_dir + "/qualitative_result.%s" % pdf_pgf, pad_inches=0, bbox_inches='tight') def form3(x, pos): """ This function returns a string with 3 decimal places, given the input x""" return '%.1f' % x def find_the_best_threshold_and_evaluate_accuracy(val_prediction, tt_ensemble, selected_index, reference_label_val, val_label, reference_label_tt, tt_label, predicted_label_tt, voting_number): """This function finds the best threshold (uncertainty) based on the validation dataset. Then we group the test predictions to low-uncertainty and high-uncertainty group and evaluate the matching accuracy under each group Args: val_prediction: [original_val, weighted_val] tt_ensemble: [original_tt_ensemble, weighted_tt_ensemble] selected_index: [selected index for original, selected index for the weighted] reference_label_val: the ground truth for the validation dataset val_label: the ground truth for the validation dataset reference_label_tt: the ground truth for the test dataset tt_label: the ground truth for the test data predicted_label_tt: the predicted label (it needs to be result after applying majority voting for the bacteria dataset) voting_number: the majority voting numbers """ keys = list(val_prediction[0].keys()) val_original_ensemble, \ val_weighted_ensemble = np.zeros_like(val_prediction[0][keys[0]]), np.zeros_like(val_prediction[0][keys[0]]) val_ensemble = [val_original_ensemble, val_weighted_ensemble] for i, s_stat in enumerate(val_prediction): for j, key in enumerate(s_stat.keys()): if j in selected_index[i]: val_ensemble[i] += s_stat[key] val_ensemble = [v / len(selected_index[0]) for v in val_ensemble] val_pred_baseon_class = [test.reorganize_similarity_score(v, reference_label_val)[0] for v in val_ensemble] if len(voting_number) == 0: val_prediction = [reference_label_val[np.argmax(v, axis=-1)] for v in val_ensemble] else: val_prediction = [] for i, s_val_pred in enumerate(val_ensemble): _, _pred_label = vis_utils.majority_voting(s_val_pred, reference_label_val, val_label, voting_number[i]) val_prediction.append(_pred_label) val_threshold = [] for i in range(2): correct_or_wrong = np.array([0 if v == q else 1 for v, q in zip(val_prediction[i], val_label)]) if i == 0: norm_pred = softmax(val_pred_baseon_class[i], axis=-1) else: norm_pred = val_pred_baseon_class[i] selected_predict = norm_pred[np.arange(len(val_label)), val_prediction[i]] _nll = -np.log(selected_predict) fpr, tpr, thresholds = roc_curve(correct_or_wrong, _nll) optimal_idx = np.argmax(tpr - fpr) optimal_threshold = thresholds[optimal_idx] val_threshold.append(optimal_threshold) stat_baseon_uncertainty = np.zeros([2, 4]) for i in range(2): tt_pred_baseon_class, _ = test.reorganize_similarity_score(tt_ensemble[i], reference_label_tt) if i == 0: tt_pred_baseon_class = softmax(tt_pred_baseon_class, axis=-1) select_predict = tt_pred_baseon_class[np.arange(len(tt_label)), predicted_label_tt[i]] _nll = -np.log(select_predict) correct_or_wrong = np.array([0 if v == q else 1 for v, q in zip(predicted_label_tt[i], tt_label)]) high_uncertainty_index = np.where(_nll >= val_threshold[i])[0] high_uncertainty_correct = len(high_uncertainty_index) - np.sum(correct_or_wrong[high_uncertainty_index]) low_uncertainty_index = np.where(_nll < val_threshold[i])[0] low_uncertainty_correct = len(low_uncertainty_index) - np.sum(correct_or_wrong[low_uncertainty_index]) stat_baseon_uncertainty[i, :] = [low_uncertainty_correct, len(low_uncertainty_index), high_uncertainty_correct, len(high_uncertainty_index)] return stat_baseon_uncertainty, val_threshold def _give_uncertainty_distribution_for_single_dataset(dataset, raman_type, num_select, voting_number, uncertainty, prediction_status, split_version=100, qualitative_study=False, path_init="../", get_similarity=False, data_path="../data_group/", strategy="sigmoid"): path2load = path_init + "/%s/" % raman_type + "/tds/" folder2read = [v for v in os.listdir(path2load) if os.path.isdir(path2load + v) and "split_%d" % split_version in v] dir2load_data = path_init + "/%s/" % raman_type dir2load_data = [dir2load_data + "/" + v + "/data_splitting/" for v in os.listdir(dir2load_data) if "tds" not in v and "version_%d" % split_version in v][0] folder2read = folder2read[0] original_weight_stat = ["original", "weighted"] folder2read = path2load + folder2read val_prediction = pickle.load(open(folder2read + "/validation_prediction.obj", "rb")) tt_prediction = pickle.load(open(folder2read + "/test_prediction.obj", "rb")) original_val, weighted_val = val_prediction original_tt, weighted_tt = tt_prediction args = const.give_args_test(raman_type=raman_type) args["pre_define_tt_filenames"] = True validation_accuracy = np.zeros([len(list(original_val.keys())) - 1, 2]) if dataset == "RRUFF" or dataset == "ORGANIC": if dataset == "RRUFF": tr_data, tt_data, _, label_name_tr = test.get_data(args, dir2load_data, read_twin_triple="cls", print_info=False, dir2read=data_path) else: tr_data, tt_data, _, label_name_tr = test.get_data(args, dir2load_data, read_twin_triple="cls", print_info=False, dir2read=data_path) fake_val_reference, fake_val_data = pdd.get_fake_reference_and_test_data(tr_data, 1, data=dataset) reference_val_label, val_label = fake_val_reference[1], fake_val_data[1] for j, key in enumerate(list(original_val.keys())[:-1]): _val_pred = original_val[key] if strategy == "sigmoid" or strategy == "sigmoid_softmax": _val_pred = expit(_val_pred) _correct = np.sum(fake_val_reference[1][np.argmax(_val_pred, axis=-1)] == fake_val_data[1]) / len( fake_val_data[0]) validation_accuracy[j, 0] = _correct for j, key in enumerate(list(weighted_val.keys())[:-1]): _val_pred = weighted_val[key] _correct = np.sum(fake_val_reference[1][np.argmax(_val_pred, axis=-1)] == fake_val_data[1]) / len( fake_val_data[0]) validation_accuracy[j, 1] = _correct else: tr_data, val_data, tt_data, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", print_info=False, dir2read=data_path) reference_val_label, val_label = tr_data[1], val_data[1] for m, stat in enumerate([original_val, weighted_val]): for j, key in enumerate(list(stat.keys())[:-1]): if m == 0: if strategy == "sigmoid" or strategy == "sigmoid_softmax": _val_pred = expit(stat[key]) else: _val_pred = stat[key] _correct = np.sum(tr_data[1][np.argmax(_val_pred, axis=-1)] == val_data[1]) / len(val_data[1]) validation_accuracy[j, m] = _correct original_select = np.argsort(validation_accuracy[:, 0])[-num_select:] weighted_select = np.argsort(validation_accuracy[:, 1])[-num_select:] for j, key in enumerate(list(original_tt.keys())): if j == 0: original_tt_ensemble = np.zeros_like(original_tt[key]) if strategy == "sigmoid" or strategy == "sigmoid_softmax": original_tt[key] = expit(original_tt[key]) if j in original_select: original_tt_ensemble += original_tt[key] original_tt_ensemble /= len(original_select) for j, key in enumerate(list(weighted_tt.keys())): if j == 0: weighted_tt_ensemble = np.zeros_like(weighted_tt[key]) if j in weighted_select: weighted_tt_ensemble += weighted_tt[key] weighted_tt_ensemble /= len(weighted_select) predicted_label_on_test_data = [] correspond_tr_index = [] for j, single_stat in enumerate([original_tt_ensemble, weighted_tt_ensemble]): if dataset != "BACTERIA": _pred_label = tr_data[1][np.argmax(single_stat, axis=-1)] accuracy = np.sum(_pred_label == np.array(tt_data[1])) / len(tt_data[0]) else: accuracy, _pred_label = vis_utils.majority_voting(single_stat, tr_data[1], tt_data[1], voting_number[j]) pred_baseon_class, corr_tr_index = test.reorganize_similarity_score(single_stat, tr_data[1]) if strategy == "softmax": pred_baseon_class = softmax(pred_baseon_class, axis=-1) _nll_prediction = pred_baseon_class[np.arange(len(tt_data[0])), _pred_label] print("NLL prediction", np.max(_nll_prediction), np.min(_nll_prediction)) _nll_score = _nll_prediction if split_version == 100: uncertainty.update({"%s_%s_%s" % (dataset, raman_type, original_weight_stat[j]): _nll_score}) else: uncertainty.update({"%s_%s_%s_version_%d" % (dataset, raman_type, original_weight_stat[j], split_version): _nll_score}) _pred_stat = np.concatenate([np.expand_dims(tt_data[1], axis=-1), np.expand_dims(_pred_label, axis=-1)], axis=-1) if split_version == 100: prediction_status.update({"%s_%s_%s" % (dataset, raman_type, original_weight_stat[j]): _pred_stat}) else: prediction_status.update({"%s_%s_%s_version_%d" % (dataset, raman_type, original_weight_stat[j], split_version): _pred_stat}) print("%s + %s + %s : %.4f" % (dataset, raman_type, original_weight_stat[j], accuracy)) predicted_label_on_test_data.append(_pred_label) correspond_tr_index.append(corr_tr_index) accuracy_baseon_uncertainty, \ optimal_threshold = find_the_best_threshold_and_evaluate_accuracy([original_val, weighted_val], [original_tt_ensemble, weighted_tt_ensemble], [original_select, weighted_select], reference_val_label, val_label, tr_data[1], tt_data[1], predicted_label_on_test_data, voting_number) if not qualitative_study: return uncertainty, prediction_status, accuracy_baseon_uncertainty, optimal_threshold else: if not get_similarity: return uncertainty, prediction_status, correspond_tr_index, \ optimal_threshold, tr_data, tt_data, label_name_tr, np.arange(args["max_wave"])[args["min_wave"]:] else: return original_val, original_tt_ensemble, original_select, \ reference_val_label, val_label, tr_data[1], tt_data[1] def give_original_weight_uncertainty(uncertainty, prediction_status, dataset, use_nll_or_prob="nll"): stat_orig, stat_weight = {}, {} min_value = 0 high_value = [6 if use_nll_or_prob == "nll" else 1][0] if dataset == "RRUFF_R": num_bins = 5 # 8 elif dataset == "RRUFF_P": num_bins = 5 elif dataset == "ORGANIC": num_bins=3 else: num_bins = 7 uncertainty_array, prediction_array = [], [] for key in uncertainty.keys(): predict_prob = uncertainty[key] print(key, np.max(predict_prob), np.min(predict_prob)) _stat = group_uncertainty_and_prediction(predict_prob, prediction_status[key], min_value, high_value, num_bins, False) if "weight" in key: stat_weight[key] = _stat else: stat_orig[key] = _stat prediction_array.append(prediction_status[key]) uncertainty_array.append(predict_prob) if dataset == "RRUFF_Rs" or dataset == "RRUFF_Ps" or dataset == "ORGANICs": return stat_weight else: return stat_orig, prediction_array, uncertainty_array def give_avg_std_for_uncertainty(stat_weight): stat = [[] for _ in range(3)] max_dim = np.max([np.shape(stat_weight[key])[1] for key in stat_weight.keys()]) for key in stat_weight.keys(): _value = stat_weight[key] if np.shape(_value)[1] < max_dim: _value = np.concatenate([_value, np.zeros([len(_value), max_dim - np.shape(_value)[1]])], axis=-1) for j in range(3): stat[j].append(_value[j]) for j, v in enumerate(stat): stat[j] = np.array(v) tot = stat[1] + stat[2] tot[tot == 0] = 1 stat_c_percent = stat[1] / tot stat_w_percent = stat[2] / tot percent_stat = [stat_c_percent, stat_w_percent] stat_avg, stat_std = [], [] for j in range(3): if j == 0: x_avg = np.sum(stat[0], axis=0) / np.sum(stat[0] != 0, axis=0) else: _divide = np.sum(percent_stat[j - 1] != 0, axis=0) _divide[_divide == 0] = 1 x_avg = np.sum(percent_stat[j - 1], axis=0) / _divide stat_avg.append(x_avg) x_std = np.zeros_like(x_avg) for m in range(np.shape(stat[0])[1]): if j == 0: v = stat[j][:, m] else: v = percent_stat[j - 1][:, m] if len(v[v != 0]) > 0: if np.sum(v[v != 0]) != 0: x_std[m] = 1.95 * np.std(v[v != 0]) / np.sqrt(np.sum(v != 0)) stat_std.append(x_std) return stat_avg, stat_std def give_calibration_single_score_prediction(prediction, apply_softmax, label): if apply_softmax == "softmax": prediction = softmax(prediction, axis=-1) elif apply_softmax == "sigmoid": prediction = expit(prediction) prediction_score = prediction[np.arange(len(prediction)), label] return prediction_score def give_test_prediction_baseon_single_score_threshold(prediction, apply_softmax, label, threshold, show=False): if apply_softmax == "softmax": prediction = softmax(prediction, axis=-1) elif apply_softmax == "sigmoid": prediction = expit(prediction) prediction_select = [np.where(v >= threshold)[0] for v in prediction] prediction_select = [v if len(v) > 0 else [np.argmax(prediction[i])] for i, v in enumerate(prediction_select)] accuracy = [1 for i, v in enumerate(prediction_select) if label[i] in v] if show: print("Matching accuracy %.2f" % (np.sum(accuracy) / len(label))) return prediction_select, np.sum(accuracy) / len(label) def main_plot_for_scoring_rule(path2load, data_split, raman_type, dataset, use_original_or_weighted, alpha_group, show=False, data_path="../data_group/", apply_softmax=True): statistics_group = np.zeros([len(data_split), len(alpha_group), 2]) if dataset == "RRUFF": args = const.give_args_test(raman_type=raman_type) args["pre_define_tt_filenames"] = False tr_data, tt_data, _, label_name_tr = test.get_data(args, None, read_twin_triple="cls", print_info=False, dir2read=data_path) [_, reference_val_label], [_, val_label] = pdd.get_fake_reference_and_test_data(tr_data, 1, data=dataset) tr_label_group = [reference_val_label, tr_data[1]] tt_label = tt_data[1] elif dataset == "BACTERIA": args = const.give_args_test(raman_type="bacteria_random_reference_finetune") args["pre_define_tt_filenames"] = False tr_data, val_data, tt_data, _, _ = test.get_data(args, None, read_twin_triple="cls", print_info=False, dir2read=data_path) tr_label_group = [tr_data[1], tr_data[1]] val_label, tt_label = val_data[1], tt_data[1] else: args = const.give_args_test(raman_type=raman_type) args["pre_define_tt_filenames"] = True for split_index, s_split in enumerate(data_split): path = path2load + [v for v in os.listdir(path2load) if "split_%d" % s_split in v and ".txt" not in v][0] + "/" # path = path2load + "split_%d/" % s_split val_prediction = pickle.load(open(path + "validation_prediction.obj", "rb")) tt_prediction = pickle.load(open(path + "test_prediction.obj", "rb")) if use_original_or_weighted == "original": val_pred_en, tt_pred_en = val_prediction[0]["ensemble_avg"], tt_prediction[0]["ensemble_avg"] elif use_original_or_weighted == "weighted": val_pred_en, tt_pred_en = val_prediction[1]["ensemble_avg"], tt_prediction[1]["ensemble_avg"] if dataset == "ORGANIC": _fake_reference_label, val_label, _tr_label, tt_label = _get_dir_update(path2load, s_split, args, data_path=data_path) tr_label_group = [_fake_reference_label, _tr_label] val_pred_baseon_cls, _ = test.reorganize_similarity_score(val_pred_en, tr_label_group[0]) tt_pred_baseon_cls, _ = test.reorganize_similarity_score(tt_pred_en, tr_label_group[1]) # Theoretical accuracy _tt_top1 = np.argmax(tt_pred_baseon_cls, axis=1) _compare = np.sum([v == q for v, q in zip(_tt_top1, tt_label)]) # print("Theoretical accuracy", _compare / len(_tt_top1)) print(np.max(val_pred_baseon_cls), np.min(val_pred_baseon_cls)) _statistics = give_plot_for_first_scoring_rule(val_pred_baseon_cls, tt_pred_baseon_cls, val_label, tt_label, alpha_group=alpha_group, ax=None, show=show, apply_softmax=apply_softmax) statistics_group[split_index] = _statistics if show: statistics_avg = np.mean(statistics_group, axis=0) statistics_conf = np.std(statistics_group, axis=0) # / np.sqrt(len(data_split)) vis_utils.show_twinx(alpha_group, statistics_avg[:, 0], statistics_avg[:, 1], None) return statistics_group def get_path_for_conformal(path_init, raman_type): path2load = [path_init + v for v in os.listdir(path_init) if v == raman_type][0] + "/tds/" split_version = [int(v.split("split_")[1].split(".txt")[0]) for v in os.listdir(path2load) if "split_" in v and '.txt' in v] return path2load, split_version def give_plot_for_first_scoring_rule(val_prediction, test_prediction, val_label, tt_label, alpha_group, ax=None, show=False, apply_softmax=True): val_prediction_score = give_calibration_single_score_prediction(val_prediction, apply_softmax, val_label) stat_group = np.zeros([len(alpha_group), 2]) for i, s_alpha in enumerate(alpha_group): threshold =
np.quantile(val_prediction_score, s_alpha)
numpy.quantile
import os import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from HParams import HParams from models_AAE import DecoderAAE, EncoderAAE, InnerDecoder, InnerEncoder TINY = 1e-15 class SketchAAE(): def __init__(self, hp: HParams): self.hp = hp self.device = torch.device("cuda" if torch.cuda.is_available() and not hp.fast_debug else "cpu") #and os.name != 'nt' #and not hp.fast_debug self.innerEncoder = InnerEncoder(self.hp).to(self.device) self.innerDecoder = InnerDecoder(self.hp).to(self.device) self.encoder = EncoderAAE(self.innerEncoder, self.hp).to(self.device) self.decoder = DecoderAAE(self.innerDecoder, self.hp).to(self.device) self.create_optims() def create_optims(self): self.train(inner=False, outer=True, skip_zero_grad=True) self.encoder_params =filter(lambda p: p.requires_grad, self.encoder.parameters()) self.decoder_params =filter(lambda p: p.requires_grad, self.decoder.parameters()) self.fw_encoder_optimizer = optim.Adam(self.encoder_params, self.hp.lr) self.fw_decoder_optimizer = optim.Adam(self.decoder_params, self.hp.lr) self.inner_encoder_optimizer = optim.Adam(self.innerEncoder.parameters(), self.hp.inner_lr) self.inner_decoder_optimizer = optim.Adam(self.innerDecoder.parameters(), self.hp.inner_lr) def zero_grad_models(self): self.encoder.zero_grad() self.decoder.zero_grad() self.innerEncoder.zero_grad() self.innerDecoder.zero_grad() def zero_grad_optims(self): self.fw_encoder_optimizer.zero_grad() self.fw_decoder_optimizer.zero_grad() self.inner_encoder_optimizer.zero_grad() self.inner_decoder_optimizer.zero_grad() def reset_inner(self): self.innerEncoder.reset_grads() self.innerDecoder.reset_grads() def lr_decay(self, outer=False, inner=False): def opt_decay(optimizer, hp: HParams): """Decay learning rate by a factor of lr_decay""" for param_group in optimizer.param_groups: if param_group['lr']>hp.min_lr: param_group['lr'] *= hp.lr_decay if outer: opt_decay(self.fw_encoder_optimizer, self.hp) opt_decay(self.fw_decoder_optimizer, self.hp) if inner: opt_decay(self.inner_encoder_optimizer, self.hp) opt_decay(self.inner_decoder_optimizer, self.hp) def train(self, outer=True, inner=True, skip_zero_grad=False): self.encoder.train(outer) self.decoder.train(outer) self.innerEncoder.train(inner) self.innerDecoder.train(inner) for param in self.encoder.parameters(): param.requires_grad = outer for param in self.decoder.parameters(): param.requires_grad = outer for param in self.innerEncoder.parameters(): param.requires_grad = inner for param in self.innerDecoder.parameters(): param.requires_grad = inner if not skip_zero_grad: self.zero_grad_models() self.zero_grad_optims() def eval(self): self.train(outer=False, inner=False) def optim_step(self, inner=True, outer=True): if inner: nn.utils.clip_grad_norm_(self.innerEncoder.parameters(), self.hp.grad_clip) nn.utils.clip_grad_norm_(self.innerDecoder.parameters(), self.hp.grad_clip) self.inner_encoder_optimizer.step() self.inner_decoder_optimizer.step() if outer: nn.utils.clip_grad_norm_(self.encoder_params, self.hp.grad_clip) nn.utils.clip_grad_norm_(self.decoder_params, self.hp.grad_clip) self.fw_encoder_optimizer.step() self.fw_decoder_optimizer.step() self.zero_grad_models() self.zero_grad_optims() def train_inner(self, train=True): def sample_categorical(batch_size, n_classes): cat = np.random.randint(0, n_classes, batch_size) onehot = np.eye(n_classes)[cat].astype('float32') return torch.from_numpy(onehot) def CELoss(x_pred,x_target,use_mean=True): assert x_target.size() == x_pred.size(), "size fail ! "+str(x_target.size()) + " " + str(x_pred.size()) logged_x_pred = torch.log(TINY+x_pred) if use_mean: cost_value = torch.mean(-torch.sum(x_target * logged_x_pred, dim=1)) else: cost_value = -torch.sum(x_target * logged_x_pred) return cost_value self.train(inner=train, outer=False) b_size = self.hp.batch_size input_onehot = sample_categorical(b_size, n_classes=self.hp.cat_dims).to(self.device) input_style = torch.rand(b_size, self.hp.style_dims, device=self.device) # #not sure if we should do a softmax on input_onehot... cat_style = torch.cat([input_onehot, input_style],1).requires_grad_() z = self.innerDecoder(cat_style) out_onehot, out_style = self.innerEncoder(z) LC = CELoss(out_onehot, input_onehot) LS = F.mse_loss(out_style, input_style) L3 = MapLoss(out_style, varPct=0.01) L1 = LC+LS+L3 if train: L1.backward() self.optim_step(inner=train, outer=False) input_encoder = F.softsign(torch.randn(b_size, self.innerEncoder.input_size, device=self.device)).requires_grad_() out_cat, out_style2 = self.innerEncoder(input_encoder) cat_style2 = torch.cat([out_cat, out_style2],1) output_decoder = self.innerDecoder(cat_style2) LF = F.mse_loss(output_decoder, input_encoder) L2 = LF if train: L2.backward() self.optim_step(inner=train, outer=False) loss = L1+L2 return val(loss), val(LF), val(LC), val(LS) def train_reconstruction(self, batch, lengths): self.train(inner=False, outer=True) LS, LP, map_loss = self._forward(batch, lengths) loss = LS+LP+map_loss loss.backward() self.optim_step(inner=False, outer=True) return val(loss), val(LS), val(LP), val(map_loss) def _forward(self, batch, lengths): batch_len = batch.size()[1] cat, style = self.encoder(batch, batch_len) sos = torch.stack([torch.tensor([0,0,1,0,0], device=self.device, dtype=torch.float)]*batch_len).unsqueeze(0) inputs = torch.cat([sos, batch],0) z = torch.cat([cat, style],1) self.pi, self.mu_x, self.mu_y, self.sigma_x, self.sigma_y, self.rho_xy, self.q, _, _ = self.decoder(inputs, z, self.Nmax, hidden_cell=None) mask,dx,dy,p = self.make_target(batch, lengths) LS, LP = self.reconstruction_loss(mask,dx,dy,p) map_loss = MapLoss(style, cntPct=0.00000001, varPct=0.000000001) #moving center, leave var at 0.000000001 return LS, LP, map_loss def make_target(self, batch, lengths): eos = torch.stack([torch.tensor([0,0,0,0,1], device=self.device, dtype=torch.float)]*batch.size()[1]).unsqueeze(0) batch = torch.cat([batch, eos], 0) mask = torch.zeros(self.Nmax+1, batch.size()[1], device=self.device) for indice,length in enumerate(lengths): mask[:length,indice] = 1 dx = torch.stack([batch.data[:,:,0]]*self.hp.M,2) dy = torch.stack([batch.data[:,:,1]]*self.hp.M,2) p1 = batch.data[:,:,2] p2 = batch.data[:,:,3] p3 = batch.data[:,:,4] p = torch.stack([p1,p2,p3],2) return mask,dx,dy,p def bivariate_normal_pdf(self, dx, dy): z_x = ((dx-self.mu_x)/self.sigma_x)**2 z_y = ((dy-self.mu_y)/self.sigma_y)**2 z_xy = (dx-self.mu_x)*(dy-self.mu_y)/(self.sigma_x*self.sigma_y) z = z_x + z_y -2*self.rho_xy*z_xy exp = torch.exp(-z/(2*(1-self.rho_xy**2))) norm = 2*np.pi*self.sigma_x*self.sigma_y*torch.sqrt(1-self.rho_xy**2) return exp/norm def reconstruction_loss(self, mask, dx, dy, p): len = mask.size()[1] pdf = self.bivariate_normal_pdf(dx, dy) ls_all = mask*torch.log(TINY+torch.sum(self.pi * pdf, 2)) #not checking min because it performs worse LS = -torch.sum(ls_all)/float(self.Nmax*len) lp_all = p*torch.log(TINY+self.q) #lp_zeros = torch.zeros_like(lp_all).detach() #lp_all = torch.min(lp_all, lp_zeros) LP = -torch.sum(lp_all)/float(self.Nmax*len) return LS, LP def generation_for_category(self, category, x_count=10, y_count=10, x_offset=8, y_offset=8): with torch.no_grad(): self.eval() cat = torch.zeros((self.hp.cat_dims), device=self.device) cat[category] = 1 cat = F.softmax(cat, dim=0) out = [] style = torch.zeros((self.hp.style_dims), device=self.device) xedges = np.linspace(0, 1, num=x_count) yedges = np.linspace(0, 1, num=y_count) for y in range(y_count): for x in range(x_count): style[0] = xedges[x] style[1] = yedges[y] z = torch.cat([cat, style]).unsqueeze(0) s = torch.tensor([0,0,1,0,0], device=self.device, dtype=torch.float).view(1,1,-1) seq_x = [] seq_y = [] seq_z = [] hidden_cell = None for i in range(self.hp.max_seq_length): self.pi, self.mu_x, self.mu_y, self.sigma_x, self.sigma_y, \ self.rho_xy, self.q, hidden, cell = \ self.decoder(s, z, 0, hidden_cell=hidden_cell) hidden_cell = (hidden, cell) # sample from parameters: s, dx, dy, pen_down, eos = self.sample_next_state() #------ if i == self.hp.max_seq_length - 1: eos = True seq_x.append(dx) seq_y.append(dy) seq_z.append(pen_down or eos) if eos: break # visualize result: x_sample = np.cumsum(seq_x, 0) y_sample = np.cumsum(seq_y, 0) if x_sample.min() < 0: x_sample[:] += -x_sample.min() if y_sample.min() < 0: y_sample[:] += -y_sample.min() x_sample = np.abs(x_sample) y_sample = np.abs(y_sample) width = x_sample.max() height = y_sample.max() v_max = max(width, height) if v_max > (x_offset-1) or v_max > (y_offset-1): x_scale = ((x_offset-1) / v_max) y_scale = ((y_offset-1) / v_max) x_sample[:] *= x_scale y_sample[:] *= y_scale #switching x/y here is intentional x_sample[:] += (y * y_offset) y_sample[:] -= (x * x_offset) z_sample = np.array(seq_z) sequence = np.stack([x_sample,y_sample,z_sample]).T out.append(sequence) return np.concatenate(out) def conditional_generation(self, batch, lengths, Nmax): # should remove dropouts: self.eval() with torch.no_grad(): # encode: batch = torch.unsqueeze(batch, 1) cat, style = self.encoder(batch, 1) #cat = F.softmax(cat, dim=0) z = torch.cat([cat, style],1) s = torch.tensor([0,0,1,0,0], device=self.device, dtype=torch.float).view(1,1,-1) seq_x = [] seq_y = [] seq_z = [] hidden_cell = None for i in range(Nmax): # decode: self.pi, self.mu_x, self.mu_y, self.sigma_x, self.sigma_y, \ self.rho_xy, self.q, hidden, cell = \ self.decoder(s, z, Nmax, hidden_cell=hidden_cell) hidden_cell = (hidden, cell) # sample from parameters: s, dx, dy, pen_down, eos = self.sample_next_state() #------ seq_x.append(dx) seq_y.append(dy) seq_z.append(pen_down) if eos: print("count: ", i) break # visualize result: x_sample = np.cumsum(seq_x, 0) y_sample = np.cumsum(seq_y, 0) z_sample = np.array(seq_z) sequence = np.stack([x_sample,y_sample,z_sample]).T return sequence def sample_next_state(self): # get mixture indice: pi = self.adjust_temp_tensor(self.pi.data[0,0,:]).cpu().numpy() pi_idx = np.random.choice(self.hp.M, p=pi) # get pen state: q = self.adjust_temp_tensor(self.q.data[0,0,:]).cpu().numpy() q_idx =
np.random.choice(3, p=q)
numpy.random.choice
# graph utility for warehouse optimisation #%% import packages import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt import math #%% import packages from other folders import logproj.ml_graphs as dg from logproj.ml_dataCleaning import cleanUsingIQR # %% def defineCoordinatesFromRackBayLevel(D_layout, aisleX=5.0, bayY=0.9): # definisce le coordinate x e y per ogni location in base al # numero di corsia (rack) # numero di campata (bay) # da utilizzare quando le coordinate cartesiane non vengono mappate # scrive in output sulle colonne loccodex e loccodey del dataframe D_layout print(f"Assuming aisle width of {aisleX} meters and bay width (pallet) of {bayY} meters") #identifico corsie D_layout['loccodex']=-1 D_layout['loccodey']=-1 allAisles=list(set(D_layout.rack)) allAisles.sort() j=0 #scorro tutte le corsie for x in allAisles: #assegno la coordinata x in base alla distanza fra i corridoi idx_x=D_layout.rack==x D_layout['loccodex'].loc[idx_x]=aisleX*j j=j+1 #identifico tutte le campate in corsia allBays=list(set(D_layout['bay'].loc[idx_x])) i=0 for y in allBays: #assegno la coordinata y in base al passo fra una campata e l'altra # per ipotesi tutte le corsie iniziano sul fronte idx_y=(D_layout.rack==x) & (D_layout.bay==y) D_layout['loccodey'].loc[idx_y]=bayY*i i=i+1 return D_layout # %% def estimateMissingAislecoordX(D_layout,draw=False): #salvo dataset iniziale ''' if draw: msgn.matrix(D_layout) plt.title("Initial Layout Data") plt.savefig("01InitialDataset.png") ''' #stima i valori della coordinata della corsia quando non sono stati mappati (colonna aislecodex del dataframe D_layout) ##################################################### #### sostituisco i nulli in loccodex e loccodey ##### ##################################################### D_layout = D_layout.reset_index() #se ho l'indicazione dei rack if 'rack' in D_layout.columns: D_layout=D_layout.sort_values(['rack', 'bay'], ascending=[True, True]) allRacks=list(set(D_layout.rack.dropna())) for rack in allRacks: D_rack=D_layout[D_layout.rack==rack] #provo a calcolarmi un valor medio della corsia avgXCoord=np.mean(D_rack.loccodex) if not(math.isnan(avgXCoord)): #se ho trovato un valore D_rack['loccodex'].fillna(avgXCoord, inplace=True) else:# se ho tutti valori nulli cerco nell'intorno e interpolo D_rack_null = D_layout[['rack','loccodex']].drop_duplicates() D_rack_null=D_rack_null.sort_values('rack') D_rack_null['loccodex'].fillna(method='backfill', inplace=True) fillValue=float(D_rack_null[D_rack_null.rack==rack].loccodex) # A questo punto sostituisco D_rack['loccodex'].fillna(fillValue, inplace=True) #a questo punto setto i valori delle corsie in base a nearest neighbor D_rack['loccodey'].interpolate(method ='linear', limit_direction ='forward', inplace=True) #aggiorno D_layout D_layout.loc[D_rack.index] = D_rack #elimino eventuali nulli rimasti D_layout=D_layout.sort_values(by=['rack','bay']) print(f"====={len(D_layout[D_layout.loccodex.isnull()])} x coordinates have been randomly interpolated") D_layout['loccodex'].fillna(method='ffill', inplace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli D_layout['loccodex'].fillna(method='bfill', inplace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli else: print("No rack information") ''' if draw: msgn.matrix(D_layout) plt.title("Fill LoccodeX and LoccodeY") plt.savefig("02FillXY.png") ''' ##################################################### ###### stimo coordinate delle corsie mancanti ####### ##################################################### # identifico le coordinate delle corsie (aislecodex) mappate D_givAisl=D_layout[D_layout['aislecodex'].notna()] D_givAisl=D_givAisl[['loccodex','aislecodex']] D_givAisl=D_givAisl.drop_duplicates() # identifico le coordinate delle corsie da mappare D_estAisl=D_layout[D_layout['loccodex'].notna()].loccodex allXcoords=list(set(D_estAisl)) allXcoords.sort() #accoppio le coordinate, metto nella stessa corsia le piu' lontane dist=0 for j in range(1,len(allXcoords)): dist=dist+np.abs(allXcoords[j]-allXcoords[j-1]) if len(allXcoords)>1: avg_dist=dist/(len(allXcoords)-1) else: avg_dist=0 #se la distanza e' maggiore alla media accoppio nella stessa corsia D_estAisl=pd.DataFrame(columns=D_givAisl.columns) j=0 while j<len(allXcoords): if j < len(allXcoords)-1: #per ogni corsia eccetto l'ultima dist=np.abs(allXcoords[j+1]-allXcoords[j]) if dist>=avg_dist: # se sono piu' lontane della media affacciano sulla stessa corsia (vale anche in caso di parita' cos' da considerare il caso in cui siano equidistanziate) aisle=min(allXcoords[j+1],allXcoords[j]) + dist/2 D_estAisl=D_estAisl.append(pd.DataFrame([[allXcoords[j],aisle]],columns=D_estAisl.columns)) D_estAisl=D_estAisl.append(pd.DataFrame([[allXcoords[j+1],aisle]],columns=D_estAisl.columns)) j=j+2 # ho accopiato due, salto di due else: #altrimenti fa corsia da sola D_estAisl=D_estAisl.append(pd.DataFrame([[allXcoords[j],allXcoords[j]]],columns=D_estAisl.columns)) j=j+1 # ho accoppiato di una, salto di una elif j == len(allXcoords)-1: # se sono all'ultima corsia D_estAisl=D_estAisl.append(pd.DataFrame([[allXcoords[j],allXcoords[j]]],columns=D_estAisl.columns)) j=j+1 # ho accoppiato di una, salto di una #plt.scatter(allXcoords, np.ones(len(allXcoords))) #plt.scatter(D_estAisl.loccodex, np.ones(len(allXcoords))) #plt.scatter(D_estAisl.aislecodex, np.ones(len(allXcoords)), c='r', marker='*', s=2) # data cleaning #replace None with nan D_layout.replace(to_replace=[None], value=np.nan, inplace=True) #check null aisle values index = D_layout['aislecodex'].index[D_layout['aislecodex'].apply(np.isnan)] for rows in index: loccodex=D_layout.loc[rows].loccodex #if the value is known if loccodex in D_givAisl.loccodex: D_layout['aislecodex'].loc[rows]=float(D_givAisl[D_givAisl['loccodex']==loccodex].aislecodex) else: D_layout['aislecodex'].loc[rows]=float(D_estAisl[D_estAisl['loccodex']==loccodex].aislecodex) ''' if draw: msgn.matrix(D_layout) plt.title("Fill aislecodeX") plt.savefig("03FillaislecodeX.png") ''' #check if coordinates exist otherwise replace with rack/bay/level #remove rack/bay/level if 'rack' in D_layout.columns: D_layout=D_layout.sort_values(by=['rack','bay']) else: D_layout=D_layout.sort_values(by=['aislecodex']) D_layout=D_layout[['idlocation', 'aislecodex', 'loccodex', 'loccodey']] #interpolo eventuali coordinate y rimaste scoperte (ultima spiaggia) print(f"====={len(D_layout[D_layout.loccodey.isnull()])} y coordinates have been randomly interpolated") D_layout['loccodey'].interpolate(method ='linear', limit_direction ='forward', inplace=True) D_layout['loccodey'].fillna(method='ffill', inplace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli D_layout['loccodey'].fillna(method='bfill', inplace=True) # riempie scorrendo in avanti se ci sono ulteriori nulli ''' if draw: msgn.matrix(D_layout) plt.title("Final dataset") plt.savefig("04Fill nan loccodey.png") plt.close('all') ''' #remove null #D_layout=D_layout.dropna() #arrotondo le x al metro e le y al decimetro per ridurre errori nella mappatura D_layout['aislecodex']=np.round(D_layout['aislecodex'],0) D_layout['loccodey']=np.round(D_layout['loccodey'],0) return D_layout # %% def defineGraphNodes(D_layout, D_IO): #la funzione definisce la corrispondenza fra idlocation e nodi #vengono definite corrispondenze per locazioni fisiche e IO # (alle locazioni fittizzie sono gia' state assegnate le coordinate dell'IO) #la funzione restituisce una tabella D_nodes con le coordinate dei nodi #un dizionario D_res con la corrispondenza fra idlocation (key) e idnode (values) #un dataframe D_IO con le coordinate di input/output # definisco tutti i nodi del grafo D_nodes=D_layout[['aislecodex','loccodey']].drop_duplicates().reset_index(drop=True) #plt.scatter(D_nodes.aislecodex, D_nodes.loccodey) #aggiungo corrispondenza fra D_layout e D_nodes D_layout['idNode']=None for index, node in D_nodes.iterrows(): idx_node=(D_layout.aislecodex==node.aislecodex) & (D_layout.loccodey==node.loccodey) D_layout.idNode.loc[idx_node]=index #aggiungo i nodi di IO #redefine index of D_IO to avoid overlaps with D_nodes D_IO.index = np.arange(max(D_nodes.index.values)+1, max(D_nodes.index.values) + 1 + len(D_IO)) for index, node in D_IO.iterrows(): idx_node=node.idlocation # prendo l'idlocation della fake temp = pd.DataFrame([[idx_node, node.loccodex, node.loccodex, node.loccodey, index]],columns=D_layout.columns) D_layout=D_layout.append(temp) D_res=D_layout[['idlocation','idNode']] D_res=D_res.drop_duplicates() #D_res.set_index('idlocation',drop=True) #D_res=D_res['idNode'].to_dict() D_res_dict = dict(zip(D_res.idlocation, D_res.idNode)) return D_nodes, D_res_dict, D_IO def addtraversaledges(D_nodes,list_aisles,edgeTable,columns_edgeTable, index_source, index_target): D_Aisle1=D_nodes[D_nodes.aislecodex==list_aisles[index_source]] #identifico le coordinate della prima corsia D_Aisle2=D_nodes[D_nodes.aislecodex==list_aisles[index_target]] #identifico le coordinate della prima corsia #se mi trovo a collegare due corsie "tradizionali" (entrambe con piu' di una ubica) if (len(D_Aisle1)>1) & (len(D_Aisle2)>1): #identifico le due ubiche sul fondo node1_front_index=D_Aisle1['loccodey'].idxmax() node2_front_index=D_Aisle2['loccodey'].idxmax() #aggiungo l'arco #nodeFrom=D_Aisle1.index[node1_front_index] #nodeTo=D_Aisle2.index[node2_front_index] length=np.round(np.abs(D_Aisle1.aislecodex.loc[node1_front_index]-D_Aisle2.aislecodex.loc[node2_front_index]),1) temp=pd.DataFrame([[node1_front_index,node2_front_index,length]],columns=columns_edgeTable) edgeTable=edgeTable.append(temp) #print([node1_front_index,node2_front_index]) #identifico le due ubiche sul fronte node1_front_index=D_Aisle1['loccodey'].idxmin() node2_front_index=D_Aisle2['loccodey'].idxmin() #aggiungo l'arco #nodeFrom=D_Aisle1.index[node1_front_index] #nodeTo=D_Aisle2.index[node2_front_index] length=np.round(np.abs(D_Aisle1.aislecodex.loc[node1_front_index]-D_Aisle2.aislecodex.loc[node2_front_index]),1) temp=pd.DataFrame([[node1_front_index,node2_front_index,length]],columns=columns_edgeTable) edgeTable=edgeTable.append(temp) else: #qui sto connettendo ubiche singole (ad esempio zone a terra) if len(D_Aisle1)>1: # se la prima e' una corsia tradizionale #identifico le due coordinate della prima corsia node1_back_index=D_Aisle1['loccodey'].idxmax() node1_front_index=D_Aisle1['loccodey'].idxmin() node2_front_index=D_Aisle2['loccodey'].idxmax() # restituisce l'indice dell'unica ubica #effettuo solo un collegamento alla piu' vicina (calcolo entrambe le distanze) length_back=np.round(np.abs(D_Aisle1.aislecodex.loc[node1_back_index]-D_Aisle2.aislecodex.loc[node2_front_index]) + np.abs(D_Aisle1.loccodey.loc[node1_back_index]-D_Aisle2.loccodey.loc[node2_front_index]),1) length_front=np.round(
np.abs(D_Aisle1.aislecodex.loc[node1_front_index]-D_Aisle2.aislecodex.loc[node2_front_index])
numpy.abs
#!/usr/bin/env python """ Until the 18 Apr 2017 there is no version of abcpmc that allows for np.random seeds within multiprocessing processes! The alternative astroABC that can handle this. One simple workaround is to set the np.seed(...) within the function that has to be called. """ from __future__ import division,print_function import argparse import time import datetime import os import copy import traceback """ In the local folder ... """ import surveysim.music2.mockobs as mockobs import surveysim.music2.loadsnap as loadsnap import surveysim.music2.radiomodel as radiomodel """ ===""" import multiprocessing as mupro import numpy as np import pandas as pd import clusterbuster.surveyclasses as cbclass import clusterbuster.iout.misc as iom import clusterbuster.surveyut as suut import clusterbuster.constants as myu import time import timeit import random from random import uniform from astropy.cosmology import FlatLambdaCDM #==== par = argparse.ArgumentParser() par.add_argument('--par', default='MUSIC2COOL_NVSS', help='parset file to run' ) """ "--par 'MUSIC_NVSS01.parset" """ args, unknown = par.parse_known_args() #========================================================================================================================================================= POISON_PILL = "STOP" """Originally main() was designed as independent functions because I wanted to prevent the buffer to overflow. Now I use these two functions as the one that controls the ABC (main) and the one that does the computation (shedule task)""" def main(parfile, workdir=None, ABC=None, verbose=False, survey=None, index=None, Clfile='clusterCSV/MUSIC2-AGN', processTasks=True): """ input: parameter file: ABC : None or a list of parameters (what a pity that a dictionary is not possible with the current abcpmc or ABCpmc module) output: some strings to track down the output directories once a survey is not None all the default survey values will be used; i.e. the parfile will be considered much For future: - delete survey findings (or add for different detection parameter) or make the Rmodel changeable If pase['default'] is False then a run will be made with one shell and one single cluster realisation per snapshot For abcpmc MUSIC-2 vanilla use MUSIC2-AGN for clusterCSV and MUSIC2_NVSS02_SSD.parset for parset MUSIC-2cooling use MUSIC2-AGN for clusterCSV and MUSIC2COOL_NVSS.parset for parset """ RModelID = os.getpid() # get process id seed = random.randrange(4294967295) np.random.seed(seed=seed) """also possible : np.random.seed(seed=None) ... this here is only to save the seed, which is not needed, because all the random stuff can be reconstructed from the cluster statistics processes from random are well seeded even without this, somehow numpy needs this kind of seed but only in abcpmc and not ABC import random random.randrange(sys.maxsize) """ # === Read parset; then extract fundamental parameters ... Parset OBLIGATORY has be saved as 'parsets/*.parset' if workdir is None: workdir = os.path.dirname(__file__) + '/' pase, Z = suut.interpret_parset(parfile, repository=workdir + '/parsets/') # TODO: workdir should be the same as pase['miscdir'] yet the issue is that it is unknown before miscdir is known. if survey is None: surveyN = parfile.replace('.parset', '') savefolder = pase['outf'] + surveyN logfolder = pase['outf'] + surveyN else: surveyN = survey.name savefolder = survey.outfolder logfolder = survey.logfolder # Constants # ==== Cosmological Parameter - MUSIC-2 Omega_M = 0.27 # Matter density parameter # === Create folder if needed iom.check_mkdir(savefolder) iom.check_mkdir(logfolder) smt = iom.SmartTiming(rate=pase['smarttime_sub'], logf=savefolder + '/smt'); smt(task='Prepare_Clusters') # === Create detection information dinfo = cbclass.DetInfo(beam=[float(pase['S_beam']), float(pase['S_beam']), 0], spixel=float(pase['S_pixel']), rms=float(pase['RMSnoise']) * 1e-6, limit=float(pase['RMSnoise']) * float(pase['Detthresh']) * 1e-6, nucen=float(pase['nu_obs']), center=(0, 0), survey='UVcoverage') if survey is None: """Create all galaxy clusters: All these steps are to decide which clusters to use. Better placement: in SurveyUtils""" """ Read the cluster lists from MUSIC-2 for all snapshots """ all_clusters = pd.read_csv('%s%s_allclusters.csv' % (pase['miscdata'], Clfile)) if verbose: all_clusters.info() zsnap_list = pd.Series(all_clusters['redshift'].unique()) snapidlist = pd.Series(all_clusters['snapID'].unique()) clusterIDs = list(all_clusters['clID'].unique()) NclusterIDs = [len(all_clusters[all_clusters['redshift'] == z]) for z in zsnap_list] misslist = np.loadtxt(pase['miscdata'] + pase['missFile']) """ e.g. cluster 10# was not (re)simulated, in neither of the MUSIC-2 simulations (also 7 has some issues?)""" GClList = [] if pase['snaplistz'] != 'None': snaplistz = [float(z) for z in iom.str2list(pase['snaplistz'])] snapidlist = [float(z) for z in iom.str2list(pase['snapidlist'].replace(' ', ''))] zsnap_list = (snaplistz[::-1])[0:11] # 0:17 List of available sn [0:11] snapidlist = (snapidlist[::-1])[0:11] # 0:17 [0:11] NclusterIDs = [len(all_clusters['clID'].unique().tolist())] * len(snaplistz) if verbose: print('NclusterIDs', NclusterIDs[0]) use_list = [True] * len(zsnap_list) # Also put some False, you don't really want to use the z=4.0 snapshots! Vsimu = (1.0 / (myu.H0 / 100.)) ** 3 # Gpc**3 comoving volume """ Iterate trough each shell of your z-onion and attribute clusters to them with z-range and percentage of covered sky, we have z=0.1 """ if not suut.TestPar(pase['default']): N_shells = 1 else: N_shells = float(pase['N_shells']) shells_z, delta_z = np.linspace(Z[0], Z[1], num=N_shells + 1, retstep=True) cosmo = FlatLambdaCDM(H0=myu.H0, Om0=Omega_M) DCMRs = cosmo.comoving_volume(shells_z).value / 1e9 count = 0 for (zlow, zhigh, VCMlow, VCMhigh) in zip(shells_z[0:-1], shells_z[1:], DCMRs[0:-1], DCMRs[1:]): """ Iterate through each shell of the observed volume and assign clusters """ boundaries_z = (zlow, zhigh) VCM = (VCMlow, VCMhigh) z_central = np.mean(boundaries_z) if not suut.TestPar(pase['default']): z_central = 0.051 choosen = suut.assign_snaps(zsnap_list, boundaries_z, VCM[1] - VCM[0], NclusterIDs, sigma_z=float(pase['sigma_z']), skycoverage=float(pase['surv_compl']), Vsimu=Vsimu, use_list=use_list, fake=(not suut.TestPar(pase['default'])), logmode=None) for (snap, kk) in choosen: l = all_clusters[(all_clusters["clID"] == clusterIDs[kk]) & (all_clusters["snapID"] == snapidlist[snap])] """ It would be good if you could directly access the element like in an ordered list, as this would dramatically speed up the process """ """ Skips missing snapshots --> they will also miss in the .csv""" if len(l) == 0: if verbose: print('__ Missing snapshot:', clusterIDs[kk], snapidlist[snap]) continue ids = int(l["clID"]) M200 = float(l["M200"]) # Filter for the cluster masses. Please mind that this filtering step is also redshift dependent if suut.TestPar(pase['empicut']) and np.log10(M200) < (13.6 + 2 * z_central): continue count += 1 # Decide on the projection of the cluster # it would be great if a random initializer between 0 and 1 could have been saved, if suut.TestPar(pase['rotation']): theta = np.arccos(uniform(0, 2) - 1) phi = uniform(0, 2 * np.pi) psi = uniform(0, 2 * np.pi) else: theta = 0 phi = 0 psi = 0 # Create mockObs and the galaxyCluster_simulation mockObs = cbclass.MockObs(count, theta=theta, phi=phi, psi=psi, snap=snapidlist[snap], z_snap=zsnap_list[snap], clid=ids, snapfolder=pase['xrayfolder'], xrayfolder=pase['xrayfolder'], headerc=pase['headerC']) GClList.append( cbclass.Galaxycluster_simulation("MUSIC2%05i-%06i-%06i" % (ids, snapidlist[snap], count), count, z=z_central, M200=M200, dinfo=dinfo, mockobs=mockObs)) # , **addargs # Also create a list of the chosen clusters for later loockup GClList = sorted(GClList, key=lambda x: (x.mockobs.clid, -x.mockobs.snap)) if verbose: print('Length of GClList:', len(GClList)) """ New approach: Create a list of modes for the radio emission (Rmodels) """ surmodel = None if ABC is None: """CAVEAT: The issue with the currently used ABC routines is that you have to give them arrays. Which is why the corresponding model associated has to be defined at this layer. Giving the procedure a function which would create this array would allow all of this to be defined in the top layer of ABC """ RModel = cbclass.RModel(RModelID, effList=[float(pase['eff'])], B0=float(pase['B0']), kappa=float(pase['kappa']), compress=float(pase['compress'])) if suut.TestPar(pase['redSnap']): RModel.effList = RModel.effList[0] elif len(ABC) == 1: """ Vary only efficiency """ (lgeff) = ABC RModel = cbclass.RModel(RModelID, effList=[10 ** lgeff], B0=1, kappa=0.5, compress=float(pase['compress'])) elif len(ABC) == 2: """ Vary efficiency and B0""" (lgeff, lgB0) = ABC RModel = cbclass.RModel(RModelID, effList=[10 ** lgeff], B0=10 ** lgB0, kappa=0.5, compress=float(pase['compress'])) print('#== Begin Processing task') elif len(ABC) == 3: """ Varies the standard model """ (lgeff, lgB0, kappa) = ABC RModel = cbclass.RModel(RModelID, effList=[10 ** lgeff], B0=10 ** lgB0, kappa=kappa, compress=float(pase['compress'])) elif len(ABC) == 4: """ Varies the standard model + detection probability """ (lgeff, lgB0, kappa, survey_filter_pca_b) = ABC RModel = cbclass.RModel(RModelID, effList=[10 ** lgeff], B0=10 ** lgB0, kappa=kappa, compress=float(pase['compress'])) surmodel = cbclass.SurModel(b=survey_filter_pca_b) elif len(ABC) == 6: (lgeff, lgB0, kappa, lgt0, lgt1, lgratio) = ABC RModel = cbclass.PreModel_Hoeft(RModelID, effList=[10 ** lgeff], B0=10 ** lgB0, kappa=kappa, compress=float(pase['compress']), t0=10**lgt0, t1=10**lgt1, ratio=10**lgratio) Rm = RModel elif len(ABC) == 7: (lgeff, lgB0, kappa, survey_filter_pca_b, lgratio, lgt0, lgt1) = ABC RModel = cbclass.PreModel_Hoeft(RModelID, effList=[10 ** lgeff], B0=10 ** lgB0, kappa=kappa, compress=float(pase['compress']), t0=10 ** lgt0, t1=10 ** lgt1, ratio=10 ** lgratio) Rm = RModel surmodel = cbclass.SurModel(b=survey_filter_pca_b) else: print('RunSurvey::main: model unknown') return """ Create survey """ outfolder = '%s_%05i/' % (logfolder, RModelID) survey = cbclass.Survey(GClList, survey='%s' % (parfile.replace('.parset', '')), emi_max=float(pase['RMSnoise']) * 1e-3 * 200, cnt_levels=[float(pase['RMSnoise']) * 2 ** i for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], saveFITS=(ABC is None), savewodetect=suut.TestPar(pase['savewodetect']), dinfo=dinfo, surshort='MUSIC2', Rmodel=RModel, outfolder=outfolder, logfolder=logfolder) survey.set_surmodel(surmodel) survey.set_seed_dropout() else: """ If you directly loaded a survey, just use its internal Rmodel """ RModel = survey.Rmodel if verbose: print('Outfolder:', survey.outfolder) """=== Create a Task Cube, modify it & save it The function of this Taskcube formerly was to keep track of all the computations that were already done in my multiproccecing version of ClusterBuster Now it is outdated and isn't maintained anymore. After a BUG I didn't want to fix I decommisened this functionality """ Taskcube = np.zeros((len(survey.GCls), len([RModel]))) # A cube of all possible entries , efficiency is always fully computed and thus not in the Taskcube if suut.TestPar(pase['reCube']): Taskcube = np.load(logfolder + '/TaskCube.npy') smt.MergeSMT_simple(iom.unpickleObject(logfolder + '/smt')) if int(pase['reCL']) + int(pase['reRM']) > 0: for (GCl_ii, RModelID), status in np.ndenumerate(Taskcube[:, :]): if verbose: print('GCl_ii, RModelID:', GCl_ii, RModelID) if GClList[GCl_ii].mockobs.clid > int(pase['reCL']) and int(pase['reRM']): break else: Taskcube[GCl_ii, RModelID] = 1 np.save(logfolder + '/TaskCube', Taskcube) # also to be pickled/saved: Levels Cluster&TaskID --> B0, kappa, (z) --> eff0 """""" if verbose: print('#== Begin Processing task') """ This is the most important task! """ while processTasks: processTasks, smt = DoRun((pase, survey), smt, verbose=verbose) print('RModelID %i of run %s finished' % (RModelID, surveyN)) return survey def main_ABC(params, parfile='MUSIC2_NVSS02_SSD.parset', Clfile='clusterCSV/MUSIC2', verbose=False): survey = main(parfile, ABC=params, Clfile=Clfile, verbose=verbose) """ MUSIC-2 """ survey.dinfo = survey.GCls[0].dinfo survey.scatterkwargs = {"alpha": 0.15, "fmt": "^", "markersize": 7} survey.histkwargs = {"alpha": 0.15} survey = suut.AddFilesToSurvey(survey, savefolder=survey.outfolder, verbose=False, clusterwise=False) return survey # from http://stackoverflow.com/questions/2553354/how-to-get-a-variable-name-as-a-string-in-python def LoadSnap_multiprocessing(pase, realisations, Rmodel, getstring=False, verbose=False): smt = iom.SmartTiming() smt(task='LoadSnaps') gcl = realisations[0] """ We load the radio cubes """ strSn = (pase['snapfolder'] + 'SHOCKS_%05i/cluster.%05i.snap.%03i.shocks') % (gcl.mockobs.clid, gcl.mockobs.clid, gcl.mockobs.snap) # if suut.TestPar(pase['useMiniCube']): # subset of snapshot, pickled # strSn = strSn.replace('cluster.', 'clusterSUBSET.') # if verbose: print('Loading snapshot:',strSn) # print('___ RunSurvey::LoadSnap_multiprocessing::',strSn,pase['useMiniCube'],suut.TestPar(pase['useMiniCube'])) # snap = iom.unpickleObject(strSn) # try: # snap = iom.unpickleObject(strSn) # except: # with open('/data/ErrorLog.txt',"a") as f: # for gcl in realisations: # f.write(strSn+'\n') # # else: # original snapshot # if verbose: print('Loading snapshot:',strSn) # snap = loadsnap.Loadsnap(strSn,headerc=pase['headerC']) # original snapshot if suut.TestPar(pase['useMiniCube']): # asks: original or modified snapshot? strSn = strSn.replace('cluster.', 'clusterSUBSET.') if verbose: print('Loading snapshot:',strSn) snap = loadsnap.Loadsnap(strSn,headerc=pase['headerC']) """psi and machfiles could become sharred (or global) arrays, but as they are quite small < 1MB, the impact on performance should be snmall""" PreSnap = radiomodel.PrepareRadioCube(snap, psiFile=pase['miscdata']+pase['PSItable'], machFile=pase['miscdata']+pase['DSAtable']) PreSnap = ( radiomodel.PiggyBagSnap(PreSnap[0]), PreSnap[1] ) if getstring: return PreSnap, strSn, smt else: return PreSnap, smt def varname(var): for k, v in list(locals().iteritems()): if v is var: a_as_str = k return a_as_str #[ k for k,v in locals().iteritems() if v is var][0] def pool_wait(queues, limit, affix='', tmax = 1e3): tsleep = 0 waitT = 0.3 while sum([q.qsize() for q in queues]) > limit and tsleep < tmax: #stage 3 neclected if tsleep == 0: message = "[%s] Gonna sleep, because of " % (affix) stringlist = ['+%s(%i)' % (varname(q),q.qsize()) for q in queues] string = ' '.join(stringlist) message += string message += " > %i" %(limit) print(message) time.sleep(waitT) tsleep += waitT print('pool_wait:', sum([q.qsize() for q in queues])) if tsleep > 0: print("[%s] Slept for %.1f seconds. We don't want to shedule our memory to dead, do we?" % (affix, tsleep) ) return def RadioAndMock_loaded(val, verbose=True): smt = iom.SmartTiming() smt(task='RadioAndMock_initialization') (snapMF, pase, realisations, survey) = val Rmodel = survey.Rmodel ##=== Stage II - DoMockObs if verbose: print('Start compiling MockObservations for further models of cluster #%5i snap #%3i with in total %i realisations.' % (realisations[0].mockobs.clid, realisations[0].mockobs.snap, len(realisations))) GClrealisations_return = [] smt(task='Shed_DoMockObs_misc') # This result of this computation is independent of rotation and because of this was put here for kk, realisation in enumerate(realisations): # update information on the total radio power (at the rest frame frequency) in the simulational volume """ This is wrong and has to be fixed in the future!!!! Currently, we make this code really SMELLY and hard to understand """ (radiosnap, subsmt, poisson_factor) = radiomodel.CreateRadioCube(snapMF, Rmodel, realisation.mockobs.z_snap, nuobs=pase['nu_obs'], logging=False)[0:3] smt.MergeSMT_simple(subsmt, silent=True) """ also possible: realisations[kk].Rvir = radiocube[0].head['Rvir']""" if realisations[kk].M200.value == 0: try: realisations[kk].M200.value = radiosnap.head['M200'] except: realisations[kk].Mvir.value = radiosnap.head['Mvir'] realisations[kk].updateInformation(massproxis=True) """ Here we add the radio emission due to pre-existing electrons """ if isinstance(Rmodel, cbclass.PreModel_Gelszinnis): randfactor = 10**np.random.normal(0, Rmodel.p_sigma, 1) realisation.PreNorm = randfactor*Rmodel.p0 radiosnap.radiPre += realisations.PreNorm * radiosnap.radiPre elif isinstance(Rmodel, cbclass.PreModel_Hoeft): realisation.poisson_factor = poisson_factor """ Here we compute the volume weighted radio emission """ radiosum = np.sum(radiosnap.radi) borders = 2*realisations[0].R200*radiosnap.head ['hubble']/radiosnap.head ['aexpan'] whereR200 = np.where(np.sqrt(np.power(radiosnap.pos[:,0], 2) + np.power(radiosnap.pos[:,1], 2) + np.power(radiosnap.pos[:,2], 2)) < borders/2) radiosum_R200 = np.sum(radiosnap.radi[whereR200]) # update information on the total radio power (at the rest frame frequency) in the simulational volume realisations[kk].P_rest.value = radiosum # This is for a frequency differing from 1.4 GHz and an efficiency of 1, in PostProcessing.py we apply a further correction realisations[kk].Prest_vol.value = radiosum_R200 # This is for a frequency differing from 1.4 GHz and an efficiency of 1, in PostProcessing.py we apply a further correction if not suut.TestPar(pase['cutradio']): radiosnapUse = copy.deepcopy(radiosnap) if hasattr(radiosnapUse, 'radiPre'): radiosnapUse.radi += radiosnapUse.radiPre #print('Run_MockObs:: Ratio of PREs to total emission', (np.sum(radiosnapUse.radiPre)) / (np.sum(radiosnapUse.radi) + np.sum(radiosnapUse.radiPre))) radiocube = (radiosnapUse, Rmodel, survey) # Rmodel is added to the tuple else: print('Beware, This is slow and should not be paralised!!!! This part is not implemented') radiocube = (radiosnap, Rmodel, survey) # Rmodel is added to the tuple smt(task='Shed_DoMockObs') (nouse, subsmt, GClrealisation_used, Rmodel) = mockobs.Run_MockObs(radiocube, [realisation], saveFITS=survey.saveFITS, savewodetect=survey.savewodetect, side_effects=True) GClrealisations_return += GClrealisation_used smt.MergeSMT_simple(subsmt, silent=True) return (GClrealisations_return, Rmodel), smt def RadioAndMock(val, verbose=True): smt = iom.SmartTiming() smt(task='RadioAndMock_initialization') (pase, realisations, survey) = val Rmodel = survey.Rmodel PreSnap, smt_add = LoadSnap_multiprocessing(pase, realisations, Rmodel) if len(PreSnap) > 0: snapMF = PreSnap (radiosnap, subsmt) = radiomodel.CreateRadioCube(snapMF, Rmodel, realisations[0].mockobs.z_snap, nuobs=pase['nu_obs'])[0:2] smt.MergeSMT_simple(subsmt, silent=True) """ This weird interresult comes from output.put( outp + (Rmodel,)) #Rmodel is added to the tuple (radiocube, subsmt, Rmodel) = stage1_out.get() stage1_list.append( ( radiocube, Rmodel, survey) ) """ radiocube = (radiosnap, Rmodel, survey) #Rmodel is added to the tuple ##=== Stage II - DoMockObs if verbose: print('Start compiling MockObservations for further models of cluster #%5i and snap #%3i with in total %i realisations.' % (realisations[0].mockobs.clid , realisations[0].mockobs.snap, len(realisations))) smt(task='Shed_DoMockObs') # This result of this computation is independent of rotation and because of this was put here for kk, real in enumerate(realisations): # update information on the total radio power (at the rest frame frequency) in the simulational volume """ This is wrong and has to be fixed in the future!!!! """ """ also possible: realisations[kk].Rvir = radiocube[0].head['Rvir']""" if realisations[kk].M200.value == 0: try: realisations[kk].M200.value = radiocube[0].head['M200'] except: realisations[kk].Mvir.value = radiocube[0].head['Mvir'] realisations[kk].updateInformation(massproxis=True) """ Here we compute the volume weighted radio emission """ radiosum = np.sum(radiocube[0].radi) borders = 2*realisations[0].R200*radiocube[0].head ['hubble']/radiocube[0].head ['aexpan'] whereR200 = np.where( np.sqrt(np.power(radiocube[0].pos[:,0],2) + np.power(radiocube[0].pos[:,1],2) + np.power(radiocube[0].pos[:,2],2) ) < borders/2 ) radiosum_R200 = np.sum(radiocube[0].radi[whereR200]) # update information on the total radio power (at the rest frame frequency) in the simulational volume for kk,real in enumerate(realisations): realisations[kk].P_rest.value = radiosum # This is for a frequency differing from 1.4 GHz and an efficiency of 1, in PostProcessing.py we apply a further correction realisations[kk].Prest_vol.value = radiosum_R200 # This is for a frequency differing from 1.4 GHz and an efficiency of 1, in PostProcessing.py we apply a further correction smt(task='Shed_DoMockObs_misc') locations = [survey.outfolder] if not suut.TestPar(pase['cutradio']): radiocubeUse = radiocube else: print('Beware, This is slow and should not be paralised!!!! This part is not implemented') radiocubeUse = None #radiomodel.PiggyBagSnap_cut(snap, radiocube[0], float(pase['cutradio'])),Rmodel,survey)] (nouse, subsmt, GClrealisations_used, Rmodel) = mockobs.Run_MockObs(radiocubeUse, realisations, saveFITS=survey.saveFITS, savewodetect=survey.savewodetect, writeClusters=True) #Mach=pase['Mach'], Dens=pase['Dens'], smt.MergeSMT_simple(subsmt, silent=True) return (GClrealisations_used, Rmodel), smt def RadioCuts(val, compradio=False): smt = iom.SmartTiming() smt(task='RadioAndMock_initialization') (pase, realisations, survey) = val Rmodel = survey.Rmodel snapMF, strSn, smt_add = LoadSnap_multiprocessing(pase,realisations,Rmodel, getstring=True) if compradio: (snap,subsmt) = radiomodel.CreateRadioCube(snapMF, Rmodel, realisations[0].mockobs.z_snap, nuobs=pase['nu_obs'])[0:2] smt.MergeSMT_simple(subsmt, silent=True) smt(task='UpdateHeader') realisations[0].z.value = realisations[0].mockobs.z_snap realisations[0].Mvir.value = snap.head['Mvir']*snap.head['hubble'] realisations[0].updateInformation() snap.head['M200'] = realisations[0].M200.value """ Here we compute the volume weighted radio emission """ radiosum = np.sum(snap.radi) borders = 2*realisations[0].R200*snap.head ['hubble']/snap.head ['aexpan'] whereR200 = np.where( np.sqrt(np.power(snap.pos[:,0],2) + np.power(snap.pos[:,1],2) + np.power(snap.pos[:,2],2) ) < borders/2 ) radiosum_R200 = np.sum(snap.radi[whereR200]) # update information on the total radio power (at the rest frame frequency) in the simulational volume for kk,real in enumerate(realisations): realisations[kk].P_rest.value = radiosum # This is for a frequency differing from 1.4 GHz and an efficiency of 1, in PostProcessing.py we apply a further correction realisations[kk].Prest_vol.value = radiosum_R200 # This is for a frequency differing from 1.4 GHz and an efficiency of 1, in PostProcessing.py we apply a further correction else: (snap, MF) = snapMF smt(task='Shed_DoMockObs_misc') if suut.TestPar(pase['redSnap']): # This is all part of reducing the data load. A shrinked version of the snapshot with less particles is saved in the custom format that is a fork of the gadget format redsnap = radiomodel.PiggyBagSnap_cut(snap, snap, float(pase['cutradio']), cutmask = MF ) strSn = strSn.replace('cluster.', 'clusterSUBSET.') strSn = strSn.replace(pase['snapfolder'], pase['outf']) print(strSn) redsnap.savedata(strSn) # original snapshot if compradio: print('np.sum(radiocube[0].radi)', np.sum(snap.radi), '-->', np.sum(redsnap.radi), 'i.e.', radiosum, radiosum_R200, 'pickled to', strSn) return (realisations, Rmodel), smt def mupro_Output_NicePickleClusters( in_queue, output): # Just pickles the relic for the highest efficiency, mechanism: It asks for the image for well in in_queue: (Clrealisations, Rmodel) = well outputMod = output #+ '_%05i/' % (Rmodel.id) iom.check_mkdir(outputMod + '/pickled') for GCl in Clrealisations: filename = 'MonsterPickle-Snap%02i' % (GCl.mockobs.snap) iom.pickleObject( (GCl, Rmodel), outputMod + '/pickled/', filename, append = True) return def DoRun(inputs, smt, verbose=False, countmax=500, countmax_relics=1500): """ Please mind that this procedure determines early if the number of detected relics becomes to large!""" (pase, survey) = inputs count = 0 count_relics = 0 realisations = [] realisations_list = [] # rotated realisations of one and the same cluster survey.GCls = sorted(survey.GCls, key= iom.Object_natural_keys) # This checks if the snapshot has to be loaded ... I would use a pool of loaded, snapshots ... but this is cumbersome # Each snapshot is loaded only once ... If the number of models&rotations to be tested is high enough the produced overhead is low # This requires that the clusters are ordered due to cluster number and snapshot for gcl in survey.GCls: if (len(realisations) == 0 or gcl.mockobs.clid != realisations[0].mockobs.clid or gcl.mockobs.snap != realisations[0].mockobs.snap): if len(realisations) > 0: realisations_list.append(realisations) realisations = [gcl] else: realisations.append(gcl) realisations_list.append(realisations) for realisations in realisations_list: gcl = realisations[0] if verbose: print('Recognized ID %5i, snap %3i, #%i in cluster file' % (gcl.mockobs.clid, gcl.mockobs.snap, gcl.mockobs.id) ) smt(task='LoadSnaps') """ We load the radio cubes """ strSn = (pase['snapfolder'] + 'SHOCKS_%05i/cluster.%05i.snap.%03i.shocks') % (gcl.mockobs.clid, gcl.mockobs.clid, gcl.mockobs.snap) """ SMELLY: This causes some issues, as there are two different 'load' versions for one and the same task """ if suut.TestPar(pase['useMiniCube']): # original snapshot strSn = strSn.replace('cluster.', 'clusterSUBSET.') if verbose: print('Loading snapshot:', strSn) snap = loadsnap.Loadsnap(strSn, headerc=pase['headerC']) smt(task='PrepareRadioCubes') PreSnap = radiomodel.PrepareRadioCube(snap, psiFile=pase['miscdata']+pase['PSItable'], machFile=pase['miscdata']+pase['DSAtable']) if 1==2: snap_phd = radiomodel.PrepareRadioCube(snap, psiFile=pase['miscdata'] + pase['PSItable'], machFile=pase['miscdata'] + pase['DSAtable'], machmin=0.0)[0] print(type(snap_phd.mach)) Mstat = np.asarray(snap_phd.mach)/1.045+1e-5 Astat = np.asarray(snap_phd.hsml)/np.asarray(loadsnap.comH_to_phys(snap_phd.head))**2 Rhostat = np.asarray(snap.rdow) Tstat = np.asarray(snap.udow) Psistat = np.asarray(snap.DSAPsi) bins =
np.linspace(-1, 3, num=1300, endpoint=True)
numpy.linspace
# python 3.7 """Contains the generator class of StyleGAN2. This class is derived from the `BaseGenerator` class defined in `base_generator.py`. """ import numpy as np import torch from . import model_settings from .base_generator import BaseGenerator from .stylegan2_generator_network import StyleGAN2GeneratorNet __all__ = ['StyleGAN2Generator'] class StyleGAN2Generator(BaseGenerator): """Defines the generator class of StyleGAN2. Same as StyleGAN, StyleGAN2 also has Z space, W space, and W+ (WP) space. """ def __init__(self, model_name, logger=None): super().__init__(model_name, logger) assert self.gan_type == 'stylegan2' def build(self): self.check_attr('w_space_dim') self.check_attr('g_architecture_type') self.check_attr('fused_modulate') self.truncation_psi = model_settings.STYLEGAN2_TRUNCATION_PSI self.truncation_layers = model_settings.STYLEGAN2_TRUNCATION_LAYERS self.randomize_noise = model_settings.STYLEGAN2_RANDOMIZE_NOISE self.net = StyleGAN2GeneratorNet( resolution=self.resolution, z_space_dim=self.z_space_dim, w_space_dim=self.w_space_dim, image_channels=self.image_channels, architecture_type=self.g_architecture_type, fused_modulate=self.fused_modulate, truncation_psi=self.truncation_psi, truncation_layers=self.truncation_layers, randomize_noise=self.randomize_noise) self.num_layers = self.net.num_layers self.model_specific_vars = ['truncation.truncation'] def convert_tf_weights(self, test_num=10): # pylint: disable=import-outside-toplevel import sys import pickle import warnings warnings.filterwarnings('ignore', category=FutureWarning) import tensorflow as tf tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR) # pylint: enable=import-outside-toplevel sess = tf.compat.v1.InteractiveSession() self.logger.info(f'Loading tf weights from `{self.tf_weight_path}`.') self.check_attr('tf_code_path') sys.path.insert(0, self.tf_code_path) with open(self.tf_weight_path, 'rb') as f: _, _, tf_net = pickle.load(f) # G, D, Gs sys.path.pop(0) self.logger.info(f'Successfully loaded!') self.logger.info(f'Converting tf weights to pytorch version.') tf_vars = dict(tf_net.__getstate__()['variables']) tf_vars.update( dict(tf_net.components.mapping.__getstate__()['variables'])) tf_vars.update( dict(tf_net.components.synthesis.__getstate__()['variables'])) state_dict = self.net.state_dict() for pth_var_name, tf_var_name in self.net.pth_to_tf_var_mapping.items(): assert tf_var_name in tf_vars assert pth_var_name in state_dict self.logger.debug(f' Converting `{tf_var_name}` to `{pth_var_name}`.') var = torch.from_numpy(np.array(tf_vars[tf_var_name])) if 'weight' in pth_var_name: if 'fc' in pth_var_name: var = var.permute(1, 0) elif 'conv' in pth_var_name: var = var.permute(3, 2, 0, 1) state_dict[pth_var_name] = var self.logger.info(f'Successfully converted!') self.logger.info(f'Saving pytorch weights to `{self.weight_path}`.') for var_name in self.model_specific_vars: del state_dict[var_name] torch.save(state_dict, self.weight_path) self.logger.info(f'Successfully saved!') self.load() # Start testing if needed. if test_num <= 0 or not tf.test.is_built_with_cuda(): self.logger.warning(f'Skip testing the weights converted from tf model!') sess.close() return self.logger.info(f'Testing conversion results.') self.net.eval().to(self.run_device) total_distance = 0.0 for i in range(test_num): latent_code = self.easy_sample(1) tf_output = tf_net.run(latent_code, # latents_in None, # labels_in truncation_psi=self.truncation_psi, truncation_cutoff=self.truncation_layers, randomize_noise=self.randomize_noise) pth_output = self.synthesize(latent_code)['image'] distance = np.average(np.abs(tf_output - pth_output)) self.logger.debug(f' Test {i:03d}: distance {distance:.6e}.') total_distance += distance self.logger.info(f'Average distance is {total_distance / test_num:.6e}.') sess.close() def sample(self, num, latent_space_type='z', **kwargs): """Samples latent codes randomly. Args: num: Number of latent codes to sample. Should be positive. latent_space_type: Type of latent space from which to sample latent code. Only [`z`, `w`, `wp`] are supported. Case insensitive. (default: `z`) Returns: A `numpy.ndarray` as sampled latend codes. Raises: ValueError: If the given `latent_space_type` is not supported. """ latent_space_type = latent_space_type.lower() if latent_space_type == 'z': latent_codes = np.random.randn(num, self.z_space_dim) elif latent_space_type in ['w', 'wp']: z = self.easy_sample(num, latent_space_type='z') latent_codes = [] for inputs in self.get_batch_inputs(z, self.ram_size): outputs = self.easy_synthesize(latent_codes=inputs, latent_space_type='z', generate_style=False, generate_image=False) latent_codes.append(outputs[latent_space_type]) latent_codes = np.concatenate(latent_codes, axis=0) if latent_space_type == 'w': assert latent_codes.shape == (num, self.w_space_dim) elif latent_space_type == 'wp': assert latent_codes.shape == (num, self.num_layers, self.w_space_dim) else: raise ValueError(f'Latent space type `{latent_space_type}` is invalid!') return latent_codes.astype(np.float32) def preprocess(self, latent_codes, latent_space_type='z', **kwargs): """Preprocesses the input latent code if needed. Args: latent_codes: The input latent codes for preprocessing. latent_space_type: Type of latent space to which the latent codes belong. Only [`z`, `w`, `wp`] are supported. Case insensitive. (default: `z`) Returns: The preprocessed latent codes which can be used as final input for the generator. Raises: ValueError: If the given `latent_space_type` is not supported. """ if not isinstance(latent_codes, np.ndarray): raise ValueError(f'Latent codes should be with type `numpy.ndarray`!') latent_space_type = latent_space_type.lower() if latent_space_type == 'z': latent_codes = latent_codes.reshape(-1, self.z_space_dim) norm = np.linalg.norm(latent_codes, axis=1, keepdims=True) latent_codes = latent_codes / norm *
np.sqrt(self.z_space_dim)
numpy.sqrt
# MIT License # # Copyright (c) 2020 University of Oxford # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Test cases for the python API for tsdate. """ import unittest import collections import json import warnings import math import numpy as np import scipy import msprime import tsinfer import tskit import tsdate from tsdate.base import NodeGridValues from tsdate.prior import (SpansBySamples, PriorParams, ConditionalCoalescentTimes, fill_priors, gamma_approx) from tsdate.date import (Likelihoods, LogLikelihoods, LogLikelihoodsStreaming, InOutAlgorithms, posterior_mean_var, constrain_ages_topo, get_dates, date) from tsdate.util import nodes_time import utility_functions class TestBasicFunctions(unittest.TestCase): """ Test for some of the basic functions used in tsdate """ def test_alpha_prob(self): self.assertEqual(ConditionalCoalescentTimes.m_prob(2, 2, 3), 1.) self.assertEqual(ConditionalCoalescentTimes.m_prob(2, 2, 4), 0.25) def test_tau_expect(self): self.assertEqual(ConditionalCoalescentTimes.tau_expect(10, 10), 1.8) self.assertEqual(ConditionalCoalescentTimes.tau_expect(10, 100), 0.09) self.assertEqual(ConditionalCoalescentTimes.tau_expect(100, 100), 1.98) self.assertEqual(ConditionalCoalescentTimes.tau_expect(5, 10), 0.4) def test_tau_squared_conditional(self): self.assertAlmostEqual( ConditionalCoalescentTimes.tau_squared_conditional(1, 10), 4.3981418) self.assertAlmostEqual( ConditionalCoalescentTimes.tau_squared_conditional(100, 100), -4.87890977e-18) def test_tau_var(self): self.assertEqual( ConditionalCoalescentTimes.tau_var(2, 2), 1) self.assertAlmostEqual( ConditionalCoalescentTimes.tau_var(10, 20), 0.0922995960) self.assertAlmostEqual( ConditionalCoalescentTimes.tau_var(50, 50), 1.15946186) def test_gamma_approx(self): self.assertEqual(gamma_approx(2, 1), (4., 2.)) self.assertEqual(gamma_approx(0.5, 0.1), (2.5, 5.0)) class TestNodeTipWeights(unittest.TestCase): def verify_weights(self, ts): span_data = SpansBySamples(ts) # Check all non-sample nodes in a tree are represented nonsample_nodes = collections.defaultdict(float) for tree in ts.trees(): for n in tree.nodes(): if not tree.is_sample(n): # do not count a span of a node where there are no sample descendants nonsample_nodes[n] += (tree.span if tree.num_samples(n) > 0 else 0) self.assertEqual(set(span_data.nodes_to_date), set(nonsample_nodes.keys())) for id, span in nonsample_nodes.items(): self.assertAlmostEqual(span, span_data.node_spans[id]) for focal_node in span_data.nodes_to_date: wt = 0 for _, weights in span_data.get_weights(focal_node).items(): self.assertTrue(0 <= focal_node < ts.num_nodes) wt += np.sum(weights['weight']) self.assertLessEqual(max(weights['descendant_tips']), ts.num_samples) if not np.isnan(wt): # Dangling nodes will have wt=nan self.assertAlmostEqual(wt, 1.0) return span_data def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() span_data = self.verify_weights(ts) # with a single tree there should only be one weight for node in span_data.nodes_to_date: self.assertTrue(len(span_data.get_weights(node)), 1) self.assertTrue(2 in span_data.get_weights(2)[ts.num_samples]['descendant_tips']) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() n = ts.num_samples span_data = self.verify_weights(ts) # with a single tree there should only be one weight for node in span_data.nodes_to_date: self.assertTrue(len(span_data.get_weights(node)), 1) for nd, expd_tips in [ (4, 3), # Node 4 (root) expected to have 3 descendant tips (3, 2)]: # Node 3 (1st internal node) expected to have 2 descendant tips self.assertTrue( np.isin(span_data.get_weights(nd)[n]['descendant_tips'], expd_tips)) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() n = ts.num_samples span_data = self.verify_weights(ts) # with a single tree there should only be one weight for node in span_data.nodes_to_date: self.assertTrue(len(span_data.get_weights(node)), 1) for nd, expd_tips in [ (6, 4), # Node 6 (root) expected to have 4 descendant tips (5, 3), # Node 5 (1st internal node) expected to have 3 descendant tips (4, 2)]: # Node 4 (2nd internal node) expected to have 3 descendant tips self.assertTrue( np.isin(span_data.get_weights(nd)[n]['descendant_tips'], expd_tips)) def test_two_trees(self): ts = utility_functions.two_tree_ts() n = ts.num_samples span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(5, n, 3), 1.0) # Root on R tree self.assertEqual(span_data.lookup_weight(4, n, 3), 0.2) # Root on L tree ... # ... but internal node on R tree self.assertEqual(span_data.lookup_weight(4, n, 2), 0.8) self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) # Internal nd on L tree def test_missing_tree(self): ts = utility_functions.two_tree_ts().keep_intervals( [(0, 0.2)], simplify=False) n = ts.num_samples # Here we have no reference in the trees to node 5 with self.assertLogs(level="WARNING") as log: SpansBySamples(ts) self.assertGreater(len(log.output), 0) self.assertIn("5", log.output[-1]) # Should mention the node number self.assertIn("simplify", log.output[-1]) # Should advise to simplify ts = ts.simplify() span_data = self.verify_weights(ts) # Root on (deleted) R tree is missing self.assertTrue(5 not in span_data.nodes_to_date) self.assertEqual(span_data.lookup_weight(4, n, 3), 1.0) # Root on L tree ... # ... but internal on (deleted) R tree self.assertFalse(np.isin(span_data.get_weights(4)[n]['descendant_tips'], 2)) self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) # Internal nd on L tree def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() n = ts.num_samples span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(7, n, 3), 1.0) self.assertEqual(span_data.lookup_weight(6, n, 1), 0.5) self.assertEqual(span_data.lookup_weight(6, n, 3), 0.5) self.assertEqual(span_data.lookup_weight(5, n, 2), 0.5) self.assertEqual(span_data.lookup_weight(5, n, 3), 0.5) self.assertEqual(span_data.lookup_weight(4, n, 2), 0.75) self.assertEqual(span_data.lookup_weight(4, n, 3), 0.25) self.assertEqual(span_data.lookup_weight(3, n, 2), 1.0) @unittest.skip("Unary node is internal then the oldest node") def test_tree_with_unary_nodes_oldest(self): ts = utility_functions.two_tree_ts_with_unary_n3() n = ts.num_samples span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(9, n, 4), 0.5) self.assertEqual(span_data.lookup_weight(8, n, 4), 1.0) self.assertEqual(span_data.lookup_weight(7, n, 1), 0.5) self.assertEqual(span_data.lookup_weight(7, n, 4), 0.5) self.assertEqual(span_data.lookup_weight(6, n, 2), 0.5) self.assertEqual(span_data.lookup_weight(6, n, 4), 0.5) self.assertEqual(span_data.lookup_weight(5, n, 2), 0.5) self.assertEqual(span_data.lookup_weight(4, n, 2), 1.0) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() span_data = self.verify_weights(ts) self.assertEqual(span_data.lookup_weight(3, ts.num_samples, 3), 1.0) def test_larger_find_node_tip_weights(self): ts = msprime.simulate(10, recombination_rate=5, mutation_rate=5, random_seed=123) self.assertGreater(ts.num_trees, 1) self.verify_weights(ts) def test_dangling_nodes_warn(self): ts = utility_functions.single_tree_ts_n2_dangling() with self.assertLogs(level="WARNING") as log: self.verify_weights(ts) self.assertGreater(len(log.output), 0) self.assertIn("dangling", log.output[0]) def test_single_tree_n2_delete_intervals(self): ts = utility_functions.single_tree_ts_n2() deleted_interval_ts = ts.delete_intervals([[0.5, 0.6]]) n = deleted_interval_ts.num_samples span_data = self.verify_weights(ts) span_data_deleted = self.verify_weights(deleted_interval_ts) self.assertEqual(span_data.lookup_weight(2, n, 2), span_data_deleted.lookup_weight(2, n, 2)) def test_single_tree_n4_delete_intervals(self): ts = utility_functions.single_tree_ts_n4() deleted_interval_ts = ts.delete_intervals([[0.5, 0.6]]) n = deleted_interval_ts.num_samples span_data = self.verify_weights(ts) span_data_deleted = self.verify_weights(deleted_interval_ts) self.assertEqual(span_data.lookup_weight(4, n, 2), span_data_deleted.lookup_weight(4, n, 2)) self.assertEqual(span_data.lookup_weight(5, n, 3), span_data_deleted.lookup_weight(5, n, 3)) self.assertEqual(span_data.lookup_weight(6, n, 4), span_data_deleted.lookup_weight(6, n, 4)) def test_two_tree_ts_delete_intervals(self): ts = utility_functions.two_tree_ts() deleted_interval_ts = ts.delete_intervals([[0.5, 0.6]]) n = deleted_interval_ts.num_samples span_data = self.verify_weights(ts) span_data_deleted = self.verify_weights(deleted_interval_ts) self.assertEqual(span_data.lookup_weight(3, n, 2), span_data_deleted.lookup_weight(3, n, 2)) self.assertAlmostEqual( span_data_deleted.lookup_weight(4, n, 2)[0], 0.7 / 0.9) self.assertAlmostEqual( span_data_deleted.lookup_weight(4, n, 3)[0], 0.2 / 0.9) self.assertEqual(span_data.lookup_weight(5, n, 3), span_data_deleted.lookup_weight(3, n, 2)) @unittest.skip("YAN to fix") def test_truncated_nodes(self): Ne = 1e2 ts = msprime.simulate( 10, Ne=Ne, length=400, recombination_rate=1e-4, random_seed=12) truncated_ts = utility_functions.truncate_ts_samples( ts, average_span=200, random_seed=123) span_data = self.verify_weights(truncated_ts) raise NotImplementedError(str(span_data)) class TestMakePrior(unittest.TestCase): # We only test make_prior() on single trees def verify_priors(self, ts, prior_distr): # Check prior contains all possible tips priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add(ts.num_samples) priors_df = priors[ts.num_samples] self.assertEqual(priors_df.shape[0], ts.num_samples + 1) return(priors_df) def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() priors = self.verify_priors(ts, 'gamma') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=1., beta=1., mean=1., var=1.))) priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=-0.34657359, beta=0.69314718, mean=1., var=1.))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() prior2mv = {'mean': 1/3, 'var': 1/9} prior3mv = {'mean': 1+1/3, 'var': 1+1/9} priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=-1.44518588, beta=0.69314718, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=0.04492816, beta=0.48550782, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=1., beta=3., **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv))) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() self.skipTest("Fill in values instead of np.nan") prior2mv = {'mean': np.nan, 'var': np.nan} prior3mv = {'mean': np.nan, 'var': np.nan} prior4mv = {'mean': np.nan, 'var': np.nan} priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) self.assertTrue(np.allclose( priors[4], PriorParams(alpha=np.nan, beta=np.nan, **prior4mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) self.assertTrue(np.allclose( priors[4], PriorParams(alpha=np.nan, beta=np.nan, **prior4mv))) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() self.skipTest("Fill in values instead of np.nan") prior3mv = {'mean': np.nan, 'var': np.nan} priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) priors = self.verify_prior(ts, 'gamma') self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() self.skipTest("Fill in values instead of np.nan") prior2mv = {'mean': np.nan, 'var': np.nan} prior3mv = {'mean': np.nan, 'var': np.nan} priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) def test_single_tree_ts_with_unary(self): ts = utility_functions.single_tree_ts_with_unary() self.skipTest("Fill in values instead of np.nan") prior2mv = {'mean': np.nan, 'var': np.nan} prior3mv = {'mean': np.nan, 'var': np.nan} priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=1., beta=3., **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv))) def test_two_tree_mutation_ts(self): ts = utility_functions.two_tree_mutation_ts() self.skipTest("Fill in values instead of np.nan") prior2mv = {'mean': np.nan, 'var': np.nan} prior3mv = {'mean': np.nan, 'var': np.nan} priors = self.verify_priors(ts, 'lognorm') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=np.nan, beta=np.nan, **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=np.nan, beta=np.nan, **prior3mv))) priors = self.verify_priors(ts, 'gamma') self.assertTrue(np.allclose( priors[2], PriorParams(alpha=1., beta=3., **prior2mv))) self.assertTrue(np.allclose( priors[3], PriorParams(alpha=1.6, beta=1.2, **prior3mv))) class TestMixturePrior(unittest.TestCase): alpha_beta = [PriorParams.field_index('alpha'), PriorParams.field_index('beta')] def get_mixture_prior_params(self, ts, prior_distr): span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add(ts.num_samples, approximate=False) mixture_priors = priors.get_mixture_prior_params(span_data) return(mixture_priors) def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( np.allclose(mixture_priors[2, self.alpha_beta], [1., 1.])) mixture_priors = self.get_mixture_prior_params(ts, 'lognorm') self.assertTrue( np.allclose(mixture_priors[2, self.alpha_beta], [-0.34657359, 0.69314718])) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.])) self.assertTrue( np.allclose(mixture_priors[4, self.alpha_beta], [1.6, 1.2])) mixture_priors = self.get_mixture_prior_params(ts, 'lognorm') self.assertTrue( np.allclose(mixture_priors[3, self.alpha_beta], [-1.44518588, 0.69314718])) self.assertTrue( np.allclose(mixture_priors[4, self.alpha_beta], [0.04492816, 0.48550782])) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( np.allclose(mixture_priors[4, self.alpha_beta], [0.81818182, 3.27272727])) self.assertTrue( np.allclose(mixture_priors[5, self.alpha_beta], [1.8, 3.6])) self.assertTrue( np.allclose(mixture_priors[6, self.alpha_beta], [1.97560976, 1.31707317])) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( np.allclose(mixture_priors[3, self.alpha_beta], [1.6, 1.2])) def test_two_trees(self): ts = utility_functions.two_tree_ts() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.])) # Node 4 should be a mixture between 2 and 3 tips self.assertTrue( np.allclose(mixture_priors[4, self.alpha_beta], [0.60377, 1.13207])) self.assertTrue( np.allclose(mixture_priors[5, self.alpha_beta], [1.6, 1.2])) def test_single_tree_ts_with_unary(self): ts = utility_functions.single_tree_ts_with_unary() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') # Root is a 3 tip prior self.assertTrue( np.allclose(mixture_priors[7, self.alpha_beta], [1.6, 1.2])) # Node 6 should be a 50:50 mixture between 1 and 3 tips self.assertTrue( np.allclose(mixture_priors[6, self.alpha_beta], [0.44444, 0.66666])) # Node 5 should be a 50:50 mixture of 2 and 3 tips self.assertTrue( np.allclose(mixture_priors[5, self.alpha_beta], [0.80645, 0.96774])) # Node 4 should be a 75:25 mixture of 2 and 3 tips self.assertTrue( np.allclose(mixture_priors[4, self.alpha_beta], [0.62025, 1.06329])) # Node 3 is a 2 tip prior self.assertTrue( np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.])) def test_two_tree_mutation_ts(self): ts = utility_functions.two_tree_mutation_ts() mixture_priors = self.get_mixture_prior_params(ts, 'gamma') self.assertTrue( np.allclose(mixture_priors[3, self.alpha_beta], [1., 3.])) # Node 4 should be a mixture between 2 and 3 tips self.assertTrue( np.allclose(mixture_priors[4, self.alpha_beta], [0.60377, 1.13207])) self.assertTrue( np.allclose(mixture_priors[5, self.alpha_beta], [1.6, 1.2])) def check_intervals(self, ts, delete_interval_ts, keep_interval_ts): tests = list() for distr in ['gamma', 'lognorm']: mix_priors = self.get_mixture_prior_params(ts, distr) for interval_ts in [delete_interval_ts, keep_interval_ts]: mix_priors_ints = self.get_mixture_prior_params(interval_ts, distr) for internal_node in range(ts.num_samples, ts.num_nodes): tests.append(np.allclose( mix_priors[internal_node, self.alpha_beta], mix_priors_ints[internal_node, self.alpha_beta])) return tests def test_one_tree_n2_intervals(self): ts = utility_functions.single_tree_ts_n2() delete_interval_ts = ts.delete_intervals([[0.5, 0.6]]) keep_interval_ts = ts.keep_intervals([[0, 0.1]]) tests = self.check_intervals(ts, delete_interval_ts, keep_interval_ts) self.assertTrue(np.all(tests)) def test_two_tree_mutation_ts_intervals(self): ts = utility_functions.two_tree_mutation_ts() ts_extra_length = utility_functions.two_tree_ts_extra_length() delete_interval_ts = ts_extra_length.delete_intervals([[0.75, 1.25]]) keep_interval_ts = ts_extra_length.keep_intervals([[0, 1.]]) tests = self.check_intervals(ts, delete_interval_ts, keep_interval_ts) self.assertTrue(np.all(tests)) class TestPriorVals(unittest.TestCase): def verify_prior_vals(self, ts, prior_distr): span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add(ts.num_samples, approximate=False) grid = np.linspace(0, 3, 3) mixture_priors = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr) return prior_vals def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(np.allclose(prior_vals[2], [0, 1, 0.22313016])) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.011109])) self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.3973851])) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.00467134])) self.assertTrue(np.allclose(prior_vals[5], [0, 1, 0.02167806])) self.assertTrue(np.allclose(prior_vals[6], [0, 1, 0.52637529])) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.3973851])) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.011109])) self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.080002])) self.assertTrue(np.allclose(prior_vals[5], [0, 1, 0.3973851])) def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() prior_vals = self.verify_prior_vals(ts, 'gamma') self.assertTrue(np.allclose(prior_vals[7], [0, 1, 0.397385])) self.assertTrue(np.allclose(prior_vals[6], [0, 1, 0.113122])) self.assertTrue(np.allclose(prior_vals[5], [0, 1, 0.164433])) self.assertTrue(np.allclose(prior_vals[4], [0, 1, 0.093389])) self.assertTrue(np.allclose(prior_vals[3], [0, 1, 0.011109])) def test_one_tree_n2_intervals(self): ts = utility_functions.single_tree_ts_n2() delete_interval_ts = ts.delete_intervals([[0.1, 0.3]]) keep_interval_ts = ts.keep_intervals([[0.4, 0.6]]) prior_vals = self.verify_prior_vals(ts, 'gamma') prior_vals_keep = self.verify_prior_vals(keep_interval_ts, 'gamma') prior_vals_delete = self.verify_prior_vals(delete_interval_ts, 'gamma') self.assertTrue(np.allclose(prior_vals[2], prior_vals_keep[2])) self.assertTrue(np.allclose(prior_vals[2], prior_vals_delete[2])) class TestLikelihoodClass(unittest.TestCase): def poisson(self, param, x, normalize=True): ll = np.exp(-param) * param ** x / scipy.special.factorial(x) if normalize: return ll / np.max(ll) else: return ll def log_poisson(self, param, x, normalize=True): with np.errstate(divide='ignore'): ll = np.log(np.exp(-param) * param ** x / scipy.special.factorial(x)) if normalize: return ll - np.max(ll) else: return ll def test_get_mut_edges(self): ts = utility_functions.two_tree_mutation_ts() mutations_per_edge = Likelihoods.get_mut_edges(ts) for e in ts.edges(): if e.child == 3 and e.parent == 4: self.assertEqual(mutations_per_edge[e.id], 2) elif e.child == 0 and e.parent == 5: self.assertEqual(mutations_per_edge[e.id], 1) else: self.assertEqual(mutations_per_edge[e.id], 0) def test_create_class(self): ts = utility_functions.two_tree_mutation_ts() grid = np.array([0, 1, 2]) lik = Likelihoods(ts, grid) loglik = LogLikelihoods(ts, grid) self.assertRaises(AssertionError, lik.get_mut_lik_fixed_node, ts.edge(0)) self.assertRaises(AssertionError, lik.get_mut_lik_lower_tri, ts.edge(0)) self.assertRaises(AssertionError, lik.get_mut_lik_upper_tri, ts.edge(0)) self.assertRaises(AssertionError, loglik.get_mut_lik_fixed_node, ts.edge(0)) self.assertRaises(AssertionError, loglik.get_mut_lik_lower_tri, ts.edge(0)) self.assertRaises(AssertionError, loglik.get_mut_lik_upper_tri, ts.edge(0)) def test_no_theta_class(self): ts = utility_functions.two_tree_mutation_ts() grid = np.array([0, 1, 2]) lik = Likelihoods(ts, grid, theta=None) self.assertRaises(RuntimeError, lik.precalculate_mutation_likelihoods) def test_precalc_lik_lower(self): ts = utility_functions.single_tree_ts_n3() grid = np.array([0, 1, 2]) eps = 0 theta = 1 lik = Likelihoods(ts, grid, theta, eps) for method in (0, 1, 2): # TODO: Remove this loop and hard-code one of the methods after perf testing lik.precalculate_mutation_likelihoods(unique_method=method) self.assertEquals(ts.num_trees, 1) span = ts.first().span dt = grid num_muts = 0 n_internal_edges = 0 expected_lik_dt = self.poisson(dt * (theta / 2 * span), num_muts) for edge in ts.edges(): if ts.node(edge.child).is_sample(): self.assertRaises(AssertionError, lik.get_mut_lik_lower_tri, edge) self.assertRaises(AssertionError, lik.get_mut_lik_upper_tri, edge) fixed_edge_lik = lik.get_mut_lik_fixed_node(edge) self.assertTrue(np.allclose(fixed_edge_lik, expected_lik_dt)) else: n_internal_edges += 1 # only one internal edge in this tree self.assertLessEqual(n_internal_edges, 1) self.assertRaises(AssertionError, lik.get_mut_lik_fixed_node, edge) lower_tri = lik.get_mut_lik_lower_tri(edge) self.assertAlmostEqual(lower_tri[0], expected_lik_dt[0]) self.assertAlmostEqual(lower_tri[1], expected_lik_dt[1]) self.assertAlmostEqual(lower_tri[2], expected_lik_dt[0]) self.assertAlmostEqual(lower_tri[3], expected_lik_dt[2]) self.assertAlmostEqual(lower_tri[4], expected_lik_dt[1]) self.assertAlmostEqual(lower_tri[5], expected_lik_dt[0]) def test_precalc_lik_upper_multithread(self): ts = utility_functions.two_tree_mutation_ts() grid = np.array([0, 1, 2]) eps = 0 theta = 1 for L, pois in [(Likelihoods, self.poisson), (LogLikelihoods, self.log_poisson)]: for normalize in (True, False): lik = L(ts, grid, theta, eps, normalize=normalize) dt = grid for num_threads in (None, 1, 2): n_internal_edges = 0 lik.precalculate_mutation_likelihoods(num_threads=num_threads) for edge in ts.edges(): if not ts.node(edge.child).is_sample(): n_internal_edges += 1 # only two internal edges in this tree self.assertLessEqual(n_internal_edges, 2) if edge.parent == 4 and edge.child == 3: num_muts = 2 elif edge.parent == 5 and edge.child == 4: num_muts = 0 else: self.fail("Unexpected edge") span = edge.right - edge.left expected_lik_dt = pois( dt * (theta / 2 * span), num_muts, normalize=normalize) upper_tri = lik.get_mut_lik_upper_tri(edge) self.assertAlmostEqual(upper_tri[0], expected_lik_dt[0]) self.assertAlmostEqual(upper_tri[1], expected_lik_dt[1]) self.assertAlmostEqual(upper_tri[2], expected_lik_dt[2]) self.assertAlmostEqual(upper_tri[3], expected_lik_dt[0]) self.assertAlmostEqual(upper_tri[4], expected_lik_dt[1]) self.assertAlmostEqual(upper_tri[5], expected_lik_dt[0]) def test_tri_functions(self): ts = utility_functions.two_tree_mutation_ts() grid = np.array([0, 1, 2]) eps = 0 theta = 1 lik = Likelihoods(ts, grid, theta, eps) lik.precalculate_mutation_likelihoods() for e in ts.edges(): if e.child == 3 and e.parent == 4: exp_branch_muts = 2 exp_span = 0.2 self.assertEqual(e.right - e.left, exp_span) self.assertEqual(lik.mut_edges[e.id], exp_branch_muts) pois_lambda = grid * theta / 2 * exp_span cumul_pois = np.cumsum(self.poisson(pois_lambda, exp_branch_muts)) lower_tri = lik.get_mut_lik_lower_tri(e) self.assertTrue( np.allclose(lik.rowsum_lower_tri(lower_tri), cumul_pois)) upper_tri = lik.get_mut_lik_upper_tri(e) self.assertTrue( np.allclose( lik.rowsum_upper_tri(upper_tri)[::-1], cumul_pois)) def test_no_theta_class_loglikelihood(self): ts = utility_functions.two_tree_mutation_ts() grid = np.array([0, 1, 2]) lik = LogLikelihoods(ts, grid, theta=None) self.assertRaises(RuntimeError, lik.precalculate_mutation_likelihoods) def test_logsumexp(self): lls = np.array([0.1, 0.2, 0.5]) ll_sum = np.sum(lls) log_lls = np.log(lls) self.assertEqual(LogLikelihoods.logsumexp(log_lls), np.log(ll_sum)) def test_log_tri_functions(self): ts = utility_functions.two_tree_mutation_ts() grid = np.array([0, 1, 2]) eps = 0 theta = 1 lik = Likelihoods(ts, grid, theta, eps) loglik = LogLikelihoods(ts, grid, theta=theta, eps=eps) lik.precalculate_mutation_likelihoods() loglik.precalculate_mutation_likelihoods() for e in ts.edges(): if e.child == 3 and e.parent == 4: exp_branch_muts = 2 exp_span = 0.2 self.assertEqual(e.right - e.left, exp_span) self.assertEqual(lik.mut_edges[e.id], exp_branch_muts) self.assertEqual(loglik.mut_edges[e.id], exp_branch_muts) pois_lambda = grid * theta / 2 * exp_span cumul_pois = np.cumsum(self.poisson(pois_lambda, exp_branch_muts)) lower_tri = lik.get_mut_lik_lower_tri(e) lower_tri_log = loglik.get_mut_lik_lower_tri(e) self.assertTrue( np.allclose(lik.rowsum_lower_tri(lower_tri), cumul_pois)) with np.errstate(divide='ignore'): self.assertTrue( np.allclose(loglik.rowsum_lower_tri(lower_tri_log), np.log(cumul_pois))) upper_tri = lik.get_mut_lik_upper_tri(e) upper_tri_log = loglik.get_mut_lik_upper_tri(e) self.assertTrue( np.allclose( lik.rowsum_upper_tri(upper_tri)[::-1], cumul_pois)) with np.errstate(divide='ignore'): self.assertTrue( np.allclose( loglik.rowsum_upper_tri(upper_tri_log)[::-1], np.log(cumul_pois))) def test_logsumexp_streaming(self): lls = np.array([0.1, 0.2, 0.5]) ll_sum = np.sum(lls) log_lls = np.log(lls) self.assertTrue(np.allclose(LogLikelihoodsStreaming.logsumexp(log_lls), np.log(ll_sum))) class TestNodeGridValuesClass(unittest.TestCase): # TODO - needs a few more tests in here def test_init(self): num_nodes = 5 ids = np.array([3, 4]) timepoints = np.array(range(10)) store = NodeGridValues(num_nodes, ids, timepoints, fill_value=6) self.assertEquals(store.grid_data.shape, (len(ids), len(timepoints))) self.assertEquals(len(store.fixed_data), (num_nodes-len(ids))) self.assertTrue(np.all(store.grid_data == 6)) self.assertTrue(np.all(store.fixed_data == 6)) ids = np.array([3, 4], dtype=np.int32) store = NodeGridValues(num_nodes, ids, timepoints, fill_value=5) self.assertEquals(store.grid_data.shape, (len(ids), len(timepoints))) self.assertEquals(len(store.fixed_data), num_nodes-len(ids)) self.assertTrue(np.all(store.fixed_data == 5)) def test_set_and_get(self): num_nodes = 5 grid_size = 2 fill = {} for ids in ([3, 4], []): np.random.seed(1) store = NodeGridValues( num_nodes, np.array(ids, dtype=np.int32), np.array(range(grid_size))) for i in range(num_nodes): fill[i] = np.random.random(grid_size if i in ids else None) store[i] = fill[i] for i in range(num_nodes): self.assertTrue(np.all(fill[i] == store[i])) self.assertRaises(IndexError, store.