prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np from math import pi, sin, cos from numpy import array from shapely import wkt from shapely.geometry import Polygon, Point, mapping import matplotlib.pyplot as plt class exercise2: def __init__(self, start, goal, center, length, is_coord=False): self.center = center self.length = length self.goal = goal self.start = start self.radius = [((2*self.length**2)**.5)/2, ((2*self.length**2)**.5)/2] self.epsi = 0.1 self.is_coord = is_coord def potential_func(self): # fig = plt.figure() pot_fun = float('inf') pot_att = float('inf') scale = .2 n = .5 iters = 0 step_size = .2 d_goal_start = 1 d_q_start = 0.5 q = [self.start] prev_nor = 0 prev_q = self.start while np.linalg.norm(array(q[iters])-array(self.goal)) > self.epsi: if self.is_coord: distance_from_obs_edge, edge_point = self.dis_to_obs( q[iters]) else: distance_from_obs_edge, edge_point = self.get_dis_to_obs( q[iters]) if np.linalg.norm(array(q[iters])-array(self.goal)) <= d_goal_start: pot_att = scale * (array(q[iters])-array(self.goal)) else: pot_att = d_goal_start * scale * \ (array(q[iters]) - array(self.goal)) / \ np.linalg.norm(array(q[iters])-array(self.goal)) pot_repu_i = 0 pot_repu = 0 for i in range(0, len(self.center)): if distance_from_obs_edge[i] <= d_q_start: num = 1/d_q_start-1/distance_from_obs_edge[i] grad = (array(q[iters])-array(edge_point[i])) / \ array(distance_from_obs_edge[i]) d_sq = 1/distance_from_obs_edge[i]**2 pot_repu_i = n*num*grad*d_sq else: pot_repu_i = 0 pot_repu += pot_repu_i pot_fun = pot_att+pot_repu # print(prev_q, q[iters]) # plt.scatter(q[iters][0], q[iters][1]) # plt.pause(0.001) if prev_q[0] == q[iters][0] and prev_q[1] == q[iters][1]: q[iters][0] = q[iters][0]+step_size/100 # print(q) q += [q[iters]-step_size*pot_fun] # print(q) prev_q = q[iters] iters += 1 return q, pot_fun def get_dis_to_obs(self, position): num_obs = len(self.center) distance_from_obs_edge = [] edge_point = [] for i in range(0, num_obs): obs_position = self.center[i] distance_from_obs_edge.append(np.linalg.norm( np.array(obs_position)-
np.array(position)
numpy.array
# -*- coding: utf-8 -*- """ ============================================================================= Title : Generate and add noise to incoming data Project : Simulation environment for BckTrk app File : AWGN.py ----------------------------------------------------------------------------- Description : References : - ----------------------------------------------------------------------------- Revisions : Date Version Name Description 26-Mai-2018 1.0 Rami File created ============================================================================= """ import numpy as np import Navigation.Coordinates as cord from Helper_functions.framework_error import CFrameworkError from Helper_functions.framework_error import CErrorTypes # Bring the logger import logging logger = logging.getLogger('BckTrk') # the main processing function def noise_generator(params, positions_wm, noise_level): data_obj = cAWGN(params, noise_level) data_obj.generate_noisy_signal_dist() data_obj.add_noise_signal(positions_wm) noise_sq = np.sqrt(data_obj.noise[0, :] ** 2 + data_obj.noise[1, :] ** 2) return data_obj.m_noisy_positions_wm, data_obj.m_noisy_positions_latlon, noise_sq class cAWGN: # Constructor def __init__(self, struct, noise_level): logger.debug("Initializing cAWGN") self.m_acquisition_length = struct['acquisition_length'