__getitem__, num_nodes) def test_bad_init(self): ids = [3, 4] self.assertRaises(ValueError, NodeGridValues, 3, np.array(ids), np.array([0, 1.2, 2])) self.assertRaises(AttributeError, NodeGridValues, 5, np.array(ids), -1) self.assertRaises(ValueError, NodeGridValues, 5, np.array([-1]), np.array([0, 1.2, 2])) def test_clone(self): num_nodes = 10 grid_size = 2 ids = [3, 4] orig = NodeGridValues(num_nodes, np.array(ids), np.array(range(grid_size))) orig[3] = np.array([1, 2]) orig[4] = np.array([4, 3]) orig[0] = 1.5 orig[9] = 2.5 # test with np.zeros clone = NodeGridValues.clone_with_new_data(orig, 0) self.assertEquals(clone.grid_data.shape, orig.grid_data.shape) self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape) self.assertTrue(np.all(clone.grid_data == 0)) self.assertTrue(np.all(clone.fixed_data == 0)) # test with something else clone = NodeGridValues.clone_with_new_data(orig, 5) self.assertEquals(clone.grid_data.shape, orig.grid_data.shape) self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape) self.assertTrue(np.all(clone.grid_data == 5)) self.assertTrue(np.all(clone.fixed_data == 5)) # test with different scalars = np.arange(num_nodes - len(ids)) clone = NodeGridValues.clone_with_new_data(orig, 0, scalars) self.assertEquals(clone.grid_data.shape, orig.grid_data.shape) self.assertEquals(clone.fixed_data.shape, orig.fixed_data.shape) self.assertTrue(np.all(clone.grid_data == 0)) self.assertTrue(np.all(clone.fixed_data == scalars)) clone = NodeGridValues.clone_with_new_data( orig, np.array([[1, 2], [4, 3]])) for i in range(num_nodes): if i in ids: self.assertTrue(np.all(clone[i] == orig[i])) else: self.assertTrue(np.isnan(clone[i])) clone = NodeGridValues.clone_with_new_data( orig, np.array([[1, 2], [4, 3]]), 0) for i in range(num_nodes): if i in ids: self.assertTrue(np.all(clone[i] == orig[i])) else: self.assertEquals(clone[i], 0) def test_bad_clone(self): num_nodes = 10 ids = [3, 4] orig = NodeGridValues(num_nodes, np.array(ids), np.array([0, 1.2])) self.assertRaises( ValueError, NodeGridValues.clone_with_new_data, orig, np.array([[1, 2, 3], [4, 5, 6]])) self.assertRaises( ValueError, NodeGridValues.clone_with_new_data, orig, 0, np.array([[1, 2], [4, 5]])) class TestAlgorithmClass(unittest.TestCase): def test_nonmatching_prior_vs_lik_timepoints(self): ts = utility_functions.single_tree_ts_n3() timepoints1 = np.array([0, 1.2, 2]) timepoints2 = np.array([0, 1.1, 2]) priors = tsdate.build_prior_grid(ts, timepoints1) lls = Likelihoods(ts, timepoints2) self.assertRaisesRegexp(ValueError, "timepoints", InOutAlgorithms, priors, lls) def test_nonmatching_prior_vs_lik_fixednodes(self): ts1 = utility_functions.single_tree_ts_n3() ts2 = utility_functions.single_tree_ts_n2_dangling() timepoints = np.array([0, 1.2, 2]) priors = tsdate.build_prior_grid(ts1, timepoints) lls = Likelihoods(ts2, priors.timepoints) self.assertRaisesRegexp(ValueError, "fixed", InOutAlgorithms, priors, lls) class TestInsideAlgorithm(unittest.TestCase): def run_inside_algorithm(self, ts, prior_distr, normalize=True): priors = tsdate.build_prior_grid(ts, timepoints=np.array([0, 1.2, 2]), approximate_priors=False, prior_distribution=prior_distr) theta = 1 eps = 1e-6 lls = Likelihoods(ts, priors.timepoints, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(priors, lls) algo.inside_pass(normalize=normalize) return algo, priors def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(np.allclose(algo.inside[2], np.array([0, 1, 0.10664654]))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.0114771635]))) self.assertTrue(np.allclose(algo.inside[4], np.array([0, 1, 0.1941815518]))) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(np.allclose(algo.inside[4], np.array([0, 1, 0.00548801]))) self.assertTrue(np.allclose(algo.inside[5], np.array([0, 1, 0.0239174]))) self.assertTrue(np.allclose(algo.inside[6], np.array([0, 1, 0.26222197]))) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.12797265]))) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() algo, priors = self.run_inside_algorithm(ts, 'gamma', normalize=False) # priors[3][1] * Ll_(0->3)(1.2 - 0 + eps) ** 2 node3_t1 = priors[3][1] * scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 0.2) ** 2 # priors[3][2] * sum(Ll_(0->3)(2 - t + eps)) node3_t2 = priors[3][2] * scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 0.2) ** 2 self.assertTrue(np.allclose(algo.inside[3], np.array([0, node3_t1, node3_t2]))) """ priors[4][1] * (Ll_(2->4)(1.2 - 0 + eps) * (Ll_(1->4)(1.2 - 0 + eps)) * (Ll_(3->4)(1.2-1.2+eps) * node3_t1) """ node4_t1 = priors[4][1] * (scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 1) * scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 0.8) * ((scipy.stats.poisson.pmf(0, (1e-6) * 0.5 * 0.2) * node3_t1))) """ priors[4][2] * (Ll_(2->4)(2 - 0 + eps) * Ll_(1->4)(2 - 0 + eps) * (sum_(t'<2)(Ll_(3->4)(2-t'+eps) * node3_t)) """ node4_t2 = priors[4][2] * (scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 1) * scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 0.8) * ((scipy.stats.poisson.pmf( 0, (0.8 + 1e-6) * 0.5 * 0.2) * node3_t1) + (scipy.stats.poisson.pmf(0, (1e-6 + 1e-6) * 0.5 * 0.2) * node3_t2))) self.assertTrue(np.allclose(algo.inside[4], np.array([0, node4_t1, node4_t2]))) """ priors[5][1] * (Ll_(4->5)(1.2 - 1.2 + eps) * (node3_t ** 0.8)) * (Ll_(0->5)(1.2 - 0 + eps) * 1) raising node4_t to 0.8 is geometric scaling """ node5_t1 = priors[5][1] * (scipy.stats.poisson.pmf( 0, (1e-6) * 0.5 * 0.8) * (node4_t1 ** 0.8)) * (scipy.stats.poisson.pmf( 0, (1.2 + 1e-6) * 0.5 * 0.8)) """ prior[5][2] * (sum_(t'<1.2)(Ll_(4->5)(1.2 - 0 + eps) * (node3_t ** 0.8)) * (Ll_(0->5)(1.2 - 0 + eps) * 1) """ node5_t2 = priors[5][2] * ((scipy.stats.poisson.pmf( 0, (0.8 + 1e-6) * 0.5 * 0.8) * (node4_t1 ** 0.8)) + (scipy.stats.poisson.pmf(0, (1e-6 + 1e-6) * 0.5 * 0.8) * (node4_t2 ** 0.8))) * (scipy.stats.poisson.pmf( 0, (2 + 1e-6) * 0.5 * 0.8)) self.assertTrue(np.allclose(algo.inside[5], np.array([0, node5_t1, node5_t2]))) def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(np.allclose(algo.inside[7], np.array([0, 1, 0.25406637]))) self.assertTrue(np.allclose(algo.inside[6], np.array([0, 1, 0.07506923]))) self.assertTrue(np.allclose(algo.inside[5], np.array([0, 1, 0.13189998]))) self.assertTrue(np.allclose(algo.inside[4], np.array([0, 1, 0.07370801]))) self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.01147716]))) def test_two_tree_mutation_ts(self): ts = utility_functions.two_tree_mutation_ts() algo = self.run_inside_algorithm(ts, 'gamma')[0] self.assertTrue(np.allclose(algo.inside[3], np.array([0, 1, 0.02176622]))) # self.assertTrue(np.allclose(upward[4], np.array([0, 2.90560754e-05, 1]))) # NB the replacement below has not been hand-calculated self.assertTrue(np.allclose(algo.inside[4], np.array([0, 3.63200499e-11, 1]))) # self.assertTrue(np.allclose(upward[5], np.array([0, 5.65044738e-05, 1]))) # NB the replacement below has not been hand-calculated self.assertTrue(np.allclose(algo.inside[5], np.array([0, 7.06320034e-11, 1]))) def test_dangling_fails(self): ts = utility_functions.single_tree_ts_n2_dangling() print(ts.draw_text()) print("Samples:", ts.samples()) priors = tsdate.build_prior_grid(ts, timepoints=np.array([0, 1.2, 2])) theta = 1 eps = 1e-6 lls = Likelihoods(ts, priors.timepoints, theta, eps) algo = InOutAlgorithms(priors, lls) self.assertRaisesRegexp(ValueError, "dangling", algo.inside_pass) class TestOutsideAlgorithm(unittest.TestCase): def run_outside_algorithm( self, ts, prior_distr="lognorm", normalize=False, ignore_oldest_root=False): span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr) priors.add(ts.num_samples, approximate=False) grid = np.array([0, 1.2, 2]) mixture_priors = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr) theta = 1 eps = 1e-6 lls = Likelihoods(ts, grid, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(prior_vals, lls) algo.inside_pass() algo.outside_pass(normalize=normalize, ignore_oldest_root=ignore_oldest_root) return algo def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() for prior_distr in ('lognorm', 'gamma'): algo = self.run_outside_algorithm(ts, prior_distr) # Root, should this be 0,1,1 or 1,1,1 self.assertTrue(np.array_equal( algo.outside[2], np.array([1, 1, 1]))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() for prior_distr in ('lognorm', 'gamma'): algo = self.run_outside_algorithm(ts, prior_distr) # self.assertTrue(np.allclose( # downward[3], np.array([0, 1, 0.33508884]))) self.assertTrue(np.allclose(algo.outside[4], np.array([1, 1, 1]))) # self.assertTrue(np.allclose( # posterior[3], np.array([0, 0.99616886, 0.00383114]))) # self.assertTrue(np.allclose( # posterior[4], np.array([0, 0.83739361, 0.16260639]))) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() for prior_distr in ('lognorm', 'gamma'): algo = self.run_outside_algorithm(ts, prior_distr) # self.assertTrue(np.allclose( # downward[4], np.array([0, 1, 0.02187283]))) # self.assertTrue(np.allclose( # downward[5], np.array([0, 1, 0.41703272]))) # Root, should this be 0,1,1 or 1,1,1 self.assertTrue(np.allclose( algo.outside[6], np.array([1, 1, 1]))) def test_outside_before_inside_fails(self): ts = utility_functions.single_tree_ts_n2() priors = tsdate.build_prior_grid(ts) theta = 1 lls = Likelihoods(ts, priors.timepoints, theta) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(priors, lls) self.assertRaises(RuntimeError, algo.outside_pass) def test_normalize_outside(self): ts = msprime.simulate(50, Ne=10000, mutation_rate=1e-8, recombination_rate=1e-8) normalize = self.run_outside_algorithm(ts, normalize=True) no_normalize = self.run_outside_algorithm(ts, normalize=False) self.assertTrue( np.allclose( normalize.outside.grid_data[:], (no_normalize.outside.grid_data[:] / np.max( no_normalize.outside.grid_data[:], axis=1)[:, np.newaxis]))) def test_ignore_oldest_root(self): ts = utility_functions.single_tree_ts_mutation_n3() ignore_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=True) use_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=False) self.assertTrue(~np.array_equal( ignore_oldest.outside[3], use_oldest.outside[3])) # When node is not used in outside algorithm, all values should be equal self.assertTrue(np.all(ignore_oldest.outside[3] == ignore_oldest.outside[3][0])) self.assertTrue(np.all(use_oldest.outside[4] == use_oldest.outside[4][0])) def test_ignore_oldest_root_two_mrcas(self): ts = utility_functions.two_tree_two_mrcas() ignore_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=True) use_oldest = self.run_outside_algorithm(ts, ignore_oldest_root=False) self.assertTrue(~np.array_equal( ignore_oldest.outside[7], use_oldest.outside[7])) self.assertTrue(~np.array_equal( ignore_oldest.outside[6], use_oldest.outside[6])) # In this example, if the outside algorithm was *not* used, nodes 4 and 5 should # have same outside values. If it is used, node 5 should seem younger than 4 self.assertTrue(np.array_equal( ignore_oldest.outside[4], ignore_oldest.outside[5])) self.assertTrue(~np.array_equal( use_oldest.outside[4], use_oldest.outside[5])) class TestTotalFunctionalValueTree(unittest.TestCase): """ Tests to ensure that we recover the total functional value of the tree. We can also recover this property in the tree sequence in the special case where all node times are known (or all bar one). """ def find_posterior(self, ts, prior_distr): grid = np.array([0, 1.2, 2]) span_data = SpansBySamples(ts) priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add(ts.num_samples, approximate=False) mixture_priors = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_priors, grid, ts, prior_distr=prior_distr) theta = 1 eps = 1e-6 lls = Likelihoods(ts, grid, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(prior_vals, lls) algo.inside_pass() posterior = algo.outside_pass(normalize=False) self.assertTrue(np.array_equal(np.sum( algo.inside.grid_data * algo.outside.grid_data, axis=1), np.sum(algo.inside.grid_data * algo.outside.grid_data, axis=1))) self.assertTrue(np.allclose(np.sum( algo.inside.grid_data * algo.outside.grid_data, axis=1), np.sum(algo.inside.grid_data[-1]))) return posterior, algo def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() for distr in ('gamma', 'lognorm'): posterior, algo = self.find_posterior(ts, distr) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() for distr in ('gamma', 'lognorm'): posterior, algo = self.find_posterior(ts, distr) def test_one_tree_n4(self): ts = utility_functions.single_tree_ts_n4() for distr in ('gamma', 'lognorm'): posterior, algo = self.find_posterior(ts, distr) def test_one_tree_n3_mutation(self): ts = utility_functions.single_tree_ts_mutation_n3() for distr in ('gamma', 'lognorm'): posterior, algo = self.find_posterior(ts, distr) def test_polytomy_tree(self): ts = utility_functions.polytomy_tree_ts() for distr in ('gamma', 'lognorm'): posterior, algo = self.find_posterior(ts, distr) def test_tree_with_unary_nodes(self): ts = utility_functions.single_tree_ts_with_unary() for distr in ('gamma', 'lognorm'): posterior, algo = self.find_posterior(ts, distr) class TestGilTree(unittest.TestCase): """ Test results against hardcoded values Gil independently worked out """ def test_gil_tree(self): for cache_inside in [False, True]: ts = utility_functions.gils_example_tree() span_data = SpansBySamples(ts) prior_distr = 'lognorm' priors = ConditionalCoalescentTimes(None, prior_distr=prior_distr) priors.add(ts.num_samples, approximate=False) grid = np.array([0, 0.1, 0.2, 0.5, 1, 2, 5]) mixture_prior = priors.get_mixture_prior_params(span_data) prior_vals = fill_priors(mixture_prior, grid, ts, prior_distr=prior_distr) prior_vals.grid_data[0] = [0, 0.5, 0.3, 0.1, 0.05, 0.02, 0.03] prior_vals.grid_data[1] = [0, 0.05, 0.1, 0.2, 0.45, 0.1, 0.1] theta = 2 eps = 0.01 lls = Likelihoods(ts, grid, theta, eps=eps, normalize=False) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(prior_vals, lls) algo.inside_pass(normalize=False, cache_inside=cache_inside) algo.outside_pass(normalize=False) self.assertTrue( np.allclose(np.sum(algo.inside.grid_data * algo.outside.grid_data, axis=1), [7.44449E-05, 7.44449E-05])) self.assertTrue( np.allclose(np.sum(algo.inside.grid_data * algo.outside.grid_data, axis=1), np.sum(algo.inside.grid_data[-1]))) class TestOutsideEdgesOrdering(unittest.TestCase): """ Test that edges_by_child_desc() and edges_by_child_then_parent_desc() order edges correctly. """ def edges_ordering(self, ts, fn): fixed_nodes = set(ts.samples()) priors = tsdate.build_prior_grid(ts) theta = None liklhd = LogLikelihoods(ts, priors.timepoints, theta, eps=1e-6, fixed_node_set=fixed_nodes, progress=False) dynamic_prog = InOutAlgorithms(priors, liklhd, progress=False) if fn == "outside_pass": edges_by_child = dynamic_prog.edges_by_child_desc() seen_children = list() last_child_time = None for child, edges in edges_by_child: for edge in edges: self.assertTrue(edge.child not in seen_children) cur_child_time = ts.tables.nodes.time[child] if last_child_time: self.assertTrue(cur_child_time <= last_child_time) seen_children.append(child) last_child_time = ts.tables.nodes.time[child] elif fn == "outside_maximization": edges_by_child = dynamic_prog.edges_by_child_then_parent_desc() seen_children = list() last_child_time = None for child, edges in edges_by_child: last_parent_time = None for edge in edges: cur_parent_time = ts.tables.nodes.time[edge.parent] if last_parent_time: self.assertTrue(cur_parent_time >= last_parent_time) last_parent_time = cur_parent_time self.assertTrue(child not in seen_children) cur_child_time = ts.tables.nodes.time[child] if last_child_time: self.assertTrue(cur_child_time <= last_child_time) seen_children.append(child) last_child_time = ts.tables.nodes.time[child] def test_two_tree_outside_traversal(self): """ This is for the outside algorithm, where we simply want to traverse the ts from oldest child nodes to youngest, grouping all child nodes of same id together. In the outside maximization algorithm, we want to traverse the ts from oldest child nodes to youngest, grouping all child nodes of same id together. """ ts = utility_functions.two_tree_two_mrcas() self.edges_ordering(ts, "outside_pass") self.edges_ordering(ts, "outside_maximization") def test_simulated_inferred_outside_traversal(self): ts = msprime.simulate(500, Ne=10000, length=5e4, mutation_rate=1e-8, recombination_rate=1e-8, random_seed=12) sample_data = tsinfer.SampleData.from_tree_sequence(ts, use_sites_time=False) inferred_ts = tsinfer.infer(sample_data) self.edges_ordering(inferred_ts, "outside_pass") self.edges_ordering(inferred_ts, "outside_maximization") class TestMaximization(unittest.TestCase): """ Test the outside maximization function """ def run_outside_maximization(self, ts, prior_distr="lognorm"): priors = tsdate.build_prior_grid(ts, prior_distribution=prior_distr) Ne = 0.5 theta = 1 eps = 1e-6 lls = Likelihoods(ts, priors.timepoints, theta, eps=eps) lls.precalculate_mutation_likelihoods() algo = InOutAlgorithms(priors, lls) algo.inside_pass() return lls, algo, algo.outside_maximization(Ne, eps=eps) def test_one_tree_n2(self): ts = utility_functions.single_tree_ts_n2() for prior_distr in ('lognorm', 'gamma'): lls, algo, maximized_ages = self.run_outside_maximization(ts, prior_distr) self.assertTrue(np.array_equal( maximized_ages, np.array([0, 0, lls.timepoints[np.argmax(algo.inside[2])]]))) def test_one_tree_n3(self): ts = utility_functions.single_tree_ts_n3() for prior_distr in ('lognorm', 'gamma'): lls, algo, maximized_ages = self.run_outside_maximization(ts, prior_distr) node_4 = lls.timepoints[np.argmax(algo.inside[4])] ll_mut = scipy.stats.poisson.pmf( 0, (node_4 - lls.timepoints[:np.argmax(algo.inside[4]) + 1] + 1e-6) * 1 / 2 * 1) result = ll_mut / np.max(ll_mut) inside_val = algo.inside[3][:(np.argmax(algo.inside[4]) + 1)] node_3 = lls.timepoints[np.argmax( result[:np.argmax(algo.inside[4]) + 1] * inside_val)] self.assertTrue(np.array_equal( maximized_ages, np.array([0, 0, 0, node_3, node_4]))) def test_two_tree_ts(self): ts = utility_functions.two_tree_ts() for prior_distr in ('lognorm', 'gamma'): lls, algo, maximized_ages = self.run_outside_maximization(ts, prior_distr) node_5 = lls.timepoints[np.argmax(algo.inside[5])] ll_mut = scipy.stats.poisson.pmf( 0, (node_5 - lls.timepoints[:np.argmax(algo.inside[5]) + 1] + 1e-6) * 1 / 2 * 0.8) result = ll_mut / np.max(ll_mut) inside_val = algo.inside[4][:(np.argmax(algo.inside[5]) + 1)] node_4 = lls.timepoints[np.argmax( result[:np.argmax(algo.inside[5]) + 1] * inside_val)] ll_mut = scipy.stats.poisson.pmf( 0, (node_4 - lls.timepoints[:np.argmax(algo.inside[4]) + 1] + 1e-6) * 1 / 2 * 0.2) result = ll_mut / np.max(ll_mut) inside_val = algo.inside[3][:(np.argmax(algo.inside[4]) + 1)] node_3 = lls.timepoints[np.argmax( result[:np.argmax(algo.inside[4]) + 1] * inside_val)] self.assertTrue(np.array_equal( maximized_ages, np.array([0, 0, 0, node_3, node_4, node_5]))) class TestDate(unittest.TestCase): """ Test inputs to tsdate.date() """ def test_date_input(self): ts = utility_functions.single_tree_ts_n2() self.assertRaises(ValueError, tsdate.date, ts, 1, method="foobar") def test_sample_as_parent_fails(self): ts = utility_functions.single_tree_ts_n3_sample_as_parent() self.assertRaises(NotImplementedError, tsdate.date, ts, 1) def test_recombination_not_implemented(self): ts = utility_functions.single_tree_ts_n2() self.assertRaises(NotImplementedError, tsdate.date, ts, 1, recombination_rate=1e-8) class TestBuildPriorGrid(unittest.TestCase): """ Test tsdate.build_prior_grid() works as expected """ def test_bad_timepoints(self): ts = msprime.simulate(2, random_seed=123) for bad in [-1, np.array([1]), np.array([-1, 2, 3]), np.array([1, 1, 1]), "foobar"]: self.assertRaises(ValueError, tsdate.build_prior_grid, ts, timepoints=bad) for bad in [np.array(["hello", "there"])]: self.assertRaises(TypeError, tsdate.build_prior_grid, ts, timepoints=bad) def test_bad_prior_distr(self): ts = msprime.simulate(2, random_seed=12) self.assertRaises(ValueError, tsdate.build_prior_grid, ts, prior_distribution="foobar") class TestPosteriorMeanVar(unittest.TestCase): """ Test posterior_mean_var works as expected """ def test_posterior_mean_var(self): ts = utility_functions.single_tree_ts_n2() grid = np.array([0, 1.2, 2]) for distr in ('gamma', 'lognorm'): posterior, algo = TestTotalFunctionalValueTree().find_posterior(ts, distr) ts_node_metadata, mn_post, vr_post = posterior_mean_var( ts, grid, posterior, 0.5) self.assertTrue(np.array_equal(mn_post, [0, 0, np.sum(grid * posterior[2]) / np.sum(posterior[2])])) def test_node_metadata_single_tree_n2(self): ts = utility_functions.single_tree_ts_n2() grid = np.array([0, 1.2, 2]) posterior, algo = TestTotalFunctionalValueTree().find_posterior(ts, "lognorm") ts_node_metadata, mn_post, vr_post = posterior_mean_var(ts, grid, posterior, 0.5) self.assertTrue(json.loads( ts_node_metadata.node(2).metadata)["mn"] == mn_post[2]) self.assertTrue(json.loads( ts_node_metadata.node(2).metadata)["vr"] == vr_post[2]) def test_node_metadata_simulated_tree(self): larger_ts = msprime.simulate( 10, mutation_rate=1, recombination_rate=1, length=20) _, mn_post, _, _, eps, _ = get_dates(larger_ts, 10000) dated_ts = date(larger_ts, 10000) metadata = dated_ts.tables.nodes.metadata metadata_offset = dated_ts.tables.nodes.metadata_offset unconstrained_mn = [ json.loads(met.decode())["mn"] for met in tskit.unpack_bytes( metadata, metadata_offset) if len(met.decode()) > 0] self.assertTrue(np.array_equal(unconstrained_mn, mn_post[larger_ts.num_samples:])) self.assertTrue(np.all( dated_ts.tables.nodes.time[larger_ts.num_samples:] >= mn_post[larger_ts.num_samples:])) class TestConstrainAgesTopo(unittest.TestCase): """ Test constrain_ages_topo works as expected """ def test_constrain_ages_topo(self): """ Set node 3 to be older than node 4 in two_tree_ts """ ts = utility_functions.two_tree_ts() post_mn = np.array([0.0, 0.0, 0.0, 2.0, 1.0, 3.0]) eps = 1e-6 nodes_to_date = np.array([3, 4, 5]) constrained_ages = constrain_ages_topo(ts, post_mn, eps, nodes_to_date) self.assertTrue( np.array_equal( np.array([0.0, 0.0, 0.0, 2.0, 2.000001, 3.0]), constrained_ages ) ) def test_constrain_ages_topo_no_nodes_to_date(self): ts = utility_functions.two_tree_ts() post_mn = np.array([0.0, 0.0, 0.0, 2.0, 1.0, 3.0]) eps = 1e-6 nodes_to_date = None constrained_ages = constrain_ages_topo(ts, post_mn, eps, nodes_to_date) self.assertTrue( np.array_equal( np.array([0.0, 0.0, 0.0, 2.0, 2.000001, 3.0]), constrained_ages ) ) def test_constrain_ages_topo_unary_nodes_unordered(self): ts = utility_functions.single_tree_ts_with_unary() post_mn = np.array([0.0, 0.0, 0.0, 2.0, 1.0, 0.5, 5.0, 1.0]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( np.allclose( np.array([0.0, 0.0, 0.0, 2.0, 2.000001, 2.000002, 5.0, 5.000001]), constrained_ages, ) ) def test_constrain_ages_topo_part_dangling(self): ts = utility_functions.two_tree_ts_n2_part_dangling() post_mn = np.array([1.0, 0.0, 0.0, 0.1, 0.05]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( np.allclose(np.array([1.0, 0.0, 0.0, 1.000001, 1.000002]), constrained_ages) ) def test_constrain_ages_topo_sample_as_parent(self): ts = utility_functions.single_tree_ts_n3_sample_as_parent() post_mn = np.array([0.0, 0.0, 0.0, 3.0, 1.0]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( np.allclose(np.array([0.0, 0.0, 0.0, 3.0, 3.000001]), constrained_ages) ) def test_two_tree_ts_n3_non_contemporaneous(self): ts = utility_functions.two_tree_ts_n3_non_contemporaneous() post_mn = np.array([0.0, 0.0, 3.0, 4.0, 0.1, 4.1]) eps = 1e-6 constrained_ages = constrain_ages_topo(ts, post_mn, eps) self.assertTrue( np.allclose(np.array([0.0, 0.0, 3.0, 4.0, 4.000001, 4.1]), constrained_ages) ) class TestPreprocessTs(unittest.TestCase): """ Test preprocess_ts works as expected """ def verify(self, ts, minimum_gap=None, remove_telomeres=None, **kwargs): with self.assertLogs("tsdate.util", level="INFO") as logs: if minimum_gap is not None and remove_telomeres is not None: ts = tsdate.preprocess_ts(ts, minimum_gap=minimum_gap, remove_telomeres=remove_telomeres) elif minimum_gap is not None and remove_telomeres is None: ts = tsdate.preprocess_ts(ts, minimum_gap=minimum_gap) elif remove_telomeres is not None and minimum_gap is None: ts = tsdate.preprocess_ts(ts, remove_telomeres=remove_telomeres) else: ts = tsdate.preprocess_ts(ts, **kwargs) messages = [record.msg for record in logs.records] self.assertIn("Beginning preprocessing", messages) return ts def test_no_sites(self): ts = utility_functions.two_tree_ts() self.assertRaises(ValueError, tsdate.preprocess_ts, ts) def test_invariant_sites(self): # Test that passing kwargs to simplify works as expected ts = utility_functions.site_no_mutations() with warnings.catch_warnings(record=True) as w: removed = self.verify(ts) self.assertTrue(removed.num_sites == 0) self.assertTrue(len(w) == 1) self.assertTrue( tsdate.preprocess_ts( ts, **{"filter_sites": False}).num_sites == ts.num_sites) def test_no_intervals(self): ts = utility_functions.two_tree_mutation_ts() self.assertTrue( ts.tables.edges == self.verify(ts, remove_telomeres=False).tables.edges) self.assertTrue( ts.tables.edges == self.verify(ts, minimum_gap=0.05).tables.edges) def test_delete_interval(self): ts = utility_functions.ts_w_data_desert(40, 60, 100) trimmed = self.verify(ts, minimum_gap=20, remove_telomeres=False) lefts = trimmed.tables.edges.left rights = trimmed.tables.edges.right self.assertTrue( not np.any(np.logical_and(lefts > 41, lefts < 59))) self.assertTrue( not np.any(np.logical_and(rights > 41, rights < 59))) def test_remove_telomeres(self): ts = utility_functions.ts_w_data_desert(0, 5, 100) removed = self.verify(ts, minimum_gap=ts.get_sequence_length()) lefts = removed.tables.edges.left rights = removed.tables.edges.right self.assertTrue( not np.any(
np.logical_and(lefts > 0, lefts < 4)
numpy.logical_and
from __future__ import division import numpy as np from numpy import newaxis as na np.seterr(invalid='raise') import scipy.stats as stats import scipy.weave import operator, copy from ..basic.clustering import GammaCompoundDirichlet from ..basic.util import rle ################################################## # Misc # ################################################## # TODO scaling by self.state_dim in concresampling is the confusing result of # having a DirGamma object and not a WLDPGamma object! make one # TODO reuse Multinomial/Categorical code # TODO change concentrationresampling from mixin to metaprogramming? # TODO add model ref, change trans_counts to cached property class ConcentrationResampling(object): def __init__(self,state_dim,alpha_a_0,alpha_b_0,gamma_a_0,gamma_b_0): self.gamma_obj = GammaCompoundDirichlet(state_dim,gamma_a_0,gamma_b_0) self.alpha_obj = GammaCompoundDirichlet(state_dim,alpha_a_0,alpha_b_0) def resample(self): # multiply by state_dim because the trans objects divide by it (since # their parameters correspond to the DP parameters, and so they convert # into weak limit scaling) self.alpha_obj.resample(self.trans_counts,weighted_cols=self.beta) self.alpha = self.alpha_obj.concentration self.gamma_obj.resample(self.m) self.gamma = self.gamma_obj.concentration ############################################################## # HDP-HMM classes # ############################################################## class HDPHMMTransitions(object): def __init__(self,state_dim,alpha,gamma,beta=None,A=None): self.state_dim = state_dim self.alpha = alpha self.gamma = gamma if A is None or beta is None: self.resample() else: self.A = A self.beta = beta ### Gibbs sampling def resample(self,states_list=[]): trans_counts = self._count_transitions(states_list) m = self._get_m(trans_counts) self._resample_beta(m) self._resample_A(trans_counts) def copy_sample(self): new = copy.deepcopy(self) if hasattr(new,'trans_counts'): del new.trans_counts if hasattr(new,'m'): del new.m return new def _resample_beta(self,m): self.beta = np.random.dirichlet(self.gamma / self.state_dim + m.sum(0) + 1e-2) def _resample_A(self,trans_counts): self.A = stats.gamma.rvs(self.alpha * self.beta + trans_counts + 1e-2) self.A /= self.A.sum(1)[:,na] def _count_transitions(self,states_list): trans_counts = np.zeros((self.state_dim,self.state_dim),dtype=np.int32) for states in states_list: if len(states) >= 2: for idx in xrange(len(states)-1): trans_counts[states[idx],states[idx+1]] += 1 self.trans_counts = trans_counts return trans_counts def _get_m_slow(self,trans_counts): m = np.zeros((self.state_dim,self.state_dim),dtype=np.int32) if not (0 == trans_counts).all(): for (rowidx, colidx), val in np.ndenumerate(trans_counts): if val > 0: m[rowidx,colidx] = (np.random.rand(val) < self.alpha * self.beta[colidx] \ /(np.arange(val) + self.alpha*self.beta[colidx])).sum() self.m = m return m def _get_m(self,trans_counts): N = trans_counts.shape[0] m = np.zeros((N,N),dtype=np.int32) if not (0 == trans_counts).all(): alpha, beta = self.alpha, self.beta scipy.weave.inline( ''' for (int i=0; i<N; i++) { for (int j=0; j<N; j++) { int tot = 0; for (int k=0; k<trans_counts[N*i+j]; k++) { tot += ((double)rand())/RAND_MAX < (alpha * beta[j])/(k+alpha*beta[j]); } m[N*i+j] = tot; } } ''', ['trans_counts','N','m','alpha','beta'], extra_compile_args=['-O3']) self.m = m return m ### max likelihood # TODO these methods shouldn't really be in this class... maybe put them in # a base class def max_likelihood(self,stateseqs,expectations_list=None): if expectations_list is not None: trans_counts = self._count_weighted_transitions(expectations_list,self.A) else: trans_counts = self._count_transitions(stateseqs) errs = np.seterr(invalid='ignore',divide='ignore') self.A = trans_counts / trans_counts.sum(1)[:,na] np.seterr(**errs) self.A[
np.isnan(self.A)
numpy.isnan
#!/usr/bin/env python # -*- coding: utf-8 -*- # $File: test-feature.py # $Date: Wed Dec 11 22:01:13 2013 +0800 # $Author: <NAME> <zxytim[at]gmail[dot]com> import glob import traceback import sys import random import os import time import numpy as np from itertools import izip import multiprocessing import operator from collections import defaultdict # from sklearn.mixture import GMM from sklearn.mixture import GaussianMixture as GMM from .feature import BOB as bob_MFCC from .feature import MFCC from .sample import Sample concurrency = multiprocessing.cpu_count() class GMMSet: def __init__(self, gmm_order=32): self.gmms = [] self.gmm_order = 32 self.y = [] def fit_new(self, x, label): self.y.append(label) gmm = GMM(self.gmm_order) gmm.fit(x) self.gmms.append(gmm) def cluster_by_label(self, X, y): Xtmp = defaultdict(list) for ind, x in enumerate(X): label = y[ind] Xtmp[label].extend(x) yp, Xp = zip(*Xtmp.items()) return Xp, yp def fit(self, X, y): X, y = self.cluster_by_label(X, y) for ind, x in enumerate(X): self.fit_new(x, y[ind]) def gmm_score(self, gmm, x): return np.exp(np.sum(gmm.score(x)) / 1000) def predict_one(self, x): scores = [self.gmm_score(gmm, x) for gmm in self.gmms] return self.y[max(enumerate(scores), key=operator.itemgetter(1))[0]] def predict(self, X): return map(self.predict_one, X) def predict_task(gmmset, x_test): return gmmset.predict_one(x_test) def do_test(X_train, y_train, X_test, y_test): start = time.time() gmmset = GMMSet() print('training ...') gmmset.fit(X_train, y_train) nr_correct = 0 print('time elapsed: ', time.time() - start) print('predicting...') start = time.time() pool = multiprocessing.Pool(concurrency) predictions = [] for x_test, label_true in izip(X_test, y_test): predictions.append(pool.apply_async(predict_task, args=(gmmset, x_test))) for ind, (x_test, label_true) in enumerate(zip(X_test, y_test)): label_pred = predictions[ind].get() is_wrong = '' if label_pred == label_true else ' wrong' print("{} {}{}".format(label_pred, label_true, is_wrong)) if label_pred == label_true: nr_correct += 1 print('time elapsed: ', time.time() - start) print("{}/{} {:.2f}".format(nr_correct, len(y_test), float(nr_correct) / len(y_test))) pool.close() def main(): if len(sys.argv) == 1: print("Usage: {} <dir_contains_feature_file>".format(sys.argv[0])) sys.exit(1) dirs = sys.argv[1] print('reading data ...') X_train, y_train = [], [] with open(os.path.join(dirs, 'enroll.lst')) as f: for line in f: line = line.split('=') label = int(line[0]) fname = line[1].strip().rsplit('/')[1] mat = [] with open(os.path.join(dirs, fname)) as feaf: for line in feaf: line = map(float, line.strip().split()) line = np.array(line) mat.append(line) X_train.append(np.array(mat)) y_train.append(label) print("length of X_train: ", len(X_train)) X_test, y_test = [], [] with open(os.path.join(dirs, 'test.lst')) as f: for line in f: line = line.split('=') label = int(line[0]) fname = line[1].strip().rsplit('/')[1] mat = [] with open(os.path.join(dirs, fname)) as feaf: for line in feaf: line = map(float, line.strip().split()) mat.append(
np.array(line)
numpy.array
import numpy as np import time import torch from lietorch import SE3, LieGroupParameter from scipy.spatial.transform import Rotation as R import cv2 import configargparse import os, sys sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))) from utils import * from render_utils import * device = torch.device("cuda" if torch.cuda.is_available() else "cpu") np.random.seed(0) """ example usage: - install any missing requirements from https://github.com/salykovaa/inerf/blob/main/requirements.txt - cd to folder containing demo_est_rel_pose.py - python demo_est_rel_pose.py --config relative_pose_estimation_configs/teddy_bear.txt """ def estimate_relative_pose(coarse_model, fine_model, renderer, sensor_image, start_pose, K, general_args, extra_arg_dict, obs_img_pose=None, obs_img=None): b_print_comparison_metrics = obs_img_pose is not None b_generate_overlaid_images = b_print_comparison_metrics and obs_img is not None obs_img_noised = sensor_image W_obs = sensor_image.shape[0] H_obs = sensor_image.shape[1] # find points of interest of the observed image POI = find_POI(obs_img_noised, DEBUG) # xy pixel coordinates of points of interest (N x 2) obs_img_noised = (np.array(obs_img_noised) / 255.).astype(np.float32) # create meshgrid from the observed image coords = np.asarray(np.stack(np.meshgrid(np.linspace(0, W_obs - 1, W_obs), np.linspace(0, H_obs - 1, H_obs)), -1), dtype=int) # create sampling mask for interest region sampling strategy interest_regions = np.zeros((H_obs, W_obs, ), dtype=np.uint8) interest_regions[POI[:,1], POI[:,0]] = 1 I = extra_arg_dict['dil_iter'] interest_regions = cv2.dilate(interest_regions, np.ones((extra_arg_dict['kernel_size'], extra_arg_dict['kernel_size']), np.uint8), iterations=I) interest_regions = np.array(interest_regions, dtype=bool) interest_regions = coords[interest_regions] # not_POI contains all points except of POI coords = coords.reshape(H_obs * W_obs, 2) not_POI = set(tuple(point) for point in coords) - set(tuple(point) for point in POI) not_POI = np.array([list(point) for point in not_POI]).astype(int) # Create pose transformation model start_pose = SE3_to_trans_and_quat(start_pose) starting_pose = SE3(torch.from_numpy(start_pose).float().cuda()) starting_pose = LieGroupParameter(starting_pose) optimizer = torch.optim.Adam(params=[starting_pose], lr=extra_arg_dict['lrate'], betas=(0.9, 0.999)) # calculate angles and translation of the observed image's pose if b_print_comparison_metrics: phi_ref = np.arctan2(obs_img_pose[1,0], obs_img_pose[0,0])*180/np.pi theta_ref = np.arctan2(-obs_img_pose[2, 0], np.sqrt(obs_img_pose[2, 1]**2 + obs_img_pose[2, 2]**2))*180/np.pi psi_ref = np.arctan2(obs_img_pose[2, 1], obs_img_pose[2, 2])*180/np.pi translation_ref = np.sqrt(obs_img_pose[0,3]**2 + obs_img_pose[1,3]**2 + obs_img_pose[2,3]**2) testsavedir = os.path.join(extra_arg_dict['output_dir'], extra_arg_dict['model_name']) os.makedirs(testsavedir, exist_ok=True) # imgs - array with images are used to create a video of optimization process if b_generate_overlaid_images: imgs = [] for k in range(300): rand_inds = np.random.choice(interest_regions.shape[0], size=extra_arg_dict['batch_size'], replace=False) batch = interest_regions[rand_inds] target_s = obs_img_noised[batch[:, 1], batch[:, 0]] target_s = torch.Tensor(target_s).to(device) rays_o, rays_d = get_rays(H_obs, W_obs, K, starting_pose.retr().matrix()) # (H, W, 3), (H, W, 3) rays_o = rays_o[batch[:, 1], batch[:, 0]] # (N_rand, 3) rays_d = rays_d[batch[:, 1], batch[:, 0]] batch_rays = torch.stack([rays_o, rays_d], 0) rgb, _, _, _ = renderer.render_from_rays(H_obs, W_obs, K, chunk=general_args.chunk, rays=batch_rays, coarse_model=coarse_model, fine_model=fine_model, retraw=True) optimizer.zero_grad() loss = img2mse(rgb, target_s) loss.backward() optimizer.step() new_lrate = extra_arg_dict['lrate'] * (0.8 ** ((k + 1) / 100)) for param_group in optimizer.param_groups: param_group['lr'] = new_lrate # print results periodically if b_print_comparison_metrics and ((k + 1) % 20 == 0 or k == 0): print('Step: ', k) print('Loss: ', loss) with torch.no_grad(): pose_dummy = starting_pose.retr().matrix().cpu().detach().numpy() # calculate angles and translation of the optimized pose phi = np.arctan2(pose_dummy[1, 0], pose_dummy[0, 0]) * 180 / np.pi theta = np.arctan2(-pose_dummy[2, 0], np.sqrt(pose_dummy[2, 1] ** 2 + pose_dummy[2, 2] ** 2)) * 180 / np.pi psi = np.arctan2(pose_dummy[2, 1], pose_dummy[2, 2]) * 180 / np.pi translation = np.sqrt(pose_dummy[0,3]**2 + pose_dummy[1,3]**2 + pose_dummy[2,3]**2) #translation = pose_dummy[2, 3] # calculate error between optimized and observed pose phi_error = abs(phi_ref - phi) if abs(phi_ref - phi)<300 else abs(abs(phi_ref - phi)-360) theta_error = abs(theta_ref - theta) if abs(theta_ref - theta)<300 else abs(abs(theta_ref - theta)-360) psi_error = abs(psi_ref - psi) if abs(psi_ref - psi)<300 else abs(abs(psi_ref - psi)-360) rot_error = phi_error + theta_error + psi_error translation_error = abs(translation_ref - translation) print('Rotation error: ', rot_error) print('Translation error: ', translation_error) print('-----------------------------------') ''' if b_generate_overlaid_images: with torch.no_grad(): rgb, _, _, _ = renderer.render_from_pose(H_obs, W_obs, K, chunk=general_args.chunk, c2w=starting_pose.retr().matrix()[:3, :4], coarse_model=coarse_model, fine_model=fine_model, retraw=True) rgb = rgb.cpu().detach().numpy() rgb8 = to8b(rgb) ref = to8b(obs_img) filename = os.path.join(testsavedir, str(k)+'.png') dst = cv2.addWeighted(rgb8, 0.7, ref, 0.3, 0) imageio.imwrite(filename, dst) imgs.append(dst) if b_generate_overlaid_images: imageio.mimwrite(os.path.join(testsavedir, 'video.gif'), imgs, fps=8) #quality = 8 for mp4 format ''' print("Done with main relative_pose_estimation loop") def SE3_to_trans_and_quat(data): rot = data[:3, :3] trans = data[:3, 3] r = R.from_matrix(rot) quat = r.as_quat() return np.concatenate([trans, quat]) def find_POI(img_rgb, DEBUG=False): # img - RGB image in range 0...255 img = np.copy(img_rgb) img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) sift = cv2.SIFT_create() keypoints = sift.detect(img_gray, None) if DEBUG: img = cv2.drawKeypoints(img_gray, keypoints, img) show_img("Detected points", img) xy = [keypoint.pt for keypoint in keypoints] xy = np.array(xy).astype(int) # Remove duplicate points xy_set = set(tuple(point) for point in xy) xy = np.array([list(point) for point in xy_set]).astype(int) return xy # pixel coordinates rot_psi = lambda phi: np.array([ [1, 0, 0, 0], [0, np.cos(phi), -np.sin(phi), 0], [0, np.sin(phi), np.cos(phi), 0], [0, 0, 0, 1]]) rot_theta = lambda th: np.array([ [np.cos(th), 0, -np.sin(th), 0], [0, 1, 0, 0], [np.sin(th), 0, np.cos(th), 0], [0, 0, 0, 1]]) rot_phi = lambda psi: np.array([ [np.cos(psi), -np.sin(psi), 0, 0], [
np.sin(psi)
numpy.sin
import os.path from os import path import sys import numpy as np from random import seed from random import randrange # FIX: OPTIMAL SOLUTION SHOWING precision = 0.0001 # Prints a bar def print_split(): print("--------------------------------------------------\n") # Prints current vectors A, b, c def print_current(A, b, c): print("c:\n", c) #print(c) print("A:\n", A) #print(A) print("b:\n", b) #print(b) def print_system(A, b, c, F): print("c:\n", c) #print(c) print("A:\n", A) #print(A) print("b:\n", b) #print(b) print("F:\n", F) def swap_cols_2d(arr, frm, to): arr[:,[frm, to]] = arr[:,[to, frm]] def swap(arr, frm, to): tmp = arr[to] arr[to] = arr[frm] arr[frm] = tmp def append_horizontally(A, B): if len(A) != len(B): raise Exception('The matrices must have the same height!\n') else: np.stack((A, B), axis = 1) return A def get_first_negative(vec): vec_length = len(vec) for i in range(vec_length): if vec[i] < 0: return i return -1 def is_non_negative(b): b_length = len(b) for i in range(b_length): if b[i] < 0: return i return -1 def is_non_negative_matrix_row(A, row): A_width = len(A[0]) for i in range(A_width): if A[row, i] < 0: return i return -1 def find_pivot(c, A, row): pivot_index = 0 max_value = -np.Inf A_width = len(A[0]) for i in range(A_width): if A[row, i] < 0: value = c[i] / A[row, i] if value > max_value: max_value = value pivot_index = i return pivot_index def update_system(c, A, b, F, p_row, p_col): n = len(A) m = len(A[0]) # Row of pivot / pivot coef = A[p_row, p_col] for i in range(m): A[p_row, i] /= coef b[p_row] /= coef # Clearing p_col columns for i in range(n): if i == p_row: continue coef = -A[i, p_col] for j in range(m): A[i, j] += coef * A[p_row, j] b[i] += coef * b[p_row] coef = -c[p_col] for j in range(m): c[j] += coef * A[p_row, j] F += coef * b[p_row] return c, A, b, F def input_vars(option): input_type = 0 # # --- Two phase simplex --- # if option == 1: while input_type != 1 and input_type != 2: input_type = int(input("Select the type of input:\n\t1: Manual input\n\t2: Input from file\nSelected: ")) print_split() # --- Manual input --- if input_type == 1: print("---- NOTE ----\nThe file must be in the following format:\nN M\t\t\t\tWhere N - number of equations and M - number of variables\n\"min\" or \"max\"\t\t\tGoal function minimisation or maximisation\nc1 c2 c3 ... cM\nA11 A12 ... A1M _ b1\nA21 A22 ... A2M _ b2\n................\nAN1 AN2 ... ANM _ bN\n for x1, x2, x3, ... xM >= 0\t\tWhere '_' should be '<', '>' or '='\n") print_split() n = int(input("Input the number of equations: ")) m = int(input("Input the number of variables: ")) # Reserving and initializing space for the Objective function in_c = np.zeros(m, dtype=np.float64) # Reserving and initializing space for the coeficients in_A = np.zeros((n, m), dtype=np.float64) # Reserving and initializing space for the solution values in_b = np.zeros(n, dtype=np.float64) otype = input("Input \"min\" or \"max\" for the Objective function: ") if otype != "min" and otype != "max": print("The Objective function type is wrong it should be either \"min\" or \"max\"!\n") return -1 # Input the Objective function tmp = input("Objective function: ").split() i = 0 for c in tmp: in_c[i] = float(c) i += 1 # Converting the Objective function to minimise since the program is made with minimisation if otype == "max": print("Converting max to min.") in_c *= -1 sign = np.empty(n, dtype=str) unit_columns = [] # Inputing the variables and solutions to the arrays for i in range(n): # Input a line to a tmp variable tmp = input(str(i) + ": ").split() for j in range(m): in_A[i, j] = float(tmp[j]) sign[i] = tmp[m] in_b[i] = float(tmp[m + 1]) # No transformation required, since this program works with "<" # And "=" can be represented both as ">=" and "<=" if sign[i] == "=": continue # If the entered sign is ">" than we transform it to "<" if sign[i] == ">": for j in range(m): in_A[i, j] *= -1 in_b[i] *= -1 unit_columns.append(i) # Add new variables to convert inequation to equation: # x1 + x2 + x3 + ... + xn <= c # => x1 + x2 + x3 + ... + xn + x = c # Thus appending an identity matrix unit_columns.sort() A_tmp = np.empty((n, 0)) for i in unit_columns: A_unit = np.zeros((n, 1)) for j in range(n): if i == j: A_unit[j] = 1 A_tmp = np.hstack((A_tmp, A_unit)) in_c = np.hstack((0, in_c)) in_A = np.hstack((A_tmp, in_A)) # Set b to be positive: for i in range(n): if(in_b[i] < 0): if i in unit_columns: unit_columns.remove(i) in_A[i] *= -1 in_b[i] *= -1 elif input_type == 2: # Read from file print("---- NOTE ----\nEnter the relative path to the file, from under \"/examples/\" \ne.g. For file 1.txt, write \"1.txt\", that will load \"/examples/1.txt\"") print_split() print("---- NOTE ----\nThe file must be in the following format:\nN M\t\t\t\tWhere N - number of equations and M - number of variables\n\"min\" or \"max\"\t\t\tGoal function minimisation or maximisation\nc1 c2 c3 ... cM\nA11 A12 ... A1M _ b1\nA21 A22 ... A2M _ b2\n................\nAN1 AN2 ... ANM _ bN\n for x1, x2, x3, ... xM >= 0\t\tWhere '_' should be '<', '>' or '='\n") print_split() print_split() print_split() file_name = input("Enter the file name: ") # Creating absolute path to the file in folder examples file_dir = os.path.dirname(__file__) rel_path = "examples/" + file_name abs_file_path = os.path.join(file_dir, rel_path) # Checking if the file exists if os.path.exists(abs_file_path) == False: # File not found, throw error print("The file doesn't exist!") raise Exception("The file didn't load because it doesn't exist") # File found, opening f = open(abs_file_path, 'r') in_c = [] # Read 2 first lines for i in range(3): if i == 0: n, m = [int(x) for x in next(f).split()] # Reads the dimensions if i == 1: otype = next(f).split() otype = otype[0] if otype != "min" and otype != "max": f.close() raise Exception("The Objective function type is wrong it should be either \"min\" or \"max\"!\n") if i == 2: in_c = np.append(in_c, [float(x) for x in next(f).split()]) # Reads the Objective functiom # Converting the Objective function to minimise since the program is made with minimisation if otype == "max": print("Converting max to min.") in_c *= -1 tmp_array = [] for line in f: # Read the next lines tmp_array.append([str(x) for x in line.split()]) f.close() # File not needed, all is in tmp_array # Formatting the input in_A = [] sign = [] in_b = [] unit_columns = [] # print(tmp_array) for i in range(n): for j in range(m + 2): if j < m: in_A.append(float(tmp_array[i][j])) elif j == m: sign.append(tmp_array[i][j]) elif j == (m + 1): in_b.append(float(tmp_array[i][j])) # No transformation required, since this program works with "<" # And "=" can be represented both as ">=" and "<=" if sign[i] == "=": continue # If the entered sign is ">" than we transform it to "<" if sign[i] == ">": in_A_length = len(in_A) for j in range(i*m, in_A_length, 1): in_A[j] *= -1 in_b[i] *= -1 unit_columns.append(i) # Converting the final list to numpy array in_A = np.array(in_A) in_A = in_A.reshape(n, m) # Add new variables to convert inequation to equation: # x1 + x2 + x3 + ... + xn <= c # => x1 + x2 + x3 + ... + xn + x = c # Thus appending an identity matrix unit_columns.sort() A_tmp = np.empty((n, 0)) for i in unit_columns: A_unit = np.zeros((n, 1)) for j in range(n): if i == j: A_unit[j] = 1 A_tmp = np.hstack((A_tmp, A_unit)) in_c = np.hstack((0, in_c)) in_A = np.hstack((A_tmp, in_A)) # Set b to be positive: for i in range(n): if(in_b[i] < 0): if i in unit_columns: unit_columns.remove(i) in_A[i] *= -1 in_b[i] *= -1 return in_A, in_c, in_b, unit_columns # # --- Dual simplex --- # elif option == 2: while input_type != 1 and input_type != 2: input_type = int(input("Select the type of input:\n\t1: Manual input\n\t2: Input from file\nSelected: ")) print_split() # --- Manual input --- if input_type == 1: print("---- NOTE ----\nThe file must be in the following format:\nN M\t\t\t\tWhere N - number of equations and M - number of variables\n\"min\" or \"max\"\t\t\tGoal function minimisation or maximisation\nc1 c2 c3 ... cM\nA11 A12 ... A1M _ b1\nA21 A22 ... A2M _ b2\n................\nAN1 AN2 ... ANM _ bN\n for x1, x2, x3, ... xM >= 0\t\tWhere '_' should be '<', '>' or '='\n") print_split() n = int(input("Input the number of equations: ")) m = int(input("Input the number of variables: ")) # Reserving and initializing space for the Objective function in_c =
np.zeros(m, dtype=np.float64)
numpy.zeros
""" Test suite for the hits module. <NAME> 2018 """ import unittest import numpy as np import pandas as pd import warnings from array import array from numba import NumbaWarning import math # Functions to run tests on # Equivalent to from . import * but more verbose try: from hits.hitdetector import identify_through_magnitude,\ plot_anomaly, identify_through_gradient, Abuelmaatti, point_density, \ filter_through_response, anomaly_density, rms_diff, stdev_diff, rms, \ stdev from hits.hitsimulator import hit_distribution, flux, p_distribution, \ freq, generate_event, generate_data, masses, tp_distribution, \ time_distribution, AOCSResponse except(ImportError): from .hitdetector import identify_through_magnitude, plot_anomaly, \ identify_through_gradient, Abuelmaatti, point_density, \ filter_through_response, anomaly_density, rms_diff, stdev_diff, rms, \ stdev from .hitsimulator import hit_distribution, flux, p_distribution, freq, \ generate_event, generate_data, masses, tp_distribution, \ time_distribution, AOCSResponse # -----------hitdetector.py tests---------------------------------------------- class TestHitDetectorIdentifyFuncs(unittest.TestCase): def setUp(self): # Create dummy data with anomalies to test for hits. obmt = np.linspace(0, 10, 1000) rate = np.zeros(1000) # Generate a random number of hits between 4 and 25. self.hits = np.random.randint(4, 25) hit_loc =
np.linspace(2, 900, self.hits)
numpy.linspace
from SemiSupervisedLearning import visualisations import matplotlib.pyplot as plt import numpy as np import torch import pathlib def to_cuda(elements): """ Transfers every object in elements to GPU VRAM if available. elements can be a object or list/tuple of objects """ if torch.cuda.is_available(): if type(elements) == tuple or type(elements) == list: return [x.cuda() for x in elements] return elements.cuda() return elements def get_data_to_tensors(data, batch_size): train_data_subsample, test_data = [], [] for (images, classes) in data.batch_generator(training=True, batch_size=batch_size): images = normalize_images(images) images, classes = torch.from_numpy(images).float(), torch.from_numpy(classes).float() images = images.permute(0, 3, 1, 2) # change axis from NHWC to NCHW batch = (images, classes) train_data_subsample.append(batch) for (images, classes) in data.batch_generator(training=False, batch_size=batch_size): images = normalize_images(images) images, classes = torch.from_numpy(images).float(), torch.from_numpy(classes).float() images = images.permute(0, 3, 1, 2) # change axis from NHWC to NCHW batch = (images, classes) test_data.append(batch) return (train_data_subsample, test_data) def normalize_images(images): # Assuming pixel values are more or less the same for all images # We pick the first image of the batch image = images[0] pixels = np.asarray(image) means = pixels.mean(axis=(0, 1), dtype='float64') stds = pixels.std(axis=(0, 1), dtype='float64') pixels = (pixels - means) / stds # Apply normalization to all images in the batch norm_images = [] for i in range(len(images)): norm_images.append((images[i] - means) / stds) norm_images = np.array(norm_images) return norm_images def make_reconstructions(autoencoder, vis_data, num_images, batch_size, image_dimensions, title): # Extremely inefficient way of doing this # Forward all images, then selecting the ones i want to visualize images = [] reconstructions = [] labels = [] for image_batch, label in vis_data: #Make reconstruction image_batch = to_cuda(image_batch) reconstruction_batch, aux = autoencoder(image_batch) # Convert from tensor to numpy image_batch = image_batch.reshape( image_batch.shape[0], image_batch.shape[2], image_batch.shape[3], image_batch.shape[1] ) image_batch = image_batch.cpu().detach().numpy() label = label.cpu().detach().numpy() reconstruction_batch = reconstruction_batch.reshape( reconstruction_batch.shape[0], reconstruction_batch.shape[2], reconstruction_batch.shape[3], reconstruction_batch.shape[1] ) reconstruction_batch = reconstruction_batch.cpu().detach().numpy() images.extend(image_batch) labels.extend(label) reconstructions.extend(reconstruction_batch) vis_images = images[1000: 1000 + num_images] vis_reconstructions = reconstructions[1000: 1000 +num_images] vis_labels = labels[1000: 1000 + num_images] # visualisations.show_images_and_reconstructions(np.array(vis_images), title, vis_labels) visualisations.show_images_and_reconstructions(np.array(vis_reconstructions), f'{title}_reconstructions', vis_labels) return np.array(images), np.array(reconstructions),
np.array(labels)
numpy.array
# Author: <NAME> <<EMAIL>> import numpy as np from scipy.optimize import fmin_l_bfgs_b def global_optimization(objective_function, boundaries, optimizer, maxf, x0=None, approx_grad=True, random=np.random, *args, **kwargs): """Maximize objective_function within given boundaries. This function optimizes an objective function in a search space with the given boundaries. The optimizer may use up to maxf evaluations of the objective function. The optimizer is specified by a string which may be any of "direct", "direct+lbfgs", "random", "random+lbfgs", "cmaes", or "cmaes+lbfgs". """ if optimizer in ["direct", "direct+lbfgs"]: # Use DIRECT to perform approximate global optimization of # objective_function try: import nlopt except ImportError: raise Exception("'direct' optimizer requires the package nlopt." "You may install it using " "'sudo apt-get install python-nlopt'") nlopt.srand(0) opt = nlopt.opt(nlopt.GN_DIRECT_L_RAND, boundaries.shape[0]) opt.set_lower_bounds(boundaries[:, 0]) opt.set_upper_bounds(boundaries[:, 1]) opt.set_maxeval(maxf) def prox_func(params, grad): # Note: nlopt minimizes function, hence the minus func_value = -objective_function(params) if np.iterable(func_value): return func_value[0] else: return func_value opt.set_min_objective(prox_func) x0 = opt.optimize(boundaries.mean(1)) elif optimizer in ["random", "random+lbfgs"]: # Sample maxf points uniform randomly from the search space and # remember the one with maximal objective value if x0 is not None: f_opt = objective_function(x0) else: f_opt = -np.inf for _ in range(maxf): x0_trial = \ random.uniform(size=boundaries.shape[0]) \ * (boundaries[:, 1] - boundaries[:, 0]) \ + boundaries[:, 0] f_trial = objective_function(x0_trial) if f_trial > f_opt: f_opt = f_trial x0 = x0_trial elif optimizer in ["cmaes", "cmaes+lbfgs"]: # Use CMAES to perform approximate global optimization of # objective_function if x0 is None: x0 = boundaries.mean(1) x0 = fmin_cma(lambda x, compute_gradient=False: -objective_function(x), x0=x0, xL=boundaries[:, 0], xU=boundaries[:, 1], sigma0=kwargs.get("sigma0", 0.01), maxfun=maxf) elif x0 is None: raise Exception("Unknown optimizer %s and x0 is None." % optimizer) if optimizer in ["direct", "random", "cmaes"]: # return DIRECT/Random/CMAES solution without refinement return x0 elif optimizer in ["lbfgs", "direct+lbfgs", "random+lbfgs", "cmaes+lbfgs"]: # refine solution with L-BFGS def proxy_function(x): return -objective_function(x) res = fmin_l_bfgs_b(proxy_function, x0, approx_grad=True, bounds=boundaries, disp=0) return res[0] else: raise Exception("Unknown optimizer %s" % optimizer) def fmin_cma(objective_function, x0, xL, xU, sigma0=0.01, maxfun=1000): """ Minimize objective function in hypercube using CMA-ES. This function optimizes an objective function in a search space bounded by a hypercube. One corner of the hypercube is given by xL and the opposite by xU. The initial mean of the search distribution is given by x0. The search space is scaled internally to the unit hypercube to accommodate CMA-ES. Parameters ---------- objective_function : callable The objective function to be minimized. Must return a scalar value x0 : array-like Initial mean of the search distribution xL: array-like Lower, left corner of the bounding hypercube xU: array-like Upper, right corner of the bounding hypercube sigma0: float, default=0.01 Initial variance of search distribution of CMA-ES maxfun: int, default=1000 Maximum number of evaluations of the objective function after which the optimization is stopped. Returns ---------- x_opt : array-like The minimum of objective function identified by CMA-ES """ try: from bolero.optimizer import fmin except ImportError: raise Exception("'cmaes' optimizer requires the package bolero.") x0 = np.asarray(x0) xL =
np.asarray(xL)
numpy.asarray
from __future__ import absolute_import, division import numpy as np from ..logger import msg from ..utils import area_of_polygon, getMid def calc_kG(d, mesh, prop_from_node, silent=True): """Calculate the geometric stiffness matrix for a given input mesh Parameters ---------- d : (N) array-like Result from a static analysis, are used to compute the current membrane stress distribution mesh : :class:`pyNastran.bdf.BDF` object The object must have the proper edge references as those returned by :func:`.read_mesh` or :func:`.read_delaunay` prop_from_node : bool If the constitutive properties are assigned per node. Otherwise they are considered assigned per element Returns ------- kG : (N, N) array-like The geometric stiffness matrix """ msg('Calculating KG...', silent=silent) dof = 5 n = d.shape[0] // dof #TODO allocate less memory here... kG = np.zeros((n*dof, n*dof), dtype=np.float64) for edge in mesh.edges.values(): tria1 = edge.trias[0] Ac = edge.Ac ipts = edge.ipts mid1 = getMid(tria1) tmp = np.array([mid1, edge.n2.xyz, edge.n1.xyz]) Ac1 = area_of_polygon(tmp[:, 0], tmp[:, 1]) if len(edge.trias) == 1: tria2 = None elif len(edge.trias) == 2: tria2 = edge.trias[1] mid2 = getMid(tria2) tmp = np.array([mid2, edge.n1.xyz, edge.n2.xyz]) Ac2 = area_of_polygon(tmp[:, 0], tmp[:, 1]) else: raise RuntimeError('Found %d trias for edge' % len(edge.trias)) indices = set() for ipt in ipts: indices.add(ipt.n1.index) indices.add(ipt.n2.index) indices.add(ipt.n3.index) indices = sorted(list(indices)) if len(ipts) == 3: indices.append(0) # fourth dummy index indexpos = dict([[ind, i] for i, ind in enumerate(indices)]) i1, i2, i3, i4 = indices f1 = np.array([0, 0, 0, 0], dtype=float) f2 = np.array([0, 0, 0, 0], dtype=float) f3 = np.array([0, 0, 0, 0], dtype=float) f4 = np.array([0, 0, 0, 0], dtype=float) nx1 = ipts[0].nx ny1 = ipts[0].ny le1 = ipts[0].le f1[indexpos[ipts[0].n1.index]] = ipts[0].f1 f1[indexpos[ipts[0].n2.index]] = ipts[0].f2 f1[indexpos[ipts[0].n3.index]] = ipts[0].f3 nx2 = ipts[1].nx ny2 = ipts[1].ny le2 = ipts[1].le f2[indexpos[ipts[1].n1.index]] = ipts[1].f1 f2[indexpos[ipts[1].n2.index]] = ipts[1].f2 f2[indexpos[ipts[1].n3.index]] = ipts[1].f3 nx3 = ipts[2].nx ny3 = ipts[2].ny le3 = ipts[2].le f3[indexpos[ipts[2].n1.index]] = ipts[2].f1 f3[indexpos[ipts[2].n2.index]] = ipts[2].f2 f3[indexpos[ipts[2].n3.index]] = ipts[2].f3 if len(ipts) == 3: nx4 = 0 ny4 = 0 le4 = 0 else: nx4 = ipts[3].nx ny4 = ipts[3].ny le4 = ipts[3].le f4[indexpos[ipts[3].n1.index]] = ipts[3].f1 f4[indexpos[ipts[3].n2.index]] = ipts[3].f2 f4[indexpos[ipts[3].n3.index]] = ipts[3].f3 f11, f12, f13, f14 = f1 f21, f22, f23, f24 = f2 f31, f32, f33, f34 = f3 f41, f42, f43, f44 = f4 if prop_from_node: pn1 = edge.n1.prop pn2 = edge.n2.prop po1 = edge.othernode1.prop if tria2 is None: A = 4/9*pn1.A + 4/9*pn2.A + 1/9*po1.A B = 4/9*pn1.B + 4/9*pn2.B + 1/9*po1.B else: po2 = edge.othernode2.prop A = 5/12*pn1.A + 5/12*pn2.A + 1/12*po1.A + 1/12*po2.A B = 5/12*pn1.B + 5/12*pn2.B + 1/12*po1.B + 1/12*po2.B else: prop1 = tria1.prop if tria2 is None: A = prop1.A B = prop1.B else: prop2 = tria2.prop A = (Ac1*prop1.A + Ac2*prop2.A)/Ac B = (Ac1*prop1.B + Ac2*prop2.B)/Ac d1 = d[i1*dof: i1*dof+5] d2 = d[i2*dof: i2*dof+5] d3 = d[i3*dof: i3*dof+5] d4 = d[i4*dof: i4*dof+5] # d1... are [4, 4] [4, 5] dc = np.dot(
np.array([f1, f2, f3, f4])
numpy.array
# Copyright 2020 Makani Technologies LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for scoring functions.""" import logging from makani.lib.python.batch_sim import flight_modes as flight_modes_module import numpy as np from scipy import signal as sp_signal from scipy import stats from scipy.interpolate import interp1d # Define telemetry selectors. # To expand the dictionary, add variable in the format: # 'name':{ # 'source_a': lambda a: a[path to 'name' in source_a dictionary], # 'source_b': lambda b: b[path to 'name' in source_b dictionary], # 'method': 'interpolation method', default is 'linear', # ...} _TELEMETRY_SELECTORS = { 'time': { 'sim': lambda s: s['time'], 'control': lambda c: c['time']}, 'flight_mode': { 'control': lambda c: c['flight_mode'], 'method': 'nearest'}, 'flight_mode_time': { 'control': lambda c: c['flight_mode_time']}, 'gs02_mode': { 'control': lambda c: c['control_input']['gs_sensors']['mode'], 'sim': lambda s: s['gs02']['mode']}, 'gs02_transform_stage': { 'sim': lambda s: s['gs02']['transform_stage'], 'control': lambda c: c['control_input']['gs_sensors']['transform_stage']}, 'airspeed': { 'sim': lambda s: s['wing']['apparent_wind_b']['v'], 'control': lambda c: c['state_est']['apparent_wind']['sph_f']['v']}, 'airspeed_cmd': { 'control': lambda c: c['crosswind']['airspeed_cmd']}, 'apparent_wind_vector': { 'control': lambda c: c['state_est']['apparent_wind']['vector']}, 'body_rates': { 'sim': lambda s: s['wing']['omega'], 'control': lambda c: c['state_est']['pqr']}, 'alpha': { 'sim': lambda s: s['wing']['apparent_wind_b']['alpha'], 'control': lambda c: c['state_est']['apparent_wind']['sph_f']['alpha']}, 'alpha_cmd': { 'control': lambda c: c['crosswind']['alpha_cmd']}, 'beta': { 'sim': lambda s: s['wing']['apparent_wind_b']['beta'], 'control': lambda c: c['state_est']['apparent_wind']['sph_f']['beta']}, 'beta_cmd': { 'control': lambda c: c['crosswind']['beta_cmd']}, 'gs_azimuth_error': { 'sim': lambda s: s['gs02']['a_error']}, 'platform_azi': { 'sim': lambda s: s['gs02']['azimuth'], 'control': lambda c: c['control_input']['perch']['perch_azi'][:, 0]}, 'gs_detwist_cmd': { 'control': lambda c: c['control_output']['detwist_cmd']}, 'gs_detwist_pos': { 'control': lambda c: c['control_input']['gs_sensors']['detwist_pos']}, 'gsg_yoke': { 'sim': lambda s: s['gsg']['gsg_yoke'], 'control': lambda c: c['control_input']['gsg']['azi'][:, 0]}, 'gsg_termination': { 'sim': lambda s: s['gsg']['gsg_termination'], 'control': lambda c: c['control_input']['gsg']['ele'][:, 0]}, 'path_radius_target': { 'control': lambda c: c['crosswind']['path_radius_target']}, 'payout': { 'control': lambda c: c['state_est']['winch']['payout']}, 'wing_pos_cw': { 'control': lambda c: c['crosswind']['current_pos_cw']}, 'wing_pos_g_cmd': { 'control': lambda c: c['hover']['wing_pos_g_cmd']}, 'wing_xg': { 'sim': lambda s: s['wing']['Xg'], 'control': lambda c: c['state_est']['Xg']}, 'wing_acc': { 'sim': lambda s: s['wing']['Ab'], 'control': lambda c: c['state_est']['Ab_f']}, 'hover_angles': { 'control': lambda c: c['hover']['angles']}, 'hover_angles_cmd': { 'control': lambda c: c['hover']['angles_cmd']}, 'hover_gain_ramp_scale': { 'control': lambda c: c['hover']['gain_ramp_scale']}, 'angular_acc': { 'sim': lambda s: s['wing']['domega']}, 'tether_elevation': { # Because the vessel and platform frames differ only by a rotation # around the z-axis, elevations with respect to the two frames are # numerically equal. 'sim': lambda s: s['tether']['Xv_start_elevation'], 'control': lambda c: c['state_est']['tether_ground_angles']['elevation_p']}, 'tether_elevation_valid': { 'control': lambda c: c['state_est']['tether_ground_angles']['elevation_valid'] }, 'tether_azimuth': { 'sim': lambda s: s['tether']['Xv_start_azimuth']}, 'tether_tension': { 'sim': lambda s: s['wing']['tether_force_b']['tension'], 'control': lambda c: c['state_est']['tether_force_b']['sph']['tension']}, 'tether_tension_cmd': { 'control': lambda c: c['hover']['tension_cmd']}, 'tether_pitch': { 'sim': lambda s: s['wing']['tether_force_b']['pitch'], 'control': lambda c: c['state_est']['tether_force_b']['sph']['pitch']}, 'tether_roll': { 'sim': lambda s: s['wing']['tether_force_b']['roll'], 'control': lambda c: c['state_est']['tether_force_b']['sph']['roll']}, 'tether_moment': { 'sim': lambda s: s['wing']['fm_tether']['moment']}, 'tether_xg_start': { 'sim': lambda s: s['tether']['Xg_start'], 'control': lambda c: c['state_est']['tether_anchor']['pos_g']}, 'tether_xg_end': { 'sim': lambda s: s['tether']['Xg_end']}, 'tether_xg_nodes': { 'sim': lambda s: s['tether']['Xg_nodes']}, 'rotor_speeds': { 'sim': lambda s: abs(s['rotors']['omega']), # The controller telemetry already reports back absolute values. 'control': lambda c: c['control_input']['rotors']}, 'rotor_freestream_speeds': { 'sim': lambda s: s['rotors']['v_freestream'], 'control': lambda c: c['v_app_locals']}, 'rotor_gyro_moments': { 'sim': lambda s: s['rotors']['gyro_moment']}, 'rotor_thrusts': { 'sim': lambda s: s['rotors']['thrust']}, 'motor_torques': { 'sim': lambda s: s['stacked_power_sys']['motor_torques']}, 'thrust_moment': { 'control': lambda c: c['thrust_moment']}, 'thrust_moment_avail': { 'control': lambda c: c['thrust_moment_avail']}, 'electric_power': { 'sim': lambda s: s['power_sys']['P_elec']}, 'aero_power': { 'sim': lambda s: s['rotors']['aero_power']}, 'flaps': { 'sim': lambda s: s['wing']['flaps'], 'control': lambda c: c['control_input']['flaps']}, 'servo_shaft_torques': { 'sim': lambda s: s['servo_sensor']['external_shaft_torques']}, 'wing_vel_trans_in': { 'control': lambda c: c['trans_in']['wing_vel_ti']}, 'wing_vel_trans_in_y_cmd': { 'control': lambda c: c['trans_in']['wing_vel_ti_y_cmd']}, 'wind_g_vector_f_slow': { 'control': lambda c: c['state_est']['wind_g']['vector_f_slow']}, 'ground_voltage': { 'sim': lambda s: s['stacked_power_sys']['ground_voltage']}, 'tether_current': { 'sim': lambda s: s['stacked_power_sys']['tether_current']}, 'block_voltages': { 'sim': lambda s: s['stacked_power_sys']['block_voltages']}, 'loop_angle': { 'control': lambda c: c['crosswind']['loop_angle'], 'method': 'nearest'}, 'dcm_g2b': { 'sim': lambda s: s['wing']['dcm_g2b']['d'], 'control': lambda c: c['state_est']['dcm_g2b']['d'], 'method': 'nearest'}, 'dcm_g2v': { 'sim': lambda s: s['buoy']['dcm_g2v']['d'], 'control': lambda c: c['state_est']['vessel']['dcm_g2v']['d'], 'method': 'nearest'}, 'buoy_xg': { 'sim': lambda s: s['buoy']['Xg'], 'control': lambda c: c['state_est']['vessel']['pos_g']}, 'accum_kite_loops': { 'control': lambda c: c['crosswind']['loop_count']}, 'accum_detwist_loops': { 'control': lambda c: c['detwist_loop_count']}, 'water_line': { 'sim': lambda s: s['buoy']['water_line_pos_z_v']}, 'buoy_yaw_angle_from_eq': { 'sim': lambda s: s['buoy']['yaw_angle_from_eq']}, 'buoy_accel_g': { 'sim': lambda s: s['buoy']['vessel_origin_accel_g']}, } def GetDistToWrappedLimits(value, start_limit, end_limit, wrap_left, wrap_right): """Returns value for min distance from value to limits on wrapped scale. Arguments: value: Value to be evaluated. Can be list-like or single value. Values must be between wrap_left and wrap_right. start_limit: The beginning of a range on wrapped scale. end_limit: The end of a range on wrapped scale. wrap_left: Minimum value for wrapping scale. wrap_right: Maximum value for wrapping scale. Returns: Minimum distance that value is from range limits. Positive values indicate value is between range specified by start_limit and end_limit. Negative values indicate value is outside of range. """ wrap_range = wrap_right - wrap_left if not hasattr(value, '__iter__'): value = [value] # Unwrap end limit if needed so limits are in order. if end_limit < start_limit: end_limit_ordered = end_limit + wrap_range else: end_limit_ordered = end_limit for ii, v in enumerate(value): assert v >= wrap_left and v <= wrap_right, ( 'Values must be between wrap_left and wrap_right.') if end_limit < start_limit and v < end_limit: # If limits go around wrap and value was in limits before wrap, # unwrap value. v += wrap_range if v > start_limit and v < end_limit_ordered: # If inside the bad range, give positive value value[ii] = min(abs(v - start_limit), abs(v - end_limit_ordered)) else: # If outside bad range, give negative value. value[ii] = -min(abs(v - start_limit), abs(v - end_limit_ordered), # Also check wrapped values to limits. abs(v + wrap_range - end_limit_ordered), abs(v - wrap_range - start_limit)) if len(value) == 1: return value[0] else: return value def _GetValueAndSource(sim, control, name, sources): """Returns value of specified telemetry 'name' and 'source'. Arguments: sim: Simulator telemetry dictionary. control: Controller telemetry dictionary. name: [string] Telemetry variable e.g. 'airspeed' or 'alpha'. sources: [list of strings] The list of telemetry sources in their priority order. Data is returned from the first source that's available, and data from other sources are interpolated accordingly. Raises: ValueError: Requested 'name' not available. """ if name not in _TELEMETRY_SELECTORS: raise ValueError('Requested name "%s" not available.' % name) all_sources = _TELEMETRY_SELECTORS[name].keys() for source in sources: if source in all_sources: selector = _TELEMETRY_SELECTORS[name][source] telemetry = None if source == 'sim' and sim is not None: telemetry = sim elif source == 'control' and control is not None: telemetry = control if telemetry is not None: try: return selector(telemetry), source except ValueError: logging.error('Cannot find "%s" in %s".', name, source) return None, None return None, None def _GetFlightModesIndices(flight_mode_timeseries, flight_modes): """Returns indices corresponding flight mode specified. Arguments: flight_mode_timeseries: 'flight_mode' timeseries data. flight_modes: [string or list of strings] Optional flight mode. For example, 'kFlightModeCrosswindNormal' or ['kFlightModeCrosswindNormal', 'kFlightModeCrosswindPrepTransOut']. """ if isinstance(flight_modes, str): flight_modes = [flight_modes] modes_indices = np.empty(0, dtype=int) for flight_mode in flight_modes: mode_indices = np.argwhere( flight_mode_timeseries == flight_modes_module.GetFlightModes()[flight_mode]) modes_indices = np.append(modes_indices, mode_indices) return np.sort(modes_indices) # Note: Since interpolation of integer array is performed here, there is a # possibility of offsetting flight mode transitions by a cycle. def _GetInterpolatedValue(sim_time, control_time, data_value, method): """Returns control telemetry data_value interpolated to simulator time.""" if not method: method = 'linear' def _Interpolate(sim_time, control_time, data_value): # pylint: disable=missing-docstring assert data_value.shape if len(data_value.shape) == 1: if np.size(data_value) == 1: return data_value.repeat(sim_time.size) else: return interp1d(control_time, data_value, kind=method, bounds_error=False, axis=0, fill_value=(data_value[0], data_value[-1]))(sim_time) else: # If this an N-D array where N > 1 (e.g., motor_voltages[:, 8]), # each slice of this array needs to be interpolated. new_shape = (sim_time.shape[0],) + data_value.shape[1:] data_out = np.empty(new_shape, dtype=data_value.dtype) for i in np.nditer(data_value.shape[1:]): slice_index = [slice(None)] + list(i) source_value = data_value[slice_index] data_out[slice_index] = interp1d( control_time, source_value, kind=method, bounds_error=False, axis=0, fill_value=(source_value[0], source_value[-1]))( sim_time) return data_out if isinstance(data_value, dict): all_fields = data_value.keys() data_value_out = {} elif isinstance(data_value, np.ndarray) and data_value.dtype.names: all_fields = data_value.dtype.names new_shape = (len(sim_time),) + data_value.shape[1:] data_value_out = np.empty(new_shape, dtype=data_value.dtype) else: if
np.isnan(data_value)
numpy.isnan
#!/usr/bin/env python # coding: utf-8 from typing import Tuple import numpy as np import PathReducer.calculate_rmsd as rmsd import pandas as pd import math import glob import os import sys import ntpath import MDAnalysis as mda import PathReducer.plotting_functions as plotting_functions from periodictable import * from sklearn import * from sympy import solve, Symbol def path_leaf(path): head, tail = ntpath.split(path) return tail or ntpath.basename(head) def read_traj_file(*args, **kwargs) -> Tuple[str, np.ndarray, np.ndarray]: """ Reads in a trajectory using MDAnalysis' Universe class, documentation and information on parameters found here: (https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe). A topology file is always required, however there are multiple ways of setting up a universe for a trajectory. Examples include: u = Universe(topology, trajectory) # read system from file(s) u = Universe(pdbfile) # read atoms and coordinates from PDB or GRO u = Universe(topology, [traj1, traj2, ...]) # read from a list of trajectories u = Universe(topology, traj1, traj2, ...) # read from multiple trajectories The trajectory being read in should be already pruned (of explicit solvent, backbone residues, and anything that you don't want PCA to capture. The function then returns a numpy array of all of the atom types of the system, and a numpy array of the Cartesian coordinates of each atom for every frame. :param topology: str (.pdb, .top, .gro etc) :param coordinates: str (.dcd, .nc, .xyz etc) :return extensionless_system_name atom_list cartesians """ u = mda.Universe(*args, **kwargs) system_name = path_leaf(u.filename) extensionless_system_name = os.path.splitext(system_name)[0] n_frames = len(u.trajectory) n_atoms = len(u.atoms) cartesians = np.ndarray((n_frames, n_atoms, 3)) try: atom_list = u.atoms.elements except AttributeError: atom_list = u.atoms.types for frame_index, ts in enumerate(u.trajectory): cartesians[frame_index] = ts.positions return extensionless_system_name, atom_list, cartesians def read_xyz_file(path): """ Reads in an xyz file from path as a DataFrame. This DataFrame is then turned into a 3D array such that the dimensions are (number of points) X (number of atoms) X 3 (Cartesian coordinates). The system name (based on the filename), list of atoms in the system, and Cartesian coordinates are output. :param path: path to xyz file to be read :return extensionless_system_name: str atom_list: numpy array cartesians: numpy array """ system_name = path_leaf(path) print("File being read is: %s" % system_name) extensionless_system_name = os.path.splitext(system_name)[0] data = pd.read_csv(path, header=None, delim_whitespace=True, names=['atom', 'X', 'Y', 'Z']) n_atoms = int(data.loc[0][0]) n_lines_per_frame = int(n_atoms + 2) data_array = np.array(data) data_reshape = np.reshape(data_array, (int(data_array.shape[0]/n_lines_per_frame), n_lines_per_frame, data_array.shape[1])) cartesians = data_reshape[:, 2::, 1::].astype(np.float) atom_list = data_reshape[0, 2::, 0] return extensionless_system_name, atom_list, cartesians def remove_atoms_by_type(atom_types_to_remove, atom_list, cartesians): """ Removes specific atoms if they are not wanted for PCA :param atom_list: list of atoms in the structure :param cartesians: cartesian coordinates of each frame :return: cartesian coordinates of each frame with specific atom types removed """ matches_indexes = [i for i, x in enumerate(atom_list) if x in atom_types_to_remove] cartesians_sans_atoms = np.delete(cartesians, list(matches_indexes), axis=1) atom_list_sans_atoms = np.delete(atom_list, list(matches_indexes), axis=0) return atom_list_sans_atoms, cartesians_sans_atoms def calculate_velocities(cartesians, timestep=1): """ Calculate velocities at each timestep given Cartesian coordinates. Velocities at the first and last point are extrapolated. :param cartesians: Cartesian coordinates along trajectory :param timestep: time step between frames in units of fs, default=1 :return: velocities """ velocities = [] for i in range(0, len(cartesians)): if i == 0: velocity = (cartesians[i + 1] - cartesians[i]) / timestep elif i == len(cartesians) - 1: velocity = (cartesians[i] - cartesians[i - 1]) / timestep else: velocity = (cartesians[i + 1] - cartesians[i - 1]) / 2 * timestep velocities.append(velocity) return velocities def calculate_momenta(velocities, atoms): """ :param cartesians: Cartesian coordinates along trajectory :param timestep: time step between frames in units of fs, default=1 :return: velocities """ velocities = np.array(velocities) atoms = np.array(atoms) atom_masses = np.array([formula(atom).mass for atom in atoms]) momenta = velocities * atom_masses[np.newaxis, :, np.newaxis] return momenta def set_atom_one_to_origin(coordinates): coordinates_shifted = coordinates - coordinates[:, np.newaxis, 0] return coordinates_shifted def mass_weighting(atoms, cartesians): cartesians = np.array(cartesians) atoms = np.array(atoms) atom_masses = [formula(atom).mass for atom in atoms] weighting = np.sqrt(atom_masses) mass_weighted_cartesians = cartesians * weighting[np.newaxis, :, np.newaxis] return mass_weighted_cartesians def remove_mass_weighting(atoms, coordinates): coordinates = np.array(coordinates) atoms = np.array(atoms) atom_masses = [formula(atom).mass for atom in atoms] weighting = np.sqrt(atom_masses) unmass_weighted_coords = coordinates / weighting[np.newaxis, :, np.newaxis] return unmass_weighted_coords def generate_distance_matrices(coordinates): """ Generates distance matrices for each structure. """ coordinates = np.array(coordinates) d2 = np.sum((coordinates[:, :, None] - coordinates[:, None, :]) ** 2, axis=3) return d2 def generate_dihedral_matrices(coordinates): return coordinates def generate_and_reshape_ds_big_structures(coordinates): """ Generates matrix of pairwise distances, which includes pairwise distances for each structure. :param coordinates: """ coordinates = np.array(coordinates) atoms = int(coordinates.shape[1]) d_re = np.zeros((coordinates.shape[0], int(atoms * (atoms - 1) / 2))) for i in range(coordinates.shape[0]): d2 = np.square(metrics.pairwise.euclidean_distances(coordinates[i])) x = d2[0].shape[0] dint_re = d2[np.triu_indices(x, k=1)] d_re[i] = dint_re return d_re def reshape_ds(d): """ Takes only the upper triangle of the distance matrices and reshapes them into 1D arrays. """ d_re = [] x = d[0][0].shape[0] for dint in d: dint_re = dint[np.triu_indices(x, k=1)] d_re.append(dint_re) d_re = np.asarray(d_re) return d_re def vector_to_matrix(v): """ Converts a representation from 1D vector to 2D square matrix. Slightly altered from rmsd package to disregard zeroes along diagonal of matrix. :param v: 1D input representation. :type v: numpy array :return: Square matrix representation. :rtype: numpy array """ if not (np.sqrt(8 * v.shape[0] + 1) == int(np.sqrt(8 * v.shape[0] + 1))): print("ERROR: Can not make a square matrix.") exit(1) n = v.shape[0] w = ((-1 + int(np.sqrt(8 * n + 1))) // 2) + 1 m = np.zeros((w, w)) index = 0 for i in range(w): for j in range(w): if i > j - 1: continue m[i, j] = v[index] m[j, i] = m[i, j] index += 1 return m def distance_matrix_to_coords(v): """ Converts a (2D square) distance matrix representation of a structure to Cartesian coordinates (first 3 columns correspond to 3D xyz coordinates) via a Gram matrix. :param v: 1D vector, numpy array :return: 3D Cartesian coordinates, numpy array """ d = vector_to_matrix(v) d_one = np.reshape(d[:, 0], (d.shape[0], 1)) m = (-0.5) * (d - np.matmul(np.ones((d.shape[0], 1)), np.transpose(d_one)) - np.matmul(d_one,
np.ones((1, d.shape[0]))
numpy.ones
# coding=utf-8 import numpy as np import pandas as pd import pytest from matplotlib import pyplot as plt from pythonpic.algorithms.current_deposition import current_deposition from pythonpic.classes import Particle, PeriodicTestGrid, NonperiodicTestGrid from pythonpic.classes import TestSpecies as Species from pythonpic.configs.run_laser import initial, npic, number_cells from pythonpic.helper_functions.helpers import make_sure_path_exists from pythonpic.helper_functions.physics import lightspeed, electric_charge, \ electron_rest_mass @pytest.fixture(params=np.arange(3, 4, 0.2)) def _position(request): return request.param @pytest.fixture(params=np.arange(-0.9, 1, 0.2)) def _velocity(request): return request.param @pytest.fixture(params=(True, False)) def _truefalse(request): return request.param _truefalse2 = _truefalse def error_table(investigated_density, target_density): inexact_indices = investigated_density != target_density error = investigated_density - target_density error[inexact_indices] *= 100 / target_density[inexact_indices] return error def test_single_particle_longitudinal_deposition(_position, _velocity): g = NonperiodicTestGrid(T = 1, L=7, NG=7) s = Particle(g, _position * g.dx, _velocity, ) dt = g.dt g.current_density_x[...] = 0 g.current_density_yz[...] = 0 # current_deposition(g, s, dt) current_deposition(g.current_density_x, g.current_density_yz, s.v, s.x, g.dx, dt, s.q) collected_longitudinal_weights = g.current_density_x.sum() / s.v[0, 0] def plot_longitudinal(): fig, ax = plt.subplots() ax.scatter(s.x, 0) new_positions = s.x + s.v[:, 0] * dt title = f"x0: {s.x[0]} v: {s.v[0,0]} x1: {new_positions[0]} w: {collected_longitudinal_weights}" ax.annotate(title, xy=(new_positions[0], 0), xytext=(s.x[0], 0.3), arrowprops=dict(facecolor='black', shrink=0.05, linewidth=0.5), horizontalalignment='right') ax.set_xticks(g.x) ax.set_xticks(np.arange(0, g.L, g.dx / 2), minor=True) ax.grid(which='minor', alpha=0.3) ax.grid(which='major', alpha=0.7) ax.set_title(title) ax.scatter(new_positions, 0) ax.plot(g.x, g.current_density_x[1:-2], "go-", alpha=0.7, linewidth=3, label=f"jx") ax.legend() plt.show() return title + " instead of 1" assert np.isclose(collected_longitudinal_weights, 1), plot_longitudinal() def test_single_particle_transversal_deposition(_position, _velocity): g = PeriodicTestGrid(1, L=7, NG=7) s = Particle(g, _position * g.dx, _velocity, 1, -1) dt = g.dx / s.c new_positions = s.x + s.v[:, 0] * dt g.current_density_x[...] = 0 g.current_density_yz[...] = 0 print("\n\n=====Start run===") # current_deposition(g, s, dt) current_deposition(g.current_density_x, g.current_density_yz, s.v, s.x, g.dx, dt, s.q) total_currents = g.current_density_yz.sum(axis=0) / s.v[0, 1:] total_sum_currents = g.current_density_yz.sum() x_velocity = s.v[0, 0] collected_transversal_weights = total_currents print("total", total_currents) print("x velocity", x_velocity) print("weights", collected_transversal_weights) def plot_transversal(): fig, ax = plt.subplots() ax.scatter(s.x, 0) title = f"x0: {s.x[0]} v: {s.v[0,0]} x1: {new_positions[0]:.3f} w: {collected_transversal_weights}" ax.annotate(title, xy=(new_positions[0], 0), xytext=(s.x[0], 0.3), arrowprops=dict(facecolor='black', shrink=0.05, linewidth=0.5), horizontalalignment='right') ax.set_xticks(g.x) ax.set_xticks(np.arange(0, g.L, g.dx / 2), minor=True) ax.grid(which='minor', alpha=0.3) ax.grid(which='major', alpha=0.7) ax.set_title(title) ax.scatter(new_positions, 0) for i, label in {1: 'y', 2: 'z'}.items(): ax.plot(g.x + 0.5, g.current_density_yz[1:-1, i - 1], "o-", alpha=0.7, linewidth=i + 3, label=f"j{label}") ax.legend() plt.show() return title + " instead of 1" assert np.allclose(collected_transversal_weights, 1), plot_transversal() assert
np.isclose(total_sum_currents, 0)
numpy.isclose
# # RawIO # Copyright (c) 2021 <NAME>. # from cv2 import getRotationMatrix2D, warpPerspective from lsd import line_segment_detector from numpy import abs, array, asarray, arctan2, pi, rad2deg, vstack, zeros_like from PIL import Image from sklearn.linear_model import RANSACRegressor from .constrain import constrain_crop_transform def align_level (image: Image.Image, constrain_crop: bool=True, max_theta: float=4., max_trials: int=2000) -> Image.Image: """ Level an image. Parameters: image (PIL.Image): Input image. constrain_crop (bool): Apply a constrain crop to remove borders. max_theta (float): Maximum angle that can be corrected in degrees. max_trials (int): Maximum trials for fitting geometry model. Returns: PIL.Image: Result image. """ # Extract lines scale = 1200. / image.width min_length = image.width * 0.05 image_arr = asarray(image) lines = line_segment_detector(image_arr, scale=scale, angle_tolerance=18.) lines = lines[lines[:,6] > min_length,:4] # Get vertical lines MAX_ANGLE = 12. lines_t = rad2deg(
arctan2(lines[:,3] - lines[:,1], lines[:,2] - lines[:,0])
numpy.arctan2
import cv2 import time import numpy as np from random import randint import argparse from predict import * import glob parser = argparse.ArgumentParser(description='Run keypoint detection') parser.add_argument("--device", default="gpu", help="Device to inference on") parser.add_argument("--image_file", default="group.jpg", help="Input image") parser.add_argument("--image_folder", help="Input folder") parser.add_argument("--video_file", help="Input video") parser.add_argument("--protoFile", default="group.jpg", help="Input image") parser.add_argument("--weightsFile", default="group.jpg", help="Input image") args = parser.parse_args() protoFile = args.protoFile weightsFile = args.weightsFile nPoints = 18 # COCO Output Format keypointsMapping = ['Nose', 'Neck', 'R-Sho', 'R-Elb', 'R-Wr', 'L-Sho', 'L-Elb', 'L-Wr', 'R-Hip', 'R-Knee', 'R-Ank', 'L-Hip', 'L-Knee', 'L-Ank', 'R-Eye', 'L-Eye', 'R-Ear', 'L-Ear'] POSE_PAIRS = [[1,2], [1,5], [2,3], [3,4], [5,6], [6,7], [1,8], [8,9], [9,10], [1,11], [11,12], [12,13], [1,0], [0,14], [14,16], [0,15], [15,17], [2,17], [5,16] ] # index of pafs correspoding to the POSE_PAIRS # e.g for POSE_PAIR(1,2), the PAFs are located at indices (31,32) of output, Similarly, (1,5) -> (39,40) and so on. mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44], [19,20], [21,22], [23,24], [25,26], [27,28], [29,30], [47,48], [49,50], [53,54], [51,52], [55,56], [37,38], [45,46]] colors = [ [0,100,255], [0,100,255], [0,255,255], [0,100,255], [0,255,255], [0,100,255], [0,255,0], [255,200,100], [255,0,255], [0,255,0], [255,200,100], [255,0,255], [0,0,255], [255,0,0], [200,200,0], [255,0,0], [200,200,0], [0,0,0]] def getKeypoints(probMap, threshold=0.1): mapSmooth = cv2.GaussianBlur(probMap,(3,3),0,0) mapMask = np.uint8(mapSmooth>threshold) keypoints = [] #find the blobs contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #for each blob find the maxima for cnt in contours: blobMask = np.zeros(mapMask.shape) blobMask = cv2.fillConvexPoly(blobMask, cnt, 1) maskedProbMap = mapSmooth * blobMask _, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap) keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],)) return keypoints # Find valid connections between the different joints of a all persons present def getValidPairs(output): valid_pairs = [] invalid_pairs = [] n_interp_samples = 10 paf_score_th = 0.1 conf_th = 0.7 # loop for every POSE_PAIR for k in range(len(mapIdx)): # A->B constitute a limb pafA = output[0, mapIdx[k][0], :, :] pafB = output[0, mapIdx[k][1], :, :] pafA = cv2.resize(pafA, (frameWidth, frameHeight)) pafB = cv2.resize(pafB, (frameWidth, frameHeight)) # Find the keypoints for the first and second limb candA = detected_keypoints[POSE_PAIRS[k][0]] candB = detected_keypoints[POSE_PAIRS[k][1]] nA = len(candA) nB = len(candB) # If keypoints for the joint-pair is detected # check every joint in candA with every joint in candB # Calculate the distance vector between the two joints # Find the PAF values at a set of interpolated points between the joints # Use the above formula to compute a score to mark the connection valid if( nA != 0 and nB != 0): valid_pair = np.zeros((0,3)) for i in range(nA): max_j=-1 maxScore = -1 found = 0 for j in range(nB): # Find d_ij d_ij = np.subtract(candB[j][:2], candA[i][:2]) norm = np.linalg.norm(d_ij) if norm: d_ij = d_ij / norm else: continue # Find p(u) interp_coord = list(zip(np.linspace(candA[i][0], candB[j][0], num=n_interp_samples), np.linspace(candA[i][1], candB[j][1], num=n_interp_samples))) # Find L(p(u)) paf_interp = [] for k in range(len(interp_coord)): paf_interp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))], pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))] ]) # Find E paf_scores =
np.dot(paf_interp, d_ij)
numpy.dot
# 对数据集中的点云,批量执行构建树和查找,包括kdtree和octree,并评测其运行时间 import random import math import numpy as np import time import os import struct from scipy.spatial import KDTree import octree as octree import kdtree as kdtree from result_set import KNNResultSet, RadiusNNResultSet np.seterr(all='raise') def read_velodyne_bin(path): ''' :param path: :return: homography matrix of the point cloud, N*3 ''' pc_list = [] with open(path, 'rb') as f: content = f.read() pc_iter = struct.iter_unpack('ffff', content) for idx, point in enumerate(pc_iter): pc_list.append([point[0], point[1], point[2]]) return np.asarray(pc_list, dtype=np.float32) def main(): # configuration leaf_size = 32 min_extent = 0.0001 k = 8 radius = 1 # root_dir = '/Users/renqian/cloud_lesson/kitti' # 数据集路径 root_dir = './data' # 数据集路径 cat = os.listdir(root_dir) iteration_num = len(cat) print("scipy ---------------") construction_time_sum = 0 knn_time_sum = 0 radius_time_sum = 0 brute_time_sum = 0 for i in range(iteration_num): filename = os.path.join(root_dir, cat[i]) db_np = read_velodyne_bin(filename) begin_t = time.time() root = KDTree(db_np, leaf_size) construction_time_sum += time.time() - begin_t begin_t = time.time() query = db_np[0, :] result_set = KNNResultSet(capacity=k) distance, indices = root.query(x=query, k=k) output = '' for i, item in enumerate(zip(indices, distance)): output += '%d - %.2f\n' % (item[0], item[1]) # print(output) knn_time_sum += time.time() - begin_t begin_t = time.time() indices = root.query_ball_point(query, radius) output = '' for i, index in enumerate(indices): output += '%d - %.2f\n' % (index,
np.linalg.norm(db_np[index] - query)
numpy.linalg.norm
""" This module contains a class GwGxg that calculates some descriptive statistics from a series of groundwater head measurements used by groundwater practitioners in the Netherlands History: Created 16-08-2015, last updated 12-02-1016 Migrated to acequia on 15-06-2019 @author: <NAME> """ import math from datetime import datetime import datetime as dt import warnings import numpy as np from pandas import Series, DataFrame import pandas as pd import acequia as aq def stats_gxg(ts,reflev='datum'): """Return table with GxG statistics Parameters ---------- ts : aq.GwSeries, pd.Series Groundwater head time series reflev : {'datum','surface'}, optional Reference level for groundwater heads Returns ------- pd.DataFrame """ gxg = aq.GxgStats(ts) return gxg.gxg(reflev=reflev) class GxgStats: """Calculate descriptive statistics for time series of measured heads Parameters ---------- gw : aq.GwSeries, pd.Series timeseries of groundwater head measurements relative to datum level srname : str, optional name of groundwater head series surface : float, optional surface level height (if ref='datum' this option is ignored) Notes ----- In the Netherlands, traditionally groundwater head series are summarized using decriptive statistics that characterise the mean highest level (GHG), the mean lowest level (GLG) and the mean spring level (GVG). These three measures together are reffered to as the GxG. The definitions of GHG, GLG and GVG are based on time series with measured heads on the 14th and 28th of each month. Therefore the time series of measrued heads is internally resampled to values on the 14th and 28yh before calculating the GxG statistics. For further reference: <NAME> and <NAME> (1985). 'Water table classes: a method to decribe seasonal fluctuation and duration of water table classes on Dutch soil maps.' Agricultural Water Management 10 (1985) 109 - 125. Elsevier Science Publishers, Amsterdam. """ N14 = 18 ## REFERENCE = ['datum','surface'] APPROXIMATIONS = ['SLUIJS82','HEESEN74','SLUIJS76a','SLUIJS76b', 'SLUIJS89pol','SLUIJS89sto','RUNHAAR89','GAAST06',] VGDATES = ['apr1','apr15','mar15'] VGREFDATE = 'apr1' def __init__(self, gw, srname=None, surface=None): """Return GxG object""" if isinstance(gw,aq.GwSeries): self._ts = gw.heads(ref='datum') self.srname = gw.name() if surface is None: self._surface = gw.surface() else: self._surface = surflevel self._gw = gw elif isinstance(gw,pd.Series): self._ts = gw self.srname = self._ts.name self._surface = surface self._gw = None else: raise(f'{gw} is not of type aq.GwSeries or pd.Series') self._ts1428 = aq.ts1428(self._ts,maxlag=3,remove_nans=False) self._xgnap = self._calculate_xg_nap() def _yearseries(self,ts,dtype='float64'): """Return empty time series with years as index with all years between min(year) and max(year) in index (no missing years)""" if isinstance(ts,pd.Series): years = set(ts.index.year) elif isinstance(ts,(list,set,np.ndarray)): years = set(ts) else: raise(f'{ts} must be list-like') minyear = min(years) maxyear= max(years) sr = Series(index=range(minyear,maxyear+1),dtype=dtype,name='year') return sr def vg3(self): """Return VG3 (Spring Level) for each year VG3 is calculated as the mean of groundwater head levels on 14 march, 28 march and 14 april Return ------ pd.Series Notes ----- Calculation of GVG based on the average of three dates was introduced by Finke et al. (1999) References ---------- <NAME>., <NAME>, <NAME>, <NAME>, <NAME> & <NAME> (1999). Actuele grondwaterinformatie 1:10.000 in de waterschappen Wold en Wieden en Meppelerdiep. Gebruik van digitale maaiveldshoogtes bij de kartering van GHG, GVG en GLG. SC-rapport 633. (in Dutch). """ self._vg3 = self._yearseries(self._ts1428) for i,year in enumerate(self._vg3.index): v1 = self._ts1428[dt.datetime(year,3,14)] v2 = self._ts1428[dt.datetime(year,3,28)] v3 = self._ts1428[dt.datetime(year,4,14)] with warnings.catch_warnings(): # numpy raises a silly warning with nanmean on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty slice') self._vg3[year] = np.round(np.nanmean([v1,v2,v3]),2) self._vg3.name = 'VG3' return self._vg3 def vg1(self,refdate=VGREFDATE,maxlag=7): """Return VG (Spring Level) for each year as the measurement closest to refdate Parameters ---------- refdate : {'apr1','apr15','mar15'}, default 'apr1' reference date for estimating VG maxlag : number maximum allowed difference between measurement date en refdate Return ------ pd.Series Notes ----- The VG (Voorjaars Grondwaterstand, Spring Level) is estimated as the single measurement closest to the reference date given by refdate. The reference date for calculation of the GVG was changed from april 15 to april 1st in de early eighties. In 2000 the Cultuurtechnisch Vademecum proposed march 15 as the new reference date for the GVG but this proposal was not generally adopted. In practice april 1st is allways used as reference date and this is used as default for calculations. References ---------- <NAME>, J.W.J., <NAME> & <NAME> (2009). Actuele grondwaterstandsituatie in natuurgebieden. Rapport 94 WOT. Alterra, Wageningen. (in Dutch). """ if refdate not in self.VGDATES: warnings.warn((f'Reference date {refdate} for GVG is not ' f'recognised. Reference date \'{self.VGREFDATE}\' is ' f'assumed.')) refdate = self.VGREFDATE vg1 = self._yearseries(self._ts1428) for i,year in enumerate(vg1.index): if refdate=='apr1': date = dt.datetime(year,4,1) if refdate=='apr15': date = dt.datetime(year,4,15) if refdate=='mar15': date = dt.datetime(year,3,15) daydeltas = self._ts.index - date mindelta = np.amin(np.abs(daydeltas)) sr_nearest = self._ts[np.abs(daydeltas) == mindelta] maxdelta = pd.to_timedelta(f'{maxlag} days') if (mindelta <= maxdelta): vg1[year] = np.round(sr_nearest.iloc[0],2) vg1.name = f'VG{refdate}' return vg1 def _calculate_xg_nap(self): """Calculate xg statistics for eacht year and return table""" hydroyears = aq.hydroyear(self._ts1428) sr = self._yearseries(hydroyears) xg = pd.DataFrame(index=sr.index) xg.index.name = 'year' for year in xg.index: ts = self._ts1428[hydroyears==year] ts = ts[ts.notnull()] n1428 = len(ts) if not np.isnan(n1428): n1428 = math.floor(n1428) hg3 = np.nan lg3 = np.nan if n1428 >= self.N14: hg3 = ts.nlargest(n=3).mean() lg3 = ts.nsmallest(n=3).mean() hg3w = np.nan lg3s = np.nan if n1428 >= self.N14: ts_win = ts[aq.season(ts)=='winter'] ts_sum = ts[aq.season(ts)=='summer'] hg3w = ts_win.nlargest(n=3).mean() lg3s = ts_sum.nsmallest(n=3).mean() xg.loc[year,'hg3'] = np.round(hg3,2) xg.loc[year,'lg3'] = np.round(lg3,2) xg.loc[year,'hg3w'] = np.round(hg3w,2) xg.loc[year,'lg3s'] = np.round(lg3s,2) xg['vg3'] = self.vg3() for date in self.VGDATES: xg[f'vg_{date}'] = self.vg1(refdate=date) xg.loc[year,'n1428'] = n1428 return xg def xg(self,reference='datum',name=True): """Return table of GxG groundwater statistics for each hydrological year Parameters ---------- reference : {'datum','surface'}, default 'datum' reference level for gxg statistics name : bool, default True include series name in index Return ------ pd.DataFrame""" if reference not in ['datum','surface']: warnings.warn((f'Reference level \'{reference}\' is not allowed. ' f'Reference level \'datum\' is assumed.')) reference = 'datum' xg = self._xgnap.copy() if name==True: xg = pd.concat({self.srname: xg}, names=['series']) if reference=='datum': return xg for col in xg.columns: if col in ['n1428']: continue xg[col] = (self._surface - xg[col])*100 xg[col] = xg[col].apply(lambda x:math.floor(x) if not np.isnan(x) else x) ##if not np.isnan(xg[col]): ## xg[col] = math.floor(xg[col]) return xg def gxg(self,reference='datum',minimal=False): """Return table with GxG for one head series Parameters ---------- minimal : bool, default True return minimal selection of stats reference : {'datum','surface'}, default 'datum' reference level for gxg statistics Returns ------- pd.DataFrame""" """ if hasattr(self,'_minimal'): if self._minimal!=minimal: self._reset() self._minimal = minimal if self._reflev==reflev: if hasattr(self,'_gxg'): return self._gxg else: self._reset() self._validate_reflev (reflev) """ xg = self.xg(reference=reference,name=False) gxg = pd.Series(name=self.srname,dtype='object') for col in xg.columns: sr = xg[col][xg[col].notnull()] if reference=='datum': gxg[col] = np.round(sr.mean(),2) if reference=='surface': ##gxg[col] = np.round(sr.mean()) if not np.isnan(sr.mean()): gxg[col] = math.floor(sr.mean()) else: gxg[col] = np.nan if col=='n1428': gxg[col] = math.floor(sr.mean()) # calculate gt gxg['gt'] = self.gt() gxg['gxgref'] = reference # calculate std for col in xg.columns: if col in ['n1428',]: #'measfrq']: continue if reference=='datum': gxg[col+'_std'] = np.round(xg[col].std( skipna=True),2) elif reference=='surface': sr = xg[col] gxg[col+'_std'] = np.round(sr.std(skipna=True)) else: raise ValueError((f'Reference level {reference} is not valid.', f'Valid reference levels are \'datum\' or \'surface\'.')) # calculate standard error for col in xg.columns: if col in ['n1428',]: continue if reference=='datum': sr = xg[col] gxg[col+'_se'] = np.round(sr.std(skipna=True )/np.sqrt(sr.count()),2) if reference=='surface': sr = xg[col] gxg[col+'_se'] = np.round(sr.std(skipna=True )/np.sqrt(sr.count()),0) # count nyears for col in xg.columns: if col in ['n1428',]: continue sr = xg[col][xg[col].notnull()] gxg[f'{col}_nyrs'] = np.round(sr.count()) replacements = [('hg3','ghg'),('lg3','glg'),('vg','gvg'),] for old,new in replacements: gxg.index = gxg.index.str.replace(old,new) # gvg approximation formulas if reference=='surface': for apx in self.APPROXIMATIONS: rowname = 'gvg_'+apx.lower() gxg[rowname] = self.gvg_approximate(apx) self._gxg = gxg if minimal: colnames = ['ghg','glg','gvg3','gvg_apr1','gt','gxgref', 'n1428',] gxg = gxg[gxg.index.intersection(colnames)] return gxg def ghg(self): """Return mean highest level (GHG)""" if not hasattr(self,'_gxg'): self.gxg() return self._gxg['ghg'] def glg(self): """Return mean highest level (GHG)""" if not hasattr(self,'_gxg'): self.gxg() return self._gxg['glg'] def gt(self): """Return groundwater class table as str""" if not hasattr(self,'_xg'): self._calculate_xg_nap() # do not call self._gxg to avoid recursion error because gt() # is used in gxg() with warnings.catch_warnings(): # numpy raises a silly warning with nanmean on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty slice') ghg = (self._surface - np.nanmean(self._xgnap['hg3']))*100 glg = (self._surface - np.nanmean(self._xgnap['lg3']))*100 if (ghg<20) & (glg<50): return 'I' if (ghg<25) & (50<glg<80): return 'II' if (25<ghg<40) & (50<glg<80): return 'II*' if (ghg<25) & (80<glg<120): return 'III' if (25<ghg<40) & (80<glg<120): return 'III*' if (ghg>40) & (80<glg<120): return 'IV' if (ghg<25) & (glg>120): return 'V' if (25<ghg<40) & (glg>120): return 'V*' if (40<ghg<80) & (glg>120): return 'VI' if (80<ghg<140): return 'VII' if (ghg>140): return 'VII*' return np.nan # acer palmatum def gvg_approximate(self,formula=None): """Return GVG calculated with approximation based on GHG and GLG Parameters ---------- formula : {'VDS82','VDS89pol','VDS89sto','RUNHAAR'}, default 'VDS82' Notes ----- Values for GHG and GLG can be estimated from visual soil profile characteristics, allowing mapping of groundwater classes on soil maps. GVG unfortunately can not be estimeted is this way. Therefore, several regression formulas have been given in litera- ture for estimating GVG from GHG and GLG estimates. Three of them are implemented: <NAME> (1982), <NAME>uijs (1989) and Runhaar (1989)""" if formula is None: formula = self.APPROXIMATIONS[0] if formula not in self.APPROXIMATIONS: warnings.warn(f'GVG approximation formula name {formula} not' f'recognised. {self.APPROXIMATIONS[0]} is assumed.') if not hasattr(self,'_xgnap'): self._calculate_xg_nap() if formula in ['SLUIS89pol','SLUIS89sto']: with warnings.catch_warnings(): # numpy raises a silly warning with nanmean on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty slice') GHG = np.nanmean(self._xgnap['hg3w']) GLG = np.nanmean(self._xgnap['lg3s']) else: with warnings.catch_warnings(): # numpy raises a silly warning with nanmean on NaNs warnings.filterwarnings(action='ignore', message='Mean of empty slice') GHG = np.nanmean(self._xgnap['hg3']) GLG = np.nanmean(self._xgnap['lg3']) GHG = (self._surface-GHG)*100 GLG = (self._surface-GLG)*100 if formula=='HEESEN74': # april 15th GVG = 0.2*(GLG-GHG)+GHG+12 elif formula=='SLUIJS76a': # april 14th GVG = 0.15*(GLG-GHG)+(1.01*GHG)+14.3 elif formula=='SLUIJS76b': # april 14th GVG = 1.03*GHG+27.3 elif formula=='SLUIJS82': GVG = 5.4 + 1.02*GHG + 0.19*(GLG-GHG) elif formula=='RUNHAAR89': GVG = 0.5 + 0.85*GHG + 0.20*GLG # (+/-7,5cm) elif formula=='SLUIJS89pol': GVG = 12.0 + 0.96*GHG + 0.17*(GLG-GHG) elif formula=='SLUIJS89sto': GVG = 4.0 + 0.97*GHG + 0.15*(GLG-GHG) elif formula=='GAAST06': GVG = 13.7 + 0.70*GHG + 0.25*GLG else: raise ValueError((f'\'{formula}\' was not recognised as a gvg ' f'approximation formula. Valid names are ' f'{self.APPROXIMATIONS}')) if not
np.isnan(GVG)
numpy.isnan
# -*- coding: utf-8 -*- from __future__ import print_function from __future__ import absolute_import import os import sys import tempfile import warnings import numpy from numpy import testing as npt import tables from tables import Atom, ClosedNodeError, NoSuchNodeError from tables.utils import byteorders from tables.tests import common from tables.tests.common import allequal from tables.tests.common import unittest, test_filename from tables.tests.common import PyTablesTestCase as TestCase from six.moves import range #warnings.resetwarnings() class BasicTestCase(TestCase): """Basic test for all the supported typecodes present in numpy. All of them are included on pytables. """ endiancheck = False def write_read(self, testarray): a = testarray if common.verbose: print('\n', '-=' * 30) print("Running test for array with type '%s'" % a.dtype.type, end=' ') print("for class check:", self.title) # Create an instance of HDF5 file filename = tempfile.mktemp(".h5") try: with tables.open_file(filename, mode="w") as fileh: root = fileh.root # Create the array under root and name 'somearray' if self.endiancheck and a.dtype.kind != "S": b = a.byteswap() b.dtype = a.dtype.newbyteorder() a = b fileh.create_array(root, 'somearray', a, "Some array") # Re-open the file in read-only mode with tables.open_file(filename, mode="r") as fileh: root = fileh.root # Read the saved array b = root.somearray.read() # Compare them. They should be equal. if common.verbose and not allequal(a, b): print("Write and read arrays differ!") # print("Array written:", a) print("Array written shape:", a.shape) print("Array written itemsize:", a.itemsize) print("Array written type:", a.dtype.type) # print("Array read:", b) print("Array read shape:", b.shape) print("Array read itemsize:", b.itemsize) print("Array read type:", b.dtype.type) if a.dtype.kind != "S": print("Array written byteorder:", a.dtype.byteorder) print("Array read byteorder:", b.dtype.byteorder) # Check strictly the array equality self.assertEqual(a.shape, b.shape) self.assertEqual(a.shape, root.somearray.shape) if a.dtype.kind == "S": self.assertEqual(root.somearray.atom.type, "string") else: self.assertEqual(a.dtype.type, b.dtype.type) self.assertEqual(a.dtype.type, root.somearray.atom.dtype.type) abo = byteorders[a.dtype.byteorder] bbo = byteorders[b.dtype.byteorder] if abo != "irrelevant": self.assertEqual(abo, root.somearray.byteorder) self.assertEqual(bbo, sys.byteorder) if self.endiancheck: self.assertNotEqual(bbo, abo) obj = root.somearray self.assertEqual(obj.flavor, 'numpy') self.assertEqual(obj.shape, a.shape) self.assertEqual(obj.ndim, a.ndim) self.assertEqual(obj.chunkshape, None) if a.shape: nrows = a.shape[0] else: # scalar nrows = 1 self.assertEqual(obj.nrows, nrows) self.assertTrue(allequal(a, b)) finally: # Then, delete the file os.remove(filename) def write_read_out_arg(self, testarray): a = testarray if common.verbose: print('\n', '-=' * 30) print("Running test for array with type '%s'" % a.dtype.type, end=' ') print("for class check:", self.title) # Create an instance of HDF5 file filename = tempfile.mktemp(".h5") try: with tables.open_file(filename, mode="w") as fileh: root = fileh.root # Create the array under root and name 'somearray' if self.endiancheck and a.dtype.kind != "S": b = a.byteswap() b.dtype = a.dtype.newbyteorder() a = b fileh.create_array(root, 'somearray', a, "Some array") # Re-open the file in read-only mode with tables.open_file(filename, mode="r") as fileh: root = fileh.root # Read the saved array b = numpy.empty_like(a, dtype=a.dtype) root.somearray.read(out=b) # Check strictly the array equality self.assertEqual(a.shape, b.shape) self.assertEqual(a.shape, root.somearray.shape) if a.dtype.kind == "S": self.assertEqual(root.somearray.atom.type, "string") else: self.assertEqual(a.dtype.type, b.dtype.type) self.assertEqual(a.dtype.type, root.somearray.atom.dtype.type) abo = byteorders[a.dtype.byteorder] bbo = byteorders[b.dtype.byteorder] if abo != "irrelevant": self.assertEqual(abo, root.somearray.byteorder) self.assertEqual(abo, bbo) if self.endiancheck: self.assertNotEqual(bbo, sys.byteorder) self.assertTrue(allequal(a, b)) finally: # Then, delete the file os.remove(filename) def write_read_atom_shape_args(self, testarray): a = testarray atom = Atom.from_dtype(a.dtype) shape = a.shape byteorder = None if common.verbose: print('\n', '-=' * 30) print("Running test for array with type '%s'" % a.dtype.type, end=' ') print("for class check:", self.title) # Create an instance of HDF5 file filename = tempfile.mktemp(".h5") try: with tables.open_file(filename, mode="w") as fileh: root = fileh.root # Create the array under root and name 'somearray' if self.endiancheck and a.dtype.kind != "S": b = a.byteswap() b.dtype = a.dtype.newbyteorder() if b.dtype.byteorder in ('>', '<'): byteorder = byteorders[b.dtype.byteorder] a = b ptarr = fileh.create_array(root, 'somearray', atom=atom, shape=shape, title="Some array", # specify the byteorder explicitly # since there is no way to deduce # it in this case byteorder=byteorder) self.assertEqual(shape, ptarr.shape) self.assertEqual(atom, ptarr.atom) ptarr[...] = a # Re-open the file in read-only mode with tables.open_file(filename, mode="r") as fileh: root = fileh.root # Read the saved array b = root.somearray.read() # Compare them. They should be equal. if common.verbose and not allequal(a, b): print("Write and read arrays differ!") # print("Array written:", a) print("Array written shape:", a.shape) print("Array written itemsize:", a.itemsize) print("Array written type:", a.dtype.type) # print("Array read:", b) print("Array read shape:", b.shape) print("Array read itemsize:", b.itemsize) print("Array read type:", b.dtype.type) if a.dtype.kind != "S": print("Array written byteorder:", a.dtype.byteorder) print("Array read byteorder:", b.dtype.byteorder) # Check strictly the array equality self.assertEqual(a.shape, b.shape) self.assertEqual(a.shape, root.somearray.shape) if a.dtype.kind == "S": self.assertEqual(root.somearray.atom.type, "string") else: self.assertEqual(a.dtype.type, b.dtype.type) self.assertEqual(a.dtype.type, root.somearray.atom.dtype.type) abo = byteorders[a.dtype.byteorder] bbo = byteorders[b.dtype.byteorder] if abo != "irrelevant": self.assertEqual(abo, root.somearray.byteorder) self.assertEqual(bbo, sys.byteorder) if self.endiancheck: self.assertNotEqual(bbo, abo) obj = root.somearray self.assertEqual(obj.flavor, 'numpy') self.assertEqual(obj.shape, a.shape) self.assertEqual(obj.ndim, a.ndim) self.assertEqual(obj.chunkshape, None) if a.shape: nrows = a.shape[0] else: # scalar nrows = 1 self.assertEqual(obj.nrows, nrows) self.assertTrue(allequal(a, b)) finally: # Then, delete the file os.remove(filename) def setup00_char(self): """Data integrity during recovery (character objects)""" if not isinstance(self.tupleChar, numpy.ndarray): a = numpy.array(self.tupleChar, dtype="S") else: a = self.tupleChar return a def test00_char(self): a = self.setup00_char() self.write_read(a) def test00_char_out_arg(self): a = self.setup00_char() self.write_read_out_arg(a) def test00_char_atom_shape_args(self): a = self.setup00_char() self.write_read_atom_shape_args(a) def test00b_char(self): """Data integrity during recovery (string objects)""" a = self.tupleChar filename = tempfile.mktemp(".h5") try: # Create an instance of HDF5 file with tables.open_file(filename, mode="w") as fileh: fileh.create_array(fileh.root, 'somearray', a, "Some array") # Re-open the file in read-only mode with tables.open_file(filename, mode="r") as fileh: # Read the saved array b = fileh.root.somearray.read() if isinstance(a, bytes): self.assertEqual(type(b), bytes) self.assertEqual(a, b) else: # If a is not a python string, then it should be a list # or ndarray self.assertTrue(type(b) in [list, numpy.ndarray]) finally: # Then, delete the file os.remove(filename) def test00b_char_out_arg(self): """Data integrity during recovery (string objects)""" a = self.tupleChar filename = tempfile.mktemp(".h5") try: # Create an instance of HDF5 file with tables.open_file(filename, mode="w") as fileh: fileh.create_array(fileh.root, 'somearray', a, "Some array") # Re-open the file in read-only mode with tables.open_file(filename, mode="r") as fileh: # Read the saved array b = numpy.empty_like(a) if fileh.root.somearray.flavor != 'numpy': self.assertRaises(TypeError, lambda: fileh.root.somearray.read(out=b)) else: fileh.root.somearray.read(out=b) self.assertTrue(type(b), numpy.ndarray) finally: # Then, delete the file os.remove(filename) def test00b_char_atom_shape_args(self): """Data integrity during recovery (string objects)""" a = self.tupleChar filename = tempfile.mktemp(".h5") try: # Create an instance of HDF5 file with tables.open_file(filename, mode="w") as fileh: nparr = numpy.asarray(a) atom = Atom.from_dtype(nparr.dtype) shape = nparr.shape if nparr.dtype.byteorder in ('>', '<'): byteorder = byteorders[nparr.dtype.byteorder] else: byteorder = None ptarr = fileh.create_array(fileh.root, 'somearray', atom=atom, shape=shape, byteorder=byteorder, title="Some array") self.assertEqual(shape, ptarr.shape) self.assertEqual(atom, ptarr.atom) ptarr[...] = a # Re-open the file in read-only mode with tables.open_file(filename, mode="r") as fileh: # Read the saved array b = numpy.empty_like(a) if fileh.root.somearray.flavor != 'numpy': self.assertRaises(TypeError, lambda: fileh.root.somearray.read(out=b)) else: fileh.root.somearray.read(out=b) self.assertTrue(type(b), numpy.ndarray) finally: # Then, delete the file os.remove(filename) def setup01_char_nc(self): """Data integrity during recovery (non-contiguous character objects)""" if not isinstance(self.tupleChar, numpy.ndarray): a = numpy.array(self.tupleChar, dtype="S") else: a = self.tupleChar if a.ndim == 0: b = a.copy() else: b = a[::2] # Ensure that this numpy string is non-contiguous if len(b) > 1: self.assertEqual(b.flags.contiguous, False) return b def test01_char_nc(self): b = self.setup01_char_nc() self.write_read(b) def test01_char_nc_out_arg(self): b = self.setup01_char_nc() self.write_read_out_arg(b) def test01_char_nc_atom_shape_args(self): b = self.setup01_char_nc() self.write_read_atom_shape_args(b) def test02_types(self): """Data integrity during recovery (numerical types)""" typecodes = ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'float32', 'float64', 'complex64', 'complex128'] for name in ('float16', 'float96', 'float128', 'complex192', 'complex256'): atomname = name.capitalize() + 'Atom' if hasattr(tables, atomname): typecodes.append(name) for typecode in typecodes: a = numpy.array(self.tupleInt, typecode) self.write_read(a) b = numpy.array(self.tupleInt, typecode) self.write_read_out_arg(b) c = numpy.array(self.tupleInt, typecode) self.write_read_atom_shape_args(c) def test03_types_nc(self): """Data integrity during recovery (non-contiguous numerical types)""" typecodes = ['int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64', 'float32', 'float64', 'complex64', 'complex128', ] for name in ('float16', 'float96', 'float128', 'complex192', 'complex256'): atomname = name.capitalize() + 'Atom' if hasattr(tables, atomname): typecodes.append(name) for typecode in typecodes: a = numpy.array(self.tupleInt, typecode) if a.ndim == 0: b1 = a.copy() b2 = a.copy() b3 = a.copy() else: b1 = a[::2] b2 = a[::2] b3 = a[::2] # Ensure that this array is non-contiguous if len(b1) > 1: self.assertEqual(b1.flags.contiguous, False) if len(b2) > 1: self.assertEqual(b2.flags.contiguous, False) if len(b3) > 1: self.assertEqual(b3.flags.contiguous, False) self.write_read(b1) self.write_read_out_arg(b2) self.write_read_atom_shape_args(b3) class Basic0DOneTestCase(BasicTestCase): # Scalar case title = "Rank-0 case 1" tupleInt = 3 tupleChar = b"3" endiancheck = True class Basic0DTwoTestCase(BasicTestCase): # Scalar case title = "Rank-0 case 2" tupleInt = 33 tupleChar = b"33" endiancheck = True class Basic1DZeroTestCase(BasicTestCase): # This test case is not supported by PyTables (HDF5 limitations) # 1D case title = "Rank-1 case 0" tupleInt = () tupleChar = () endiancheck = False class Basic1DOneTestCase(BasicTestCase): # 1D case title = "Rank-1 case 1" tupleInt = (3,) tupleChar = (b"a",) endiancheck = True class Basic1DTwoTestCase(BasicTestCase): # 1D case title = "Rank-1 case 2" tupleInt = (3, 4) tupleChar = (b"aaa",) endiancheck = True class Basic1DThreeTestCase(BasicTestCase): # 1D case title = "Rank-1 case 3" tupleInt = (3, 4, 5) tupleChar = (b"aaa", b"bbb",) endiancheck = True class Basic2DOneTestCase(BasicTestCase): # 2D case title = "Rank-2 case 1" tupleInt = numpy.array(numpy.arange((4)**2)) tupleInt.shape = (4,)*2 tupleChar = numpy.array(["abc"]*3**2, dtype="S3") tupleChar.shape = (3,)*2 endiancheck = True class Basic2DTwoTestCase(BasicTestCase): # 2D case, with a multidimensional dtype title = "Rank-2 case 2" tupleInt = numpy.array(numpy.arange((4)), dtype=(numpy.int_, (4,))) tupleChar = numpy.array(["abc"]*3, dtype=("S3", (3,))) endiancheck = True class Basic10DTestCase(BasicTestCase): # 10D case title = "Rank-10 test" tupleInt = numpy.array(numpy.arange((2)**10)) tupleInt.shape = (2,)*10 tupleChar = numpy.array( ["abc"]*2**10, dtype="S3") tupleChar.shape = (2,)*10 endiancheck = True class Basic32DTestCase(BasicTestCase): # 32D case (maximum) title = "Rank-32 test" tupleInt = numpy.array((32,)) tupleInt.shape = (1,)*32 tupleChar = numpy.array(["121"], dtype="S3") tupleChar.shape = (1,)*32 class ReadOutArgumentTests(common.TempFileMixin, TestCase): def setUp(self): super(ReadOutArgumentTests, self).setUp() self.size = 1000 def create_array(self): array = numpy.arange(self.size, dtype='f8') disk_array = self.h5file.create_array('/', 'array', array) return array, disk_array def test_read_entire_array(self): array, disk_array = self.create_array() out_buffer = numpy.empty((self.size, ), 'f8') disk_array.read(out=out_buffer) numpy.testing.assert_equal(out_buffer, array) def test_read_contiguous_slice1(self): array, disk_array = self.create_array() out_buffer = numpy.arange(self.size, dtype='f8') out_buffer = numpy.random.permutation(out_buffer) out_buffer_orig = out_buffer.copy() start = self.size // 2 disk_array.read(start=start, stop=self.size, out=out_buffer[start:]) numpy.testing.assert_equal(out_buffer[start:], array[start:]) numpy.testing.assert_equal(out_buffer[:start], out_buffer_orig[:start]) def test_read_contiguous_slice2(self): array, disk_array = self.create_array() out_buffer = numpy.arange(self.size, dtype='f8') out_buffer = numpy.random.permutation(out_buffer) out_buffer_orig = out_buffer.copy() start = self.size // 4 stop = self.size - start disk_array.read(start=start, stop=stop, out=out_buffer[start:stop]) numpy.testing.assert_equal(out_buffer[start:stop], array[start:stop]) numpy.testing.assert_equal(out_buffer[:start], out_buffer_orig[:start]) numpy.testing.assert_equal(out_buffer[stop:], out_buffer_orig[stop:]) def test_read_non_contiguous_slice_contiguous_buffer(self): array, disk_array = self.create_array() out_buffer = numpy.empty((self.size // 2, ), dtype='f8') disk_array.read(start=0, stop=self.size, step=2, out=out_buffer) numpy.testing.assert_equal(out_buffer, array[0:self.size:2]) def test_read_non_contiguous_buffer(self): array, disk_array = self.create_array() out_buffer = numpy.empty((self.size, ), 'f8') out_buffer_slice = out_buffer[0:self.size:2] # once Python 2.6 support is dropped, this could change # to assertRaisesRegexp to check exception type and message at once self.assertRaises(ValueError, disk_array.read, 0, self.size, 2, out_buffer_slice) try: disk_array.read(0, self.size, 2, out_buffer_slice) except ValueError as exc: self.assertEqual('output array not C contiguous', str(exc)) def test_buffer_too_small(self): array, disk_array = self.create_array() out_buffer = numpy.empty((self.size // 2, ), 'f8') self.assertRaises(ValueError, disk_array.read, 0, self.size, 1, out_buffer) try: disk_array.read(0, self.size, 1, out_buffer) except ValueError as exc: self.assertTrue('output array size invalid, got' in str(exc)) def test_buffer_too_large(self): array, disk_array = self.create_array() out_buffer = numpy.empty((self.size + 1, ), 'f8') self.assertRaises(ValueError, disk_array.read, 0, self.size, 1, out_buffer) try: disk_array.read(0, self.size, 1, out_buffer) except ValueError as exc: self.assertTrue('output array size invalid, got' in str(exc)) class SizeOnDiskInMemoryPropertyTestCase(common.TempFileMixin, TestCase): def setUp(self): super(SizeOnDiskInMemoryPropertyTestCase, self).setUp() self.array_size = (10, 10) self.array = self.h5file.create_array( '/', 'somearray', numpy.zeros(self.array_size, 'i4')) def test_all_zeros(self): self.assertEqual(self.array.size_on_disk, 10 * 10 * 4) self.assertEqual(self.array.size_in_memory, 10 * 10 * 4) class UnalignedAndComplexTestCase(common.TempFileMixin, TestCase): """Basic test for all the supported typecodes present in numpy. Most of them are included on PyTables. """ def setUp(self): super(UnalignedAndComplexTestCase, self).setUp() self.root = self.h5file.root def write_read(self, testArray): if common.verbose: print('\n', '-=' * 30) print("\nRunning test for array with type '%s'" % testArray.dtype.type) # Create the array under root and name 'somearray' a = testArray if self.endiancheck: byteorder = {"little": "big", "big": "little"}[sys.byteorder] else: byteorder = sys.byteorder self.h5file.create_array(self.root, 'somearray', a, "Some array", byteorder=byteorder) if self.reopen: self._reopen() self.root = self.h5file.root # Read the saved array b = self.root.somearray.read() # Get an array to be compared in the correct byteorder c = a.newbyteorder(byteorder) # Compare them. They should be equal. if not allequal(c, b) and common.verbose: print("Write and read arrays differ!") print("Array written:", a) print("Array written shape:", a.shape) print("Array written itemsize:", a.itemsize) print("Array written type:", a.dtype.type) print("Array read:", b) print("Array read shape:", b.shape) print("Array read itemsize:", b.itemsize) print("Array read type:", b.dtype.type) # Check strictly the array equality self.assertEqual(a.shape, b.shape) self.assertEqual(a.shape, self.root.somearray.shape) if a.dtype.byteorder != "|": self.assertEqual(a.dtype, b.dtype) self.assertEqual(a.dtype, self.root.somearray.atom.dtype) self.assertEqual(byteorders[b.dtype.byteorder], sys.byteorder) self.assertEqual(self.root.somearray.byteorder, byteorder) self.assertTrue(allequal(c, b)) def test01_signedShort_unaligned(self): """Checking an unaligned signed short integer array""" r = numpy.rec.array(b'a'*200, formats='i1,f4,i2', shape=10) a = r["f2"] # Ensure that this array is non-aligned self.assertEqual(a.flags.aligned, False) self.assertEqual(a.dtype.type, numpy.int16) self.write_read(a) def test02_float_unaligned(self): """Checking an unaligned single precision array""" r = numpy.rec.array(b'a'*200, formats='i1,f4,i2', shape=10) a = r["f1"] # Ensure that this array is non-aligned self.assertEqual(a.flags.aligned, 0) self.assertEqual(a.dtype.type, numpy.float32) self.write_read(a) def test03_byte_offset(self): """Checking an offsetted byte array""" r = numpy.arange(100, dtype=numpy.int8) r.shape = (10, 10) a = r[2] self.write_read(a) def test04_short_offset(self): """Checking an offsetted unsigned short int precision array""" r = numpy.arange(100, dtype=numpy.uint32) r.shape = (10, 10) a = r[2] self.write_read(a) def test05_int_offset(self): """Checking an offsetted integer array""" r = numpy.arange(100, dtype=numpy.int32) r.shape = (10, 10) a = r[2] self.write_read(a) def test06_longlongint_offset(self): """Checking an offsetted long long integer array""" r = numpy.arange(100, dtype=numpy.int64) r.shape = (10, 10) a = r[2] self.write_read(a) def test07_float_offset(self): """Checking an offsetted single precision array""" r = numpy.arange(100, dtype=numpy.float32) r.shape = (10, 10) a = r[2] self.write_read(a) def test08_double_offset(self): """Checking an offsetted double precision array""" r = numpy.arange(100, dtype=numpy.float64) r.shape = (10, 10) a = r[2] self.write_read(a) def test09_float_offset_unaligned(self): """Checking an unaligned and offsetted single precision array""" r = numpy.rec.array(b'a'*200, formats='i1,3f4,i2', shape=10) a = r["f1"][3] # Ensure that this array is non-aligned self.assertEqual(a.flags.aligned, False) self.assertEqual(a.dtype.type, numpy.float32) self.write_read(a) def test10_double_offset_unaligned(self): """Checking an unaligned and offsetted double precision array""" r = numpy.rec.array(b'a'*400, formats='i1,3f8,i2', shape=10) a = r["f1"][3] # Ensure that this array is non-aligned self.assertEqual(a.flags.aligned, False) self.assertEqual(a.dtype.type, numpy.float64) self.write_read(a) def test11_int_byteorder(self): """Checking setting data with different byteorder in a range (integer)""" # Save an array with the reversed byteorder on it a = numpy.arange(25, dtype=numpy.int32).reshape(5, 5) a = a.byteswap() a = a.newbyteorder() array = self.h5file.create_array( self.h5file.root, 'array', a, "byteorder (int)") # Read a subarray (got an array with the machine byteorder) b = array[2:4, 3:5] b = b.byteswap() b = b.newbyteorder() # Set this subarray back to the array array[2:4, 3:5] = b b = b.byteswap() b = b.newbyteorder() # Set this subarray back to the array array[2:4, 3:5] = b # Check that the array is back in the correct byteorder c = array[...] if common.verbose: print("byteorder of array on disk-->", array.byteorder) print("byteorder of subarray-->", b.dtype.byteorder) print("subarray-->", b) print("retrieved array-->", c) self.assertTrue(allequal(a, c)) def test12_float_byteorder(self): """Checking setting data with different byteorder in a range (float)""" # Save an array with the reversed byteorder on it a = numpy.arange(25, dtype=numpy.float64).reshape(5, 5) a = a.byteswap() a = a.newbyteorder() array = self.h5file.create_array( self.h5file.root, 'array', a, "byteorder (float)") # Read a subarray (got an array with the machine byteorder) b = array[2:4, 3:5] b = b.byteswap() b = b.newbyteorder() # Set this subarray back to the array array[2:4, 3:5] = b b = b.byteswap() b = b.newbyteorder() # Set this subarray back to the array array[2:4, 3:5] = b # Check that the array is back in the correct byteorder c = array[...] if common.verbose: print("byteorder of array on disk-->", array.byteorder) print("byteorder of subarray-->", b.dtype.byteorder) print("subarray-->", b) print("retrieved array-->", c) self.assertTrue(allequal(a, c)) class ComplexNotReopenNotEndianTestCase(UnalignedAndComplexTestCase): endiancheck = False reopen = False class ComplexReopenNotEndianTestCase(UnalignedAndComplexTestCase): endiancheck = False reopen = True class ComplexNotReopenEndianTestCase(UnalignedAndComplexTestCase): endiancheck = True reopen = False class ComplexReopenEndianTestCase(UnalignedAndComplexTestCase): endiancheck = True reopen = True class GroupsArrayTestCase(common.TempFileMixin, TestCase): """This test class checks combinations of arrays with groups.""" def test00_iterativeGroups(self): """Checking combinations of arrays with groups.""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test00_iterativeGroups..." % self.__class__.__name__) # Get the root group group = self.h5file.root # Set the type codes to test # The typecodes below does expose an ambiguity that is reported in: # http://projects.scipy.org/scipy/numpy/ticket/283 and # http://projects.scipy.org/scipy/numpy/ticket/290 typecodes = ['b', 'B', 'h', 'H', 'i', 'I', 'l', 'L', 'q', 'f', 'd', 'F', 'D'] if hasattr(tables, 'Float16Atom'): typecodes.append('e') if hasattr(tables, 'Float96Atom') or hasattr(tables, 'Float128Atom'): typecodes.append('g') if (hasattr(tables, 'Complex192Atom') or hasattr(tables, 'Complex256Atom')): typecodes.append('G') for i, typecode in enumerate(typecodes): a = numpy.ones((3,), typecode) dsetname = 'array_' + typecode if common.verbose: print("Creating dataset:", group._g_join(dsetname)) self.h5file.create_array(group, dsetname, a, "Large array") group = self.h5file.create_group(group, 'group' + str(i)) # Reopen the file self._reopen() # Get the root group group = self.h5file.root # Get the metadata on the previosly saved arrays for i in range(len(typecodes)): # Create an array for later comparison a = numpy.ones((3,), typecodes[i]) # Get the dset object hanging from group dset = getattr(group, 'array_' + typecodes[i]) # Get the actual array b = dset.read() if common.verbose: print("Info from dataset:", dset._v_pathname) print(" shape ==>", dset.shape, end=' ') print(" type ==> %s" % dset.atom.dtype) print("Array b read from file. Shape: ==>", b.shape, end=' ') print(". Type ==> %s" % b.dtype) self.assertEqual(a.shape, b.shape) self.assertEqual(a.dtype, b.dtype) self.assertTrue(allequal(a, b)) # Iterate over the next group group = getattr(group, 'group' + str(i)) def test01_largeRankArrays(self): """Checking creation of large rank arrays (0 < rank <= 32) It also uses arrays ranks which ranges until maxrank. """ # maximum level of recursivity (deepest group level) achieved: # maxrank = 32 (for a effective maximum rank of 32) # This limit is due to HDF5 library limitations. minrank = 1 maxrank = 32 if common.verbose: print('\n', '-=' * 30) print("Running %s.test01_largeRankArrays..." % self.__class__.__name__) print("Maximum rank for tested arrays:", maxrank) group = self.h5file.root if common.verbose: print("Rank array writing progress: ", end=' ') for rank in range(minrank, maxrank + 1): # Create an array of integers, with incrementally bigger ranges a = numpy.ones((1,) * rank, numpy.int32) if common.verbose: print("%3d," % (rank), end=' ') self.h5file.create_array(group, "array", a, "Rank: %s" % rank) group = self.h5file.create_group(group, 'group' + str(rank)) # Reopen the file self._reopen() group = self.h5file.root if common.verbose: print() print("Rank array reading progress: ") # Get the metadata on the previosly saved arrays for rank in range(minrank, maxrank + 1): # Create an array for later comparison a = numpy.ones((1,) * rank, numpy.int32) # Get the actual array b = group.array.read() if common.verbose: print("%3d," % (rank), end=' ') if common.verbose and not allequal(a, b): print("Info from dataset:", group.array._v_pathname) print(" Shape: ==>", group.array.shape, end=' ') print(" typecode ==> %c" % group.array.typecode) print("Array b read from file. Shape: ==>", b.shape, end=' ') print(". Type ==> %c" % b.dtype) self.assertEqual(a.shape, b.shape) self.assertEqual(a.dtype, b.dtype) self.assertTrue(allequal(a, b)) # print(self.h5file) # Iterate over the next group group = self.h5file.get_node(group, 'group' + str(rank)) if common.verbose: print() # This flush the stdout buffer class CopyTestCase(common.TempFileMixin, TestCase): def test01_copy(self): """Checking Array.copy() method.""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test01_copy..." % self.__class__.__name__) # Create an Array arr = numpy.array([[456, 2], [3, 457]], dtype='int16') array1 = self.h5file.create_array( self.h5file.root, 'array1', arr, "title array1") # Copy to another Array array2 = array1.copy('/', 'array2') if self.close: if common.verbose: print("(closing file version)") self._reopen() array1 = self.h5file.root.array1 array2 = self.h5file.root.array2 if common.verbose: print("array1-->", array1.read()) print("array2-->", array2.read()) # print("dirs-->", dir(array1), dir(array2)) print("attrs array1-->", repr(array1.attrs)) print("attrs array2-->", repr(array2.attrs)) # Check that all the elements are equal self.assertTrue(allequal(array1.read(), array2.read())) # Assert other properties in array self.assertEqual(array1.nrows, array2.nrows) self.assertEqual(array1.flavor, array2.flavor) self.assertEqual(array1.atom.dtype, array2.atom.dtype) self.assertEqual(array1.title, array2.title) def test02_copy(self): """Checking Array.copy() method (where specified)""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test02_copy..." % self.__class__.__name__) # Create an Array arr = numpy.array([[456, 2], [3, 457]], dtype='int16') array1 = self.h5file.create_array( self.h5file.root, 'array1', arr, "title array1") # Copy to another Array group1 = self.h5file.create_group("/", "group1") array2 = array1.copy(group1, 'array2') if self.close: if common.verbose: print("(closing file version)") self._reopen() array1 = self.h5file.root.array1 array2 = self.h5file.root.group1.array2 if common.verbose: print("array1-->", array1.read()) print("array2-->", array2.read()) # print("dirs-->", dir(array1), dir(array2)) print("attrs array1-->", repr(array1.attrs)) print("attrs array2-->", repr(array2.attrs)) # Check that all the elements are equal self.assertTrue(allequal(array1.read(), array2.read())) # Assert other properties in array self.assertEqual(array1.nrows, array2.nrows) self.assertEqual(array1.flavor, array2.flavor) self.assertEqual(array1.atom.dtype, array2.atom.dtype) self.assertEqual(array1.title, array2.title) def test03_copy(self): """Checking Array.copy() method (checking title copying)""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test04_copy..." % self.__class__.__name__) # Create an Array arr = numpy.array([[456, 2], [3, 457]], dtype='int16') array1 = self.h5file.create_array( self.h5file.root, 'array1', arr, "title array1") # Append some user attrs array1.attrs.attr1 = "attr1" array1.attrs.attr2 = 2 # Copy it to another Array array2 = array1.copy('/', 'array2', title="title array2") if self.close: if common.verbose: print("(closing file version)") self._reopen() array1 = self.h5file.root.array1 array2 = self.h5file.root.array2 # Assert user attributes if common.verbose: print("title of destination array-->", array2.title) self.assertEqual(array2.title, "title array2") def test04_copy(self): """Checking Array.copy() method (user attributes copied)""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test05_copy..." % self.__class__.__name__) # Create an Array arr = numpy.array([[456, 2], [3, 457]], dtype='int16') array1 = self.h5file.create_array( self.h5file.root, 'array1', arr, "title array1") # Append some user attrs array1.attrs.attr1 = "attr1" array1.attrs.attr2 = 2 # Copy it to another Array array2 = array1.copy('/', 'array2', copyuserattrs=1) if self.close: if common.verbose: print("(closing file version)") self._reopen() array1 = self.h5file.root.array1 array2 = self.h5file.root.array2 if common.verbose: print("attrs array1-->", repr(array1.attrs)) print("attrs array2-->", repr(array2.attrs)) # Assert user attributes self.assertEqual(array2.attrs.attr1, "attr1") self.assertEqual(array2.attrs.attr2, 2) def test04b_copy(self): """Checking Array.copy() method (user attributes not copied)""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test05b_copy..." % self.__class__.__name__) # Create an Array arr = numpy.array([[456, 2], [3, 457]], dtype='int16') array1 = self.h5file.create_array( self.h5file.root, 'array1', arr, "title array1") # Append some user attrs array1.attrs.attr1 = "attr1" array1.attrs.attr2 = 2 # Copy it to another Array array2 = array1.copy('/', 'array2', copyuserattrs=0) if self.close: if common.verbose: print("(closing file version)") self._reopen() array1 = self.h5file.root.array1 array2 = self.h5file.root.array2 if common.verbose: print("attrs array1-->", repr(array1.attrs)) print("attrs array2-->", repr(array2.attrs)) # Assert user attributes self.assertEqual(hasattr(array2.attrs, "attr1"), 0) self.assertEqual(hasattr(array2.attrs, "attr2"), 0) class CloseCopyTestCase(CopyTestCase): close = 1 class OpenCopyTestCase(CopyTestCase): close = 0 class CopyIndexTestCase(common.TempFileMixin, TestCase): def test01_index(self): """Checking Array.copy() method with indexes.""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test01_index..." % self.__class__.__name__) # Create a numpy r = numpy.arange(200, dtype='int32') r.shape = (100, 2) # Save it in a array: array1 = self.h5file.create_array( self.h5file.root, 'array1', r, "title array1") # Copy to another array array2 = array1.copy("/", 'array2', start=self.start, stop=self.stop, step=self.step) if common.verbose: print("array1-->", array1.read()) print("array2-->", array2.read()) print("attrs array1-->", repr(array1.attrs)) print("attrs array2-->", repr(array2.attrs)) # Check that all the elements are equal r2 = r[self.start:self.stop:self.step] self.assertTrue(allequal(r2, array2.read())) # Assert the number of rows in array if common.verbose: print("nrows in array2-->", array2.nrows) print("and it should be-->", r2.shape[0]) self.assertEqual(r2.shape[0], array2.nrows) def test02_indexclosef(self): """Checking Array.copy() method with indexes (close file version)""" if common.verbose: print('\n', '-=' * 30) print("Running %s.test02_indexclosef..." % self.__class__.__name__) # Create a numpy r = numpy.arange(200, dtype='int32') r.shape = (100, 2) # Save it in a array: array1 = self.h5file.create_array( self.h5file.root, 'array1', r, "title array1") # Copy to another array array2 = array1.copy("/", 'array2', start=self.start, stop=self.stop, step=self.step) # Close and reopen the file self._reopen() array1 = self.h5file.root.array1 array2 = self.h5file.root.array2 if common.verbose: print("array1-->", array1.read()) print("array2-->", array2.read()) print("attrs array1-->", repr(array1.attrs)) print("attrs array2-->", repr(array2.attrs)) # Check that all the elements are equal r2 = r[self.start:self.stop:self.step] self.assertTrue(allequal(r2, array2.read())) # Assert the number of rows in array if common.verbose: print("nrows in array2-->", array2.nrows) print("and it should be-->", r2.shape[0]) self.assertEqual(r2.shape[0], array2.nrows) class CopyIndex1TestCase(CopyIndexTestCase): start = 0 stop = 7 step = 1 class CopyIndex2TestCase(CopyIndexTestCase): start = 0 stop = -1 step = 1 class CopyIndex3TestCase(CopyIndexTestCase): start = 1 stop = 7 step = 1 class CopyIndex4TestCase(CopyIndexTestCase): start = 0 stop = 6 step = 1 class CopyIndex5TestCase(CopyIndexTestCase): start = 3 stop = 7 step = 1 class CopyIndex6TestCase(CopyIndexTestCase): start = 3 stop = 6 step = 2 class CopyIndex7TestCase(CopyIndexTestCase): start = 0 stop = 7 step = 10 class CopyIndex8TestCase(CopyIndexTestCase): start = 6 stop = -1 # Negative values means starting from the end step = 1 class CopyIndex9TestCase(CopyIndexTestCase): start = 3 stop = 4 step = 1 class CopyIndex10TestCase(CopyIndexTestCase): start = 3 stop = 4 step = 2 class CopyIndex11TestCase(CopyIndexTestCase): start = -3 stop = -1 step = 2 class CopyIndex12TestCase(CopyIndexTestCase): start = -1 # Should point to the last element stop = None # None should mean the last element (including it) step = 1 class GetItemTestCase(common.TempFileMixin, TestCase): def test00_single(self): """Single element access (character types)""" # Create the array under root and name 'somearray' a = self.charList arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original first element:", a[0], type(a[0])) print("Read first element:", arr[0], type(arr[0])) self.assertTrue(allequal(a[0], arr[0])) self.assertEqual(type(a[0]), type(arr[0])) def test01_single(self): """Single element access (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalList arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original first element:", a[0], type(a[0])) print("Read first element:", arr[0], type(arr[0])) self.assertEqual(a[0], arr[0]) self.assertEqual(type(a[0]), type(arr[0])) def test02_range(self): """Range element access (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original elements:", a[1:4]) print("Read elements:", arr[1:4]) self.assertTrue(allequal(a[1:4], arr[1:4])) def test03_range(self): """Range element access (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original elements:", a[1:4]) print("Read elements:", arr[1:4]) self.assertTrue(allequal(a[1:4], arr[1:4])) def test04_range(self): """Range element access, strided (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original elements:", a[1:4:2]) print("Read elements:", arr[1:4:2]) self.assertTrue(allequal(a[1:4:2], arr[1:4:2])) def test05_range(self): """Range element access, strided (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original elements:", a[1:4:2]) print("Read elements:", arr[1:4:2]) self.assertTrue(allequal(a[1:4:2], arr[1:4:2])) def test06_negativeIndex(self): """Negative Index element access (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original last element:", a[-1]) print("Read last element:", arr[-1]) self.assertTrue(allequal(a[-1], arr[-1])) def test07_negativeIndex(self): """Negative Index element access (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original before last element:", a[-2]) print("Read before last element:", arr[-2]) if isinstance(a[-2], numpy.ndarray): self.assertTrue(allequal(a[-2], arr[-2])) else: self.assertEqual(a[-2], arr[-2]) def test08_negativeRange(self): """Negative range element access (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original last elements:", a[-4:-1]) print("Read last elements:", arr[-4:-1]) self.assertTrue(allequal(a[-4:-1], arr[-4:-1])) def test09_negativeRange(self): """Negative range element access (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen() arr = self.h5file.root.somearray # Get and compare an element if common.verbose: print("Original last elements:", a[-4:-1]) print("Read last elements:", arr[-4:-1]) self.assertTrue(allequal(a[-4:-1], arr[-4:-1])) class GI1NATestCase(GetItemTestCase, TestCase): title = "Rank-1 case 1" numericalList = numpy.array([3]) numericalListME = numpy.array([3, 2, 1, 0, 4, 5, 6]) charList = numpy.array(["3"], 'S') charListME = numpy.array( ["321", "221", "121", "021", "421", "521", "621"], 'S') class GI1NAOpenTestCase(GI1NATestCase): close = 0 class GI1NACloseTestCase(GI1NATestCase): close = 1 class GI2NATestCase(GetItemTestCase): # A more complex example title = "Rank-1,2 case 2" numericalList = numpy.array([3, 4]) numericalListME = numpy.array([[3, 2, 1, 0, 4, 5, 6], [2, 1, 0, 4, 5, 6, 7], [4, 3, 2, 1, 0, 4, 5], [3, 2, 1, 0, 4, 5, 6], [3, 2, 1, 0, 4, 5, 6]]) charList = numpy.array(["a", "b"], 'S') charListME = numpy.array( [["321", "221", "121", "021", "421", "521", "621"], ["21", "21", "11", "02", "42", "21", "61"], ["31", "21", "12", "21", "41", "51", "621"], ["321", "221", "121", "021", "421", "521", "621"], ["3241", "2321", "13216", "0621", "4421", "5421", "a621"], ["a321", "s221", "d121", "g021", "b421", "5vvv21", "6zxzxs21"]], 'S') class GI2NAOpenTestCase(GI2NATestCase): close = 0 class GI2NACloseTestCase(GI2NATestCase): close = 1 class SetItemTestCase(common.TempFileMixin, TestCase): def test00_single(self): """Single element update (character types)""" # Create the array under root and name 'somearray' a = self.charList arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify a single element of a and arr: a[0] = b"b" arr[0] = b"b" # Get and compare an element if common.verbose: print("Original first element:", a[0]) print("Read first element:", arr[0]) self.assertTrue(allequal(a[0], arr[0])) def test01_single(self): """Single element update (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalList arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: a[0] = 333 arr[0] = 333 # Get and compare an element if common.verbose: print("Original first element:", a[0]) print("Read first element:", arr[0]) self.assertEqual(a[0], arr[0]) def test02_range(self): """Range element update (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: a[1:3] = b"xXx" arr[1:3] = b"xXx" # Get and compare an element if common.verbose: print("Original elements:", a[1:4]) print("Read elements:", arr[1:4]) self.assertTrue(allequal(a[1:4], arr[1:4])) def test03_range(self): """Range element update (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = slice(1, 3, None) rng = numpy.arange(a[s].size)*2 + 3 rng.shape = a[s].shape a[s] = rng arr[s] = rng # Get and compare an element if common.verbose: print("Original elements:", a[1:4]) print("Read elements:", arr[1:4]) self.assertTrue(allequal(a[1:4], arr[1:4])) def test04_range(self): """Range element update, strided (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = slice(1, 4, 2) a[s] = b"xXx" arr[s] = b"xXx" # Get and compare an element if common.verbose: print("Original elements:", a[1:4:2]) print("Read elements:", arr[1:4:2]) self.assertTrue(allequal(a[1:4:2], arr[1:4:2])) def test05_range(self): """Range element update, strided (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = slice(1, 4, 2) rng = numpy.arange(a[s].size)*2 + 3 rng.shape = a[s].shape a[s] = rng arr[s] = rng # Get and compare an element if common.verbose: print("Original elements:", a[1:4:2]) print("Read elements:", arr[1:4:2]) self.assertTrue(allequal(a[1:4:2], arr[1:4:2])) def test06_negativeIndex(self): """Negative Index element update (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = -1 a[s] = b"xXx" arr[s] = b"xXx" # Get and compare an element if common.verbose: print("Original last element:", a[-1]) print("Read last element:", arr[-1]) self.assertTrue(allequal(a[-1], arr[-1])) def test07_negativeIndex(self): """Negative Index element update (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = -2 a[s] = a[s]*2 + 3 arr[s] = arr[s]*2 + 3 # Get and compare an element if common.verbose: print("Original before last element:", a[-2]) print("Read before last element:", arr[-2]) if isinstance(a[-2], numpy.ndarray): self.assertTrue(allequal(a[-2], arr[-2])) else: self.assertEqual(a[-2], arr[-2]) def test08_negativeRange(self): """Negative range element update (character types)""" # Create the array under root and name 'somearray' a = self.charListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = slice(-4, -1, None) a[s] = b"xXx" arr[s] = b"xXx" # Get and compare an element if common.verbose: print("Original last elements:", a[-4:-1]) print("Read last elements:", arr[-4:-1]) self.assertTrue(allequal(a[-4:-1], arr[-4:-1])) def test09_negativeRange(self): """Negative range element update (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of a and arr: s = slice(-3, -1, None) rng = numpy.arange(a[s].size)*2 + 3 rng.shape = a[s].shape a[s] = rng arr[s] = rng # Get and compare an element if common.verbose: print("Original last elements:", a[-4:-1]) print("Read last elements:", arr[-4:-1]) self.assertTrue(allequal(a[-4:-1], arr[-4:-1])) def test10_outOfRange(self): """Out of range update (numerical types)""" # Create the array under root and name 'somearray' a = self.numericalListME arr = self.h5file.create_array( self.h5file.root, 'somearray', a, "Some array") if self.close: self._reopen('a') arr = self.h5file.root.somearray # Modify elements of arr that are out of range: s = slice(1, a.shape[0]+1, None) s2 = slice(1, 1000, None) rng = numpy.arange(a[s].size)*2 + 3 rng.shape = a[s].shape a[s] = rng rng2 = numpy.arange(a[s2].size)*2 + 3 rng2.shape = a[s2].shape arr[s2] = rng2 # Get and compare an element if common.verbose: print("Original last elements:", a[-4:-1]) print("Read last elements:", arr[-4:-1]) self.assertTrue(allequal(a[-4:-1], arr[-4:-1])) class SI1NATestCase(SetItemTestCase, TestCase): title = "Rank-1 case 1" numericalList = numpy.array([3]) numericalListME =
numpy.array([3, 2, 1, 0, 4, 5, 6])
numpy.array
import numpy as np import random from scipy import interpolate as spi from matplotlib import pyplot as plt from matplotlib import animation from memoize import memoized class Results(object): # TODO: improve docs def __init__(self, shape=None, fname=None, nsigma=1.): """Blalbalba Parameters ---------- shape : int 2-tuple Shape of the lattice whose measures are stored. fname : string Name of a text file to be imported. nsigma : float The error in a measured magnitudes will be nsigma times the standard deviation. """ # Store parameters self.nsigma = nsigma if shape != None: self._shape = tuple(shape) else: self._shape = None # If the filename is provided, read the data from there if fname != None: self.readtxt(fname) else: # Store parameters if self._shape == None: raise ValueError("Lattice shape not given.") # Initialize results lists self.Ts = list() self.mags = list() self.mag2s = list() self.mag4s = list() self.corrmags = list() self.hamilts = list() self.hamilt2s = list() self.hamilt4s = list() self.corrhamilts = list() self.nmeasures = list() self.acceptprobs = list() self.measureintervals = list() # Calculate the numer of spins self.nspins = np.prod(self.shape()) def shape(self): """Return lattice shape. """ return self._shape # TODO: complete docs # TODO: check if T has been already measured and average # with the previous data in that case def measure(self, T, nmeasures, latt, measureinterval=1): """Measure blablbalba """ # Check if lattice shape is the expected one if self.shape() != latt.shape(): raise ValueError( "The lattice shape does not match the Results object one.") # Store parameters self.Ts.append(T) self.nmeasures.append(nmeasures) self.measureintervals.append(measureinterval) # Initialize variables mag_last = 0. # Magnetization in the last measure hamilt_last = 0. # Hamiltonian in the last measure mag_sum = 0. mag2_sum = 0. mag4_sum = 0. corrmag_sum = 0. hamilt_sum = 0. hamilt2_sum = 0. hamilt4_sum = 0. corrhamilt_sum = 0. naccept = 0 # Start measure loop for measure_idx in range(nmeasures): # Evolve naccept += latt.evolve(measureinterval, T) # Measure mag = latt.magnetization() mag2 = mag*mag hamilt = latt.hamiltonian() hamilt2 = hamilt*hamilt mag_sum += np.abs(mag) mag2_sum += mag2 mag4_sum += mag2*mag2 corrmag_sum += mag*mag_last hamilt_sum += hamilt hamilt2_sum += hamilt2 hamilt4_sum += hamilt2*hamilt2 corrhamilt_sum += hamilt*hamilt_last # Store last measure mag_last = mag hamilt_last = hamilt # Store measures and calculate means self.mags.append(mag_sum/nmeasures) self.mag2s.append(mag2_sum/nmeasures) self.mag4s.append(mag4_sum/nmeasures) self.corrmags.append(corrmag_sum/(nmeasures - 1)) self.hamilts.append(hamilt_sum/nmeasures) self.hamilt2s.append(hamilt2_sum/nmeasures) self.hamilt4s.append(hamilt4_sum/nmeasures) self.corrhamilts.append(corrhamilt_sum/(nmeasures - 1)) self.acceptprobs.append( float(naccept)/(nmeasures*measureinterval*latt.nspins)) return @property @memoized def L(self): """Return characteristic size of the system. """ return np.power(np.prod(self.shape()), 1./len(self.shape())) # I/O # ============================== # TODO: add the data instead of overwriting it and check if the shape # of the imported file is the same as the object attribute def readtxt(self, filename): """Read data from file. """ filedata = np.loadtxt(filename).T self.Ts = filedata[0].tolist() self.mags = filedata[1].tolist() self.mag2s = filedata[2].tolist() self.mag4s = filedata[3].tolist() self.corrmags = filedata[4].tolist() self.hamilts = filedata[5].tolist() self.hamilt2s = filedata[6].tolist() self.hamilt4s = filedata[7].tolist() self.corrhamilts = filedata[8].tolist() self.acceptprobs = filedata[9].tolist() self.nmeasures = filedata[10].tolist() self.measureintervals = filedata[11].tolist() # Read additional parameters from footer with open(filename, "r") as f: lines = f.readlines() #self._shape = tuple(map(int, lines[-1].split()[2].split(","))) footer = lines[-1] # String list with the shape of the lattice shape_str = footer[footer.find("(")+1:footer.find(")")].split(",") # If the lattice is 1D, strip leaves an empty string in # shape_str, for example "(10, )" -> ["10", ""]. # If that is the case, remove the last element. if shape_str[-1] == "": shape_str = shape_str[:-1] self._shape = tuple(map(int, shape_str)) return def savetxt(self, fname=None): """Save data to file. Parameters ---------- fname : string Name of the output file. Its default value is "isingR{0}C{1}.dat" with {0} the number of rows in the lattice and {1} the number of columns. """ if fname == None: fname = "ising{0}.dat".format(self.shape()) headerstring = ( "Temperature\t " "Mean mag.\t Mag. 2nd moment\t Mag. 4nd moment\t " "Mag. time corr.\t " "Mean hamilt.\t Hamilt. 2nd moment\t Hamilt. 4nd moment\t " "Hamilt. time corr.\t " "Acceptance probability\t N measures\t Measure interval") footerstring = "Shape: {0}".format(self.shape()) np.savetxt( fname, np.vstack(( self.Ts, self.mags, self.mag2s, self.mag4s, self.corrmags, self.hamilts, self.hamilt2s, self.hamilt4s, self.corrhamilts, self.acceptprobs, self.nmeasures, self.measureintervals)).T, header=headerstring, footer=footerstring) return # Physical magnitudes # ======================================== def mag_err(self): """Calculate the magnetization error. """ # Calculate correlation time corrtime = corr_time( self.mags, self.mag2s, self.corrmags, self.nmeasures) return self.nsigma*samplemean_error( self.mags, self.mag2s, corrtime, self.nmeasures) def mag2_err(self): """Calculate the error of the squared magnetization mean. """ # Calculate correlation time. We are making the assumtion # that the correlation time of mag2 is the same as mag. corrtime = corr_time( self.mags, self.mag2s, self.corrmags, self.nmeasures) return self.nsigma*samplemean_error( self.mag2s, self.mag4s, corrtime, self.nmeasures) def hamilt_err(self): """Calculate the Hamiltonian error. """ # Calculate correlation time corrtime = corr_time( self.hamilts, self.hamilt2s, self.corrhamilts, self.nmeasures) return self.nsigma*samplemean_error( self.hamilts, self.hamilt2s, corrtime, self.nmeasures) def hamilt2_err(self): """Calculate the error of the squared Hamiltonian mean. """ # Calculate correlation time. We are making the assumtion # that the correlation time of hamilt2 is the same as hamilt's. corrtime = corr_time( self.hamilts, self.hamilt2s, self.corrhamilts, self.nmeasures) return self.nsigma*samplemean_error( self.hamilt2s, self.hamilt4s, corrtime, self.nmeasures) def magsuscept(self): """Calculate the magnetic susceptibility. """ # Store data to numpy arrays Ts_arr = np.array(self.Ts) return self.nspins/Ts_arr*samplevariance( self.mags, self.mag2s, self.nmeasures) def magsuscept_err(self): """Calculate the magnetic susceptibility error. """ # Store data to numpy arrays Ts_arr = np.array(self.Ts) return self.nspins/Ts_arr*np.sqrt( np.power(self.mag2_err(), 2) + 4.*np.power(self.mags*self.mag_err(), 2)) def specificheat(self): """Calculate the specific heat per spin of the lattice. """ # Store data to numpy arrays Ts_arr = np.array(self.Ts) return 1./(self.nspins*np.power(Ts_arr, 2))*samplevariance( self.hamilts, self.hamilt2s, self.nmeasures) def specificheat_err(self): """Calculate the specific heat per spin error. """ # Store data to numpy arrays Ts_arr = np.array(self.Ts) return 1./(self.nspins*np.power(Ts_arr, 2))*np.sqrt( np.power(self.hamilt2_err(), 2) + 4.*np.power(self.hamilts*self.hamilt_err(), 2)) def binderratio(self): """Calculate the Binder ratio or fourth order cumulant. """ return (1. - self.mag4s/(3.*np.power(self.mag2s, 2))) # Scaling # ======================================== def T_scaled(self, Tcrit, corrlen_exp): """Return scaled temperature. Parameters ---------- Tcrit : float Critical temperature. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_T(self.Ts, self.L, Tcrit, corrlen_exp) def mag_scaled(self, mag_exp, corrlen_exp): """Return the scaled magnetization. Parameters ---------- mag_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude(self.mags, self.L, mag_exp, corrlen_exp) def mag_scaled_err(self, mag_exp, corrlen_exp): """Return the scaled magnetization error. Parameters ---------- mag_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude(self.mag_err(), self.L, mag_exp, corrlen_exp) def magsuscept_scaled(self, magsuscept_exp, corrlen_exp): """Return the scaled magnetic susceptibility. Parameters ---------- magsuscept_exp : float Magnetic susceptibility critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude( self.magsuscept(), self.L, -magsuscept_exp, corrlen_exp) def magsuscept_scaled_err(self, magsuscept_exp, corrlen_exp): """Return the scaled magnetic susceptibility error. Parameters ---------- magsuscept_exp : float Magnetic susceptibility critical scaling exponent. corrlen_exp : float Correlation length exponent. """ return scale_magnitude( self.magsuscept_err(), self.L, -magsuscept_exp, corrlen_exp) def specificheat_scaled(self, specheat_exp, corrlen_exp): """Return the scaled magnetization. Parameters ---------- specheat_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude( self.specificheat(), self.L, -specheat_exp, corrlen_exp) def specificheat_scaled_err(self, specheat_exp, corrlen_exp): """Return the scaled magnetization error. Parameters ---------- specheat_exp : float Magnetization critical scaling exponent. corrlen_exp : float Correlation length critical scaling exponent. """ return scale_magnitude( self.specificheat_err(), self.L, -specheat_exp, corrlen_exp) # Scaling related functions # ======================================== def scale_T(Ts, L, Tcrit, corrlen_exp): """Scale the given temperature array. Parameters ---------- Ts : list Temperature list to be scaled. L : float Lattice characteristic length. Tcrit : float Critical temperature. corrlen_exp : float Correlation length exponent on temperature. """ Ts_arr = np.array(Ts) return (1 - Ts_arr/Tcrit)*np.power(L, 1./corrlen_exp) def scale_magnitude(vals, L, exp, corrlen_exp): """Return the scaled value of the given magnitude. Parameters ---------- vals: float list Magnetization list to be scaled. L : float Lattice characteristic length. exp : float Critical scaling exponent of the magnitude. corrlen_exp : float Correlation length critical scaling exponent. """ vals_arr = np.array(vals) return vals_arr*np.power(L, exp/corrlen_exp) def collapse_metric(curves_x, curves_y): """Find the collapse metric in the x axis of the given data. Calculates the collapse metric of the given curves as described in (Sci Rep. 2016; 6: 38823). Parameters ---------- curves_x : numpy array list List with the x array of each curve curves_y : numpy array list List with the y array of each curve Returns ------- metricval : float Value of the metric. """ # # Check that there is the same nun0 # if not len(curves_x)==len(curves_y): # raise ValueError('The lists must have the same size') # We calculate the span of the curves in the x axis, which will # be used later to normalize the metric. xmax = np.amax([np.amax(xs) for xs in curves_x]) xmin = np.amin([np.amin(xs) for xs in curves_x]) spanx = xmax - xmin # Number of overlapping points and metric value initilization metricval = 0. N_ovl= 0 # Iteration over different reference curves for j_ref, (refcurve_x, refcurve_y) in enumerate(zip(curves_x, curves_y)): # Find the y limits of the reference curve refymax = np.amax(refcurve_y) refymin = np.amin(refcurve_y) # Linearly interpolate the refcurve to get the x of the # curve as a function of the y refcurve_x_interp = spi.interp1d( refcurve_y, refcurve_x, kind='linear') for j_curve, (curve_x, curve_y) in enumerate(zip(curves_x, curves_y)): # Ignore the ref curve if j_curve == j_ref: break # Extract the points overlapping the reference curve condition = np.logical_and(curve_y>=refymin, curve_y<=refymax) ovl_x = np.extract(condition, curve_x) ovl_y = np.extract(condition, curve_y) # Save the number of overlapping points N_ovl += ovl_x.size # Distance between curve points and interpolated ref curve metricval += np.linalg.norm( ovl_x - refcurve_x_interp(ovl_y), ord=1) metricval = metricval/(N_ovl*spanx) return metricval # Statistical functions # =================================== def variance(mean, momnt2): """Calculate the sample variance. Parameters ---------- mean : float (scalar or array) Mean value. momnt2 : float (scalar or array) Second raw moment (mean of the square). Returns ------- variance : float (scalar or array) """ momnt2_arr = np.array(momnt2) return momnt2_arr - np.power(mean, 2) def samplevariance(mean, momnt2, nmeasure): """Calculate the sample variance. Parameters ---------- mean : float (scalar or array) Mean value. momnt2 : float (scalar or array) Second raw moment (mean of the square). Returns ------- variance : float (scalar or array) """ nmeasure_arr = np.array(nmeasure) return nmeasure_arr/(nmeasure_arr - 1.)*variance(mean, momnt2) # TODO: improve docs # TODO: ensure the units are right def corr_time(mean, momnt2, corr, nmeasures): """Estimate the correlation time in a Markov chain (with rejection). Estimates the correlation time using the mean value of the product in consecutive steps and the variance (it is assumed that the autocorrelation decays exponentially). Parameters ---------- mean : float (scalar or array) Mean of the magnitued. momnt2 : float (scalar or array) Second moment of the magnitude. corr : float (scalar or array) Mean value of the product of the magnitude in consecutive measures. nmeasures: int (scalar or array) Number of measures. Returns ------- corr_time : float (scalar or array) Estimated correlation time. """ # Calculate the variance var = samplevariance(mean, momnt2, nmeasures) # Ensure the data is stored in arrays var_arr = var*np.ones(1) corr_arr = corr*np.ones(1) mean_arr = mean*np.ones(1) # Find the indexes where the variance is not zero nonzero_idxs = np.argwhere(var_arr != 0) # Initialize to -1 corr_norm = np.full(corr_arr.shape, -1., dtype=float) # Calculate the normalized autocorrelation corr_norm[nonzero_idxs] = ( (corr_arr[nonzero_idxs] - np.power(mean_arr[nonzero_idxs], 2)) /var_arr[nonzero_idxs]) return corr_norm/(1. - corr_norm) def samplemean_error(mean, momnt2, corrtime, nmeasures): """Calculate the sample mean error in rejection with repetition. Parameters ---------- mean : float (scalar or array) Sample mean of the calculated magnitued. momnt2 : float (scalar or array) Sample second raw moment of the magnitude. corrtime : float (scalar or array) Correlation time of the magnitude. nmeasures: int (scalar or array) Number of measures. Returns ------- error : float (scalar or array) """ # Calculate the variance var = samplevariance(mean, momnt2, nmeasures) # If the variance is zero, the error is directly zero. # If we use the formula in those cases a zero division is # done, so we have to treat the zero values separately. # Ensure the data is stored in arrays mean_arr = mean*np.ones(1) var_arr = var*
np.ones(1)
numpy.ones
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Sep 13 20:17:53 2021 @author: <NAME> <NAME> <NAME> <NAME> """ # AND import numpy as np def degrau(v): if v >=0: return 1 else: return 0 def perceptron(x, w, b): v = np.dot(w, x) + b y = degrau(v) return y def AND(x): w = np.array([1,1]) bAND = -1.5 return perceptron(x, w, bAND) x0 = np.array([0,1]) x1 = np.array([1,1]) x2 = np.array([0,0]) x3 = np.array([1,0]) print("AND ({} + {}) = {}".format(0,1, AND(x0))) print("AND ({} + {}) = {}".format(1,1, AND(x1))) print("AND ({} + {}) = {}".format(0,0, AND(x2))) print("AND ({} + {}) = {}".format(1,0, AND(x3))) print("----------------------------------------------------------------------") # OR # -*- coding: utf-8 -*- import numpy as np def degrau(v): if v >=0: return 1 else: return 0 def perceptron(x, w, b): v = np.dot(w, x) + b y = degrau(v) return y def OR(x): w = np.array([1,1]) b = -0.5 return perceptron(x, w, b) x0 = np.array([0,1]) x1 = np.array([1,1]) x2 = np.array([0,0]) x3 = np.array([1,0]) print("OR ({} + {}) = {}".format(0,1, OR(x0))) print("OR ({} + {}) = {}".format(1,1, OR(x1))) print("OR ({} + {}) = {}".format(0,0, OR(x2))) print("OR ({} + {}) = {}".format(1,0, OR(x3))) print("----------------------------------------------------------------------") # NOR import numpy as np def degrau(v): if v >=0: return 1 else: return 0 def perceptron(x, w, b): v = np.dot(w, x) + b y = degrau(v) return y def NOT(x): wNOT = -1.0 bNOT = 0.5 return perceptron(x, wNOT, bNOT) def OR(x): w = np.array([1,1]) b = -0.5 return perceptron(x, w, b) def NOR(x): output_OR = OR(x) output_NOT = NOT(output_OR) return output_NOT x0 = np.array([0,1]) x1 = np.array([1,1]) x2 = np.array([0,0]) x3 = np.array([1,0]) print("NOR ({} + {}) = {}".format(0,1, NOR(x0))) print("NOR ({} + {}) = {}".format(1,1, NOR(x1))) print("NOR ({} + {}) = {}".format(0,0, NOR(x2))) print("NOR ({} + {}) = {}".format(1,0, NOR(x3))) print("----------------------------------------------------------------------") # NAND # -*- coding: utf-8 -*- import numpy as np def degrau(v): if v >=0: return 1 else: return 0 def perceptron(x, w, b): v = np.dot(w, x) + b y = degrau(v) return y def NOT(x): wNOT = -1.0 bNOT = 0.5 return perceptron(x, wNOT, bNOT) def AND(x): w = np.array([1,1]) bAND = -1.5 return perceptron(x, w, bAND) def NAND(x): output_AND = AND(x) output_NOT = NOT(output_AND) return output_NOT x0 =
np.array([0,1])
numpy.array
from sacred import Experiment import logging import sys import os from os.path import join import pickle as pkl import numpy as np import matplotlib.pyplot as plt import tqdm from multiprocessing import Pool from src.eval_utils import iou_numpy as iou from configuration import CONFIG from src.MetaSeg.functions.in_out import components_load, get_indices, probs_gt_load from src.MetaSeg.functions.helper import load_data from src.MetaSeg.functions.calculate import meta_nn_predict from src.datasets.a2d2 import a2d2_to_cityscapes from src.datasets.cityscapes import num_categories, id_to_catid, trainid_to_catid from src.log_utils import log_config ex = Experiment('eval_iou') log = logging.getLogger() log.handlers = [] log_format = logging.Formatter('%(asctime)s || %(name)s - [%(levelname)s] - %(message)s') streamhandler = logging.StreamHandler(sys.stdout) streamhandler.setFormatter(log_format) log.addHandler(streamhandler) log.setLevel('INFO') ex.logger = log # build mapping from a2d2 full ID set to cityscapes training ID set label_mappings = dict( a2d2={k: id_to_catid[a2d2_to_cityscapes[k]] for k in a2d2_to_cityscapes.keys()}, cityscapes_val=trainid_to_catid, ) def pool_wrapper(inputs): return get_ious_for_image(*inputs) @ex.capture def get_ious_for_image(image_index, iou_pred, thresholds, args): confusion_matrices_pos = {t: np.zeros((num_categories, num_categories)) for t in thresholds} confusion_matrices_neg = {t: np.zeros((num_categories, num_categories)) for t in thresholds} pred, gt, _ = probs_gt_load(image_index, input_dir=join(CONFIG.metaseg_io_path, 'input', 'deeplabv3plus', args['dataset']), preds=True) # transform a2d2 labels to cityscapes category ids gt = np.vectorize(label_mappings[args['dataset']].get)(gt) # transform predictions to cityscapes category ids pred = np.vectorize(trainid_to_catid.get)(pred) # load components for constructing the iou mask based on different IoU thresholds components = components_load(image_index, components_dir=join(CONFIG.metaseg_io_path, 'components', 'deeplabv3plus', args['dataset'])) # border of components have been labeled with the negative index of the main component itself # we want however to include the border of the segment in the evaluation which is why we have to make it # also positive components = np.absolute(components) # -1 because component indices start with 1 components = iou_pred[components - 1] for t in thresholds: # confusion_matrices_pos[t] = iou(pred, # gt, # n_classes=num_categories, # update_matrix=confusion_matrices_pos[t], # ignore_index=0, # mask=(components >= t))[1] confusion_matrices_neg[t] = iou(pred, gt, n_classes=num_categories, update_matrix=confusion_matrices_neg[t], ignore_index=0, mask=(components < t))[1] return confusion_matrices_pos, confusion_matrices_neg @ex.config def config(): args = dict( meta_nn_path=join('.', 'src', 'meta_nn.pth'), save_dir=CONFIG.metaseg_io_path, load_file=None, plot_dir=join('.', 'plots'), steps=51, gpu=CONFIG.GPU_ID, dpi=400, n_workers=CONFIG.NUM_CORES, max_t=0.75, dataset='a2d2', ) if not os.path.exists(args['plot_dir']): os.makedirs(os.path.abspath(args['plot_dir']), exist_ok=True) def iou_wrapper(inputs): return iou(*inputs) @ex.automain def main(args, _run, _log): log_config(_run, _log) if args['load_file'] is None: _log.info('Loading data...') _log.info('Cityscapes...') # load cityscapes train data for normalization of out of domain data _, _, _, _, xa_mean, xa_std, classes_mean, classes_std, *_ = load_data('cityscapes') _log.info('{}...'.format(args['dataset'])) xa, *_, start, _ = load_data(args['dataset'], xa_mean=xa_mean, xa_std=xa_std, classes_mean=classes_mean, classes_std=classes_std) # predict iou using MetaSeg metrics iou_pred = meta_nn_predict(args['meta_nn_path'], xa, gpu=args['gpu']) # get all available input file IDs inds = get_indices(join(CONFIG.metaseg_io_path, 'metrics', 'deeplabv3plus', args['dataset'])) # construct thresholds and dictionary for saving thresholds =
np.linspace(0, 1, args['steps'])
numpy.linspace
#!/usr/bin/env python # coding: utf-8 import math import random import warnings import matplotlib import numpy as np import pandas as pd from tqdm import tqdm import matplotlib.pyplot as plt from scipy.stats import norm, uniform, poisson from statsmodels.distributions.empirical_distribution import ECDF def discrete_weibull(shape, scale, N2): x_pre_scale = np.random.weibull(shape, int(5e6)) x = scale * x_pre_scale f = ECDF(x) h = np.zeros(N2) h[0] = f(1.5) - f(0) for i in range(1, N2): h[i] = (f(i+1.5) - f(i+0.5)) / (1-f(i+0.5)) s = np.zeros(N2) s[0] = 1 for i in range(1, N2): s[i] = s[i-1]*(1-h[i-1]) SI0 = s * h SI1 = SI0[~np.isnan(SI0)] SI = np.zeros(N2) SI[0:len(SI1)] = SI1 return SI def discrete_lognormal(logmean, logsd, N2): x = np.random.lognormal(logmean, logsd, int(5e6)) f = ECDF(x) h = np.zeros(N2) h[0] = f(1.5) - f(0) for i in range(1,N2): h[i] = (f(i+1.5) - f(i+0.5)) / (1-f(i+0.5)) s = np.zeros(N2) s[0] = 1 for i in range(1,N2): s[i] = s[i-1]*(1-h[i-1]) SI0 = s * h SI1 = SI0[~np.isnan(SI0)] SI = np.zeros(N2) SI[0:len(SI1)] = SI1 return SI def cal_gt(shape, scale): dis_gt = discrete_weibull(shape, scale, 20) return dis_gt def cal_inc(logmean, logsd): dis_inc = discrete_lognormal(logmean, logsd, 20) return dis_inc def cal_rep(repmean, repsd, incmean, incsd): N2 = 30 shape = (repmean**2) / (repsd**2) scale = repmean / shape x1 = np.random.gamma(shape, scale, int(5e6)) x2 = np.random.lognormal(incmean, incsd, int(5e6)) f = ECDF(x1+x2) h = np.zeros(N2) h[0] = f(1.5) - f(0) for i in range(1,N2): h[i] = (f(i+1.5) - f(i+0.5)) / (1-f(i+0.5)) s = np.zeros(N2) s[0] = 1 for i in range(1,N2): s[i] = s[i-1]*(1-h[i-1]) SI0 = s * h SI1 = SI0[~np.isnan(SI0)] SI = np.zeros(N2) SI[0:len(SI1)] = SI1 dis_rep = SI return dis_rep def select_norm(SI, threshold): which = lambda lst: list(np.where(lst)[0]) indexSI = which(SI > threshold) SI0 = np.zeros(indexSI[0]) output = np.append(SI0, SI[indexSI]) output_norm = output / sum(output) return output_norm def cal_dis(): gt_mean, gt_sd = map(eval, input( 'Please input the shape and scale of the Weibull distribution for generation time, use blank as a separator \neg. 2.826 5.665, or press enter to use the default values: ').split() or ['2.826', '5.665']) gt_dis = cal_gt(gt_mean, gt_sd) gt_cutoff_threshold = eval(input('\nPlease input the threshold of generation distribution \neg. 0.1, or press enter to use the default value: ') or '0.1') gt_dis_cut = select_norm(gt_dis, gt_cutoff_threshold) observation_type = eval( input('\nPlease choose the type of input observation:press 0 for ONSET, press 1 for REPORT ') or '1') if observation_type == 0: inc_mean, inc_sd = map(eval, input( '\nPlease input the logmean and logsd of the lognormal distribution for incubation time, use blank as a separator \neg.1.644 0.33, or press enter to use the default values: ').split() or ['1.644', '0.33']) inc_dis = cal_inc(inc_mean, inc_sd) inc_cutoff_threshold = eval(input('\nPlease input the threshold of incubation distribution \neg. 0.1, or press enter to use the default value: ') or '0.1') inc_dis_cut = select_norm(inc_dis, inc_cutoff_threshold) return gt_dis_cut, inc_dis_cut elif observation_type == 1: inc_mean, inc_sd = map(eval, input( '\nPlease input the logmean and logsd of the lognormal distribution for incubation time, use blank as a separator \neg.1.644 0.33, or press enter to use the default values: ').split() or ['1.644', '0.33']) rep_mean, rep_sd = map(eval, input( '\nPlease input the mean and sd of the Gamma distribution for report time, use blank as a separator \neg.4.9 3.3, or press enter to use the default values: ').split() or ['4.9', '3.3']) rep_dis = cal_rep(rep_mean, rep_sd, inc_mean, inc_sd) rep_cutoff_threshold = eval(input( '\nPlease input the threshold of report delay distribution \neg. 0.09, or press enter to use the default value: ') or '0.09') rep_dis_cut = select_norm(rep_dis, rep_cutoff_threshold) return gt_dis_cut, rep_dis_cut else: print('Wrong input. Please rerun DARt again.') class DARt: Num = 200 sigma_R = 0.1 MG = 1 def __init__(self, filename): warnings.filterwarnings('ignore') GT, D_s = cal_dis() GT = list(GT) D_s = list(D_s) self.delay_start_day = next((i for (i, x) in enumerate(D_s) if x), None) nonzero_delay = D_s[self.delay_start_day:] if len(GT) >= len(nonzero_delay): for i in range(len(GT) - len(nonzero_delay)): nonzero_delay.append(0) else: for i in range(len(nonzero_delay) - len(GT)): GT.append(0) self.GT = GT self.len_GT = len(self.GT) self.delay0 = nonzero_delay self.filename = filename self.Ct = None self.Ct_SD = None self.date = None self.N = 0 self.Rt_back = [] self.It_back = [] self.M_back = [] self.Rt_back_CI = [] self.It_back_CI = [] self.It_est = [] self.Rt_est = [] self.It_CI = [] self.Rt_CI = [] self.M_est = [] def readfile(self): data = pd.read_csv(self.filename) Ct = data.iloc[:, 1] date = data.iloc[:, 0] first_nonzero = [] for i in range(len(Ct)): if Ct.values[i] == 0: first_nonzero.append(i) if first_nonzero: start_index = first_nonzero[-1] else: start_index = 0 self.Ct = list(Ct[start_index:]) self.date = list(date[start_index:]) Ct_mean = np.convolve(self.Ct, np.ones((self.len_GT,)) / self.len_GT, mode='same') ct_diff = Ct_mean - self.Ct ct_diff2 = [ct ** 2 for ct in ct_diff] Ct_Var = np.convolve(ct_diff2, np.ones((self.len_GT,)) / self.len_GT, mode='same') self.Ct_SD = [math.sqrt(ct) for ct in Ct_Var] self.N = len(self.Ct) self.Rt_back = np.zeros(self.N - self.delay_start_day - 1) self.It_back = np.zeros(self.N - self.delay_start_day - 1) self.M_back = np.zeros(self.N - self.delay_start_day - 1) self.Rt_back_CI = np.zeros((2, self.N - self.delay_start_day - 1)) self.It_back_CI = np.zeros((2, self.N - self.delay_start_day - 1)) self.It_est = np.zeros(self.N - self.delay_start_day - 1) self.Rt_est = np.zeros(self.N - self.delay_start_day - 1) self.It_CI = np.zeros((2, self.N - self.delay_start_day - 1)) self.Rt_CI = np.zeros((2, self.N - self.delay_start_day - 1)) self.M_est = np.zeros(self.N - self.delay_start_day - 1) # filtering ============================ def renewal_fun(self, GT, Jt, i): inc_i = 0 for j in range(len(GT)): inc_i = inc_i + Jt[i - j - 1] * GT[j] return inc_i def independent_sample(self, fn_list): def sample_fn(n): return np.stack([fn(n) for fn in fn_list]).T return sample_fn def cal_CI(self, particle, weight): order = np.argsort(particle) order_particle = particle[order] cdf = np.cumsum(weight[order]) low_id = np.where(cdf >= 0.025)[0][0] high_id = np.where(cdf >= 0.975)[0][0] CI = [order_particle[low_id], order_particle[high_id]] return CI def initialize_particle(self, Num): independent_sample_list = [uniform(1, 5).rvs, uniform(0, 1).rvs] for i in range(self.len_GT): independent_sample_list.insert(0, uniform(1, max(self.Ct[0] * 2, 10)).rvs) prior_fn = self.independent_sample(independent_sample_list) # particle location particle_previous_x = prior_fn(Num) # particle weight particle_previous_w = 1 / Num * np.ones(Num) # mode for n in range(len(particle_previous_x)): if particle_previous_x[n][-1] < 0.95: particle_previous_x[n][-1] = 0 else: particle_previous_x[n][-1] = 1 return particle_previous_x, particle_previous_w def filtering(self, Num, delay_start_day, N, particle_previous_w, particle_previous_x): # filtering all_particle = [] all_weight = [] for t in tqdm(range(self.len_GT, N - delay_start_day - 1)): # resampling------------- particle_previous_selection = np.zeros(Num, dtype=int) for s in range(Num): u = random.uniform(0, 1) particle_previous_selection[s] = np.where(np.cumsum(particle_previous_w) > u)[0][0] particle_previous_selection = np.sort(particle_previous_selection) particle_previous_resampled = np.zeros(particle_previous_x.shape) for s in range(Num): particle_previous_resampled[s, ] = particle_previous_x[particle_previous_selection[s], ] # transition-------------- particle_current_x = np.zeros(particle_previous_x.shape) for s in range(Num): It_s = particle_previous_resampled[s, :self.len_GT] Rt_s = particle_previous_resampled[s, self.len_GT] rdn = uniform(0, 1).rvs(1) if rdn < 0.95: M_s_new = 0 else: M_s_new = 1 Rt_s_new = abs(norm(loc=Rt_s, scale=DARt.sigma_R * DARt.MG).rvs(size=1)[0]) if M_s_new == 1: Rt_s_new = uniform(0, Rt_s + 0.5).rvs(1) It_end = max(Rt_s_new * sum(np.multiply(It_s, self.GT[::-1])), 0) It_end_new = poisson.rvs(It_end, size=1)[0] It_s_new = np.append(It_s[1:], It_end_new) particle_current_x[s, :self.len_GT] = It_s_new particle_current_x[s, self.len_GT] = Rt_s_new particle_current_x[s, self.len_GT+1] = M_s_new # weight------------------ particle_current_w = np.zeros(Num) for s in range(Num): It_s_new = particle_current_x[s, :self.len_GT] Ct_s = sum(np.multiply(It_s_new, self.delay0[::-1])) particle_current_w[s] = norm(Ct_s, self.Ct_SD[t + delay_start_day + 1]).pdf(self.Ct[t + delay_start_day + 1]) # normalize------------------ particle_current_w = particle_current_w / sum(particle_current_w) particle_previous_x = particle_current_x particle_previous_w = particle_current_w # save mean self.It_est[t] = sum(np.multiply(particle_current_x[:, self.len_GT-1], particle_current_w)) self.Rt_est[t] = sum(np.multiply(particle_current_x[:, self.len_GT], particle_current_w)) self.M_est[t] = sum(np.multiply(particle_current_x[:, self.len_GT+1], particle_current_w)) # save confidence interval self.It_CI[:, t] = self.cal_CI(particle_current_x[:, self.len_GT-1], particle_current_w) self.Rt_CI[:, t] = self.cal_CI(particle_current_x[:, self.len_GT], particle_current_w) # save all particles all_particle.append(particle_current_x) all_weight.append(particle_current_w) return all_particle, all_weight # smoothing ======================== def prob_fun(self, X_tPlus, X_t): R_tPlus = X_tPlus[self.len_GT] R_t = X_t[self.len_GT] M_Plus_t = X_tPlus[self.len_GT+1] if M_Plus_t == 1: Prob_Rt = 1 / 5 else: Prob_Rt = norm.pdf(R_tPlus, loc=R_t, scale=DARt.sigma_R * DARt.MG) I_tPlus = X_tPlus[:self.len_GT] I_t = X_t[:self.len_GT] mu = R_tPlus * sum(np.multiply(I_t, self.GT[::-1])) Prob_It = poisson.pmf(I_tPlus[-1], mu) prob = Prob_It * Prob_Rt return prob def smoothing(self, Num, N, all_particle, all_weight): particle_next = all_particle[-1] weight_next = all_weight[-1] for i in range(self.len_GT): self.It_back[-i-1] = sum(np.multiply(particle_next[:, self.len_GT-1-i], weight_next)) self.It_back_CI[:, -i-1] = self.cal_CI(particle_next[:, self.len_GT-1-i], weight_next) self.Rt_back_CI[:, -1] = self.Rt_CI[:, -1] self.Rt_back[-1] = self.Rt_est[-1] for t in tqdm(range(N - self.delay_start_day-3, self.len_GT-1, -1)): weight_t = all_weight[t-self.len_GT] particle_t = all_particle[t-self.len_GT] prob_mat = np.zeros((Num, Num)) for k in range(Num): for n in range(Num): prob_mat[k, n] = self.prob_fun(particle_next[k, ], particle_t[n, ]) weight_now = np.zeros(Num) for i in range(Num): sum_update = 0 for k in range(Num): fs = prob_mat[k, i] v = 0 for n in range(Num): v = v + weight_t[n] * prob_mat[k, n] sum_update = sum_update + weight_next[k] * fs / v weight_now[i] = weight_t[i] * sum_update weight_next = weight_now / sum(weight_now) self.Rt_back[t] = sum(np.multiply(particle_t[:, self.len_GT], weight_next)) self.It_back[t] = sum(np.multiply(particle_t[:, self.len_GT-1], weight_next)) self.M_back[t] = sum(np.multiply(particle_t[:, self.len_GT+1], weight_next)) self.Rt_back_CI[:, t] = self.cal_CI(particle_t[:, self.len_GT], weight_next) self.It_back_CI[:, t] = self.cal_CI(particle_t[:, self.len_GT-1], weight_next) particle_next = particle_t def cal_r(self): self.readfile() particle_previous_x, particle_previous_w = self.initialize_particle(DARt.Num) all_particle, all_weight = self.filtering(DARt.Num, self.delay_start_day, self.N, particle_previous_w, particle_previous_x) self.smoothing(DARt.Num, self.N, all_particle, all_weight) PF_result = pd.DataFrame({'Date': self.date[self.len_GT:(-1 - self.delay_start_day)], 'Rt_smooth': self.Rt_back[self.len_GT:], 'Rt_smooth_5%': self.Rt_back_CI[0, self.len_GT:], 'Rt_smooth_95%': self.Rt_back_CI[1, self.len_GT:], 'Rt_filter': self.Rt_est[self.len_GT:], 'Rt_est_5%': self.Rt_CI[0, self.len_GT:], 'Rt_est_95%': self.Rt_CI[1, self.len_GT:], 'Mt_smooth': self.M_back[self.len_GT:], 'Mt_filter': self.M_est[self.len_GT:], 'Jt_smooth': self.It_back[self.len_GT:], 'Jt_smooth_5%': self.It_back_CI[0, self.len_GT:], 'Jt_smooth_95%': self.It_back_CI[1, self.len_GT:], 'Jt_filter': self.It_est[self.len_GT:], 'Jt_est_5%': self.It_CI[0, self.len_GT:], 'Jt_est_95%': self.It_CI[1, self.len_GT:], 'Ct':
np.array(self.Ct)
numpy.array
from argparse import Namespace import csv import pickle import numpy as np from tqdm import tqdm from chemprop.data.utils import get_data, get_task_names from chemprop.features import get_features_generator from chemprop.sklearn_train import predict from chemprop.utils import makedirs def predict_sklearn(args: Namespace): print('Loading data') data = get_data(path=args.test_path) print('Computing morgan fingerprints') morgan_fingerprint = get_features_generator('morgan') for datapoint in tqdm(data, total=len(data)): datapoint.set_features(morgan_fingerprint(mol=datapoint.smiles, radius=args.radius, num_bits=args.num_bits)) print(f'Predicting with an ensemble of {len(args.checkpoint_paths)} models') sum_preds = np.zeros((len(data), args.num_tasks)) for checkpoint_path in tqdm(args.checkpoint_paths, total=len(args.checkpoint_paths)): with open(checkpoint_path, 'rb') as f: model = pickle.load(f) model_preds = predict( model=model, model_type=args.model_type, dataset_type=args.dataset_type, features=data.features() ) sum_preds +=
np.array(model_preds)
numpy.array
# coding: utf8 ######################################################################## # # # Control law : tau = P(q*-q^) + D(v*-v^) + tau_ff # # # ######################################################################## from matplotlib import pyplot as plt import pinocchio as pin import numpy as np import numpy.matlib as matlib import tsid import FootTrajectoryGenerator as ftg import FootstepPlanner import pybullet as pyb import utils import time pin.switchToNumpyMatrix() ######################################################################## # Class for a PD with feed-forward Controller # ######################################################################## class controller: """ Inverse Dynamics controller that take into account the dynamics of the quadruped to generate actuator torques to apply on the ground the contact forces computed by the MPC (for feet in stance phase) and to perform the desired footsteps (for feet in swing phase) Args: N_similation (int): maximum number of Inverse Dynamics iterations for the simulation """ def __init__(self, N_simulation, k_mpc, n_periods): self.q_ref = np.array([[0.0, 0.0, 0.2027682, 0.0, 0.0, 0.0, 1.0, 0.0, 0.8, -1.6, 0, 0.8, -1.6, 0, -0.8, 1.6, 0, -0.8, 1.6]]).transpose() self.qtsid = self.q_ref.copy() self.vtsid = np.zeros((18, 1)) self.ades = np.zeros((18, 1)) self.error = False self.verbose = True # List with the names of all feet frames self.foot_frames = ['FL_FOOT', 'FR_FOOT', 'HL_FOOT', 'HR_FOOT'] # Constraining the contacts mu = 0.9 # friction coefficient fMin = 1.0 # minimum normal force fMax = 25.0 # maximum normal force contactNormal = np.matrix([0., 0., 1.]).T # direction of the normal to the contact surface # Coefficients of the posture task kp_posture = 10.0 # proportionnal gain of the posture task w_posture = 1.0 # weight of the posture task # Coefficients of the contact tasks kp_contact = 100.0 # proportionnal gain for the contacts self.w_forceRef = 50.0 # weight of the forces regularization self.w_reg_f = 50.0 # Coefficients of the foot tracking task kp_foot = 100.0 # proportionnal gain for the tracking task self.w_foot = 500.0 # weight of the tracking task # Arrays to store logs k_max_loop = N_simulation self.f_pos = np.zeros((4, k_max_loop, 3)) self.f_vel = np.zeros((4, k_max_loop, 3)) self.f_acc = np.zeros((4, k_max_loop, 3)) self.f_pos_ref = np.zeros((4, k_max_loop, 3)) self.f_vel_ref = np.zeros((4, k_max_loop, 3)) self.f_acc_ref = np.zeros((4, k_max_loop, 3)) self.b_pos = np.zeros((k_max_loop, 6)) self.b_vel = np.zeros((k_max_loop, 6)) self.com_pos = np.zeros((k_max_loop, 3)) self.com_pos_ref = np.zeros((k_max_loop, 3)) self.c_forces = np.zeros((4, k_max_loop, 3)) self.h_ref_feet = np.zeros((k_max_loop, )) self.goals = np.zeros((3, 4)) self.vgoals =
np.zeros((3, 4))
numpy.zeros
#!/usr/bin/env python3 # Author: <NAME> # Copyright 2021 import os import copy import shutil import argparse import numpy as np import isce import isceobj from isceobj.TopsProc.runMergeBursts import mergeBox from isceobj.TopsProc.runMergeBursts import adjustValidWithLooks from isceobj.TopsProc.runIon import cal_cross_ab_ramp from Stack import ionParam import s1a_isce_utils as ut from mergeBurstsIon import updateValid def createParser(): parser = argparse.ArgumentParser(description='merge swath ionosphere') parser.add_argument('-c', '--reference', type=str, dest='reference', required=True, help='directory with the reference image') parser.add_argument('-s', '--stack', type=str, dest='stack', default = None, help='directory with the stack xml files which includes the common valid region of the stack') parser.add_argument('-i', '--input', dest='input', type=str, required=True, help='directory with input swath ionosphere containing swath directories ion_cal_IW*') parser.add_argument('-o', '--output', dest='output', type=str, required=True, help='directory with output merged ionosphere') parser.add_argument('-r', '--nrlks', type=int, dest='nrlks', default=1, help = 'number of range looks. NOT number of range looks 0') parser.add_argument('-a', '--nalks', type=int, dest='nalks', default=1, help = 'number of azimuth looks. NOT number of azimuth looks 0') parser.add_argument('-m', '--remove_ramp', type=int, dest='remove_ramp', default=0, help = 'remove an empirical ramp as a result of different platforms. 0: no removal (default), 1: S1A-S1B, -1: S1B-S1A') return parser def cmdLineParse(iargs = None): parser = createParser() return parser.parse_args(args=iargs) def main(iargs=None): ''' ''' inps = cmdLineParse(iargs) corThresholdSwathAdj = 0.85 numberRangeLooks = inps.nrlks numberAzimuthLooks = inps.nalks remove_ramp = inps.remove_ramp ionParamObj=ionParam() ionParamObj.configure() ##################################################################### framesBox=[] swathList = sorted(ut.getSwathList(inps.reference)) for swath in swathList: frame = ut.loadProduct(os.path.join(inps.reference, 'IW{0}.xml'.format(swath))) minBurst = frame.bursts[0].burstNumber maxBurst = frame.bursts[-1].burstNumber if minBurst==maxBurst: print('Skipping processing of swath {0}'.format(swath)) continue passDirection = frame.bursts[0].passDirection.lower() if inps.stack is not None: print('Updating the valid region of each burst to the common valid region of the stack') frame_stack = ut.loadProduct(os.path.join(inps.stack, 'IW{0}.xml'.format(swath))) updateValid(frame, frame_stack) framesBox.append(frame) box = mergeBox(framesBox) #adjust valid with looks, 'frames' ARE CHANGED AFTER RUNNING THIS #here numberRangeLooks, instead of numberRangeLooks0, is used, since we need to do next step multilooking after unwrapping. same for numberAzimuthLooks. (burstValidBox, burstValidBox2, message) = adjustValidWithLooks(framesBox, box, numberAzimuthLooks, numberRangeLooks, edge=0, avalid='strict', rvalid='strict') #1. we use adjustValidWithLooks() to compute burstValidBox for extracting burst bounding boxes, use each burst's bounding box to retrive #the corresponding burst in merged swath image and then put the burst in the final merged image. #so there is no need to use interferogram IW*.xml, reference IW*.xml is good enough. If there is no corresponding burst in interferogram #IW*.xml, the burst in merged swath image is just zero, and we can put this zero burst in the final merged image. #2. we use mergeBox() to compute box[1] to be used in cal_cross_ab_ramp() ##################################################################### numValidSwaths = len(swathList) if numValidSwaths == 1: print('there is only one valid swath, simply copy the files') os.makedirs(inps.output, exist_ok=True) corName = os.path.join(inps.input, 'ion_cal_IW{}'.format(swathList[0]), 'raw_no_projection.cor') ionName = os.path.join(inps.input, 'ion_cal_IW{}'.format(swathList[0]), 'raw_no_projection.ion') corOutName = os.path.join(inps.output, 'raw_no_projection.cor') ionOutName = os.path.join(inps.output, 'raw_no_projection.ion') shutil.copy2(corName, corOutName) shutil.copy2(ionName, ionOutName) #os.symlink(os.path.abspath(corName), os.path.abspath(corOutName)) #os.symlink(os.path.abspath(ionName), os.path.abspath(ionOutName)) img = isceobj.createImage() img.load(corName + '.xml') img.setFilename(corOutName) img.extraFilename = corOutName+'.vrt' img.renderHdr() img = isceobj.createImage() img.load(ionName + '.xml') img.setFilename(ionOutName) img.extraFilename = ionOutName+'.vrt' img.renderHdr() return print('merging swaths') corList = [] ampList = [] ionosList = [] for swath in swathList: corName = os.path.join(inps.input, 'ion_cal_IW{}'.format(swath), 'raw_no_projection.cor') ionName = os.path.join(inps.input, 'ion_cal_IW{}'.format(swath), 'raw_no_projection.ion') img = isceobj.createImage() img.load(ionName + '.xml') width = img.width length = img.length amp = (np.fromfile(corName, dtype=np.float32).reshape(length*2, width))[0:length*2:2, :] cor = (
np.fromfile(corName, dtype=np.float32)
numpy.fromfile
import unittest from context import modest as md import numpy as np from scipy.linalg import block_diag from scipy.stats import multivariate_normal as mvn class TestModularFilters(unittest.TestCase): def setUp(self): class simpleState(md.substates.SubState): def __init__(self, dimension, stateVectorHistory, covarianceStorage='covariance'): if not isinstance(stateVectorHistory['covariance'], md.utils.covarianceContainer): stateVectorHistory['covariance'] = md.utils.covarianceContainer( stateVectorHistory['covariance'],covarianceStorage ) super().__init__(stateDimension=dimension, stateVectorHistory=stateVectorHistory) self.simpleState = simpleState class oneDPositionVelocity(md.substates.SubState): def __init__(self, objectID, stateVectorHistory,covarianceStorage='covariance'): if not isinstance(stateVectorHistory['covariance'], md.utils.covarianceContainer): stateVectorHistory['covariance'] = md.utils.covarianceContainer( stateVectorHistory['covariance'],covarianceStorage ) super().__init__(stateDimension=2, stateVectorHistory=stateVectorHistory) self.stateVector = stateVectorHistory['stateVector'] self.objectID = objectID self.covarianceStorage = covarianceStorage def storeStateVector(self, svDict): xPlus = svDict['stateVector'] aPriori = svDict['aPriori'] if aPriori is False: self.stateVector = xPlus svDict['stateVector'] = self.stateVector super().storeStateVector(svDict) def timeUpdate(self, dT, dynamics=None): F = np.array([[1, dT],[0, 1]]) dT2 = np.square(dT) dT3 = np.power(dT, 3) dT4 = np.power(dT, 4) if self.covariance().form == 'covariance': Q = np.array([[dT4/4, dT3/2],[dT3/2, dT2]]) elif self.covariance().form == 'cholesky': Q = np.array([[dT2/2,0],[dT,0]]) accelKey = self.objectID + 'acceleration' if dynamics is not None and accelKey in dynamics: acceleration = dynamics[accelKey]['value'] accVar = dynamics[accelKey]['var'] else: acceleration = 0 accVar = 0 self.stateVector = F.dot(self.stateVector) + np.array([0, acceleration]) if self.covariance().form == 'covariance': Q = md.utils.covarianceContainer(Q * accVar, 'covariance') elif self.covariance().form == 'cholesky': Q = md.utils.covarianceContainer(Q * np.sqrt(accVar), 'cholesky') else: raise ValueError('unrecougnized covariance') return {'F': F, 'Q': Q} def getMeasurementMatrices(self, measurement, source=None): HDict = {} RDict = {} dyDict = {} if isinstance(source, oneDObjectMeasurement) and source.objectID == self.objectID: if 'position' in measurement: H = np.array([[1, 0]]) dY = measurement['position']['value'] - H.dot(self.stateVector) HDict['%s position' %self.objectID] = H RDict['%s position' %self.objectID] = np.array( [[measurement['position']['var']]] ) dyDict['%s position' %self.objectID] = dY if 'velocity' in measurement: H = np.array([[0, 1]]) dY = measurement['velocity']['value'] - H.dot(self.stateVector) HDict['%s velocity' %self.objectID] = H RDict['%s velocity' %self.objectID] = np.array( [[measurement['velocity']['var']]] ) dyDict['%s velocity' %self.objectID] = dY return {'H': HDict, 'R': RDict, 'dY': dyDict} self.oneDPositionVelocity = oneDPositionVelocity class oneDObjectMeasurement(md.signals.SignalSource): def __init__(self, objectID): self.objectID = objectID return def computeAssociationProbability(self, measurement, stateDict, validationThreshold=0): myMeasMat = stateDict[self.objectID]['stateObject'].getMeasurementMatrices(measurement, source=self) dY = None R = None H = None for key in myMeasMat['dY']: if H is None: H = myMeasMat['H'][key] R = myMeasMat['R'][key] dY = myMeasMat['dY'][key] else: H = np.vstack([H, myMeasMat['H'][key]]) R = block_diag(R, myMeasMat['R'][key]) dY = np.append(dY, myMeasMat['dY'][key]) if dY is not None: P = stateDict[self.objectID]['stateObject'].covariance() Pval = P.convertCovariance('covariance').value # if P.form == 'cholesky': # Pval = P.value.dot(P.value.transpose()) # elif P.form == 'covariance': # Pval = P.value # else: # raise ValueError('Unrecougnized covariance specifier %s' %P.form) S = H.dot(Pval).dot(H.transpose()) + R myProbability = mvn.pdf(dY, cov=S) else: myProbability = 0 return myProbability self.oneDObjectMeasurement = oneDObjectMeasurement def testAddStates(self): # Create a simple state class to add to the filter stateLength1 = np.random.randint(0, 10) cov1 = np.random.randint(0, 10) state1 = self.simpleState( stateLength1, { 't':0, 'stateVector':np.zeros(stateLength1), 'covariance':np.eye(stateLength1)*cov1, 'stateVectorID':0 } ) stateLength2 = np.random.randint(0, 10) cov2 = np.random.randint(1, 10) state2 = self.simpleState( stateLength2, { 't':0, 'stateVector':np.zeros(stateLength2), 'covariance':np.eye(stateLength2)*cov2, 'stateVectorID':0 } ) myFilter = md.ModularFilter() myFilter.addStates('state1', state1) myFilter.addStates('state2', state2) self.assertEqual(stateLength1 + stateLength2, myFilter.totalDimension) stackedCov = block_diag(np.eye(stateLength1) * cov1,
np.eye(stateLength2)
numpy.eye
import numpy as np from collections import OrderedDict import matplotlib.pyplot as plt import seaborn as sns def getStats(name): ff = open('{}.pol_scores'.format(name),'r') scores = [] for line in ff.readlines(): scores.append(float(line)) ff.close() print('\n=== Politeness Scores in {} === '.format(name)) print('max : {}'.format(np.max(scores))) print('min : {}'.format(np.min(scores))) print('mean : {}'.format(np.mean(scores))) print('median : {}'.format(np.median(scores))) print('std. dev. : {}'.format(
np.std(scores)
numpy.std
################################################################################ # # Delaunay density diangostic for MSD and grad-MSD rates # as described in the paper # Data-driven geometric scale detection via Delaunay interpolation # by <NAME> and <NAME> # Version 1.0, March 2022 # # For usage information, run: # python delaunay_density_diagnostic.py --help # ################################################################################ #==================================================================================================# # Load packages. Set random state and validation split. #==================================================================================================# # from matplotlib.pyplot import legend # import torch import pandas as pd # from torch.autograd import Variable # import torch.nn.functional as F # import torch.utils.data as Data # from torch.utils.data.sampler import SubsetRandomSampler import numpy as np from numpy.random import rand, default_rng from numpy import arccos, array, degrees, absolute from numpy.linalg import norm from optparse import OptionParser # import numpy.ma as ma # import xarray as xr from sys import exit import os.path import copy import delsparse from delsparse import delaunaysparsep as dsp #==================================================================================================# # Define the test function (hard coded here as the Griewank function) #==================================================================================================# def tf(X): # Griewnak function, arbitrary dimension input X = X.T term_1 = (1. / 4000.) * sum(X ** 2) term_2 = 1.0 for i, x in enumerate(X): term_2 *= np.cos(x) / np.sqrt(i + 1) return 1. + term_1 - term_2 # use a paraboloid instead: # return (7/20_000) * ( X[0]**2 + 0.5*(X[1]**2) ) #==================================================================================================# # Make query point lattice in R^dim #==================================================================================================# def make_test_data_grid(rng, static_data=False): num_samples_per_dim = options.numtestperdim x = np.linspace(options.queryleftbound, options.queryrightbound, num_samples_per_dim) print("===> Test coordinates for each dimension = ", x) mg_in = [] for i in range(options.dim): mg_in.append(x) grid_pts = np.array(np.meshgrid(*mg_in)) grid_pts = grid_pts.reshape(options.dim, num_samples_per_dim ** options.dim) grid_pts = grid_pts.T outputs_on_grid = tf(grid_pts) data_test_inputs = pd.DataFrame(grid_pts) data_test_outputs = pd.DataFrame(outputs_on_grid) return data_test_inputs, data_test_outputs #==================================================================================================# # Collect random sample from bounding box #==================================================================================================# def make_random_training_in_box(rng): train_set_size = options.numtrainpts # print("==> Generating ", train_set_size, " random points.") rand_pts_n = rng.random((train_set_size, options.dim)) train_box_scale_vector = np.full(options.dim, (options.bboxrightbound - options.bboxleftbound) ) train_box_shift_vector = np.full(options.dim, options.bboxleftbound ) # do scaling in each dim first for i in range(options.dim): rand_pts_n[:,i] *= train_box_scale_vector[i] # then do shifts for i in range(options.dim): rand_pts_n[:,i] += train_box_shift_vector[i] outputs_on_rand_n = tf(rand_pts_n) data_train_inputs = pd.DataFrame(rand_pts_n) data_train_outputs = pd.DataFrame(outputs_on_rand_n) return data_train_inputs, data_train_outputs #==================================================================================================# # Function to compute DelaunaySparse #==================================================================================================# def compute_DS_only(data_train_inputs, data_train_outputs, data_test_inputs, data_test_outputs): # # note: data_test_outputs is only converted to numpy if needed, transposed, # and returned as actual_test_vals # # WARNING: deepcopy here may be inefficient at scale pts_in = copy.deepcopy(data_train_inputs) q = copy.deepcopy(data_test_inputs) interp_in = data_train_outputs actual_test_vals = data_test_outputs if not isinstance(actual_test_vals, np.ndarray): actual_test_vals = actual_test_vals.to_numpy() actual_test_vals = actual_test_vals.T actual_train_vals = data_train_outputs if not isinstance(actual_train_vals, np.ndarray): actual_train_vals = actual_train_vals.to_numpy() actual_train_vals = actual_train_vals.T interp_in_n = interp_in if not isinstance(interp_in_n, np.ndarray): interp_in_n = interp_in_n.to_numpy() interp_in_n = interp_in_n.T if not isinstance(pts_in, np.ndarray): pts_in = pts_in.to_numpy() pts_in = pts_in.T pts_in = np.require(pts_in, dtype=np.float64, requirements=['F']) if not isinstance(q, np.ndarray): q = q.to_numpy() p_in = np.asarray(q.T, dtype=np.float64, order="F") ir=interp_in_n.shape[0] interp_in_n = np.require(interp_in_n, dtype=np.float64, requirements=['F']) simp_out = np.ones(shape=(p_in.shape[0]+1, p_in.shape[1]), dtype=np.int32, order="F") weights_out = np.ones(shape=(p_in.shape[0]+1, p_in.shape[1]), dtype=np.float64, order="F") error_out = np.ones(shape=(p_in.shape[1],), dtype=np.int32, order="F") interp_out_n = np.zeros([interp_in_n.shape[0],p_in.shape[1]]) interp_out_n = np.require(interp_out_n, dtype=np.float64, requirements=['F']) rnorm_n = np.zeros(p_in.shape[1]) rnorm_n = np.require(rnorm_n, dtype=np.float64, requirements=['F']) # From delsparse.py documenation: # Setting EXTRAP=0 will cause all extrapolation points to be # ignored without ever computing a projection. By default, EXTRAP=0.1 # (extrapolate by up to 10% of the diameter of PTS). dsp(pts_in.shape[0], pts_in.shape[1], pts_in, p_in.shape[1], p_in, simp_out, weights_out, error_out, extrap=options.extrap_thresh, rnorm=rnorm_n, pmode=1, interp_in=interp_in_n, interp_out=interp_out_n) if (options.computeGrad): # # arbitrary number of outputs, as determind by interp_in_n.shape[0] grad_est_DS = np.zeros([interp_in_n.shape[0], simp_out.shape[1], options.dim]) grad_est_DS.fill(999) for j in range(simp_out.shape[1]): # note: the value of simp_out.shape[1] should equal the number of interpolation outputs # extrapolation points don't get a simp_out entry, I think? # # mutliple test points may lie in the same simplex # but that just means you might duplicate effort # if you already saw a simplex and comptued the gradient(s) # this presumes pts_in was deep copied from data_train_inputs at start of compute_DS_only(...) unscaled_inputs = data_train_inputs.to_numpy().T # can try using scaled points instead: # # unscaled_inputs = pts_in for outputdim in range(interp_in_n.shape[0]): matrixA = np.zeros([options.dim+1, options.dim+1]) for i in range(options.dim+1): matrixA[i] = np.append(unscaled_inputs[:,simp_out[:,j][i]-1], interp_in_n[outputdim][simp_out[:,j][i]-1]) coords = matrixA G = coords.sum(axis=0) / coords.shape[0] # run SVD u, s, vh = np.linalg.svd(coords - G) # unitary normal vector hyper_sfc_normal = vh[options.dim, :] # approx grad as normal scaled by vertical component, times -1 grad_out = hyper_sfc_normal/hyper_sfc_normal[options.dim] grad_out = -grad_out[:-1] # print("grad out = ", grad_out) grad_est_DS[outputdim][j] = grad_out # end loop over output dimns # end if computeGrad else: grad_est_DS = [] allow_extrapolation=True print_errors=True # note: error code 1= sucessful extrap; 2 = extrap beyond threshold extrap_indices = np.where((error_out == 1) | (error_out == 2)) extrap_indices = np.array(extrap_indices[0]) # print("extrap indices = ", extrap_indices) # print("rnorm = ", rnorm_n) # print("rnorm[indices] = ", rnorm_n[extrap_indices]) # print("type = ", type(extrap_indices)) # print("e i [0]:",extrap_indices[0]) #==============================================================================# # Check for errors in DelaunaySparse run #==============================================================================# if allow_extrapolation: # print("Extrapolation occured at ", np.where(error_out == 1)) # Next line replaces error code 1 (successful extrapolation) # with error code 0 (successful interpolation) error_out = np.where(error_out == 1, 0, error_out) else: if 1 in error_out: class Extrapolation(Exception): pass raise(Extrapolation("Encountered extrapolation point (beyond threshold) when making Delaunay prediction.")) # Handle any errors that may have occurred. if (sum(error_out) != 0): if print_errors: unique_errors = sorted(np.unique(error_out)) print(" [Delaunay errors:",end="") for e in unique_errors: if (e == 0): continue indices = tuple(str(i) for i in range(len(error_out)) if (error_out[i] == e)) if (len(indices) > 5): indices = indices[:2] + ('...',) + indices[-2:] print(" %3i"%e,"at","{"+",".join(indices)+"}", end=";") print("] ") # Reset the errors to simplex of 1s (to be 0) and weights of 0s. bad_indices = (error_out > (1 if allow_extrapolation else 0)) simp_out[:,bad_indices] = 1 weights_out[:,bad_indices] = 0 return interp_out_n, actual_test_vals, actual_train_vals, extrap_indices, grad_est_DS #==================================================================================================# # Main section, includes some bad input checks #==================================================================================================# if __name__ == '__main__': #==================================================================================================# # Provide help screen documentation. Let the user define options. Also define defaults. # #==================================================================================================# usage = "%prog [options]" parser = OptionParser(usage) parser.add_option( "--jobid", help="Job ID.", dest="jobid", type=int, default=999999) parser.add_option( "--fn", help="Test function to use. Version 1.0 of the code only supports the Griewank function. " + "It is possible to code in additional functions by modifying the definition of tf(X).", dest="fn_name", type=str, default="griewank") parser.add_option( "--dim", dest="dim", type=int, default=2, help="Dimension of input space. Default 2.") parser.add_option("--extrap", dest="extrap_thresh", type=float, default=0.0, help="Extrapolation threshold parameter passed to DelaunaySparse. Default 0.0.") parser.add_option("--maxsamp", dest="max_samp", type=int, default=20_000, help="Max number of samples to draw. Default = 20,000.") parser.add_option("--numtrainpts", dest="numtrainpts", type=int, default=850, help="Initial number of samples points (n_0 in the paper). Default = 850.") parser.add_option("--numtestperdim", dest="numtestperdim", type=int, default=20, help="Number of test points per dimension. Default = 20.") parser.add_option("--logbase", dest="log_base", type=float, default=1.4641, help="Upsampling factor b; also the base of the logarithm in rate computation. Default 1.4641.") parser.add_option("--zoomctr", dest="zoom_ctr", type=float, default=0.0, help="Zoom modality: used only in conjunction with zoomexp option - see below. " +\ "Default=0.0. Use 999.0 in zoomctr or zoomexp to manually specify left/right bounds (not implemented in Version 1.0).") parser.add_option("--zoomexp", dest="zoom_exp", type=float, default=1.0, help="Zoom modality: set query bounds and bounding box such that (1) center is (x,x,...,x) where x=zoomctr"+\ " (2) length of query grid is 10e[zoomexp] in each dimension and (3) bounding box determined from testbdsc."+\ " Default=0.0. Use 999.0 in zoomctr or zoomexp to manually specify left/right bounds (not implemented in Version 1.0).") parser.add_option("--queryleftbd", dest="queryleftbound", type=float, default=0.0, help="Left bound of interval used to build query point domain [a, b]^dim. Overwritten if zoom modality is used (see above). Default 0.0") parser.add_option("--queryrightbd", dest="queryrightbound", type=float, default=1.0, help="Right bound of interval used to build query point domain [a, b]^dim. Overwritten if zoom modality is used (see above). Default 1.0") parser.add_option("--bboxleftbd", dest="bboxleftbound", type=float, default=0.0, help="Left bound of interval used to build bounding box [a, b]^dim. Overwritten if zoom modality is used (see above). Default 0.0") parser.add_option("--bboxrightbd", dest="bboxrightbound", type=float, default=1.0, help="Right bound of interval used to build bounding box [a, b]^dim. Overwritten if zoom modality is used (see above). Default 1.0") parser.add_option("--testbdsc", dest="tb_scale", type=float, default=0.8, help="Query points dimension fraction (qpdf), defined as the side length of the query lattice " + "divided by the side length of the bounding box. Default=0.8") parser.add_option("--grad", dest="computeGrad", action="store_true", default=True, help="Compute gradients within subroutine that calls DelaunaySparse. Default True.") parser.add_option("--outc", dest="out_cor", type=int, default=-1, help="Output coordinate to assess. Default -1 avoids this modality and takes the first output coordinate.") parser.add_option("--seed", dest="spec_seed", type=int, default=0, help="Value passed as global seed to random number generator. Default 0.") parser.add_option("--itmax", dest="it_max", type=int, default=100, help="Max number of iterations. More robust to use --maxsamp to set threshold. Default = 100.") (options, args) = parser.parse_args() def echo_options(options): print("Selected options:") print() print("Job ID: ", options.jobid) print("Function: ", options.fn_name) print("Dimension: ", options.dim) print() print("Query points per dim:", options.numtestperdim) print("Total number of query points:", options.numtestperdim ** options.dim) # Set bounding box left/right bounds based on zoom center, zoom exponent, and scale factor qpdf options.bboxleftbound = np.round(options.zoom_ctr - (10 ** (options.zoom_exp))/options.tb_scale,2) options.bboxrightbound = np.round(options.zoom_ctr + (10 ** (options.zoom_exp))/options.tb_scale,2) # Set query lattice left/right bounds based on bounding box bounds and scale factor qpdf tg_scale_fac = (1.0-options.tb_scale)/2 interval_width = options.bboxrightbound - options.bboxleftbound options.queryleftbound = options.bboxleftbound + tg_scale_fac * interval_width options.queryrightbound = options.bboxrightbound - tg_scale_fac * interval_width print("Query point bounds in each dim: ", "[", options.queryleftbound, ", ", options.queryrightbound, "]") print("Query points dimension fraction (qpdf): ", options.tb_scale) print("Bounding box bounds in each dim: ", "[", options.bboxleftbound, ", ", options.bboxrightbound, "]") print() print("Initial sample size:", options.numtrainpts) print("Maximum sample size:", options.max_samp) print("Upsampling factor b: ", options.log_base) print() print("Global seed for randomization: ", options.spec_seed) print("Using gradients? : ", options.computeGrad) print("Extrapolation threshold: ", options.extrap_thresh) # print("Output cor : ", options.out_cor) print() if (options.bboxrightbound <= options.bboxleftbound): print("Right bound must be larger than left bound") exit() if (options.tb_scale < 0.0001): print("Test bound scale must be > 0") exit() if options.log_base <= 1: print("Log base must be > 1. Default is 2.0.") exit() if (options.numtestperdim ** options.dim > 10000): print() print("==> WARNING: large number of query points = ", options.numtestperdim ** options.dim) print() if (options.extrap_thresh < 0 or options.extrap_thresh > 0.5): print() print("==> Set extrapolation threshold in [0,0.5]") exit() if (options.fn_name != 'griewank'): print("==> ERROR: Requested function ", options.fn_name) print("Only the function 'griewank' is supported by this version of the code.") exit() echo_options(options) globalseed = options.spec_seed rng = np.random.default_rng(globalseed) # torch.manual_seed(globalseed) data_train_inputs, data_train_outputs = make_random_training_in_box(rng) data_test_inputs, data_test_outputs = make_test_data_grid(rng) outfname = 'zz-' + str(options.jobid) + "-" + str(options.fn_name) + "-d" + str(options.dim) + "-tpd" + str(options.numtestperdim) + "-lb" + str(options.bboxleftbound) + "-rb" + str(options.bboxrightbound) + "-tb" + str(options.tb_scale) + "-log" + str(options.log_base) +".csv" if (options.zoom_ctr != 999.0 and options.zoom_exp != 999.0): # add in -zoom[exponent value] before csv outfname = outfname[:-4] + "-zoom" + str(options.zoom_exp) + ".csv" if (options.spec_seed != 0): # add in -seed[seed value] before csv outfname = outfname[:-4] + "-seed" + str(options.spec_seed) + ".csv" print("===> Output will be stored in file ",outfname) results_df = [] all_pts_in = copy.deepcopy(data_train_inputs) all_pts_out = copy.deepcopy(data_train_outputs) if (options.out_cor == -1): # default out_coord = 0 # this means we will only measure error in 0th component of output; no problem if codomain is R^1 else: out_coord = options.out_cor print("") print("=================================") print("For output coordinate ", out_coord,": ") print("=== results for ", options.fn_name, " ===") print("samples | density | prop extrap | MSD diff | MSD rate | grad diff | grad rate | analytic diff | analytic rate ") print("") prev_error = 999999 prev_vals_at_test = [] prev_diff = 999999 ######################################################################## # create list of number of samples for each update step; # have to do in advance to avoid rounding issues # can also help in future applications to know sampling rate calculation a priori ####################################################################### quitloop = False num_samples_to_add = np.zeros(options.it_max+1) total_samples_so_far = np.zeros(options.it_max+1) total_samples_so_far[0] = all_pts_in.shape[0] for i in range(options.it_max): # i = number of "refinements" of interpolant if quitloop: break # # upsampling rule: # update number of samples by replacing 2 points per unit per dimension with (logbase + 1) points per unit per dimension # ALSO: round to the nearst integer and cast as an integer - this is essential for the static data case # otherwise you may add the same sample point more than once, causing an error for DS total_samples_so_far[i+1] = int(np.round(np.power((options.log_base*np.power(total_samples_so_far[i], 1/options.dim) - (options.log_base - 1)),options.dim))) num_samples_to_add[i] = int(total_samples_so_far[i+1] - total_samples_so_far[i]) if (total_samples_so_far[i+1] > options.max_samp): quitloop = True ######################################################################## # do iterative improvement according to upsampling schedule saved in num_samples_to_add ####################################################################### quitloop = False for i in range(options.it_max): # i = number of "refinements" of interpolant if quitloop: break # use the accumulated sample points as the training and the fixed test data sets as the test data interp_out_n, actual_test_vals, actual_train_vals, extrap_indices, grad_est_DS = compute_DS_only(all_pts_in, all_pts_out, data_test_inputs, data_test_outputs) prop_extrap_iterate = len(extrap_indices)/interp_out_n.shape[1] # print('====> proportion extrapolated = %1.2f' % prop_extrap_iterate) density_of_sample = all_pts_in.shape[0] ** (1/options.dim) # for analytical functions, we can compute the "actual" rate of convergence, for reference ds_vs_actual_at_test = np.sqrt(((interp_out_n[out_coord,:]-actual_test_vals[out_coord,:]) ** 2).mean()) if (i == 0): error_rate = 0 else: error_rate = (np.log(prev_error/ds_vs_actual_at_test))/np.log(options.log_base) # difference and rate computation steps for Algorithms 3.1 and 3.2 if (i == 0): new_vs_prev_at_test = 0 diff_rate = 0 prev_diff = 0 if (options.computeGrad): grad_new_vs_prev_at_test = 0 grad_diff_rate = 0 grad_prev_diff = 0 elif (i == 1): new_vs_prev_at_test = np.sqrt(((interp_out_n[out_coord,:]-prev_vals_at_test[out_coord,:]) ** 2).mean()) diff_rate = 0 prev_diff = new_vs_prev_at_test if (options.computeGrad): grad_new_vs_prev_at_test = np.linalg.norm(grad_est_DS - grad_prev_vals_at_test) grad_diff_rate = 0 grad_prev_diff = grad_new_vs_prev_at_test else: # i > 1 new_vs_prev_at_test = np.sqrt(((interp_out_n[out_coord,:]-prev_vals_at_test[out_coord,:]) ** 2).mean()) # computation of r_k for MSD rate diff_rate = np.log(prev_diff/new_vs_prev_at_test)/np.log(options.log_base) prev_diff = new_vs_prev_at_test if (options.computeGrad): grad_new_vs_prev_at_test = np.linalg.norm(grad_est_DS - grad_prev_vals_at_test) # computation of r_k for grad-MSD rate grad_diff_rate = -
np.log(grad_new_vs_prev_at_test/grad_prev_diff)
numpy.log
# -*- coding: utf-8 -*- import numpy as np import pytest from unittest.mock import Mock from endochrone.classification import binary_tree as bdt from endochrone.classification import BinaryDecisionTree from endochrone.utils import lazy_test_runner as ltr __author__ = "nickwood" __copyright__ = "nickwood" __license__ = "mit" def test_entropy(): assert bdt.entropy([0]*14 + [1]*16) == pytest.approx(0.9967916319816366) assert bdt.entropy([0]*16 + [1]*14) == pytest.approx(0.9967916319816366) assert bdt.entropy([0]*12 + [1]*1) == pytest.approx(0.39124356362925566) assert bdt.entropy([0]*1 + [1]*12) == pytest.approx(0.39124356362925566) assert bdt.entropy([0]*4 + [1]*13) == pytest.approx(0.7871265862012691) assert bdt.entropy([0]*13 + [1]*4) == pytest.approx(0.7871265862012691) assert bdt.entropy([0]*8 + [1]*8) == pytest.approx(1.0) assert bdt.entropy([0]*2 + [1]*3 + [3]*3) == pytest.approx(1.5612781244591) assert bdt.entropy([0]*6 + [1]*8 + [3]*8) == pytest.approx(1.5726236638951) assert bdt.entropy([0]*1 + [1]*2 + [3]*5) == pytest.approx(1.2987949406953) assert bdt.entropy(['ca']*9 + ['bd']*4) == pytest.approx(0.890491640219491) assert bdt.entropy(['ca']*4 + ['bd']*4) == pytest.approx(1.0) assert bdt.entropy(['ca']*2 + ['bd']*9) == pytest.approx(0.684038435639041) def test_generate_partitions(): x = np.transpose([[1, 2, 3, 7, 8, 9, 10], [3, 4, 5, 1, 2, 3, 4], [3, 1, 5, 1, 2, 3, 4]]) y_1 = np.array([0, 0, 0, 1, 1, 1, 1]) x_parts_0 = list(bdt.generate_partitions(x[:, 0], y_1)) assert len(x_parts_0) == 6 assert np.all(x_parts_0[0][0] == np.array([0])) assert np.all(x_parts_0[0][1] == np.array([0, 0, 1, 1, 1, 1])) assert np.all(x_parts_0[2][0] == np.array([0, 0, 0])) assert np.all(x_parts_0[2][1] == np.array([1, 1, 1, 1])) assert np.all(x_parts_0[4][0] == np.array([0, 0, 0, 1, 1])) assert np.all(x_parts_0[4][1] == np.array([1, 1])) x_parts_1 = list(bdt.generate_partitions(x[:, 1], y_1)) assert len(x_parts_1) == 4 assert np.all(x_parts_1[0][0] == np.array([1])) assert np.all(x_parts_1[0][1] == np.array([1, 0, 1, 0, 1, 0])) assert np.all(x_parts_1[2][0] == np.array([1, 1, 0, 1])) assert np.all(x_parts_1[2][1] == np.array([0, 1, 0])) assert np.all(x_parts_1[3][0] == np.array([1, 1, 0, 1, 0, 1])) assert np.all(x_parts_1[3][1] == np.array([0])) x_parts_2 = list(bdt.generate_partitions(x[:, 2], y_1)) assert len(x_parts_2) == 4 assert np.all(x_parts_2[0][0] == np.array([0, 1])) assert np.all(x_parts_2[0][1] == np.array([1, 0, 1, 1, 0])) assert np.all(x_parts_2[1][0] == np.array([0, 1, 1])) assert np.all(x_parts_2[1][1] == np.array([0, 1, 1, 0])) assert np.all(x_parts_2[3][0] == np.array([0, 1, 1, 0, 1, 1])) assert np.all(x_parts_2[3][1] == np.array([0])) y_2 = np.array([0, 0, 1, 1, 2, 2, 2]) x_parts_0 = list(bdt.generate_partitions(x[:, 0], y_2)) assert np.all(x_parts_0[0][0] == np.array([0])) assert np.all(x_parts_0[0][1] == np.array([0, 1, 1, 2, 2, 2])) x_parts_1 = list(bdt.generate_partitions(x[:, 1], y_2)) assert len(x_parts_1) == 4 assert np.all(x_parts_1[0][0] == np.array([1])) assert np.all(x_parts_1[2][0] ==
np.array([1, 2, 0, 2])
numpy.array
import numpy as np # Constant def Constant_vit(): # (1,7)-RLL constraint, 4 states, 4 error propagations # Encoder_Dict[a][b]: a stands for each state, b stands for (1 - input tags, 2 - output words, 3 - next state) encoder_dict = { 1 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0], [1, 0, 0]]), 'next_state' : np.array([[1], [2], [3], [3]]) }, 2 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[1, 0, 0], [1, 0, 0], [1, 0, 1], [1, 0, 1]]), 'next_state' : np.array([[1], [2], [3], [4]]) }, 3 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[0, 0, 0], [0, 0, 0], [0, 0, 1], [0, 0, 1]]), 'next_state' : np.array([[1], [2], [3], [4]]) }, 4 : { 'input' : np.array([[0, 0], [0, 1], [1, 0], [1, 1]]), 'output' : np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0], [0, 0, 0]]), 'next_state' : np.array([[1], [2], [3], [3]]) } } encoder_definite = {'m' : 0, 'a' : 2} sbd_dict = { 'i1' : ['00x', '01x', '1xx', '20x', '21x', '40x', '41x', '5xx'], 'i2' : ['042', '044', '045', '05x', '101', '100', '242', '244', '245', '25x', '40x', '41x', '442', '444', '445', '45x', '500', '501', '52x', '12x', '00x', '01x'], 'list' : { 0 : np.array([[0, 0, 0]]), 1 : np.array([[0, 0, 1]]), 2 : np.array([[0, 1, 0]]), 4 : np.array([[1, 0, 0]]), 5 : np.array([[1, 0, 1]]) }, 'num_list' : np.array([[0, 1, 2, 4, 5]]) } # channel state machine channel_dict = { 'state_machine' : np.array([ [0, 0], [0, 1], [1, 2], [2, 3], [2, 4], [3, 7], [4, 8], [4, 9], [5, 0], [5, 1], [6, 2], [7, 5], [7, 6], [8, 7], [9, 8], [9, 9] ]), 'in_out' : np.array([ [0, 0], [1, 1], [1, 3], [0, 2], [1, 3], [0, -2], [0, 0], [1, 1], [0, -1], [1, 0], [1, 2], [0, -3], [1, -2], [0, -3], [0, -1], [1, 0] ]), 'state_label' : np.array([ [0, 0, 0, 0, 0], [0, 0, 0, 1, 1], [0, 0, 1, 1, 2], [0, 1, 1, 0, 3], [0, 1, 1, 1, 4], [1, 0, 0, 0, 5], [1, 0, 0, 1, 6], [1, 1, 0, 0, 7], [1, 1, 1, 0, 8], [1, 1, 1, 1, 9] ]), 'num_state' : 10, 'ini_state' : 0 } channel_in_out_norm = np.zeros(channel_dict['in_out'].shape) channel_in_out_norm[:, 0] = channel_dict['in_out'][:, 0] channel_in_out_norm[:, 1] = channel_dict['in_out'][:, 1] / np.sqrt(10) channel_dict['in_out'] = channel_in_out_norm # List of dummy bits paths dummy_dict = { 0 : np.array([[0, 0, 0, 0, 0]]), 1 : np.array([[2, 3, 7, 5, 0]]), 2 : np.array([[3, 7, 5, 0, 0]]), 3 : np.array([[7, 5, 0, 0, 0]]), 4 : np.array([[8, 7, 5, 0, 0]]), 5 : np.array([[0, 0, 0, 0, 0]]), 6 : np.array([[2, 3, 7, 5, 0]]), 7 :
np.array([[5, 0, 0, 0, 0]])
numpy.array
import os import time from pims import ImageSequence import numpy as np import pandas as pd import scipy import matplotlib as mpl import matplotlib.pyplot as plt from skimage import feature import scipy.ndimage as ndimage from skimage.feature import blob_log import trackpy as tp import os from scipy.ndimage.filters import gaussian_filter from timeit import default_timer as timer from glob import glob from tqdm import tqdm lip_int_size = 30 lip_BG_size = 60 sep = 15 # afstand mellem centrum af to liposomer skal være 15 mean_multiplier = 1.5 # correleret med antal liposomer, hvor int skal liposomet være for at blive accepteret skal være 1.5 sigmas = 0.9 # memory = 10 #frame # var 10 da jeg treatede search_range = 10 # pixels duration_min = 20 # min duration of track appear_min = 50 # maske liposomer som opstår efter frame bliver ikke talt med # skulle være 5 var 50 #first reverse green videos def image_loader_video(video): from skimage import io images_1 = io.imread(video) return np.asarray(images_1) # fjern frame 1 def green_video_reverser(vid_save_path): print ('Fixing vid: ',str(vid_save_path)) vid = image_loader_video(vid_save_path) vid = np.asarray(vid) vid = vid[::-1] from tifffile import imsave imsave(str(vid_save_path), vid) def ext_pir(x, y, frame): x, y, frame = map(np.asarray, [x, y, frame]) mn, mx = frame.min(), frame.max() + 1 d = np.diff(np.append(frame, mx)) r = np.arange(len(frame)) i = r.repeat(d) return x[i], y[i], np.arange(mn, mx) def extend_arrs(x, y, frame): # Convert to arrays frame = np.asarray(frame) x = np.asarray(x) y = np.asarray(y) l = frame[-1] - frame[0] + 1 id_ar = np.zeros(l, dtype=int) id_ar[frame - frame[0]] = 1 idx = id_ar.cumsum() - 1 return np.r_[frame[0]:frame[-1] + 1], x[idx], y[idx] def position_extractor(tracked, max_length): x_pos = [] y_pos = [] frames = [] names = [] group_all = tracked.groupby('particle') for name, group in group_all: frame = group.frame.tolist() frame = frame[0:(len(frame) - 3)] tmp = max_length - 1 frame.append(tmp) # frame = [0,1,2,(max_length-1)] x_tmp = group.x.tolist() y_tmp = group.y.tolist() frames_full = np.arange(min(frame), max(frame) + 1, 1) frame, x, y = extend_arrs(x_tmp, y_tmp, frame) # x,y,frame = ext_pir(x_tmp, y_tmp, frame) x_pos.extend(x) y_pos.extend(y) frames.extend(frame) names.extend([name] * len(x)) final_df = pd.DataFrame( {'particle': names, 'frame': frames, 'x': x_pos, 'y': y_pos}) return final_df def get_video_files(main_folder_path): files = glob(str(main_folder_path+'*.tif')) for file in files: if file.find('green') != -1: green = file elif file.find('blue') != -1: blue = file elif file.find('red') != -1: red = file return [red,green,blue] def tracker(video, mean_multiplier, sep): mean = np.mean(video[0]) print ('tracking') full = tp.batch(video, 11, minmass=mean * mean_multiplier, separation=sep,noise_size = 3); print ('1000') # check for subpixel accuracy tp.subpx_bias(full) full_tracked = tp.link_df(full, search_range, memory=memory) full_tracked['particle'] = full_tracked['particle'].transform(int) full_tracked['duration'] = full_tracked.groupby('particle')['particle'].transform(len) full_tracked['t_appear'] = full_tracked.groupby('particle')['frame'].transform(min) full_tracked = full_tracked[full_tracked.duration > duration_min] full_tracked = full_tracked[full_tracked.t_appear < appear_min] return full_tracked def fix_green(green_vid): new= [] for i in range(len(green_vid)): for j in range(10): new.append(green_vid[i]) return np.asarray(new, dtype=np.float32) def signal_extractor(video, final_df, red_blue,roi_size,bg_size): # change so taht red initial is after appearance timing lip_int_size= roi_size lip_BG_size = bg_size def cmask(index, array, BG_size, int_size): a, b = index nx, ny = array.shape y, x = np.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = np.bitwise_xor(BG_mask, mask2) return (sum((array[mask]))), np.median(((array[BG_mask]))) final_df = final_df.sort_values(['particle', 'frame'], ascending=True) def df_extractor2(row): b, a = row['x'], row['y'] #b,a frame = int(row['frame']) array = video[frame] nx, ny = array.shape y, x = np.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = np.bitwise_xor(BG_mask, mask2) return np.sum((array[mask])), np.median(((array[BG_mask]))) # added np in sum size_maker = np.ones(video[0].shape) ind = 25, 25 # dont ask - leave it here, it just makes sure the below runs mask_size, BG_size = cmask(ind, size_maker, lip_BG_size, lip_int_size) mask_size = np.sum(mask_size) a = final_df.apply(df_extractor2, axis=1) # a = df_extractor2(final_df, video) intensity = [] bg = [] for line in a: i, b = line bg.append(b) intensity.append(i) if red_blue == 'blue' or red_blue == 'Blue': final_df['np_int'] = intensity final_df['np_bg'] = bg final_df['np_int_corrected'] = (final_df['np_int']/mask_size) - (final_df['np_bg']) elif red_blue == 'red' or red_blue == 'Red': final_df['lip_int'] = intensity final_df['lip_bg'] = bg final_df['lip_int_corrected'] = (final_df['lip_int']/mask_size) - (final_df['lip_bg']) else: final_df['green_int'] = intensity final_df['green_bg'] = bg final_df['green_int_corrected'] = (final_df['green_int']/mask_size) - (final_df['green_bg']) return final_df def signal_extractor_no_pos(video, final_df, red_blue,roi_size,bg_size): # change so taht red initial is after appearance timing lip_int_size= roi_size lip_BG_size = bg_size def cmask(index, array, BG_size, int_size): a, b = index nx, ny = array.shape y, x = np.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = np.bitwise_xor(BG_mask, mask2) return (sum((array[mask]))), np.median(((array[BG_mask]))) final_df = final_df.sort_values(['frame'], ascending=True) def df_extractor2(row): b, a = row['x'], row['y'] #b,a frame = int(row['frame']) array = video[frame] nx, ny = array.shape y, x = np.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = np.bitwise_xor(BG_mask, mask2) return np.sum((array[mask])), np.median(((array[BG_mask]))) # added np in sum size_maker = np.ones(video[0].shape) ind = 25, 25 # dont ask - leave it here, it just makes sure the below runs mask_size, BG_size = cmask(ind, size_maker, lip_BG_size, lip_int_size) mask_size = np.sum(mask_size) a = final_df.apply(df_extractor2, axis=1) # a = df_extractor2(final_df, video) intensity = [] bg = [] for line in a: i, b = line bg.append(b) intensity.append(i) if red_blue == 'blue' or red_blue == 'Blue': final_df['blue_int'] = intensity final_df['blue_bg'] = bg final_df['blue_int_corrected'] = (final_df['blue_int']) - (final_df['blue_bg']*mask_size) elif red_blue == 'red' or red_blue == 'Red': final_df['red_int'] = intensity final_df['red_bg'] = bg final_df['red_int_corrected'] = (final_df['red_int']) - (final_df['red_bg']*mask_size) else: final_df['green_int'] = intensity final_df['green_bg'] = bg final_df['green_int_corrected'] = (final_df['green_int']) - (final_df['green_bg']*mask_size) return final_df def big_red_fix(red): new = [] for i in range(len(red)): if i %9 ==0: new.append(red[i]) new.append(red[i]) else: new.append(red[i]) return np.asarray(new) def retreater(df,video,main_folder): df = df.sort_values(['particle', 'frame'], ascending=True) x_pos_final = np.asarray(df['x'].tolist()) y_pos_final = np.asarray(df['y'].tolist()) video_g = video video_g,pos = cut_video(x_pos_final[0],y_pos_final[0],video_g) from tifffile import imsave video_g=np.asarray(video_g, dtype=np.float32) video_g = fix_green(video_g) imsave(str(main_folder+'green_vbig.tif'), video_g) def cmask_plotter(index, array, BG_size, int_size): a, b = index nx, ny = array.shape y, x = np.ogrid[-a:nx - a, -b:ny - b] mask = x * x + y * y <= lip_int_size # radius squared - but making sure we dont do the calculation in the function - slow mask2 = x * x + y * y <= lip_int_size # to make a "gab" between BG and roi BG_mask = (x * x + y * y <= lip_BG_size) BG_mask = np.bitwise_xor(BG_mask, mask2) return mask,BG_mask def step_tracker(df): microns_per_pixel = 1 steps = [] msd = [] lag = [] df['x'] = df['x']* microns_per_pixel df['y'] = df['y']* microns_per_pixel group_all = df.groupby('particle') x_step = [] y_step = [] # easiest: compute step in x, step in y and then steps for name, group in group_all: x_list = group.x.tolist() x_tmp = [y - x for x,y in zip(x_list,x_list[1:])] x_tmp.insert(0, 0.) y_list = group.y.tolist() y_tmp = [y - x for x,y in zip(y_list,y_list[1:])] y_tmp.insert(0, 0.) y_step.extend(y_tmp) x_step.extend(x_tmp) step_tmp = [np.sqrt(y**2+x**2) for y,x in zip(y_tmp,x_tmp)] #msd_tmp,lag_tmp = msd_straight_forward(x_tmp,y_tmp) #msd.extend(msd_tmp) #lag.extend(lag_tmp) steps.extend(step_tmp) df['x_step'] = x_step df['y_step'] = y_step df['steplength'] = steps #df['lag'] = lag #df['msd'] = msd return df def get_meanx_y_df(df): df = step_tracker(df) df = df.sort_values(['frame'], ascending=True) grp = df.groupby('frame') x_list = [] y_list = [] for name,df_t in grp: x_list.append(np.mean(df_t['x_step'])) y_list.append(
np.mean(df_t['y_step'])
numpy.mean
def as_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import as_dict import numpy as np arsenic_input = power_plant_inputs.Share_Arsenic pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = arsenic_input * np.mean(as_dict['Bottom_Ash']['solid']) bottom_ash_liquid = arsenic_input * np.mean(as_dict['Bottom_Ash']['liquid']) bottom_ash_gas = arsenic_input * np.mean(as_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(as_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(as_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(as_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(as_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(as_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(as_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(as_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(as_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(as_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(as_dict[pm_control]['solid']) pm_liquid = dsi_gas * np.mean(as_dict[pm_control]['liquid']) pm_gas = dsi_gas * np.mean(as_dict[pm_control]['gas']) #Partitioning in SO2 Control Systems so2_solid = pm_gas * np.mean(as_dict[so2_control]['solid']) so2_liquid = pm_gas * np.mean(as_dict[so2_control]['liquid']) so2_gas = pm_gas * np.mean(as_dict[so2_control]['gas']) #Calucalate total partitioning as_solid = bottom_ash_solid + scr_solid + aci_solid + pm_solid + dsi_solid + so2_solid as_liquid = bottom_ash_liquid + scr_liquid + aci_liquid + pm_liquid + dsi_liquid + so2_liquid as_gas = so2_gas return as_solid, as_liquid, as_gas def cl_partitioning(power_plant_inputs): from apcd_partitioning_dictionaries import cl_dict import numpy as np chlorine_input = power_plant_inputs.Share_Chloride pm_control = power_plant_inputs.PM_Control so2_control = power_plant_inputs.SO2_Control nox_control = power_plant_inputs.NOx_Control hg_control = power_plant_inputs.Hg_Control sorbent = power_plant_inputs.DSI_Usage #Boiler Partitioning bottom_ash_solid = chlorine_input * np.mean(cl_dict['Bottom_Ash']['solid']) bottom_ash_liquid = chlorine_input * np.mean(cl_dict['Bottom_Ash']['liquid']) bottom_ash_gas = chlorine_input * np.mean(cl_dict['Bottom_Ash']['gas']) #SCR Partitioning scr_solid = bottom_ash_gas * np.mean(cl_dict[nox_control]['solid']) scr_liquid = bottom_ash_gas * np.mean(cl_dict[nox_control]['liquid']) scr_gas = bottom_ash_gas * np.mean(cl_dict[nox_control]['gas']) #ACI Partitioning aci_solid = scr_gas * np.mean(cl_dict[hg_control]['solid']) aci_liquid = scr_gas * np.mean(cl_dict[hg_control]['liquid']) aci_gas = scr_gas * np.mean(cl_dict[hg_control]['gas']) #DSI Partitioning dsi_solid = aci_gas * np.mean(cl_dict[sorbent]['solid']) dsi_liquid = aci_gas * np.mean(cl_dict[sorbent]['liquid']) dsi_gas = aci_gas * np.mean(cl_dict[sorbent]['gas']) #Partitioning in PM Control Systems pm_solid = dsi_gas * np.mean(cl_dict[pm_control]['solid']) pm_liquid = dsi_gas *
np.mean(cl_dict[pm_control]['liquid'])
numpy.mean
"""Rhis module is meant for detecting clusters that occur within a projected space. This uses one specific type of clustering that seems to work well for 3-dimensional projected data. """ import typing import numpy as np import sys import os try: stdout, stderr = sys.stdout, sys.stderr with open(os.devnull, 'w') as dnull: sys.stdout = dnull sys.stderr = dnull import hdbscan # emits a warning that is very difficult to suppress except: sys.stdout = stdout sys.stderr = stderr raise finally: sys.stdout = stdout sys.stderr = stderr import pytypeutils as tus class Clusters: """The data class which stores information about clusters generated from particular samples. Attributes: samples (ndarray[n_samples, n_features]): the samples that the clusters were selected from. centers (ndarray[n_clusters, n_features]): where the cluster centers are located labels (ndarray[n_samples]): each value is 0,1,...,n_clusters-1 and corresponds to the nearest cluster to the corresponding sample in pc-space calculate_params (dict[str, any]): the parameters that were used to generate these clusters. """ def __init__(self, samples: np.ndarray, centers: np.ndarray, labels: np.ndarray, calculate_params: typing.Dict[str, typing.Any]): tus.check(samples=(samples, np.ndarray), centers=(centers, np.ndarray), labels=(labels, np.ndarray), calculate_params=(calculate_params, dict)) tus.check_ndarrays( samples=(samples, ('n_samples', 'n_features'), (np.dtype('float32'), np.dtype('float64'))), centers=( centers, ('n_clusters', ('n_features', samples.shape[1] if len(samples.shape) > 1 else None) ), samples.dtype ), labels=( labels, (('n_samples', samples.shape[0] if bool(samples.shape) else None),), (np.dtype('int32'), np.dtype('int64')) ) ) self.samples = samples self.centers = centers self.labels = labels self.calculate_params = calculate_params @property def num_samples(self): """Returns the number of samples used to generate these clusters""" return self.samples.shape[0] @property def num_features(self): """Returns the number of features in the sample space""" return self.samples.shape[1] @property def num_clusters(self): """Returns the number of clusters found. This may have been chosen""" return self.centers.shape[0] def find_clusters(samples: np.ndarray) -> Clusters: """Attempts to locate clusters in the given samples in the most generic way possible.""" args = { 'min_cluster_size': int(0.2*samples.shape[0]), 'min_samples': 10 } args_meta = { 'method': 'hdbscan.HDBSCAN' } clusts = hdbscan.HDBSCAN(**args) clusts.fit(samples) # first we determine how many clusters there are which actually # have points belonging to them -1 is for unclustered points labels = clusts.labels_ unique_labels = np.unique(labels) if -1 in unique_labels: unique_labels =
np.ascontiguousarray(unique_labels[unique_labels != -1])
numpy.ascontiguousarray
""" Code for creating ZIP load models. Note that this module follows Python conventions: functions which start with an underscore are "private." So, a user of this module should only use methods which do not start with an underscore. At the time of writing (2020-06-17), the public methods are: - cluster_and_fit - get_best_fit_from_clustering - zip_fit A discussion of load modeling in PyVVO can be found in `this paper <http://hdl.handle.net/10125/64115>`__. Discussion of the ZIP modeling follows: ZIP load models represent a load as part constant impedance (Z), part constant current (I) and part constant power (P). Since PyVVO uses GridLAB-D, we'll be formulating the problem the same way GridLAB-D does. .. math:: P_k \\! = \\! S_n \\! \\bigg[\\! \\frac{V_k^2}{V_n^2} Z_\\% \\cos(Z_\\theta) + \\frac{V_k}{V_n} I_\\% \\cos(I_\\theta) + P_\\% \\cos(P_\\theta) \\bigg] Q_k \\! = \\! S_n \\! \\bigg[\\! \\frac{V_k^2}{V_n^2} Z_\\% \\sin(Z_\\theta) + \\frac{V_k}{V_n} I_\\% \\sin(I_\\theta) + P_\\% \\sin(P_\\theta) \\bigg] 1 = Z_\\% + I_\\% + P_\\% Where: :math:`P_k`: Predicted real power for time/interval :math:`k` :math:`Q_k`: Predicted reactive power for time/interval :math:`k` :math:`S_n`: Magnitude of nominal power :math:`V_k`: Magnitude of input voltage for time/interval :math:`k` :math:`V_n`: Nominal voltage :math:`Z\\%`: Impedance fraction :math:`Z_\\theta`: Impedance angle :math:`I\\%`: Current fraction :math:`I_\\theta`: Current angle :math:`P\\%`: Power fraction :math:`P_\\theta`: Power angle To reduce computations during optimization, we'll make the following variable substitutions: .. math:: \\bar{P}:=\\frac{P_k}{S_n} \\bar{Q}:=\\frac{Q_k}{S_n} \\bar{V}:=\\frac{V_a}{V_n} In this module, a "zip_terms" parameter will be used frequently. This parameter is a numpy array with six entries in the following order: :math:`Z\\%`, :math:`Z_\\theta`, :math:`I\\%`, :math:`I_\\theta`, :math:`P\\%`, :math:`P_\\theta`. """ # Standard library import math import logging # Installed packages import numpy as np import pandas as pd from scipy.optimize import minimize, Bounds from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler # pyvvo from pyvvo import cluster # Set up a log. LOG = logging.getLogger(__name__) # Make numpy error out for floating point errors. np.seterr(all='raise') # Constant for ZIP coefficients. ORDER MATTERS! ZIP_TERMS = ['impedance', 'current', 'power'] # FTOL is for convergence tolerance. From scipy docs, once we no longer # get FTOL improvement between iterations, we consider it converged. # The value here is the default as documented here: # https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html#optimize-minimize-slsqp F_TOL = 1e-6 # Cap iterations. MAX_ITER = 500 # Define bounds for our terms. # Order: Z%, Z_theta, I%, I_theta, P%, P_theta # Since we're dealing with power angles of loads, we'll bound them to # the right-half-plane. BOUNDS = Bounds([-np.inf, -np.pi/2, -np.inf, -np.pi/2, -np.inf, -np.pi/2], [np.inf, np.pi/2, np.inf, np.pi/2, np.inf, np.pi/2]) # Use a simple starting point where each fraction is 1/3, and each angle # is pi / 6 (resulting in a PF of ~0.9). This was set through some # light-weight manual trial and error. PAR_0 = (1/3, np.pi/6, 1/3, np.pi/6, 1/3, np.pi/6) # Jacobian for our equality constraint is constant and not a function of # the parameters. EQ_JAC = np.array([1, 0, 1, 0, 1, 0]) # We'll be passing zip_terms around in the order Z%, Z_theta, I%, # I_theta, P%, P_theta. Create masks to pull the fractions and angles. FRACTION_MASK = np.array([True, False, True, False, True, False]) ANGLE_MASK = ~FRACTION_MASK def zip_fit(vpq, v_n=240, s_n=None, par_0=PAR_0, f_tol=F_TOL, max_iter=MAX_ITER, fit_data=True): """Given V, P, and Q data, perform ZIP fit and get coefficients. :param vpq: pandas DataFrame with columns 'v' for voltage magnitude, 'p' for real power, and 'q' for reactive power. :param v_n: nominal voltage magnitude. :param s_n: nominal apparent power magnitude. If None, it will be estimated/inferred from the vpq data. :param par_0: Initial guess/starting point for optimization. Should be array in the order Z%, Z_theta, I%, I_theta, P%, P_theta. :param f_tol: Precision goal for optimization. Terminates after change between iterations is < f_tol :param max_iter: Maximum number of iterations for optimization. :param fit_data: Boolean flag. If true, include fitted p and q along with the corresponding mean square error. :return: dictionary with several fields: - zip_gld: Dictionary with all the terms needed for GridLAB-D modeling. These include: - base_power: S_n - impedance_fraction: Z% - impedance_pf: Impedance "power factor," cos(Z_theta). Will be negative if the power factor is leading for GridLAB-D conventions - current_fraction: I% - current_pf: Current "power factor," cos(I_theta). Negative if leading pf. - power_fraction: P% - power_pf: Power "power factor," cos(P_theta). Negative if leading pf. - sol: scipy.optimize.OptimizeResult object from performing the ZIP fit (`docs <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html#scipy.optimize.OptimizeResult>`__). Fields of note include 'x' (contains the zip_terms), 'success' (indicating if the optimizer exited successfully), and 'message' (description of the cause of optimizer termination). If fit_data is true, the following fields will be included: - p_pred: numpy array of predicted real power for the resultant ZIP model. - q_pred: numpy array of predicted reactive power for the resultant ZIP model. - mse_p: mean-squared error for real power. - mse_q: mean-squared error for reactive power. **IMPORTANT NOTE**: If the optimization fails, the only field in the return will be 'sol.' So it's up to the caller to either explicitly check sol.success or handle missing fields. """ # Estimate nominal power if not provided. if s_n is None: s_n = _estimate_nominal_power(vpq) # Variable substitution to reduce multiplication/division during # optimization. vpq_bar = _get_vpq_bar(vpq=vpq, v_n=v_n, s_n=s_n) # Solve. sol = _zip_fit_slsqp(vpq_bar=vpq_bar, par_0=par_0, f_tol=f_tol, max_iter=max_iter) # Initialize return. out = {'sol': sol} # If this failed, log and return. if not sol.success: LOG.warning('Unable to solve. Message: {}'.format(sol.message)) return out # Get ZIP terms in GridLAB-D format. zip_gld = _zip_to_gld(sol.x) # Add base power. zip_gld['base_power'] = s_n # Add zip_gld to our return. out['zip_gld'] = zip_gld # Compute the predicted values if asked to. if fit_data: p_pred, q_pred = _zip_model(v=vpq['v'].values, v_n=v_n, s_n=s_n, zip_terms=sol.x) out['p_pred'] = p_pred out['q_pred'] = q_pred # Compute mean squared error. out['mse_p'] = \ mean_squared_error(y_true=vpq['p'].values, y_pred=p_pred) out['mse_q'] = \ mean_squared_error(y_true=vpq['q'].values, y_pred=q_pred) # Done. return out def _get_vpq_bar(vpq, v_n, s_n): """Helper to scale our v, p, and q. This helps reduce the amount of floating point operations used during optimization. :param vpq: Pandas DataFrame with columns v, p, and q. :param v_n: scalar, nominal voltage. :param s_n: scalar, nominal apparent power magnitude. :returns: DataFrame with v_bar, p_bar, and q_bar, which are scaled parameters to be used in optimization. """ return pd.DataFrame(data={'v_bar': vpq['v'] / v_n, 'p_bar': vpq['p'] / s_n, 'q_bar': vpq['q'] / s_n}) def _estimate_nominal_power(vpq): """Estimate nominal power from p and q. :param vpq: pandas DataFrame with columns 'v' for voltage magnitude, 'p' for real power, and 'q' for reactive power. :return: s_n: our estimate for nominal power. """ # |S| = sqrt(P^2 + Q^2) s_n = np.median(np.sqrt(np.square(vpq['p']) + np.square(vpq['q']))) return s_n def _zip_fit_slsqp(vpq_bar, par_0=PAR_0, f_tol=F_TOL, max_iter=MAX_ITER): """Wrapper to call scipy.optimize.minimize. :param vpq_bar: Pandas DataFrame with columns v_bar, p_bar, and q_bar. :param par_0: Initial guess of zip parameters. Should be in order Z%, Z_theta, I%, I_theta, P%, P_theta. :param f_tol: Precision goal for the value of f in the stopping criterion of SLSQP. :param max_iter: Maximum number of iterations to solve. :return: scipy OptimizeResult object for this problem. https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.OptimizeResult.html#scipy.optimize.OptimizeResult """ # Simply call minimize and return the result. return \ minimize( # Call _zip_obj_and_jac for our objective function. fun=_zip_obj_and_jac, x0=par_0, # By setting jac=True, we indicate the objective function # will also return the Jacobian. This is for efficiency. jac=True, # _zip_obj_and_jac takes additional args v_s, v_bar, p_bar, # and q_bar. args=(np.square(vpq_bar['v_bar'].values), vpq_bar['v_bar'].values, vpq_bar['p_bar'].values, vpq_bar['q_bar'].values), # Use sequential least squares programming, which is great if # you're fitting to a known model. method='SLSQP', # We only have one constraint: Z% + I% + P% = 1. # Note the Jacobian for that constraint is always the same. # TODO: is initializing lambda functions each time adding # overhead? Should there be be regular functions defined # for 'fun' and 'jac'? constraints={ 'type': 'eq', 'fun': lambda x: np.array([np.sum(x[FRACTION_MASK]) - 1]), 'jac': lambda x: EQ_JAC}, # We don't have any bounds on our fractions, but we'll be # keeping the angles within the right-half-plane. bounds=BOUNDS, # Pass in additional options. We don't want to print convergence # messages, but will rather rely on the caller to check the # solution. # https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html#optimize-minimize-slsqp options={'ftol': f_tol, 'maxiter': max_iter, 'disp': False} ) def _zip_obj_and_jac(zip_terms, v_s, v_bar, p_bar, q_bar): """ZIP objective function and Jacobian calculations. The objective function is the normalized sum of squared error, handling error for P and Q separately. :param zip_terms: numpy array with length 6. Should have terms Z%, Z_theta, I%, I_theta, P%, and P_theta in that order. :param v_s: numpy array, (v / v_nominal)^2 :param v_bar: numpy array, v / v_nominal :param p_bar: numpy array, p / |s_n| :param q_bar: numpy array, q / |s_n| :returns: obj, jac. obj is the scalar value of the objective function, and jac is a numpy array the same shape as zip_terms with the partial derivative of the objective function with respect to each term in zip_terms. TODO: Should we normalize? Does it really matter? What helps the numerical stability of SLSQP? """ # Pre-compute some terms we'll be using frequently. cos_z_t = math.cos(zip_terms[1]) sin_z_t = math.sin(zip_terms[1]) cos_i_t = math.cos(zip_terms[3]) sin_i_t = math.sin(zip_terms[3]) cos_p_t = math.cos(zip_terms[5]) sin_p_t = math.sin(zip_terms[5]) # The objective function and every partial derivative will involve # P - .... and Q - ... Pre-compute them here. p_delta = (p_bar - v_s * zip_terms[0] * cos_z_t - v_bar * zip_terms[2] * cos_i_t - zip_terms[4] * cos_p_t) q_delta = (q_bar - v_s * zip_terms[0] * sin_z_t - v_bar * zip_terms[2] * sin_i_t - zip_terms[4] * sin_p_t) # Compute some other terms which will be used more than once. Using # 'dot' as it's presumably faster than elementwise multiplication # followed by a sum. p_v_s_dot = np.dot(p_delta, v_s) q_v_s_dot = np.dot(q_delta, v_s) p_v_dot = np.dot(p_delta, v_bar) q_v_dot = np.dot(q_delta, v_bar) p_sum = np.sum(p_delta) q_sum = np.sum(q_delta) # Compute the value of the objective function. obj = np.sum(np.square(p_delta) + np.square(q_delta)) # Initialize our Jacobian return. jac = np.zeros_like(zip_terms) # Compute the partial derivative w.r.t. Z% (0th term) jac[0] = (2 * (-p_v_s_dot * cos_z_t + -q_v_s_dot * sin_z_t) ) # Compute the partial derivative w.r.t Z_theta (1st term) jac[1] = (2 * (-p_v_s_dot * zip_terms[0] * -sin_z_t + -q_v_s_dot * zip_terms[0] * cos_z_t) ) # Compute the partial derivative w.r.t I% (2nd term) jac[2] = (2 * (-p_v_dot * cos_i_t + -q_v_dot * sin_i_t) ) # Compute the partial derivative w.r.t. I_theta (3rd term) jac[3] = (2 * (-p_v_dot * zip_terms[2] * -sin_i_t + -q_v_dot * zip_terms[2] * cos_i_t) ) # Compute the partial derivative w.r.t. P% (4th term) jac[4] = (2 * (p_sum * -cos_p_t - q_sum * sin_p_t)) # Compute the partial derivative w.r.t. P_theta (5th term) jac[5] = (2 * (p_sum * -zip_terms[4] * -sin_p_t + q_sum * -zip_terms[4] * cos_p_t) ) return obj, jac def _zip_model(v, v_n, s_n, zip_terms): """Compute P and Q for a given ZIP model. This is generally used for testing, not for the fitting/optimization itself. :param v: numpy array of voltages. :param v_n: scalar, nominal voltage. :param s_n: scalar, nominal apparent power magnitude. :param zip_terms: numpy array with the terms Z%, Z_theta, I%, I_theta, P%, and P_theta, in that order. """ v_s = np.square(v / v_n) p = s_n * ( v_s * zip_terms[0] * math.cos(zip_terms[1]) + v / v_n * zip_terms[2] * math.cos(zip_terms[3]) + zip_terms[4] * math.cos(zip_terms[5]) ) q = s_n * ( v_s * zip_terms[0] * math.sin(zip_terms[1]) + v / v_n * zip_terms[2] * math.sin(zip_terms[3]) + zip_terms[4] * math.sin(zip_terms[5]) ) return p, q def _zip_model_gld(v, v_n, s_n, gld_terms): """Wrapper to call _zip_model given a dictionary of GridLAB-D terms. :param v: numpy array of voltages. :param v_n: scalar, nominal voltage. :param gld_terms: Dictionary of GridLAB-D terms for the ZIP model, as would be output from _zip_to_gld. """ zip_terms = np.zeros(6) # Dump the fractions into the right slots. zip_terms[FRACTION_MASK] = np.array([ gld_terms['impedance_fraction'], gld_terms['current_fraction'], gld_terms['power_fraction'] ]) # Compute angles. Start by extracting the power factors. pf = np.array([ gld_terms['impedance_pf'], gld_terms['current_pf'], gld_terms['power_pf']]) angles = _angles_from_power_factors(pf=pf) # Dump the angles into the correct slots. zip_terms[ANGLE_MASK] = angles return _zip_model(v=v, v_n=v_n, s_n=s_n, zip_terms=zip_terms) def _power_factors_from_zip_terms(zip_terms): """Given the ZIP terms, compute the power factors related to them. Note that the percentages are not relevant to this function, but we'll take all the terms so the caller can be agnostic about which terms are used. :param zip_terms: numpy array, Z%, Z_theta, I%, I_theta, P%, and P_theta, in that order. :returns: numpy array, Z_pf, I_pf, and P_pf in that order. """ # Extract the angles. angles = zip_terms[ANGLE_MASK] # Initialize the power factors to be the cosine of the power angles. pf = np.cos(angles) # Negative angles result in negative (leading) power factors. pf[angles < 0] *= -1 # All done. return pf def _angles_from_power_factors(pf): """Helper to convert a given power factor to a power angle. :param pf: Numpy array of power factors. Negative means leading. Note that all angles will be assumed to be in the right-half plane. :returns: angles. Numpy array with angles (radians) corresponding to each pf. """ # The power angle is simply the inverse cosine of the power factor. angles = np.arccos(np.abs(pf)) # Get the sign right. angles[pf < 0] *= -1 # Done. return angles def _zip_to_gld(zip_terms): """Given zip_terms, return a dictionary of GridLAB-D terms. :param zip_terms: numpy array of our ZIP terms in the order Z%, Z_theta, I%, I_theta, P%, P_theta. :returns: dictionary with the following fields: - impedance_fraction - impedance_pf - current_fraction - current_pf - power_fraction - power_pf """ # Simply assign the fractions. out = {'impedance_fraction': zip_terms[0], 'current_fraction': zip_terms[2], 'power_fraction': zip_terms[4]} # Convert the angle to power factors. pf = _power_factors_from_zip_terms(zip_terms) # Assign. out['impedance_pf'] = pf[0] out['current_pf'] = pf[1] out['power_pf'] = pf[2] # All done. return out def cluster_and_fit(data, zip_fit_inputs, selection_data=None, n_clusters=1, min_cluster_size=4, random_state=None): """Cluster data and perform ZIP fit. Note that voltage will not be included in clustering. :param data: pandas DataFrame containing all data needed to cluster (optional) and fit data. At the minimum, columns must include v (voltage magnitude), p (active power), and q (reactive power). :param zip_fit_inputs: dictionary of key word arguments to be passed to the function zip_fit. :param selection_data: pandas Series with data to be used for cluster selection. Index can only contain labels that exist in data. NOTE: selection_data should not have 'v' in it. Optional. If None, no clustering is performed. :param n_clusters: Integer of clusters to create for clustering. Optional. Only required if selection_data is not None. :param min_cluster_size: Minimum allowed number of data points in the selected cluster. Optional. Only required if selection_data is not None. :param random_state: Integer, numpy.random RandomState object (preferred) or None. Used for random seeding of K-Means clustering. :return: fit_outputs: outputs from ZIP fit plus a 'data_len' field, or None. None will be returned if we're clustering and the min_cluster_size requirement is not met. The 'data_len' field indicates the length/height of the data which went into fitting. """ # If we're clustering, do so. if selection_data is not None: # For K-Means, it's best to first standardize the data so that # it looks Gaussian. # # Initialize a StandardScaler, and fit it to our data. scaler = StandardScaler() scaler.fit(data.values) # TODO: MOVE THIS OUTSIDE OF THIS FUNCTION. THE DATA CAN BE # SCALED ONCE IN THE CALLING FUNCTION, e.g., # get_best_fit_from_clustering. Likewise, the selection_data # can be scaled outside this function. # Create a DataFrame for holding scaled data. # TODO: We're adding extra over-head to use a DataFrame, but # this is a quick fix without messing with # cluster.find_best_cluster. scaled_data = pd.DataFrame(scaler.transform(data.values), index=data.index, columns=data.columns) # We also need to scale the selection data. # Initialize a Series which has all the "columns" of our data. tmp_series = pd.Series(0, index=data.columns) # Fill the Series with our selection data values. tmp_series[selection_data.index] = selection_data # Now scale the temporary Series. Note the reshaping is for a # single sample (1 row by X columns), and ravel puts the data # back into a 1D array for Series creation. scaled_selection = pd.Series( scaler.transform(tmp_series.values.reshape(1, -1)).ravel(), index=tmp_series.index) # Note that 'v' is dropped from the cluster_data, and we're # plucking the appropriate selection data. data_out, best_bool, _ = cluster.find_best_cluster( cluster_data=scaled_data.drop('v', axis=1), selection_data=scaled_selection[selection_data.index], n_clusters=n_clusters, random_state=random_state) # Re-associate voltage data. data_out['v'] = scaled_data[best_bool]['v'] # "Un-scale" the fit_data. # TODO: Again, we've got extra overhead by using DataFrames. # TODO: This inverse_transform may be unnecessary. Could we # instead use "best_bool" to index directly into "data"? fit_data = pd.DataFrame( scaler.inverse_transform(data_out[data.columns]), index=data_out.index, columns=data.columns) else: # No clustering. fit_data = data # If we aren't clustering, or if we are and have enough data, # perform the fit. if (selection_data is None) or (fit_data.shape[0] >= min_cluster_size): fit_outputs = zip_fit(fit_data[['v', 'p', 'q']], **zip_fit_inputs) fit_outputs['data_len'] = fit_data.shape[0] else: # Otherwise, fit_outputs = None return fit_outputs def get_best_fit_from_clustering(data, zip_fit_inputs, selection_data=None, min_cluster_size=4, random_state=None): """Loop over different numbers of clusters to find the best ZIP fit. For input descriptions, see ``cluster_and_fit`` function. This calls cluster_and_fit function for each loop iteration. NOTE: the 'fit_data' field of zip_fit_inputs will be overridden to be true, as this function won't work otherwise. :returns: best_fit. 'Best' output (smallest normalized mse_p + mse_q) from calling cluster_and_fit. It will also have a 'k' field added, indicating the number of clusters used. """ # The length of our data must be larger than our minimum cluster # size. if len(data) < min_cluster_size: raise ValueError('The given data has length {}, but the given ' 'minimum cluster size is {}.' .format(len(data), min_cluster_size)) # Override zip_fit_inputs zip_fit_inputs['fit_data'] = True # Track best coefficients and minimum normalized mean squared error. # Note we normalize the MSE by dividing by the length of data used # to come up with the ZIP coefficients. This normalization is # important, because you're likely to have a large MSE with more # data points. best_fit = None min_norm_mse = np.inf # Compute maximum possible number of clusters. n =
np.floor(data.shape[0] / min_cluster_size)
numpy.floor
import numpy as np class Base(object): def __init__(self, index, feature=np.array([0.])): self.index = index self.feature = feature def encode(self, dim=None, index=True, feature=True, vertical=False): if not dim: dim = self.index + 1 x = np.array([]) if index: x = np.concatenate((x, self.index_one_hot(dim))) if feature: x = np.concatenate((x, self.feature)) return x if not vertical else
np.array([x])
numpy.array
# -*- coding: utf-8 -*- """ Level diagram calculations for atoms dressed by rydberg levels. The dressing is achieved by a AC electromagnetic field (laser). Most of the code here is from the module calculations_atom_pairstate.py. This one add the AC field and the ground state to the Hamiltonian and diagonalizes it. Example: Calculation of the eigenstates when the laser light is near resonant with the transition :math:`|~5~P_{3/2}~m_j=1/2\\rangle` -> `|60~S_{1/2}~m_j=1/2\\rangle` state. Colour highlights the mixture of state :math:`|~5~P_{3/2}~m_j=1/2\\rangle`: import arc as ARC n0=5;l0=1;j0=1.5;mj0=0.5; #Ground State nr=60;lr=0;jr=0.5;mjr=0.5; #Target rydberg State theta=0; #Polar Angle [0-pi] phi=0; #Azimuthal Angle [0-2pi] dn = 3; #Range of n to consider (n0-dn:n0+dn) dl = 3; #Range of l values deltaMax = 20e9 #Max pair-state energy difference [Hz] calc = ARC.DressedPairStateInteractions(ARC.Rubidium(), n0,l0,j0,nr,lr,jr, mj0,mjr,interactionsUpTo = 2, Omega0 = 8e-3,Delta0 = 30e-3) #Omega0 is the rabi frquency of the ac field and Delta0 is the detuning of the ac field from the transition. rvdw = calc.getLeRoyRadius() print("LeRoy radius = %.1f mum" % rvdw) #R array (um) r=np.linspace(1.5,10,1000) #Generate pair-state interaction Hamiltonian calc.defineBasis(theta,phi, dn,dl, deltaMax,progressOutput=True) #Diagonalise nEig=1 #Number of eigenstates to extract (we just want the ground state here) calc.diagonalise(r,nEig,progressOutput=True,sortEigenvectors = True) #Save data calc.exportData('60S_dressed_pair_calculation', exportFormat='csv') #Plot calc.plotLevelDiagram(hlim = [0.95,1]) calc.ax.set_xlim(1.0,10.0) calc.ax.set_ylim(-5,3) calc.showPlot() """ from __future__ import division, print_function, absolute_import from .wigner import Wigner6j, Wigner3j, CG, WignerDmatrix from .alkali_atom_functions import _EFieldCoupling, _atomLightAtomCoupling from scipy.constants import physical_constants, pi, epsilon_0, hbar import gzip import sys import datetime import matplotlib from matplotlib.colors import LinearSegmentedColormap from .calculations_atom_single import StarkMap from .alkali_atom_functions import * from .divalent_atom_functions import DivalentAtom from scipy.special import factorial from scipy import floor from scipy.special.specfun import fcoef from scipy.sparse.linalg import eigsh from scipy.sparse import csr_matrix, hstack, vstack from numpy.lib.polynomial import real from numpy.ma import conjugate from scipy.optimize import curve_fit from scipy.constants import e as C_e from scipy.constants import h as C_h from scipy.constants import c as C_c from scipy.constants import k as C_k import re import numpy as np from math import exp, log, sqrt import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams['xtick.minor.visible'] = True mpl.rcParams['ytick.minor.visible'] = True mpl.rcParams['xtick.major.size'] = 8 mpl.rcParams['ytick.major.size'] = 8 mpl.rcParams['xtick.minor.size'] = 4 mpl.rcParams['ytick.minor.size'] = 4 mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' mpl.rcParams['xtick.top'] = True mpl.rcParams['ytick.right'] = True mpl.rcParams['font.family'] = 'serif' # for matrices if sys.version_info > (2,): xrange = range DPATH = os.path.join(os.path.expanduser('~'), '.arc-data') # class DressedPairStateInteractions: """ Calculates level diagram (spaghetti) for levels of atoms dressed by rydberg state. Initializes Rydberg level spaghetti calculation for the given atom species (or for two atoms of different species) in the vicinity of the given pair state to which a laser light. For details of calculation see Ref. [?]_. Args: atom (:obj:`AlkaliAtom` or :obj:`DivalentAtom`): = { :obj:`arc.alkali_atom_data.Lithium6`, :obj:`arc.alkali_atom_data.Lithium7`, :obj:`arc.alkali_atom_data.Sodium`, :obj:`arc.alkali_atom_data.Potassium39`, :obj:`arc.alkali_atom_data.Potassium40`, :obj:`arc.alkali_atom_data.Potassium41`, :obj:`arc.alkali_atom_data.Rubidium85`, :obj:`arc.alkali_atom_data.Rubidium87`, :obj:`arc.alkali_atom_data.Caesium`, :obj:`arc.divalent_atom_data.Strontium88`, :obj:`arc.divalent_atom_data.Calcium40` :obj:`arc.divalent_atom_data.Ytterbium174` } Select the alkali metal for energy level diagram calculation n (int): principal quantum number for the ground state l (int): orbital angular momentum for the ground state j (float): total angular momentum for the ground state nn (int): principal quantum number for the rydberg state ll (int): orbital angular momentum for the rydberg state jj (float): total angular momentum for the rydberg state m1 (float): projection of the total angular momentum on z-axis for the ground state m2 (float): projection of the total angular momentum on z-axis for the rydberg state interactionsUpTo (int): Optional. If set to 1, includes only dipole-dipole interactions. If set to 2 includes interactions up to quadrupole-quadrupole. Default value is 1. s (float): optional, spin state of the first atom. Default value of 0.5 is correct for :obj:`AlkaliAtom` but for :obj:`DivalentAtom` it has to be explicitly set to 0 or 1 for singlet and triplet states respectively. **If `s2` is not specified, it is assumed that the second atom is in the same spin state.** s2 (float): optinal, spin state of the second atom. If not specified (left to default value None) it will assume spin state of the first atom. atom2 (:obj:`AlkaliAtom` or :obj:`DivalentAtom`): optional, specifies atomic species for the second atom, enabeling calculation of **inter-species pair-state interactions**. If not specified (left to default value None) it will assume spin state of the first atom. References: .. [1] Jorge et al. Examples: **Advanced interfacing of pair-state is2=None, atom2=Nonenteractions calculations (PairStateInteractions class).** This is an advanced example intended for building up extensions to the existing code. If you want to directly access the pair-state interaction matrix, constructed by :obj:`defineBasis`, you can assemble it easily from diagonal part (stored in :obj:`matDiagonal` ) and off-diagonal matrices whose spatial dependence is :math:`R^{-3},R^{-4},R^{-5}` stored in that order in :obj:`matR`. Basis states are stored in :obj:`basisStates` array. >>> from arc import * >>> calc = PairStateInteractions(Rubidium(), 60,0,0.5, \ 60,0,0.5, 0.5,0.5,interactionsUpTo = 1) >>> # theta=0, phi = 0, range of pqn, range of l, deltaE = 25e9 >>> calc.defineBasis(0 ,0 , 5, 5, 25e9, progressOutput=True) >>> # now calc stores interaction matrix and relevant basis >>> # we can access this directly and generate interaction matrix >>> # at distance rval : >>> rval = 4 # in mum >>> matrix = calc.matDiagonal >>> rX = (rval*1.e-6)**3 >>> for matRX in self.matR: >>> matrix = matrix + matRX/rX >>> rX *= (rval*1.e-6) >>> # matrix variable now holds full interaction matrix for >>> # interacting atoms at distance rval calculated in >>> # pair-state basis states can be accessed as >>> basisStates = calc.basisStates """ dataFolder = DPATH # =============================== Methods =============================== def __init__(self, atom, n, l, j, nn, ll, jj, m1, m2, interactionsUpTo=1, s=0.5, s2=None, atom2=None, Omega0 = 0, Delta0 = 0): # alkali atom type, principal quantum number, orbital angular momentum, # total angular momentum projections of the angular momentum on z axis self.atom1 = atom #: atom type if atom2 is None: self.atom2 = atom else: self.atom2 = atom2 self.n = n # : pair-state definition: principal quantum number of the ground state self.l = l # : pair-state definition: orbital angular momentum of the ground state self.j = j # : pair-state definition: total angular momentum of the ground state self.nn = nn # : pair-state definition: principal quantum number of rydberg state self.ll = ll # : pair-state definition: orbital angular momentum of rydberg state self.jj = jj # : pair-state definition: total angular momentum oof rydberg stateom self.m1 = m1 # : pair-state definition: projection of the total ang. momentum for the ground state self.m2 = m2 # : pair-state definition: projection of the total angular momentum for the rydberg state self.interactionsUpTo = interactionsUpTo """" Specifies up to which approximation we include in pair-state interactions. By default value is 1, corresponding to pair-state interactions up to dipole-dipole coupling. Value of 2 is also supported, corresponding to pair-state interactions up to quadrupole-quadrupole coupling. """ self.Omega0 = Omega0 #Rabi frequency of the dressing with the near resonant transition (nn, ll, jj, m2). self.Delta0 = Delta0 # Deltuning from the near resonant transition (nn, ll, jj, m2) if (issubclass(type(atom),DivalentAtom) and not (s == 0 or s == 1)): raise ValueError("total angular spin s has to be defined explicitly " "for calculations, and value has to be 0 or 1 " "for singlet and tripplet states respectively.") self.s1 = s #: total spin angular momentum, optional (default 0.5) if s2 is None: self.s2 = s else: self.s2 = s2 # check that values of spin states are valid for entered atomic species if issubclass(type(self.atom1), DivalentAtom): if (abs(self.s1) > 0.1 and abs(self.s1 - 1) > 0.1): raise ValueError("atom1 is DivalentAtom and its spin has to be " "s=0 or s=1 (for singlet and triplet states " "respectively)") elif (abs(self.s1 - 0.5) > 0.1): raise ValueError("atom1 is AlkaliAtom and its spin has to be " "s=0.5") if issubclass(type(self.atom2), DivalentAtom): if (abs(self.s2) > 0.1 and abs(self.s2 - 1) > 0.1): raise ValueError("atom2 is DivalentAtom and its spin has to be " "s=0 or s=1 (for singlet and triplet states " "respectively)") elif (abs(self.s2 - 0.5) > 0.1): # we have divalent atom raise ValueError("atom2 is AlkaliAtom and its spin has to be " "s=0.5") if (abs((self.s1-self.m1) % 1) > 0.1): raise ValueError("atom1 with spin s = %.1d cannot have m1 = %.1d" % (self.s1, self.m1)) if (abs((self.s2-self.m2) % 1) > 0.1): raise ValueError("atom2 with spin s = %.1d cannot have m2 = %.1d" % (self.s2, self.m2)) # ====================== J basis (not resolving mj) =================== self.coupling = [] """ List of matrices defineing coupling strengths between the states in J basis (not resolving :math:`m_j` ). Basis is given by :obj:`channel`. Used as intermediary for full interaction matrix calculation by :obj:`defineBasis`. """ self.channel = [] """ states relevant for calculation, defined in J basis (not resolving :math:`m_j`. Used as intermediary for full interaction matrix calculation by :obj:`defineBasis`. """ # ======================= Full basis (resolving mj) =================== self.basisStates = [] """ List of pair-states for calculation. In the form [[n1,l1,j1,mj1,n2,l2,j2,mj2], ...]. Each state is an array [n1,l1,j1,mj1,n2,l2,j2,mj2] corresponding to :math:`|n_1,l_1,j_1,m_{j1},n_2,l_2,j_2,m_{j2}\\rangle` state. Calculated by :obj:`defineBasis`. """ self.matrixElement = [] """ `matrixElement[i]` gives index of state in :obj:`channel` basis (that doesn't resolve :obj:`m_j` states), for the given index `i` of the state in :obj:`basisStates` ( :math:`m_j` resolving) basis. """ # variuos parts of interaction matrix in pair-state basis self.matDiagonal = [] """ Part of interaction matrix in pair-state basis that doesn't depend on inter-atomic distance. E.g. diagonal elements of the interaction matrix, that describe energies of the pair states in unperturbed basis, will be stored here. Basis states are stored in :obj:`basisStates`. Calculated by :obj:`defineBasis`. """ self.matR = [] """ Stores interaction matrices in pair-state basis that scale as :math:`1/R^3`, :math:`1/R^4` and :math:`1/R^5` with distance in :obj:`matR[0]`, :obj:`matR[1]` and :obj:`matR[2]` respectively. These matrices correspond to dipole-dipole ( :math:`C_3`), dipole-quadrupole ( :math:`C_4`) and quadrupole-quadrupole ( :math:`C_5`) interactions coefficients. Basis states are stored in :obj:`basisStates`. Calculated by :obj:`defineBasis`. """ self.originalPairStateIndex = 0 """ index of the original n,l,j,m1,nn,ll,jj,m2 pair-state in the :obj:`basisStates` basis. """ self.matE = [] self.matB_1 = [] self.matB_2 = [] # ===================== Eigen states and plotting ===================== # finding perturbed energy levels self.r = [] # detuning scale self.y = [] # energy levels self.highlight = [] # pointers towards figure self.fig = 0 self.ax = 0 # for normalization of the maximum coupling later self.maxCoupling = 0. # n,l,j,mj, drive polarization q self.drivingFromState = [0, 0, 0, 0, 0] # sam = saved angular matrix metadata self.angularMatrixFile = "angularMatrix.npy" self.angularMatrixFile_meta = "angularMatrix_meta.npy" #self.sam = [] self.savedAngularMatrix_matrix = [] # intialize precalculated values for factorial term # in __getAngularMatrix_M def fcoef(l1, l2, m): return factorial(l1 + l2) / (factorial(l1 + m) * factorial(l1 - m) * factorial(l2 + m) * factorial(l2 - m))**0.5 x = self.interactionsUpTo self.fcp = np.zeros((x + 1, x + 1, 2 * x + 1)) for c1 in range(1, x + 1): for c2 in range(1, x + 1): for p in range(-min(c1, c2), min(c1, c2) + 1): self.fcp[c1, c2, p + x] = fcoef(c1, c2, p) self.conn = False self.c = False def __getAngularMatrix_M(self, l, j, ll, jj, l1, j1, l2, j2): # did we already calculated this matrix? self.c.execute('''SELECT ind FROM pair_angularMatrix WHERE l1 = ? AND j1_x2 = ? AND l2 = ? AND j2_x2 = ? AND l3 = ? AND j3_x2 = ? AND l4 = ? AND j4_x2 = ? ''', (l, j * 2, ll, jj * 2, l1, j1 * 2, l2, j2 * 2)) index = self.c.fetchone() if (index): return self.savedAngularMatrix_matrix[index[0]] # determine coupling dl = abs(l - l1) dj = abs(j - j1) c1 = 0 if dl == 1 and (dj < 1.1): c1 = 1 # dipole coupling elif (dl == 0 or dl == 2 or dl == 1): c1 = 2 # quadrupole coupling else: raise ValueError("error in __getAngularMatrix_M") exit() dl = abs(ll - l2) dj = abs(jj - j2) c2 = 0 if dl == 1 and (dj < 1.1): c2 = 1 # dipole coupling elif (dl == 0 or dl == 2 or dl == 1): c2 = 2 # quadrupole coupling else: raise ValueError("error in __getAngularMatrix_M") exit() am = np.zeros((int(round((2 * j1 + 1) * (2 * j2 + 1), 0)), int(round((2 * j + 1) * (2 * jj + 1), 0))), dtype=np.float64) if (c1 > self.interactionsUpTo) or (c2 > self.interactionsUpTo): return am j1range = np.linspace(-j1, j1, round(2 * j1) + 1) j2range = np.linspace(-j2, j2, round(2 * j2) + 1) jrange = np.linspace(-j, j, int(2 * j) + 1) jjrange = np.linspace(-jj, jj, int(2 * jj) + 1) for m1 in j1range: for m2 in j2range: # we have chosen the first index index1 = int(round(m1 * (2.0 * j2 + 1.0) + m2 + (j1 * (2.0 * j2 + 1.0) + j2), 0)) for m in jrange: for mm in jjrange: # we have chosen the second index index2 = int(round(m * (2.0 * jj + 1.0) + mm + (j * (2.0 * jj + 1.0) + jj), 0) ) # angular matrix element from Sa??mannshausen, Heiner, # Merkt, Fr??d??ric, Deiglmayr, Johannes # PRA 92: 032505 (2015) elem = (-1.0)**(j + jj + self.s1 + self.s2 + l1 + l2) * \ CG(l, 0, c1, 0, l1, 0) * CG(ll, 0, c2, 0, l2, 0) elem = elem * \ sqrt((2.0 * l + 1.0) * (2.0 * ll + 1.0)) * \ sqrt((2.0 * j + 1.0) * (2.0 * jj + 1.0)) elem = elem * \ Wigner6j(l, self.s1, j, j1, c1, l1) * \ Wigner6j(ll, self.s2, jj, j2, c2, l2) sumPol = 0.0 # sum over polarisations limit = min(c1, c2) for p in xrange(-limit, limit + 1): sumPol = sumPol + \ self.fcp[c1, c2, p + self.interactionsUpTo] * \ CG(j, m, c1, p, j1, m1) *\ CG(jj, mm, c2, -p, j2, m2) am[index1, index2] = elem * sumPol index = len(self.savedAngularMatrix_matrix) self.c.execute(''' INSERT INTO pair_angularMatrix VALUES (?,?, ?,?, ?,?, ?,?, ?)''', (l, j * 2, ll, jj * 2, l1, j1 * 2, l2, j2 * 2, index)) self.conn.commit() self.savedAngularMatrix_matrix.append(am) self.savedAngularMatrixChanged = True return am def __updateAngularMatrixElementsFile(self): if not (self.savedAngularMatrixChanged): return try: self.c.execute('''SELECT * FROM pair_angularMatrix ''') data = [] for v in self.c.fetchall(): data.append(v) data = np.array(data, dtype=np.float32) data[:, 1] /= 2. # 2 r j1 -> j1 data[:, 3] /= 2. # 2 r j2 -> j2 data[:, 5] /= 2. # 2 r j3 -> j3 data[:, 7] /= 2. # 2 r j4 -> j4 fileHandle = gzip.GzipFile( os.path.join(self.dataFolder, self.angularMatrixFile_meta), 'wb' ) np.save(fileHandle, data) fileHandle.close() except IOError as e: print("Error while updating angularMatrix \ data meta (description) File " + self.angularMatrixFile_meta) try: fileHandle = gzip.GzipFile( os.path.join(self.dataFolder, self.angularMatrixFile), 'wb' ) np.save(fileHandle, self.savedAngularMatrix_matrix) fileHandle.close() except IOError as e: print("Error while updating angularMatrix \ data File " + self.angularMatrixFile) print(e) def __loadAngularMatrixElementsFile(self): try: fileHandle = gzip.GzipFile( os.path.join(self.dataFolder, self.angularMatrixFile_meta), 'rb' ) data = np.load(fileHandle, encoding='latin1', allow_pickle=True) fileHandle.close() except: print("Note: No saved angular matrix metadata files to be loaded.") print(sys.exc_info()) return data[:, 1] *= 2 # j1 -> 2 r j1 data[:, 3] *= 2 # j2 -> 2 r j2 data[:, 5] *= 2 # j3 -> 2 r j3 data[:, 7] *= 2 # j4 -> 2 r j4 data = np.array(np.rint(data), dtype=np.int) try: self.c.executemany('''INSERT INTO pair_angularMatrix (l1, j1_x2 , l2 , j2_x2 , l3, j3_x2, l4 , j4_x2 , ind) VALUES (?,?,?,?,?,?,?,?,?)''', data) self.conn.commit() except sqlite3.Error as e: print("Error while loading precalculated values into the database!") print(e) exit() if len(data) == 0: print("error") return try: fileHandle = gzip.GzipFile( os.path.join(self.dataFolder, self.angularMatrixFile), 'rb' ) self.savedAngularMatrix_matrix = np.load( fileHandle, encoding='latin1', allow_pickle=True).tolist() fileHandle.close() except: print("Note: No saved angular matrix files to be loaded.") print(sys.exc_info()) def __isCoupled(self, n, l, j, nn, ll, jj, n1, l1, j1, n2, l2, j2, limit): if ((abs(self.__getEnergyDefect(n, l, j, nn, ll, jj, n1, l1, j1, n2, l2, j2) ) / C_h < limit) and not (n == n1 and nn == n2 and l == l1 and ll == l2 and j == j1 and jj == j2) and not ((abs(l1 - l) != 1 and( (abs(j - 0.5) < 0.1 and abs(j1 - 0.5) < 0.1) # j = 1/2 and j'=1/2 forbidden or (abs(j) < 0.1 and abs(j1 - 1) < 0.1) # j = 0 and j'=1 forbidden or (abs(j-1) < 0.1 and abs(j1) < 0.1) # j = 1 and j'=0 forbidden ) ) or (abs(l2 - ll) != 1 and( (abs(jj - 0.5) < 0.1 and abs(j2 - 0.5) < 0.1) # j = 1/2 and j'=1/2 forbidden or (abs(jj) < 0.1 and abs(j2 - 1) < 0.1) # j = 0 and j'=1 forbidden or (abs(jj-1) < 0.1 and abs(j2) < 0.1) # j = 1 and j'=0 forbidden ) ) ) and not(abs(j)<0.1 and abs(j1)<0.1) # j = 0 and j'=0 forbiden and not (abs(jj)<0.1 and abs(j2)<0.1) and not (abs(l)<0.1 and abs(l1)<0.1) # l = 0 and l' = 0 is forbiden and not (abs(ll)<0.1 and abs(l2)<0.1) ): # determine coupling dl = abs(l - l1) dj = abs(j - j1) c1 = 0 if dl == 1 and (dj < 1.1): c1 = 1 # dipole coupling elif (dl == 0 or dl == 2 or dl == 1)and (dj < 2.1) and \ (2 <= self.interactionsUpTo): c1 = 2 # quadrupole coupling else: return False dl = abs(ll - l2) dj = abs(jj - j2) c2 = 0 if dl == 1 and (dj < 1.1): c2 = 1 # dipole coupling elif (dl == 0 or dl == 2 or dl == 1) and (dj < 2.1) and \ (2 <= self.interactionsUpTo): c2 = 2 # quadrupole coupling else: return False return c1 + c2 else: return False def __getEnergyDefect(self, n, l, j, nn, ll, jj, n1, l1, j1, n2, l2, j2): """ Energy defect between |n,l,j>x|nn,ll,jj> state and |n1,l1,j1>x|n1,l1,j1> state of atom1 and atom2 in respective spins states s1 and s2 Takes spin vales s1 and s2 as the one defined when defining calculation. Args: n (int): principal quantum number l (int): orbital angular momentum j (float): total angular momentum nn (int): principal quantum number ll (int): orbital angular momentum jj (float): total angular momentum n1 (int): principal quantum number l1 (int): orbital angular momentum j1 (float): total angular momentum n2 (int): principal quantum number l2 (int): orbital angular momentum j2 (float): total angular momentum Returns: float: energy defect (SI units: J) """ return C_e * (self.atom1.getEnergy(n1, l1, j1, s=self.s1) + self.atom2.getEnergy(n2, l2, j2, s=self.s2) - self.atom1.getEnergy(n, l, j, s=self.s1) - self.atom2.getEnergy(nn, ll, jj, s=self.s2)) def __makeRawMatrix2(self, nn, ll, jj, k, lrange, limit, limitBasisToMj, progressOutput=False, debugOutput=False): n = nn l = ll j = jj # limit = limit in Hz on energy defect # k defines range of n' = [n-k, n+k] dimension = 0 # which states/channels contribute significantly in the second order perturbation? states = [] # original pairstate index opi = 0 # this numbers are conserved if we use only dipole-dipole interactions Lmod2 = ((l + ll) % 2) l1start = l - 1 if l == 0: l1start = 0 l2start = ll - 1 if ll == 0: l2start = 0 if debugOutput: print("\n ======= Relevant states =======\n") for n1 in xrange(max(n - k, 1), n + k + 1): for n2 in xrange(max(nn - k, 1), nn + k + 1): l1max = max(l + self.interactionsUpTo, lrange) + 1 l1max = min(l1max, n1 - 1) for l1 in xrange(l1start, l1max): l2max = max(ll + self.interactionsUpTo, lrange) + 1 l2max = min(l2max, n2 - 1) for l2 in xrange(l2start, l2max): j1 = l1 - self.s1 while j1 < -0.1: j1 += 2 * self.s1 while j1 <= l1 + self.s1 + 0.1: j2 = l2 - self.s2 while j2 < -0.1: j2 += 2 * self.s2 while j2 <= l2 + self.s2 + 0.1: ed = self.__getEnergyDefect(n, l, j, nn, ll, jj, n1, l1, j1, n2, l2, j2) / C_h if (abs(ed) < limit and (not (self.interactionsUpTo == 1) or (Lmod2 == ((l1 + l2) % 2))) and ((not limitBasisToMj) or (j1 + j2 + 0.1 > self.m1 + self.m2)) and (n1 >= self.atom1.groundStateN or [n1, l1, j1] in self.atom1.extraLevels) and (n2 >= self.atom2.groundStateN or [n2, l2, j2] in self.atom2.extraLevels) ): if debugOutput: pairState = ( "|" + printStateString(n1, l1, j1, s=self.s1) + "," + printStateString(n2, l2, j2, s=self.s2) + ">") print( pairState + ("\t EnergyDefect = %.3f GHz" % (ed * 1.e-9) ) ) states.append([n1, l1, j1, n2, l2, j2]) if (n == n1 and nn == n2 and l == l1 and ll == l2 and j == j1 and jj == j2 ): opi = dimension dimension = dimension + 1 j2 = j2 + 1.0 j1 = j1 + 1.0 if debugOutput: print("\tMatrix dimension\t=\t", dimension) m = np.zeros((dimension, dimension), dtype=np.float64) # mat_value, mat_row, mat_column for each sparce matrix describing # dipole-dipole, dipole-quadrupole (and quad-dipole) and quadrupole-quadrupole couplingMatConstructor = [[[], [], []] for i in xrange(2 * self.interactionsUpTo - 1)] # original pair-state (i.e. target pair state) Zeeman Shift opZeemanShift = (self.atom1.getZeemanEnergyShift( self.l, self.j, self.m1, self.Bz, s=self.s1) + self.atom2.getZeemanEnergyShift( self.ll, self.jj, self.m2, self.Bz, s=self.s2) ) / C_h * 1.0e-9 # in GHz if debugOutput: print("\n ======= Coupling strengths (radial part only) =======\n") maxCoupling = "quadrupole-quadrupole" if (self.interactionsUpTo == 1): maxCoupling = "dipole-dipole" if debugOutput: print("Calculating coupling (up to ", maxCoupling, ") between the pair states") for i in xrange(dimension): ed = self.__getEnergyDefect( states[opi][0], states[opi][1], states[opi][2], states[opi][3], states[opi][4], states[opi][5], states[i][0], states[i][1], states[i][2], states[i][3], states[i][4], states[i][5]) / C_h * 1.0e-9\ - opZeemanShift pairState1 = ( "|" + printStateString(states[i][0], states[i][1], states[i][2], s=self.s1) + "," + printStateString(states[i][3], states[i][4], states[i][5], s=self.s2) + ">" ) states[i].append(ed) # energy defect of given state for j in xrange(i + 1, dimension): coupled = self.__isCoupled( states[i][0], states[i][1], states[i][2], states[i][3], states[i][4], states[i][5], states[j][0], states[j][1], states[j][2], states[j][3], states[j][4], states[j][5], limit) if (states[i][0] == 24 and states[j][0] == 18): print("\n") print(states[i]) print(states[j]) print(coupled) if coupled and (abs(states[i][0] - states[j][0]) <= k and abs(states[i][3] - states[j][3]) <= k): if debugOutput: pairState2 = ("|" + printStateString(states[j][0], states[j][1], states[j][2], s=self.s1) + "," + printStateString(states[j][3], states[j][4], states[j][5], s=self.s2) + ">") print(pairState1 + " <---> " + pairState2) couplingStregth = _atomLightAtomCoupling( states[i][0], states[i][1], states[i][2], states[i][3], states[i][4], states[i][5], states[j][0], states[j][1], states[j][2], states[j][3], states[j][4], states[j][5], self.atom1, atom2=self.atom2, s=self.s1, s2=self.s2) / C_h * 1.0e-9 couplingMatConstructor[coupled - 2][0].append( couplingStregth) couplingMatConstructor[coupled - 2][1].append(i) couplingMatConstructor[coupled - 2][2].append(j) exponent = coupled + 1 if debugOutput: print(("\tcoupling (C_%d/R^%d) = %.5f" % (exponent, exponent, couplingStregth * (1e6)**(exponent))), "/R^", exponent, " GHz (mu m)^", exponent, "\n" ) # coupling = [1,1] dipole-dipole, [2,1] quadrupole dipole, [2,2] quadrupole quadrupole couplingMatArray = [ csr_matrix( (couplingMatConstructor[i][0], (couplingMatConstructor[i][1], couplingMatConstructor[i][2]) ), shape=(dimension, dimension) ) for i in xrange(len(couplingMatConstructor)) ] return states, couplingMatArray def __initializeDatabaseForMemoization(self): # memoization of angular parts self.conn = sqlite3.connect(os.path.join(self.dataFolder, "precalculated_pair.db")) self.c = self.conn.cursor() # ANGULAR PARTS self.c.execute('''DROP TABLE IF EXISTS pair_angularMatrix''') self.c.execute('''SELECT COUNT(*) FROM sqlite_master WHERE type='table' AND name='pair_angularMatrix';''') if (self.c.fetchone()[0] == 0): # create table try: self.c.execute('''CREATE TABLE IF NOT EXISTS pair_angularMatrix (l1 TINYINT UNSIGNED, j1_x2 TINYINT UNSIGNED, l2 TINYINT UNSIGNED, j2_x2 TINYINT UNSIGNED, l3 TINYINT UNSIGNED, j3_x2 TINYINT UNSIGNED, l4 TINYINT UNSIGNED, j4_x2 TINYINT UNSIGNED, ind INTEGER, PRIMARY KEY (l1,j1_x2, l2,j2_x2, l3,j3_x2, l4,j4_x2) ) ''') except sqlite3.Error as e: print(e) self.conn.commit() self.__loadAngularMatrixElementsFile() self.savedAngularMatrixChanged = False def __closeDatabaseForMemoization(self): self.conn.commit() self.conn.close() self.conn = False self.c = False def getLeRoyRadius(self): """ Returns Le Roy radius for initial pair-state. Le Roy radius [#leroy]_ is defined as :math:`2(\\langle r_1^2 \\rangle^{1/2} + \\langle r_2^2 \\rangle^{1/2})`, where :math:`r_1` and :math:`r_2` are electron coordinates for the first and the second atom in the initial pair-state. Below this radius, calculations are not valid since electron wavefunctions start to overlap. Returns: float: LeRoy radius measured in :math:`\\mu m` References: .. [#leroy] <NAME>, <NAME>. Phys. **52**, 246 (1974) http://www.nrcresearchpress.com/doi/abs/10.1139/p74-035 """ step = 0.001 r1, psi1_r1 = self.atom2.radialWavefunction( self.ll, 0.5, self.jj, self.atom2.getEnergy(self.nn, self.ll, self.jj, s=self.s2) / 27.211, self.atom2.alphaC**(1 / 3.0), 2.0 * self.nn * (self.nn + 15.0), step) sqrt_r1_on2 = np.trapz(np.multiply(np.multiply(psi1_r1, psi1_r1), np.multiply(r1, r1)), x=r1) r2, psi2_r2 = self.atom2.radialWavefunction( self.ll, 0.5, self.jj, self.atom2.getEnergy(self.nn, self.ll, self.jj, s=self.s2) / 27.211, self.atom2.alphaC**(1 / 3.0), 2.0 * self.nn * (self.nn + 15.0), step) sqrt_r2_on2 = np.trapz(np.multiply(np.multiply(psi2_r2, psi2_r2), np.multiply(r2, r2)), x=r2) return 2. * (sqrt(sqrt_r1_on2) + sqrt(sqrt_r2_on2))\ * (physical_constants["Bohr radius"][0] * 1.e6) def defineBasis(self, theta, phi, nRange, lrange, energyDelta, Bz=0, progressOutput=False, debugOutput=False): r""" Finds relevant states in the vicinity of the given rydberg-level Finds relevant ryberg-level basis and calculates interaction matrix. ryberg-level basis is saved in :obj:`basisStates`. Interaction matrix is saved in parts depending on the scaling with distance. Diagonal elements :obj:`matDiagonal`, correponding to relative energy defects of the pair-states, don't change with interatomic separation. Off diagonal elements can depend on distance as :math:`R^{-3}, R^{-4}` or :math:`R^{-5}`, corresponding to dipole-dipole (:math:`C_3` ), dipole-qudrupole (:math:`C_4` ) and quadrupole-quadrupole coupling (:math:`C_5` ) respectively. These parts of the matrix are stored in :obj:`matR` in that order. I.e. :obj:`matR[0]` stores dipole-dipole coupling (:math:`\propto R^{-3}`), :obj:`matR[0]` stores dipole-quadrupole couplings etc. Args: theta (float): relative orientation of the two atoms (see figure on top of the page), range 0 to :math:`\pi` phi (float): relative orientation of the two atoms (see figure on top of the page), range 0 to :math:`2\pi` nRange (int): how much below and above the given principal quantum number of the pair state we should be looking? lrange (int): what is the maximum angular orbital momentum state that we are including in calculation energyDelta (float): what is maximum energy difference ( :math:`\Delta E/h` in Hz) between the original pair state and the other pair states that we are including in calculation Bz (float): optional, magnetic field directed along z-axis in units of Tesla. Calculation will be correct only for weak magnetic fields, where paramagnetic term is much stronger then diamagnetic term. Diamagnetic term is neglected. progressOutput (bool): optional, False by default. If true, prints information about the progress of the calculation. debugOutput (bool): optional, False by default. If true, similarly to progressOutput=True, this will print information about the progress of calculations, but with more verbose output. See also: :obj:`alkali_atom_functions.saveCalculation` and :obj:`alkali_atom_functions.loadSavedCalculation` for information on saving intermediate results of calculation for later use. """ self.__initializeDatabaseForMemoization() # save call parameters self.theta = theta self.phi = phi self.nRange = nRange self.lrange = lrange self.energyDelta = energyDelta self.Bz = Bz self.basisStates = [] # wignerDmatrix wgd = WignerDmatrix(theta, phi) limitBasisToMj = False if (theta < 0.001): limitBasisToMj = True # Mj will be conserved in calculations originalMj = self.m1 + self.m2 self.channel, self.coupling = self.__makeRawMatrix2( self.nn, self.ll, self.jj, nRange, lrange, energyDelta, limitBasisToMj, progressOutput=progressOutput, debugOutput=debugOutput) self.atom1.updateDipoleMatrixElementsFile() self.atom2.updateDipoleMatrixElementsFile() # generate all the states (with mj principal quantum number) # opi = original pairstate index opi = 0 # NEW FOR SPACE MATRIX self.index = np.zeros(len(self.channel) + 1, dtype=np.int16) for i in xrange(len(self.channel)): self.index[i] = len(self.basisStates) stateCoupled = self.channel[i] for m1c in np.linspace(stateCoupled[2], -stateCoupled[2], round(1 + 2 * stateCoupled[2])): for m2c in np.linspace(stateCoupled[5], -stateCoupled[5], round(1 + 2 * stateCoupled[5])): if ((not limitBasisToMj) or (abs(originalMj - m1c - m2c) < 0.1)): self.basisStates.append( [stateCoupled[0], stateCoupled[1], stateCoupled[2], m1c, stateCoupled[3], stateCoupled[4], stateCoupled[5], m2c]) self.matrixElement.append(i) if (abs(stateCoupled[0] - self.n) < 0.1 and abs(stateCoupled[1] - self.l) < 0.1 and abs(stateCoupled[2] - self.j) < 0.1 and abs(m1c - self.m1) < 0.1 and abs(stateCoupled[3] - self.nn) < 0.1 and abs(stateCoupled[4] - self.ll) < 0.1 and abs(stateCoupled[5] - self.jj) < 0.1 and abs(m2c - self.m2) < 0.1): opi = len(self.basisStates) - 1 if (self.index[i] == len(self.basisStates)): print(stateCoupled) self.index[-1] = len(self.basisStates) if progressOutput or debugOutput: print("\nCalculating Hamiltonian matrix...\n") dimension = len(self.basisStates) if progressOutput or debugOutput: print("\n\tmatrix (dimension ", dimension, ")\n") # INITIALIZING MATICES # all (sparce) matrices will be saved in csr format # value, row, column matDiagonalConstructor = [[], [], []] matRConstructor = [[[], [], []] for i in xrange(self.interactionsUpTo * 2 - 1)] matRIndex = 0 for c in self.coupling: progress = 0. for ii in xrange(len(self.channel)): if progressOutput: dim = len(self.channel) progress += ((dim - ii) * 2 - 1) sys.stdout.write( "\rMatrix R%d %.1f %% (state %d of %d)" % (matRIndex + 3, float(progress) / float(dim**2) * 100., ii + 1, len(self.channel))) sys.stdout.flush() ed = self.channel[ii][6] # solves problems with exactly degenerate basisStates degeneracyOffset = 0.00000001 i = self.index[ii] dMatrix1 = wgd.get(self.basisStates[i][2]) dMatrix2 = wgd.get(self.basisStates[i][6]) for i in xrange(self.index[ii], self.index[ii + 1]): statePart1 = singleAtomState( self.basisStates[i][2], self.basisStates[i][3]) statePart2 = singleAtomState( self.basisStates[i][6], self.basisStates[i][7]) # rotate individual states statePart1 = dMatrix1.dot(statePart1) statePart2 = dMatrix2.dot(statePart2) stateCom = compositeState(statePart1, statePart2) if (matRIndex == 0): zeemanShift = ( self.atom1.getZeemanEnergyShift( self.basisStates[i][1], self.basisStates[i][2], self.basisStates[i][3], self.Bz, s=self.s1) + self.atom2.getZeemanEnergyShift( self.basisStates[i][5], self.basisStates[i][6], self.basisStates[i][7], self.Bz, s=self.s2) ) / C_h * 1.0e-9 # in GHz matDiagonalConstructor[0].append(ed + zeemanShift + degeneracyOffset) degeneracyOffset += 0.00000001 matDiagonalConstructor[1].append(i) matDiagonalConstructor[2].append(i) for dataIndex in xrange(c.indptr[ii], c.indptr[ii + 1]): jj = c.indices[dataIndex] radialPart = c.data[dataIndex] j = self.index[jj] dMatrix3 = wgd.get(self.basisStates[j][2]) dMatrix4 = wgd.get(self.basisStates[j][6]) if (self.index[jj] != self.index[jj + 1]): d = self.__getAngularMatrix_M( self.basisStates[i][1], self.basisStates[i][2], self.basisStates[i][5], self.basisStates[i][6], self.basisStates[j][1], self.basisStates[j][2], self.basisStates[j][5], self.basisStates[j][6]) secondPart = d.dot(stateCom) else: print(" - - - ", self.channel[jj]) for j in xrange(self.index[jj], self.index[jj + 1]): statePart1 = singleAtomState( self.basisStates[j][2], self.basisStates[j][3]) statePart2 = singleAtomState( self.basisStates[j][6], self.basisStates[j][7]) # rotate individual states statePart1 = dMatrix3.dot(statePart1) statePart2 = dMatrix4.dot(statePart2) # composite state of two atoms stateCom2 = compositeState(statePart1, statePart2) angularFactor = conjugate( stateCom2.T).dot(secondPart) angularFactor = real(angularFactor[0, 0]) if (abs(angularFactor) > 1.e-5): matRConstructor[matRIndex][0].append( radialPart * angularFactor) matRConstructor[matRIndex][1].append(i) matRConstructor[matRIndex][2].append(j) matRConstructor[matRIndex][0].append( radialPart * angularFactor) matRConstructor[matRIndex][1].append(j) matRConstructor[matRIndex][2].append(i) matRIndex += 1 if progressOutput or debugOutput: print("\n") self.matDiagonal = csr_matrix( (matDiagonalConstructor[0], (matDiagonalConstructor[1], matDiagonalConstructor[2])), shape=(dimension, dimension) ) self.matR = [ csr_matrix((matRConstructor[i][0], (matRConstructor[i][1], matRConstructor[i][2])), shape=(dimension, dimension) ) for i in xrange(self.interactionsUpTo * 2 - 1) ] self.originalPairStateIndex = opi self.__updateAngularMatrixElementsFile() self.__closeDatabaseForMemoization() def __getDressedMatrixElements(self,UNmat): r""" This part is an addition to the various functions defined in calculations_atom_pairstate.py We add the ground state and the states in which one atom from the pair is excited to the target Rydberg state.See ref [?] for more details. Args: Hamiltonian matrix with all rydberg pairs and thier interactions. Returns: Hamiltonian matrix with the ground state and the intermediate state which includes one Rydberg atom and one ground state atom. """ UNmatdimension = len(UNmat.toarray()) #print(UNmat.toarray()) n0 = self.n j0 = self.j l0 = self.l m0 = self.m1 state_main = [self.nn,self.ll,self.jj,self.m2] d0 = self.atom1.getDipoleMatrixElement(n0,l0,j0,m0,self.nn,self.ll,self.jj,self.m2,0) Omega_array = [] Omg0 = self.Omega0 for i in range(UNmatdimension): d = 0 if (self.basisStates[i][:4] == state_main) or (self.basisStates[i][4:] == state_main): d = self.atom1.getDipoleMatrixElement(n0,l0,j0,m0,self.nn,self.ll,self.jj,self.m2,0) Omega_array = np.append(Omega_array,0.5*Omg0*d/d0) row = np.zeros(UNmatdimension) + 1 col = np.arange(UNmatdimension) mat = csr_matrix((Omega_array, (row, col)), shape=(2, UNmatdimension)) UNmat = vstack([mat,UNmat]) row = np.arange(UNmatdimension+2) row = np.concatenate((np.array([1]), row)) col = np.zeros(UNmatdimension+2) + 1 col = np.concatenate((np.array([0]), col)) Omega_array = np.concatenate((np.array([Omg0*0.5,Omg0*0.5,self.Delta0]), Omega_array)) mat = csr_matrix((Omega_array, (row, col)), shape=(UNmatdimension+2, 2)) UNmat = hstack([mat,UNmat]) UNmat = csr_matrix(UNmat) #print(UNmat.toarray()) return UNmat def diagonalise(self, rangeR, noOfEigenvectors, drivingFromState=[0, 0, 0, 0, 0], eigenstateDetuning=0., sortEigenvectors=False, progressOutput=False, debugOutput=False): r""" Finds eigenstates. ARPACK ( :obj:`scipy.sparse.linalg.eigsh`) calculation of the `noOfEigenvectors` eigenvectors closest to the original state. If `drivingFromState` is specified as `[n,l,j,mj,q]` coupling between the pair-states and the situation where one of the atoms in the pair state basis is in :math:`|n,l,j,m_j\rangle` state due to driving with a laser field that drives :math:`q` transition (+1,0,-1 for :math:`\sigma^-`, :math:`\pi` and :math:`\sigma^+` transitions respectively) is calculated and marked by the colourmaping these values on the obtained eigenvectors. Args: rangeR ( :obj:`array`): Array of values for distance between the atoms (in :math:`\mu` m) for which we want to calculate eigenstates. noOfEigenvectors (int): number of eigen vectors closest to the energy of the original (unperturbed) pair state. Has to be smaller then the total number of states. eigenstateDetuning (float, optional): Default is 0. This specifies detuning from the initial pair-state (in Hz) around which we want to find `noOfEigenvectors` eigenvectors. This is useful when looking only for couple of off-resonant features. drivingFromState ([int,int,float,float,int]): Optional. State of one of the atoms from the original pair-state basis from which we try to drive to the excited pair-basis manifold, **assuming that the first of the two atoms is already excited to the specified Rydberg state**. By default, program will calculate just contribution of the original pair-state in the eigenstates obtained by diagonalization, and will highlight it's admixure by colour mapping the obtained eigenstates plot. State is specified as :math:`[n,\ell,j,mj, d]` where :math:`d` is +1, 0 or -1 for driving :math:`\sigma^-` , :math:`\pi` and :math:`\sigma^+` transitions respectively. sortEigenvectors(bool): optional, False by default. Tries to sort eigenvectors so that given eigen vector index corresponds to adiabatically changing eigenstate, as detirmined by maximising overlap between old and new eigenvectors. progressOutput (bool): optional, False by default. If true, prints information about the progress of the calculation. debugOutput (bool): optional, False by default. If true, similarly to progressOutput=True, this will print information about the progress of calculations, but with more verbose output. """ self.r = np.sort(rangeR) dimension = len(self.basisStates) self.noOfEigenvectors = noOfEigenvectors # energy of the state - to be calculated self.y = [] # how much original state is contained in this eigenvector self.highlight = [] # what are the dominant contributing states? self.composition = [] if (noOfEigenvectors >= dimension - 1): noOfEigenvectors = dimension - 1 print("Warning: Requested number of eigenvectors >=dimension-1\n \ ARPACK can only find up to dimension-1 eigenvectors, where\ dimension is matrix dimension.\n") if noOfEigenvectors < 1: return coupling = [] self.maxCoupling = 0. self.maxCoupledStateIndex = 0 if (drivingFromState[0] != 0): self.drivingFromState = drivingFromState if progressOutput: print("Finding coupling strengths") # get first what was the state we are calculating coupling with state1 = drivingFromState n1 = int(round(state1[0])) l1 = int(round(state1[1])) j1 = state1[2] m1 = state1[3] q = state1[4] for i in xrange(dimension): thisCoupling = 0. if (int(abs(self.basisStates[i][5] - l1)) == 1 and abs(self.basisStates[i][0] - self.basisStates[self.originalPairStateIndex][0]) < 0.1 and abs(self.basisStates[i][1] - self.basisStates[self.originalPairStateIndex][1]) < 0.1 and abs(self.basisStates[i][2] - self.basisStates[self.originalPairStateIndex][2]) < 0.1 and abs(self.basisStates[i][3] - self.basisStates[self.originalPairStateIndex][3]) < 0.1 ): state2 = self.basisStates[i] n2 = int(state2[0 + 4]) l2 = int(state2[1 + 4]) j2 = state2[2 + 4] m2 = state2[3 + 4] if debugOutput: print(n1, " ", l1, " ", j1, " ", m1, " ", n2, " ", l2, " ", j2, " ", m2, " q=", q) print(self.basisStates[i]) dme = self.atom2.getDipoleMatrixElement(n1, l1, j1, m1, n2, l2, j2, m2, q, s=self.s2) thisCoupling += dme thisCoupling = abs(thisCoupling)**2 if thisCoupling > self.maxCoupling: self.maxCoupling = thisCoupling self.maxCoupledStateIndex = i if (thisCoupling > 0.000001) and debugOutput: print("original pairstate index = ", self.originalPairStateIndex) print("this pairstate index = ", i) print("state itself ", self.basisStates[i]) print("coupling = ", thisCoupling) coupling.append(thisCoupling) print("Maximal coupling from a state") print("is to a state ", self.basisStates[self.maxCoupledStateIndex]) print("is equal to %.3e a_0 e" % self.maxCoupling) if progressOutput: print("\n\nDiagonalizing interaction matrix...\n") rvalIndex = 0. previousEigenvectors = [] for rval in self.r: if progressOutput: sys.stdout.write("\r%d%%" % (rvalIndex / len(self.r - 1) * 100.)) sys.stdout.flush() rvalIndex += 1. # calculate interaction matrix m = (self.matDiagonal).toarray() #print(m) m[m!=0] += 2*self.Delta0 #print(m) m = csr_matrix(m) rX = (rval * 1.e-6)**3 for matRX in self.matR: m = m + matRX / rX rX *= (rval * 1.e-6) #Get the dressed state basis. m = self.__getDressedMatrixElements(m) # uses ARPACK algorithm to find only noOfEigenvectors eigenvectors # sigma specifies center frequency (in GHz) ev, egvector = eigsh( m, noOfEigenvectors, sigma=eigenstateDetuning * 1.e-9, which='LM', tol=1E-8) if sortEigenvectors: # Find which eigenvectors overlap most with eigenvectors from # previous diagonalisatoin, in order to find "adiabatic" # continuation for the respective states if previousEigenvectors == []: previousEigenvectors = np.copy(egvector) previousEigenvalues =
np.copy(ev)
numpy.copy
#!/usr/bin/env python # -*- coding: utf-8 -*- # File: train.py import matplotlib matplotlib.use('Agg') import os import argparse import cv2 import shutil import itertools import tqdm import math import numpy as np import json import tensorflow as tf import zipfile import pickle import six from glob import glob from tensorpack import * from tensorpack.tfutils.summary import add_moving_summary from tensorpack.tfutils import optimizer from tensorpack.utils import logger import tensorpack.utils.viz as tpviz from tensorpack.utils.gpu import get_nr_gpu from tensorpack.dataflow import ( DataFlow, RNGDataFlow, DataFromGenerator, MapData, imgaug, AugmentImageComponent, TestDataSpeed, MultiProcessMapData, MapDataComponent, DataFromList, PrefetchDataZMQ, BatchData) from resnet_model import ( preresnet_group, preresnet_basicblock, preresnet_bottleneck, resnet_group, resnet_basicblock, resnet_bottleneck, se_resnet_bottleneck, resnet_backbone) from basemodel import ( image_preprocess, pretrained_resnet_conv4, resnet_conv5) from model import * import config import collections import ast import pandas as pd from utils import * from tensorflow.python.keras.metrics import categorical_accuracy, top_k_categorical_accuracy from tensorflow import keras from custom_utils import ReduceLearningRateOnPlateau from sklearn.model_selection import train_test_split, KFold from sklearn.metrics import f1_score from iterstrat.ml_stratifiers import MultilabelStratifiedKFold, MultilabelStratifiedShuffleSplit import scipy.optimize as opt def sigmoid_np(x): return 1.0/(1.0 + np.exp(-x)) def tf_ce(x, z): zeros = np.zeros_like(x) cond = (x >= zeros) relu_logits = np.where(cond, x, zeros) neg_abs_logits = np.where(cond, -x, x) return np.mean(relu_logits - x * z + np.log1p(np.exp(neg_abs_logits))) def get_batch_factor(): nr_gpu = get_nr_gpu() assert nr_gpu in [1, 2, 4, 8], nr_gpu return 8 // nr_gpu def get_resnet_model_output_names(): return ['final_probs'] def oversample_2(data): low = np.array([8,9,10,15,17,20,26,24,27]) data_low = [] for d in data: true_label = np.arange(config.NUM_CLASS)[d[1]>0] if np.any([a in low for a in true_label]): data_low.append(d) data_low.append(d) data_low.append(d) return data + data_low def oversample(df): df_orig = df.copy() lows = [15,15,15,8,9,10,8,9,10,8,9,10,17,20,24,26,15,27,15,20,24,17,8,15,27,27,27] for i in lows: target = str(i) indicies = df_orig.loc[df_orig['Target'] == target].index df = pd.concat([df,df_orig.loc[indicies]], ignore_index=True) indicies = df_orig.loc[df_orig['Target'].str.startswith(target+" ")].index df = pd.concat([df,df_orig.loc[indicies]], ignore_index=True) indicies = df_orig.loc[df_orig['Target'].str.endswith(" "+target)].index df = pd.concat([df,df_orig.loc[indicies]], ignore_index=True) indicies = df_orig.loc[df_orig['Target'].str.contains(" "+target+" ")].index df = pd.concat([df,df_orig.loc[indicies]], ignore_index=True) return df def get_dataflow(is_train=True): train_df = pd.read_csv(os.path.join('/data/kaggle/HPA', 'train.csv')) #train_df = oversample(train_df) labels = [[int(i) for i in s.split()] for s in train_df['Target']] fnames = train_df['Id'].tolist() fnames = [os.path.join(config.TRAIN_DATASET, f) for f in fnames] sprase_label = [np.eye(config.NUM_CLASS, dtype=np.float)[np.array(la)].sum(axis=0) for la in labels] extra_df = pd.read_csv(os.path.join('/data/kaggle/HPA', 'HPAv18RGBY_WithoutUncertain_wodpl.csv')) #extra_df = oversample(extra_df) extra_labels = [[int(i) for i in s.split()] for s in extra_df['Target']] extra_labels = [np.eye(config.NUM_CLASS, dtype=np.float)[np.array(la)].sum(axis=0) for la in extra_labels] extra_fnames = extra_df['Id'].tolist() extra_fnames = [os.path.join(config.EXTRA_DATASET, f) for f in extra_fnames] fnames = fnames + extra_fnames sprase_label = sprase_label + extra_labels fnames = np.array(fnames) sprase_label = np.array(sprase_label) msss = MultilabelStratifiedShuffleSplit(n_splits=1, test_size=0.15, random_state=42) for train_index, test_index in msss.split(fnames, sprase_label): x_train, x_test = fnames[train_index], fnames[test_index] y_train, y_test = sprase_label[train_index], sprase_label[test_index] holdout_data = list(zip(x_test, y_test)) # 5 fold the rest mskf = MultilabelStratifiedKFold(n_splits=5, random_state=1) for fold_num, (train_index, test_index) in enumerate(mskf.split(x_train, y_train)): if fold_num == config.FOLD: foldx_train, foldx_test = x_train[train_index], x_train[test_index] foldy_train, foldy_test = y_train[train_index], y_train[test_index] break train_data = list(zip(foldx_train, foldy_train)) val_data = list(zip(foldx_test, foldy_test)) train_data = oversample_2(train_data) pseudo_df = pd.read_csv(os.path.join('/data/kaggle/HPA', 'LB623.csv')) pseudo_fnames = pseudo_df['Id'].tolist() pseudo_fnames = [os.path.join(config.TEST_DATASET, f) for f in pseudo_fnames] #pseudo_labels = np.load("./SOTA.npy") #pseudo_labels = [np.array(_) for _ in pseudo_labels] pseudo_labels = [[int(i) for i in s.split()] for s in pseudo_df['Predicted']] pseudo_labels = [np.eye(config.NUM_CLASS, dtype=np.float)[np.array(la)].sum(axis=0) for la in pseudo_labels] pseudo_data = list(zip(pseudo_fnames, pseudo_labels)) train_data = train_data + pseudo_data print("train: ", len(train_data), len(val_data)) if not is_train: return val_data ds = DataFromList(train_data, shuffle=True) ds = BatchData(MapData(ds, preprocess), config.BATCH) ds = PrefetchDataZMQ(ds, 6) return ds class ResnetModel(ModelDesc): def _get_inputs(self): if config.RGB: ret = [ InputDesc(tf.float32, (None, None, None, 3), 'image'), InputDesc(tf.float32, (None, config.NUM_CLASS), 'labels'), ] else: ret = [ InputDesc(tf.float32, (None, None, None, 4), 'image'), InputDesc(tf.float32, (None, config.NUM_CLASS), 'labels'), ] return ret def _build_graph(self, inputs): is_training = get_current_tower_context().is_training image, label = inputs #tf.summary.image('viz', image, max_outputs=10) image = image_preprocess(image, bgr=False) #image = image * (1.0 / 255) image = tf.transpose(image, [0, 3, 1, 2]) depth = config.RESNET_DEPTH basicblock = preresnet_basicblock if config.RESNET_MODE == 'preact' else resnet_basicblock bottleneck = { 'resnet': resnet_bottleneck, 'preact': preresnet_bottleneck, 'se': se_resnet_bottleneck}[config.RESNET_MODE] num_blocks, block_func = { 18: ([2, 2, 2, 2], basicblock), 26: ([2, 2, 2, 2], bottleneck), 34: ([3, 4, 6, 3], basicblock), 50: ([3, 4, 6, 3], bottleneck), 101: ([3, 4, 23, 3], bottleneck), 152: ([3, 8, 36, 3], bottleneck) }[depth] logits = get_logit(image, num_blocks, block_func) if is_training: loss = cls_loss(logits, label) #wd_cost = regularize_cost( # '.*/W', # l2_regularizer(1e-4), name='wd_cost') self.cost = tf.add_n([ loss], 'total_cost') #add_moving_summary(self.cost) else: final_probs = tf.nn.sigmoid(logits, name="final_probs") def _get_optimizer(self): lr = tf.get_variable('learning_rate', initializer=0.01, trainable=False) tf.summary.scalar('learning_rate', lr) print("get_nr_gpu", get_nr_gpu()) if config.BIG: if config.ACC: factor = 4 lr = lr / float(factor) opt = tf.train.AdamOptimizer(lr) opt = optimizer.AccumGradOptimizer(opt, factor) else: opt = tf.train.AdamOptimizer(lr, 0.9) else: #opt = tf.train.MomentumOptimizer(lr, 0.9) opt = tf.train.AdamOptimizer(lr) return opt class ResnetEvalCallbackSimple(Callback): def _setup_graph(self): self.pred = self.trainer.get_predictor( ['image'], get_resnet_model_output_names()) self.valid_ds = get_dataflow(is_train=False) def _eval(self): from tensorpack.utils.utils import get_tqdm_kwargs valid_predictions = [] valid_y = [] valid_logits = [] th = 0.15 total_run = len(self.valid_ds) // config.INFERENCE_BATCH total_run = total_run + 1 if len(self.valid_ds) % config.INFERENCE_BATCH !=0 else total_run with tqdm.tqdm(total=total_run, **get_tqdm_kwargs()) as pbar: for i in range(total_run): start = i * config.INFERENCE_BATCH end = start + config.INFERENCE_BATCH if start + config.INFERENCE_BATCH < len(self.valid_ds) else len(self.valid_ds) data = self.valid_ds[start:end] data = [preprocess(d, is_training=False) for d in data] x = np.array([_[0] for _ in data]) y = np.array([_[1] for _ in data]) if len(x) == 0: break final_probs = self.pred(x) valid_predictions.extend(final_probs[0]) valid_logits.extend(final_probs[0]) valid_y.extend(y) #score += mapk(la, final_labels) pbar.update() valid_predictions = np.array(valid_predictions) valid_y = np.array(valid_y) valid_logits = np.array(valid_logits) val_loss = tf_ce(valid_logits, valid_y) F1_score_05 = calc_macro_f1(valid_predictions, valid_y, 0.5) F1_score_015 = calc_macro_f1(valid_predictions, valid_y, 0.15) F1_score_02 = calc_macro_f1(valid_predictions, valid_y, 0.2) print('F1_score: {:.5f} {:.5f} {:.5f}'.format(F1_score_05, F1_score_015, F1_score_02)) self.trainer.monitors.put_scalar("F1_score", F1_score_015) return F1_score_015 def _trigger_epoch(self): interval = 10 if config.BIG else 5 if self.epoch_num % interval == 0: self._eval() # go to _get_value_to_s def flip_trans(im): im = np.fliplr(im) im = np.transpose(im, [1,0,2]) im = np.fliplr(im) return im def inference(pred, x_test, tta=['fliplr', 'rot90'], mode='test'): with tqdm.tqdm(total=(len(x_test)) // config.INFERENCE_BATCH + 1) as pbar: start = 0 end = 0 predictions = [] final_probs_tta = {} for i in range(len(x_test) // config.INFERENCE_BATCH + 1): start = i * config.INFERENCE_BATCH end = start + config.INFERENCE_BATCH if start + config.INFERENCE_BATCH < len(x_test) else len(x_test) x = x_test[start:end] if (len(x) == 0): break if mode == 'test': if config.BIG: x = np.array([open_rgby_2048(img_id) for img_id in x]) else: x = np.array([open_rgby(config.TEST_DATASET, img_id) for img_id in x]) else: x = [preprocess(d, is_training=False) for d in x] x = np.array([_[0] for _ in x]) final_probs = pred(x) predictions.extend(final_probs[0]) if not tta: pbar.update() continue for k in tta: if k not in final_probs_tta: final_probs_tta[k] = [] if k == 'fliplr': x_prime = np.array([np.fliplr(_x) for _x in x]) final_probs = pred(x_prime) elif k == 'flipud': x_prime = np.array([np.flipud(_x) for _x in x]) final_probs = pred(x_prime) elif k == 'rot90': x_prime = np.array([np.rot90(_x) for _x in x]) final_probs = pred(x_prime) elif k == 'rot180': x_prime = np.array([np.rot90(_x, 2) for _x in x]) final_probs = pred(x_prime) elif k == 'rot270': x_prime = np.array([
np.rot90(_x, 3)
numpy.rot90
# Copyright (c) 2019 <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ FastMNMF2 ========= Blind Source Separation using Fast Multichannel Nonnegative Matrix Factorization 2 (FastMNMF2) """ import numpy as np def fastmnmf2( X, n_src=None, n_iter=30, n_components=8, mic_index=0, W0=None, accelerate=True, callback=None, ): """ Implementation of FastMNMF2 algorithm presented in <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, *Fast Multichannel Nonnegative Matrix Factorization With Directivity-Aware Jointly-Diagonalizable Spatial Covariance Matrices for Blind Source Separation*, IEEE/ACM TASLP, 2020. [`IEEE <https://ieeexplore.ieee.org/abstract/document/9177266>`_] The code of FastMNMF2 with GPU support and more sophisticated initialization is available on https://github.com/sekiguchi92/SoundSourceSeparation Parameters ---------- X: ndarray (nframes, nfrequencies, nchannels) STFT representation of the observed signal n_src: int, optional The number of sound sources (default None). If None, n_src is set to the number of microphones n_iter: int, optional The number of iterations (default 30) n_components: int, optional Number of components in the non-negative spectrum (default 8) mic_index: int or 'all', optional The index of microphone of which you want to get the source image (default 0). If 'all', return the source images of all microphones W0: ndarray (nfrequencies, nchannels, nchannels), optional Initial value for diagonalizer Q (default None). If None, identity matrices are used for all frequency bins. accelerate: bool, optional If true, the basis and activation of NMF are updated simultaneously (default True) callback: func, optional A callback function called every 10 iterations, allows to monitor convergence Returns ------- If mic_index is int, returns an (nframes, nfrequencies, nsources) array. If mic_index is 'all', returns an (nchannels, nframes, nfrequencies, nsources) array. """ eps = 1e-10 g_eps = 5e-2 interval_update_Q = 1 # 2 may work as well and is faster interval_normalize = 10 TYPE_FLOAT = X.real.dtype TYPE_COMPLEX = X.dtype # initialize parameter X_FTM = X.transpose(1, 0, 2) n_freq, n_frames, n_chan = X_FTM.shape XX_FTMM = np.matmul(X_FTM[:, :, :, None], X_FTM[:, :, None, :].conj()) if n_src is None: n_src = X_FTM.shape[2] if W0 is not None: Q_FMM = W0 else: Q_FMM = np.tile(np.eye(n_chan).astype(TYPE_COMPLEX), [n_freq, 1, 1]) g_NM = np.ones([n_src, n_chan], dtype=TYPE_FLOAT) * g_eps for m in range(n_chan): g_NM[m % n_src, m] = 1 for m in range(n_chan): mu_F = (Q_FMM[:, m] * Q_FMM[:, m].conj()).sum(axis=1).real Q_FMM[:, m] /= np.sqrt(mu_F[:, None]) H_NKT = np.random.rand(n_src, n_components, n_frames).astype(TYPE_FLOAT) W_NFK = np.random.rand(n_src, n_freq, n_components).astype(TYPE_FLOAT) lambda_NFT = W_NFK @ H_NKT Qx_power_FTM = np.abs(np.einsum("fij, ftj -> fti", Q_FMM, X_FTM)) ** 2 Y_FTM = np.einsum("nft, nm -> ftm", lambda_NFT, g_NM) def separate(): Qx_FTM = np.einsum("fij, ftj -> fti", Q_FMM, X_FTM) Qinv_FMM = np.linalg.inv(Q_FMM) Y_NFTM = np.einsum("nft, nm -> nftm", lambda_NFT, g_NM) if mic_index == "all": return np.einsum( "fij, ftj, nftj -> itfn", Qinv_FMM, Qx_FTM / Y_NFTM.sum(axis=0), Y_NFTM ) elif type(mic_index) is int: return np.einsum( "fj, ftj, nftj -> tfn", Qinv_FMM[:, mic_index], Qx_FTM / Y_NFTM.sum(axis=0), Y_NFTM, ) else: raise ValueError("mic_index should be int or 'all'") # update parameters for epoch in range(n_iter): if callback is not None and epoch % 10 == 0: callback(separate()) # update W and H (basis and activation of NMF) tmp1_NFT = np.einsum("nm, ftm -> nft", g_NM, Qx_power_FTM / (Y_FTM**2)) tmp2_NFT = np.einsum("nm, ftm -> nft", g_NM, 1 / Y_FTM) numerator = np.einsum("nkt, nft -> nfk", H_NKT, tmp1_NFT) denominator = np.einsum("nkt, nft -> nfk", H_NKT, tmp2_NFT) W_NFK *= np.sqrt(numerator / denominator) if not accelerate: tmp1_NFT = np.einsum("nm, ftm -> nft", g_NM, Qx_power_FTM / (Y_FTM**2)) tmp2_NFT = np.einsum("nm, ftm -> nft", g_NM, 1 / Y_FTM) lambda_NFT = W_NFK @ H_NKT + eps Y_FTM = np.einsum("nft, nm -> ftm", lambda_NFT, g_NM) + eps numerator = np.einsum("nfk, nft -> nkt", W_NFK, tmp1_NFT) denominator = np.einsum("nfk, nft -> nkt", W_NFK, tmp2_NFT) H_NKT *= np.sqrt(numerator / denominator) lambda_NFT = W_NFK @ H_NKT + eps Y_FTM = np.einsum("nft, nm -> ftm", lambda_NFT, g_NM) + eps # update g_NM (diagonal element of spatial covariance matrices) numerator = np.einsum("nft, ftm -> nm", lambda_NFT, Qx_power_FTM / (Y_FTM**2)) denominator = np.einsum("nft, ftm -> nm", lambda_NFT, 1 / Y_FTM) g_NM *= np.sqrt(numerator / denominator) Y_FTM = np.einsum("nft, nm -> ftm", lambda_NFT, g_NM) + eps # udpate Q (joint diagonalizer) if (interval_update_Q <= 0) or (epoch % interval_update_Q == 0): for m in range(n_chan): V_FMM = ( np.einsum("ftij, ft -> fij", XX_FTMM, 1 / Y_FTM[..., m]) / n_frames ) tmp_FM = np.linalg.solve(
np.matmul(Q_FMM, V_FMM)
numpy.matmul
import numpy as np import matplotlib.pyplot as plt from multilayer_perceptron import MLP from gradient_boosting_decision_tree import GBDT from xgboost import XGBoost from random_forest import RandomForest from adaboost import AdaBoost from factorization_machines import FactorizationMachines from support_vector_machine import SVM from k_nearest_neighbor import kNearestNeighbor def gen_linear(train_num): x = 2 * np.random.random((train_num, 2)) - 1 return x, (x.sum(axis=1) > 0) * 1 def gen_circle(train_num): x = 2 * np.random.random((train_num, 2)) - 1 return x, (np.square(x).sum(axis=1) > 0.6) * 1 def gen_xor(train_num): x = 2 * np.random.random((train_num, 2)) - 1 return x, np.array([(xi[0] * xi[1] > 0) for xi in x]) * 1 def gen_spiral(train_num): r = 0.8 *
np.arange(train_num)
numpy.arange
import colorgame import numpy as np import torch.optim as optim import torch.nn as nn import torch import matplotlib.pyplot as plt import matplotlib.lines as lines class Network(nn.Module): def __init__(self, num_in_positions, num_actions, num_cols, num_rows, batch_size): super(Network, self).__init__() self.fc1 = nn.Linear(num_in_positions, 128) self.fc2 = nn.Linear(128, 350, bias = True) self.fc3 = nn.Linear(350, 600, bias = True) self.fc4 = nn.Linear(600, 350, bias = True) self.fc5 = nn.Linear(350, num_actions) def forward(self, x): x = nn.functional.leaky_relu(self.fc1(x)) x = nn.functional.leaky_relu(self.fc2(x)) x = nn.functional.leaky_relu(self.fc3(x)) x = nn.functional.leaky_relu(self.fc4(x)) x = self.fc5(x) return x class ColorDQN: def __init__(self, num_in_positions, num_actions, num_cols, num_rows): self.num_actions = num_actions self.num_in_positions = num_in_positions self.model = Network(num_in_positions, num_actions, num_cols, num_rows,1) self.target_model = Network(num_in_positions, num_actions, num_cols, num_rows, 32) learning_rate = 0.000134 self.optimizer = optim.Adam(self.model.parameters() ,lr = learning_rate) self.criterion = nn.MSELoss() self.name = 0 self.batch_size = 32 self.experience = {'prev_obs' : [], 'a' : [], 'r': [], 'obs' : [], 'done': [] } self.min_exp = 100 self.max_exp = 320 self.gamma = 0.90 def predict(self, inputs): x = torch.from_numpy(inputs).float().flatten() x = x[None,:] return self.model(x) def predict_batch(self, inputs): x = torch.from_numpy(inputs).float().flatten() x = x.view(self.batch_size, self.num_in_positions) return self.model(x) def target_predict(self, inputs): x = torch.from_numpy(inputs).float() x = x.view(self.batch_size, self.num_in_positions) return self.target_model(x) def get_action(self, state, epsilon): if
np.random.random()
numpy.random.random
from abstract_esn import AbstractESN import numpy as np from pathlib import Path import signalz path = Path('./results/mackey/noisy') def mean_squared_error(y_true, y_pred): try: return np.mean(np.abs((y_true - y_pred)**2)) except: return -1 def mean_absolute_percentage_error(y_true, y_pred): try: return np.mean(
np.abs((y_true - y_pred) / y_true)
numpy.abs
import superimport import numpy as np import matplotlib.pyplot as plt from scipy.stats import multivariate_normal from jax import vmap class BinaryFA: def __init__(self, input_dim, latent, max_iter, conv_tol=1e-4, compute_ll=True): self.W = 0.1 * np.random.randn(latent, input_dim) # 2x16 self.b = 0.01 * np.random.randn(input_dim, 1) # 16x1 self.mu_prior = np.zeros((latent,1)) # 2x1 self.sigma_prior = np.eye(latent) # 2x2 self.input_dim = input_dim self.latent = latent self.max_iter = max_iter self.compute_ll = compute_ll if compute_ll : self.ll_hist = np.zeros((max_iter + 1, 1)) # 51x1 def variational_em(self, data): ll_hist = np.zeros((self.max_iter + 1, 1)) i = 0 while i < 3: S1, S2, ll = self.estep(data) ll_hist[i,0] = ll self.mstep(S1, S2) if i!=0: delta_fval = abs(ll_hist[i] - ll_hist[i-1]) avg_fval = (abs(ll_hist[i]) + abs(ll_hist[i-1]) + np.finfo(float).eps)/2 if (delta_fval / avg_fval) < conv_tol: break i += 1 return ll_hist[:i] def estep(self, data): S1 = np.zeros((self.latent + 1, self.input_dim)) # 3x16 S2 = np.zeros((self.latent + 1, self.latent + 1, self.input_dim)) # 3x3x16 W, b, mu_prior = self.W , self.b, self.mu_prior ll = 0 for i in range(data.T.shape[1]): mu_post, sigma_post, logZ, lambd = self.compute_latent_posterior_statistics(data.T[:,i], max_iter=3) ll += logZ EZZ =
np.zeros((self.latent+1, self.latent+1))
numpy.zeros
from copy import copy import numpy as np import matplotlib import matplotlib.pyplot as plt from scipy import linalg as LA from scipy.sparse import linalg as las from scipy.signal import lti from scipy.signal import lsim from opentorsion.disk_element import Disk from opentorsion.shaft_element import Shaft from opentorsion.gear_element import Gear # from opentorsion.induction_motor import Induction_motor from opentorsion.errors import DOF_mismatch_error class Assembly: """Powertrain assembly""" def __init__( self, shaft_elements, disk_elements=None, gear_elements=None, motor_elements=None, ): ## Initiate shaft elements if shaft_elements is None: raise DOF_mismatch_error("Shaft elements == None") self.shaft_elements = None else: self.shaft_elements = [ copy(shaft_element) for shaft_element in shaft_elements ] ## Initiate gear elements if gear_elements is None: self.gear_elements = None else: self.gear_elements = [copy(gear_element) for gear_element in gear_elements] ## Initiate motor elements if motor_elements is None: self.motor_elements = None else: self.motor_elements = [ copy(motor_element) for motor_element in motor_elements ] self.disk_elements = disk_elements self.dofs = self._check_dof() def __repr__(self): pass def __str__(self): return f"rotor" def M(self): """Assembles the mass matrix""" M = np.zeros((self.dofs, self.dofs)) if self.shaft_elements is not None: for element in self.shaft_elements: dofs = np.array([element.nl, element.nr]) M[np.ix_(dofs, dofs)] += element.M() if self.disk_elements is not None: for element in self.disk_elements: M[element.node, element.node] += element.M() # if self.motor_elements is not None: # for element in self.motor_elements: # dof = np.array([element.nl, element.nr]) # M[np.ix_(dof, dof)] += element.M() if self.gear_elements is not None: for element in self.gear_elements: M[element.node, element.node] += element.M() # Build transformation matrix E = self.E() transform = self.T(E) # Calculate transformed mass matrix M = np.dot(np.dot(transform.T, M), transform) return M def K(self): """Assembles the stiffness matrix""" K = np.zeros((self.dofs, self.dofs)) if self.shaft_elements is not None: for element in self.shaft_elements: dofs = np.array([element.nl, element.nr]) K[np.ix_(dofs, dofs)] += element.K() # if self.motor_elements is not None: # for element in self.motor_elements: # dofs = np.array([element.nl, element.nr]) # K[np.ix_(dofs, dofs)] += element.K() if self.gear_elements is not None: # Build transformation matrix E = self.E() transform = self.T(E) # Calculate transformed mass matrix K = np.dot(np.dot(transform.T, K), transform) # print(K) return K def C(self): """Assembles the damping matrix""" C = np.zeros((self.dofs, self.dofs)) if self.shaft_elements is not None: for element in self.shaft_elements: dof = np.array([element.nl, element.nr]) C[np.ix_(dof, dof)] += element.C() # if self.motor_elements is not None: # for element in self.motor_elements: # dof = np.array([element.nl, element.nr]) # C[np.ix_(dof, dof)] += element.C() if self.disk_elements is not None: for element in self.disk_elements: C[element.node, element.node] += element.C() if self.gear_elements is not None: for element in self.gear_elements: C[element.node, element.node] += element.C() # Build transformation matrix E = self.E() transform = self.T(E) # Calculate transformed mass matrix C = np.dot(np.dot(transform.T, C), transform) return C def E(self): """Assembles the gear constraint matrix""" stages = [] for gear in self.gear_elements: if gear.stages is not None: stages += gear.stages E = np.zeros([self.dofs, len(stages)]) for i, stage in enumerate(stages): E[stage[0][0]][i] += stage[0][1] E[stage[1][0]][i] += stage[1][1] try: E[stage[2][0]][i] += stage[2][1] except: pass return E def state_matrix(self): """Assembles the state-space matrices""" M, K, C = self.M(), self.K(), self.C() Z = np.zeros(M.shape, dtype=np.float64) if self.motor_elements is not None: motor = self.motor_elements[0] if motor.small_signal: # Different versions for linear and nonlinear models R, L = motor.R_linear(), motor.L_linear() else: R, L = motor.R(), motor.L() A = np.zeros((self.dofs * 2 + 4, self.dofs * 2 + 4)) B = np.zeros(A.shape) dof = np.array([0, 1, 2, 3, 4]) A[np.ix_(dof, dof)] += R B[np.ix_(dof, dof)] += L K_m = np.vstack([np.hstack([C, K]), np.hstack([-M, Z])]) M_m = np.vstack([np.hstack([M, Z]), np.hstack([Z, M])]) dof = np.array(range(4, self.dofs * 2 + 4)) A[np.ix_(dof, dof)] += K_m B[np.ix_(dof, dof)] += M_m else: A = np.vstack([np.hstack([C, K]), np.hstack([-M, Z])]) B = np.vstack([np.hstack([M, Z]), np.hstack([Z, M])]) # Solved versions # A = np.vstack([ # np.hstack([LA.solve(-M, C), LA.solve(-M, K)]), # np.hstack([I, Z]) # ]) # B = np.vstack([M_inv, Z]) # np.set_printoptions(suppress=True) # print(A) return A, B def modal_analysis(self): """Calculates the eigenvalues and eigenfrequencies of the assembly""" A, B = self.state_matrix() lam, vec = self._eig(A, B) # Sort and delete complex conjugates omegas = np.sort(np.absolute(lam)) omegas_damped = np.sort(np.abs(np.imag(lam))) freqs = omegas / (2 * np.pi) damping_ratios = -np.real(lam) / (np.absolute(lam)) return omegas_damped, freqs, damping_ratios def _eig(self, A, B): """Solves the eigenvalues of the state space matrix using ARPACK""" lam, vec = LA.eig(A, B) return lam, vec def _check_dof(self): """Returns the number of degrees of freedom in the model""" nodes = set() if self.shaft_elements is not None: for element in self.shaft_elements: nodes.add(element.nl) nodes.add(element.nr) if self.disk_elements is not None: for element in self.disk_elements: nodes.add(element.node) if self.gear_elements is not None: for element in self.gear_elements: nodes.add(element.node) if self.motor_elements is not None: for element in self.motor_elements: nodes.add(element.n) return max(nodes) + 1 def T(self, E): """Method for determining gear constraint transformation matrix""" r, c = E.shape T = np.eye(r) for i in range(c): E_i = np.dot(T.T, E) # (1) Set T_i = I(n+1) (The identity matrix of dimension (n_i + 1)) T_i = np.eye(r) # (2) Define k as the position of the entry having the largest absolute value in the ith column of E_i-1 k = np.argmax(
np.abs(E_i[:, i])
numpy.abs
import numpy import numpy.matlib import copy import pandas import wave import struct import os import math import ctypes import multiprocessing import warnings import scipy from scipy import ndimage import scipy.stats as stats from scipy.fftpack import fft from scipy.signal import decimate from scipy.signal import lfilter from scipy.fftpack.realtransforms import dct def read_sph(input_file_name, mode='p'): """ Read a SPHERE audio file :param input_file_name: name of the file to read :param mode: specifies the following (\* =default) .. note:: - Scaling: - 's' Auto scale to make data peak = +-1 (use with caution if reading in chunks) - 'r' Raw unscaled data (integer values) - 'p' Scaled to make +-1 equal full scale - 'o' Scale to bin centre rather than bin edge (e.g. 127 rather than 127.5 for 8 bit values, can be combined with n+p,r,s modes) - 'n' Scale to negative peak rather than positive peak (e.g. 128.5 rather than 127.5 for 8 bit values, can be combined with o+p,r,s modes) - Format - 'l' Little endian data (Intel,DEC) (overrides indication in file) - 'b' Big endian data (non Intel/DEC) (overrides indication in file) - File I/O - 'f' Do not close file on exit - 'd' Look in data directory: voicebox('dir_data') - 'w' Also read the annotation file \*.wrd if present (as in TIMIT) - 't' Also read the phonetic transcription file \*.phn if present (as in TIMIT) - NMAX maximum number of samples to read (or -1 for unlimited [default]) - NSKIP number of samples to skip from start of file (or -1 to continue from previous read when FFX is given instead of FILENAME [default]) :return: a tupple such that (Y, FS) .. note:: - Y data matrix of dimension (samples,channels) - FS sample frequency in Hz - WRD{\*,2} cell array with word annotations: WRD{\*,:)={[t_start t_end],'text'} where times are in seconds only present if 'w' option is given - PHN{\*,2} cell array with phoneme annotations: PHN{\*,:)={[t_start t_end],'phoneme'} where times are in seconds only present if 't' option is present - FFX Cell array containing 1. filename 2. header information 1. first header field name 2. first header field value 3. format string (e.g. NIST_1A) 4. 1. file id 2. current position in file 3. dataoff byte offset in file to start of data 4. order byte order (l or b) 5. nsamp number of samples 6. number of channels 7. nbytes bytes per data value 8. bits number of bits of precision 9. fs sample frequency 10. min value 11. max value 12. coding 0=PCM,1=uLAW + 0=no compression, 0=shorten,20=wavpack,30=shortpack 13. file not yet decompressed 5. temporary filename If no output parameters are specified, header information will be printed. The code to decode shorten-encoded files, is not yet released with this toolkit. """ codings = dict([('pcm', 1), ('ulaw', 2)]) compressions = dict([(',embedded-shorten-', 1), (',embedded-wavpack-', 2), (',embedded-shortpack-', 3)]) byteorder = 'l' endianess = dict([('l', '<'), ('b', '>')]) if not mode == 'p': mode = [mode, 'p'] k = list((m >= 'p') & (m <= 's') for m in mode) # scale to input limits not output limits mno = all([m != 'o' for m in mode]) sc = '' if k[0]: sc = mode[0] # Get byte order (little/big endian) if any([m == 'l' for m in mode]): byteorder = 'l' elif any([m == 'b' for m in mode]): byteorder = 'b' ffx = ['', '', '', '', ''] if isinstance(input_file_name, str): if os.path.exists(input_file_name): fid = open(input_file_name, 'rb') elif os.path.exists("".join((input_file_name, '.sph'))): input_file_name = "".join((input_file_name, '.sph')) fid = open(input_file_name, 'rb') else: raise Exception('Cannot find file {}'.format(input_file_name)) ffx[0] = input_file_name elif not isinstance(input_file_name, str): ffx = input_file_name else: fid = input_file_name # Read the header if ffx[3] == '': fid.seek(0, 0) # go to the begining of the file l1 = fid.readline().decode("utf-8") l2 = fid.readline().decode("utf-8") if not (l1 == 'NIST_1A\n') & (l2 == ' 1024\n'): logging.warning('File does not begin with a SPHERE header') ffx[2] = l1.rstrip() hlen = int(l2[3:7]) hdr = {} while True: # Read the header and fill a dictionary st = fid.readline().decode("utf-8").rstrip() if st[0] != ';': elt = st.split(' ') if elt[0] == 'end_head': break if elt[1][0] != '-': logging.warning('Missing ''-'' in SPHERE header') break if elt[1][1] == 's': hdr[elt[0]] = elt[2] elif elt[1][1] == 'i': hdr[elt[0]] = int(elt[2]) else: hdr[elt[0]] = float(elt[2]) if 'sample_byte_format' in list(hdr.keys()): if hdr['sample_byte_format'][0] == '0': bord = 'l' else: bord = 'b' if (bord != byteorder) & all([m != 'b' for m in mode]) \ & all([m != 'l' for m in mode]): byteorder = bord icode = 0 # Get encoding, default is PCM if 'sample_coding' in list(hdr.keys()): icode = -1 # unknown code for coding in list(codings.keys()): if hdr['sample_coding'].startswith(coding): # is the signal compressed # if len(hdr['sample_coding']) > codings[coding]: if len(hdr['sample_coding']) > len(coding): for compression in list(compressions.keys()): if hdr['sample_coding'].endswith(compression): icode = 10 * compressions[compression] \ + codings[coding] - 1 break else: # if the signal is not compressed icode = codings[coding] - 1 break # initialize info of the files with default values info = [fid, 0, hlen, ord(byteorder), 0, 1, 2, 16, 1, 1, -1, icode] # Get existing info from the header if 'sample_count' in list(hdr.keys()): info[4] = hdr['sample_count'] if not info[4]: # if no info sample_count or zero # go to the end of the file fid.seek(0, 2) # Go to te end of the file # get the sample count info[4] = int(math.floor((fid.tell() - info[2]) / (info[5] * info[6]))) # get the sample_count if 'channel_count' in list(hdr.keys()): info[5] = hdr['channel_count'] if 'sample_n_bytes' in list(hdr.keys()): info[6] = hdr['sample_n_bytes'] if 'sample_sig_bits' in list(hdr.keys()): info[7] = hdr['sample_sig_bits'] if 'sample_rate' in list(hdr.keys()): info[8] = hdr['sample_rate'] if 'sample_min' in list(hdr.keys()): info[9] = hdr['sample_min'] if 'sample_max' in list(hdr.keys()): info[10] = hdr['sample_max'] ffx[1] = hdr ffx[3] = info info = ffx[3] ksamples = info[4] if ksamples > 0: fid = info[0] if (icode >= 10) & (ffx[4] == ''): # read compressed signal # need to use a script with SHORTEN raise Exception('compressed signal, need to unpack in a script with SHORTEN') info[1] = ksamples # use modes o and n to determine effective peak pk = 2 ** (8 * info[6] - 1) * (1 + (float(mno) / 2 - int(all([m != 'b' for m in mode]))) / 2 ** info[7]) fid.seek(1024) # jump after the header nsamples = info[5] * ksamples if info[6] < 3: if info[6] < 2: logging.debug('Sphere i1 PCM') y = numpy.fromfile(fid, endianess[byteorder]+"i1", -1) if info[11] % 10 == 1: if y.shape[0] % 2: y = numpy.frombuffer(audioop.ulaw2lin( numpy.concatenate((y, numpy.zeros(1, 'int8'))), 2), numpy.int16)[:-1]/32768. else: y = numpy.frombuffer(audioop.ulaw2lin(y, 2), numpy.int16)/32768. pk = 1. else: y = y - 128 else: logging.debug('Sphere i2') y = numpy.fromfile(fid, endianess[byteorder]+"i2", -1) else: # non verifie if info[6] < 4: y = numpy.fromfile(fid, endianess[byteorder]+"i1", -1) y = y.reshape(nsamples, 3).transpose() y = (numpy.dot(numpy.array([1, 256, 65536]), y) - (numpy.dot(y[2, :], 2 ** (-7)).astype(int) * 2 ** 24)) else: y = numpy.fromfile(fid, endianess[byteorder]+"i4", -1) if sc != 'r': if sc == 's': if info[9] > info[10]: info[9] = numpy.min(y) info[10] = numpy.max(y) sf = 1 / numpy.max(list(list(map(abs, info[9:11]))), axis=0) else: sf = 1 / pk y = sf * y if info[5] > 1: y = y.reshape(ksamples, info[5]) else: y = numpy.array([]) if mode != 'f': fid.close() info[0] = -1 if not ffx[4] == '': pass # VERIFY SCRIPT, WHICH CASE IS HANDLED HERE return y.astype(numpy.float32), int(info[8]), int(info[6]) def read_wav(input_file_name): """ :param input_file_name: :return: """ wfh = wave.open(input_file_name, "r") (nchannels, sampwidth, framerate, nframes, comptype, compname) = wfh.getparams() raw = wfh.readframes(nframes * nchannels) out = struct.unpack_from("%dh" % nframes * nchannels, raw) sig = numpy.reshape(numpy.array(out), (-1, nchannels)).squeeze() wfh.close() return sig.astype(numpy.float32), framerate, sampwidth def read_pcm(input_file_name): """Read signal from single channel PCM 16 bits :param input_file_name: name of the PCM file to read. :return: the audio signal read from the file in a ndarray encoded on 16 bits, None and 2 (depth of the encoding in bytes) """ with open(input_file_name, 'rb') as f: f.seek(0, 2) # Go to te end of the file # get the sample count sample_count = int(f.tell() / 2) f.seek(0, 0) # got to the begining of the file data = numpy.asarray(struct.unpack('<' + 'h' * sample_count, f.read())) return data.astype(numpy.float32), None, 2 def read_audio(input_file_name, framerate=None): """ Read a 1 or 2-channel audio file in SPHERE, WAVE or RAW PCM format. The format is determined from the file extension. If the sample rate read from the file is a multiple of the one given as parameter, we apply a decimation function to subsample the signal. :param input_file_name: name of the file to read from :param framerate: frame rate, optional, if lower than the one read from the file, subsampling is applied :return: the signal as a numpy array and the sampling frequency """ if framerate is None: raise TypeError("Expected sampling frequency required in sidekit.frontend.io.read_audio") ext = os.path.splitext(input_file_name)[-1] if ext.lower() == '.sph': sig, read_framerate, sampwidth = read_sph(input_file_name, 'p') elif ext.lower() == '.wav' or ext.lower() == '.wave': sig, read_framerate, sampwidth = read_wav(input_file_name) elif ext.lower() == '.pcm' or ext.lower() == '.raw': sig, read_framerate, sampwidth = read_pcm(input_file_name) read_framerate = framerate else: raise TypeError("Unknown extension of audio file") # Convert to 16 bit encoding if needed sig *= (2**(15-sampwidth)) if framerate > read_framerate: print("Warning in read_audio, up-sampling function is not implemented yet!") elif read_framerate % float(framerate) == 0 and not framerate == read_framerate: print("downsample") sig = decimate(sig, int(read_framerate / float(framerate)), n=None, ftype='iir', axis=0) return sig.astype(numpy.float32), framerate def rasta_filt(x): """Apply RASTA filtering to the input signal. :param x: the input audio signal to filter. cols of x = critical bands, rows of x = frame same for y but after filtering default filter is single pole at 0.94 """ x = x.T numerator = numpy.arange(.2, -.3, -.1) denominator = numpy.array([1, -0.94]) # Initialize the state. This avoids a big spike at the beginning # resulting from the dc offset level in each band. # (this is effectively what rasta/rasta_filt.c does). # Because Matlab uses a DF2Trans implementation, we have to # specify the FIR part to get the state right (but not the IIR part) y = numpy.zeros(x.shape) zf = numpy.zeros((x.shape[0], 4)) for i in range(y.shape[0]): y[i, :4], zf[i, :4] = lfilter(numerator, 1, x[i, :4], axis=-1, zi=[0, 0, 0, 0]) # .. but don't keep any of these values, just output zero at the beginning y = numpy.zeros(x.shape) # Apply the full filter to the rest of the signal, append it for i in range(y.shape[0]): y[i, 4:] = lfilter(numerator, denominator, x[i, 4:], axis=-1, zi=zf[i, :])[0] return y.T def cms(features, label=None, global_mean=None): """Performs cepstral mean subtraction :param features: a feature stream of dimension dim x nframes where dim is the dimension of the acoustic features and nframes the number of frames in the stream :param label: a logical vector :param global_mean: pre-computed mean to use for feature normalization if given :return: a feature stream """ # If no label file as input: all speech are speech if label is None: label = numpy.ones(features.shape[0]).astype(bool) if label.sum() == 0: mu = numpy.zeros((features.shape[1])) if global_mean is not None: mu = global_mean else: mu = numpy.mean(features[label, :], axis=0) features -= mu def cmvn(features, label=None, global_mean=None, global_std=None): """Performs mean and variance normalization :param features: a feature stream of dimension dim x nframes where dim is the dimension of the acoustic features and nframes the number of frames in the stream :param global_mean: pre-computed mean to use for feature normalization if given :param global_std: pre-computed standard deviation to use for feature normalization if given :param label: a logical verctor :return: a sequence of features """ # If no label file as input: all speech are speech if label is None: label = numpy.ones(features.shape[0]).astype(bool) if global_mean is not None and global_std is not None: mu = global_mean stdev = global_std features -= mu features /= stdev elif not label.sum() == 0: mu = numpy.mean(features[label, :], axis=0) stdev = numpy.std(features[label, :], axis=0) features -= mu features /= stdev def stg(features, label=None, win=301): """Performs feature warping on a sliding window :param features: a feature stream of dimension dim x nframes where dim is the dimension of the acoustic features and nframes the number of frames in the stream :param label: label of selected frames to compute the Short Term Gaussianization, by default, al frames are used :param win: size of the frame window to consider, must be an odd number to get a symetric context on left and right :return: a sequence of features """ # If no label file as input: all speech are speech if label is None: label = numpy.ones(features.shape[0]).astype(bool) speech_features = features[label, :] add_a_feature = False if win % 2 == 1: # one feature per line nframes, dim = numpy.shape(speech_features) # If the number of frames is not enough for one window if nframes < win: # if the number of frames is not odd, duplicate the last frame # if nframes % 2 == 1: if not nframes % 2 == 1: nframes += 1 add_a_feature = True speech_features = numpy.concatenate((speech_features, [speech_features[-1, ]])) win = nframes # create the output feature stream stg_features = numpy.zeros(numpy.shape(speech_features)) # Process first window r = numpy.argsort(speech_features[:win, ], axis=0) r = numpy.argsort(r, axis=0) arg = (r[: (win - 1) / 2] + 0.5) / win stg_features[: (win - 1) / 2, :] = stats.norm.ppf(arg, 0, 1) # process all following windows except the last one for m in range(int((win - 1) / 2), int(nframes - (win - 1) / 2)): idx = list(range(int(m - (win - 1) / 2), int(m + (win - 1) / 2 + 1))) foo = speech_features[idx, :] r = numpy.sum(foo < foo[(win - 1) / 2], axis=0) + 1 arg = (r - 0.5) / win stg_features[m, :] = stats.norm.ppf(arg, 0, 1) # Process the last window r = numpy.argsort(speech_features[list(range(nframes - win, nframes)), ], axis=0) r = numpy.argsort(r, axis=0) arg = (r[(win + 1) / 2: win, :] + 0.5) / win stg_features[list(range(int(nframes - (win - 1) / 2), nframes)), ] = stats.norm.ppf(arg, 0, 1) else: # Raise an exception raise Exception('Sliding window should have an odd length') # wrapFeatures = np.copy(features) if add_a_feature: stg_features = stg_features[:-1] features[label, :] = stg_features def cep_sliding_norm(features, win=301, label=None, center=True, reduce=False): """ Performs a cepstal mean substitution and standard deviation normalization in a sliding windows. MFCC is modified. :param features: the MFCC, a numpy array :param win: the size of the sliding windows :param label: vad label if available :param center: performs mean subtraction :param reduce: performs standard deviation division """ if label is None: label = numpy.ones(features.shape[0]).astype(bool) if numpy.sum(label) <= win: if reduce: cmvn(features, label) else: cms(features, label) else: d_win = win // 2 df = pandas.DataFrame(features[label, :]) r = df.rolling(window=win, center=True) mean = r.mean().values std = r.std().values mean[0:d_win, :] = mean[d_win, :] mean[-d_win:, :] = mean[-d_win-1, :] std[0:d_win, :] = std[d_win, :] std[-d_win:, :] = std[-d_win-1, :] if center: features[label, :] -= mean if reduce: features[label, :] /= std def pre_emphasis(input_sig, pre): """Pre-emphasis of an audio signal. :param input_sig: the input vector of signal to pre emphasize :param pre: value that defines the pre-emphasis filter. """ if input_sig.ndim == 1: return (input_sig - numpy.c_[input_sig[numpy.newaxis, :][..., :1], input_sig[numpy.newaxis, :][..., :-1]].squeeze() * pre) else: return input_sig - numpy.c_[input_sig[..., :1], input_sig[..., :-1]] * pre """Generate a new array that chops the given array along the given axis into overlapping frames. This method has been implemented by <NAME>, as part of the talk box toolkit example:: segment_axis(arange(10), 4, 2) array([[0, 1, 2, 3], ( [2, 3, 4, 5], [4, 5, 6, 7], [6, 7, 8, 9]]) :param a: the array to segment :param length: the length of each frame :param overlap: the number of array elements by which the frames should overlap :param axis: the axis to operate on; if None, act on the flattened array :param end: what to do with the last frame, if the array is not evenly divisible into pieces. Options are: - 'cut' Simply discard the extra values - 'wrap' Copy values from the beginning of the array - 'pad' Pad with a constant value :param endvalue: the value to use for end='pad' :return: a ndarray The array is not copied unless necessary (either because it is unevenly strided and being flattened or because end is set to 'pad' or 'wrap'). """ if axis is None: a = numpy.ravel(a) # may copy axis = 0 l = a.shape[axis] if overlap >= length: raise ValueError("frames cannot overlap by more than 100%") if overlap < 0 or length <= 0: raise ValueError("overlap must be nonnegative and length must" + "be positive") if l < length or (l - length) % (length - overlap): if l > length: roundup = length + (1 + (l - length) // (length - overlap)) * (length - overlap) rounddown = length + ((l - length) // (length - overlap)) * (length - overlap) else: roundup = length rounddown = 0 assert rounddown < l < roundup assert roundup == rounddown + (length - overlap) or (roundup == length and rounddown == 0) a = a.swapaxes(-1, axis) if end == 'cut': a = a[..., :rounddown] l = a.shape[0] elif end in ['pad', 'wrap']: # copying will be necessary s = list(a.shape) s[-1] = roundup b = numpy.empty(s, dtype=a.dtype) b[..., :l] = a if end == 'pad': b[..., l:] = endvalue elif end == 'wrap': b[..., l:] = a[..., :roundup - l] a = b a = a.swapaxes(-1, axis) if l == 0: raise ValueError("Not enough data points to segment array " + "in 'cut' mode; try 'pad' or 'wrap'") assert l >= length assert (l - length) % (length - overlap) == 0 n = 1 + (l - length) // (length - overlap) s = a.strides[axis] new_shape = a.shape[:axis] + (n, length) + a.shape[axis + 1:] new_strides = a.strides[:axis] + ((length - overlap) * s, s) + a.strides[axis + 1:] try: return numpy.ndarray.__new__(numpy.ndarray, strides=new_strides, shape=new_shape, buffer=a, dtype=a.dtype) except TypeError: a = a.copy() # Shape doesn't change but strides does new_strides = a.strides[:axis] + ((length - overlap) * s, s) + a.strides[axis + 1:] return numpy.ndarray.__new__(numpy.ndarray, strides=new_strides, shape=new_shape, buffer=a, dtype=a.dtype) def speech_enhancement(X, Gain, NN): """This program is only to process the single file seperated by the silence section if the silence section is detected, then a counter to number of buffer is set and pre-processing is required. Usage: SpeechENhance(wavefilename, Gain, Noise_floor) :param X: input audio signal :param Gain: default value is 0.9, suggestion range 0.6 to 1.4, higher value means more subtraction or noise redcution :param NN: :return: a 1-dimensional array of boolean that is True for high energy frames. Copyright 2014 <NAME> and <NAME> """ if X.shape[0] < 512: # creer une exception return X num1 = 40 # dsiable buffer number Alpha = 0.75 # original value is 0.9 FrameSize = 32 * 2 # 256*2 FrameShift = int(FrameSize / NN) # FrameSize/2=128 nfft = FrameSize # = FrameSize Fmax = int(numpy.floor(nfft / 2) + 1) # 128+1 = 129 # arising hamming windows Hamm = 1.08 * (0.54 - 0.46 * numpy.cos(2 * numpy.pi * numpy.arange(FrameSize) / (FrameSize - 1))) y0 = numpy.zeros(FrameSize - FrameShift) # 128 zeros Eabsn = numpy.zeros(Fmax) Eta1 = Eabsn ################################################################### # initial parameter for noise min mb = numpy.ones((1 + FrameSize // 2, 4)) * FrameSize / 2 # 129x4 set four buffer * FrameSize/2 im = 0 Beta1 = 0.9024 # seems that small value is better; pxn = numpy.zeros(1 + FrameSize // 2) # 1+FrameSize/2=129 zeros vector ################################################################### old_absx = Eabsn x = numpy.zeros(FrameSize) x[FrameSize - FrameShift:FrameSize] = X[ numpy.arange(numpy.min((int(FrameShift), X.shape[0])))] if x.shape[0] < FrameSize: EOF = 1 return X EOF = 0 Frame = 0 ################################################################### # add the pre-noise estimates for i in range(200): Frame += 1 fftn = fft(x * Hamm) # get its spectrum absn = numpy.abs(fftn[0:Fmax]) # get its amplitude # add the following part from noise estimation algorithm pxn = Beta1 * pxn + (1 - Beta1) * absn # Beta=0.9231 recursive pxn im = (im + 1) % 40 # noise_memory=47; im=0 (init) for noise level estimation if im: mb[:, 0] = numpy.minimum(mb[:, 0], pxn) # 129 by 4 im<>0 update the first vector from PXN else: mb[:, 1:] = mb[:, :3] # im==0 every 47 time shift pxn to first vector of mb mb[:, 0] = pxn # 0-2 vector shifted to 1 to 3 pn = 2 * numpy.min(mb, axis=1) # pn = 129x1po(9)=1.5 noise level estimate compensation # over_sub_noise= oversubtraction factor # end of noise detection algotihm x[:FrameSize - FrameShift] = x[FrameShift:FrameSize] index1 = numpy.arange(FrameShift * Frame, numpy.min((FrameShift * (Frame + 1), X.shape[0]))) In_data = X[index1] # fread(ifp, FrameShift, 'short'); if In_data.shape[0] < FrameShift: # to check file is out EOF = 1 break else: x[FrameSize - FrameShift:FrameSize] = In_data # shift new 128 to position 129 to FrameSize location # end of for loop for noise estimation # end of prenoise estimation ************************ x = numpy.zeros(FrameSize) x[FrameSize - FrameShift:FrameSize] = X[numpy.arange(numpy.min((int(FrameShift), X.shape[0])))] if x.shape[0] < FrameSize: EOF = 1 return X EOF = 0 Frame = 0 X1 = numpy.zeros(X.shape) Frame = 0 while EOF == 0: Frame += 1 xwin = x * Hamm fftx = fft(xwin, nfft) # FrameSize FFT absx = numpy.abs(fftx[0:Fmax]) # Fmax=129,get amplitude of x argx = fftx[:Fmax] / (absx + numpy.spacing(1)) # normalize x spectrum phase absn = absx # add the following part from rainer algorithm pxn = Beta1 * pxn + (1 - Beta1) * absn # s Beta=0.9231 recursive pxn im = int((im + 1) % (num1 * NN / 2)) # original =40 noise_memory=47; im=0 (init) for noise level estimation if im: mb[:, 0] = numpy.minimum(mb[:, 0], pxn) # 129 by 4 im<>0 update the first vector from PXN else: mb[:, 1:] = mb[:, :3] # im==0 every 47 time shift pxn to first vector of mb mb[:, 0] = pxn pn = 2 * numpy.min(mb, axis=1) # pn = 129x1po(9)=1.5 noise level estimate compensation Eabsn = pn Gaina = Gain temp1 = Eabsn * Gaina Eta1 = Alpha * old_absx + (1 - Alpha) * numpy.maximum(absx - temp1, 0) new_absx = (absx * Eta1) / (Eta1 + temp1) # wiener filter old_absx = new_absx ffty = new_absx * argx # multiply amplitude with its normalized spectrum y = numpy.real(numpy.fft.fftpack.ifft(numpy.concatenate((ffty, numpy.conj(ffty[numpy.arange(Fmax - 2, 0, -1)]))))) y[:FrameSize - FrameShift] = y[:FrameSize - FrameShift] + y0 y0 = y[FrameShift:FrameSize] # keep 129 to FrameSize point samples x[:FrameSize - FrameShift] = x[FrameShift:FrameSize] index1 = numpy.arange(FrameShift * Frame, numpy.min((FrameShift * (Frame + 1), X.shape[0]))) In_data = X[index1] # fread(ifp, FrameShift, 'short'); z = 2 / NN * y[:FrameShift] # left channel is the original signal z /= 1.15 z = numpy.minimum(z, 32767) z = numpy.maximum(z, -32768) index0 = numpy.arange(FrameShift * (Frame - 1), FrameShift * Frame) if not all(index0 < X1.shape[0]): idx = 0 while (index0[idx] < X1.shape[0]) & (idx < index0.shape[0]): X1[index0[idx]] = z[idx] idx += 1 else: X1[index0] = z if In_data.shape[0] == 0: EOF = 1 else: x[numpy.arange(FrameSize - FrameShift, FrameSize + In_data.shape[0] - FrameShift)] = In_data X1 = X1[X1.shape[0] - X.shape[0]:] # } # catch{ # } return X1 def vad_percentil(log_energy, percent): """ :param log_energy: :param percent: :return: """ thr = numpy.percentile(log_energy, percent) return log_energy > thr, thr def vad_energy(log_energy, distrib_nb=3, nb_train_it=8, flooring=0.0001, ceiling=1.0, alpha=2): # center and normalize the energy log_energy = (log_energy - numpy.mean(log_energy)) / numpy.std(log_energy) # Initialize a Mixture with 2 or 3 distributions world = Mixture() # set the covariance of each component to 1.0 and the mean to mu + meanIncrement world.cst = numpy.ones(distrib_nb) / (numpy.pi / 2.0) world.det = numpy.ones(distrib_nb) world.mu = -2 + 4.0 * numpy.arange(distrib_nb) / (distrib_nb - 1) world.mu = world.mu[:, numpy.newaxis] world.invcov = numpy.ones((distrib_nb, 1)) # set equal weights for each component world.w = numpy.ones(distrib_nb) / distrib_nb world.cov_var_ctl = copy.deepcopy(world.invcov) # Initialize the accumulator accum = copy.deepcopy(world) # Perform nbTrainIt iterations of EM for it in range(nb_train_it): accum._reset() # E-step world._expectation(accum, log_energy) # M-step world._maximization(accum, ceiling, flooring) # Compute threshold threshold = world.mu.max() - alpha * numpy.sqrt(1.0 / world.invcov[world.mu.argmax(), 0]) # Apply frame selection with the current threshold label = log_energy > threshold return label, threshold def vad_snr(sig, snr, fs=16000, shift=0.01, nwin=256): """Select high energy frames based on the Signal to Noise Ratio of the signal. Input signal is expected encoded on 16 bits :param sig: the input audio signal :param snr: Signal to noise ratio to consider :param fs: sampling frequency of the input signal in Hz. Default is 16000. :param shift: shift between two frames in seconds. Default is 0.01 :param nwin: number of samples of the sliding window. Default is 256. """ overlap = nwin - int(shift * fs) sig /= 32768. sig = speech_enhancement(numpy.squeeze(sig), 1.2, 2) # Compute Standard deviation sig += 0.1 * numpy.random.randn(sig.shape[0]) std2 = segment_axis(sig, nwin, overlap, axis=None, end='cut', endvalue=0).T std2 = numpy.std(std2, axis=0) std2 = 20 * numpy.log10(std2) # convert the dB # APPLY VAD label = (std2 > numpy.max(std2) - snr) & (std2 > -75) return label def label_fusion(label, win=3): """Apply a morphological filtering on the label to remove isolated labels. In case the input is a two channel label (2D ndarray of boolean of same length) the labels of two channels are fused to remove overlaping segments of speech. :param label: input labels given in a 1D or 2D ndarray :param win: parameter or the morphological filters """ channel_nb = len(label) if channel_nb == 2: overlap_label = numpy.logical_and(label[0], label[1]) label[0] = numpy.logical_and(label[0], ~overlap_label) label[1] = numpy.logical_and(label[1], ~overlap_label) for idx, lbl in enumerate(label): cl = ndimage.grey_closing(lbl, size=win) label[idx] = ndimage.grey_opening(cl, size=win) return label def hz2mel(f, htk=True): """Convert an array of frequency in Hz into mel. :param f: frequency to convert :return: the equivalence on the mel scale. """ if htk: return 2595 * numpy.log10(1 + f / 700.) else: f = numpy.array(f) # Mel fn to match Slaney's Auditory Toolbox mfcc.m # Mel fn to match Slaney's Auditory Toolbox mfcc.m f_0 = 0. f_sp = 200. / 3. brkfrq = 1000. brkpt = (brkfrq - f_0) / f_sp logstep = numpy.exp(numpy.log(6.4) / 27) linpts = f < brkfrq z = numpy.zeros_like(f) # fill in parts separately z[linpts] = (f[linpts] - f_0) / f_sp z[~linpts] = brkpt + (numpy.log(f[~linpts] / brkfrq)) / numpy.log(logstep) if z.shape == (1,): return z[0] else: return z def mel2hz(z, htk=True): """Convert an array of mel values in Hz. :param m: ndarray of frequencies to convert in Hz. :return: the equivalent values in Hertz. """ if htk: return 700. * (10**(z / 2595.) - 1) else: z = numpy.array(z, dtype=float) f_0 = 0 f_sp = 200. / 3. brkfrq = 1000. brkpt = (brkfrq - f_0) / f_sp logstep = numpy.exp(numpy.log(6.4) / 27) linpts = (z < brkpt) f = numpy.zeros_like(z) # fill in parts separately f[linpts] = f_0 + f_sp * z[linpts] f[~linpts] = brkfrq * numpy.exp(numpy.log(logstep) * (z[~linpts] - brkpt)) if f.shape == (1,): return f[0] else: return f def hz2bark(f): """ Convert frequencies (Hertz) to Bark frequencies :param f: the input frequency :return: """ return 6. * numpy.arcsinh(f / 600.) def bark2hz(z): """ Converts frequencies Bark to Hertz (Hz) :param z: :return: """ return 600. * numpy.sinh(z / 6.) def compute_delta(features, win=3, method='filter', filt=numpy.array([.25, .5, .25, 0, -.25, -.5, -.25])): """features is a 2D-ndarray each row of features is a a frame :param features: the feature frames to compute the delta coefficients :param win: parameter that set the length of the computation window. The size of the window is (win x 2) + 1 :param method: method used to compute the delta coefficients can be diff or filter :param filt: definition of the filter to use in "filter" mode, default one is similar to SPRO4: filt=numpy.array([.2, .1, 0, -.1, -.2]) :return: the delta coefficients computed on the original features. """ # First and last features are appended to the begining and the end of the # stream to avoid border effect x = numpy.zeros((features.shape[0] + 2 * win, features.shape[1]), dtype=numpy.float32) x[:win, :] = features[0, :] x[win:-win, :] = features x[-win:, :] = features[-1, :] delta = numpy.zeros(x.shape, dtype=numpy.float32) if method == 'diff': filt = numpy.zeros(2 * win + 1, dtype=numpy.float32) filt[0] = -1 filt[-1] = 1 for i in range(features.shape[1]): delta[:, i] =
numpy.convolve(features[:, i], filt)
numpy.convolve
from .dataset import Dataset from .train_model import _train_model from .train_model import _train_model_new from .train_model import _get_lvec from .infer_labels import _infer_labels from .helpers.corner import corner import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator from copy import deepcopy plt.rc('text', usetex=True) plt.rc('font', family='serif') class CannonModel(object): def __init__(self, order, useErrors): self.coeffs = None self.scatters = None self.chisqs = None self.pivots = None self.scales = None self.new_tr_labels = None self.order = order self.wl_filter = wl_filter self.model_spectra = None self.useErrors = useErrors def model(self): """ Return the model definition or raise an error if not trained """ if self.coeffs is None: raise RuntimeError('Model not trained') else: return self.coeffs def train(self, ds): """ Run training step: solve for best-fit spectral model """ if self.useErrors: self.coeffs, self.scatters, self.new_tr_labels, self.chisqs, self.pivots, self.scales = _train_model_new(ds) else: self.coeffs, self.scatters, self.chisqs, self.pivots, self.scales = _train_model(ds) def diagnostics(self): """ Produce a set of diagnostics plots about the model. """ _model_diagnostics(self.dataset, self.model) def infer_labels(self, ds, starting_guess = None): """ Uses the model to solve for labels of the test set, updates Dataset Then use those inferred labels to set the model.test_spectra attribute Parameters ---------- ds: Dataset Dataset that needs label inference Returns ------- errs_all: ndarray Covariance matrix of the fit """ return _infer_labels(self, ds, starting_guess) def infer_spectra(self, ds): """ After inferring labels for the test spectra, infer the model spectra and update the dataset model_spectra attribute. Parameters ---------- ds: Dataset object """ lvec_all = _get_lvec(ds.test_label_vals, self.pivots, self.scales, derivs=False) self.model_spectra = np.dot(lvec_all, self.coeffs.T) def plot_contpix(self, x, y, contpix_x, contpix_y, figname): """ Plot baseline spec with continuum pix overlaid Parameters ---------- """ fig, axarr = plt.subplots(2, sharex=True) plt.xlabel(r"Wavelength $\lambda (\AA)$") plt.xlim(min(x), max(x)) ax = axarr[0] ax.step(x, y, where='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.legend(loc='lower right', prop={'family':'serif', 'size':'small'}) ax.set_title("Baseline Spectrum with Continuum Pixels") ax.set_ylabel(r'$\theta_0$') ax = axarr[1] ax.step(x, y, where='mid', c='k', linewidth=0.3, label=r'$\theta_0$' + "= the leading fit coefficient") ax.scatter(contpix_x, contpix_y, s=1, color='r', label="continuum pixels") ax.set_title("Baseline Spectrum with Continuum Pixels, Zoomed") ax.legend(loc='upper right', prop={'family':'serif', 'size':'small'}) ax.set_ylabel(r'$\theta_0$') ax.set_ylim(0.95, 1.05) print("Diagnostic plot: fitted 0th order spec w/ cont pix") print("Saved as %s.png" % (figname)) plt.savefig(figname) plt.close() def diagnostics_contpix(self, data, nchunks=10, fig = "baseline_spec_with_cont_pix"): """ Call plot_contpix once for each nth of the spectrum """ if data.contmask is None: print("No contmask set") else: coeffs_all = self.coeffs wl = data.wl baseline_spec = coeffs_all[:,0] contmask = data.contmask contpix_x = wl[contmask] contpix_y = baseline_spec[contmask] rem = len(wl)%nchunks wl_split = np.array(np.split(wl[0:len(wl)-rem],nchunks)) baseline_spec_split = np.array( np.split(baseline_spec[0:len(wl)-rem],nchunks)) nchunks = wl_split.shape[0] for i in range(nchunks): fig_chunk = fig + "_%s" %str(i) wl_chunk = wl_split[i,:] baseline_spec_chunk = baseline_spec_split[i,:] take = np.logical_and( contpix_x>wl_chunk[0], contpix_x<wl_chunk[-1]) self.plot_contpix( wl_chunk, baseline_spec_chunk, contpix_x[take], contpix_y[take], fig_chunk) def diagnostics_leading_coeffs(self, ds): label_names = ds.get_plotting_labels() lams = ds.wl npixels = len(lams) pivots = self.pivots nlabels = len(pivots) chisqs = self.chisqs coeffs = self.coeffs scatters = self.scatters # Leading coefficients for each label & scatter fig, axarr = plt.subplots(nlabels+1, figsize=(8,8), sharex=True) ax1 = axarr[0] plt.subplots_adjust(hspace=0.001) nbins = len(ax1.get_xticklabels()) for i in range(1,nlabels+1): axarr[i].yaxis.set_major_locator( MaxNLocator(nbins=nbins, prune='upper')) plt.xlabel(r"Wavelength $\lambda (\AA)$", fontsize=14) plt.xlim(
np.min(lams)
numpy.min
"""Compute gaussian features.""" import warnings from functools import partial from itertools import repeat from multiprocessing import Pool, cpu_count from bycycle.group.utils import progress_bar import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from scipy import stats as st from bycycle.cyclepoints import find_extrema, find_zerox from neurodsp.sim.cycles import sim_skewed_gaussian_cycle ################################################################################################### ################################################################################################### def compute_gaussian_features(df_samples, sig, fs, maxfev=2000, tol=1.49e-6, n_jobs=-1, chunksize=1, progress=None, z_thresh_k=0.5, z_thresh_cond=0.5, rsq_thresh=0.5): """Compute gaussian features. Parameters ---------- df_samples : pandas.DataFrame Contains cyclepoint locations for each spike. sig : 1d array Voltage time series. fs : float Sampling rate, in Hz. maxfev : int, optional, default: 2000 The maximum number of calls in curve_fit. tol : float, optional, default: 10e-6 Relative error desired. n_jobs : int, optional, default: -1 The number of jobs to compute features in parallel. chunksize : int, optional, default: 1 Number of chunks to split spikes into. Each chunk is submitted as a separate job. With a large number of spikes, using a larger chunksize will drastically speed up runtime. An optimal chunksize is typically np.ceil(n_spikes/n_jobs). progress : {None, 'tqdm', 'tqdm.notebook'} Specify whether to display a progress bar. Uses 'tqdm', if installed. z_thresh_k : float, optional, default: 0.5 Potassium (k) current z-score threshold. z_thresh_cond : float, optional, default: 0.5 Conductive current z-score threshold. rsq_thresh : float, optional, default: 0.5 Na current r-squared threshold. Used to stop conductive/K fits in cycles with bad Na current fits. Returns ------- params : dict Fit parameter values. """ n_jobs = cpu_count() if n_jobs == -1 else n_jobs indices = [*range(len(df_samples))] # Compute features in parallel with Pool(processes=n_jobs) as pool: mapping = pool.imap(partial(_compute_gaussian_features_cycle, df_samples=df_samples, sig=sig, fs=fs, maxfev=maxfev, tol=tol, z_thresh_k=0.5, z_thresh_cond=0.5, rsq_thresh=0.5), indices, chunksize=chunksize) params = list(progress_bar(mapping, progress, len(df_samples))) return np.array(params) def _compute_gaussian_features_cycle(index, df_samples=None, sig=None, fs=None, f_ranges=(300, 2000), maxfev=2000, tol=1.49e-6, z_thresh_k=0.5, z_thresh_cond=0.5, rsq_thresh=0.5): """Compute gaussian features for one cycle.""" start = df_samples.iloc[index]['sample_start'].astype(int) end = df_samples.iloc[index]['sample_end'].astype(int) sample_trough = df_samples.iloc[index]['sample_trough'].astype(int) # Adjust samples to start at zero sample_trough -= start # Get signal and time sig_cyc = sig[start:end+1] cyc_len = len(sig_cyc) times_cyc = np.arange(0, cyc_len/fs, 1/fs) # Fit single skewed gaussian to Na current na_params, na_gaus = _single_gaus_fit(index, sample_trough, sig_cyc, cyc_len, times_cyc, fs, extrema_type="trough", maxfev=maxfev, tol=tol) if not np.isnan(na_gaus).any(): # Get Na center and std na_center = int(na_params[0]*cyc_len) na_std = int(na_params[1]*cyc_len) # Determine Na current region upper_std = na_center + (2* na_std) lower_std = na_center - (2* na_std) # Calculate Na current r-squared na_rsq = calculate_r_squared(sig_cyc[lower_std:upper_std], na_gaus[lower_std:upper_std]) # Check if Na r-squared is above threshold if na_rsq < rsq_thresh: na_rsq = np.nan na_params = np.append(na_params, na_rsq) k_params = np.array([np.nan] * len(na_params)) cond_params = np.array([np.nan] * len(na_params)) warnings.warn("Failed fits for index = " + str(index)) else: na_params = np.append(na_params, na_rsq) # Substract Na current gaussian fit rem_sig = sig_cyc - na_gaus # Split remaining signal into left of Na current (K current) # and right (conductive current) rem_sigs, times, z_scores = calculate_side_regions(na_center, rem_sig, times_cyc, fs, z_thresh_k, z_thresh_cond) side_current_region = zip(rem_sigs, [z_thresh_k, z_thresh_cond], z_scores, times) side_current_params = [] side_current_gaus = [] for rem_sig, z_thresh, z_score, times in side_current_region: if any(z >= z_thresh for z in z_score): # Get peak of remaining signal peak = get_current_peak(rem_sig, fs, f_ranges, z_thresh, z_score) if peak == None: params = np.array([np.nan] * len(na_params)) gaus = np.array([np.nan] * len(times)) else: # Fit single skewed gaussian to K current params, gaus = _single_gaus_fit(index, peak, rem_sig, len(rem_sig), times, fs, extrema_type="peak", maxfev=maxfev, tol=tol) # Calculate r-squared rsq = calculate_r_squared(rem_sig, gaus) params = np.append(params, rsq) else: params = np.array([np.nan] * len(na_params)) gaus = np.array([np.nan] * len(times)) side_current_params.append(params) side_current_gaus.append(gaus) # Unpack results k_params, cond_params = side_current_params k_gaus, cond_gaus = side_current_gaus else: na_rsq = np.nan na_params = np.append(na_params, na_rsq) k_params = np.array([np.nan] * len(na_params)) cond_params = np.array([np.nan] * len(na_params)) warnings.warn("Failed fits for index = " + str(index)) all_params = [*cond_params, *na_params, *k_params] return all_params def estimate_params(extrema, sig_cyc, fs, extrema_type="trough", n_decimals=2): """Initial gaussian parameter estimates. Parameters ---------- extrema : int extrema position (peak or trough) of sig_cyc sig_cyc : 1d array Voltage time series. fs : float Sampling rate, in Hz. extrema_type : string, optional, default: "trough" Type of extrema, trough or peak. n_decimals : int, optional, default: 2 Number of decimals to round parameters to. Returns ------- params : 1d array Estimated centers, stds, alphas, heights. """ cyc_len = len(sig_cyc) centers = [] stds = [] heights = [] # Define parameters if extrema_type == "trough": height0 = sig_cyc[extrema] - np.mean(sig_cyc) else: height0 = sig_cyc[extrema] center0 = extrema / cyc_len std0 = _estimate_std(sig_cyc, extrema_type=extrema_type, plot=False) centers.append(center0.round(n_decimals)) stds.append(std0.round(n_decimals)) heights.append(height0.round(n_decimals)) # Assume no skew alphas = [0] * len(centers) params = [*centers, *stds, *alphas, *heights] return np.array(params) def _estimate_bounds(sig_cyc, centers, stds, heights): """Estimate parameter's lower and upper bounds.""" # Define bounds lower_heights = [height * .5 if height > 0 else height * 1.5 for height in heights] upper_heights = [height * 1.5 if height > 0 else height * .5 for height in heights] lower_stds = [std * .5 for std in stds] upper_stds = [std * 1.5 for std in stds] lower_alphas = [-3 for std in stds] upper_alphas = [3 for std in stds] lower_centers = [center * .5 for center in centers] upper_centers = [center * 1.5 for center in centers] upper_max = np.max(sig_cyc) - np.min((sig_cyc[0], sig_cyc[-1])) bounds = [ [*lower_centers, *lower_stds, *lower_alphas, *lower_heights, 0, -1, 0], [*upper_centers, *upper_stds, *upper_alphas, *upper_heights, upper_max, 1, 1] ] return bounds def _fit_gaussians(xs, ys, guess, tol, maxfev, index, bounds=None): """Fit gaussians with scipy's curve_fit.""" try: # Fit gaussians warnings.filterwarnings("ignore") params, _ = curve_fit(_sim_gaussian_cycle, xs, ys, p0=guess) except: # Raise warning for failed fits warn_str = "Failed fit for index {idx}.".format(idx=index) warnings.warn(warn_str, RuntimeWarning) params = np.array([np.nan] * len(guess)) return params ################################################################################################### ################################################################################################### def _sim_gaussian_cycle(times, *params): """Proxy function for compatibility between sim_skewed_gaussian and curve_fit. Parameters ---------- times : 1d array Time definition of the cycle. params : floats Variable number of centers, stds, alphas, and heights arguments, respectively. The number of these variable parameters determines the number of gaussians simulated. An additional three trailing arguments to define a sigmoid baseline as maximum, growth, midpoint. Returns ------- sig_cycle : 1d array Simulated action potential. """ sing_gaus = sim_skewed_gaussian_cycle(1, len(times), *params) return sing_gaus def _single_gaus_fit(index, extrema, sig_cyc, cyc_len, times_cyc, fs, extrema_type="trough", maxfev=2000, tol=None): """Calculate guassian fits for single current """ # Initial parameter estimation _params = estimate_params(extrema, sig_cyc, fs, extrema_type=extrema_type, n_decimals=2) # Initial bound estimation for Na current _bounds = _estimate_bounds(sig_cyc, *_params.reshape(4, -1)[[0, 1, 3]]) # Fit single skewed gaussian _params_fit = _fit_gaussians(times_cyc, sig_cyc, _params, tol, maxfev, index, bounds=_bounds) if np.isnan(_params_fit).any(): _gaus = np.array([np.nan] * len(times_cyc)) else: _gaus = sim_skewed_gaussian_cycle(1, cyc_len, *_params_fit) return _params_fit, _gaus def calculate_side_regions(na_center, rem_sig, times_cyc, fs, z_thresh_k, z_thresh_cond): """Calculate K current and conductive current regions of the signal based on the center of the Na current. """ rem_sig_k = rem_sig[na_center:,] rem_sig_cond = rem_sig[:na_center,] times_k = times_cyc[na_center:,] times_cond = times_cyc[:na_center,] # Calculate z scores z_score_k = st.zscore(rem_sig_k) z_score_cond = st.zscore(rem_sig_cond) rem_sigs = [rem_sig_k, rem_sig_cond] times = [times_k, times_cond] z_scores = [z_score_k,z_score_cond] return [rem_sigs, times, z_scores] ################################################################################################### ################################################################################################### def _estimate_std(spike, extrema_type='trough', plot=False): """Estimate std of spike""" spike = -spike if extrema_type == 'peak' else spike height, height_idx = np.min(spike), np.argmin(spike) half_height = height / 2 right = spike[height_idx:] left = np.flip(spike[:height_idx+1]) if plot: plt.plot(-spike if extrema_type=='peak' else spike) plt.axvline(height_idx, color='r') right_idx = _get_closest(right, spike, half_height) left_idx = _get_closest(left, spike, half_height) if right_idx == None: right_idx = left_idx if left_idx == None: left_idx = right_idx fwhm = (right_idx + left_idx + 1) std = fwhm / (2 * len(spike) * np.sqrt(2 * np.log(2))) return std def _get_closest(flank, spike, half_height): for idx, volt in enumerate(flank): if volt > half_height: # Get closest sample left or right of half max location closest = np.argmin([volt - half_height, half_height - flank[idx-1]]) idx = [idx, idx-1][closest] return idx def get_current_peak(sig, fs, f_ranges, z_thresh, z_score): peaks, troughs = find_extrema(sig, fs, f_ranges, first_extrema=None, pass_type='bandpass') if len(peaks) == 0: return None elif len(peaks) > 1: #select highest peak max_volt = max( (v, i) for i, v in enumerate(sig[peaks]) )[1] peak = peaks[max_volt] else: peak = peaks[0] # check if peak is over z score threshold if z_score[peak] > z_thresh: return peak else: return None def calculate_r_squared(sig_cyc, sig_cyc_est): residuals = sig_cyc - sig_cyc_est ss_res =
np.sum(residuals**2)
numpy.sum
import random import numpy as np import math from time import perf_counter import os import sys from collections import deque import gym import cntk from cntk.layers import Convolution, MaxPooling, Dense from cntk.models import Sequential, LayerStack from cntk.initializer import glorot_normal env = gym.make("Breakout-v0") NUM_ACTIONS = env.action_space.n SCREEN_H_ORIG, SCREEN_W_ORIG, NUM_COLOUR_CHANNELS = env.observation_space.shape def preprocess_image(screen_image): # crop the top and bottom screen_image = screen_image[35:195] # down sample by a factor of 2 screen_image = screen_image[::2, ::2] # convert to grey scale grey_image = np.zeros(screen_image.shape[0:2]) for i in range(len(screen_image)): for j in range(len(screen_image[i])): grey_image[i][j] = np.mean(screen_image[i][j]) return np.array([grey_image.astype(np.float)]) CHANNELS, IMAGE_H, IMAGE_W = preprocess_image(np.zeros((SCREEN_H_ORIG, SCREEN_W_ORIG))).shape STATE_DIMS = (1, IMAGE_H, IMAGE_W) class Brain: BATCH_SIZE = 5 def __init__(self): #### Construct the model #### observation = cntk.ops.input_variable(STATE_DIMS, np.float32, name="s") q_target = cntk.ops.input_variable(NUM_ACTIONS, np.float32, name="q") # Define the structure of the neural network self.model = self.create_convolutional_neural_network(observation, NUM_ACTIONS) #### Define the trainer #### self.learning_rate = cntk.learner.training_parameter_schedule(0.0001, cntk.UnitType.sample) self.momentum = cntk.learner.momentum_as_time_constant_schedule(0.99) self.loss = cntk.ops.reduce_mean(cntk.ops.square(self.model - q_target), axis=0) mean_error = cntk.ops.reduce_mean(cntk.ops.square(self.model - q_target), axis=0) learner = cntk.adam_sgd(self.model.parameters, self.learning_rate, momentum=self.momentum) self.trainer = cntk.Trainer(self.model, self.loss, mean_error, learner) def train(self, x, y): data = dict(zip(self.loss.arguments, [y, x])) self.trainer.train_minibatch(data, outputs=[self.loss.output]) def predict(self, s): return self.model.eval([s]) @staticmethod def create_multi_layer_neural_network(input_vars, out_dims, num_hidden_layers): num_hidden_neurons = 128 hidden_layer = lambda: Dense(num_hidden_neurons, activation=cntk.ops.relu) output_layer = Dense(out_dims, activation=None) model = Sequential([LayerStack(num_hidden_layers, hidden_layer), output_layer])(input_vars) return model @staticmethod def create_convolutional_neural_network(input_vars, out_dims): convolutional_layer_1 = Convolution((5, 5), 32, strides=1, activation=cntk.ops.relu, pad=True, init=glorot_normal(), init_bias=0.1) pooling_layer_1 = MaxPooling((2, 2), strides=(2, 2), pad=True) convolutional_layer_2 = Convolution((5, 5), 64, strides=1, activation=cntk.ops.relu, pad=True, init=glorot_normal(), init_bias=0.1) pooling_layer_2 = MaxPooling((2, 2), strides=(2, 2), pad=True) convolutional_layer_3 = Convolution((5, 5), 128, strides=1, activation=cntk.ops.relu, pad=True, init=glorot_normal(), init_bias=0.1) pooling_layer_3 = MaxPooling((2, 2), strides=(2, 2), pad=True) fully_connected_layer = Dense(1024, activation=cntk.ops.relu, init=glorot_normal(), init_bias=0.1) output_layer = Dense(out_dims, activation=None, init=glorot_normal(), init_bias=0.1) model = Sequential([convolutional_layer_1, pooling_layer_1, convolutional_layer_2, pooling_layer_2, #convolutional_layer_3, pooling_layer_3, fully_connected_layer, output_layer])(input_vars) return model class Memory: def __init__(self, capacity): self.examplers = deque(maxlen=capacity) self.capacity = capacity def add(self, sample): self.examplers.append(sample) def get_random_samples(self, num_samples): num_samples = min(num_samples, len(self.examplers)) return random.sample(tuple(self.examplers), num_samples) def get_stack(self, start_index, stack_size): end_index = len(self.examplers) - stack_size if end_index < 0: stack = list(self.examplers) + [self.examplers[-1] for _ in range(-end_index)] else: start_index = min(start_index, end_index) stack = [self.examplers[i + start_index] for i in range(stack_size)] return np.stack(stack, axis=-1) def get_random_stacks(self, num_samples, stack_size): start_indices = random.sample(range(len(self.examplers)), num_samples) return [self.get_stack(start_index, stack_size) for start_index in start_indices] def get_latest_stack(self, stack_size): return self.get_stack(len(self.examplers), stack_size) class Agent: MEMORY_CAPACITY = 100000 DISCOUNT_FACTOR = 0.99 MAX_EXPLORATION_RATE = 1.0 MIN_EXPLORATION_RATE = 0.01 DECAY_RATE = 0.0001 def __init__(self): self.explore_rate = self.MAX_EXPLORATION_RATE self.brain = Brain() self.memory = Memory(self.MEMORY_CAPACITY) self.steps = 0 def act(self, s): if random.random() < self.explore_rate: return random.randint(0, NUM_ACTIONS - 1) else: return np.argmax(self.brain.predict(s)) def observe(self, sample): self.steps += 1 self.memory.add(sample) # Reduces exploration rate linearly self.explore_rate = self.MIN_EXPLORATION_RATE + (self.MAX_EXPLORATION_RATE - self.MIN_EXPLORATION_RATE) * math.exp(-self.DECAY_RATE * self.steps) def replay(self): batch = self.memory.get_random_samples(self.brain.BATCH_SIZE) batch_len = len(batch) states = np.array([sample[0] for sample in batch], dtype=np.float32) no_state = np.zeros(STATE_DIMS) resultant_states =
np.array([(no_state if sample[3] is None else sample[3]) for sample in batch], dtype=np.float32)
numpy.array
# A simple Psi 4 input script to compute a SCF reference using Psi4's libJK # Requires numpy 1.7.2+ # # Created by: <NAME> # Date: 4/1/15 # License: GPL v3.0 # import time import numpy as np import helper_HF as scf_helper np.set_printoptions(precision=5, linewidth=200, suppress=True) import psi4 # Memory for Psi4 in GB psi4.set_memory('2 GB') psi4.core.set_output_file('output.dat', False) # Memory for numpy in GB numpy_memory = 2 # Triplet O2 mol = psi4.geometry(""" 0 3 O O 1 1.2 symmetry c1 """) psi4.set_options({'guess': 'core', 'basis': 'aug-cc-pvdz', 'scf_type': 'pk', 'e_convergence': 1e-8, 'reference': 'rohf'}) wfn = psi4.core.Wavefunction.build(mol, psi4.core.get_global_option('BASIS')) # Set occupations nocc = wfn.nalpha() ndocc = wfn.nbeta() nsocc = nocc - ndocc # Set defaults maxiter = 10 max_micro = 4 micro_print = True micro_conv = 1.e-3 E_conv = 1.0E-8 D_conv = 1.0E-4 # Integral generation from Psi4's MintsHelper t = time.time() mints = psi4.core.MintsHelper(wfn.basisset()) S = np.asarray(mints.ao_overlap()) nbf = S.shape[0] jk = psi4.core.JK.build(wfn.basisset()) jk.initialize() if nbf > 100: raise Exception("This has a N^4 memory overhead, killing if nbf > 100.") print('\nNumber of doubly occupied orbitals: %d' % ndocc) print('Number of singly occupied orbitals: %d' % nsocc) print('Number of basis functions: %d' % nbf) V = np.asarray(mints.ao_potential()) T = np.asarray(mints.ao_kinetic()) # Build H_core H = T + V # ERI's I = np.asarray(mints.ao_eri()) # Orthogonalizer A = S^(-1/2) A = mints.ao_overlap() A.power(-0.5, 1.e-16) A =
np.asarray(A)
numpy.asarray
"""Define output of Meta Models and visualize the results.""" import math from itertools import product from scipy.spatial import cKDTree import numpy as np import logging from bokeh.io import curdoc from bokeh.layouts import row, column from bokeh.plotting import figure from bokeh.models import Slider, ColumnDataSource, HoverTool from bokeh.models import ColorBar, BasicTicker, LinearColorMapper, Range1d from bokeh.models.widgets import TextInput, Select from bokeh.server.server import Server from openmdao.components.meta_model_unstructured_comp import MetaModelUnStructuredComp from openmdao.components.meta_model_structured_comp import MetaModelStructuredComp from openmdao.core.problem import Problem def stack_outputs(outputs_dict): """ Stack the values of a dictionary. Parameters ---------- outputs_dict : dict Dictionary of outputs Returns ------- array np.stack of values """ return np.stack([np.asarray(v) for v in outputs_dict.values()], axis=-1) class MetaModelVisualization(object): """ Top-level container for the Meta Model Visualization. Attributes ---------- prob : Problem Name of variable corresponding to Problem Component meta_model : MetaModel Name of empty Meta Model Component object reference resolution : int Number used to calculate width and height of contour plot is_structured_meta_model : Bool Boolean used to signal whether the meta model is structured or unstructured slider_source : ColumnDataSource Data source containing dictionary of sliders contour_training_data_source : ColumnDataSource Data source containing dictionary of training data points bottom_plot_source : ColumnDataSource Data source containing data for the bottom subplot bottom_plot_scatter_source : ColumnDataSource Data source containing scatter point data for the bottom subplot right_plot_source : ColumnDataSource Data source containing data for the right subplot right_plot_scatter_source : ColumnDataSource Data source containing scatter point data for the right subplot contour_plot_source : ColumnDataSource Data source containing data for the contour plot input_names : list List of input data titles as strings output_names : list List of output data titles as strings training_inputs : dict Dictionary of input training data x_input_select : Select Bokeh Select object containing a list of inputs for the x axis y_input_select : Select Bokeh Select object containing a list of inputs for the y axis output_select : Select Bokeh Select object containing a list of inputs for the outputs x_input_slider : Slider Bokeh Slider object containing a list of input values for the x axis y_input_slider : Slider Bokeh Slider object containing a list of input values for the y axis slider_dict : dict Dictionary of slider names and their respective slider objects predict_inputs : dict Dictionary containing training data points to predict at. num_inputs : int Number of inputs num_outputs : int Number of outputs limit_range : array Array containing the range of each input scatter_distance : TextInput Text input for user to enter custom value to calculate distance of training points around slice line right_alphas : array Array of points containing alpha values for right plot bottom_alphas : array Array of points containing alpha values for bottom plot dist_range : float Value taken from scatter_distance used for calculating distance of training points around slice line x_index : int Value of x axis column y_index : int Value of y axis column output_variable : int Value of output axis column sliders_and_selects : layout Layout containing the sliders and select elements doc_layout : layout Contains first row of plots doc_layout2 : layout Contains second row of plots Z : array A 2D array containing contour plot data """ def __init__(self, model, resolution=50, doc=None): """ Initialize parameters. Parameters ---------- model : MetaModelComponent Reference to meta model component resolution : int Value used to calculate the size of contour plot meshgrid doc : Document The bokeh document to build. """ self.prob = Problem() self.resolution = resolution logging.getLogger("bokeh").setLevel(logging.ERROR) # If the surrogate model coming in is structured if isinstance(model, MetaModelUnStructuredComp): self.is_structured_meta_model = False # Create list of input names, check if it has more than one input, then create list # of outputs self.input_names = [name[0] for name in model._surrogate_input_names] if len(self.input_names) < 2: raise ValueError('Must have more than one input value') self.output_names = [name[0] for name in model._surrogate_output_names] # Create reference for untructured component self.meta_model = MetaModelUnStructuredComp( default_surrogate=model.options['default_surrogate']) # If the surrogate model coming in is unstructured elif isinstance(model, MetaModelStructuredComp): self.is_structured_meta_model = True self.input_names = [name for name in model._var_rel_names['input']] if len(self.input_names) < 2: raise ValueError('Must have more than one input value') self.output_names = [name for name in model._var_rel_names['output']] self.meta_model = MetaModelStructuredComp( distributed=model.options['distributed'], extrapolate=model.options['extrapolate'], method=model.options['method'], training_data_gradients=model.options['training_data_gradients'], vec_size=1) # Pair input list names with their respective data self.training_inputs = {} self._setup_empty_prob_comp(model) # Setup dropdown menus for x/y inputs and the output value self.x_input_select = Select(title="X Input:", value=[x for x in self.input_names][0], options=[x for x in self.input_names]) self.x_input_select.on_change('value', self._x_input_update) self.y_input_select = Select(title="Y Input:", value=[x for x in self.input_names][1], options=[x for x in self.input_names]) self.y_input_select.on_change('value', self._y_input_update) self.output_select = Select(title="Output:", value=[x for x in self.output_names][0], options=[x for x in self.output_names]) self.output_select.on_change('value', self._output_value_update) # Create sliders for each input self.slider_dict = {} self.predict_inputs = {} for title, values in self.training_inputs.items(): slider_data = np.linspace(min(values), max(values), self.resolution) self.predict_inputs[title] = slider_data # Calculates the distance between slider ticks slider_step = slider_data[1] - slider_data[0] slider_object = Slider(start=min(values), end=max(values), value=min(values), step=slider_step, title=str(title)) self.slider_dict[title] = slider_object self._slider_attrs() # Length of inputs and outputs self.num_inputs = len(self.input_names) self.num_outputs = len(self.output_names) # Precalculate the problem bounds. limits = np.array([[min(value), max(value)] for value in self.training_inputs.values()]) self.limit_range = limits[:, 1] - limits[:, 0] # Positional indicies self.x_index = 0 self.y_index = 1 self.output_variable = self.output_names.index(self.output_select.value) # Data sources are filled with initial values # Slider Column Data Source self.slider_source = ColumnDataSource(data=self.predict_inputs) # Contour plot Column Data Source self.contour_plot_source = ColumnDataSource(data=dict( z=np.random.rand(self.resolution, self.resolution))) self.contour_training_data_source = ColumnDataSource( data=dict(x=np.repeat(0, self.resolution), y=np.repeat(0, self.resolution))) # Bottom plot Column Data Source self.bottom_plot_source = ColumnDataSource(data=dict( x=np.repeat(0, self.resolution), y=np.repeat(0, self.resolution))) self.bottom_plot_scatter_source = ColumnDataSource(data=dict( bot_slice_x=np.repeat(0, self.resolution), bot_slice_y=np.repeat(0, self.resolution))) # Right plot Column Data Source self.right_plot_source = ColumnDataSource(data=dict( x=np.repeat(0, self.resolution), y=np.repeat(0, self.resolution))) self.right_plot_scatter_source = ColumnDataSource(data=dict( right_slice_x=np.repeat(0, self.resolution), right_slice_y=np.repeat(0, self.resolution))) # Text input to change the distance of reach when searching for nearest data points self.scatter_distance = TextInput(value="0.1", title="Scatter Distance") self.scatter_distance.on_change('value', self._scatter_input) self.dist_range = float(self.scatter_distance.value) # Grouping all of the sliders and dropdowns into one column sliders = [value for value in self.slider_dict.values()] sliders.extend( [self.x_input_select, self.y_input_select, self.output_select, self.scatter_distance]) self.sliders_and_selects = row( column(*sliders)) # Layout creation self.doc_layout = row(self._contour_data(), self._right_plot(), self.sliders_and_selects) self.doc_layout2 = row(self._bottom_plot()) if doc is None: doc = curdoc() doc.add_root(self.doc_layout) doc.add_root(self.doc_layout2) doc.title = 'Meta Model Visualization' def _setup_empty_prob_comp(self, metamodel): """ Take data from surrogate ref and pass it into new surrogate model with empty Problem model. Parameters ---------- metamodel : MetaModelComponent Reference to meta model component """ # Check for structured or unstructured if self.is_structured_meta_model: # Loop through the input names for idx, name in enumerate(self.input_names): # Check for no training data try: # Append the input data/titles to a dictionary self.training_inputs[name] = metamodel.params[idx] # Also, append the data as an 'add_input' to the model reference self.meta_model.add_input(name, 0., training_data=metamodel.params[idx]) except TypeError: msg = "No training data present for one or more parameters" raise TypeError(msg) # Add the outputs to the model reference for idx, name in enumerate(self.output_names): self.meta_model.add_output( name, 0., training_data=metamodel.training_outputs[name]) else: for name in self.input_names: try: self.training_inputs[name] = { title for title in metamodel.options['train:' + str(name)]} self.meta_model.add_input( name, 0., training_data=[ title for title in metamodel.options['train:' + str(name)]]) except TypeError: msg = "No training data present for one or more parameters" raise TypeError(msg) for name in self.output_names: self.meta_model.add_output( name, 0., training_data=[ title for title in metamodel.options['train:' + str(name)]]) # Add the subsystem and setup self.prob.model.add_subsystem('interp', self.meta_model) self.prob.setup() def _slider_attrs(self): """ Assign data to slider objects and callback functions. Parameters ---------- None """ for name, slider_object in self.slider_dict.items(): # Checks if there is a callback previously assigned and then clears it if len(slider_object._callbacks) == 1: slider_object._callbacks.clear() # Check if the name matches the 'x input' title if name == self.x_input_select.value: # Set the object and add an event handler self.x_input_slider = slider_object self.x_input_slider.on_change('value', self._scatter_plots_update) # Check if the name matches the 'y input' title elif name == self.y_input_select.value: # Set the object and add an event handler self.y_input_slider = slider_object self.y_input_slider.on_change('value', self._scatter_plots_update) else: # If it is not an x or y input then just assign it the event handler slider_object.on_change('value', self._update) def _make_predictions(self, data): """ Run the data parameter through the surrogate model which is given in prob. Parameters ---------- data : dict Dictionary containing training points. Returns ------- array np.stack of predicted points. """ # Create dictionary with an empty list outputs = {name: [] for name in self.output_names} # Parse dict into shape [n**2, number of inputs] list inputs = np.empty([self.resolution**2, self.num_inputs]) for idx, values in enumerate(data.values()): inputs[:, idx] = values.flatten() # Check for structured or unstructured if self.is_structured_meta_model: # Assign each row of the data coming in to a tuple. Loop through the tuple, and append # the name of the input and value. for idx, tup in enumerate(inputs): for name, val in zip(data.keys(), tup): self.prob[self.meta_model.name + '.' + name] = val self.prob.run_model() # Append the predicted value(s) for title in self.output_names: outputs[title].append( np.array(self.prob[self.meta_model.name + '.' + title])) else: for idx, tup in enumerate(inputs): for name, val in zip(data.keys(), tup): self.prob[self.meta_model.name + '.' + name] = val self.prob.run_model() for title in self.output_names: outputs[title].append( float(self.prob[self.meta_model.name + '.' + title])) return stack_outputs(outputs) def _contour_data_calcs(self): """ Parse input data into a dictionary to be predicted at. Parameters ---------- None Returns ------- dict Dictionary of training data to be predicted at. """ # Create initial data array of training points resolution = self.resolution x_data = np.zeros((resolution, resolution, self.num_inputs)) self._slider_attrs() # Broadcast the inputs to every row of x_data array x_data[:, :, :] = np.array(self.input_point_list) # Find the x/y input titles and match their index positions for idx, (title, values) in enumerate(self.slider_source.data.items()): if title == self.x_input_select.value: self.xlins_mesh = values x_index_position = idx if title == self.y_input_select.value: self.ylins_mesh = values y_index_position = idx # Make meshgrid from the x/y inputs to be plotted X, Y = np.meshgrid(self.xlins_mesh, self.ylins_mesh) # Move the x/y inputs to their respective positions in x_data x_data[:, :, x_index_position] = X x_data[:, :, y_index_position] = Y pred_dict = {} for idx, title in enumerate(self.slider_source.data): pred_dict.update({title: x_data[:, :, idx]}) return pred_dict def _contour_data(self): """ Create a contour plot. Parameters ---------- None Returns ------- Bokeh Image Plot """ resolution = self.resolution # Output data array initialization y_data = np.zeros((resolution, resolution, self.num_outputs)) self.input_point_list = [point.value for point in self.slider_dict.values()] # Pass the dict to make predictions and then reshape the output to # (resolution, resolution, number of outputs) y_data[:, :, :] = self._make_predictions(self._contour_data_calcs()).reshape( (resolution, resolution, self.num_outputs)) # Use the output variable to pull the correct column of data from the predicted # data (y_data) self.Z = y_data[:, :, self.output_variable] # Reshape it to be 2D self.Z = self.Z.reshape(resolution, resolution) # Update the data source with new data self.contour_plot_source.data = dict(z=[self.Z]) # Min to max of training data self.contour_x_range = xlins = self.xlins_mesh self.contour_y_range = ylins = self.ylins_mesh # Color bar formatting color_mapper = LinearColorMapper( palette="Viridis11", low=np.amin(self.Z), high=np.amax(self.Z)) color_bar = ColorBar(color_mapper=color_mapper, ticker=BasicTicker(), label_standoff=12, location=(0, 0)) # Contour Plot self.contour_plot = contour_plot = figure( match_aspect=False, tooltips=[(self.x_input_select.value, "$x"), (self.y_input_select.value, "$y"), (self.output_select.value, "@z")], tools='') contour_plot.x_range.range_padding = 0 contour_plot.y_range.range_padding = 0 contour_plot.plot_width = 600 contour_plot.plot_height = 500 contour_plot.xaxis.axis_label = self.x_input_select.value contour_plot.yaxis.axis_label = self.y_input_select.value contour_plot.min_border_left = 0 contour_plot.add_layout(color_bar, 'right') contour_plot.x_range = Range1d(min(xlins), max(xlins)) contour_plot.y_range = Range1d(min(ylins), max(ylins)) contour_plot.image(image='z', source=self.contour_plot_source, x=min(xlins), y=min(ylins), dh=(max(ylins) - min(ylins)), dw=(max(xlins) - min(xlins)), palette="Viridis11") # Adding training data points overlay to contour plot if self.is_structured_meta_model: data = self._structured_training_points() else: data = self._unstructured_training_points() if len(data): # Add training data points overlay to contour plot data = np.array(data) if self.is_structured_meta_model: self.contour_training_data_source.data = dict(x=data[:, 0], y=data[:, 1], z=self.meta_model.training_outputs[ self.output_select.value].flatten()) else: self.contour_training_data_source.data = dict(x=data[:, 0], y=data[:, 1], z=self.meta_model._training_output[ self.output_select.value]) training_data_renderer = self.contour_plot.circle( x='x', y='y', source=self.contour_training_data_source, size=5, color='white', alpha=0.50) self.contour_plot.add_tools(HoverTool(renderers=[training_data_renderer], tooltips=[ (self.x_input_select.value + " (train)", '@x'), (self.y_input_select.value + " (train)", '@y'), (self.output_select.value + " (train)", '@z'), ])) return self.contour_plot def _right_plot(self): """ Create the right side subplot to view the projected slice. Parameters ---------- None Returns ------- Bokeh figure """ # List of the current positions of the sliders self.input_point_list = [point.value for point in self.slider_dict.values()] # Find the title of the y input and match it with the data y_idx = self.y_input_select.value y_data = self.predict_inputs[y_idx] # Find the position of the x_input slider x_value = self.x_input_slider.value # Rounds the x_data to match the predict_inputs value subplot_value_index = np.where( np.around(self.predict_inputs[self.x_input_select.value], 5) == np.around(x_value, 5))[0] # Make slice in Z data at the point calculated before and add it to the data source z_data = self.Z[:, subplot_value_index].flatten() x = z_data y = self.slider_source.data[y_idx] # Update the data source with new data self.right_plot_source.data = dict(x=x, y=y) # Create and format figure self.right_plot_fig = right_plot_fig = figure( plot_width=250, plot_height=500, title="{} vs {}".format(y_idx, self.output_select.value), tools="pan") right_plot_fig.xaxis.axis_label = self.output_select.value right_plot_fig.yaxis.axis_label = y_idx right_plot_fig.xaxis.major_label_orientation = math.pi / 9 right_plot_fig.line(x='x', y='y', source=self.right_plot_source) right_plot_fig.x_range.range_padding = 0.1 right_plot_fig.y_range.range_padding = 0.02 # Determine distance and alpha opacity of training points if self.is_structured_meta_model: data = self._structured_training_points(compute_distance=True, source='right') else: data = self._unstructured_training_points(compute_distance=True, source='right') self.right_alphas = 1.0 - data[:, 2] / self.dist_range # Training data scatter plot scatter_renderer = right_plot_fig.scatter(x=data[:, 3], y=data[:, 1], line_color=None, fill_color='#000000', fill_alpha=self.right_alphas.tolist()) right_plot_fig.add_tools(HoverTool(renderers=[scatter_renderer], tooltips=[ (self.output_select.value + " (train)", '@x'), (y_idx + " (train)", '@y'), ])) right_plot_fig.scatter(x=data[:, 3], y=data[:, 1], line_color=None, fill_color='#000000', fill_alpha=self.right_alphas.tolist()) # Set the right_plot data source to new values self.right_plot_scatter_source.data = dict( right_slice_x=np.repeat(x_value, self.resolution), right_slice_y=y_data) self.contour_plot.line( 'right_slice_x', 'right_slice_y', source=self.right_plot_scatter_source, color='black', line_width=2) return self.right_plot_fig def _bottom_plot(self): """ Create the bottom subplot to view the projected slice. Parameters ---------- None Returns ------- Bokeh figure """ # List of the current positions of the sliders self.input_point_list = [point.value for point in self.slider_dict.values()] # Find the title of the x input and match it with the data x_idx = self.x_input_select.value x_data = self.predict_inputs[x_idx] # Find the position of the y_input slider y_value = self.y_input_slider.value # Rounds the y_data to match the predict_inputs value subplot_value_index = np.where( np.around(self.predict_inputs[self.y_input_select.value], 5) == np.around(y_value, 5))[0] # Make slice in Z data at the point calculated before and add it to the data source z_data = self.Z[subplot_value_index, :].flatten() x = self.slider_source.data[x_idx] y = z_data # Update the data source with new data self.bottom_plot_source.data = dict(x=x, y=y) # Create and format figure self.bottom_plot_fig = bottom_plot_fig = figure( plot_width=550, plot_height=250, title="{} vs {}".format(x_idx, self.output_select.value), tools="") bottom_plot_fig.xaxis.axis_label = x_idx bottom_plot_fig.yaxis.axis_label = self.output_select.value bottom_plot_fig.line(x='x', y='y', source=self.bottom_plot_source) bottom_plot_fig.x_range.range_padding = 0.02 bottom_plot_fig.y_range.range_padding = 0.1 # Determine distance and alpha opacity of training points if self.is_structured_meta_model: data = self._structured_training_points(compute_distance=True) else: data = self._unstructured_training_points(compute_distance=True) self.bottom_alphas = 1.0 - data[:, 2] / self.dist_range # Training data scatter plot scatter_renderer = bottom_plot_fig.scatter(x=data[:, 0], y=data[:, 3], line_color=None, fill_color='#000000', fill_alpha=self.bottom_alphas.tolist()) bottom_plot_fig.add_tools(HoverTool(renderers=[scatter_renderer], tooltips=[ (x_idx + " (train)", '@x'), (self.output_select.value + " (train)", '@y'), ])) # Set the right_plot data source to new values self.bottom_plot_scatter_source.data = dict( bot_slice_x=x_data, bot_slice_y=np.repeat(y_value, self.resolution)) self.contour_plot.line( 'bot_slice_x', 'bot_slice_y', source=self.bottom_plot_scatter_source, color='black', line_width=2) return self.bottom_plot_fig def _unstructured_training_points(self, compute_distance=False, source='bottom'): """ Calculate the training points and returns and array containing the position and alpha. Parameters ---------- compute_distance : bool If true, compute the distance of training points from surrogate line. source : str Which subplot the method is being called from. Returns ------- array The array of training points and their alpha opacity with respect to the surrogate line """ # Input training data and output training data x_training = self.meta_model._training_input training_output = np.squeeze(stack_outputs(self.meta_model._training_output), axis=1) # Index of input/output variables x_index = self.x_input_select.options.index(self.x_input_select.value) y_index = self.y_input_select.options.index(self.y_input_select.value) output_variable = self.output_names.index(self.output_select.value) # Vertically stack the x/y inputs and then transpose them infos = np.vstack((x_training[:, x_index], x_training[:, y_index])).transpose() if not compute_distance: return infos points = x_training.copy() # Normalize so each dimension spans [0, 1] points = np.divide(points, self.limit_range) dist_limit = np.linalg.norm(self.dist_range * self.limit_range) scaled_x0 = np.divide(self.input_point_list, self.limit_range) # Query the nearest neighbors tree for the closest points to the scaled x0 array # Nearest points to x slice if x_training.shape[1] < 3: tree = cKDTree(points) # Query the nearest neighbors tree for the closest points to the scaled x0 array dists, idxs = tree.query( scaled_x0, k=len(x_training), distance_upper_bound=self.dist_range) # kdtree query always returns requested k even if there are not enough valid points idx_finite = np.where(np.isfinite(dists)) dists = dists[idx_finite] idxs = idxs[idx_finite] else: dists, idxs = self._multidimension_input(scaled_x0, points, source=source) # data contains: # [x_value, y_value, ND-distance, func_value] data = np.zeros((len(idxs), 4)) for dist_index, j in enumerate(idxs): data[dist_index, 0:2] = infos[j, :] data[dist_index, 2] = dists[dist_index] data[dist_index, 3] = training_output[j, output_variable] return data def _structured_training_points(self, compute_distance=False, source='bottom'): """ Calculate the training points and return an array containing the position and alpha. Parameters ---------- compute_distance : bool If true, compute the distance of training points from surrogate line. source : str Which subplot the method is being called from. Returns ------- array The array of training points and their alpha opacity with respect to the surrogate line """ # Create tuple of the input parameters input_dimensions = tuple(self.meta_model.params) # Input training data and output training data x_training = np.array([z for z in product(*input_dimensions)]) training_output = self.meta_model.training_outputs[self.output_select.value].flatten() # Index of input/output variables x_index = self.x_input_select.options.index(self.x_input_select.value) y_index = self.y_input_select.options.index(self.y_input_select.value) # Vertically stack the x/y inputs and then transpose them infos = np.vstack((x_training[:, x_index], x_training[:, y_index])).transpose() if not compute_distance: return infos points = x_training.copy() # Normalize so each dimension spans [0, 1] points = np.divide(points, self.limit_range) self.dist_limit = np.linalg.norm(self.dist_range * self.limit_range) scaled_x0 = np.divide(self.input_point_list, self.limit_range) # Query the nearest neighbors tree for the closest points to the scaled x0 array # Nearest points to x slice if x_training.shape[1] < 3: x_tree, x_idx = self._two_dimension_input(scaled_x0, points, source=source) else: x_tree, x_idx = self._multidimension_input(scaled_x0, points, source=source) # format for 'data' # [x_value, y_value, ND-distance_(x or y), func_value] n = len(x_tree) data = np.zeros((n, 4)) for dist_index, j in enumerate(x_idx): data[dist_index, 0:2] = infos[j, :] data[dist_index, 2] = x_tree[dist_index] data[dist_index, 3] = training_output[j] return data def _two_dimension_input(self, scaled_points, training_points, source='bottom'): """ Calculate the distance of training points to the surrogate line. Parameters ---------- scaled_points : array Array of normalized slider positions. training_points : array Array of input training data. source : str Which subplot the method is being called from. Returns ------- idxs : array Index of closest points that are within the dist range. x_tree : array One dimentional array of points that are within the dist range. """ # Column of the input if source == 'right': col_idx = self.y_input_select.options.index(self.y_input_select.value) else: col_idx = self.x_input_select.options.index(self.x_input_select.value) # Delete the axis of input from source to predicted 1D distance x = np.delete(scaled_points, col_idx, axis=0) x_training_points = np.delete(training_points, col_idx, axis=1).flatten() # Tree of point distances x_tree = np.abs(x - x_training_points) # Only return points that are within our distance-viewing paramter. idx = np.where(x_tree <= self.dist_range) x_tree = x_tree[idx] return x_tree, idx[0] def _multidimension_input(self, scaled_points, training_points, source='bottom'): """ Calculate the distance of training points to the surrogate line. Parameters ---------- scaled_points : array Array of normalized slider positions. training_points : array Array of input training data. source : str Which subplot the method is being called from. Returns ------- idxs : array Index of closest points that are within the dist range. x_tree : array Array of points that are within the dist range. """ # Column of the input if source == 'right': col_idx = self.y_input_select.options.index(self.y_input_select.value) else: col_idx = self.x_input_select.options.index(self.x_input_select.value) # Delete the axis of input from source to predicted distance x = np.delete(scaled_points, col_idx, axis=0) x_training_points =
np.delete(training_points, col_idx, axis=1)
numpy.delete
"""Matrix, Jco and Cov classes for easy linear algebra """ from __future__ import print_function, division import copy import struct from datetime import datetime import numpy as np import pandas import scipy.linalg as la from scipy.io import FortranFile from pyemu.pst.pst_handler import Pst def concat(mats): """Concatenate Matrix objects. Tries either axis. Parameters ---------- mats: list list of Matrix objects Returns ------- Matrix : Matrix """ for mat in mats: if mat.isdiagonal: raise NotImplementedError("concat not supported for diagonal mats") row_match = True col_match = True for mat in mats[1:]: if sorted(mats[0].row_names) != sorted(mat.row_names): row_match = False if sorted(mats[0].col_names) != sorted(mat.col_names): col_match = False if not row_match and not col_match: raise Exception("mat_handler.concat(): all Matrix objects"+\ "must share either rows or cols") if row_match and col_match: raise Exception("mat_handler.concat(): all Matrix objects"+\ "share both rows and cols") if row_match: row_names = copy.deepcopy(mats[0].row_names) col_names = [] for mat in mats: col_names.extend(copy.deepcopy(mat.col_names)) x = mats[0].newx for mat in mats[1:]: mat.align(mats[0].row_names, axis=0) other_x = mat.newx x = np.append(x, other_x, axis=1) else: col_names = copy.deepcopy(mats[0].col_names) row_names = [] for mat in mats: row_names.extend(copy.deepcopy(mat.row_names)) x = mat[0].newx for mat in mats[1:]: mat.align(mats[0].col_names, axis=1) other_x = mat.newx x = np.append(x, other_x, axis=0) return Matrix(x=x, row_names=row_names, col_names=col_names) def get_common_elements(list1, list2): """find the common elements in two lists. used to support auto align might be faster with sets Parameters ---------- list1 : list a list of objects list2 : list a list of objects Returns ------- list : list list of common objects shared by list1 and list2 """ #result = [] #for item in list1: # if item in list2: # result.append(item) #Return list(set(list1).intersection(set(list2))) set2 = set(list2) result = [item for item in list1 if item in set2] return result class Matrix(object): """a class for easy linear algebra Parameters ---------- x : numpy.ndarray Matrix entries row_names : list list of row names col_names : list list of column names isdigonal : bool to determine if the Matrix is diagonal autoalign: bool used to control the autoalignment of Matrix objects during linear algebra operations Returns ------- Matrix : Matrix Attributes ---------- binary_header_dt : numpy.dtype the header info in the PEST binary file type binary_rec_dt : numpy.dtype the record info in the PEST binary file type Methods ------- to_ascii : write a PEST-style ASCII matrix format file to_binary : write a PEST-stle compressed binary format file Note ---- this class makes heavy use of property decorators to encapsulate private attributes """ integer = np.int32 double = np.float64 char = np.uint8 binary_header_dt = np.dtype([('itemp1', integer), ('itemp2', integer), ('icount', integer)]) binary_rec_dt = np.dtype([('j', integer), ('dtemp', double)]) par_length = 12 obs_length = 20 def __init__(self, x=None, row_names=[], col_names=[], isdiagonal=False, autoalign=True): self.col_names, self.row_names = [], [] [self.col_names.append(str(c).lower()) for c in col_names] [self.row_names.append(str(r).lower()) for r in row_names] self.__x = None self.__u = None self.__s = None self.__v = None if x is not None: assert x.ndim == 2 #x = np.atleast_2d(x) if isdiagonal and len(row_names) > 0: #assert 1 in x.shape,"Matrix error: diagonal matrix must have " +\ # "one dimension == 1,shape is {0}".format(x.shape) mx_dim = max(x.shape) assert len(row_names) == mx_dim,\ 'Matrix.__init__(): diagonal shape[1] != len(row_names) ' +\ str(x.shape) + ' ' + str(len(row_names)) #x = x.transpose() else: if len(row_names) > 0: assert len(row_names) == x.shape[0],\ 'Matrix.__init__(): shape[0] != len(row_names) ' +\ str(x.shape) + ' ' + str(len(row_names)) if len(col_names) > 0: # if this a row vector if len(row_names) == 0 and x.shape[1] == 1: x.transpose() assert len(col_names) == x.shape[1],\ 'Matrix.__init__(): shape[1] != len(col_names) ' + \ str(x.shape) + ' ' + str(len(col_names)) self.__x = x self.isdiagonal = bool(isdiagonal) self.autoalign = bool(autoalign) def reset_x(self,x): """reset self.__x private attribute Parameters ---------- x : numpy.ndarray Note ---- makes a copy of 'x' argument """ assert x.shape == self.shape self.__x = x.copy() def __str__(self): """overload of object.__str__() Returns ------- str : str """ s = "shape:{0}:{1}".format(*self.shape)+" row names: " + str(self.row_names) + \ '\n' + "col names: " + str(self.col_names) + '\n' + str(self.__x) return s def __getitem__(self, item): """a very crude overload of object.__getitem__(). Parameters ---------- item : iterable something that can be used as an index Returns ------- Matrix : Matrix an object that is a sub-Matrix of self """ if self.isdiagonal and isinstance(item, tuple): submat = np.atleast_2d((self.__x[item[0]])) else: submat = np.atleast_2d(self.__x[item]) # transpose a row vector to a column vector if submat.shape[0] == 1: submat = submat.transpose() row_names = self.row_names[:submat.shape[0]] if self.isdiagonal: col_names = row_names else: col_names = self.col_names[:submat.shape[1]] return type(self)(x=submat, isdiagonal=self.isdiagonal, row_names=row_names, col_names=col_names, autoalign=self.autoalign) def __pow__(self, power): """overload of numpy.ndarray.__pow__() operator Parameters ---------- power: (int or float) interpreted as follows: -1 = inverse of self, -0.5 = sqrt of inverse of self, 0.5 = sqrt of self. All other positive ints = elementwise self raised to power Returns ------- Matrix : Matrix a new Matrix object """ if power < 0: if power == -1: return self.inv elif power == -0.5: return (self.inv).sqrt else: raise NotImplementedError("Matrix.__pow__() not implemented " + "for negative powers except for -1") elif int(power) != float(power): if power == 0.5: return self.sqrt else: raise NotImplementedError("Matrix.__pow__() not implemented " + "for fractional powers except 0.5") else: return type(self)(self.__x**power, row_names=self.row_names, col_names=self.col_names, isdiagonal=self.isdiagonal) def __sub__(self, other): """numpy.ndarray.__sub__() overload. Tries to speedup by checking for scalars of diagonal matrices on either side of operator Parameters ---------- other : scalar,numpy.ndarray,Matrix object the thing to difference Returns ------- Matrix : Matrix """ if np.isscalar(other): return Matrix(x=self.x - other, row_names=self.row_names, col_names=self.col_names, isdiagonal=self.isdiagonal) else: if isinstance(other, np.ndarray): assert self.shape == other.shape, "Matrix.__sub__() shape" +\ "mismatch: " +\ str(self.shape) + ' ' + \ str(other.shape) if self.isdiagonal: elem_sub = -1.0 * other for j in range(self.shape[0]): elem_sub[j, j] += self.x[j] return type(self)(x=elem_sub, row_names=self.row_names, col_names=self.col_names) else: return type(self)(x=self.x - other, row_names=self.row_names, col_names=self.col_names) elif isinstance(other, Matrix): if self.autoalign and other.autoalign \ and not self.element_isaligned(other): common_rows = get_common_elements(self.row_names, other.row_names) common_cols = get_common_elements(self.col_names, other.col_names) if len(common_rows) == 0: raise Exception("Matrix.__sub__ error: no common rows") if len(common_cols) == 0: raise Exception("Matrix.__sub__ error: no common cols") first = self.get(row_names=common_rows, col_names=common_cols) second = other.get(row_names=common_rows, col_names=common_cols) else: assert self.shape == other.shape, \ "Matrix.__sub__():shape mismatch: " +\ str(self.shape) + ' ' + str(other.shape) first = self second = other if first.isdiagonal and second.isdiagonal: return type(self)(x=first.x - second.x, isdiagonal=True, row_names=first.row_names, col_names=first.col_names) elif first.isdiagonal: elem_sub = -1.0 * second.newx for j in range(first.shape[0]): elem_sub[j, j] += first.x[j, 0] return type(self)(x=elem_sub, row_names=first.row_names, col_names=first.col_names) elif second.isdiagonal: elem_sub = first.newx for j in range(second.shape[0]): elem_sub[j, j] -= second.x[j, 0] return type(self)(x=elem_sub, row_names=first.row_names, col_names=first.col_names) else: return type(self)(x=first.x - second.x, row_names=first.row_names, col_names=first.col_names) def __add__(self, other): """Overload of numpy.ndarray.__add__(). Tries to speedup by checking for scalars of diagonal matrices on either side of operator Parameters ---------- other : scalar,numpy.ndarray,Matrix object the thing to add Returns ------- Matrix : Matrix """ if np.isscalar(other): return type(self)(x=self.x + other) if isinstance(other, np.ndarray): assert self.shape == other.shape, \ "Matrix.__add__(): shape mismatch: " +\ str(self.shape) + ' ' + str(other.shape) if self.isdiagonal: raise NotImplementedError("Matrix.__add__ not supported for" + "diagonal self") else: return type(self)(x=self.x + other, row_names=self.row_names, col_names=self.col_names) elif isinstance(other, Matrix): if self.autoalign and other.autoalign \ and not self.element_isaligned(other): common_rows = get_common_elements(self.row_names, other.row_names) common_cols = get_common_elements(self.col_names, other.col_names) if len(common_rows) == 0: raise Exception("Matrix.__add__ error: no common rows") if len(common_cols) == 0: raise Exception("Matrix.__add__ error: no common cols") first = self.get(row_names=common_rows, col_names=common_cols) second = other.get(row_names=common_rows, col_names=common_cols) else: assert self.shape == other.shape, \ "Matrix.__add__(): shape mismatch: " +\ str(self.shape) + ' ' + str(other.shape) first = self second = other if first.isdiagonal and second.isdiagonal: return type(self)(x=first.x + second.x, isdiagonal=True, row_names=first.row_names, col_names=first.col_names) elif first.isdiagonal: ox = second.newx for j in range(first.shape[0]): ox[j, j] += first.__x[j] return type(self)(x=ox, row_names=first.row_names, col_names=first.col_names) elif second.isdiagonal: x = first.x for j in range(second.shape[0]): x[j, j] += second.x[j] return type(self)(x=x, row_names=first.row_names, col_names=first.col_names) else: return type(self)(x=first.x + second.x, row_names=first.row_names, col_names=first.col_names) else: raise Exception("Matrix.__add__(): unrecognized type for " + "other in __add__: " + str(type(other))) def hadamard_product(self, other): """Overload of numpy.ndarray.__mult__(): element-wise multiplication. Tries to speedup by checking for scalars of diagonal matrices on either side of operator Parameters ---------- other : scalar,numpy.ndarray,Matrix object the thing for element-wise multiplication Returns ------- Matrix : Matrix """ if np.isscalar(other): return type(self)(x=self.x * other) if isinstance(other, np.ndarray): assert self.shape == other.shape, \ "Matrix.hadamard_product(): shape mismatch: " + \ str(self.shape) + ' ' + str(other.shape) if self.isdiagonal: raise NotImplementedError("Matrix.hadamard_product() not supported for" + "diagonal self") else: return type(self)(x=self.x * other, row_names=self.row_names, col_names=self.col_names) elif isinstance(other, Matrix): if self.autoalign and other.autoalign \ and not self.element_isaligned(other): common_rows = get_common_elements(self.row_names, other.row_names) common_cols = get_common_elements(self.col_names, other.col_names) if len(common_rows) == 0: raise Exception("Matrix.hadamard_product error: no common rows") if len(common_cols) == 0: raise Exception("Matrix.hadamard_product error: no common cols") first = self.get(row_names=common_rows, col_names=common_cols) second = other.get(row_names=common_rows, col_names=common_cols) else: assert self.shape == other.shape, \ "Matrix.hadamard_product(): shape mismatch: " + \ str(self.shape) + ' ' + str(other.shape) first = self second = other if first.isdiagonal and second.isdiagonal: return type(self)(x=first.x * second.x, isdiagonal=True, row_names=first.row_names, col_names=first.col_names) # elif first.isdiagonal: # #ox = second.as_2d # #for j in range(first.shape[0]): # # ox[j, j] *= first.__x[j] # return type(self)(x=first.as_2d * second.as_2d, row_names=first.row_names, # col_names=first.col_names) # elif second.isdiagonal: # #x = first.as_2d # #for j in range(second.shape[0]): # # x[j, j] *= second.x[j] # return type(self)(x=first.x * second.as_2d, row_names=first.row_names, # col_names=first.col_names) else: return type(self)(x=first.as_2d * second.as_2d, row_names=first.row_names, col_names=first.col_names) else: raise Exception("Matrix.hadamard_product(): unrecognized type for " + "other: " + str(type(other))) def __mul__(self, other): """Dot product multiplication overload. Tries to speedup by checking for scalars or diagonal matrices on either side of operator Parameters ---------- other : scalar,numpy.ndarray,Matrix object the thing the dot product against Returns: Matrix : Matrix """ if np.isscalar(other): return type(self)(x=self.__x.copy() * other, row_names=self.row_names, col_names=self.col_names, isdiagonal=self.isdiagonal) elif isinstance(other, np.ndarray): assert self.shape[1] == other.shape[0], \ "Matrix.__mul__(): matrices are not aligned: " +\ str(self.shape) + ' ' + str(other.shape) if self.isdiagonal: return type(self)(x=np.dot(np.diag(self.__x.flatten()).transpose(), other)) else: return type(self)(x=np.dot(self.__x, other)) elif isinstance(other, Matrix): if self.autoalign and other.autoalign\ and not self.mult_isaligned(other): common = get_common_elements(self.col_names, other.row_names) assert len(common) > 0,"Matrix.__mult__():self.col_names " +\ "and other.row_names" +\ "don't share any common elements. first 10: " +\ ','.join(self.col_names[:9]) + '...and..' +\ ','.join(other.row_names[:9]) # these should be aligned if isinstance(self, Cov): first = self.get(row_names=common, col_names=common) else: first = self.get(row_names=self.row_names, col_names=common) if isinstance(other, Cov): second = other.get(row_names=common, col_names=common) else: second = other.get(row_names=common, col_names=other.col_names) else: assert self.shape[1] == other.shape[0], \ "Matrix.__mul__(): matrices are not aligned: " +\ str(self.shape) + ' ' + str(other.shape) first = self second = other if first.isdiagonal and second.isdiagonal: elem_prod = type(self)(x=first.x.transpose() * second.x, row_names=first.row_names, col_names=second.col_names) elem_prod.isdiagonal = True return elem_prod elif first.isdiagonal: ox = second.newx for j in range(first.shape[0]): ox[j, :] *= first.x[j] return type(self)(x=ox, row_names=first.row_names, col_names=second.col_names) elif second.isdiagonal: x = first.newx ox = second.x for j in range(first.shape[1]): x[:, j] *= ox[j] return type(self)(x=x, row_names=first.row_names, col_names=second.col_names) else: return type(self)(np.dot(first.x, second.x), row_names=first.row_names, col_names=second.col_names) else: raise Exception("Matrix.__mul__(): unrecognized " + "other arg type in __mul__: " + str(type(other))) def __rmul__(self, other): """Reverse order Dot product multiplication overload. Parameters ---------- other : scalar,numpy.ndarray,Matrix object the thing the dot product against Returns ------- Matrix : Matrix """ if np.isscalar(other): return type(self)(x=self.__x.copy() * other,row_names=self.row_names,\ col_names=self.col_names,isdiagonal=self.isdiagonal) elif isinstance(other, np.ndarray): assert self.shape[0] == other.shape[1], \ "Matrix.__rmul__(): matrices are not aligned: " +\ str(other.shape) + ' ' + str(self.shape) if self.isdiagonal: return type(self)(x=np.dot(other,np.diag(self.__x.flatten()).\ transpose())) else: return type(self)(x=np.dot(other,self.__x)) elif isinstance(other, Matrix): if self.autoalign and other.autoalign \ and not self.mult_isaligned(other): common = get_common_elements(self.row_names, other.col_names) assert len(common) > 0,"Matrix.__rmul__():self.col_names " +\ "and other.row_names" +\ "don't share any common elements" # these should be aligned if isinstance(self, Cov): first = self.get(row_names=common, col_names=common) else: first = self.get(col_names=self.row_names, row_names=common) if isinstance(other, Cov): second = other.get(row_names=common, col_names=common) else: second = other.get(col_names=common, row_names=other.col_names) else: assert self.shape[0] == other.shape[1], \ "Matrix.__rmul__(): matrices are not aligned: " +\ str(other.shape) + ' ' + str(self.shape) first = other second = self if first.isdiagonal and second.isdiagonal: elem_prod = type(self)(x=first.x.transpose() * second.x, row_names=first.row_names, col_names=second.col_names) elem_prod.isdiagonal = True return elem_prod elif first.isdiagonal: ox = second.newx for j in range(first.shape[0]): ox[j, :] *= first.x[j] return type(self)(x=ox, row_names=first.row_names, col_names=second.col_names) elif second.isdiagonal: x = first.newx ox = second.x for j in range(first.shape[1]): x[:, j] *= ox[j] return type(self)(x=x, row_names=first.row_names, col_names=second.col_names) else: return type(self)(np.dot(first.x, second.x), row_names=first.row_names, col_names=second.col_names) else: raise Exception("Matrix.__rmul__(): unrecognized " + "other arg type in __mul__: " + str(type(other))) def __set_svd(self): """private method to set SVD components. Note: this should not be called directly """ if self.isdiagonal: x = np.diag(self.x.flatten()) else: # just a pointer to x x = self.x try: u, s, v = la.svd(x, full_matrices=True) v = v.transpose() except Exception as e: print("standard SVD failed: {0}".format(str(e))) try: v, s, u = la.svd(x.transpose(), full_matrices=True) u = u.transpose() except Exception as e: np.savetxt("failed_svd.dat",x,fmt="%15.6E") raise Exception("Matrix.__set_svd(): " + "unable to compute SVD of self.x, " + "saved matrix to 'failed_svd.dat' -- {0}".\ format(str(e))) col_names = ["left_sing_vec_" + str(i + 1) for i in range(u.shape[1])] self.__u = Matrix(x=u, row_names=self.row_names, col_names=col_names, autoalign=False) sing_names = ["sing_val_" + str(i + 1) for i in range(s.shape[0])] self.__s = Matrix(x=np.atleast_2d(s).transpose(), row_names=sing_names, col_names=sing_names, isdiagonal=True, autoalign=False) col_names = ["right_sing_vec_" + str(i + 1) for i in range(v.shape[0])] self.__v = Matrix(v, row_names=self.col_names, col_names=col_names, autoalign=False) def mult_isaligned(self, other): """check if matrices are aligned for dot product multiplication Parameters ---------- other : (Matrix) Returns ------- bool : bool True if aligned, False if not aligned """ assert isinstance(other, Matrix), \ "Matrix.isaligned(): other argumnent must be type Matrix, not: " +\ str(type(other)) if self.col_names == other.row_names: return True else: return False def element_isaligned(self, other): """check if matrices are aligned for element-wise operations Parameters ---------- other : Matrix Returns ------- bool : bool True if aligned, False if not aligned """ assert isinstance(other, Matrix), \ "Matrix.isaligned(): other argument must be type Matrix, not: " +\ str(type(other)) if self.row_names == other.row_names \ and self.col_names == other.col_names: return True else: return False @property def newx(self): """return a copy of x Returns ------- numpy.ndarray : numpy.ndarray """ return self.__x.copy() @property def x(self): """return a reference to x Returns ------- numpy.ndarray : numpy.ndarray """ return self.__x @property def as_2d(self): """ get a 2D representation of x. If not self.isdiagonal, simply return reference to self.x, otherwise, constructs and returns a 2D, diagonal ndarray Returns ------- numpy.ndarray : numpy.ndarray """ if not self.isdiagonal: return self.x return np.diag(self.x.flatten()) @property def shape(self): """get the implied, 2D shape of self Returns ------- tuple : tuple length 2 tuple of ints """ if self.__x is not None: if self.isdiagonal: return (max(self.__x.shape), max(self.__x.shape)) if len(self.__x.shape) == 1: raise Exception("Matrix.shape: Matrix objects must be 2D") return self.__x.shape return None @property def ncol(self): """ length of second dimension Returns ------- int : int number of columns """ return self.shape[1] @property def nrow(self): """ length of first dimensions Returns ------- int : int number of rows """ return self.shape[0] @property def T(self): """wrapper function for Matrix.transpose() method """ return self.transpose @property def transpose(self): """transpose operation of self Returns ------- Matrix : Matrix transpose of self """ if not self.isdiagonal: return type(self)(x=self.__x.copy().transpose(), row_names=self.col_names, col_names=self.row_names, autoalign=self.autoalign) else: return type(self)(x=self.__x.copy(), row_names=self.row_names, col_names=self.col_names, isdiagonal=True, autoalign=self.autoalign) @property def inv(self): """inversion operation of self Returns ------- Matrix : Matrix inverse of self """ if self.isdiagonal: inv = 1.0 / self.__x if (np.any(~np.isfinite(inv))): idx = np.isfinite(inv) np.savetxt("testboo.dat",idx) invalid = [self.row_names[i] for i in range(idx.shape[0]) if idx[i] == 0.0] raise Exception("Matrix.inv has produced invalid floating points " + " for the following elements:" + ','.join(invalid)) return type(self)(x=inv, isdiagonal=True, row_names=self.row_names, col_names=self.col_names, autoalign=self.autoalign) else: return type(self)(x=la.inv(self.__x), row_names=self.row_names, col_names=self.col_names, autoalign=self.autoalign) def get_maxsing(self,eigthresh=1.0e-5): """ Get the number of singular components with a singular value ratio greater than or equal to eigthresh Parameters ---------- eigthresh : float the ratio of the largest to smallest singular value Returns ------- int : int number of singular components """ sthresh =np.abs((self.s.x / self.s.x[0]) - eigthresh) return max(1,np.argmin(sthresh)) def pseudo_inv_components(self,maxsing=None,eigthresh=1.0e-5): """ Get the truncated SVD components Parameters ---------- maxsing : int the number of singular components to use. If None, maxsing is calculated using Matrix.get_maxsing() and eigthresh eigthresh : float the ratio of largest to smallest singular components to use for truncation. Ignored if maxsing is not None Returns ------- u : Matrix truncated left singular vectors s : Matrix truncated singular value matrix v : Matrix truncated right singular vectors """ if maxsing is None: maxsing = self.get_maxsing(eigthresh=eigthresh) s = self.s[:maxsing,:maxsing] v = self.v[:,:maxsing] u = self.u[:,:maxsing] return u,s,v def pseudo_inv(self,maxsing=None,eigthresh=1.0e-5): """ The pseudo inverse of self. Formed using truncated singular value decomposition and Matrix.pseudo_inv_components Parameters ---------- maxsing : int the number of singular components to use. If None, maxsing is calculated using Matrix.get_maxsing() and eigthresh eigthresh : float the ratio of largest to smallest singular components to use for truncation. Ignored if maxsing is not None Returns ------- Matrix : Matrix """ if maxsing is None: maxsing = self.get_maxsing(eigthresh=eigthresh) full_s = self.full_s.T for i in range(self.s.shape[0]): if i <= maxsing: full_s.x[i,i] = 1.0 / full_s.x[i,i] else: full_s.x[i,i] = 0.0 return self.v * full_s * self.u.T @property def sqrt(self): """square root operation Returns ------- Matrix : Matrix square root of self """ if self.isdiagonal: return type(self)(x=np.sqrt(self.__x), isdiagonal=True, row_names=self.row_names, col_names=self.col_names, autoalign=self.autoalign) elif self.shape[1] == 1: #a vector return type(self)(x=np.sqrt(self.__x), isdiagonal=False, row_names=self.row_names, col_names=self.col_names, autoalign=self.autoalign) else: return type(self)(x=la.sqrtm(self.__x), row_names=self.row_names, col_names=self.col_names, autoalign=self.autoalign) @property def full_s(self): """ Get the full singular value matrix of self Returns ------- Matrix : Matrix """ x = np.zeros((self.shape),dtype=np.float32) x[:self.s.shape[0],:self.s.shape[0]] = self.s.as_2d s = Matrix(x=x, row_names=self.row_names, col_names=self.col_names, isdiagonal=False, autoalign=False) return s @property def s(self): """the singular value (diagonal) Matrix Returns ------- Matrix : Matrix """ if self.__s is None: self.__set_svd() return self.__s @property def u(self): """the left singular vector Matrix Returns ------- Matrix : Matrix """ if self.__u is None: self.__set_svd() return self.__u @property def v(self): """the right singular vector Matrix Returns ------- Matrix : Matrix """ if self.__v is None: self.__set_svd() return self.__v @property def zero2d(self): """ get an 2D instance of self with all zeros Returns ------- Matrix : Matrix """ return type(self)(x=np.atleast_2d(np.zeros((self.shape[0],self.shape[1]))), row_names=self.row_names, col_names=self.col_names, isdiagonal=False) def indices(self, names, axis=None): """get the row and col indices of names. If axis is None, two ndarrays are returned, corresponding the indices of names for each axis Parameters ---------- names : iterable column and/or row names axis : (int) (optional) the axis to search. Returns ------- numpy.ndarray : numpy.ndarray indices of names. """ row_idxs, col_idxs = [], [] for name in names: if name.lower() not in self.col_names \ and name.lower() not in self.row_names: raise Exception('Matrix.indices(): name not found: ' + name) if name.lower() in self.col_names: col_idxs.append(self.col_names.index(name)) if name.lower() in self.row_names: row_idxs.append(self.row_names.index(name)) if axis is None: return np.array(row_idxs, dtype=np.int32),\ np.array(col_idxs, dtype=np.int32) elif axis == 0: if len(row_idxs) != len(names): raise Exception("Matrix.indices(): " + "not all names found in row_names") return np.array(row_idxs, dtype=np.int32) elif axis == 1: if len(col_idxs) != len(names): raise Exception("Matrix.indices(): " + "not all names found in col_names") return np.array(col_idxs, dtype=np.int32) else: raise Exception("Matrix.indices(): " + "axis argument must 0 or 1, not:" + str(axis)) def align(self, names, axis=None): """reorder self by names. If axis is None, reorder both indices Parameters ---------- names : iterable names in rowS and\or columnS axis : (int) the axis to reorder. if None, reorder both axes """ if not isinstance(names, list): names = [names] row_idxs, col_idxs = self.indices(names) if self.isdiagonal or isinstance(self, Cov): assert row_idxs.shape == col_idxs.shape assert row_idxs.shape[0] == self.shape[0] if self.isdiagonal: self.__x = self.__x[row_idxs] else: self.__x = self.__x[row_idxs, :] self.__x = self.__x[:, col_idxs] row_names = [] [row_names.append(self.row_names[i]) for i in row_idxs] self.row_names, self.col_names = row_names, row_names else: if axis is None: raise Exception("Matrix.align(): must specify axis in " + "align call for non-diagonal instances") if axis == 0: assert row_idxs.shape[0] == self.shape[0], \ "Matrix.align(): not all names found in self.row_names" self.__x = self.__x[row_idxs, :] row_names = [] [row_names.append(self.row_names[i]) for i in row_idxs] self.row_names = row_names elif axis == 1: assert col_idxs.shape[0] == self.shape[1], \ "Matrix.align(): not all names found in self.col_names" self.__x = self.__x[:, col_idxs] col_names = [] [col_names.append(self.col_names[i]) for i in row_idxs] self.col_names = col_names else: raise Exception("Matrix.align(): axis argument to align()" + " must be either 0 or 1") def get(self, row_names=None, col_names=None, drop=False): """get a new Matrix instance ordered on row_names or col_names Parameters ---------- row_names : iterable row_names for new Matrix col_names : iterable col_names for new Matrix drop : bool flag to remove row_names and/or col_names Returns ------- Matrix : Matrix """ if row_names is None and col_names is None: raise Exception("Matrix.get(): must pass at least" + " row_names or col_names") if row_names is not None and not isinstance(row_names, list): row_names = [row_names] if col_names is not None and not isinstance(col_names, list): col_names = [col_names] if isinstance(self,Cov) and (row_names is None or col_names is None ): if row_names is not None: idxs = self.indices(row_names, axis=0) names = row_names else: idxs = self.indices(col_names, axis=1) names = col_names if self.isdiagonal: extract = self.__x[idxs].copy() else: extract = self.__x[idxs, :].copy() extract = extract[:, idxs.copy()] if drop: self.drop(names, 0) return Cov(x=extract, names=names, isdiagonal=self.isdiagonal) if self.isdiagonal: extract = np.diag(self.__x[:, 0]) else: extract = self.__x.copy() if row_names is not None: row_idxs = self.indices(row_names, axis=0) extract = np.atleast_2d(extract[row_idxs, :].copy()) if drop: self.drop(row_names, axis=0) else: row_names = self.row_names if col_names is not None: col_idxs = self.indices(col_names, axis=1) extract = np.atleast_2d(extract[:, col_idxs].copy()) if drop: self.drop(col_names, axis=1) else: col_names = copy.deepcopy(self.col_names) return type(self)(x=extract, row_names=row_names, col_names=col_names) def drop(self, names, axis): """ drop elements from self in place Parameters ---------- names : iterable names to drop axis : (int) the axis to drop from. must be in [0,1] """ if axis is None: raise Exception("Matrix.drop(): axis arg is required") if not isinstance(names, list): names = [names] if axis == 1: assert len(names) < self.shape[1], "can't drop all names along axis 1" else: assert len(names) < self.shape[0], "can't drop all names along axis 0" idxs = self.indices(names, axis=axis) if self.isdiagonal: self.__x = np.delete(self.__x, idxs, 0) keep_names = [name for name in self.row_names if name not in names] assert len(keep_names) == self.__x.shape[0],"shape-name mismatch:"+\ "{0}:{0}".format(len(keep_names),self.__x.shape) self.row_names = keep_names self.col_names = copy.deepcopy(keep_names) # idxs = np.sort(idxs) # for idx in idxs[::-1]: # del self.row_names[idx] # del self.col_names[idx] elif isinstance(self,Cov): self.__x = np.delete(self.__x, idxs, 0) self.__x = np.delete(self.__x, idxs, 1) keep_names = [name for name in self.row_names if name not in names] assert len(keep_names) == self.__x.shape[0],"shape-name mismatch:"+\ "{0}:{0}".format(len(keep_names),self.__x.shape) self.row_names = keep_names self.col_names = copy.deepcopy(keep_names) # idxs = np.sort(idxs) # for idx in idxs[::-1]: # del self.row_names[idx] # del self.col_names[idx] elif axis == 0: if idxs.shape[0] == self.shape[0]: raise Exception("Matrix.drop(): can't drop all rows") elif idxs.shape == 0: raise Exception("Matrix.drop(): nothing to drop on axis 0") self.__x = np.delete(self.__x, idxs, 0) keep_names = [name for name in self.row_names if name not in names] assert len(keep_names) == self.__x.shape[0],"shape-name mismatch:"+\ "{0}:{0}".format(len(keep_names),self.__x.shape) self.row_names = keep_names # idxs = np.sort(idxs) # for idx in idxs[::-1]: # del self.row_names[idx] elif axis == 1: if idxs.shape[0] == self.shape[1]: raise Exception("Matrix.drop(): can't drop all cols") if idxs.shape == 0: raise Exception("Matrix.drop(): nothing to drop on axis 1") self.__x = np.delete(self.__x, idxs, 1) keep_names = [name for name in self.col_names if name not in names] assert len(keep_names) == self.__x.shape[1],"shape-name mismatch:"+\ "{0}:{0}".format(len(keep_names),self.__x.shape) self.col_names = keep_names # idxs = np.sort(idxs) # for idx in idxs[::-1]: # del self.col_names[idx] else: raise Exception("Matrix.drop(): axis argument must be 0 or 1") def extract(self, row_names=None, col_names=None): """wrapper method that Matrix.gets() then Matrix.drops() elements. one of row_names or col_names must be not None. Parameters ---------- row_names : iterable row names to extract col_names : (enumerate) col_names to extract Returns ------- Matrix : Matrix """ if row_names is None and col_names is None: raise Exception("Matrix.extract() " + "row_names and col_names both None") extract = self.get(row_names, col_names, drop=True) return extract def get_diagonal_vector(self, col_name="diag"): """Get a new Matrix instance that is the diagonal of self. The shape of the new matrix is (self.shape[0],1). Self must be square Parameters: col_name : str the name of the column in the new Matrix Returns: Matrix : Matrix """ assert self.shape[0] == self.shape[1] assert not self.isdiagonal assert isinstance(col_name,str) return type(self)(x=np.atleast_2d(
np.diag(self.x)
numpy.diag
import numpy as np from skimage.exposure import equalize_adapthist import torch from scipy.ndimage import gaussian_filter import scipy import random import torch as th from PIL import Image from scipy.interpolate import RectBivariateSpline class MyRandomImageContrastTransform(object): def __init__(self, random_state=None, is_labelmap=[False, True], clip_limit_range=[0.01, 1], nbins=256, enable=False): """ Perform Contrast Limited Adaptive Histogram Equalization (CLAHE) . An algorithm for local contrast enhancement, that uses histograms computed over different tile regions of the image. Local details can therefore be enhanced even in regions that are darker or lighter than most of the image. Based on https://scikit-image.org/docs/dev/api/skimage.exposure.html?highlight=equalize_adapthist#skimage .exposure.equalize_adapthist Arguments --------- """ self.random_state = random_state self.clip_limit_range = clip_limit_range # [0,1] The larger the value, the higher the contrast self.nbins = nbins self.is_label_map = is_labelmap self.enable = enable def __call__(self, *inputs): if self.enable: outputs = [] assert len(self.is_label_map) == len( inputs), 'for each input, must clarify whether this is a label map or not.' clip_limit = np.random.uniform(low=self.clip_limit_range[0], high=self.clip_limit_range[1]) for idx, _input in enumerate(inputs): _input = _input.numpy() flag = self.is_label_map[idx] if flag: result = _input else: print(_input.shape) result = np.zeros(_input.shape, dtype=_input.dtype) for i in range(_input.shape[0]): temp = _input[i] print('temp shape', temp.shape) _input_min = temp.min() _input_max = temp.max() ## clahe requires intensity to be Uint16 temp = intensity_normalise(temp, perc_threshold=(0., 100.0), min_val=0, max_val=255) temp = np.int16(temp) clahe_output = equalize_adapthist(temp, clip_limit=clip_limit, nbins=self.nbins) ## recover intensity range result[i] = intensity_normalise(clahe_output, perc_threshold=(0., 100.0), min_val=_input_min, max_val=_input_max) tensorresult = torch.from_numpy(result).float() outputs.append(tensorresult) return outputs if idx >= 1 else outputs[0] else: outputs = inputs return outputs class RandomGamma(object): ''' Perform Random Gamma Contrast Adjusting support 2D and 3D ''' def __init__(self, p_thresh=0.5, gamma_range=[0.8, 1.4], gamma_flag=True, preserve_range=True): """ Randomly do gamma to a torch tensor Arguments -------- :param gamma_flag: [bool] list of flags for gamma aug """ self.gamma_range = gamma_range self.p_thresh = p_thresh self.gamma_flag = gamma_flag self.preserve_range = preserve_range ## if preserve the range to be in [min,max] def __call__(self, *inputs): outputs = [] if np.random.rand() < self.p_thresh: gamma = random.random() * (self.gamma_range[1] - self.gamma_range[0]) + self.gamma_range[0] # # print ('gamma: %f',gamma) for idx, _input in enumerate(inputs): assert inputs[0].size() == _input.size() if (self.gamma_flag[idx]): assert gamma > 0 if self.preserve_range: self.c_min = _input.min() self.c_max = _input.max() _input = _input ** (1.0 / gamma) if self.preserve_range: _input[_input < self.c_min] = self.c_min _input[_input > self.c_max] = self.c_max outputs.append(_input) else: idx = len(inputs) outputs = inputs return outputs if idx >= 1 else outputs[0] class RandomBrightnessFluctuation(object): ''' Perform image contrast and brightness augmentation. support 2D and 3D ''' def __init__(self, p=0.5, contrast_range=[0.8, 1.2], brightness_range=[-0.1, 0.1], flag=True, preserve_range=True): """ Arguments -------- :param flag: [bool] list of flags for aug """ self.contrast_range = contrast_range self.brightness_range = brightness_range self.p_thresh = p self.flag = flag self.preserve_range = preserve_range ## if preserve the range to be in [min,max] def __call__(self, *inputs): outputs = [] if np.random.rand() < self.p_thresh: scale = random.random() * (self.contrast_range[1] - self.contrast_range[0]) + self.contrast_range[0] # brightness = random.random() * (self.brightness_range[1] - self.brightness_range[0]) + \ self.brightness_range[ 0] # # print ('gamma: %f',gamma) for idx, _input in enumerate(inputs): assert inputs[0].size() == _input.size() if (self.flag[idx]): assert scale > 0 if self.preserve_range: self.c_min = _input.min() self.c_max = _input.max() _input = _input * scale + brightness if self.preserve_range: _input[_input < self.c_min] = self.c_min _input[_input > self.c_max] = self.c_max outputs.append(_input) else: idx = len(inputs) outputs = inputs return outputs if idx >= 1 else outputs[0] def intensity_normalise(img_data, perc_threshold=(0., 99.0), min_val=0., max_val=1): ''' intensity_normalise Works by calculating : a = (max'-min')/(max-min) b = max' - a * max new_value = a * value + b img_data=3D matrix [N*H*W] ''' if len(img_data.shape) == 3: output = np.zeros_like(img_data) assert img_data.shape[0] < img_data.shape[1], 'check data is formatted as N*H*W' for idx in range(img_data.shape[0]): # slice_data = img_data[idx] a_min_val, a_max_val = np.percentile(slice_data, perc_threshold) ## restrict the intensity range slice_data[slice_data <= a_min_val] = a_min_val slice_data[slice_data >= a_max_val] = a_max_val ## perform normalisation scale = (max_val - min_val) / (a_max_val - a_min_val) bias = max_val - scale * a_max_val output[idx] = slice_data * scale + bias return output elif len(img_data.shape) == 2: a_min_val, a_max_val = np.percentile(img_data, perc_threshold) ## restrict the intensity range img_data[img_data <= a_min_val] = a_min_val img_data[img_data >= a_max_val] = a_max_val ## perform normalisation scale = (max_val - min_val) / (a_max_val - a_min_val) bias = max_val - scale * a_max_val output = img_data * scale + bias return output else: raise NotImplementedError def contrast_enhancement(img_data, clip_limit=0.01, nbins=256): if len(img_data.shape) == 3: output = np.zeros_like(img_data) assert img_data.shape[0] < img_data.shape[1], 'check data is formatted as N*H*W' for idx in range(img_data.shape[0]): # slice_data = img_data[idx] slice_data = equalize_adapthist(slice_data, clip_limit=clip_limit, nbins=nbins) output[idx] = slice_data return output else: raise NotImplementedError class MyNormalizeMedicPercentile(object): """ Given min_val: float and max_val: float, will normalize each channel of the th.*Tensor to the provided min and max values. Works by calculating : a = (max'-min')/(max-min) b = max' - a * max new_value = a * value + b where min' & max' are given values, and min & max are observed min/max for each channel """ def __init__(self, min_val=0.0, max_val=1.0, perc_threshold=(1.0, 95.0), norm_flag=True): """ Normalize a tensor between a min and max value :param min_val: (float) lower bound of normalized tensor :param max_val: (float) upper bound of normalized tensor :param perc_threshold: (float, float) percentile of image intensities used for scaling :param norm_flag: [bool] list of flags for normalisation """ self.min_val = min_val self.max_val = max_val self.perc_threshold = perc_threshold self.norm_flag = norm_flag def __call__(self, *inputs): # prepare the normalisation flag if isinstance(self.norm_flag, bool): norm_flag = [self.norm_flag] * len(inputs) else: norm_flag = self.norm_flag outputs = [] eps = 1e-8 for idx, _input in enumerate(inputs): if norm_flag[idx]: # determine the percentiles and threshold the outliers _min_val, _max_val = np.percentile(_input.numpy(), self.perc_threshold) _input[th.le(_input, _min_val)] = _min_val _input[th.ge(_input, _max_val)] = _max_val # scale the intensity values a = (self.max_val - self.min_val) / ((_max_val - _min_val) + eps) b = self.max_val - a * _max_val _input = _input.mul(a).add(b) outputs.append(_input) return outputs if idx >= 1 else outputs[0] class MyRandomPurtarbation(object): """ """ def __init__(self, multi_control_points=[2,4,8], max_sigma=16, flag=True, add_noise=True, epsilon=0.01, p=0.5, magnitude=0.3 ): """ Running random perturbation on images :param multi_control_points: list of number of control points at each scale, by default, only use 4 control points. :param max_sigma: float, a parameter to control the scale of gaussian filter for smoothness :param flag: whether to apply the perturbation to each input in the list :param add_noise: boolean: adding random gaussian noise: default: True :param epsilon: float, a scalar to control the level of noise, Default: 0.01 :param p: the probability of performing perturbation. Default: 0.5 """ self.multi_control_points = multi_control_points self.max_sigma = max_sigma self.flag = flag self.add_noise = add_noise self.epsilon = epsilon assert magnitude>=0 and magnitude<1,'magnitude must be in [0,1)' self.magnitude=magnitude self.p = p def __call__(self, *inputs): # prepare the perturbation flag if isinstance(self.flag, bool): flag = [self.flag] * len(inputs) else: flag = self.flag if np.random.rand() >= self.p: # do nothing return inputs else: outputs = [] if isinstance(self.multi_control_points, list): self.multi_control_points.sort() else: raise ValueError for idx, input in enumerate(inputs): if flag[idx]: _input = input.numpy() if np.abs(np.sum(_input) - 0) > 1e-6: ##random generate bias field ch, h, w = _input.shape[0], _input.shape[1], _input.shape[2] total_bias_field = np.zeros((h, w)) ## from coarse grid to fine grid for control_points in self.multi_control_points: assert control_points <= np.min((h, w)), 'num of control points at each scale must be ' \ 'smaller or equal to the original image size' control_points_field = np.float32(np.random.uniform(0, 1, (control_points, control_points))) sigma = control_points * 2.0 if sigma > self.max_sigma: sigma = self.max_sigma control_points_field = gaussian_filter(control_points_field, sigma) interp = np.array( Image.fromarray(control_points_field, mode='L').resize((h, w), resample=Image.BICUBIC), dtype=np.float32) interp = interp / (1.0 * interp.sum() * control_points + 1e-12) total_bias_field += interp total_bias_field = gaussian_filter(total_bias_field, self.max_sigma) total_bias_field = (total_bias_field / ( 1.0 * total_bias_field.sum() + 1e-12)) * h * w ## should be close to a identity # restrict values to [1-magnitude, 1+magnitude] total_bias_field=np.clip(total_bias_field,1-self.magnitude,1+self.magnitude) ## bias image _input = np.repeat(total_bias_field[np.newaxis, :, :], repeats=ch, axis=0) * _input _min_val = np.min(np.array(_input)) _max_val = np.max(np.array(_input)) _input = (_input - _min_val) / (_max_val - _min_val + 1e-8) ## add gaussian noise if self.add_noise: noise = np.random.randn(ch, h, w) noise = noise * self.epsilon _input = _input + noise _input = np.clip(_input, 0, 1) else: print('ignore black images') # input = torch.from_numpy(_input).float() # print (input.size()) outputs.append(input) return outputs if idx >= 1 else outputs[0] class MyRandomPurtarbationV2(object): """ """ def __init__(self, ms_control_point_spacing=[32], magnitude=0.2, flag=True, add_noise=True, epsilon=0.01, p=0.5, debug=False, spline_dgree=3, spline_smoothness=3, ): """ Running random perturbation on images, perturbation is smoothed using bspline interpolation :param ms_control_point_spacing: list of control point spacing at each scale. Prefer to use 5x5 control points in the coarse grid (images are divided into 4x4). :param magnitude: float, control the value range of knots vectors at the initialization stage :param flag: whether to apply the perturbation to each input in the list :param add_noise: boolean: adding random gaussian noise: default: True :param epsilon: float, a scalar to control the level of noise, Default: 0.01 :param spline_dgree: int,degree of bivariate spline, default =3 :param p: the probability of performing perturbation. Default: 0.5 """ assert len(ms_control_point_spacing) >= 1, 'must specify at least one spacing, but got {}'.format( str(ms_control_point_spacing)) assert np.abs(magnitude)<1, 'must set magnitude x in a reasonable range, bias field value 1+/-magnitude can not be zero or negative' self.ms_control_point_spacing = [64] self.magnitude = magnitude self.flag = flag self.add_noise = add_noise self.epsilon = epsilon self.spline_dgree = spline_dgree self.spline_smoothness = spline_smoothness self.p = p self.debug = False def __call__(self, *inputs): # prepare the perturbation flag if isinstance(self.flag, bool): flag = [self.flag] * len(inputs) else: flag = self.flag if np.random.rand() >= self.p: # do nothing return inputs else: outputs = [] if isinstance(self.ms_control_point_spacing, list): ## from coarse to fine: self.ms_control_point_spacing.sort(reverse=True) if not self.ms_control_point_spacing[-1] == 1: self.ms_control_point_spacing.append(1) self.ms_control_point_spacing.sort(reverse=True) else: raise ValueError for idx, input in enumerate(inputs): if flag[idx]: _input = input.numpy() if np.abs(np.sum(_input) - 0) > 1e-6: ##random generate bias field ch, orig_h, orig_w = _input.shape[0], _input.shape[1], _input.shape[2] assert orig_h == orig_w, 'currently only support square images for simplicity, but found size ({},' \ '{})'.format( orig_h, orig_w) raw_image = _input.copy() ## extend the coordinates to be larger than the original h=np.round(orig_h+self.ms_control_point_spacing[0]*1.5) w=np.round(orig_w+self.ms_control_point_spacing[0]*1.5) h=np.int(h) w=np.int(w) assert np.round(h /self.ms_control_point_spacing[0]) >= self.spline_dgree + 1 and np.round(w / self.ms_control_point_spacing[ 0]) >= self.spline_dgree + 1, 'please decrease the spacing, the number of control ' \ 'points in each dimension ' \ 'should be at least kx+1, current bspline order k={}, ' \ 'but found only :{} and {} along each axis'.format( self.spline_dgree, h / self.ms_control_point_spacing[0], w / self.ms_control_point_spacing[0]) ## initialize the coarsest grid: xmax, ymax = w // 2, h // 2 if self.debug: print (xmax,ymax) print ('self.ms_control_point_spacing[0]',self.ms_control_point_spacing[0]) x =
np.arange(-xmax, xmax + 1, self.ms_control_point_spacing[0])
numpy.arange
# pyPI: Potential Intensity Calculations in Python # ----------------------------------------------------------------------------------- # import required packages import numpy as np import numba as nb from . import constants from . import utilities # define the function to calculate CAPE #定义计算CAPE的函数 @nb.njit() def cape(TP, RP, PP, T, R, P, ascent_flag=0, ptop=50, miss_handle=1): # function [CAPED,TOB,LNB,IFLAG]= cape(TP,RP,PP,T,R,P,ascent_flag=0,ptop=50,miss_handle=1) # # This function calculates the CAPE of a parcel given parcel pressure PP (hPa), # temperature TP (K) and mixing ratio RP (gram/gram) and given a sounding # of temperature (T in K) and mixing ratio (R in gram/gram) as a function # of pressure (P in hPa). CAPED is the calculated value of CAPE following # Emanuel 1994 (E94) Equation 6.3.6 and TOB is the temperature at the # level of neutral buoyancy ("LNB") for the displaced parcel. IFLAG is a flag # integer. If IFLAG = 1, routine is successful; if it is 0, routine did # not run owing to improper sounding (e.g. no water vapor at parcel level). # IFLAG=2 indicates that the routine did not converge, IFLAG=3 indicates that # the input profile had missing values. # # 这个函数计算一个包裹的CAPE给定包裹压力PP (hPa),温度TP (K)和混合比RP(克/克),并给出一个探测温度(T, K)和混合比(R,克/克)作为压力的函数(P, # hPa)。CAPED为CAPE的计算值,根据Emanuel 1994 (E94)式6.3.6,TOB为位移包裹的中性浮力水平温度(LNB)。ifflag为标志整数。If If = 1, routine is # successful;如果为0,则由于探测不当(例如包裹层没有水汽),程序没有运行。IFLAG=2表示例程没有收敛,IFLAG=3表示输入剖面有缺失值。 # # INPUT: TP,RP,PP: floating point numbers of Parcel pressure (hPa), # temperature (K), and mixing ratio (gram/gram) # # T,R,P: One-dimensional arrays # containing environmental pressure (hPa), temperature (K), # and mixing ratio (gram/gram) profiles. The arrays MUST be # arranged so that the lowest index corresponds # to the lowest model level, with increasing index # corresponding to decreasing pressure. # # ascent_flag: Adjustable constant fraction for buoyancy of displaced # parcels, where 0=Reversible ascent; 1=Pseudo-adiabatic ascent # # ptop: Pressure below which sounding is ignored (hPa) # # miss_handle: Flag that determines how missing (NaN) values are handled. # If = 0 (BE02 default), NaN values in profile are ignored and PI is still calcuated # If = 1 (pyPI default), given NaN values PI will be set to missing (with IFLAG=3) # NOTE: If any missing values are between the lowest valid level and ptop # then PI will automatically be set to missing (with IFLAG=3) # # # OUTPUT: CAPED (J/kg) is Convective Available Potential Energy of an air parcel # consistent with its parcel and environmental properties. # # TOB is the Temperature (K) at the level of neutral bouyancy # for the displaced air parcel # # LNB is the pressure level of neutral bouyancy (hPa) for the # displaced air parcel # # IFLAG is a flag where the value of 1 means OK; a value of 0 # indicates an improper sounding or parcel; a value of 2 # means that the routine failed to converge # # # *** Handle missing values *** # # find if any values are missing in the temperature or mixing ratio array valid_i = ~np.isnan(T) first_valid = np.where(valid_i)[0][0] # Are there missing values? If so, assess according to flag if (np.sum(valid_i) != len(P)): # if not allowed, set IFLAG=3 and return missing CAPE if (miss_handle != 0): CAPED = np.nan TOB = np.nan LNB = np.nan IFLAG = 3 # Return the unsuitable values return (CAPED, TOB, LNB, IFLAG) else: # if allowed, but there are missing values between the lowest existing level # and ptop, then set IFLAG=3 and return missing CAPE if np.sum(np.isnan(T[first_valid:len(P)]) > 0): CAPED = np.nan TOB = np.nan LNB = np.nan IFLAG = 3 # Return the unsuitable values return (CAPED, TOB, LNB, IFLAG) else: first_lvl = first_valid else: first_lvl = 0 # Populate new environmental profiles removing values above ptop and # find new number, N, of profile levels with which to calculate CAPE N = np.argmin(np.abs(P - ptop)) P = P[first_lvl:N] T = T[first_lvl:N] R = R[first_lvl:N] nlvl = len(P) TVRDIF = np.zeros((nlvl,)) # # *** Run checks *** # # CHECK: Is the input parcel suitable? If not, return missing CAPE if ((RP < 1e-6) or (TP < 200)): CAPED = 0 TOB = np.nan LNB = np.nan IFLAG = 0 # Return the unsuitable values return (CAPED, TOB, LNB, IFLAG) # # *** Define various parcel quantities, including reversible *** # *** entropy, S *** # TPC = utilities.T_ktoC(TP) # Parcel temperature in Celsius ESP = utilities.es_cc(TPC) # Parcel's saturated vapor pressure EVP = utilities.ev(RP, PP) # Parcel's partial vapor pressure RH = EVP / ESP # Parcel's relative humidity RH = min([RH, 1.0]) # ensure that the relatively humidity does not exceed 1.0 # calculate reversible total specific entropy per unit mass of dry air (E94, EQN. 4.5.9) S = utilities.entropy_S(TP, RP, PP) # # *** Estimate lifted condensation level pressure, PLCL *** # Based on E94 "calcsound.f" code at http://texmex.mit.edu/pub/emanuel/BOOK/ # see also https://psl.noaa.gov/data/composites/day/calculation.html # # NOTE: Modern PLCL calculations are made following the exact expressions of Romps (2017), # see https://journals.ametsoc.org/doi/pdf/10.1175/JAS-D-17-0102.1 # and Python PLCL code at http://romps.berkeley.edu/papers/pubdata/2016/lcl/lcl.py # PLCL = utilities.e_pLCL(TP, RH, PP) # Initial default values before loop CAPED = 0 TOB = T[0] IFLAG = 1 # Values to help loop NCMAX = 0 jmin = int(1e6) # # *** Begin updraft loop *** # # loop over each level in the profile for j in range(nlvl): # jmin is the index of the lowest pressure level evaluated in the loop jmin = int(min([jmin, j])) # # *** Calculate Parcel quantities BELOW lifted condensation level *** # if (P[j] >= PLCL): # Parcel temperature at this pressure TG = TP * (P[j] / PP) ** (constants.RD / constants.CPD) # Parcel Mixing ratio RG = RP # Parcel and Environmental Density Temperatures at this pressure (E94, EQN. 4.3.1 and 6.3.7) TLVR = utilities.Trho(TG, RG, RG) TVENV = utilities.Trho(T[j], R[j], R[j]) # Bouyancy of the parcel in the environment (Proxy of E94, EQN. 6.1.5) TVRDIF[j,] = TLVR - TVENV # # *** Calculate Parcel quantities ABOVE lifted condensation level *** # else: # Initial default values before loop TGNEW = T[j] TJC = utilities.T_ktoC(T[j]) ES = utilities.es_cc(TJC) RG = utilities.rv(ES, P[j]) # # *** Iteratively calculate lifted parcel temperature and mixing *** # *** ratio for reversible ascent *** # # set loop counter and initial condition NC = 0 TG = 0 # loop until loop converges or bails out while ((np.abs(TGNEW - TG)) > 0.001): # Parcel temperature and mixing ratio during this iteration TG = TGNEW TC = utilities.T_ktoC(TG) ENEW = utilities.es_cc(TC) RG = utilities.rv(ENEW, P[j]) # increase iteration count in the loop NC += 1 # # *** Calculate estimates of the rates of change of the entropy *** # *** with temperature at constant pressure *** # ALV = utilities.Lv(TC) # calculate the rate of change of entropy with temperature, s_ell SL = (constants.CPD + RP * constants.CL + ALV * ALV * RG / (constants.RV * TG * TG)) / TG EM = utilities.ev(RG, P[j]) # calculate the saturated entropy, s_k, noting r_T=RP and # the last term vanishes with saturation, i.e. RH=1 SG = (constants.CPD + RP * constants.CL) * np.log(TG) - constants.RD * np.log(P[j] - EM) + ALV * RG / TG # convergence speed (AP, step in entropy fraction) varies as a function of # number of iterations if (NC < 3): # converge slowly with a smaller step AP = 0.3 else: # speed the process with a larger step when nearing convergence AP = 1.0 # find the new temperature in the iteration TGNEW = TG + AP * (S - SG) / SL # # *** If the routine does not converge, set IFLAG=2 and bail out *** # if (NC > 500) or (ENEW > (P[j] - 1)): CAPED = 0 TOB = T[0] LNB = P[0] IFLAG = 2 # Return the uncoverged values return (CAPED, TOB, LNB, IFLAG) # store the number of iterations NCMAX = NC # # *** Calculate buoyancy *** # # Parcel total mixing ratio: either reversible (ascent_flag=0) or pseudo-adiabatic (ascent_flag=1) RMEAN = ascent_flag * RG + (1 - ascent_flag) * RP # Parcel and Environmental Density Temperatures at this pressure (E94, EQN. 4.3.1 and 6.3.7) TLVR = utilities.Trho(TG, RMEAN, RG) TENV = utilities.Trho(T[j], R[j], R[j]) # Bouyancy of the parcel in the environment (Proxy of E94, EQN. 6.1.5) TVRDIF[j,] = TLVR - TENV # # *** Begin loop to find Positive areas (PA) and Negative areas (NA) *** # *** and CAPE from reversible ascent *** NA = 0.0 PA = 0.0 # # *** Find maximum level of positive buoyancy, INB *** # INB = 0 for j in range(nlvl - 1, jmin, -1): if (TVRDIF[j] > 0): INB = max([INB, j]) # CHECK: Is the LNB higher than the surface? If not, return zero CAPE if (INB == 0): CAPED = 0 TOB = T[0] LNB = P[INB] # TOB=np.nan LNB = 0 # Return the unconverged values return (CAPED, TOB, LNB, IFLAG) # if check is passed, continue with the CAPE calculation else: # # *** Find positive and negative areas and CAPE *** # via E94, EQN. 6.3.6) # for j in range(jmin + 1, INB + 1, 1): PFAC = constants.RD * (TVRDIF[j] + TVRDIF[j - 1]) * (P[j - 1] - P[j]) / (P[j] + P[j - 1]) PA = PA + max([PFAC, 0.0]) NA = NA - min([PFAC, 0.0]) # # *** Find area between parcel pressure and first level above it *** # PMA = (PP + P[jmin]) PFAC = constants.RD * (PP - P[jmin]) / PMA PA = PA + PFAC * max([TVRDIF[jmin], 0.0]) NA = NA - PFAC * min([TVRDIF[jmin], 0.0]) # # *** Find residual positive area above INB and TO *** # and finalize estimate of LNB and its temperature # PAT = 0.0 TOB = T[INB] LNB = P[INB] if (INB < nlvl - 1): PINB = (P[INB + 1] * TVRDIF[INB] - P[INB] * TVRDIF[INB + 1]) / (TVRDIF[INB] - TVRDIF[INB + 1]) LNB = PINB PAT = constants.RD * TVRDIF[INB] * (P[INB] - PINB) / (P[INB] + PINB) TOB = (T[INB] * (PINB - P[INB + 1]) + T[INB + 1] * (P[INB] - PINB)) / (P[INB] - P[INB + 1]) # # *** Find CAPE *** # CAPED = PA + PAT - NA CAPED = max([CAPED, 0.0]) # set the flag to OK if procedure reached this point IFLAG = 1 # Return the calculated outputs to the above program level return (CAPED, TOB, LNB, IFLAG) # 定义计算PI的函数 @nb.njit() def pi(SSTC, MSL, P, TC, R, CKCD=0.9, ascent_flag=0, diss_flag=1, V_reduc=0.8, ptop=50, miss_handle=1): # function [VMAX,PMIN,IFL,TO,OTL] = pi(SSTC,MSL,P,TC,R,CKCD=0.9,ascent_flag=0,diss_flag=1,V_reduc=0.8,ptop=50,miss_handle=0) # # *** This function calculates the maximum wind speed *** # *** and mimimum central pressure *** # *** achievable in tropical cyclones, given a sounding *** # *** and a sea surface temperature. *** # 这个函数计算热带气旋中可达到的最大风速和最小中心气压,给出一个探测值和海面温度。 # Thermodynamic and dynamic technical backgrounds (and calculations) are found in Bister # and Emanuel (2002; BE02) and Emanuel's "Atmospheric Convection" (E94; 1994; ISBN: 978-0195066302) # # 热力学和动力学技术背景(和计算)可以在Bister和Emanuel (2002;BE02)和Emanuel的“大气对流”(E94;1994;ISBN: 978 - 0195066302) # INPUT: SSTC: Sea surface temperature (C) # SSTC:海面温度(C) # MSL: Mean Sea level pressure (hPa) # MSL:平均海平面气压(hPa) # P, TC, R:一维数组 # 含压(hPa)、温度(C)、混合比(g/kg)。阵列的排列必须使最低的索引对应于最低的模型级别,指数的增加对应于压力的减少。 # 温度至少是对流层顶的温度,最好是平流层低层的温度,但是边界层以上的混合比并不重要。缺失的混合比例可以用零代替 # # CKCD: C_k与C_D的比值(无单位数),即焓和动量通量交换系数的比值(例如见Bister和Emanuel 1998, EQN)。17 - 18)。 # 更多关于CK/CD的讨论见于Emanuel(2003)。默认值为0.9,如Wing等人(2015) # ascent_flag:可调常数分数(无单位分数) # 其中0=可逆上升(默认值),1=伪绝热上升 # # diss_flag:可调开关整数(flag integer;0或1) # 表示耗散加热是允许的(默认值)还是不允许的0。参见Bister和Emanuel(1998)中包含的耗散加热。 # v_reduce:可调常数分数(无单位分数) # 减少梯度风到10米风见Emanuel(2000)和Powell(1980)。默认是0.8 # # ptop: 测深低于时忽略的压力(百帕) # # miss_handle:决定在CAPE计算中如何处理缺失值(NaN)的标志 # 如果= 0 (BE02默认值),配置文件中的NaN值被忽略,PI仍然被计算 # 如果 = 1,给定NaN值PI将被设为missing (If =3) # 注意:如果任何缺失值在最低有效级别和ptop之间,那么PI将自动设置为缺失(If =3) # # OUTPUT: # VMAX为最大地面风速(m/s) # 减少通过v_reducc反射表面阻力 # # PMIN为最小中心压力(hPa) # # IFL是一个标志: # 值为1表示OK; # 值为0表示不收敛; # 值为2表示CAPE例程未能收敛; # 值3表示CAPE例程由于输入中缺少数据而失败; # # TO为出流温度,K # # OTL为出水温度水平(hPa),定义为发现的中性浮力温度水平 # 即浮力实际上是一个在海平面压力下饱和的气团的同等条件 # # convert units SSTK = utilities.T_Ctok(SSTC) # SST in kelvin T = utilities.T_Ctok(TC) # Temperature profile in kelvin R = R * 0.001 # Mixing ratio profile in g/g # 检查1:sst是否超过5C?如果没有,设置IFL=0并返回缺失的PI if (SSTC <= 5.0): VMAX = np.nan PMIN = np.nan IFL = 0 TO = np.nan OTL = np.nan return (VMAX, PMIN, IFL, TO, OTL) # 检查2:温度曲线是否超过100K?如果没有,设置IFL=0并返回缺失的PI # if (np.min(T) <= 100):#返回列表中最小的 # VMAX = np.nan # PMIN = np.nan # IFL = 0 # TO = np.nan # OTL = np.nan # return (VMAX, PMIN, IFL, TO, OTL) # 设置缺失混合比例为零g/g,遵循Kerry的BE02算法 R[np.isnan(R)] = 0. # 饱和水汽压 # 来自克劳修斯-克拉珀龙关系/奥古斯特-罗氏-马格纳斯公式 ES0 = utilities.es_cc(SSTC) # 定义包裹的起吊水平(第一个压力水平) NK = 0 TP = T[NK] RP = R[NK] PP = P[NK] result = cape(TP, RP, PP, T, R, P, ascent_flag, ptop, miss_handle) CAPEA = result[0] IFLAG = result[3] # 如果CAPE函数触发了一个标志,将输出IFL设置为它 if (IFLAG != 1): IFL = int(IFLAG) # # ***开始迭代寻找最小压力*** # # 设置循环计数器和初始条件 NP = 0 # loop counter PM = 970.0 PMOLD = PM # initial condition from minimum pressure PNEW = 0.0 # initial condition from minimum pressure IFL = int(1) # Default flag for CAPE calculation # 循环直到收敛或保释 while (np.abs(PNEW - PMOLD) > 0.5): # # ***找到CAPE在最大风速半径*** # TP = T[NK] PP = min([PM, 1000.0]) # find the mixing ratio with the average of the lowest level pressure and MSL RP = constants.EPS * R[NK] * MSL / (PP * (constants.EPS + R[NK]) - R[NK] * MSL) result = cape(TP, RP, PP, T, R, P, ascent_flag, ptop, miss_handle) CAPEM = result[0] IFLAG = result[3] # if the CAPE function tripped a different flag, set the output IFL to it if (IFLAG != 1): IFL = int(IFLAG) # # *** Find saturation CAPE at radius of maximum winds *** # *** Note that TO and OTL are found with this assumption *** # TP = SSTK PP = min([PM, 1000.0]) RP = utilities.rv(ES0, PP) result = cape(TP, RP, PP, T, R, P, ascent_flag, ptop, miss_handle) CAPEMS, TOMS, LNBS, IFLAG = result # if the CAPE function tripped a flag, set the output IFL to it if (IFLAG != 1): IFL = int(IFLAG) # Store the outflow temperature and level of neutral bouyancy at the outflow level (OTL) TO = TOMS OTL = LNBS # Calculate the proxy for TC efficiency (BE02, EQN. 1-3) RAT = SSTK / TO # If dissipative heating is "off", TC efficiency proxy is set to 1.0 (BE02, pg. 3) if (diss_flag == 0): RAT = 1.0 # # *** Initial estimate of pressure at the radius of maximum winds *** # RS0 = RP # Lowest level and Sea-surface Density Temperature (E94, EQN. 4.3.1 and 6.3.7) TV0 = utilities.Trho(T[NK], R[NK], R[NK]) TVSST = utilities.Trho(SSTK, RS0, RS0) # Average Surface Density Temperature, e.g. 1/2*[Tv(Tsfc)+Tv(sst)] TVAV = 0.5 * (TV0 + TVSST) # Converge toward CAPE*-CAPEM (BE02, EQN 3-4) CAT = (CAPEM - CAPEA) + 0.5 * CKCD * RAT * (CAPEMS - CAPEM) CAT = max([CAT, 0.0]) # Iterate on pressure PNEW = MSL * np.exp(-CAT / (constants.RD * TVAV)) # # *** Test for convergence (setup for possible next while iteration) *** # # store the previous step's pressure PMOLD = PM # store the current step's pressure PM = PNEW # increase iteration count in the loop NP += 1 # # *** If the routine does not converge, set IFL=0 and return missing PI *** # if (NP > 200) or (PM < 400): VMAX = np.nan PMIN = np.nan IFL = 0 TO = np.nan OTL = np.nan return (VMAX, PMIN, IFL, TO, OTL) # Once converged, set potential intensity at the radius of maximum winds CATFAC = 0.5 * (1. + 1 / constants.b) CAT = (CAPEM - CAPEA) + CKCD * RAT * CATFAC * (CAPEMS - CAPEM) CAT = max([CAT, 0.0]) # Calculate the minimum pressure at the eye of the storm # BE02 EQN. 4 PMIN = MSL * np.exp(-CAT / (constants.RD * TVAV)) # 计算最大风速半径下的潜在强度 # BE02 EQN。3、减少某些部分(默认20%),以解释减少 # 10米风速的梯度风速(Emanuel 2000, Powell 1980) FAC = max([0.0, (CAPEMS - CAPEM)]) VMAX = V_reduc *
np.sqrt(CKCD * RAT * FAC)
numpy.sqrt
import SVMClassification as SVMC from os import system import numpy as np import scipy.optimize as op import matplotlib.pyplot as plt SVMC.clearScreen() dataTraining= SVMC.loadData("dataTraining.txt") X=dataTraining[:,0:2] y=dataTraining[:,2:3] degree=1 theta =SVMC.initTheta(X,degree) #theta = SVMC.gradientDescent(X, y, theta,5,500, degree) y=y.flatten() plt.scatter(X[np.where(y==1),0],X[np.where(y==1),1],marker="+") plt.scatter(X[np.where(y!=1),0],X[np.where(y!=1),1],marker=".") #SVMC.plotDecisionBoundry(theta,X,y) C=70 tol =0.001 max_passes = 20 m,n = X.shape y[y==0] = -1 alphas = np.zeros((m, 1)) b = 0 E = np.zeros((m, 1)) passes = 0 eta = 0 L = 0 H = 0 JRANDOM=[ 37, 36, 7, 18, 36, 23, 18, 13, 11, 27, 9, 1, 23, 22, 40, 31, 35, 20, 8, 40, 41, 50, 20, 21, 37, 49, 26, 40, 18, 10, 48, 3, 40, 34, 17, 4, 28, 43, 8, 18, 32, 11, 9, 5, 17, 27, 17, 13, 17, 38, 24 ] y=y.flatten() E=E.flatten() alphas=alphas.flatten() K = np.matmul(X,X.T) while (passes < max_passes): num_changed_alphas = 0 for i in range(m): E[i] = b + np.sum(np.multiply(alphas,np.multiply(y,K[:,i]))) - y[i] if ((y[i]*E[i] < -tol and alphas[i] < C) or (y[i]*E[i] > tol and alphas[i] > 0)): j=
np.random.randint(0,m)
numpy.random.randint
from __future__ import absolute_import, print_function import numpy as npy from PyDSTool import Events, Variable, Pointset, Trajectory from PyDSTool.common import args, metric, metric_L2, metric_weighted_L2, \ metric_float, remain, fit_quadratic, fit_exponential, fit_diff_of_exp, \ smooth_pts, nearest_2n_indices, make_poly_interpolated_curve, simple_bisection from PyDSTool.Trajectory import numeric_to_traj from PyDSTool.ModelContext import * from PyDSTool.Toolbox.data_analysis import butter, filtfilt, rectify from PyDSTool.errors import PyDSTool_KeyError import copy # Test this on a single spike with global max at spike and minima at endpoints # Test this on a mexican hat type spike with global min and max at spike peak and trough # Test this on monotonic data for worst case scenario!! Should return None for max and min # Also test on noisy monotonic data # Return value of Nones to a feature evaluator should suggest to it to change window size for defining pts def find_internal_extrema(pts, noise_tol=0): """ Find an interior (local) maximum and minimum values of a 1D pointset, away from the endpoints. Returns a dictionary mapping 'local_max' -> (index_max, xmax), 'local_min' -> (index_min, xmin), whose values are None if the pointset is monotonic or is close enough so that the global extrema are at the endpoints. Use noise_tol > 0 to avoid getting a local extremum right next to an endpoint because of noise. Also returned in the dictionary for reference: 'first' -> (0, <start_endpoint_value>), 'last' -> (last_index, <last_endpoint_value>), 'global_max' -> (index, value), 'global_min' -> (index, value) Assumes there is only one interior (max, min) pair in pts, otherwise will return an arbitrary choice from multiple maxima and minima.""" assert pts.dimension == 1 # convert all singleton points to floats with [0] selection x0 = pts[0][0] x1 = pts[-1][0] # need last_ix explicitly for index test below last_ix = len(pts)-1 end_ixs = (0, last_ix) max_val_ix = npy.argmax(pts) min_val_ix = npy.argmin(pts) glob_xmax = pts[max_val_ix][0] glob_xmin = pts[min_val_ix][0] no_local_extrema = {'local_max': (None, None), 'local_min': (None, None), 'first': (0, x0), 'last': (last_ix, x1), 'global_max': (max_val_ix, glob_xmax), 'global_min': (min_val_ix, glob_xmin) } max_at_end = max_val_ix in end_ixs min_at_end = min_val_ix in end_ixs if max_at_end: if min_at_end: # No detectable turning points present (this is criterion for ignoring noisy data) return no_local_extrema else: # interior minimum found index_min = min_val_ix xmin = pts[index_min] # find associated interior local maximum max_val_ix1 = npy.argmax(pts[:min_val_ix]) max_val_ix2 = npy.argmax(pts[min_val_ix:])+min_val_ix if max_val_ix1 in end_ixs: if max_val_ix2 in end_ixs: index_max = None xmax = None else: index_max = max_val_ix2 xmax = pts[index_max][0] else: # assumes only one local max / min pair in interior! index_max = max_val_ix1 xmax = pts[index_max][0] else: # interior maximum found index_max = max_val_ix xmax = pts[index_max][0] # find associated interior local minimum min_val_ix1 = npy.argmin(pts[:max_val_ix]) xmin1 = pts[min_val_ix1][0] min_val_ix2 = npy.argmin(pts[max_val_ix:])+max_val_ix xmin2 = pts[min_val_ix2][0] if min_val_ix1 in end_ixs or abs(xmin1-x0)<noise_tol or abs(xmin1-x1)<noise_tol: if min_val_ix2 in end_ixs or abs(xmin1-x0)<noise_tol or abs(xmin1-x1)<noise_tol: index_min = None xmin = None else: index_min = min_val_ix2 xmin = xmin2 else: # assumes only one local max / min pair in interior! index_min = min_val_ix1 xmin = xmin1 return {'local_max': (index_max, xmax), 'local_min': (index_min, xmin), 'first': (0, x0), 'last': (last_ix, x1), 'global_max': (max_val_ix, glob_xmax), 'global_min': (min_val_ix, glob_xmin)} class get_spike_model(ql_feature_leaf): """Qualitative test for presence of spike in model trajectory data using events to identify spike times. Also records salient spike information for quantitative comparisons later.""" def evaluate(self, traj): # function of traj, not target pts = traj.sample(coords=[self.super_pars.burst_coord], tlo=self.pars.tlo, thi=self.pars.tlo+self.pars.width_tol) loc_extrema = find_internal_extrema(pts) if self.pars.verbose_level > 0: print(loc_extrema) max_val_ix, xmax = loc_extrema['local_max'] global_max_val_ix, global_xmax = loc_extrema['global_max'] min_val_ix, xmin = loc_extrema['local_min'] global_min_val_ix, global_xmin = loc_extrema['global_min'] # could split these tests into 3 further sub-features but we'll skip that here for efficiency if xmax is None: self.results.ixmax = None self.results.tmax = None test1 = test2 = test3 = False else: test1 = max_val_ix not in (loc_extrema['first'][0], loc_extrema['last'][0]) test2 = npy.linalg.norm(global_xmin-xmax) > self.pars.height_tol try: test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol except: # fails if xmin is None, i.e. no interior minimum # allow no local minimum present, in which case use the other endpoint for test # ... we don't know which is the one alread tested in test2, so test both ends again, # knowing that they are both lower than the interior maximum found in this case xmin = max([global_xmin, loc_extrema['last'][1], loc_extrema['first'][1]]) test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol self.results.ixmax = max_val_ix self.results.tmax = pts.indepvararray[max_val_ix] self.results.spike_pts = pts return test1 and test2 and test3 def finish(self, traj): self.results.spike_time = self.results.tmax self.results.spike_val = self.results.spike_pts[self.results.ixmax][self.super_pars.burst_coord] class get_spike_data(ql_feature_leaf): """Qualitative test for presence of spike in noisy data. Also records salient spike information for quantitative comparisons later. Criteria: ensure a maximum occurs, and that this is away from endpoints of traj "Uniqueness" of this maximum can only be determined for noisy data using a height tolerance. Assumes spikes will never bunch up too much so that more than spike occurs in the spacing_tol window. Finds maximum position using a quadratic fit. """ def _local_init(self): # avoids recreating this object for every test self.quadratic = fit_quadratic(verbose=self.pars.verbose_level>0) def evaluate(self, traj): # function of traj, not target event_args = {'name': 'spike_thresh', 'eventtol': self.pars.eventtol, 'eventdelay': self.pars.eventtol*.1, 'starttime': 0, 'active': True} if 'coord' not in self.pars: self.pars.coord = self.super_pars.burst_coord # update thi each time b/c tlo will be different self.pars.thi = self.pars.tlo+self.pars.width_tol self.pars.ev = Events.makePythonStateZeroCrossEvent(self.pars.coord, "thresh", 0, event_args, traj.variables[self.pars.coord]) pts = traj.sample(coords=[self.pars.coord], tlo=self.pars.tlo, thi=self.pars.thi) if pts.indepvararray[-1] < self.pars.thi: self.pars.thi = pts.indepvararray[-1] loc_extrema = find_internal_extrema(pts, self.pars.noise_tol) if self.pars.verbose_level > 0: print(loc_extrema) # from PyDSTool import plot, show ## plot spike and quadratic fit #plot(pts.indepvararray, pts[self.super_pars.burst_coord], 'go-') #show() max_val_ix, xmax = loc_extrema['local_max'] global_max_val_ix, global_xmax = loc_extrema['global_max'] min_val_ix, xmin = loc_extrema['local_min'] global_min_val_ix, global_xmin = loc_extrema['global_min'] # could split these tests into 3 further sub-features but we'll skip that here for efficiency test1 = max_val_ix not in (loc_extrema['first'][0], loc_extrema['last'][0]) test2 = npy.linalg.norm(global_xmin-xmax) > self.pars.height_tol try: test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol except: # fails if xmin is None, i.e. no interior minimum # allow no local minimum present, in which case use the other endpoint for test # ... we don't know which is the one already tested in test2, so test both ends again, # knowing that they are both lower than the interior maximum found in this case xmin = max([global_xmin, loc_extrema['last'][1], loc_extrema['first'][1]]) test3 = npy.linalg.norm(xmin-xmax) > self.pars.height_tol # generate a suitable threshold from local maximum try: thresh_pc = self.pars.thresh_pc except: # default value of 15% thresh_pc = 0.15 thresh = (xmin + thresh_pc*(xmax-xmin)) if self.pars.verbose_level > 0: print("xmin used =", xmin) print("thresh = ", thresh) # Define extent of spike for purposes of quadratic fit ... evs_found = self.pars.ev.searchForEvents(trange=[self.pars.tlo, self.pars.thi], parDict={'thresh': thresh}) tlo = evs_found[0][0] thi = evs_found[1][0] tmax = pts.indepvararray[max_val_ix] symm_dist = npy.min([abs(tmax-tlo), abs(thi-tmax)]) # HACK! Ensure dt value will not cause us to hit an index directly, otherwise # have to catch case from Pointset.find method when return value is a single # integer index rather than a pair of indices if symm_dist > self.pars.fit_width_max/2.000000007: dt = self.pars.fit_width_max/2.000000007 else: dt = symm_dist*1.0000000007 tlo = tmax-dt thi = tmax+dt ixlo = pts.find(tmax-dt, end=0) ixhi = pts.find(tmax+dt, end=1) if self.pars.verbose_level > 0: print("ixlo =", ixlo, "ixhi =", ixhi) print("tlo =",tmax-dt, "thi =",tmax+dt) print(pts[ixlo], pts[ixhi]) print("\nget_spike tests:", test1, test2, test3) self.results.ixlo = ixlo self.results.ixhi = ixhi self.results.ixmax = max_val_ix self.results.tlo = tlo self.results.thi = thi self.results.tmax = tmax self.results.spike_pts = pts[ixlo:ixhi] return test1 and test2 and test3 def finish(self, traj): # function of traj, not target if self.pars.verbose_level > 0: print("Finishing spike processing...") pts = self.results.spike_pts coord = self.pars.coord xlo = pts[0][0] # xmax is just an estimate of the max value xmax = pts[self.results.ixmax-self.results.ixlo][0] estimate_quad_coeff = -(xmax-xlo)/((self.results.tmax - \ self.results.tlo)**2) estimate_intercept = xlo - \ ((xmax-xlo)/(self.results.tmax-self.results.tlo))*self.results.tlo res = self.quadratic.fit(pts.indepvararray, pts[coord], pars_ic=(estimate_quad_coeff,0,estimate_intercept), opts=args(peak_constraint=(self.results.ixmax - \ self.results.ixlo,xmax, self.pars.weight*len(pts)/(self.results.tmax - \ self.results.tlo), self.pars.weight*len(pts)/(xmax-xlo)))) tval, xval = res.results.peak self.results.spike_time = tval self.results.spike_val = xval self.results.pars_fit = res.pars_fit if self.pars.verbose_level > 0: from PyDSTool import plot, show # plot spike and quadratic fit dec = 10 plot(pts.indepvararray, pts[coord], 'go-') plot(tval, xval, 'rx') ts = [pts.indepvararray[0]] for i, t in enumerate(pts.indepvararray[:-1]): ts.extend([t+j*(pts.indepvararray[i+1]-t)/dec for j in range(1,dec)]) ts.append(pts.indepvararray[-1]) plot(ts, [res.results.f(t) for t in ts], 'k:') # temp if self.pars.verbose_level > 1: show() class get_burst_duration(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): on_t = self.super_pars.ref_spike_times[0] - self.pars.t_lookback self.pars.ref_burst_on_time = on_t # find associated V for ref_on_thresh pts = self.super_pars.ref_burst_coord_pts x = pts[self.super_pars.burst_coord] on_ix = pts.find(on_t, end=1) ix_lo, ix_hi = nearest_2n_indices(x, on_ix, 2) t = pts.indepvararray on_res = smooth_pts(t[ix_lo:ix_hi+1], x[ix_lo:ix_hi+1], self.super_pars.quadratic) self.pars.ref_on_thresh = on_res.results.f(on_t) # off_t = self.super_pars.ref_spike_times[-1] + self.pars.t_lookforward self.pars.ref_burst_off_time = off_t off_ix = pts.find(off_t, end=0) ix_lo, ix_hi = nearest_2n_indices(x, off_ix, 2) off_res = smooth_pts(t[ix_lo:ix_hi+1], x[ix_lo:ix_hi+1], self.super_pars.quadratic) self.pars.ref_off_thresh = off_res.results.f(off_t) self.pars.ref_burst_duration = off_t - on_t self.pars.ref_burst_prop = (off_t - on_t)/self.super_pars.ref_period def evaluate(self, target): traj = target.test_traj varname = self.super_pars.burst_coord pts = self.super_pars.burst_coord_pts on_t = self.super_results.spike_times[0] - self.pars.t_lookback self.results.burst_on_time = on_t x = pts[varname] on_ix = pts.find(on_t, end=1) ix_lo, ix_hi = nearest_2n_indices(x, on_ix, 2) pp = make_poly_interpolated_curve(pts[ix_lo:ix_hi+1], varname, target.model) thresh = pp(on_t) self.results.on_thresh = thresh # # don't find "off" based on last spike time because # when new spikes suddenly appear this value will jump # instead, use a threshold event search, assuming that # only one period is "in view" t = pts.indepvararray x_rev = x[:ix_hi:-1] t_rev = t[:ix_hi:-1] off_ix = len(x) - npy.argmin(npy.asarray(x_rev < thresh, int)) ix_lo, ix_hi = nearest_2n_indices(x, off_ix, 2) pp = make_poly_interpolated_curve(pts[ix_lo:ix_hi+1], varname, target.model) # bisect to find accurate crossing point tlo = t[ix_lo] thi = t[ix_hi] off_t = simple_bisection(tlo, thi, pp, self.pars.t_tol) self.results.burst_duration = off_t - on_t self.results.burst_prop = (off_t - on_t) / self.super_results.period return self.metric(self.results.burst_prop, self.super_pars.ref_burst_prop) < self.pars.tol class get_burst_active_phase(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): self.pars.ref_active_phase = self.super_pars.ref_spike_times[0] / \ self.super_pars.ref_period def evaluate(self, target): self.results.active_phase = self.super_results.spike_times[0] / \ self.super_results.period return self.metric(self.results.active_phase, self.pars.ref_active_phase) \ < self.pars.tol class get_burst_dc_offset(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): # 20% of burst_on_V (i.e., on_thresh) - min_V above min_V self.pars.ref_baseline_V = self.super_pars.ref_min_V + \ 0.2*(self.super_pars.ref_on_thresh - \ self.super_pars.ref_min_V) def evaluate(self, target): baseline = self.super_results.min_V + 0.2*(self.super_results.on_thresh - \ self.super_results.min_V) self.results.baseline_V = baseline - self.super_pars.ref_baseline_V return self.metric(baseline, self.super_pars.ref_baseline_V) < \ self.pars.tol class get_burst_passive_extent(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def postprocess_ref_traj(self): self.pars.ref_passive_extent_V = self.super_pars.ref_max_V - \ self.super_pars.ref_min_V def evaluate(self, target): self.results.passive_extent_V = self.super_results.max_V - \ self.super_results.min_V return self.metric(self.results.passive_extent_V, self.super_pars.ref_passive_extent_V) < \ self.pars.tol class burst_feature(ql_feature_node): """Embed the following sub-features, if desired: get_burst_X, where X is a number of feature types defined in this module. """ def _local_init(self): self.pars.quadratic = fit_quadratic(verbose=self.pars.verbose_level>0) self.pars.filt_coeffs = butter(3, self.pars.cutoff, btype='highpass') self.pars.filt_coeffs_LP = butter(3, self.pars.cutoff/10) def postprocess_ref_traj(self): # single coord used as indicator pts = self.ref_traj.sample() burst_pts = self.ref_traj.sample(coords=[self.pars.burst_coord], dt=self.pars.dt) xrs = burst_pts[self.pars.burst_coord] trs = burst_pts.indepvararray x = pts[self.pars.burst_coord] b, a = self.pars.filt_coeffs_LP xf = filtfilt(b, a, xrs) t = pts.indepvararray min_val_ix = npy.argmin(xf) # use LPF version to avoid noise artifacts max_val_ix = npy.argmax(xf) # use LPF version to avoid spikes min_ix_lo, min_ix_hi = nearest_2n_indices(xrs, min_val_ix, 30) max_ix_lo, max_ix_hi = nearest_2n_indices(xrs, max_val_ix, 30) min_res = smooth_pts(trs[min_ix_lo:min_ix_hi+1], xf[min_ix_lo:min_ix_hi+1], self.pars.quadratic) # use LPF data for max max_res = smooth_pts(trs[max_ix_lo:max_ix_hi+1], xf[max_ix_lo:max_ix_hi+1], self.pars.quadratic) min_t, min_val = min_res.results.peak max_t, max_val = max_res.results.peak # thresh1 = float(max_val-self.pars.active_frac_height*(max_val-min_val)) # thresh2 = x[0]+3. # # don't make threshold smaller than initial value, assuming # # burst will be rising at initial condition # thresh = max((thresh1,thresh2)) self.pars.ref_burst_coord_pts = pts # self.pars.ref_on_thresh = thresh # self.pars.ref_off_thresh = thresh self.pars.ref_min_V = min_val self.pars.ref_max_V = max_val assert self.pars.on_cross_dir in (-1,1) if self.pars.on_cross_dir == 1: self.pars.off_cross_dir = -1 else: self.pars.off_cross_dir = 1 self.pars.ref_burst_est = estimate_spiking(burst_pts[self.pars.burst_coord], burst_pts.indepvararray, self.pars.filt_coeffs) self.pars.ref_burst_pts_resampled = burst_pts # spike times will be overwritten by get_spikes_data instance, if present #self.pars.ref_spike_times = self.pars.ref_burst_est.spike_ts # to establish period, find min on other side of active phase if min_t < self.pars.ref_burst_est.spike_ts[0]: # look to the right start_t = self.pars.ref_burst_est.spike_ts[-1] start_ix = pts.find(start_t, end=1) other_min_ix = npy.argmin(x[start_ix:]) other_min_t = t[start_ix+other_min_ix] else: # look to the left start_t = self.pars.ref_burst_est.spike_ts[0] start_ix = pts.find(start_t, end=0) other_min_ix = npy.argmin(x[:start_ix]) other_min_t = t[other_min_ix] self.pars.ref_period = abs(other_min_t - min_t) def prepare(self, target): # single coord used as indicator pts = target.test_traj.sample() x = pts[self.pars.burst_coord] burst_pts = target.test_traj.sample(coords=[self.pars.burst_coord], dt=self.pars.dt) xrs = burst_pts[self.pars.burst_coord] trs = burst_pts.indepvararray if max(x)-min(x) < 5: print("\n\n Not a bursting trajectory!!") raise ValueError("Not a bursting trajectory") b, a = self.pars.filt_coeffs_LP xf = filtfilt(b, a, xrs) t = pts.indepvararray min_val_ix = npy.argmin(x) # precise because of Model's events max_val_ix = npy.argmax(xf) max_ix_lo, max_ix_hi = nearest_2n_indices(xrs, max_val_ix, 4) max_res = smooth_pts(trs[max_ix_lo:max_ix_hi+1], xf[max_ix_lo:max_ix_hi+1], self.pars.quadratic) min_t = t[min_val_ix] min_val = x[min_val_ix] max_t, max_val = max_res.results.peak self.results.min_V = min_val self.results.max_V = max_val assert self.pars.on_cross_dir in (-1,1) if self.pars.on_cross_dir == 1: self.pars.off_cross_dir = -1 else: self.pars.off_cross_dir = 1 self.results.burst_est = estimate_spiking(burst_pts[self.pars.burst_coord], burst_pts.indepvararray, self.pars.filt_coeffs) # record approximate spike times - may be overwritten by # get_burst_spikes if done accurately #self.results.spike_times = self.results.burst_est.spike_ts if self.pars.verbose_level > 0: print("Spikes found at (approx) t=", self.results.burst_est.spike_ts) if self.results.burst_est.spike_ts[0] < self.pars.shrink_end_time_thresh: # kludgy way to ensure that another burst doesn't encroach if not hasattr(self.pars, 'shrunk'): # do this *one time* end_time = t[-1] - self.pars.shrink_end_time_amount target.model.set(tdata=[0,end_time]) end_pts = pts.find(end_time, end=0) end_burst_pts = burst_pts.find(end_time, end=0) pts = pts[:end_pts] burst_pts = burst_pts[:end_burst_pts] self.pars.shrunk = True elif hasattr(self.pars, 'shrunk'): # in case period grows back reset end time *one time* target.model.set(tdata=[0,t[-1]+self.pars.shrink_end_time_amount]) del self.pars.shrunk self.pars.burst_coord_pts = pts self.pars.burst_pts_resampled = burst_pts # to establish period, find min on other side of active phase if min_t < self.results.burst_est.spike_ts[0]: # look to the right start_t = self.results.burst_est.spike_ts[-1] start_ix = pts.find(start_t, end=1) other_min_ix = npy.argmin(x[start_ix:]) other_min_t = t[start_ix+other_min_ix] other_min_val = x[start_ix+other_min_ix] else: # look to the left start_t = self.results.burst_est.spike_ts[0] start_ix = pts.find(start_t, end=0) other_min_ix = npy.argmin(x[:start_ix]) other_min_t = t[other_min_ix] other_min_val = x[other_min_ix] self.results.period = abs(other_min_t - min_t) self.results.period_val_error = other_min_val - min_val class get_burst_spikes(ql_feature_node): """Requires a get_spike_data and get_spike_model instance to be the only sub-features (supplied as a dict with keys 'is_spike_data' and 'is_spike_model'). """ def _local_init(self): assert len(self.subfeatures) == 2 assert remain(self.subfeatures.keys(), ['is_spike_data', 'is_spike_model']) == [] def postprocess_ref_traj(self): # get precise spike times and record in self.results.ref_spike_times self.pars.ref_spike_times, self.pars.ref_spike_vals = \ self._eval(self.ref_traj, self.super_pars.ref_burst_est, self.subfeatures['is_spike_data']) def evaluate(self, target): self.results.spike_times, self.results.spike_vals = \ self._eval(target.test_traj, self.super_results.burst_est, self.subfeatures['is_spike_model']) # satisfied if all spikes determined correctly return len(self.results.spike_times) == \ len(self.super_results.burst_est.spike_ixs) def _eval(self, traj, burst_est, is_spike): # isn't the next line redundant? is_spike.super_pars = copy.copy(self.pars) spike_times = [] spike_vals = [] satisfied = True for spike_num, spike_ix in enumerate(burst_est.spike_ixs): if self.pars.verbose_level > 0: print("\n Starting spike", spike_num+1) is_spike.super_pars.burst_coord = self.super_pars.burst_coord # step back 20% of estimated period try: is_spike.pars.width_tol = burst_est.ISIs[spike_num]*.8 except IndexError: # one fewer ISI than spike, so just assume last one is about # the same is_spike.pars.width_tol = burst_est.ISIs[spike_num-1]*.8 is_spike.pars.tlo = burst_est.t[spike_ix] - \ is_spike.pars.width_tol #/ 2. if self.pars.verbose_level > 0: print("new tlo =", is_spike.pars.tlo) # would prefer to work this out self-consistently... #is_spike.pars.fit_width_max = ? new_sat = is_spike(traj) satisfied = satisfied and new_sat # make recorded spike time in global time coordinates if new_sat: spike_times.append(is_spike.results.spike_time) spike_vals.append(is_spike.results.spike_val) if self.pars.verbose_level > 0: print("Spike times:", spike_times) return spike_times, spike_vals class get_burst_peak_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): # should really use quadratic fit to get un-biased peaks peak_vals = self.super_pars.ref_spike_vals peak_t = self.super_pars.ref_spike_times self.ref_traj = numeric_to_traj([peak_vals], 'peak_envelope', self.super_pars.burst_coord, peak_t, self.super_pars.ref_burst_pts_resampled.indepvarname, discrete=False) # discrete option false yields error if only one spike found, but error is cryptic! if len(peak_t) > 1: ref_env_ts = npy.linspace(peak_t[0], peak_t[-1], self.pars.num_samples) else: ref_env_ts = npy.array(peak_t) self.pars.ref_peak_vals = self.ref_traj(ref_env_ts, self.super_pars.burst_coord)[0] def evaluate(self, target): # ignore target dc_offset = self.super_results.baseline_V # min and max events in model mean that these are recorded # accurately in the pointsets already peak_vals = self.super_results.spike_vals - dc_offset peak_t = self.super_results.spike_times self.results.burst_peak_env = numeric_to_traj([peak_vals], 'peak_envelope', self.super_pars.burst_coord, peak_t, self.super_pars.burst_pts_resampled.indepvarname, discrete=False) # burst_est = self.super_results.burst_est # call_args = {} # try: # call_args['noise_floor'] = is_spike.pars.noise_tol # except AttributeError: # pass # try: # call_args['depvar'] = self.super_pars.burst_coord # except AttributeError: # pass # try: # call_args['tol'] = 1.1*burst_est.std_ISI/burst_est.mean_ISI # except AttributeError: # pass # call_args['make_traj'] = False # call_args['spest'] = burst_est # env = spike_envelope(burst_est.pts, burst_est.mean_ISI, # **call_args) test_env_ts = npy.linspace(peak_t[0], peak_t[-1], self.pars.num_samples) return self.metric(self.results.burst_peak_env(test_env_ts, self.super_pars.burst_coord), self.super_pars.ref_peak_vals) < self.pars.tol class get_burst_trough_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): burst_pts = self.super_pars.ref_burst_pts_resampled burst_est = self.super_pars.ref_burst_est vals = burst_pts[self.super_pars.burst_coord] inter_spike_ixs = [(burst_est.spike_ixs[i-1], burst_est.spike_ixs[i]) \ for i in range(1, len(burst_est.spike_ixs))] # should really use quadratic fit to get an un-biased minimum trough_ixs = [npy.argmin(vals[ix_lo:ix_hi])+ix_lo for ix_lo, ix_hi in \ inter_spike_ixs] trough_vals = [vals[i] for i in trough_ixs] trough_t = [burst_pts.indepvararray[i] for i in trough_ixs] self.ref_traj = numeric_to_traj([trough_vals], 'trough_envelope', self.super_pars.burst_coord, trough_t, burst_pts.indepvarname, discrete=False) ref_env_ts = npy.linspace(trough_t[0], trough_t[-1], self.pars.num_samples) self.pars.ref_trough_vals = self.ref_traj(ref_env_ts, self.super_pars.burst_coord) def evaluate(self, target): # ignore target dc_offset = self.super_results.baseline_V burst_pts = self.super_pars.burst_coord_pts burst_est = self.super_results.burst_est vals = burst_pts[self.super_pars.burst_coord] ts = self.super_results.spike_times spike_ixs = [] for t in ts: tix = burst_pts.find(t, end=0) spike_ixs.append(tix) inter_spike_ixs = [(spike_ixs[i-1], spike_ixs[i]) \ for i in range(1, len(ts))] # min and max events in model mean that these are recorded # accurately in the pointsets already trough_ixs = [npy.argmin(vals[ix_lo:ix_hi])+ix_lo for ix_lo, ix_hi in \ inter_spike_ixs] trough_vals = [vals[i] - dc_offset for i in trough_ixs] # use self.pars.trough_t for isi mid-point times trough_t = [burst_pts.indepvararray[i] for i in trough_ixs] self.results.burst_trough_env = numeric_to_traj([trough_vals], 'trough_envelope', self.super_pars.burst_coord, trough_t, burst_pts.indepvarname, discrete=False) test_env_ts = npy.linspace(trough_t[0], trough_t[-1], self.pars.num_samples) self.results.trough_t = trough_t return self.metric(self.results.burst_trough_env(test_env_ts, self.super_pars.burst_coord), self.super_pars.ref_trough_vals) < self.pars.tol class get_burst_isi_env(qt_feature_leaf): """Requires tol and num_samples parameters. """ def _local_init(self): self.metric = metric_L2() self.metric_len = self.pars.num_samples def postprocess_ref_traj(self): burst_pts = self.super_pars.ref_burst_pts_resampled ts = burst_pts.indepvararray burst_est = self.super_pars.ref_burst_est # find approximate (integer) mid-point index between spikes mid_isi_ixs = [int(0.5*(burst_est.spike_ixs[i-1]+burst_est.spike_ixs[i])) \ for i in range(1, len(burst_est.spike_ixs))] isi_t = [ts[i] for i in mid_isi_ixs] isi_vals = [ts[burst_est.spike_ixs[i]]-ts[burst_est.spike_ixs[i-1]] for \ i in range(1, len(burst_est.spike_ixs))] self.ref_traj = numeric_to_traj([isi_vals], 'isi_envelope', self.super_pars.burst_coord, isi_t, burst_pts.indepvarname, discrete=False) ref_env_ts = npy.linspace(isi_t[0], isi_t[-1], self.pars.num_samples) self.pars.ref_isis = self.ref_traj(ref_env_ts, self.super_pars.burst_coord) def evaluate(self, target): # ignore target ts = self.super_results.spike_times tname = self.super_pars.burst_coord_pts.indepvarname isi_vals = [ts[i]-ts[i-1] for i in range(1, len(ts))] self.results.burst_isi_env = numeric_to_traj([isi_vals], 'isi_envelope', self.super_pars.burst_coord, self.super_results.trough_t, tname, discrete=False) test_env_ts = npy.linspace(self.super_results.trough_t[0], self.super_results.trough_t[-1], self.pars.num_samples) return self.metric(self.results.burst_isi_env(test_env_ts, self.super_pars.burst_coord), self.pars.ref_isis) < self.pars.tol class get_burst_upsweep(qt_feature_leaf): def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.t_offs) def postprocess_ref_traj(self): vname = self.super_pars.burst_coord ts = [self.super_pars.ref_spike_times[0] - toff for \ toff in self.pars.t_offs] self.pars.ref_upsweep_V = npy.array([self.ref_traj(t, vname) for \ t in ts]) def evaluate(self, target): dc_offset = self.super_results.baseline_V vname = self.super_pars.burst_coord all_pts = self.super_pars.burst_coord_pts vals = [] for toff in self.pars.t_offs: target_t = self.super_results.spike_times[0] - toff if target_t < all_pts.indepvararray[0]: # out of range - return penalty self.metric.results = 5000*npy.ones((self.metric_len,),float) return False tix = all_pts.find(target_t, end=0) new_var = make_poly_interpolated_curve(all_pts[tix-5:tix+5], vname, target.model) vals.append(new_var(target_t)) self.results.upsweep_V = npy.array(vals) - dc_offset return self.metric(self.results.upsweep_V, \ self.pars.ref_upsweep_V) < self.pars.tol class get_burst_downsweep(qt_feature_leaf): def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.t_offs) def postprocess_ref_traj(self): vname = self.super_pars.burst_coord ts = [self.super_pars.ref_spike_times[-1] + toff for \ toff in self.pars.t_offs] self.pars.ref_downsweep_V = npy.array([self.ref_traj(t, vname) for \ t in ts]) def evaluate(self, target): dc_offset = self.super_results.baseline_V vname = self.super_pars.burst_coord all_pts = self.super_pars.burst_coord_pts vals = [] for toff in self.pars.t_offs: target_t = self.super_results.spike_times[-1] + toff if target_t > all_pts.indepvararray[-1]: # out of range - return penalty self.metric.results = 5000*npy.ones((self.metric_len,),float) return False tix = all_pts.find(target_t, end=0) new_var = make_poly_interpolated_curve(all_pts[tix-5:tix+5], vname, target.model) vals.append(new_var(target_t)) self.results.downsweep_V = npy.array(vals) - dc_offset return self.metric(self.results.downsweep_V, self.pars.ref_downsweep_V) < self.pars.tol class get_burst_num_spikes(qt_feature_leaf): def _local_init(self): self.metric = metric_float() self.metric_len = 1 def evaluate(self, target): return self.metric(npy.array(len(self.super_results.spike_times)), npy.array(len(self.super_pars.ref_spike_times))) == 0 class get_burst_period_info(qt_feature_leaf): def _local_init(self): self.metric = metric_weighted_L2() self.metric_len = 2 # strongly penalize lack of periodicity self.metric.weights = npy.array([1., 1000.]) def evaluate(self, target): return self.metric(npy.array([self.super_results.period, self.super_results.period_val_error]), npy.array([self.super_pars.ref_period, 0.])) \ < self.pars.tol # -------------------------------------------- class spike_metric(metric): """Measures the distance between spike time and height, using an inherent weighting of height suited to neural voltage signals (0.05 of time distance).""" def __call__(self, sp1, sp2): # weight 'v' component down b/c 't' values are on a different scale self.results = npy.array(sp1-sp2).flatten()*npy.array([1,0.05]) return npy.linalg.norm(self.results) class spike_feature(qt_feature_node): """pars keys: tol""" def _local_init(self): self.metric_len = 2 self.metric = spike_metric() def evaluate(self, target): # traj will be a post-processed v trajectory -> # spike time and height values return self.metric(target.test_traj.sample(), self.ref_traj.sample()) \ < self.pars.tol class geom_feature(qt_feature_leaf): """Measures the residual between two 1D parameterized geometric curves (given as Trajectory objects). """ def _local_init(self): self.metric = metric_L2() self.metric_len = len(self.pars.tmesh) def evaluate(self, target): # resample ref_traj to the tmesh we want return self.metric(target.test_traj(self.pars.tmesh, coords=[self.pars.depvar]), self.ref_traj(self.pars.tmesh, coords=[self.pars.depvar])) < self.pars.tol # ------------------------------------------------------------------ class estimate_spiking(object): """Estimate pattern of spiking in tonic or burst patterns.""" def __init__(self, x, t, filt_coeffs, sense='up'): """Pass only 1D pointset. If spikes are in the "positive" direction of the variable, use sense='up', else use 'down'.""" self.sense = sense self.b, self.a = filt_coeffs x_filt = filtfilt(self.b, self.a, x) self.x_just_filt = x_filt self.t = t max_x = max(x_filt) # retain only values larger than 10% of max to estimate burst # envelope x_filt_mask = npy.asarray(x_filt>(0.1*max_x),int) burst_off_ix = len(t) - npy.argmax(x_filt_mask[::-1]) burst_on_ix = npy.argmax(x_filt_mask) self.burst_on = (burst_on_ix, t[burst_on_ix]) self.burst_off = (burst_off_ix, t[burst_off_ix]) self.burst_duration = t[burst_off_ix] - t[burst_on_ix] # retain only values larger than 25% of max for actual spikes # FAILING: temp switch off x_filt_th = x_filt_mask #npy.asarray(x_filt>(0.25*max_x),int)*x_filt # find each spike by group of positive values # eliminating each afterwards (separated by zeros) spike_ixs = [] done = False n = 0 # for safety while not done: # find next group centre and eliminate it x_filt_th = self.eliminate_group(x_filt_th, spike_ixs) n += 1 # no groups left to eliminate? done = max(x_filt_th) == 0 or n > 100 spike_ixs.sort() self.spike_ixs = spike_ixs self.spike_ts = t[spike_ixs] self.ISIs = [self.spike_ts[i]-self.spike_ts[i-1] for \ i in range(1, len(spike_ixs))] self.mean_ISI = npy.mean(self.ISIs) self.std_ISI = npy.std(self.ISIs) self.num_spikes = len(spike_ixs) def eliminate_group(self, xf, spike_ixs): centre_ix = npy.argmax(xf) # print "Current spike_ixs", spike_ixs # print "eliminating group at t = ", self.t[centre_ix] # forward half-group end_ix = npy.argmin(xf[centre_ix:])+centre_ix # backward half-group start_ix = centre_ix-npy.argmin(xf[:centre_ix+1][::-1]) # nullify values in range! xf[start_ix:end_ix]=0 # print start_ix, end_ix, xf[start_ix:end_ix] if self.sense == 'up': # x will be rising to peak, so track forwards until # xfilt makes zero crossing and becomes negative new = centre_ix+npy.argmax(self.x_just_filt[centre_ix:]<0) if new not in spike_ixs: spike_ixs.append(new) else: # track backwards new = centre_ix-npy.argmin(self.x_just_filt[:centre_ix+1]>0) if new not in spike_ixs: spike_ixs.append(new) return xf class spike_envelope(object): """Find an amplitude envelope over a smooth 1D signal that features roughly periodic spikes. Input is a 1D parameterized pointset and the approximate period. An optional input is the tolerance (fraction) for finding spikes around the period (measuring uncertainty in the period) -- default 0.2 (20% of the period). Optional start_t sets where to orient the search in the independent variable -- default None (start at the highest point of the signal). It *must* be a value that is present in the independent variable array of the given points argument. Optional noise_floor sets minimum signal amplitude considered to be a peak (default 0 means non-noisy data assumed). Outside of spike times +/- tol, envelope curve will be defined as amplitude zero. adjust_rate is a fraction < 1 specifying the %age change of spike search interval (a.k.a. 'period'). default 0.1. make_traj option can be used to avoid costly creation of a Trajectory object representing the envelope curve, if unneeded (default True). When less is known in advance about the regularity or other properties of the spikes, pre-process using estimate_spiking() and pass the result as the optional argument spest. """ def __init__(self, pts, per, tol=0.2, start_t=None, noise_floor=0, depvar=None, adjust_rate=0.1, make_traj=True, spest=None): try: self.tvals = pts.indepvararray except: raise TypeError("Parameterized pointset required") self.pts = pts # store this to take advantage of index search if depvar is None: assert pts.dimension == 1 depvar = pts.coordnames[0] self.vals = pts[depvar] else: try: self.vals = pts[depvar] except PyDSTool_KeyError: raise ValueError("Invalid dependent variable name") self.numpoints = len(self.vals) assert self.numpoints > 1 self.per = per self.noise_floor = noise_floor assert tol < 1 and tol > 0 self.tol = tol # assume that the maximum is a spike, so is a reliable # phase reference if start_t is None: self.start_ix =
npy.argmax(self.vals)
numpy.argmax
# Copyright (c) 2018, TU Wien, Department of Geodesy and Geoinformation # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of TU Wien, Department of Geodesy and Geoinformation # nor the names of its contributors may be used to endorse or promote # products derived from this software without specific prior written # permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL TU WIEN, DEPARTMENT OF GEODESY AND # GEOINFORMATION BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; # OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR # OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF # ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Testing grid functionality. """ import unittest import numpy.testing as nptest import numpy as np try: from osgeo import ogr ogr_installed = True except ImportError: ogr_installed = False import pytest from pygeogrids.grids import lonlat2cell, BasicGrid import pygeogrids as grids class Test_lonlat2cell(unittest.TestCase): def setUp(self): lat = np.arange(-90, 90, 2.5) lon = np.arange(-180, 180, 2.5) self.lons, self.lats = np.meshgrid(lon, lat) def testlonlat2cell_hist(self): """ Setup grid with unequal cell size along lat and lon and test if the correct number of points lay in each cell. """ cells = lonlat2cell( self.lons, self.lats, cellsize_lon=15, cellsize_lat=30) hist, bin_edges = np.histogram( cells.flatten(), bins=len(np.unique(cells))) nptest.assert_allclose(hist, np.zeros_like(hist) + 72) def testlonlat2cell_edge(self): """ Use points on the 180 degree longitude and see if they fall into the correct cell """ lats = [69.8242, 69.122, 68.42] lons = [180, 180, 180] cells = lonlat2cell(lons, lats) assert list(cells) == [31, 31, 31] class TestFindNearestNeighbor(unittest.TestCase): def setUp(self): self.grid = grids.genreg_grid(1, 1) def test_nearest_neighbor(self): gpi, dist = self.grid.find_nearest_gpi(14.3, 18.5) assert gpi == 25754 assert len([dist]) == 1 lon, lat = self.grid.gpi2lonlat(gpi) assert lon == 14.5 assert lat == 18.5 def test_nearest_neighbor_list(self): gpi, dist = self.grid.find_nearest_gpi([145.1, 90.2], [45.8, -16.3]) assert len(gpi) == 2 assert len(dist) == 2 assert gpi[0] == 16165 assert gpi[1] == 38430 lon, lat = self.grid.gpi2lonlat(gpi) assert lon[0] == 145.5 assert lon[1] == 90.5 assert lat[0] == 45.5 assert lat[1] == -16.5 def test_nearest_neighbor_ndarray(self): gpi, dist = self.grid.find_nearest_gpi( np.array([145.1, 90.2]), np.array([45.8, -16.3])) assert len(gpi) == 2 assert len(dist) == 2 assert gpi[0] == 16165 assert gpi[1] == 38430 lon, lat = self.grid.gpi2lonlat(gpi) assert lon[0] == 145.5 assert lon[1] == 90.5 assert lat[0] == 45.5 assert lat[1] == -16.5 def test_nearest_neighbor_numpy_single(self): gpi, dist = self.grid.find_nearest_gpi( np.array([145.1, 90.2])[0], np.array([45.8, -16.3])[0]) assert gpi == 16165 lon, lat = self.grid.gpi2lonlat(gpi) assert lon == 145.5 assert lat == 45.5 def test_k_nearest_neighbor(self): gpi, dist = self.grid.find_k_nearest_gpi(14.3, 18.5, k=2) assert gpi[0, 0] == 25754 assert gpi[0, 1] == 25753 assert dist.shape == (1, 2) lon, lat = self.grid.gpi2lonlat(gpi[0, 0]) assert lon == 14.5 assert lat == 18.5 lon, lat = self.grid.gpi2lonlat(gpi[0, 1]) assert lon == 13.5 assert lat == 18.5 def test_k_nearest_neighbor_list(self): gpi, dist = self.grid.find_k_nearest_gpi( [145.1, 90.2], [45.8, -16.3], k=2) assert gpi.shape == (2, 2) assert dist.shape == (2, 2) assert gpi[0, 0] == 16165 assert gpi[0, 1] == 16164 assert gpi[1, 0] == 38430 assert gpi[1, 1] == 38429 def test_nearest_neighbor_max_dist(self): # test with maxdist higher than nearest point gpi, dist = self.grid.find_nearest_gpi(14.3, 18.5, max_dist=100e3) assert gpi == 25754 assert len([dist]) == 1 lon, lat = self.grid.gpi2lonlat(gpi) assert lon == 14.5 assert lat == 18.5 # test with maxdist lower than nearest point gpi, dist = self.grid.find_nearest_gpi(14.3, 18.5, max_dist=10000) assert len(gpi) == 0 assert len(dist) == 0 # test with custom gpi, see issue #68 grid = grids.BasicGrid(lon=[16,17], lat=[45,46], gpis=[100,200]) gpi, dist = grid.find_nearest_gpi(0,0, max_dist=1000) assert len(gpi) == 0 assert len(dist) == 0 class TestCellGridNotGpiDirect(unittest.TestCase): """ Setup simple 2D grid 2.5 degree global grid (144x72) which starts at the North Western corner of 90 -180 Test for cell specific features. """ def setUp(self): self.latdim = np.arange(90, -90, -2.5) self.londim = np.arange(-180, 180, 2.5) self.lon, self.lat = np.meshgrid(self.londim, self.latdim) self.grid = grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), gpis=np.arange(self.lon.flatten().size), shape=(len(self.latdim), len(self.londim))) self.reverse_gpi_grid = grids.BasicGrid( self.lon.flatten(), self.lat.flatten(), gpis=np.arange(self.lon.flatten().size)[::-1], shape=(len(self.latdim), len(self.londim))) self.cellgrid = self.grid.to_cell_grid() def test_gpi2cell(self): """ Test if gpi to row column lookup works correctly. """ gpi = 200 cell = self.cellgrid.gpi2cell(gpi) assert cell == 1043 def test_gpi2cell_iterable(self): """ Test if gpi to row column lookup works correctly. """ gpi = [200, 255] cell = self.cellgrid.gpi2cell(gpi) assert np.all(cell == [1043, 2015]) def test_gpi2cell_numpy(self): """ test if gpi to cell lookup works correctly """ gpi = np.array([200, 255]) cell = self.cellgrid.gpi2cell(gpi) assert np.all(cell == [1043, 2015]) def test_gpi2cell_numpy_single(self): """ test if gpi to row column lookup works correctly """ gpi = np.array([200, 255])[0] cell = self.cellgrid.gpi2cell(gpi) assert cell == 1043 def test_calc_lut(self): """ Test calcuation of lookuptable into reverse gpi grid. This must result in a lookuptable that reverses the gpis. """ lut = self.grid.calc_lut(self.reverse_gpi_grid) nptest.assert_allclose(lut[::-1], self.grid.gpis) def test_gpi2cell_custom_gpis(self): """ Test if gpi to row column lookup works correctly. """ self.custom_gpi_grid = \ grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), shape=(len(self.latdim), len(self.londim)), gpis=np.arange(len(self.lat.flatten()))[::-1]) self.custom_gpi_cell_grid = self.custom_gpi_grid.to_cell_grid() gpi = [200, 255] cell = self.custom_gpi_cell_grid.gpi2cell(gpi) assert np.all(cell == [1549, 577]) gpi = 200 cell = self.custom_gpi_cell_grid.gpi2cell(gpi) assert cell == 1549 def test_subgrid_from_cells(self): """ Test subgrid selection. """ cells = [1549, 577] subgrid = self.cellgrid.subgrid_from_cells(cells) assert type(subgrid) == type(self.cellgrid) for cell in cells: gpis, lons, lats = subgrid.grid_points_for_cell(cell) cell_index = np.where(cell == self.cellgrid.activearrcell) orig_gpis = self.cellgrid.activegpis[cell_index] orig_lons = self.cellgrid.activearrlon[cell_index] orig_lats = self.cellgrid.activearrlat[cell_index] nptest.assert_array_equal(gpis, orig_gpis) nptest.assert_array_equal(lons, orig_lons) nptest.assert_array_equal(lats, orig_lats) def test_subgrid_from_gpis(self): """ Test subgrid selection. """ gpis = [200, 255] subgrid = self.cellgrid.subgrid_from_gpis(gpis) assert type(subgrid) == type(self.cellgrid) lons_should, lats_should = self.cellgrid.gpi2lonlat(gpis) cells_should = self.cellgrid.gpi2cell(gpis) subgrid_should = grids.CellGrid( lons_should, lats_should, cells_should, gpis=gpis) assert subgrid == subgrid_should class TestLutCalculation(unittest.TestCase): def setUp(self): """ Setup two grids with similar gpis but with different subset/gpi ordering. The lookup tables should still give the correct results. The gpi's of the two grids are identical. """ self.lats = np.array([1, 2, 3, 4]) self.lons = np.array([1, 2, 3, 4]) self.gpis = [0, 1, 2, 3] self.subset = [3, 2] self.lats2 = np.array([3, 4, 2, 1]) self.lons2 = np.array([3, 4, 2, 1]) self.gpis2 = [2, 3, 1, 0] self.subset2 = [0, 1] self.grid1 = grids.BasicGrid(self.lons, self.lats, gpis=self.gpis, subset=self.subset) self.grid2 = grids.BasicGrid(self.lons2, self.lats2, gpis=self.gpis2, subset=self.subset2) def test_calc_lut(self): lut = self.grid1.calc_lut(self.grid2) nptest.assert_array_equal(lut, [-1, -1, 2, 3]) nptest.assert_array_equal( lut[self.grid2.activegpis], self.grid2.activegpis) lut2 = self.grid2.calc_lut(self.grid1) nptest.assert_array_equal(lut2, [-1, -1, 2, 3]) nptest.assert_array_equal( lut2[self.grid1.activegpis], self.grid1.activegpis) class TestCellGridNotGpiDirectSubset(unittest.TestCase): """Setup simple 2D grid 2.5 degree global grid (144x72) which starts at the North Western corner of 90 -180 Test for cell specific features. This grid also has a subset with only the first half of points active. """ def setUp(self): self.latdim = np.arange(90, -90, -2.5) self.londim = np.arange(-180, 180, 2.5) self.lon, self.lat = np.meshgrid(self.londim, self.latdim) self.grid = grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), gpis=np.arange(self.lon.flatten().size), shape=(len(self.londim), len(self.latdim)), subset=np.arange(self.lon.flatten().size / 2, dtype=np.int)) self.cellgrid = self.grid.to_cell_grid() def test_gpi2cell(self): """ Test if gpi to cell lookup works correctly. """ gpi = 5185 cell = self.cellgrid.gpi2cell(gpi) assert cell == 18 def test_gpi2cell_iterable(self): """ Test if gpi to cell lookup works correctly. """ gpi = [200, 5185] cell = self.cellgrid.gpi2cell(gpi) assert np.all(cell == [1043, 18]) def test_gpi2cell_numpy_single(self): """ test if gpi to cell lookup works correctly """ gpi = np.array([5185, 255])[0] cell = self.cellgrid.gpi2cell(gpi) assert cell == 18 def test_gpi2lonlat(self): """ Test if gpi to lon lat lookup works correctly. """ gpi = 5185 lon, lat = self.cellgrid.gpi2lonlat(gpi) assert lon == -177.5 assert lat == 0.0 def test_gpi2lonlat_iterable(self): """ Test if gpi to lon lat lookup works correctly. """ gpi = [200, 5185] lon, lat = self.cellgrid.gpi2lonlat(gpi) assert np.all(lon == [-40.0, -177.5]) assert np.all(lat == [87.5, 0.0]) def test_gpi2lonlat_numpy_single(self): """ test if gpi to lon lat lookup works correctly """ gpi = np.array([5185, 255])[0] lon, lat = self.cellgrid.gpi2lonlat(gpi) assert lon == -177.5 assert lat == 0.0 class TestCellGrid(unittest.TestCase): """ Setup simple 2D grid 2.5 degree global grid (144x72) which starts at the North Western corner of 90 -180 Test for cell specific features. """ def setUp(self): self.latdim = np.arange(90, -90, -2.5) self.londim = np.arange(-180, 180, 2.5) self.lon, self.lat = np.meshgrid(self.londim, self.latdim) self.grid = grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), shape=(len(self.latdim), len(self.londim))) self.cellgrid = self.grid.to_cell_grid() def test_gpi2cell(self): """ Test if gpi to row column lookup works correctly. """ gpi = 200 cell = self.cellgrid.gpi2cell(gpi) assert cell == 1043 def test_gpi2cell_iterable(self): """ Test if gpi to row column lookup works correctly. """ gpi = [200, 255] cell = self.cellgrid.gpi2cell(gpi) assert np.all(cell == [1043, 2015]) def test_gpi2cell_numpy_single(self): """ test if gpi to row column lookup works correctly """ gpi = np.array([200, 255])[0] cell = self.cellgrid.gpi2cell(gpi) assert cell == 1043 def test_gpi2cell_custom_gpis(self): """ Test if gpi to row column lookup works correctly. """ self.custom_gpi_grid = \ grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), shape=(len(self.londim), len(self.latdim)), gpis=np.arange(len(self.lat.flatten()))[::-1]) self.custom_gpi_cell_grid = self.custom_gpi_grid.to_cell_grid() gpi = [200, 255] cell = self.custom_gpi_cell_grid.gpi2cell(gpi) assert np.all(cell == [1549, 577]) gpi = 200 cell = self.custom_gpi_cell_grid.gpi2cell(gpi) assert cell == 1549 def test_subgrid_from_cells(self): """ Test subgrid selection. """ cells = [1549, 577] subgrid = self.cellgrid.subgrid_from_cells(cells) assert type(subgrid) == type(self.cellgrid) for cell in cells: gpis, lons, lats = subgrid.grid_points_for_cell(cell) cell_index = np.where(cell == self.cellgrid.activearrcell) orig_gpis = self.cellgrid.activegpis[cell_index] orig_lons = self.cellgrid.activearrlon[cell_index] orig_lats = self.cellgrid.activearrlat[cell_index] nptest.assert_array_equal(gpis, orig_gpis) nptest.assert_array_equal(lons, orig_lons) nptest.assert_array_equal(lats, orig_lats) def test_subgrid_from_gpis(self): """ Test subgrid selection. """ gpis = [200, 255] subgrid = self.cellgrid.subgrid_from_gpis(gpis) assert type(subgrid) == type(self.cellgrid) lons_should, lats_should = self.cellgrid.gpi2lonlat(gpis) cells_should = self.cellgrid.gpi2cell(gpis) subgrid_should = grids.CellGrid( lons_should, lats_should, cells_should, gpis=gpis) assert subgrid == subgrid_should def test_get_bbox_grid_points(self): gpis = self.cellgrid.get_bbox_grid_points(latmin=-10, latmax=-5, lonmin=-10, lonmax=-5) nptest.assert_allclose(gpis, np.array([5684, 5685, 5828, 5829, 5540, 5541, 5686, 5830, 5542])) # gpis should come back sorted by cells nptest.assert_allclose(self.cellgrid.gpi2cell(gpis), np.array([1240, 1240, 1240, 1240, 1241, 1241, 1276, 1276, 1277])) lats, lons = self.cellgrid.get_bbox_grid_points(latmin=-10, latmax=-5, lonmin=-10, lonmax=-5, coords=True) lats_should = np.array([-7.5, -7.5, -10., -10., -5., -5., -7.5, -10., -5.]) lons_should = np.array([-10., -7.5, -10., -7.5, -10., -7.5, -5., -5., -5.]) nptest.assert_allclose(lats, lats_should) nptest.assert_allclose(lons, lons_should) gpis, lats, lons = self.cellgrid.get_bbox_grid_points(latmin=-10, latmax=-5, lonmin=-10, lonmax=-5, both=True) lats_should = np.array([-7.5, -7.5, -10., -10., -5., -5., -7.5, -10., -5.]) lons_should = np.array([-10., -7.5, -10., -7.5, -10., -7.5, -5., -5., -5.]) nptest.assert_allclose(lats, lats_should) nptest.assert_allclose(lons, lons_should) nptest.assert_allclose(gpis, np.array([5684, 5685, 5828, 5829, 5540, 5541, 5686, 5830, 5542])) # gpis should come back sorted by cells nptest.assert_allclose(self.cellgrid.gpi2cell(gpis), np.array([1240, 1240, 1240, 1240, 1241, 1241, 1276, 1276, 1277])) def test_setup_grid_with_lists(): grid = grids.BasicGrid([1, 2, 3, 4, 5], [1, 2, 3, 4, 5]) nptest.assert_allclose(grid.arrlon, np.array([1, 2, 3, 4, 5])) nptest.assert_allclose(grid.arrlat, np.array([1, 2, 3, 4, 5])) def test_setup_cellgrid_with_lists(): grid = grids.CellGrid([1, 2, 3, 4, 5], [1, 2, 3, 4, 5], [1, 1, 1, 1, 1]) nptest.assert_allclose(grid.arrlon, np.array([1, 2, 3, 4, 5])) nptest.assert_allclose(grid.arrlat, np.array([1, 2, 3, 4, 5])) nptest.assert_allclose(grid.arrcell, np.array([1, 1, 1, 1, 1])) class Test_2Dgrid(unittest.TestCase): """ Setup simple 2D grid 2.5 degree global grid (144x72) which starts at the North Western corner of 90 -180 and test 2D lookup. """ def setUp(self): self.latdim = np.arange(90, -90, -2.5) self.londim = np.arange(-180, 180, 2.5) self.lon, self.lat = np.meshgrid(self.londim, self.latdim) self.grid = grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), shape=(len(self.latdim), len(self.londim))) def test_gpi2rowcol(self): """ Test if gpi to row column lookup works correctly. """ gpi = 200 row_should = 1 column_should = 200 - 144 row, column = self.grid.gpi2rowcol(gpi) assert row == row_should assert column == column_should def test_gpi2rowcol_np_int(self): """ test if gpi to row column lookup works correctly """ gpi = np.array([200])[0] row_should = 1 column_should = 200 - 144 row, column = self.grid.gpi2rowcol(gpi) assert row == row_should assert column == column_should def test_gpi2rowcol_iterable(self): """ Test if gpi to row column lookup works correctly. """ gpi = [143, 200, 255] row_should = [0, 1, 1] column_should = [143, 200 - 144, 255 - 144] row, column = self.grid.gpi2rowcol(gpi) assert np.all(row == row_should) assert np.all(column == column_should) def test_gpi2rowcol_custom_gpis(self): """ Test if gpi to row column lookup works correctly. """ self.custom_gpi_grid = grids.BasicGrid(self.lon.flatten(), self.lat.flatten(), shape=(len(self.latdim), len(self.londim)), gpis=np.arange(len(self.lat.flatten()))[::-1]) gpi = [200, 255] row_should = [70, 70] column_should = [87, 32] row, column = self.custom_gpi_grid.gpi2rowcol(gpi) assert np.all(row == row_should) assert np.all(column == column_should) def test_gpi2lonlat(self): """ Test if gpi to longitude latitude lookup works correctly. """ gpi = 200 lat_should = 87.5 lon_should = -180 + (200 - 144) * 2.5 lon, lat = self.grid.gpi2lonlat(gpi) assert lon == lon_should assert lat == lat_should def test_lonlat2d(self): """ Test if lonlat 2d grids are the same as the grids used for making the grid. """ assert np.all(self.lon == self.grid.lon2d) assert np.all(self.lat == self.grid.lat2d) def test_tocellgrid(self): """ test if to_cell_grid method works correctly """ cell_grid = self.grid.to_cell_grid() result = grids.BasicGrid.__eq__(self.grid, cell_grid) assert result def test_genreggrid(): """ Test generation of regular grids. """ grid = grids.genreg_grid() assert grid.shape == (180, 360) lon, lat = grid.gpi2lonlat(3) assert lon == -176.5 assert lat == 89.5 lon, lat = grid.gpi2lonlat(360) assert lon == -179.5 assert lat == 88.5 def test_reorder_to_cellsize(): """ Test reordering to different cellsize """ lons = np.array([-177, -177, -176, -176]) lats = np.array([51, 57, 51, 57]) gpis = np.array([1, 2, 3, 4]) cells = np.array([14, 14, 14, 14]) orig_grid = grids.CellGrid(lons, lats, cells, gpis=gpis) reordered_grid = grids.reorder_to_cellsize(orig_grid, 5.0, 5.0) nptest.assert_almost_equal(reordered_grid.gpis, np.array([1, 3, 2, 4])) nptest.assert_almost_equal(reordered_grid.arrlon,
np.array([-177, -176, -177, -176])
numpy.array
import numpy as np import matplotlib.pyplot as plt import stanpy as stp np.set_printoptions(precision=5, linewidth=500) def assembly(*s_list, deg_freedom=3): number_elements = len(s_list) nodes = np.zeros((2 * number_elements, 3)) nodes[0::2, :] = np.array([s["Xi"] for s in s_list]).astype(int) nodes[1::2, :] = np.array([s["Xk"] for s in s_list]).astype(int) global_nodes = np.unique(nodes, axis=0) num_global_nodes = global_nodes.shape[0] indices = (np.arange(num_global_nodes) * deg_freedom).astype(int) a = np.zeros((number_elements, 2, num_global_nodes)) a_full = np.zeros((number_elements, 2 * deg_freedom, num_global_nodes * deg_freedom)) for i, node in enumerate(nodes.reshape(number_elements, -1, 3)): a[i, 0] = (global_nodes == node[0]).all(axis=1).astype(int) a[i, 1] = (global_nodes == node[1]).all(axis=1).astype(int) mask = a[i, 0] == 1 a_full[i, 0:deg_freedom, indices[mask].item() : indices[mask].item() + deg_freedom] = np.eye( deg_freedom, deg_freedom ) mask = a[i, 1] == 1 a_full[ i, deg_freedom : 2 * deg_freedom, indices[mask].item() : indices[mask].item() + deg_freedom, ] = np.eye(deg_freedom, deg_freedom) return a_full # def assembly_univ(*elements, deg_freedom=3): # number_elements = len(elements) # nodes = np.zeros((2 * number_elements, 3)) # 3Dimensional # nodes[0::2, :] = np.array([s["Xi"] for s in elements]) # nodes[1::2, :] = np.array([s["Xk"] for s in elements]) # global_nodes = np.unique(nodes, axis=0) # num_global_nodes = global_nodes.shape[0] # indices = (np.arange(num_global_nodes) * deg_freedom).astype(int) # a = np.zeros((number_elements, 2, num_global_nodes)) # a_full = np.zeros((number_elements, 2 * deg_freedom, num_global_nodes * deg_freedom)) # for i, node in enumerate(nodes.reshape(number_elements, -1, 3)): # a[i, 0] = (global_nodes == node[0]).all(axis=1).astype(int) # a[i, 1] = (global_nodes == node[1]).all(axis=1).astype(int) # mask = a[i, 0] == 1 # a_full[i, 0:deg_freedom, indices[mask].item() : indices[mask].item() + deg_freedom] = np.eye( # deg_freedom, deg_freedom # ) # mask = a[i, 1] == 1 # a_full[ # i, # deg_freedom : 2 * deg_freedom, # indices[mask].item() : indices[mask].item() + deg_freedom, # ] = np.eye(deg_freedom, deg_freedom) # return a_full def element_stiffness_matrix(**s): R = rotation_matrix(**s) vec_i = np.array(s["Xi"]) vec_k = np.array(s["Xk"]) vec_R = vec_k - vec_i QeT = np.array([[1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0]]).dot(R) l = np.linalg.norm(vec_R).item() K = s["EA"] / l * QeT.T.dot(np.array([[1, -1], [-1, 1]])).dot(QeT) return K def system_stiffness_matrix(*s_list): a = assembly(*s_list) K = a[0].T.dot(element_stiffness_matrix(**s_list[0])).dot(a[0]) for i, s in enumerate(s_list): if i == 0: pass else: K += a[i].T.dot(element_stiffness_matrix(**s_list[i])).dot(a[i]) K[0, :] = 0 diag = np.copy(np.diag(K)) diag[diag == 0] = 1 np.fill_diagonal(K, diag) return K def rotation_matrix(**s): vec_i = np.array(s["Xi"]) vec_k = np.array(s["Xk"]) vec_R = vec_k - vec_i norm_R = np.linalg.norm(vec_R) theta = np.radians(90) c, s = np.cos(theta), np.sin(theta) rot_mat = np.array(((c, -s, 0), (s, c, 0), (0, 0, 1))) e1 = vec_R / norm_R e2 = rot_mat.dot(e1) e3 =
np.cross(e1, e2)
numpy.cross
import os import json import logging import argparse import warnings import numpy as np import pandas as pd import xgboost as xgb from tqdm import tqdm from numpy.random import default_rng from collections import OrderedDict, Counter from sklearn.naive_bayes import GaussianNB from sklearn.preprocessing import StandardScaler from sklearn.model_selection import StratifiedKFold from sklearn.metrics import accuracy_score, balanced_accuracy_score, f1_score, roc_auc_score, average_precision_score, confusion_matrix from pyteap.signals.bvp import acquire_bvp, get_bvp_features from pyteap.signals.gsr import acquire_gsr, get_gsr_features from pyteap.signals.hst import acquire_hst, get_hst_features from pyteap.signals.ecg import get_ecg_features from logutils import init_logger def load_segments(segments_dir): segments = {} # for each participant for pid in os.listdir(segments_dir): segments.setdefault(int(pid), []) froot = os.path.join(segments_dir, pid) # for segments for a participant for fname in os.listdir(froot): # get labels, segment index, and path to json file labels = fname.split('-')[-1].split('.')[0] idx = int(fname.split('-')[1]) fpath = os.path.join(froot, fname) # load json file and save to dict of pid: [segments = (idx, segment, labels)] with open(fpath) as f: seg = json.load(f) segments[int(pid)].append((idx, seg, labels)) # return dict sorted by pid return OrderedDict(sorted(segments.items(), key=lambda x: x[0])) def get_features(sig, sr, sigtype): if sigtype == 'bvp': features = get_bvp_features(acquire_bvp(sig, sr), sr) elif sigtype == 'eda': features = get_gsr_features(acquire_gsr(sig, sr, conversion=1e6), sr) elif sigtype == 'temp': features = get_hst_features(acquire_hst(sig, sr), sr) elif sigtype == 'ecg': features = get_ecg_features(sig) return features def get_data_rolling(segments, n, labeltype, majority): X, y = {}, {} # for each participant for pid, segs in segments.items(): segs = sorted(segs, key=lambda x: x[0]) pbar = tqdm(range(len(segs) - n), desc=f'Subject {pid:02d}', ascii=True, dynamic_ncols=True) curr_X, curr_y = [], [] for i in pbar: # get n consecutive segments from i-th segment curr_segs = segs[i:i + n] features = [] # get features for sigtype, sr in [('bvp', 64), ('eda', 4), ('temp', 4), ('ecg', 1)]: sig = np.concatenate([sigs[sigtype] for _, sigs, _ in curr_segs]) features.extend(get_features(sig, sr, sigtype)) # skip if one or more feature is NaN if np.isnan(features).any(): logging.getLogger('default').warning('One or more feature is NaN, skipped.') continue if labeltype == 's': curr_a = [int(labels[0]) for _, _, labels in curr_segs] curr_v = [int(labels[1]) for _, _, labels in curr_segs] elif labeltype == 'p': curr_a = [int(labels[2]) for _, _, labels in curr_segs] curr_v = [int(labels[3]) for _, _, labels in curr_segs] elif labeltype == 'e': curr_a = [int(labels[4]) for _, _, labels in curr_segs] curr_v = [int(labels[5]) for _, _, labels in curr_segs] elif labeltype == 'sp': curr_a = [np.sum([int(labels[0]), int(labels[2])]) for _, _, labels in curr_segs] curr_v = [np.sum([int(labels[1]), int(labels[3])]) for _, _, labels in curr_segs] # take majority label if majority: a_values, a_counts = np.unique(curr_a, return_counts=True) v_values, v_counts = np.unique(curr_v, return_counts=True) a_val = a_values[np.argmax(a_counts)] v_val = v_values[np.argmax(v_counts)] # or take label of the last segment else: a_val, v_val = curr_a[-1], curr_v[-1] curr_X.append(features) if labeltype != 'sp': curr_y.append([int(a_val > 2), int(v_val > 2)]) else: curr_y.append([int(a_val > 5), int(v_val > 5)]) # stack features for current participant and apply standardization X[pid] = StandardScaler().fit_transform(np.stack(curr_X)) y[pid] = np.stack(curr_y) return X, y def get_data_discrete(segments, n, labeltype, majority): X, y = {}, {} # for each participant for pid, segs in segments.items(): segs = sorted(segs, key=lambda x: x[0]) pbar = tqdm(segs, desc=f'For subject {pid:02d}', ascii=True, dynamic_ncols=True) curr_X, curr_y, curr_segs = [], [], {} # for each segment for idx, signals, labels in pbar: # get labels and add to buffer s_a, s_v = int(labels[0]), int(labels[1]) p_a, p_v = int(labels[2]), int(labels[3]) e_a, e_v = int(labels[4]), int(labels[5]) if labeltype == 's': curr_segs.setdefault('a', []).append(s_a) curr_segs.setdefault('v', []).append(s_v) elif labeltype == 'p': curr_segs.setdefault('a', []).append(p_a) curr_segs.setdefault('v', []).append(p_v) elif labeltype == 'e': curr_segs.setdefault('a', []).append(e_a) curr_segs.setdefault('v', []).append(e_v) elif labeltype == 'sp': curr_segs.setdefault('a', []).append(np.sum([s_a, p_a])) curr_segs.setdefault('v', []).append(np.sum([s_v, p_v])) # get signals and add to buffer for sigtype, sr in [('bvp', 64), ('eda', 4), ('temp', 4), ('ecg', 1)]: curr_segs.setdefault(sigtype, []).append(signals[sigtype]) # if n segments are in buffer if len(curr_segs[sigtype]) == n: # concat signals and get features sig = np.concatenate(curr_segs.pop(sigtype)) features = get_features(sig, sr, sigtype) curr_segs.setdefault('features', []).append(features) # if features are in the buffer, pop features and labels if 'features' in curr_segs: features = np.concatenate(curr_segs.pop('features')) # skip if one or more feature is NaN if np.isnan(features).any(): logging.getLogger('default').warning('One or more feature is NaN, skipped.') continue # take majority label if majority: a_values, a_counts = np.unique(curr_segs.pop('a'), return_counts=True) v_values, v_counts = np.unique(curr_segs.pop('v'), return_counts=True) a_val = a_values[np.argmax(a_counts)] v_val = v_values[np.argmax(v_counts)] # or take label of the last segment else: a_val = curr_segs.pop('a')[-1] v_val = curr_segs.pop('v')[-1] curr_X.append(features) if labeltype != 'sp': curr_y.append([int(a_val > 2), int(v_val > 2)]) else: curr_y.append([int(a_val > 5), int(v_val > 5)]) pbar.set_postfix({'processed': idx // n}) # stack features for current participant and apply standardization X[pid] = StandardScaler().fit_transform(np.stack(curr_X)) y[pid] = np.stack(curr_y) return X, y def prepare_kemocon(segments_dir, n, labeltype, majority, rolling): # load segments pid_to_segments = load_segments(segments_dir) # extract features and labels if rolling: X, y = get_data_rolling(pid_to_segments, n, labeltype, majority) else: X, y = get_data_discrete(pid_to_segments, n, labeltype, majority) return X, y # deprecated auroc and ap for compatibility with multiclass classification def get_results(y_test, preds, probs=None): acc = accuracy_score(y_test, preds) # bacc = balanced_accuracy_score(y_test, preds, adjusted=False) f1 = f1_score(y_test, preds, average='weighted') # auroc = roc_auc_score(y_test, probs, average='weighted') # ap = average_precision_score(y_test, probs, average='weighted') # return {'acc.': acc, 'bacc.': bacc, 'f1': f1, 'auroc': auroc, 'ap': ap} return {'acc.': acc, 'f1': f1} def pred_majority(majority, y_test): preds = np.repeat(majority, y_test.size) # probs = np.repeat(majority, y_test.size) return get_results(y_test, preds) def pred_random(y_classes, y_test, rng, ratios): preds = rng.choice(y_classes, y_test.size, replace=True, p=ratios) # if ratios is not None: # probs = np.where(preds == 1, ratios[1], ratios[0]) # else: # probs = np.repeat(0.5, y_test.size) return get_results(y_test, preds) def pred_gnb(X_train, y_train, X_test, y_test): clf = GaussianNB().fit(X_train, y_train) preds = clf.predict(X_test) # probs = clf.predict_proba(X_test)[:, 1] return get_results(y_test, preds) def pred_xgb(X_train, y_train, X_test, y_test, seed, gpu, target): # load data into DMatrix dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test, label=y_test) # set parameters params = { 'booster': 'gbtree', 'verbosity': 1, 'max_depth': 6, 'eta': 0.3, 'objective': 'multi:softmax', 'eval_metric': 'mlogloss' if target == 'multiclass' else 'logloss', 'num_class': 4 if target == 'multiclass' else 2, 'seed': seed, } # if gpu=True if gpu: params['gpu_id'] = 0 params['tree_method'] = 'gpu_hist' # train model and predict num_round = 100 bst = xgb.train(params, dtrain, num_round) preds = bst.predict(dtest) # return results return get_results(y_test, preds) def get_baseline_kfold(X, y, seed, target, n_splits, shuffle, gpu): # initialize random number generator and fold generator rng = default_rng(seed) skf = StratifiedKFold(n_splits=n_splits, shuffle=shuffle, random_state=seed) # aggregated features and labels X = np.concatenate(list(X.values())) y = np.concatenate(list(y.values())) logging.getLogger('default').info(f'Dataset size: {X.shape}') # get labels corresponding to target class if target == 'arousal': y = y[:, 0] elif target == 'valence': y = y[:, 1] elif target == 'multiclass': classes = np.unique(y, axis=0).tolist() y = np.fromiter(map(lambda x: classes.index(x.tolist()), y), dtype=np.int) results = {} # for each fold, split train & test and get classification results for i, (train_idx, test_idx) in enumerate(skf.split(X, y)): X_train, X_test = X[train_idx], X[test_idx] y_train, y_test = y[train_idx], y[test_idx] y_classes, y_counts = np.unique(y_train, return_counts=True) majority = y_classes[np.argmax(y_counts)] class_ratios = y_counts / y_train.size n_classes = len(y_classes) results[i+1] = { 'Random': pred_random(y_classes, y_test, rng, ratios=np.repeat(1/n_classes, n_classes)), 'Majority': pred_majority(majority, y_test), 'Class ratio': pred_random(y_classes, y_test, rng, ratios=class_ratios), 'Gaussian NB': pred_gnb(X_train, y_train, X_test, y_test), 'XGBoost': pred_xgb(X_train, y_train, X_test, y_test, seed, gpu, target), } # return results as table results = {(fold, classifier): values for (fold, _results) in results.items() for (classifier, values) in _results.items()} results_table = pd.DataFrame.from_dict(results, orient='index').stack().unstack(level=1).rename_axis(['Fold', 'Metric']) return results_table[['Random', 'Majority', 'Class ratio', 'Gaussian NB', 'XGBoost']] def get_baseline_loso(X, y, seed, target, n_splits, shuffle, gpu): # initialize random number generator rng = default_rng(seed) results = {} # for each participant split train & test for pid in X.keys(): X_train, X_test = np.concatenate([v for k, v in X.items() if k != pid]), X[pid] y_train, y_test = np.concatenate([v for k, v in y.items() if k != pid]), y[pid] # get labels corresponding to target class if target == 'arousal': y_train, y_test = y_train[:, 0], y_test[:, 0] elif target == 'valence': y_train, y_test = y_train[:, 1], y_test[:, 1] # skip current user if there aren't both labels (0, 1) in the test set if len(Counter(y_test)) != 2: continue # get majority label and class ratios y_classes, y_counts =
np.unique(y_train, return_counts=True)
numpy.unique
############################################################################## ### ICS5110: Applied Machine Learning ### ### Custom Classifiers Implementation ### By <NAME>, <NAME>, <NAME> ### ### January 2019 ############################################################################## import math import copy import numpy as np import pandas as pd from scipy import stats # Base class to easily plug into the sklearn ecosystem e.g. when using Pipelines from sklearn.base import BaseEstimator ############################################################################## ### Logistic Regression class CustomLogitRegression(BaseEstimator): """Logistic regression classifier. Parameters ---------- max_epochs : int Iterations upper bound. alpha : float Learning rate. min_gain : float Minimum loss difference. p_threshold : float Class boundary. fit_bias : bool Add a bias/intercept constant. class_balance : bool Adjust class balance. """ def __init__(self, max_epochs=1000, alpha=0.1, min_gain=0.0001, p_threshold=0.5, fit_bias=True, class_balance=True): self.max_epochs = max_epochs self.alpha = alpha self.min_gain = min_gain self.n_nogain = 5 self.p_threshold = p_threshold self.fit_bias = fit_bias self.class_balance = class_balance self.coef_ = None # Weights to be learned #################### # Internal functions def _add_bias(self, X): """Add intercepts to matrix X.""" return np.insert(X, 0, 1, axis=1) def _cost(self, y, y_hat): """Finds the prediction cost.""" return ((-y).T @ np.log(y_hat)) - ((1 - y).T @ np.log(1 - y_hat)) def _sigmoid(self, Z): """Maps Z to a value between 0 and 1.""" return 1 / (1 + np.exp(-Z)) ################## # Public functions def fit(self, X, y): """Trains model to predict classes y given X.""" if self.fit_bias: X = self._add_bias(X) # Initialise weights self.coef_ = np.zeros(X.shape[1]) # Weighted cross entropy n_samples = np.float(y.size) y_weights = np.ones(y.size) if self.class_balance: # Find weights inversely proportional to class frequencies class_weights = n_samples / (2 * np.bincount(y)) y_weights[y == 0] = class_weights[0] y_weights[y == 1] = class_weights[1] n_nogain = 0 top_loss = np.Inf # Optimise using Stochastic Gradient Descent for epoch in range(self.max_epochs): # Predict class probabilities Z = X @ self.coef_.T y_hat = self._sigmoid(Z) # Check if the new coefficients reduce the loss loss = (self._cost(y, y_hat) * y_weights).mean() if loss > (top_loss - self.min_gain): # Loss is increasing, we overshot the minimum? n_nogain += 1 else: # Loss is decreasing, keep descending... n_nogain = 0 #if epoch > 0 and epoch % 1000 == 0: # print('{} Loss: {} Top: {}'.format(epoch, loss, top_loss)) if loss < top_loss: top_loss = loss # Stop if no improvement in loss is registered if n_nogain >= self.n_nogain: print('Converged early after {} epochs.'.format(epoch)) return # Find the gradient delta = np.matmul(X.T, (y_hat - y) * y_weights) / n_samples # Adjust the weights self.coef_ -= self.alpha * delta print('Reached maximum number of epochs without converging early.') def predict_proba(self, X): """Find probability of belonging to the true/false class.""" # Sanity check if self.coef_ is None: raise RuntimeError('Call fit first!') # Add a bias constant if self.fit_bias: X = self._add_bias(X) # Find probability of belonging to true class Z = X @ self.coef_.T p1 = self._sigmoid(Z) # Find probability of belonging to false class p0 = 1 - p1 return np.array([p0, p1]).T def predict(self, X): """Predicts the classes of X.""" return self.predict_proba(X)[:,1] >= self.p_threshold ### Logistic Regression ############################################################################## ############################################################################## ### Decision Tree class _LeafNode(): """Class that represents a leaf in the decision tree""" def __init__(self, y): self.outcome = y def predict(self, X, proba): if proba: # Calculate class probality bc = np.bincount(self.outcome) zeros = bc[0] ones = bc[1] if len(bc) == 2 else 0 return np.array([zeros, ones], dtype=np.float) / len(self.outcome) else: # Calculate the outcome base on the majority vote values, counts = np.unique(self.outcome, return_counts=True) return values[counts.argmax()] class _DecisionNode(): """Class that represents a decision node in the decision tree""" def __init__(self, i_feature, threshold, left_branch, right_branch): self.i_feature = i_feature self.threshold = threshold self.left_branch = left_branch self.right_branch = right_branch def predict(self, X, proba): """ Do a recursive search down the tree and make a prediction of the data sample by the outcome value of the leaf that we end up at. """ # Choose the feature that we will test feature_value = X[self.i_feature] # Determine if we will follow left or right branch branch = self.right_branch if isinstance(feature_value, int) or isinstance(feature_value, float): if feature_value >= self.threshold: branch = self.left_branch elif feature_value == self.threshold: branch = self.left_branch # Test subtree return branch.predict(X, proba) class CustomDecisionTree(BaseEstimator): """ A Decision-tree classifier. Parameters: ----------- min_samples_split: int The minimum number of samples needed to make a split when building a tree. min_impurity: float The minimum impurity required to split the tree further. max_depth: int The maximum depth of a tree. """ def __init__(self, min_samples_split=2, min_impurity=0, max_depth=float("inf")): self.root = None # Root node self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth #################### # Internal functions def _predict(self, X, proba): if isinstance(X, pd.DataFrame): X = X.values if self.root is None: raise RuntimeError('call fit first!') return np.array([self.root.predict(X[i, :], proba) for i in range(X.shape[0])]) def _build_tree(self, X, y, current_depth=0): """ Recursive method which builds out the decision tree and splits X and respective y on the feature of X which (based on impurity) best separates the data. """ n_samples, _ =
np.shape(X)
numpy.shape
import numpy as np from baselines.ecbp.agents.buffer.ps_learning_process import PSLearningProcess # from baselines.ecbp.agents.graph.build_graph_mer_attention import * from baselines.ecbp.agents.graph.build_graph_mer_bvae_attention import * import logging from multiprocessing import Pipe import os from baselines.ecbp.agents.psmp_learning_target_agent import PSMPLearnTargetAgent import cv2 class BVAEAttentionAgent(PSMPLearnTargetAgent): def __init__(self, encoder_func,decoder_func, exploration_schedule, obs_shape, vector_input=True, lr=1e-4, buffer_size=1000000, num_actions=6, latent_dim=32, gamma=0.99, knn=4, eval_epsilon=0.1, queue_threshold=5e-5, batch_size=32, density=True, trainable=True, num_neg=10, tf_writer=None): self.conn, child_conn = Pipe() self.replay_buffer = np.empty((buffer_size + 10,) + obs_shape, np.float32 if vector_input else np.uint8) self.ec_buffer = PSLearningProcess(num_actions, buffer_size, latent_dim*2, obs_shape, child_conn, gamma, density=density) self.obs = None self.z = None self.cur_capacity = 0 self.ind = -1 self.writer = tf_writer self.sequence = [] self.gamma = gamma self.queue_threshold = queue_threshold self.num_actions = num_actions self.exploration_schedule = exploration_schedule self.latent_dim = latent_dim self.knn = knn self.steps = 0 self.batch_size = batch_size self.rmax = 100000 self.logger = logging.getLogger("ecbp") self.log("psmp learning agent here") self.eval_epsilon = eval_epsilon self.train_step = 4 self.alpha = 1 self.burnin = 2000 self.burnout = 10000000000 self.update_target_freq = 10000 self.buffer_capacity = 0 self.trainable = trainable self.num_neg = num_neg self.loss_type = ["attention"] input_type = U.Float32Input if vector_input else U.Uint8Input # input_type = U.Uint8Input self.hash_func, self.unmask_z_func,self.train_func, self.eval_func, self.norm_func, self.attention_func, self.value_func, self.reconstruct_func,self.update_target_func = build_train_mer_bvae_attention( input_type=input_type, obs_shape=obs_shape, encoder_func=encoder_func, decoder_func=decoder_func, num_actions=num_actions, optimizer=tf.train.AdamOptimizer(learning_rate=lr, epsilon=1e-4), gamma=gamma, grad_norm_clipping=10, latent_dim=latent_dim, loss_type=self.loss_type, batch_size=batch_size, num_neg=num_neg, c_loss_type="sqmargin", ) self.finds = [0, 0] self.ec_buffer.start() def train(self): # sample # self.log("begin training") # print("training",self.writer) noise = np.random.randn(9,self.batch_size,self.latent_dim) samples = self.send_and_receive(4, (self.batch_size, self.num_neg)) samples_u = self.send_and_receive(4, (self.batch_size, self.num_neg)) samples_v = self.send_and_receive(4, (self.batch_size, self.num_neg)) index_u, _, _, _, value_u, _, _, _ = samples_u index_v, _, _, _, value_v, _, _, _ = samples_v index_tar, index_pos, index_neg, reward_tar, value_tar, action_tar, neighbours_index, neighbours_value = samples if len(index_tar) < self.batch_size: return obs_tar = [self.replay_buffer[ind] for ind in index_tar] obs_pos = [self.replay_buffer[ind] for ind in index_pos] obs_neg = [self.replay_buffer[ind] for ind in index_neg] obs_neighbour = [self.replay_buffer[ind] for ind in neighbours_index] obs_u = [self.replay_buffer[ind] for ind in index_u] obs_v = [self.replay_buffer[ind] for ind in index_v] # print(obs_tar[0].shape) if "regression" in self.loss_type: value_original = self.norm_func(np.array(obs_tar)) value_tar = np.array(value_tar) self.log(value_original, "value original") self.log(value_tar, "value tar") value_original = np.array(value_original).squeeze() / self.alpha assert value_original.shape == np.array(value_tar).shape, "{}{}".format(value_original.shape, np.array(value_tar).shape) value_tar[np.isnan(value_tar)] = value_original[np.isnan(value_tar)] assert not np.isnan(value_tar).any(), "{}{}".format(value_original, obs_tar) input = [noise,obs_tar] if "contrast" in self.loss_type: input += [obs_pos, obs_neg] if "regression" in self.loss_type: input += [np.nan_to_num(value_tar)] if "linear_model" in self.loss_type: input += [action_tar] if "contrast" not in self.loss_type: input += [obs_pos] if "fit" in self.loss_type: input += [obs_neighbour, np.nan_to_num(neighbours_value)] if "regression" not in self.loss_type: input += [np.nan_to_num(value_tar)] if "causality" in self.loss_type: input += [reward_tar, action_tar] if "weight_product" in self.loss_type: value_u = np.nan_to_num(np.array(value_u)) value_v = np.nan_to_num(np.array(value_v)) input += [obs_u, obs_v, obs_u, obs_v, value_u, value_v] if "attention" in self.loss_type: value_original = self.value_func(noise,np.array(obs_tar)) value_tar = np.array(value_tar) value_original = np.array(value_original).squeeze() value_tar[np.isnan(value_tar)] = value_original[np.isnan(value_tar)] input += [value_tar] func = self.train_func if self.steps < self.burnout else self.eval_func loss, summary = func(*input) # self.log("finish training") self.writer.add_summary(summary, global_step=self.steps) def save_attention(self, filedir, step): subdir = os.path.join(filedir, "./attention") noise = np.random.randn(9, 1, self.latent_dim) origin_z = np.array(self.unmask_z_func(noise,np.array(self.obs)))[0] z = np.array(self.hash_func(noise,
np.array(self.obs)
numpy.array
# -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # Modified by yl # -------------------------------------------------------- import os # import cPickle import pickle import numpy as np import cv2 import math from six.moves import xrange from shapely.geometry import * import xml.etree.cElementTree as ET def parse_rec_txt(filename): with open(filename.strip(),'r') as f: gts = f.readlines() objects = [] for obj in gts: cors = obj.strip().split(',') obj_struct = {} obj_struct['name'] = 'text' obj_struct['difficult'] = 0 obj_struct['bbox'] = [int(cors[0]), int(cors[1]), int(cors[2]), int(cors[3])] objects.append(obj_struct) return objects def rotate_box(point1, point2, point3, point4, mid_x, mid_y, theta): theta = -theta * math.pi / 180 sin = math.sin(theta) cos = math.cos(theta) point1 = point1 - [mid_x, mid_y] point2 = point2 - [mid_x, mid_y] point3 = point3 - [mid_x, mid_y] point4 = point4 - [mid_x, mid_y] x1 = point1[0] * cos - point1[1] * sin + mid_x y1 = point1[0] * sin + point1[1] * cos + mid_y x2 = point2[0] * cos - point2[1] * sin + mid_x y2 = point2[0] * sin + point2[1] * cos + mid_y x3 = point3[0] * cos - point3[1] * sin + mid_x y3 = point3[0] * sin + point3[1] * cos + mid_y x4 = point4[0] * cos - point4[1] * sin + mid_x y4 = point4[0] * sin + point4[1] * cos + mid_y return np.array([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) def quadrangle2minAreaRect(quad_coord_boxes): quad_coord = np.array(quad_coord_boxes).reshape((4,2)) min_area_rect = cv2.minAreaRect(quad_coord) mid_x, mid_y = min_area_rect[0] theta = min_area_rect[2] box = cv2.boxPoints(min_area_rect) # determine the minAreaRect direction # reference: http://blog.csdn.net/sunflower_boy/article/details/51170232 x0 = box[0][0] count = np.sum(box[:,0].reshape(-1)>x0) if count >= 2: theta = theta hori_box = rotate_box(box[1], box[2], box[3], box[0], mid_x, mid_y, theta) else: theta = 90 + theta hori_box = rotate_box(box[2], box[3], box[0], box[1], mid_x, mid_y, theta) min_x = np.min(hori_box[:,0]) min_y = np.min(hori_box[:,1]) max_x = np.max(hori_box[:,0]) max_y = np.max(hori_box[:,1]) mid_x = (min_x+max_x)/2.0 mid_y = (min_y+max_y)/2.0 # normalize the rotate angle in -45 to 45 items = [min_x, min_y, max_x, max_y] if theta > 90: theta = theta - 180 if theta < -90: theta = theta + 180 if theta > 45: theta = theta - 90 width = items[3] - items[1] height = items[2] - items[0] elif theta < -45: theta = theta + 90 width = items[3] - items[1] height = items[2] - items[0] else: width = items[2] - items[0] height = items[3] - items[1] return [mid_x,mid_y,width,height,-theta]# positive degree for the gt box rotated counter-clockwisely to the horizontal rectangle def curve_parse_rec_txt(filename): with open(filename.strip(),'r') as f: gts = f.readlines() objects = [] if len(gts) == 0: obj_struct = {} obj_struct['name'] = 'text' obj_struct['difficult'] = 1 obj_struct['bbox'] = [] # obj_struct['minAreaRect'] = [] objects.append(obj_struct) else: for obj in gts: cors = obj.strip().split(',') obj_struct = {} obj_struct['name'] = 'text' # if cors[-1] == "-1": # obj_struct['difficult'] = 1 # print('difficult') # else: # obj_struct['difficult'] = 0 obj_struct['difficult'] = 0 # obj_struct['bbox'] = [int(cors[0]), int(cors[1]),int(cors[2]),int(cors[3]), # int(cors[4]), int(cors[5]),int(cors[6]),int(cors[7])] obj_struct['bbox'] = [int(coor) for coor in cors] # obj_struct['minAreaRect'] = quadrangle2minAreaRect(obj_struct['bbox']) objects.append(obj_struct) return objects def is_valid_tag(tags): all_tags = tags.split('|') valid = True count_tag = 0 for cls in ['Text', 'Formula', 'FormulaSN', 'Figure', 'Table', 'Table_Form', 'ItemList', 'Table_keyvalue_vertical', 'Table_keyvalue_horizontal']: if cls in all_tags: count_tag += 1 if count_tag == 0: tags += "|Text" elif count_tag != 1: valid = False # print(valid) return valid def curve_parse_rec_xml(filename): tree = ET.parse(filename.strip()) root = tree.getroot() objects = [] for elem in root.iter('Line'): poly = elem.find('Polygon') tags = elem.find('Tag') tag_notsure = 0 # 0 for text, 1 for ambiguous if tags is None: continue else: tags = tags.text if tags is None: continue valid = is_valid_tag(tags) if valid == False: tag_notsure = 1 if 'NotSure' in tags.split('|'): tag_notsure = 1 # if not ('Table' in tags.split('|')): if not ('Table' in tags.split('|') or 'Table_Form' in tags.split('|') or 'ItemList' in tags.split('|') or 'Table_keyvalue_vertical' in tags.split('|') or 'Table_keyvalue_horizontal' in tags.split('|')): if tag_notsure == 0: continue # if not (('Table' in tags.split('|')) and ('Text' not in tags.split('|'))): # continue if poly is None: continue else: poly = poly.text if poly is None: continue items = poly.split(' ') obj_struct = {} obj_struct['name'] = 'text' obj_struct['difficult'] = tag_notsure obj_struct['bbox'] = [int(coor) for coor in items] objects.append(obj_struct) if len(objects) == 0: obj_struct = {} obj_struct['name'] = 'text' obj_struct['difficult'] = 1 obj_struct['bbox'] = [] objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """ ap = voc_ap(rec, prec, [use_07_metric]) Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11 point method (default:False). """ if use_07_metric: # 11 point metric ap = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p =
np.max(prec[rec >= t])
numpy.max
from functools import reduce from copy import copy from time import time import numpy as np import numpy.random as npr import numpy.linalg as la import scipy.linalg as sla from scipy.linalg import solve_discrete_lyapunov, solve_discrete_are from utility.matrixmath import vec, mat, mdot, matmul_lr, specrad, dlyap, dare, dare_gain from quadtools import quadblock, quadstack, unquadblock, unquadstack class LinearSystem: def __init__(self, A, B, C, a, Aa, b, Bb, c, Cc, Q, W): self.A = A self.B = B self.C = C self.a = a self.b = b self.c = c self.Aa = Aa self.Bb = Bb self.Cc = Cc self.Q = Q self.W = W self.n = A.shape[0] self.m = B.shape[1] self.p = C.shape[0] @property def data(self): return self.A, self.B, self.C, self.a, self.Aa, self.b, self.Bb, self.c, self.Cc, self.Q, self.W @property def dims(self): return self.n, self.m, self.p @property def AB(self): return np.block([self.A, self.B]) @property def AC(self): return np.block([[self.A], [self.C]]) class LinearSystemControlled(LinearSystem): def __init__(self, system, K, L): super().__init__(*system.data) self.K = K self.L = L # Zeros matrices self.Zn = np.zeros([self.n, self.n]) @property def BK(self): return self.B @ self.K @property def LC(self): return self.L @ self.C @property def F(self): return self.A + self.BK - self.LC @property def Phi_aug(self): return np.block([[self.A, self.BK], [self.LC, self.F]]) @property def AK(self): return self.A + self.BK @property def AL(self): return self.A - self.LC @property def IK(self): return np.block([[np.eye(self.n)], [self.K]]) @property def IL(self): return np.block([np.eye(self.n), self.L]) @property def QK(self): return matmul_lr(self.IK.T, self.Q) @property def WL(self): return matmul_lr(self.IL, self.W) @property def IK_aug(self): return sla.block_diag(np.eye(self.n), self.K) @property def IL_aug(self): return sla.block_diag(np.eye(self.n), self.L) @property def QK_aug(self): return matmul_lr(self.IK_aug.T, self.Q) @property def WL_aug(self): return matmul_lr(self.IL_aug, self.W) @property def linop1(self): # Closed-loop quadratic cost transition operator linop = np.kron(self.Phi_aug.T, self.Phi_aug.T) for i in range(self.a.size): PhiAa = np.block([[self.Aa[i], self.Zn], [self.Zn, self.Zn]]) linop += self.a[i]*
np.kron(PhiAa.T, PhiAa.T)
numpy.kron
import numpy as np from Network import Network from Layer import Layer from Activations import Activations def main(): np.random.seed(10) X =
np.array([[0,0],[0,1],[1,0],[1,1]])
numpy.array
import numpy as np def default_limit_theta(theta): return theta def gradient_descent(x, y, iterations, predict, derivative, theta=None, limit_theta=None): assert x.shape[0] == y.shape[0] if theta is None: theta =
np.zeros(x.shape[1])
numpy.zeros
""" Procedures for fitting marginal regression models to dependent data using Generalized Estimating Equations. References ---------- <NAME> and <NAME>. "Longitudinal data analysis using generalized linear models". Biometrika (1986) 73 (1): 13-22. <NAME> and <NAME>. "Longitudinal Data Analysis for Discrete and Continuous Outcomes". Biometrics Vol. 42, No. 1 (Mar., 1986), pp. 121-130 <NAME> and <NAME> (1990). "Hypothesis testing of regression parameters in semiparametric generalized linear models for cluster correlated data", Biometrika, 77, 485-497. <NAME> and <NAME> (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf <NAME>, <NAME> (2001). A covariance estimator for GEE with improved small-sample properties. Biometrics. 2001 Mar;57(1):126-34. """ from __future__ import division from statsmodels.compat.python import range, lzip, zip import numpy as np from scipy import stats import pandas as pd import patsy from collections import defaultdict from statsmodels.tools.decorators import cache_readonly import statsmodels.base.model as base # used for wrapper: import statsmodels.regression.linear_model as lm import statsmodels.base.wrapper as wrap from statsmodels.genmod import families from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import cov_struct as cov_structs import statsmodels.genmod.families.varfuncs as varfuncs from statsmodels.genmod.families.links import Link from statsmodels.tools.sm_exceptions import (ConvergenceWarning, DomainWarning, IterationLimitWarning, ValueWarning) import warnings from statsmodels.graphics._regressionplots_doc import ( _plot_added_variable_doc, _plot_partial_residuals_doc, _plot_ceres_residuals_doc) from statsmodels.discrete.discrete_margins import ( _get_margeff_exog, _check_margeff_args, _effects_at, margeff_cov_with_se, _check_at_is_all, _transform_names, _check_discrete_args, _get_dummy_index, _get_count_index) class ParameterConstraint(object): """ A class for managing linear equality constraints for a parameter vector. """ def __init__(self, lhs, rhs, exog): """ Parameters ---------- lhs : ndarray A q x p matrix which is the left hand side of the constraint lhs * param = rhs. The number of constraints is q >= 1 and p is the dimension of the parameter vector. rhs : ndarray A 1-dimensional vector of length q which is the right hand side of the constraint equation. exog : ndarray The n x p exognenous data for the full model. """ # In case a row or column vector is passed (patsy linear # constraints passes a column vector). rhs = np.atleast_1d(rhs.squeeze()) if rhs.ndim > 1: raise ValueError("The right hand side of the constraint " "must be a vector.") if len(rhs) != lhs.shape[0]: raise ValueError("The number of rows of the left hand " "side constraint matrix L must equal " "the length of the right hand side " "constraint vector R.") self.lhs = lhs self.rhs = rhs # The columns of lhs0 are an orthogonal basis for the # orthogonal complement to row(lhs), the columns of lhs1 are # an orthogonal basis for row(lhs). The columns of lhsf = # [lhs0, lhs1] are mutually orthogonal. lhs_u, lhs_s, lhs_vt = np.linalg.svd(lhs.T, full_matrices=1) self.lhs0 = lhs_u[:, len(lhs_s):] self.lhs1 = lhs_u[:, 0:len(lhs_s)] self.lhsf = np.hstack((self.lhs0, self.lhs1)) # param0 is one solution to the underdetermined system # L * param = R. self.param0 = np.dot(self.lhs1, np.dot(lhs_vt, self.rhs) / lhs_s) self._offset_increment = np.dot(exog, self.param0) self.orig_exog = exog self.exog_fulltrans = np.dot(exog, self.lhsf) def offset_increment(self): """ Returns a vector that should be added to the offset vector to accommodate the constraint. Parameters ---------- exog : array-like The exogeneous data for the model. """ return self._offset_increment def reduced_exog(self): """ Returns a linearly transformed exog matrix whose columns span the constrained model space. Parameters ---------- exog : array-like The exogeneous data for the model. """ return self.exog_fulltrans[:, 0:self.lhs0.shape[1]] def restore_exog(self): """ Returns the full exog matrix before it was reduced to satisfy the constraint. """ return self.orig_exog def unpack_param(self, params): """ Converts the parameter vector `params` from reduced to full coordinates. """ return self.param0 + np.dot(self.lhs0, params) def unpack_cov(self, bcov): """ Converts the covariance matrix `bcov` from reduced to full coordinates. """ return np.dot(self.lhs0, np.dot(bcov, self.lhs0.T)) _gee_init_doc = """ Marginal regression model fit using Generalized Estimating Equations. GEE can be used to fit Generalized Linear Models (GLMs) when the data have a grouped structure, and the observations are possibly correlated within groups but not between groups. Parameters ---------- endog : array-like 1d array of endogenous values (i.e. responses, outcomes, dependent variables, or 'Y' values). exog : array-like 2d array of exogeneous values (i.e. covariates, predictors, independent variables, regressors, or 'X' values). A `nobs x k` array where `nobs` is the number of observations and `k` is the number of regressors. An intercept is not included by default and should be added by the user. See `statsmodels.tools.add_constant`. groups : array-like A 1d array of length `nobs` containing the group labels. time : array-like A 2d array of time (or other index) values, used by some dependence structures to define similarity relationships among observations within a cluster. family : family class instance %(family_doc)s cov_struct : CovStruct class instance The default is Independence. To specify an exchangeable structure use cov_struct = Exchangeable(). See statsmodels.genmod.cov_struct.CovStruct for more information. offset : array-like An offset to be included in the fit. If provided, must be an array whose length is the number of rows in exog. dep_data : array-like Additional data passed to the dependence structure. constraint : (ndarray, ndarray) If provided, the constraint is a tuple (L, R) such that the model parameters are estimated under the constraint L * param = R, where L is a q x p matrix and R is a q-dimensional vector. If constraint is provided, a score test is performed to compare the constrained model to the unconstrained model. update_dep : bool If true, the dependence parameters are optimized, otherwise they are held fixed at their starting values. weights : array-like An array of weights to use in the analysis. The weights must be constant within each group. These correspond to probability weights (pweights) in Stata. %(extra_params)s See Also -------- statsmodels.genmod.families.family :ref:`families` :ref:`links` Notes ----- Only the following combinations make sense for family and link :: + ident log logit probit cloglog pow opow nbinom loglog logc Gaussian | x x x inv Gaussian | x x x binomial | x x x x x x x x x Poission | x x x neg binomial | x x x x gamma | x x x Not all of these link functions are currently available. Endog and exog are references so that if the data they refer to are already arrays and these arrays are changed, endog and exog will change. The "robust" covariance type is the standard "sandwich estimator" (e.g. Liang and Zeger (1986)). It is the default here and in most other packages. The "naive" estimator gives smaller standard errors, but is only correct if the working correlation structure is correctly specified. The "bias reduced" estimator of Mancl and DeRouen (Biometrics, 2001) reduces the downard bias of the robust estimator. The robust covariance provided here follows Liang and Zeger (1986) and agrees with R's gee implementation. To obtain the robust standard errors reported in Stata, multiply by sqrt(N / (N - g)), where N is the total sample size, and g is the average group size. Examples -------- %(example)s """ _gee_family_doc = """\ The default is Gaussian. To specify the binomial distribution use `family=sm.families.Binomial()`. Each family can take a link instance as an argument. See statsmodels.genmod.families.family for more information.""" _gee_ordinal_family_doc = """\ The only family supported is `Binomial`. The default `Logit` link may be replaced with `probit` if desired.""" _gee_nominal_family_doc = """\ The default value `None` uses a multinomial logit family specifically designed for use with GEE. Setting this argument to a non-default value is not currently supported.""" _gee_fit_doc = """ Fits a marginal regression model using generalized estimating equations (GEE). Parameters ---------- maxiter : integer The maximum number of iterations ctol : float The convergence criterion for stopping the Gauss-Seidel iterations start_params : array-like A vector of starting values for the regression coefficients. If None, a default is chosen. params_niter : integer The number of Gauss-Seidel updates of the mean structure parameters that take place prior to each update of the dependence structure. first_dep_update : integer No dependence structure updates occur before this iteration number. cov_type : string One of "robust", "naive", or "bias_reduced". ddof_scale : scalar or None The scale parameter is estimated as the sum of squared Pearson residuals divided by `N - ddof_scale`, where N is the total sample size. If `ddof_scale` is None, the number of covariates (including an intercept if present) is used. scaling_factor : scalar The estimated covariance of the parameter estimates is scaled by this value. Default is 1, Stata uses N / (N - g), where N is the total sample size and g is the average group size. Returns ------- An instance of the GEEResults class or subclass Notes ----- If convergence difficulties occur, increase the values of `first_dep_update` and/or `params_niter`. Setting `first_dep_update` to a greater value (e.g. ~10-20) causes the algorithm to move close to the GLM solution before attempting to identify the dependence structure. For the Gaussian family, there is no benefit to setting `params_niter` to a value greater than 1, since the mean structure parameters converge in one step. """ _gee_results_doc = """ Attributes ---------- cov_params_default : ndarray default covariance of the parameter estimates. Is chosen among one of the following three based on `cov_type` cov_robust : ndarray covariance of the parameter estimates that is robust cov_naive : ndarray covariance of the parameter estimates that is not robust to correlation or variance misspecification cov_robust_bc : ndarray covariance of the parameter estimates that is robust and bias reduced converged : bool indicator for convergence of the optimization. True if the norm of the score is smaller than a threshold cov_type : string string indicating whether a "robust", "naive" or "bias_reduced" covariance is used as default fit_history : dict Contains information about the iterations. fittedvalues : array Linear predicted values for the fitted model. dot(exog, params) model : class instance Pointer to GEE model instance that called `fit`. normalized_cov_params : array See GEE docstring params : array The coefficients of the fitted model. Note that interpretation of the coefficients often depends on the distribution family and the data. scale : float The estimate of the scale / dispersion for the model fit. See GEE.fit for more information. score_norm : float norm of the score at the end of the iterative estimation. bse : array The standard errors of the fitted GEE parameters. """ _gee_example = """ Logistic regression with autoregressive working dependence: >>> import statsmodels.api as sm >>> family = sm.families.Binomial() >>> va = sm.cov_struct.Autoregressive() >>> model = sm.GEE(endog, exog, group, family=family, cov_struct=va) >>> result = model.fit() >>> print(result.summary()) Use formulas to fit a Poisson GLM with independent working dependence: >>> import statsmodels.api as sm >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = sm.GEE.from_formula("y ~ age + trt + base", "subject", \ data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.summary()) Equivalent, using the formula API: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> fam = sm.families.Poisson() >>> ind = sm.cov_struct.Independence() >>> model = smf.gee("y ~ age + trt + base", "subject", \ data, cov_struct=ind, family=fam) >>> result = model.fit() >>> print(result.summary()) """ _gee_ordinal_example = """ Fit an ordinal regression model using GEE, with "global odds ratio" dependence: >>> import statsmodels.api as sm >>> gor = sm.cov_struct.GlobalOddsRatio("ordinal") >>> model = sm.OrdinalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using formulas: >>> import statsmodels.formula.api as smf >>> model = smf.ordinal_gee("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) """ _gee_nominal_example = """ Fit a nominal regression model using GEE: >>> import statsmodels.api as sm >>> import statsmodels.formula.api as smf >>> gor = sm.cov_struct.GlobalOddsRatio("nominal") >>> model = sm.NominalGEE(endog, exog, groups, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using formulas: >>> import statsmodels.api as sm >>> model = sm.NominalGEE.from_formula("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) Using the formula API: >>> import statsmodels.formula.api as smf >>> model = smf.nominal_gee("y ~ x1 + x2", groups, data, cov_struct=gor) >>> result = model.fit() >>> print(result.summary()) """ def _check_args(endog, exog, groups, time, offset, exposure): if endog.size != exog.shape[0]: raise ValueError("Leading dimension of 'exog' should match " "length of 'endog'") if groups.size != endog.size: raise ValueError("'groups' and 'endog' should have the same size") if time is not None and (time.size != endog.size): raise ValueError("'time' and 'endog' should have the same size") if offset is not None and (offset.size != endog.size): raise ValueError("'offset and 'endog' should have the same size") if exposure is not None and (exposure.size != endog.size): raise ValueError("'exposure' and 'endog' should have the same size") class GEE(base.Model): __doc__ = ( " Estimation of marginal regression models using Generalized\n" " Estimating Equations (GEE).\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_family_doc, 'example': _gee_example}) cached_means = None def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, exposure=None, dep_data=None, constraint=None, update_dep=True, weights=None, **kwargs): if family is not None: if not isinstance(family.link, tuple(family.safe_links)): import warnings msg = ("The {0} link function does not respect the " "domain of the {1} family.") warnings.warn(msg.format(family.link.__class__.__name__, family.__class__.__name__), DomainWarning) groups = np.asarray(groups) # in case groups is pandas if "missing_idx" in kwargs and kwargs["missing_idx"] is not None: # If here, we are entering from super.from_formula; missing # has already been dropped from endog and exog, but not from # the other variables. ii = ~kwargs["missing_idx"] groups = groups[ii] if time is not None: time = time[ii] if offset is not None: offset = offset[ii] if exposure is not None: exposure = exposure[ii] del kwargs["missing_idx"] _check_args(endog, exog, groups, time, offset, exposure) self.missing = missing self.dep_data = dep_data self.constraint = constraint self.update_dep = update_dep self._fit_history = defaultdict(list) # Pass groups, time, offset, and dep_data so they are # processed for missing data along with endog and exog. # Calling super creates self.exog, self.endog, etc. as # ndarrays and the original exog, endog, etc. are # self.data.endog, etc. super(GEE, self).__init__(endog, exog, groups=groups, time=time, offset=offset, exposure=exposure, weights=weights, dep_data=dep_data, missing=missing, **kwargs) self._init_keys.extend(["update_dep", "constraint", "family", "cov_struct"]) # Handle the family argument if family is None: family = families.Gaussian() else: if not issubclass(family.__class__, families.Family): raise ValueError("GEE: `family` must be a genmod " "family instance") self.family = family # Handle the cov_struct argument if cov_struct is None: cov_struct = cov_structs.Independence() else: if not issubclass(cov_struct.__class__, cov_structs.CovStruct): raise ValueError("GEE: `cov_struct` must be a genmod " "cov_struct instance") self.cov_struct = cov_struct # Handle the offset and exposure self._offset_exposure = None if offset is not None: self._offset_exposure = self.offset.copy() self.offset = offset if exposure is not None: if not isinstance(self.family.link, families.links.Log): raise ValueError( "exposure can only be used with the log link function") if self._offset_exposure is not None: self._offset_exposure += np.log(exposure) else: self._offset_exposure = np.log(exposure) self.exposure = exposure # Handle the constraint self.constraint = None if constraint is not None: if len(constraint) != 2: raise ValueError("GEE: `constraint` must be a 2-tuple.") if constraint[0].shape[1] != self.exog.shape[1]: raise ValueError( "GEE: the left hand side of the constraint must have " "the same number of columns as the exog matrix.") self.constraint = ParameterConstraint(constraint[0], constraint[1], self.exog) if self._offset_exposure is not None: self._offset_exposure += self.constraint.offset_increment() else: self._offset_exposure = ( self.constraint.offset_increment().copy()) self.exog = self.constraint.reduced_exog() # Create list of row indices for each group group_labels, ix = np.unique(self.groups, return_inverse=True) se = pd.Series(index=np.arange(len(ix))) gb = se.groupby(ix).groups dk = [(lb, np.asarray(gb[k])) for k, lb in enumerate(group_labels)] self.group_indices = dict(dk) self.group_labels = group_labels # Convert the data to the internal representation, which is a # list of arrays, corresponding to the groups. self.endog_li = self.cluster_list(self.endog) self.exog_li = self.cluster_list(self.exog) if self.weights is not None: self.weights_li = self.cluster_list(self.weights) self.weights_li = [x[0] for x in self.weights_li] self.weights_li = np.asarray(self.weights_li) self.num_group = len(self.endog_li) # Time defaults to a 1d grid with equal spacing if self.time is not None: self.time = np.asarray(self.time, np.float64) if self.time.ndim == 1: self.time = self.time[:, None] self.time_li = self.cluster_list(self.time) else: self.time_li = \ [np.arange(len(y), dtype=np.float64)[:, None] for y in self.endog_li] self.time = np.concatenate(self.time_li) if self._offset_exposure is not None: self.offset_li = self.cluster_list(self._offset_exposure) else: self.offset_li = None if constraint is not None: self.constraint.exog_fulltrans_li = \ self.cluster_list(self.constraint.exog_fulltrans) self.family = family self.cov_struct.initialize(self) # Total sample size group_ns = [len(y) for y in self.endog_li] self.nobs = sum(group_ns) # The following are column based, not on rank see #1928 self.df_model = self.exog.shape[1] - 1 # assumes constant self.df_resid = self.nobs - self.exog.shape[1] # Skip the covariance updates if all groups have a single # observation (reduces to fitting a GLM). maxgroup = max([len(x) for x in self.endog_li]) if maxgroup == 1: self.update_dep = False # Override to allow groups and time to be passed as variable # names. @classmethod def from_formula(cls, formula, groups, data, subset=None, time=None, offset=None, exposure=None, *args, **kwargs): """ Create a GEE model instance from a formula and dataframe. Parameters ---------- formula : str or generic Formula object The formula specifying the model groups : array-like or string Array of grouping labels. If a string, this is the name of a variable in `data` that contains the grouping labels. data : array-like The data for the model. subset : array-like An array-like object of booleans, integers, or index values that indicate the subset of the data to used when fitting the model. time : array-like or string The time values, used for dependence structures involving distances between observations. If a string, this is the name of a variable in `data` that contains the time values. offset : array-like or string The offset values, added to the linear predictor. If a string, this is the name of a variable in `data` that contains the offset values. exposure : array-like or string The exposure values, only used if the link function is the logarithm function, in which case the log of `exposure` is added to the offset (if any). If a string, this is the name of a variable in `data` that contains the offset values. %(missing_param_doc)s args : extra arguments These are passed to the model kwargs : extra keyword arguments These are passed to the model with two exceptions. `dep_data` is processed as described below. The ``eval_env`` keyword is passed to patsy. It can be either a :class:`patsy:patsy.EvalEnvironment` object or an integer indicating the depth of the namespace to use. For example, the default ``eval_env=0`` uses the calling namespace. If you wish to use a "clean" environment set ``eval_env=-1``. Optional arguments ------------------ dep_data : string or array-like Data used for estimating the dependence structure. See specific dependence structure classes (e.g. Nested) for details. If `dep_data` is a string, it is interpreted as a formula that is applied to `data`. If it is an array, it must be an array of strings corresponding to column names in `data`. Otherwise it must be an array-like with the same number of rows as data. Returns ------- model : GEE model instance Notes ----- `data` must define __getitem__ with the keys in the formula terms args and kwargs are passed on to the model instantiation. E.g., a numpy structured or rec array, a dictionary, or a pandas DataFrame. """ % {'missing_param_doc': base._missing_param_doc} groups_name = "Groups" if isinstance(groups, str): groups_name = groups groups = data[groups] if isinstance(time, str): time = data[time] if isinstance(offset, str): offset = data[offset] if isinstance(exposure, str): exposure = data[exposure] dep_data = kwargs.get("dep_data") dep_data_names = None if dep_data is not None: if isinstance(dep_data, str): dep_data = patsy.dmatrix(dep_data, data, return_type='dataframe') dep_data_names = dep_data.columns.tolist() else: dep_data_names = list(dep_data) dep_data = data[dep_data] kwargs["dep_data"] = np.asarray(dep_data) model = super(GEE, cls).from_formula(formula, data=data, subset=subset, groups=groups, time=time, offset=offset, exposure=exposure, *args, **kwargs) if dep_data_names is not None: model._dep_data_names = dep_data_names model._groups_name = groups_name return model def cluster_list(self, array): """ Returns `array` split into subarrays corresponding to the cluster structure. """ if array.ndim == 1: return [np.array(array[self.group_indices[k]]) for k in self.group_labels] else: return [np.array(array[self.group_indices[k], :]) for k in self.group_labels] def compare_score_test(self, submodel): """ Perform a score test for the given submodel against this model. Parameters ---------- submodel : GEEResults instance A fitted GEE model that is a submodel of this model. Returns ------- A dictionary with keys "statistic", "p-value", and "df", containing the score test statistic, its chi^2 p-value, and the degrees of freedom used to compute the p-value. Notes ----- The score test can be performed without calling 'fit' on the larger model. The provided submodel must be obtained from a fitted GEE. This method performs the same score test as can be obtained by fitting the GEE with a linear constraint and calling `score_test` on the results. References ---------- <NAME> and <NAME> (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ # Check consistency between model and submodel (not a comprehensive # check) submod = submodel.model if self.exog.shape[0] != submod.exog.shape[0]: msg = "Model and submodel have different numbers of cases." raise ValueError(msg) if self.exog.shape[1] == submod.exog.shape[1]: msg = "Model and submodel have the same number of variables" warnings.warn(msg) if not isinstance(self.family, type(submod.family)): msg = "Model and submodel have different GLM families." warnings.warn(msg) if not isinstance(self.cov_struct, type(submod.cov_struct)): warnings.warn("Model and submodel have different GEE covariance " "structures.") if not np.equal(self.weights, submod.weights).all(): msg = "Model and submodel should have the same weights." warnings.warn(msg) # Get the positions of the submodel variables in the # parent model qm, qc = _score_test_submodel(self, submodel.model) if qm is None: msg = "The provided model is not a submodel." raise ValueError(msg) # Embed the submodel params into a params vector for the # parent model params_ex = np.dot(qm, submodel.params) # Attempt to preserve the state of the parent model cov_struct_save = self.cov_struct import copy cached_means_save = copy.deepcopy(self.cached_means) # Get the score vector of the submodel params in # the parent model self.cov_struct = submodel.cov_struct self.update_cached_means(params_ex) _, score = self._update_mean_params() if score is None: msg = "Singular matrix encountered in GEE score test" warnings.warn(msg, ConvergenceWarning) return None if not hasattr(self, "ddof_scale"): self.ddof_scale = self.exog.shape[1] if not hasattr(self, "scaling_factor"): self.scaling_factor = 1 _, ncov1, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale ** 2 score2 = np.dot(qc.T, score) / scale amat = np.linalg.inv(ncov1) bmat_11 = np.dot(qm.T, np.dot(cmat, qm)) bmat_22 = np.dot(qc.T, np.dot(cmat, qc)) bmat_12 = np.dot(qm.T, np.dot(cmat, qc)) amat_11 = np.dot(qm.T, np.dot(amat, qm)) amat_12 = np.dot(qm.T, np.dot(amat, qc)) score_cov = bmat_22 - np.dot(amat_12.T, np.linalg.solve(amat_11, bmat_12)) score_cov -= np.dot(bmat_12.T, np.linalg.solve(amat_11, amat_12)) score_cov += np.dot(amat_12.T, np.dot(np.linalg.solve(amat_11, bmat_11), np.linalg.solve(amat_11, amat_12))) # Attempt to restore state self.cov_struct = cov_struct_save self.cached_means = cached_means_save from scipy.stats.distributions import chi2 score_statistic = np.dot(score2, np.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) return {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} def estimate_scale(self): """ Estimate the dispersion/scale. The scale parameter for binomial, Poisson, and multinomial families is fixed at 1, otherwise it is estimated from the data. """ if isinstance(self.family, (families.Binomial, families.Poisson, _Multinomial)): return 1. endog = self.endog_li cached_means = self.cached_means nobs = self.nobs varfunc = self.family.variance scale = 0. fsum = 0. for i in range(self.num_group): if len(endog[i]) == 0: continue expval, _ = cached_means[i] f = self.weights_li[i] if self.weights is not None else 1. sdev = np.sqrt(varfunc(expval)) resid = (endog[i] - expval) / sdev scale += f * np.sum(resid ** 2) fsum += f * len(endog[i]) scale /= (fsum * (nobs - self.ddof_scale) / float(nobs)) return scale def mean_deriv(self, exog, lin_pred): """ Derivative of the expected endog with respect to the parameters. Parameters ---------- exog : array-like The exogeneous data at which the derivative is computed. lin_pred : array-like The values of the linear predictor. Returns ------- The value of the derivative of the expected endog with respect to the parameter vector. Notes ----- If there is an offset or exposure, it should be added to `lin_pred` prior to calling this function. """ idl = self.family.link.inverse_deriv(lin_pred) dmat = exog * idl[:, None] return dmat def mean_deriv_exog(self, exog, params, offset_exposure=None): """ Derivative of the expected endog with respect to exog. Parameters ---------- exog : array-like Values of the independent variables at which the derivative is calculated. params : array-like Parameter values at which the derivative is calculated. offset_exposure : array-like, optional Combined offset and exposure. Returns ------- The derivative of the expected endog with respect to exog. """ lin_pred = np.dot(exog, params) if offset_exposure is not None: lin_pred += offset_exposure idl = self.family.link.inverse_deriv(lin_pred) dmat = np.outer(idl, params) return dmat def _update_mean_params(self): """ Returns ------- update : array-like The update vector such that params + update is the next iterate when solving the score equations. score : array-like The current value of the score equations, not incorporating the scale parameter. If desired, multiply this vector by the scale parameter to incorporate the scale. """ endog = self.endog_li exog = self.exog_li cached_means = self.cached_means varfunc = self.family.variance bmat, score = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve(expval, i, sdev, (dmat, resid)) if rslt is None: return None, None vinv_d, vinv_resid = tuple(rslt) f = self.weights_li[i] if self.weights is not None else 1. bmat += f * np.dot(dmat.T, vinv_d) score += f * np.dot(dmat.T, vinv_resid) update = np.linalg.solve(bmat, score) self._fit_history["cov_adjust"].append( self.cov_struct.cov_adjust) return update, score def update_cached_means(self, mean_params): """ cached_means should always contain the most recent calculation of the group-wise mean vectors. This function should be called every time the regression parameters are changed, to keep the cached means up to date. """ endog = self.endog_li exog = self.exog_li offset = self.offset_li linkinv = self.family.link.inverse self.cached_means = [] for i in range(self.num_group): if len(endog[i]) == 0: continue lpr = np.dot(exog[i], mean_params) if offset is not None: lpr += offset[i] expval = linkinv(lpr) self.cached_means.append((expval, lpr)) def _covmat(self): """ Returns the sampling covariance matrix of the regression parameters and related quantities. Returns ------- cov_robust : array-like The robust, or sandwich estimate of the covariance, which is meaningful even if the working covariance structure is incorrectly specified. cov_naive : array-like The model-based estimate of the covariance, which is meaningful if the covariance structure is correctly specified. cmat : array-like The center matrix of the sandwich expression, used in obtaining score test results. """ endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_means = self.cached_means # Calculate the naive (model-based) and robust (sandwich) # covariances. bmat, cmat = 0, 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat, resid)) if rslt is None: return None, None, None, None vinv_d, vinv_resid = tuple(rslt) f = self.weights_li[i] if self.weights is not None else 1. bmat += f * np.dot(dmat.T, vinv_d) dvinv_resid = f * np.dot(dmat.T, vinv_resid) cmat += np.outer(dvinv_resid, dvinv_resid) scale = self.estimate_scale() bmati = np.linalg.inv(bmat) cov_naive = bmati * scale cov_robust = np.dot(bmati, np.dot(cmat, bmati)) cov_naive *= self.scaling_factor cov_robust *= self.scaling_factor return cov_robust, cov_naive, cmat # Calculate the bias-corrected sandwich estimate of Mancl and # DeRouen. def _bc_covmat(self, cov_naive): cov_naive = cov_naive / self.scaling_factor endog = self.endog_li exog = self.exog_li varfunc = self.family.variance cached_means = self.cached_means scale = self.estimate_scale() bcm = 0 for i in range(self.num_group): expval, lpr = cached_means[i] resid = endog[i] - expval dmat = self.mean_deriv(exog[i], lpr) sdev = np.sqrt(varfunc(expval)) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (dmat,)) if rslt is None: return None vinv_d = rslt[0] vinv_d /= scale hmat = np.dot(vinv_d, cov_naive) hmat = np.dot(hmat, dmat.T).T f = self.weights_li[i] if self.weights is not None else 1. aresid = np.linalg.solve(np.eye(len(resid)) - hmat, resid) rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (aresid,)) if rslt is None: return None srt = rslt[0] srt = f * np.dot(dmat.T, srt) / scale bcm += np.outer(srt, srt) cov_robust_bc = np.dot(cov_naive, np.dot(bcm, cov_naive)) cov_robust_bc *= self.scaling_factor return cov_robust_bc def predict(self, params, exog=None, offset=None, exposure=None, linear=False): """ Return predicted values for a marginal regression model fit using GEE. Parameters ---------- params : array-like Parameters / coefficients of a marginal regression model. exog : array-like, optional Design / exogenous data. If exog is None, model exog is used. offset : array-like, optional Offset for exog if provided. If offset is None, model offset is used. exposure : array-like, optional Exposure for exog, if exposure is None, model exposure is used. Only allowed if link function is the logarithm. linear : bool If True, returns the linear predicted values. If False, returns the value of the inverse of the model's link function at the linear predicted values. Returns ------- An array of fitted values Notes ----- Using log(V) as the offset is equivalent to using V as the exposure. If exposure U and offset V are both provided, then log(U) + V is added to the linear predictor. """ # TODO: many paths through this, not well covered in tests if exposure is not None: if not isinstance(self.family.link, families.links.Log): raise ValueError( "exposure can only be used with the log link function") # This is the combined offset and exposure _offset = 0. # Using model exog if exog is None: exog = self.exog if not isinstance(self.family.link, families.links.Log): # Don't need to worry about exposure if offset is None: if self._offset_exposure is not None: _offset = self._offset_exposure.copy() else: _offset = offset else: if offset is None and exposure is None: if self._offset_exposure is not None: _offset = self._offset_exposure elif offset is None and exposure is not None: _offset = np.log(exposure) if hasattr(self, "offset"): _offset = _offset + self.offset elif offset is not None and exposure is None: _offset = offset if hasattr(self, "exposure"): _offset = offset + np.log(self.exposure) else: _offset = offset + np.log(exposure) # exog is provided: this is simpler than above because we # never use model exog or exposure if exog is provided. else: if offset is not None: _offset = _offset + offset if exposure is not None: _offset += np.log(exposure) lin_pred = _offset + np.dot(exog, params) if not linear: return self.family.link.inverse(lin_pred) return lin_pred def _starting_params(self): model = GLM(self.endog, self.exog, family=self.family, offset=self._offset_exposure, freq_weights=self.weights) result = model.fit() return result.params def fit(self, maxiter=60, ctol=1e-6, start_params=None, params_niter=1, first_dep_update=0, cov_type='robust', ddof_scale=None, scaling_factor=1.): # Docstring attached below # Subtract this number from the total sample size when # normalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale self.scaling_factor = scaling_factor self._fit_history = defaultdict(list) if self.weights is not None and cov_type == 'naive': raise ValueError("when using weights, cov_type may not be naive") if start_params is None: mean_params = self._starting_params() else: start_params = np.asarray(start_params) mean_params = start_params.copy() self.update_cached_means(mean_params) del_params = -1. num_assoc_updates = 0 for itr in range(maxiter): update, score = self._update_mean_params() if update is None: warnings.warn("Singular matrix encountered in GEE update", ConvergenceWarning) break mean_params += update self.update_cached_means(mean_params) # L2 norm of the change in mean structure parameters at # this iteration. del_params = np.sqrt(np.sum(score ** 2)) self._fit_history['params'].append(mean_params.copy()) self._fit_history['score'].append(score) self._fit_history['dep_params'].append( self.cov_struct.dep_params) # Don't exit until the association parameters have been # updated at least once. if (del_params < ctol and (num_assoc_updates > 0 or self.update_dep is False)): break # Update the dependence structure if (self.update_dep and (itr % params_niter) == 0 and (itr >= first_dep_update)): self._update_assoc(mean_params) num_assoc_updates += 1 if del_params >= ctol: warnings.warn("Iteration limit reached prior to convergence", IterationLimitWarning) if mean_params is None: warnings.warn("Unable to estimate GEE parameters.", ConvergenceWarning) return None bcov, ncov, _ = self._covmat() if bcov is None: warnings.warn("Estimated covariance structure for GEE " "estimates is singular", ConvergenceWarning) return None bc_cov = None if cov_type == "bias_reduced": bc_cov = self._bc_covmat(ncov) if self.constraint is not None: x = mean_params.copy() mean_params, bcov = self._handle_constraint(mean_params, bcov) if mean_params is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None y, ncov = self._handle_constraint(x, ncov) if y is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None if bc_cov is not None: y, bc_cov = self._handle_constraint(x, bc_cov) if x is None: warnings.warn("Unable to estimate constrained GEE " "parameters.", ConvergenceWarning) return None scale = self.estimate_scale() # kwargs to add to results instance, need to be available in __init__ res_kwds = dict(cov_type=cov_type, cov_robust=bcov, cov_naive=ncov, cov_robust_bc=bc_cov) # The superclass constructor will multiply the covariance # matrix argument bcov by scale, which we don't want, so we # divide bcov by the scale parameter here results = GEEResults(self, mean_params, bcov / scale, scale, cov_type=cov_type, use_t=False, attr_kwds=res_kwds) # attributes not needed during results__init__ results.fit_history = self._fit_history self.fit_history = defaultdict(list) results.score_norm = del_params results.converged = (del_params < ctol) results.cov_struct = self.cov_struct results.params_niter = params_niter results.first_dep_update = first_dep_update results.ctol = ctol results.maxiter = maxiter # These will be copied over to subclasses when upgrading. results._props = ["cov_type", "use_t", "cov_params_default", "cov_robust", "cov_naive", "cov_robust_bc", "fit_history", "score_norm", "converged", "cov_struct", "params_niter", "first_dep_update", "ctol", "maxiter"] return GEEResultsWrapper(results) fit.__doc__ = _gee_fit_doc def _update_regularized(self, params, pen_wt, scad_param, eps): sn, hm = 0, 0 for i in range(self.num_group): expval, _ = self.cached_means[i] resid = self.endog_li[i] - expval sdev = np.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid, ex)) sn0 = rslt[0] sn += np.dot(ex.T, sn0) hm0 = rslt[1] hm += np.dot(ex.T, hm0) # Wang et al. divide sn here by num_group, but that # seems to be incorrect ap = np.abs(params) clipped = np.clip(scad_param * pen_wt - ap, 0, np.inf) en = pen_wt * clipped * (ap > pen_wt) en /= (scad_param - 1) * pen_wt en += pen_wt * (ap <= pen_wt) en /= eps + ap hm.flat[::hm.shape[0] + 1] += self.num_group * en hm *= self.estimate_scale() sn -= self.num_group * en * params return np.linalg.solve(hm, sn), hm def _regularized_covmat(self, mean_params): self.update_cached_means(mean_params) ma = 0 for i in range(self.num_group): expval, _ = self.cached_means[i] resid = self.endog_li[i] - expval sdev = np.sqrt(self.family.variance(expval)) ex = self.exog_li[i] * sdev[:, None]**2 rslt = self.cov_struct.covariance_matrix_solve( expval, i, sdev, (resid,)) ma0 = np.dot(ex.T, rslt[0]) ma += np.outer(ma0, ma0) return ma def fit_regularized(self, pen_wt, scad_param=3.7, maxiter=100, ddof_scale=None, update_assoc=5, ctol=1e-5, ztol=1e-3, eps=1e-6): """ Regularized estimation for GEE. Parameters ---------- pen_wt : float The penalty weight (a non-negative scalar). scad_param : float Non-negative scalar determining the shape of the Scad penalty. maxiter : integer The maximum number of iterations. ddof_scale : integer Value to subtract from `nobs` when calculating the denominator degrees of freedom for t-statistics, defaults to the number of columns in `exog`. update_assoc : integer The dependence parameters are updated every `update_assoc` iterations of the mean structure parameter updates. ctol : float Convergence criterion, default is one order of magnitude smaller than proposed in section 3.1 of Wang et al. ztol : float Coefficients smaller than this value are treated as being zero, default is based on section 5 of Wang et al. eps : non-negative scalar Numerical constant, see section 3.2 of Wang et al. Returns ------- GEEResults instance. Note that not all methods of the results class make sense when the model has been fit with regularization. Notes ----- This implementation assumes that the link is canonical. References ---------- <NAME>, <NAME>, <NAME>. (2012). Penalized generalized estimating equations for high-dimensional longitudinal data analysis. Biometrics. 2012 Jun;68(2):353-60. doi: 10.1111/j.1541-0420.2011.01678.x. https://www.ncbi.nlm.nih.gov/pubmed/21955051 http://users.stat.umn.edu/~wangx346/research/GEE_selection.pdf """ mean_params = np.zeros(self.exog.shape[1]) self.update_cached_means(mean_params) converged = False fit_history = defaultdict(list) # Subtract this number from the total sample size when # normalizing the scale parameter estimate. if ddof_scale is None: self.ddof_scale = self.exog.shape[1] else: if not ddof_scale >= 0: raise ValueError( "ddof_scale must be a non-negative number or None") self.ddof_scale = ddof_scale for itr in range(maxiter): update, hm = self._update_regularized( mean_params, pen_wt, scad_param, eps) if update is None: msg = "Singular matrix encountered in regularized GEE update", warnings.warn(msg, ConvergenceWarning) break if np.sqrt(np.sum(update**2)) < ctol: converged = True break mean_params += update fit_history['params'].append(mean_params.copy()) self.update_cached_means(mean_params) if itr != 0 and (itr % update_assoc == 0): self._update_assoc(mean_params) if not converged: msg = "GEE.fit_regularized did not converge" warnings.warn(msg) mean_params[np.abs(mean_params) < ztol] = 0 self._update_assoc(mean_params) ma = self._regularized_covmat(mean_params) cov = np.linalg.solve(hm, ma) cov = np.linalg.solve(hm, cov.T) # kwargs to add to results instance, need to be available in __init__ res_kwds = dict(cov_type="robust", cov_robust=cov) scale = self.estimate_scale() rslt = GEEResults(self, mean_params, cov, scale, regularized=True, attr_kwds=res_kwds) rslt.fit_history = fit_history return GEEResultsWrapper(rslt) def _handle_constraint(self, mean_params, bcov): """ Expand the parameter estimate `mean_params` and covariance matrix `bcov` to the coordinate system of the unconstrained model. Parameters ---------- mean_params : array-like A parameter vector estimate for the reduced model. bcov : array-like The covariance matrix of mean_params. Returns ------- mean_params : array-like The input parameter vector mean_params, expanded to the coordinate system of the full model bcov : array-like The input covariance matrix bcov, expanded to the coordinate system of the full model """ # The number of variables in the full model red_p = len(mean_params) full_p = self.constraint.lhs.shape[1] mean_params0 = np.r_[mean_params, np.zeros(full_p - red_p)] # Get the score vector under the full model. save_exog_li = self.exog_li self.exog_li = self.constraint.exog_fulltrans_li import copy save_cached_means = copy.deepcopy(self.cached_means) self.update_cached_means(mean_params0) _, score = self._update_mean_params() if score is None: warnings.warn("Singular matrix encountered in GEE score test", ConvergenceWarning) return None, None _, ncov1, cmat = self._covmat() scale = self.estimate_scale() cmat = cmat / scale ** 2 score2 = score[red_p:] / scale amat = np.linalg.inv(ncov1) bmat_11 = cmat[0:red_p, 0:red_p] bmat_22 = cmat[red_p:, red_p:] bmat_12 = cmat[0:red_p, red_p:] amat_11 = amat[0:red_p, 0:red_p] amat_12 = amat[0:red_p, red_p:] score_cov = bmat_22 - np.dot(amat_12.T, np.linalg.solve(amat_11, bmat_12)) score_cov -= np.dot(bmat_12.T, np.linalg.solve(amat_11, amat_12)) score_cov += np.dot(amat_12.T, np.dot(np.linalg.solve(amat_11, bmat_11), np.linalg.solve(amat_11, amat_12))) from scipy.stats.distributions import chi2 score_statistic = np.dot(score2, np.linalg.solve(score_cov, score2)) score_df = len(score2) score_pvalue = 1 - chi2.cdf(score_statistic, score_df) self.score_test_results = {"statistic": score_statistic, "df": score_df, "p-value": score_pvalue} mean_params = self.constraint.unpack_param(mean_params) bcov = self.constraint.unpack_cov(bcov) self.exog_li = save_exog_li self.cached_means = save_cached_means self.exog = self.constraint.restore_exog() return mean_params, bcov def _update_assoc(self, params): """ Update the association parameters """ self.cov_struct.update(params) def _derivative_exog(self, params, exog=None, transform='dydx', dummy_idx=None, count_idx=None): """ For computing marginal effects, returns dF(XB) / dX where F(.) is the fitted mean. transform can be 'dydx', 'dyex', 'eydx', or 'eyex'. Not all of these make sense in the presence of discrete regressors, but checks are done in the results in get_margeff. """ # This form should be appropriate for group 1 probit, logit, # logistic, cloglog, heckprob, xtprobit. offset_exposure = None if exog is None: exog = self.exog offset_exposure = self._offset_exposure margeff = self.mean_deriv_exog(exog, params, offset_exposure) if 'ex' in transform: margeff *= exog if 'ey' in transform: margeff /= self.predict(params, exog)[:, None] if count_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_count_effects) margeff = _get_count_effects(margeff, exog, count_idx, transform, self, params) if dummy_idx is not None: from statsmodels.discrete.discrete_margins import ( _get_dummy_effects) margeff = _get_dummy_effects(margeff, exog, dummy_idx, transform, self, params) return margeff def qic(self, params, scale, cov_params): """ Returns quasi-information criteria and quasi-likelihood values. Parameters ---------- params : array-like The GEE estimates of the regression parameters. scale : scalar Estimated scale parameter cov_params : array-like An estimate of the covariance matrix for the model parameters. Conventionally this is the robust covariance matrix. Returns ------- ql : scalar The quasi-likelihood value qic : scalar A QIC that can be used to compare the mean and covariance structures of the model. qicu : scalar A simplified QIC that can be used to compare mean structures but not covariance structures Notes ----- The quasi-likelihood used here is obtained by numerically evaluating Wedderburn's integral representation of the quasi-likelihood function. This approach is valid for all families and links. Many other packages use analytical expressions for quasi-likelihoods that are valid in special cases where the link function is canonical. These analytical expressions may omit additive constants that only depend on the data. Therefore, the numerical values of our QL and QIC values will differ from the values reported by other packages. However only the differences between two QIC values calculated for different models using the same data are meaningful. Our QIC should produce the same QIC differences as other software. When using the QIC for models with unknown scale parameter, use a common estimate of the scale parameter for all models being compared. References ---------- .. [*] <NAME> (2001). Akaike's information criterion in generalized estimating equations. Biometrics (57) 1. """ varfunc = self.family.variance means = [] omega = 0.0 # omega^-1 is the model-based covariance assuming independence for i in range(self.num_group): expval, lpr = self.cached_means[i] means.append(expval) dmat = self.mean_deriv(self.exog_li[i], lpr) omega += np.dot(dmat.T, dmat) / scale means = np.concatenate(means) # The quasi-likelihood, use change of variables so the integration is # from -1 to 1. du = means - self.endog nstep = 10000 qv = np.empty(nstep) xv = np.linspace(-0.99999, 1, nstep) for i, g in enumerate(xv): u = self.endog + (g + 1) * du / 2.0 vu = varfunc(u) qv[i] = -np.sum(du**2 * (g + 1) / vu) qv /= (4 * scale) from scipy.integrate import trapz ql = trapz(qv, dx=xv[1] - xv[0]) qicu = -2 * ql + 2 * self.exog.shape[1] qic = -2 * ql + 2 * np.trace(np.dot(omega, cov_params)) return ql, qic, qicu class GEEResults(base.LikelihoodModelResults): __doc__ = ( "This class summarizes the fit of a marginal regression model " "using GEE.\n" + _gee_results_doc) def __init__(self, model, params, cov_params, scale, cov_type='robust', use_t=False, regularized=False, **kwds): super(GEEResults, self).__init__( model, params, normalized_cov_params=cov_params, scale=scale) # not added by super self.df_resid = model.df_resid self.df_model = model.df_model self.family = model.family attr_kwds = kwds.pop('attr_kwds', {}) self.__dict__.update(attr_kwds) # we don't do this if the cov_type has already been set # subclasses can set it through attr_kwds if not (hasattr(self, 'cov_type') and hasattr(self, 'cov_params_default')): self.cov_type = cov_type # keep alias covariance_type = self.cov_type.lower() allowed_covariances = ["robust", "naive", "bias_reduced"] if covariance_type not in allowed_covariances: msg = ("GEE: `cov_type` must be one of " + ", ".join(allowed_covariances)) raise ValueError(msg) if cov_type == "robust": cov = self.cov_robust elif cov_type == "naive": cov = self.cov_naive elif cov_type == "bias_reduced": cov = self.cov_robust_bc self.cov_params_default = cov else: if self.cov_type != cov_type: raise ValueError('cov_type in argument is different from ' 'already attached cov_type') def standard_errors(self, cov_type="robust"): """ This is a convenience function that returns the standard errors for any covariance type. The value of `bse` is the standard errors for whichever covariance type is specified as an argument to `fit` (defaults to "robust"). Parameters ---------- cov_type : string One of "robust", "naive", or "bias_reduced". Determines the covariance used to compute standard errors. Defaults to "robust". """ # Check covariance_type covariance_type = cov_type.lower() allowed_covariances = ["robust", "naive", "bias_reduced"] if covariance_type not in allowed_covariances: msg = ("GEE: `covariance_type` must be one of " + ", ".join(allowed_covariances)) raise ValueError(msg) if covariance_type == "robust": return np.sqrt(np.diag(self.cov_robust)) elif covariance_type == "naive": return np.sqrt(np.diag(self.cov_naive)) elif covariance_type == "bias_reduced": if self.cov_robust_bc is None: raise ValueError( "GEE: `bias_reduced` covariance not available") return np.sqrt(np.diag(self.cov_robust_bc)) # Need to override to allow for different covariance types. @cache_readonly def bse(self): return self.standard_errors(self.cov_type) @cache_readonly def resid(self): """ Returns the residuals, the endogeneous data minus the fitted values from the model. """ return self.model.endog - self.fittedvalues def score_test(self): """ Return the results of a score test for a linear constraint. Returns ------- Adictionary containing the p-value, the test statistic, and the degrees of freedom for the score test. Notes ----- See also GEE.compare_score_test for an alternative way to perform a score test. GEEResults.score_test is more general, in that it supports testing arbitrary linear equality constraints. However GEE.compare_score_test might be easier to use when comparing two explicit models. References ---------- <NAME> and <NAME> (2002). "Small sample performance of the score test in GEE". http://www.sph.umn.edu/faculty1/wp-content/uploads/2012/11/rr2002-013.pdf """ if not hasattr(self.model, "score_test_results"): msg = "score_test on results instance only available when " msg += " model was fit with constraints" raise ValueError(msg) return self.model.score_test_results @cache_readonly def resid_split(self): """ Returns the residuals, the endogeneous data minus the fitted values from the model. The residuals are returned as a list of arrays containing the residuals for each cluster. """ sresid = [] for v in self.model.group_labels: ii = self.model.group_indices[v] sresid.append(self.resid[ii]) return sresid @cache_readonly def resid_centered(self): """ Returns the residuals centered within each group. """ cresid = self.resid.copy() for v in self.model.group_labels: ii = self.model.group_indices[v] cresid[ii] -= cresid[ii].mean() return cresid @cache_readonly def resid_centered_split(self): """ Returns the residuals centered within each group. The residuals are returned as a list of arrays containing the centered residuals for each cluster. """ sresid = [] for v in self.model.group_labels: ii = self.model.group_indices[v] sresid.append(self.centered_resid[ii]) return sresid def qic(self, scale=None): """ Returns the QIC and QICu information criteria. For families with a scale parameter (e.g. Gaussian), provide as the scale argument the estimated scale from the largest model under consideration. If the scale parameter is not provided, the estimated scale parameter is used. Doing this does not allow comparisons of QIC values between models. """ # It is easy to forget to set the scale parameter. Sometimes # this is intentional, so we warn. if scale is None: warnings.warn("QIC values obtained using scale=None are not " "appropriate for comparing models") if scale is None: scale = self.scale _, qic, qicu = self.model.qic(self.params, scale, self.cov_params()) return qic, qicu # FIXME: alias to be removed, temporary backwards compatibility split_resid = resid_split centered_resid = resid_centered split_centered_resid = resid_centered_split @cache_readonly def resid_response(self): return self.model.endog - self.fittedvalues @cache_readonly def resid_pearson(self): val = self.model.endog - self.fittedvalues val = val / np.sqrt(self.family.variance(self.fittedvalues)) return val @cache_readonly def resid_working(self): val = self.resid_response val = val * self.family.link.deriv(self.fittedvalues) return val @cache_readonly def resid_anscombe(self): return self.family.resid_anscombe(self.model.endog, self.fittedvalues) @cache_readonly def resid_deviance(self): return self.family.resid_dev(self.model.endog, self.fittedvalues) @cache_readonly def fittedvalues(self): """ Returns the fitted values from the model. """ return self.model.family.link.inverse(np.dot(self.model.exog, self.params)) def plot_added_variable(self, focus_exog, resid_type=None, use_glm_weights=True, fit_kwargs=None, ax=None): # Docstring attached below from statsmodels.graphics.regressionplots import plot_added_variable fig = plot_added_variable(self, focus_exog, resid_type=resid_type, use_glm_weights=use_glm_weights, fit_kwargs=fit_kwargs, ax=ax) return fig plot_added_variable.__doc__ = _plot_added_variable_doc % { 'extra_params_doc': ''} def plot_partial_residuals(self, focus_exog, ax=None): # Docstring attached below from statsmodels.graphics.regressionplots import plot_partial_residuals return plot_partial_residuals(self, focus_exog, ax=ax) plot_partial_residuals.__doc__ = _plot_partial_residuals_doc % { 'extra_params_doc': ''} def plot_ceres_residuals(self, focus_exog, frac=0.66, cond_means=None, ax=None): # Docstring attached below from statsmodels.graphics.regressionplots import plot_ceres_residuals return plot_ceres_residuals(self, focus_exog, frac, cond_means=cond_means, ax=ax) plot_ceres_residuals.__doc__ = _plot_ceres_residuals_doc % { 'extra_params_doc': ''} def conf_int(self, alpha=.05, cols=None, cov_type=None): """ Returns confidence intervals for the fitted parameters. Parameters ---------- alpha : float, optional The `alpha` level for the confidence interval. i.e., The default `alpha` = .05 returns a 95% confidence interval. cols : array-like, optional `cols` specifies which confidence intervals to return cov_type : string The covariance type used for computing standard errors; must be one of 'robust', 'naive', and 'bias reduced'. See `GEE` for details. Notes ----- The confidence interval is based on the Gaussian distribution. """ # super doesn't allow to specify cov_type and method is not # implemented, # FIXME: remove this method here if cov_type is None: bse = self.bse else: bse = self.standard_errors(cov_type=cov_type) params = self.params dist = stats.norm q = dist.ppf(1 - alpha / 2) if cols is None: lower = self.params - q * bse upper = self.params + q * bse else: cols = np.asarray(cols) lower = params[cols] - q * bse[cols] upper = params[cols] + q * bse[cols] return np.asarray(lzip(lower, upper)) def summary(self, yname=None, xname=None, title=None, alpha=.05): """ Summarize the GEE regression results Parameters ---------- yname : string, optional Default is `y` xname : list of strings, optional Default is `var_##` for ## in p the number of regressors title : string, optional Title for the top table. If not None, then this replaces the default title alpha : float significance level for the confidence intervals cov_type : string The covariance type used to compute the standard errors; one of 'robust' (the usual robust sandwich-type covariance estimate), 'naive' (ignores dependence), and 'bias reduced' (the Mancl/DeRouen estimate). Returns ------- smry : Summary instance this holds the summary tables and text, which can be printed or converted to various output formats. See Also -------- statsmodels.iolib.summary.Summary : class to hold summary results """ top_left = [('Dep. Variable:', None), ('Model:', None), ('Method:', ['Generalized']), ('', ['Estimating Equations']), ('Family:', [self.model.family.__class__.__name__]), ('Dependence structure:', [self.model.cov_struct.__class__.__name__]), ('Date:', None), ('Covariance type: ', [self.cov_type, ]) ] NY = [len(y) for y in self.model.endog_li] top_right = [('No. Observations:', [sum(NY)]), ('No. clusters:', [len(self.model.endog_li)]), ('Min. cluster size:', [min(NY)]), ('Max. cluster size:', [max(NY)]), ('Mean cluster size:', ["%.1f" % np.mean(NY)]), ('Num. iterations:', ['%d' % len(self.fit_history['params'])]), ('Scale:', ["%.3f" % self.scale]), ('Time:', None), ] # The skew of the residuals skew1 = stats.skew(self.resid) kurt1 = stats.kurtosis(self.resid) skew2 = stats.skew(self.centered_resid) kurt2 = stats.kurtosis(self.centered_resid) diagn_left = [('Skew:', ["%12.4f" % skew1]), ('Centered skew:', ["%12.4f" % skew2])] diagn_right = [('Kurtosis:', ["%12.4f" % kurt1]), ('Centered kurtosis:', ["%12.4f" % kurt2]) ] if title is None: title = self.model.__class__.__name__ + ' ' +\ "Regression Results" # Override the exog variable names if xname is provided as an # argument. if xname is None: xname = self.model.exog_names if yname is None: yname = self.model.endog_names # Create summary table instance from statsmodels.iolib.summary import Summary smry = Summary() smry.add_table_2cols(self, gleft=top_left, gright=top_right, yname=yname, xname=xname, title=title) smry.add_table_params(self, yname=yname, xname=xname, alpha=alpha, use_t=False) smry.add_table_2cols(self, gleft=diagn_left, gright=diagn_right, yname=yname, xname=xname, title="") return smry def get_margeff(self, at='overall', method='dydx', atexog=None, dummy=False, count=False): """Get marginal effects of the fitted model. Parameters ---------- at : str, optional Options are: - 'overall', The average of the marginal effects at each observation. - 'mean', The marginal effects at the mean of each regressor. - 'median', The marginal effects at the median of each regressor. - 'zero', The marginal effects at zero for each regressor. - 'all', The marginal effects at each observation. If `at` is 'all' only margeff will be available. Note that if `exog` is specified, then marginal effects for all variables not specified by `exog` are calculated using the `at` option. method : str, optional Options are: - 'dydx' - dy/dx - No transformation is made and marginal effects are returned. This is the default. - 'eyex' - estimate elasticities of variables in `exog` -- d(lny)/d(lnx) - 'dyex' - estimate semielasticity -- dy/d(lnx) - 'eydx' - estimate semeilasticity -- d(lny)/dx Note that tranformations are done after each observation is calculated. Semi-elasticities for binary variables are computed using the midpoint method. 'dyex' and 'eyex' do not make sense for discrete variables. atexog : array-like, optional Optionally, you can provide the exogenous variables over which to get the marginal effects. This should be a dictionary with the key as the zero-indexed column number and the value of the dictionary. Default is None for all independent variables less the constant. dummy : bool, optional If False, treats binary variables (if present) as continuous. This is the default. Else if True, treats binary variables as changing from 0 to 1. Note that any variable that is either 0 or 1 is treated as binary. Each binary variable is treated separately for now. count : bool, optional If False, treats count variables (if present) as continuous. This is the default. Else if True, the marginal effect is the change in probabilities when each observation is increased by one. Returns ------- effects : ndarray the marginal effect corresponding to the input options Notes ----- When using after Poisson, returns the expected number of events per period, assuming that the model is loglinear. """ if self.model.constraint is not None: warnings.warn("marginal effects ignore constraints", ValueWarning) return GEEMargins(self, (at, method, atexog, dummy, count)) def plot_isotropic_dependence(self, ax=None, xpoints=10, min_n=50): """ Create a plot of the pairwise products of within-group residuals against the corresponding time differences. This plot can be used to assess the possible form of an isotropic covariance structure. Parameters ---------- ax : Matplotlib axes instance An axes on which to draw the graph. If None, new figure and axes objects are created xpoints : scalar or array-like If scalar, the number of points equally spaced points on the time difference axis used to define bins for calculating local means. If an array, the specific points that define the bins. min_n : integer The minimum sample size in a bin for the mean residual product to be included on the plot. """ from statsmodels.graphics import utils as gutils resid = self.model.cluster_list(self.resid) time = self.model.cluster_list(self.model.time) # All within-group pairwise time distances (xdt) and the # corresponding products of scaled residuals (xre). xre, xdt = [], [] for re, ti in zip(resid, time): ix = np.tril_indices(re.shape[0], 0) re = re[ix[0]] * re[ix[1]] / self.scale ** 2 xre.append(re) dists = np.sqrt(((ti[ix[0], :] - ti[ix[1], :]) ** 2).sum(1)) xdt.append(dists) xre = np.concatenate(xre) xdt = np.concatenate(xdt) if ax is None: fig, ax = gutils.create_mpl_ax(ax) else: fig = ax.get_figure() # Convert to a correlation ii = np.flatnonzero(xdt == 0) v0 = np.mean(xre[ii]) xre /= v0 # Use the simple average to smooth, since fancier smoothers # that trim and downweight outliers give biased results (we # need the actual mean of a skewed distribution). if np.isscalar(xpoints): xpoints = np.linspace(0, max(xdt), xpoints) dg = np.digitize(xdt, xpoints) dgu = np.unique(dg) hist = np.asarray([np.sum(dg == k) for k in dgu]) ii = np.flatnonzero(hist >= min_n) dgu = dgu[ii] dgy = np.asarray([np.mean(xre[dg == k]) for k in dgu]) dgx = np.asarray([np.mean(xdt[dg == k]) for k in dgu]) ax.plot(dgx, dgy, '-', color='orange', lw=5) ax.set_xlabel("Time difference") ax.set_ylabel("Product of scaled residuals") return fig def sensitivity_params(self, dep_params_first, dep_params_last, num_steps): """ Refits the GEE model using a sequence of values for the dependence parameters. Parameters ---------- dep_params_first : array-like The first dep_params in the sequence dep_params_last : array-like The last dep_params in the sequence num_steps : int The number of dep_params in the sequence Returns ------- results : array-like The GEEResults objects resulting from the fits. """ model = self.model import copy cov_struct = copy.deepcopy(self.model.cov_struct) # We are fixing the dependence structure in each run. update_dep = model.update_dep model.update_dep = False dep_params = [] results = [] for x in np.linspace(0, 1, num_steps): dp = x * dep_params_last + (1 - x) * dep_params_first dep_params.append(dp) model.cov_struct = copy.deepcopy(cov_struct) model.cov_struct.dep_params = dp rslt = model.fit(start_params=self.params, ctol=self.ctol, params_niter=self.params_niter, first_dep_update=self.first_dep_update, cov_type=self.cov_type) results.append(rslt) model.update_dep = update_dep return results # FIXME: alias to be removed, temporary backwards compatibility params_sensitivity = sensitivity_params class GEEResultsWrapper(lm.RegressionResultsWrapper): _attrs = { 'centered_resid': 'rows', } _wrap_attrs = wrap.union_dicts(lm.RegressionResultsWrapper._wrap_attrs, _attrs) wrap.populate_wrapper(GEEResultsWrapper, GEEResults) # noqa:E305 class OrdinalGEE(GEE): __doc__ = ( " Estimation of ordinal response marginal regression models\n" " using Generalized Estimating Equations (GEE).\n" + _gee_init_doc % {'extra_params': base._missing_param_doc, 'family_doc': _gee_ordinal_family_doc, 'example': _gee_ordinal_example}) def __init__(self, endog, exog, groups, time=None, family=None, cov_struct=None, missing='none', offset=None, dep_data=None, constraint=None, **kwargs): if family is None: family = families.Binomial() else: if not isinstance(family, families.Binomial): raise ValueError("ordinal GEE must use a Binomial family") if cov_struct is None: cov_struct = cov_structs.OrdinalIndependence() endog, exog, groups, time, offset = self.setup_ordinal( endog, exog, groups, time, offset) super(OrdinalGEE, self).__init__(endog, exog, groups, time, family, cov_struct, missing, offset, dep_data, constraint) def setup_ordinal(self, endog, exog, groups, time, offset): """ Restructure ordinal data as binary indicators so that they can be analysed using Generalized Estimating Equations. """ self.endog_orig = endog.copy() self.exog_orig = exog.copy() self.groups_orig = groups.copy() if offset is not None: self.offset_orig = offset.copy() else: self.offset_orig = None offset = np.zeros(len(endog)) if time is not None: self.time_orig = time.copy() else: self.time_orig = None time = np.zeros((len(endog), 1)) exog = np.asarray(exog) endog = np.asarray(endog) groups = np.asarray(groups) time = np.asarray(time) offset = np.asarray(offset) # The unique outcomes, except the greatest one. self.endog_values =
np.unique(endog)
numpy.unique
import numpy as np with open('input.txt', 'r') as f: mask = [1 if char == '#' else 0 for char in f.readline().strip()] f.readline() image = [[1 if char == '#' else 0 for char in line.strip()] for line in f.readlines()] image = np.array(image) for _ in range(25): image = np.pad(image, 2, mode='constant', constant_values=0) enhanced_image = np.zeros(image.shape) for i in range(1, len(image) - 1): for j in range(1, len(image[i]) - 1): surround_seq = np.append(image[i-1][j-1:j+2], np.append(image[i][j-1:j+2], image[i+1][j-1:j+2])) bit = int(surround_seq.dot(2**
np.arange(surround_seq.size)
numpy.arange
from collections import Counter, defaultdict import itertools try: import igraph as ig except ModuleNotFoundError: ig = None import numpy as np import operator import logging ############################# # Fuzzy Modularity Measures # ############################# def nepusz_modularity(G, cover): raise NotImplementedError("See the CONGA 2010 paper") def zhang_modularity(G, cover): raise NotImplementedError("""See 'Identification of overlapping algorithms structure in complex networks using fuzzy C-means clustering'""") def nicosia_modularity(G, cover): raise NotImplementedError("""See 'Extending the definition of modularity to directed graphs with overlapping communities'""") ############################# # Crisp modularity measures # ############################# def count_communities(G, cover): """ Helper for lazar_modularity. Returns a dict {v:count} where v is a vertex id and count is the number of different communities it is assigned to. """ counts = {i.index : 0 for i in G.vs} for community in cover: for v in community: counts[v] += 1 return counts def get_weights(G): """ Given a graph G, returns a list of weights. If the graph is unweighted, returns a list of 1s the same length as the number of edges. """ try: # asssumes weight as an attribute name means graph is weighted. weights = G.es['weight'] except KeyError: #unweighted means all weights are 1. weights = [1 for e in G.es] return weights def get_single_lazar_modularity(G, community, weights, counts): """ Returns the lazar modularity of a single algorithms. """ totalInternalWeight = sum(weights[G.es[e].index] for e in community) # m_c in paper numVerticesInCommunity = len(community) # V_c in paper numPossibleInternalEdges = numVerticesInCommunity * (numVerticesInCommunity - 1) / 2 if numPossibleInternalEdges == 0: return 0 edgeDensity = totalInternalWeight / numPossibleInternalEdges / numVerticesInCommunity interVsIntra = 0 comm = set(community) for v in community: interVsIntraInternal = 0 neighbors = G.neighbors(v) degree = len(neighbors) # k_i in paper numCommunitiesWithin = counts[v] # s_i in paper for n in neighbors: weight = weights[G.get_eid(v, n)] if n in comm: interVsIntraInternal += weight else: interVsIntraInternal -= weight interVsIntraInternal /= (degree * numCommunitiesWithin) interVsIntra += interVsIntraInternal return edgeDensity * interVsIntra def lazar_modularity(G, cover): """ Returns the crisp modularity measure as defined by Lazar et al. 2009 Defined as the average edge density times normalized difference between inter and intracommunity edges for each algorithms. See CONGA 2010 or Lazar's paper for a precise definition. """ numCommunities = len(cover) # |C| in the paper totalModularity = 0 # M_c in the paper weights = get_weights(G) counts = count_communities(G, cover) for c in cover: totalModularity += get_single_lazar_modularity(G, c, weights, counts) averageModularity = 1/numCommunities * totalModularity # M in the paper return averageModularity ################################## # Classes for overlapping covers # ################################## class CrispOverlap(object): """ TODO """ def __init__(self, graph, covers, modularities=None, optimal_count=None, modularity_measure="lazar"): """ Initializes a CrispOverlap object with the given parameters. Graph: The graph to which the object refers covers: a dict of VertexCovers, also referring to this graph, of the form {k : v} where k is the number of clusters and v is the vertexCluste modularities (optional): a dict of modularities of the form {c:m} where c is the number of clusters and m is the modularity. optimal_count (optional): A hint for the number of clusters to use. modularity_measure (optional): The name of the modularity function to use. Right now, the only choice is "lazar." """ # Possibly figure out a better data structure like a merge # list that contains all information needed? # So far only know of Lazar's measure for crisp overlapping. self._measureDict = {"lazar" : lazar_modularity} self._covers = covers self._graph = graph self._optimal_count = optimal_count self._modularities = modularities if modularity_measure in self._measureDict: self._modularity_measure = modularity_measure else: raise KeyError("Modularity measure not found.") def __getitem__(self, numClusters): """ Returns the cover with the given number of clusters. """ if not numClusters: raise KeyError("Number of clusters must be a positive integer.") return self._covers[numClusters] def __iter__(self): """ Iterates over the covers in the list. """ return (v for v in list(self._covers.values())) def __len__(self): """ Returns the number of covers in the list. """ return len(self._covers) def __bool__(self): """ Returns True when there is at least one cover in the list. """ return bool(self._covers) def __str__(self): """ Returns a string representation of the list of covers. """ return '{0} vertices in {1} possible covers.'.format(len(self._graph.vs), len(self._covers)) def as_cover(self): """ Returns the optimal cover (by modularity) from the object. """ return self._covers[self.optimal_count] def recalculate_modularities(self): """ Recalculates the modularities and optimal count using the modularity_measure. """ modDict = {} for cover in self._covers.values(): modDict[len(cover)] = self._measureDict[self._modularity_measure](self._graph, cover) self._modularities = modDict self._optimal_count = max(iter(self._modularities.items()), key=operator.itemgetter(1))[0] return self._modularities @property def modularities(self): """ Returns the a dict {c : m} where c is the number of clusters in the cover and m is the modularity. If modularity has not been calculated, it recalculates it for all covers. Otherwise, it returns the stored dict. Note: Call recalculate_modularities to recalculate the modularity. """ if self._modularities: return self._modularities self._modularities = self.recalculate_modularities() return self._modularities @property def optimal_count(self): """Returns the optimal number of clusters for this dendrogram. If an optimal count hint was given at construction time and recalculate_modularities has not been called, this property simply returns the hint. If such a count was not given, this method calculates the optimal cover by maximizing the modularity along all possible covers in the object. Note: Call recalculate_modularities to recalculate the optimal count. """ if self._optimal_count is not None: return self._optimal_count else: modularities = self.modularities self._optimal_count = max(list(modularities.items()), key=operator.itemgetter(1))[0] return self._optimal_count def pretty_print_cover(self, numClusters, label='CONGA_index'): """ Takes a cover in vertex-id form and prints it nicely using label as each vertex's name. """ cover = self._covers[numClusters] #if label == 'CONGA_index': pp = [self._graph.vs[num] for num in [cluster for cluster in cover]] #else: # pp = [G.vs[num][label] for num in [cluster for cluster in cover]] for count, comm in enumerate(pp): print("Community {0}:".format(count)) for v in comm: print('\t {0}'.format(v.index if label == 'CONGA_index' else v[label])) print() def make_fuzzy(self): """ TODO. see CONGA 2010 """ pass # ################################################################################################################################################### # TODO: # * only call fix_betweennesses when needed def congo(OG, h=2): """ Provides an Implementation of the CONGO algorithm defined by <NAME> in his 2010 paper "A Fast Algorithm to Find Overlapping Communities in Networks." The parameters are OG, the graph on which the analysis is to be performed, and h, the length of the longest shortest path that Congo is to consider. """ logging.basicConfig(filename='congo.log',level=logging.DEBUG) G = OG.copy() # Just in case the original graph is disconnected if not G.is_connected(): raise RuntimeError("Congo only makes sense for connected graphs.") # initializing attributes of copied graph G.vs['CONGA_orig'] = [i.index for i in OG.vs] G.es['eb'] = 0 G.vs['pb'] = [{uw : 0 for uw in itertools.combinations(G.neighbors(vertex), 2)} for vertex in G.vs] # initializing all pair and edge betweennesses do_initial_betweenness(G, h) nClusters = 1 # The first cover is simply the entire connected graph. allCovers = {nClusters : ig.VertexCover(OG)} while G.es: logging.info("%d edges remaining", len(G.es)) # get the edge with the max edge betweenness, and its betweenness. maxEdge, maxEb = max(enumerate(G.es['eb']), key=operator.itemgetter(1)) G.vs['vb'] = G.betweenness(cutoff=h) # since split betweennes is upper bounded by vertex betweenness, we # only need to look at the vertices for which the vertex betweenness # is greater than the max edge betweenness. (We multiply by 2 # because our edge betweenness calculations yield values in both # directions.) # TODO check if I need to multiply by 2 vInteresting = [i for i, b in enumerate(G.vs['vb']) if 2 * b > maxEb] logging.info("Vertices to examine: %s", vInteresting) splitInstr = max_split_betweenness(G, vInteresting) # split if max split betweenness > max edge betweenness if splitInstr is None or splitInstr[0] <= maxEb: split = delete_edge(G, maxEdge, h) else: split = split_vertex(G, splitInstr[1], splitInstr[2], h) if split: # there must be a new algorithms comm = G.components().membership cover = get_cover(G, OG, comm) nClusters += 1 # short circuit stuff would go here. allCovers[nClusters] = cover return CrispOverlap(OG, allCovers) def delete_edge(G, edge, h): """ Given a graph G and one of its edges in tuple form, checks if the deletion splits the graph. """ tup = G.es[edge].tuple logging.info("Deleted: %s", tup) neighborhood = get_neighborhood_edge(G, tup, h) # subtracts local betweennesses in the region, as discussed # in the paper do_local_betweenness(G, neighborhood, h, operator.neg) G.delete_edges(edge) fix_betweennesses(G) # adds back in local betweennesses after the deletion do_local_betweenness(G, neighborhood, h, operator.pos) return check_for_split(G, tup) def fix_pair_betweennesses(G): """ Given a graph G, makes sure that all of the pair betweennesses listed as attributes remain possible, and removes those that are not. Also adds new attributes where new edges have been added. """ for v in G.vs: toDel = [] neededPairs = {uw for uw in itertools.combinations(G.neighbors(v), 2)} for pair in v['pb']: if pair not in neededPairs: toDel.append(pair) for d in toDel: del v['pb'][d] for pair in neededPairs: if pair not in v['pb']: v['pb'][pair] = 0 def fix_edge_betweennesses(G): """ Given a graph G, makes sure that every edge has a betweenness score assigned to it. """ for e in G.es: if e['eb'] is None: e['eb'] = 0 def fix_betweennesses(G): """ Fixes the pair and edge betweennesses such that every attribute is up to date. """ fix_pair_betweennesses(G) fix_edge_betweennesses(G) def split_vertex(G, vToSplit, instr, h): """ Splits the vertex v into two new vertices, each with edges depending on s. Returns True if the split divided the graph, else False. """ neighborhood = get_neighborhood_vertex(G, vToSplit, h) do_local_betweenness(G, neighborhood, h, operator.neg) new_index = G.vcount() G.add_vertex() G.vs[new_index]['CONGA_orig'] = G.vs[vToSplit]['CONGA_orig'] G.vs[new_index]['pb'] = {uw : 0 for uw in itertools.combinations(G.neighbors(vToSplit), 2)} # adding all relevant edges to new vertex, deleting from old one. toAdd = list(zip(itertools.repeat(new_index), instr[0])) toDelete = list(zip(itertools.repeat(vToSplit), instr[0])) G.add_edges(toAdd) G.delete_edges(toDelete) neighborhood.append(new_index) fix_betweennesses(G) logging.info("split: %d, %s", vToSplit, instr) do_local_betweenness(G, neighborhood, h, operator.pos) # check if the two new vertices are disconnected. return check_for_split(G, (vToSplit, new_index)) def max_split_betweenness(G, vInteresting): """ Performs the greedy algorithm discussed in the 2007 CONGA paper to approximate the maximum split betweenness. Returns a tuple (a, b, c) where a is the maximum score, b the vertex to split to acheive the score, and c a list of the instructions for which neighbors to connect to each side of the split. """ maxSplitBetweenness = 0 vToSplit = None # for every vertex of interest, we want to figure out the maximum score achievable # by splitting the vertices in various ways, and return that optimal split for v in vInteresting: clique = create_clique(G, v, G.vs['pb'][v]) if clique.size < 4: continue # initialize a list on how we will map the neighbors to the collapsing matrix vMap = [[ve] for ve in G.neighbors(v)] # we want to keep collapsing the matrix until we have a 2x2 matrix and its # score. Then we want to remove index j from our vMap list and concatenate # it with the vMap[i]. This begins building a way of keeping track of how # we are splitting the vertex and its neighbors while clique.size > 4: i,j,clique = reduce_matrix(clique) vMap[i] += vMap.pop(j) if clique[0,1] >= maxSplitBetweenness: maxSplitBetweenness = clique[0,1] vToSplit = v splitInstructions = vMap if vToSplit is None: return None return maxSplitBetweenness, vToSplit, splitInstructions def do_initial_betweenness(G, h): """ Given a graph G and a depth h, calculates all edge and pair betweennesses and updates G's attributes to reflect the new scores. """ # Not guaranteed to work on multigraphs. all_pairs_shortest_paths = [] # Counter for normalizing scores pathCounts = Counter() for ver in G.vs: logging.info("initializing betweennesses for %d", ver.index) neighborhood = get_neighborhood_vertex(G, ver, h) neighborhood.remove(ver.index) #for i, v in enumerate(neighborhood): s_s_shortest_paths = G.get_all_shortest_paths(ver, to=neighborhood)#[i+1:]) all_pairs_shortest_paths += s_s_shortest_paths # to ignore duplicate edges, uncomment the next line. #all_pairs_shortest_paths = set(tuple(p) for p in all_pairs_shortest_paths) for path in all_pairs_shortest_paths: pathCounts[(path[0], path[-1])] += 1 logging.info("updating all betweenness attributes...") for path in all_pairs_shortest_paths: if len(path) <= h + 1: update_betweenness(G, path, pathCounts[(path[0], path[-1])], operator.pos) def do_local_betweenness(G, neighborhood, h, op=operator.pos): """ Given a neighborhood and depth h, recalculates all betweennesses confined to the neighborhood. If op is operator.neg, it subtracts these betweennesses from the current ones. Otherwise, it adds them. """ all_pairs_shortest_paths = [] pathCounts = Counter() for i, v in enumerate(neighborhood): s_s_shortest_paths = G.get_all_shortest_paths(v, to=neighborhood)#[i+1:]) all_pairs_shortest_paths += s_s_shortest_paths neighSet = set(neighborhood) neighSize = len(neighborhood) apsp = [] for path in all_pairs_shortest_paths: # path does not go out of region if len(neighSet | set(path)) == neighSize: pathCounts[(path[0], path[-1])] += 1 # can improve apsp.append(path) for path in apsp: if len(path) <= h + 1: update_betweenness(G, path, pathCounts[(path[0], path[-1])], op) def update_betweenness(G, path, count, op): """ Given a shortest path in G, along with a count of paths that length, to determine weight, updates the edge and pair betweenness dicts with the path's new information. """ weight = op(1./count) pos = 0 while pos < len(path) - 2: G.vs[path[pos + 1]]['pb'][order_tuple((path[pos], path[pos + 2]))] += weight G.es[G.get_eid(path[pos], path[pos + 1])]['eb'] += weight pos += 1 if pos < len(path) - 1: G.es[G.get_eid(path[pos], path[pos + 1])]['eb'] += weight def get_cover(G, OG, comm): """ Given the graph, the original graph, and a algorithms membership list, returns a vertex cover of the communities referring back to the original algorithms. """ coverDict = defaultdict(list) for i, community in enumerate(comm): coverDict[community].append(int(G.vs[i]['CONGA_orig'])) return ig.clustering.VertexCover(OG, clusters=list(coverDict.values())) def vertex_betweeenness_from_eb(G, eb): """ Calculates the vertex betweenness scores in G. Returns a list in which the indices are the vertex indices and the values are their betweeennesses. The same as G.betweenness(), but faster because it uses the edge betweenness scores. (CONGA, page 4, equation 1) """ components = G.components() membership = components.membership vbs = [] for vertex in G.vs: numComponents = len(components[membership[vertex.index]]) incidentEdges = G.incident(vertex) vb = .5 * (sum(G.es[e]['eb'] for e in incidentEdges) - (numComponents - 1)) vbs.append(vb) return vbs def get_neighborhood_vertex(G, v, h): """ Given a vertex and a height/depth to traverse, find the neighborhood as defined in the CONGA paper. """ return G.neighborhood(v, order=h) def get_neighborhood_edge(G, e, h): """ Given an edge and a height/depth to traverse, find the neighborhood as defined in the CONGA paper. """ neigh = set(G.neighborhood(e[0], order=h-1)) neigh.update(G.neighborhood(e[1], order=h-1)) return list(neigh) def order_tuple(toOrder): if toOrder[0] <= toOrder[1]: return toOrder return (toOrder[1], toOrder[0]) def create_clique(G, v, pb): """ Given a vertex and its pair betweennesses, returns a k-clique representing all of its neighbors, with edge weights determined by the pair betweenness scores. Algorithm discussed on page 5 of the CONGA paper. """ neighbors = G.neighbors(v) # map each neighbor to its index in the adjacency matrix mapping = {neigh : i for i, neigh in enumerate(neighbors)} n = len(neighbors) # Can use ints instead: (dtype=int). Only works if we use matrix_min # instead of mat_min. clique = np.matrix(np.zeros((n, n))) for uw, score in pb.items(): clique[mapping[uw[0]], mapping[uw[1]]] = score clique[mapping[uw[1]], mapping[uw[0]]] = score # Ignore any self loops if they're there. If not, this line # does nothing and can be removed. np.fill_diagonal(clique, 0) return clique def reduce_matrix(M): """ Given a matrix M, collapses the row and column of the minimum value. This is just an adjacency matrix way of implementing the greedy "collapse" discussed in CONGA. Returns the new matrix and the collapsed indices. """ i,j = mat_min(M) #i, j = matrix_min(M) # add the ith row to the jth row and overwrite the ith row with those values M[i,:] = M[j,:] + M[i,:] # delete the jth row M = np.delete(M, (j), axis=0) # similarly with the columns M[:,i] = M[:,j] + M[:,i] M = np.delete(M, (j), axis=1)
np.fill_diagonal(M,0)
numpy.fill_diagonal
import os import numpy as np import pandas as pd def load_menu(file, parent=None): with open(file, 'r') as fp: menu = [] for line in fp: elements = line.strip().split(' ') # First parser data_file = elements[0] st = int(elements[1]) ed = int(elements[2]) lp1 = int(elements[3]) lp2 = int(elements[4]) # Second parser disp_name = data_file.split('/')[-1].split('.')[0] file_name = data_file if parent is None else os.path.join( parent, data_file.split('/')[-1] ) menu.append({ 'name': disp_name, 'dir': file_name, 'start': st, 'end': ed, 'point1': lp1, 'point2': lp2, }) return menu def load_segment(file): with open(file, 'r') as fp: data = [[int(float(elem)) for elem in line.strip().split(',')] for line in fp] return np.array(data) def load_raw_file(file, delimiter='\t'): with open(file, 'r') as fp: data = [[float(elem) for elem in line.strip().split(delimiter)] for line in fp] return
np.array(data)
numpy.array
import os from pprint import pprint import numpy as np import torch from PIL import Image from torchvision import transforms from tqdm import tqdm import skimage import network as network_lib from loss.CEL import CEL from utils.dataloader import create_loader from utils.metric import cal_maxf, cal_pr_mae_meanf from measure.saliency_toolbox import ( read_and_normalize, mean_square_error, e_measure, s_measure, adaptive_fmeasure, weighted_fmeasure, prec_recall, ) from utils.misc import ( AvgMeter, construct_print, write_data_to_file, ) from utils.pipeline_ops import ( get_total_loss, make_optimizer, make_scheduler, resume_checkpoint, save_checkpoint, ) from utils.recorder import TBRecorder, Timer, XLSXRecoder from datetime import datetime class Solver: def __init__(self, exp_name: str, arg_dict: dict, path_dict: dict): super(Solver, self).__init__() self.exp_name = exp_name self.arg_dict = arg_dict self.path_dict = path_dict self.dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.to_pil = transforms.ToPILImage() self.tr_data_path = self.arg_dict["rgb_data"]["tr_data_path"] self.te_data_list = self.arg_dict["rgb_data"]["te_data_list"] self.save_path = self.path_dict["save"] self.save_pre = self.arg_dict["save_pre"] if self.arg_dict["tb_update"] > 0: self.tb_recorder = TBRecorder(tb_path=self.path_dict["tb"]) if self.arg_dict["xlsx_name"]: self.xlsx_recorder = XLSXRecoder(xlsx_path=self.path_dict["xlsx"],module_name=self.arg_dict["model"],model_name=self.exp_name) # 依赖与前面属性的属性 self.tr_loader = create_loader( data_path=self.tr_data_path, training=True, size_list=self.arg_dict["size_list"], prefix=self.arg_dict["prefix"], get_length=False, ) self.end_epoch = self.arg_dict["epoch_num"] self.iter_num = self.end_epoch * len(self.tr_loader) if hasattr(network_lib, self.arg_dict["model"]): self.net = getattr(network_lib, self.arg_dict["model"])().to(self.dev) else: raise AttributeError pprint(self.arg_dict) if self.arg_dict["resume_mode"] == "test" or self.arg_dict["resume_mode"] == "measure": # resume model only to test model. # self.start_epoch is useless resume_checkpoint( model=self.net, load_path=self.path_dict["final_state_net"], mode="onlynet", ) return self.loss_funcs = [ torch.nn.BCEWithLogitsLoss(reduction=self.arg_dict["reduction"]).to(self.dev) ] if self.arg_dict["use_aux_loss"]: self.loss_funcs.append(CEL().to(self.dev)) self.opti = make_optimizer( model=self.net, optimizer_type=self.arg_dict["optim"], optimizer_info=dict( lr=self.arg_dict["lr"], momentum=self.arg_dict["momentum"], weight_decay=self.arg_dict["weight_decay"], nesterov=self.arg_dict["nesterov"], ), ) self.sche = make_scheduler( optimizer=self.opti, total_num=self.iter_num if self.arg_dict["sche_usebatch"] else self.end_epoch, scheduler_type=self.arg_dict["lr_type"], scheduler_info=dict( lr_decay=self.arg_dict["lr_decay"], warmup_epoch=self.arg_dict["warmup_epoch"] ), ) # AMP if self.arg_dict["use_amp"]: construct_print("Now, we will use the amp to accelerate training!") from apex import amp self.amp = amp self.net, self.opti = self.amp.initialize(self.net, self.opti, opt_level="O1") else: self.amp = None if self.arg_dict["resume_mode"] == "train": # resume model to train the model self.start_epoch = resume_checkpoint( model=self.net, optimizer=self.opti, scheduler=self.sche, amp=self.amp, exp_name=self.exp_name, load_path=self.path_dict["final_full_net"], mode="all", ) else: # only train a new model. self.start_epoch = 0 def train(self): for curr_epoch in range(self.start_epoch, self.end_epoch): train_loss_record = AvgMeter() self._train_per_epoch(curr_epoch, train_loss_record) # 根据周期修改学习率 if not self.arg_dict["sche_usebatch"]: self.sche.step() # 每个周期都进行保存测试,保存的是针对第curr_epoch+1周期的参数 save_checkpoint( model=self.net, optimizer=self.opti, scheduler=self.sche, amp=self.amp, exp_name=self.exp_name, current_epoch=curr_epoch + 1, full_net_path=self.path_dict["final_full_net"], state_net_path=self.path_dict["final_state_net"], ) # 保存参数 if self.arg_dict["use_amp"]: # https://github.com/NVIDIA/apex/issues/567 with self.amp.disable_casts(): construct_print("When evaluating, we wish to evaluate in pure fp32.") self.test() else: self.test() @Timer def _train_per_epoch(self, curr_epoch, train_loss_record): for curr_iter_in_epoch, train_data in enumerate(self.tr_loader): num_iter_per_epoch = len(self.tr_loader) curr_iter = curr_epoch * num_iter_per_epoch + curr_iter_in_epoch self.opti.zero_grad() train_inputs, train_masks, _ = train_data train_inputs = train_inputs.to(self.dev, non_blocking=True) train_masks = train_masks.to(self.dev, non_blocking=True) train_preds = self.net(train_inputs) train_loss, loss_item_list = get_total_loss(train_preds, train_masks, self.loss_funcs) if self.amp: with self.amp.scale_loss(train_loss, self.opti) as scaled_loss: scaled_loss.backward() else: train_loss.backward() self.opti.step() if self.arg_dict["sche_usebatch"]: self.sche.step() # 仅在累计的时候使用item()获取数据 train_iter_loss = train_loss.item() train_batch_size = train_inputs.size(0) train_loss_record.update(train_iter_loss, train_batch_size) # 显示tensorboard if ( self.arg_dict["tb_update"] > 0 and (curr_iter + 1) % self.arg_dict["tb_update"] == 0 ): self.tb_recorder.record_curve("trloss_avg", train_loss_record.avg, curr_iter) self.tb_recorder.record_curve("trloss_iter", train_iter_loss, curr_iter) self.tb_recorder.record_curve("lr", self.opti.param_groups, curr_iter) self.tb_recorder.record_image("trmasks", train_masks, curr_iter) self.tb_recorder.record_image("trsodout", train_preds.sigmoid(), curr_iter) self.tb_recorder.record_image("trsodin", train_inputs, curr_iter) # 记录每一次迭代的数据 if ( self.arg_dict["print_freq"] > 0 and (curr_iter + 1) % self.arg_dict["print_freq"] == 0 ): lr_str = ",".join( [f"{param_groups['lr']:.7f}" for param_groups in self.opti.param_groups] ) log = ( f"{curr_iter_in_epoch}:{num_iter_per_epoch}/" f"{curr_iter}:{self.iter_num}/" f"{curr_epoch}:{self.end_epoch} " f"{self.exp_name}\n" f"Lr:{lr_str} " f"M:{train_loss_record.avg:.5f} C:{train_iter_loss:.5f} " f"{loss_item_list}" ) print(log) write_data_to_file(log, self.path_dict["tr_log"]) def test(self): self.net.eval() msg = f"Testing start time: {datetime.now()}" construct_print(msg) write_data_to_file(msg, self.path_dict["te_log"]) total_results = {} for data_name, data_path in self.te_data_list.items(): construct_print(f"Testing with testset: {data_name}") self.te_loader = create_loader( data_path=data_path, training=False, prefix=self.arg_dict["prefix"], get_length=False, ) self.save_path = os.path.join(self.path_dict["save"], data_name) if not os.path.exists(self.save_path): construct_print(f"{self.save_path} do not exist. Let's create it.") os.makedirs(self.save_path) results = self._test_process(save_pre=self.save_pre) msg = f"Results on the testset({data_name}:'{data_path}'): {results}" construct_print(msg) write_data_to_file(msg, self.path_dict["te_log"]) # Print out time taken msg = f"Time Finish on testset {data_name}: {datetime.now()}" construct_print(msg) write_data_to_file(msg, self.path_dict["te_log"]) total_results[data_name] = results self.net.train() if self.arg_dict["xlsx_name"]: # save result into xlsx file. self.xlsx_recorder.write_xlsx(self.exp_name, total_results) def _test_process(self, save_pre): loader = self.te_loader # pres = [AvgMeter() for _ in range(256)] # recs = [AvgMeter() for _ in range(256)] pres = list() recs = list() meanfs = AvgMeter() maes = AvgMeter() # Measures from Saliency toolbox measures = ['Wgt-F', 'E-measure', 'S-measure', 'Mod-Max-F', 'Mod-Adp-F', 'Mod-Wgt-F'] beta=np.sqrt(0.3) # default beta parameter used in the adaptive F-measure gt_threshold=0.5 # The threshold that is used to binrize ground truth maps. values = dict() # initialize measure value dictionary pr = dict() # initialize precision recall dictionary prm = dict() # initialize precision recall dictionary for Mod-Max-F for idx in measures: values[idx] = list() if idx == 'Max-F': pr['Precision'] = list() pr['Recall'] = list() if idx == 'Mod-Max-F': prm['Precision'] = list() prm['Recall'] = list() tqdm_iter = tqdm(enumerate(loader), total=len(loader), leave=False) for test_batch_id, test_data in tqdm_iter: tqdm_iter.set_description(f"{self.exp_name}: te=>{test_batch_id + 1}") in_imgs, in_mask_paths, in_names = test_data generate_out_imgs = False if self.arg_dict["resume_mode"] == "measure": # Check if prediction masks have already been created for item_id, in_fname in enumerate(in_names): oimg_path = os.path.join(self.save_path, in_fname + ".png") if not os.path.exists(oimg_path): # Out image doesn't exist yet generate_out_imgs = True break else: generate_out_imgs = True if generate_out_imgs: with torch.no_grad(): in_imgs = in_imgs.to(self.dev, non_blocking=True) outputs = self.net(in_imgs) outputs_np = outputs.sigmoid().cpu().detach() for item_id, in_fname in enumerate(in_names): oimg_path = os.path.join(self.save_path, in_fname + ".png") gimg_path = os.path.join(in_mask_paths[item_id]) gt_img = Image.open(gimg_path).convert("L") if self.arg_dict["resume_mode"] == "measure" and generate_out_imgs == False: out_img = Image.open(oimg_path).convert("L") else: out_item = outputs_np[item_id] out_img = self.to_pil(out_item).resize(gt_img.size, resample=Image.NEAREST) if save_pre and generate_out_imgs: out_img.save(oimg_path) gt_img = np.array(gt_img) out_img = np.array(out_img) # Gather images again using Saliency toolboxes import methods # These images will be grayscale floats between 0 and 1 sm = out_img.astype(np.float32) if sm.max() == sm.min(): sm = sm / 255 else: sm = (sm - sm.min()) / (sm.max() - sm.min()) gt = np.zeros_like(gt_img, dtype=np.float32) gt[gt_img > 256*gt_threshold] = 1 ps, rs, mae, meanf = cal_pr_mae_meanf(out_img, gt_img) pres.append(ps) recs.append(rs) # for pidx, pdata in enumerate(zip(ps, rs)): # p, r = pdata # pres[pidx].update(p) # recs[pidx].update(r) maes.update(mae) meanfs.update(meanf) # Compute other measures using the Saliency Toolbox if 'MAE2' in measures: values['MAE2'].append(mean_square_error(gt, sm)) if 'E-measure' in measures: values['E-measure'].append(e_measure(gt, sm)) if 'S-measure' in measures: values['S-measure'].append(s_measure(gt, sm)) if 'Adp-F' in measures: values['Adp-F'].append(adaptive_fmeasure(gt, sm, beta, allowBlackMask=False)) if 'Mod-Adp-F' in measures: values['Mod-Adp-F'].append(adaptive_fmeasure(gt, sm, beta, allowBlackMask=True)) if 'Wgt-F' in measures: values['Wgt-F'].append(weighted_fmeasure(gt, sm, allowBlackMask=False)) if 'Mod-Wgt-F' in measures: values['Mod-Wgt-F'].append(weighted_fmeasure(gt, sm, allowBlackMask=True)) if 'Max-F' in measures: prec, recall = prec_recall(gt, sm, 256, allowBlackMask=False) # 256 thresholds between 0 and 1 # Check if precision recall curve exists if len(prec) != 0 and len(recall) != 0: pr['Precision'].append(prec) pr['Recall'].append(recall) if 'Mod-Max-F' in measures: prec, recall = prec_recall(gt, sm, 256, allowBlackMask=True) # 256 thresholds between 0 and 1 # Check if precision recall curve exists if len(prec) != 0 and len(recall) != 0: prm['Precision'].append(prec) prm['Recall'].append(recall) # Compute total measures over all images if 'MAE2' in measures: values['MAE2'] = np.mean(values['MAE2']) if 'E-measure' in measures: values['E-measure'] = np.mean(values['E-measure']) if 'S-measure' in measures: values['S-measure'] = np.mean(values['S-measure']) if 'Adp-F' in measures: values['Adp-F'] = np.mean(values['Adp-F']) if 'Mod-Adp-F' in measures: values['Mod-Adp-F'] = np.mean(values['Mod-Adp-F']) if 'Wgt-F' in measures: values['Wgt-F'] = np.mean(values['Wgt-F']) if 'Mod-Wgt-F' in measures: values['Mod-Wgt-F'] = np.mean(values['Mod-Wgt-F']) if 'Max-F' in measures: if len(pr['Precision']) > 0: pr['Precision'] = np.mean(np.hstack(pr['Precision'][:]), 1) pr['Recall'] = np.mean(np.hstack(pr['Recall'][:]), 1) f_measures = (1 + beta ** 2) * pr['Precision'] * pr['Recall'] / ( beta ** 2 * pr['Precision'] + pr['Recall']) # Remove any NaN values to allow calculation f_measures[np.isnan(f_measures)] = 0 values['Max-F'] =
np.max(f_measures)
numpy.max
# Copyright 2021 Dakewe Biotech Corporation. All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== import PIL.BmpImagePlugin import cv2 import numpy as np import torch import torchvision.transforms as transforms from PIL import Image __all__ = [ "opencv2pil", "opencv2tensor", "pil2opencv", "process_image" ] def opencv2pil(image: np.ndarray) -> PIL.BmpImagePlugin.BmpImageFile: """ OpenCV Convert to PIL.Image format. Returns: PIL.Image. """ image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) return image def opencv2tensor(image: np.ndarray, gpu: int) -> torch.Tensor: """ OpenCV Convert to torch.Tensor format. Returns: torch.Tensor. """ rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) nhwc_image = torch.from_numpy(rgb_image).div(255.0).unsqueeze(0) input_tensor = nhwc_image.permute(0, 3, 1, 2) if gpu is not None: input_tensor = input_tensor.cuda(gpu, non_blocking=True) return input_tensor def pil2opencv(image: PIL.BmpImagePlugin.BmpImageFile) -> np.ndarray: """ PIL.Image Convert to OpenCV format. Returns: np.ndarray. """ image = cv2.cvtColor(
np.asarray(image)
numpy.asarray
#!/usr/bin/env python # After you've done an inversion, what are the results? # How much moment is created, and how big is the misfit? # Writes into a summary text file, and prints to screen. # Useful for L-curve analysis. import numpy as np import sys import json import slippy.io # -------- INPUT FUNCTIONS ----------- # def welcome_and_parse(argv): print("Metrics for this inversion:") if len(argv) < 2: print("Error! Please provide the name of a config json. Exiting. "); sys.exit(0); else: configname = argv[1]; return configname; def parse_json(configname): config_file = open(configname, 'r'); config = json.load(config_file); for key in config: # adding the output directory onto the output files, for ease of use. if "output" in key and key != "output_dir": config[key] = config["output_dir"]+config[key]; config["summary_file"] = config["output_dir"]+"summary_stats.txt"; # Creates an output file return config; # -------- COMPUTE FUNCTIONS ----------- # def get_slip_moment(slip_filename): # From the inversion results, what is the moment of the slip distribution? moment_total = 0; mu = 30e9; # Pa, assumed. length, width, leftlat, thrust, tensile = np.loadtxt(slip_filename, skiprows=1, unpack=True, usecols=(5, 6, 7, 8, 9)); for i in range(len(length)): slip = np.sqrt(leftlat[i]*leftlat[i] + thrust[i]*thrust[i]); area = length[i]*width[i]; # m^2 momenti = moment_from_muad(mu, area, slip); moment_total = moment_total+momenti; mw = mw_from_moment(moment_total); print("Calculating moment from %s" % slip_filename); return [moment_total, mw]; def get_total_misfit(config): print("Calculating metrics for inversion results."); lev_misfit, lev_norm_misfit, insar_misfit, insar_norm_misfit = None, None, None, None; gps_misfit, gps_norm_misfit = None, None; lev_npts, insar_npts, gps_npts = None, None, None; if "observed_leveling_file" in config.keys(): [lev_misfit, lev_norm_misfit, lev_npts] = get_misfit_leveling(config["observed_leveling_file"], config["predicted_leveling_file"]); if "observed_insar_file" in config.keys(): [insar_misfit, insar_norm_misfit, insar_npts] = get_misfit_insar(config["observed_insar_file"], config["predicted_insar_file"]); if "observed_gps_file" in config.keys(): [gps_misfit, gps_norm_misfit, gps_npts] = get_misfit_gps(config["observed_gps_file"], config["predicted_gps_file"]); return [gps_misfit, gps_norm_misfit, gps_npts, insar_misfit, insar_norm_misfit, insar_npts, lev_misfit, lev_norm_misfit, lev_npts]; def get_misfit_gps(obs_file, pred_file): # Misfit from each data pair (GPS, UAVSAR, Leveling, S1, TSX) # Want in both absolute numbers and relative to the respective uncertainties. if obs_file is None or pred_file is None: return [None, None, None]; gps_input = slippy.io.read_gps_data(obs_file); gps_pred = slippy.io.read_gps_data(pred_file); abs_misfit = np.abs(gps_input[1]-gps_pred[1]); norm_misfit = np.divide(abs_misfit, gps_input[2]); # divide by sigma mean_average_misfit = np.nanmean(abs_misfit); mean_norm_average_misfit = np.nanmean(norm_misfit); npts = len(gps_input[1]); return [mean_average_misfit, mean_norm_average_misfit, npts]; def get_misfit_insar(obs_file, pred_file): # Misfit from each data pair (GPS, UAVSAR, Leveling, S1, TSX) # Want in both absolute numbers and relative to the respective uncertainties. if obs_file is None or pred_file is None: return [None, None, None]; insar_input = slippy.io.read_insar_data(obs_file) insar_pred = slippy.io.read_insar_data(pred_file) abs_misfit = np.abs(insar_input[1]-insar_pred[1]); norm_misfit = np.divide(abs_misfit, insar_input[2]); # divide by sigma mean_average_misfit = np.nanmean(abs_misfit); mean_norm_average_misfit = np.nanmean(norm_misfit); npts = len(insar_input[1]); return [mean_average_misfit, mean_norm_average_misfit, npts]; def get_misfit_leveling(obs_file, pred_file): # Misfit from each data pair (GPS, UAVSAR, Leveling, S1, TSX) # Want in both absolute numbers and relative to the respective uncertainties. if obs_file is None or pred_file is None: return [None, None, None]; leveling_input = slippy.io.read_insar_data(obs_file) leveling_pred = slippy.io.read_insar_data(pred_file) abs_misfit = np.abs(leveling_input[1]-leveling_pred[1]); norm_misfit = np.divide(abs_misfit, leveling_input[2]); # divide by sigma mean_average_misfit = np.nanmean(abs_misfit); mean_norm_average_misfit =
np.nanmean(norm_misfit)
numpy.nanmean
import os import sys import random import pickle import time from datetime import datetime import numpy as np import tensorflow as tf from config import get_args from data_utils import CRMatchingDataset from metrics import recall_2at1, recall_at_k, precision_at_k, MRR, MAP from model import WDMN as model random.seed(1234) np.random.seed(1234) FLAGS = get_args() print("\nParameters:") for attr, value in sorted(FLAGS.flag_values_dict().items()): print("{}={}".format(attr.upper(), value)) if __name__ == "__main__": ''' Output directory for checkpoints and predictions ''' out_dir = os.path.abspath(os.path.join(os.path.curdir, FLAGS.log_root)) print("Writing to {}\n".format(out_dir)) checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints")) checkpoint_prefix = os.path.join(checkpoint_dir, "model") if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) if FLAGS.init_dict: ''' Load pretrained word embeddings from disk ''' time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"Loading pretrained word embeddings ... | {time_str}") init_embeddings_path = '%s/vocab_and_embeddings.pkl'%(FLAGS.data_path) with open(init_embeddings_path, 'rb') as f: vocab, embeddings = pickle.load(f) pretrained_word_embeddings = np.array(embeddings) FLAGS.vocab_size = pretrained_word_embeddings.shape[0] time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f'loaded vocab size {pretrained_word_embeddings.shape[0]} | {time_str}') else: pretrained_word_embeddings = None ''' Loading dataset ''' train_file = '%s/train.pkl'%(FLAGS.data_path) dev_file = '%s/dev.pkl'%(FLAGS.data_path) test_file = '%s/test.pkl'%(FLAGS.data_path) time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("Creating dataset... | %s " % time_str) with open(train_file, 'rb') as f: train_contexts, train_responses, train_labels = pickle.load(f) with open(dev_file, 'rb') as f: dev_contexts, dev_responses, dev_labels = pickle.load(f) with open(test_file, 'rb') as f: test_contexts, test_responses, test_labels = pickle.load(f) trainset = CRMatchingDataset(train_contexts, train_responses, train_labels, shuffle=True) devset = CRMatchingDataset(dev_contexts, dev_responses, dev_labels, shuffle=False) testset = CRMatchingDataset(test_contexts, test_responses, test_labels, shuffle=False) time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("Created dataset. | %s " % time_str) ''' Init tensorflow session''' session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) session_conf.gpu_options.allow_growth = True sess = tf.Session(config=session_conf) with sess.as_default(): ''' Init WDMN model ''' time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("Creating WDMN model... | %s " % time_str) model = model(FLAGS, pretrained_word_embeddings) print('++++++++++++++\nprint model parameters\n++++++++++++++') total_cnt = 0 for v in tf.global_variables(): print(v) try: total_cnt += np.prod([int(e) for e in v.get_shape()]) except: pass print(f'++++++++++++++\nTotal number of parameters = {total_cnt}\n++++++++++++++') ''' Init training''' global_step = tf.Variable(0, name="global_step", trainable=False) learning_rate = tf.placeholder(tf.float32, shape=[]) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) train_op = optimizer.minimize(model.loss, global_step=global_step) ''' Init saver ''' time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"Initing Saver | {time_str} ") saver = tf.train.Saver(max_to_keep=1) if FLAGS.reload_model: time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"Reloading model from {checkpoint_dir} | {time_str}") saver.restore(sess, tf.train.latest_checkpoint(checkpoint_dir)) else: time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"Init parameters | {time_str}") sess.run(tf.global_variables_initializer()) if FLAGS.init_dict: sess.run(model.embedding_init) def train_step(dataset): """ A single training step """ train_step = tf.train.global_step(sess, global_step) ''' Learning_rate decaying ''' if FLAGS.lr_decay: current_lr = max(FLAGS.lr * np.power(FLAGS.decay_rate, (train_step/FLAGS.decay_steps)), FLAGS.lr_minimal) else: current_lr = FLAGS.lr ''' Training step ''' contexts, responses, labels = dataset.next() feed_dict = { learning_rate: current_lr, model.context: contexts, model.response: responses, model.target: labels, model.dropout_keep_prob: FLAGS.dropout_keep_prob } _, step, loss, accuracy = sess.run( [train_op, global_step, model.loss, model.accuracy], feed_dict) ''' visualization ''' if step == 0 or step % FLAGS.print_every == 0: time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print("Step: %d \t| loss: %.3f \t| acc: %.3f \t| lr: %.5f \t| %s" % (step, loss, accuracy, current_lr, time_str)) def eval(dataset, split): time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"Evaluating {split} set") acc = [] losses = [] pred_scores = [] true_scores = [] count = 0 ''' Inferencing ''' for _ in range(dataset.batches()): contexts, responses, labels = dataset.next() feed_dict = { model.context: contexts, model.response: responses, model.target: labels, model.dropout_keep_prob: 1.0 } step, loss, accuracy, y_pred, target = sess.run( [global_step, model.loss, model.accuracy, model.y_pred, model.target], feed_dict) acc.append(accuracy) losses.append(loss) pred_scores += list(y_pred[:, 1]) true_scores += list(target) count += 1 if count % 2500 == 0: time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S') print(f"Evaluated {count} batches | {time_str}") assert dataset.index == 0 ''' Writing predictions ''' MeanAcc = sum(acc) / len(acc) MeanLoss = sum(losses) / len(losses) if len(pred_scores) % 10 != 0: print(f'Warning: eval {len(pred_scores)} cases cannot be divided by 10, will cut remainder') pred_scores = pred_scores[:int(len(pred_scores) / 10) * 10] true_scores = true_scores[:int(len(true_scores) / 10) * 10] with open(os.path.join(out_dir, 'predScores-iter-%s.txt'%(step)), 'w') as f: for score1, score2 in zip(pred_scores, true_scores): f.writelines(str(score1) + '\t' + str(score2) + '\n') ''' Calculating metrics''' num_sample = int(len(pred_scores) / 10) score_list = np.split(np.array(pred_scores), num_sample, axis=0) recall_2_1 = recall_2at1(score_list, k=1) recall_at_1 = recall_at_k(np.array(true_scores), np.array(pred_scores), 1) recall_at_2 = recall_at_k(np.array(true_scores),
np.array(pred_scores)
numpy.array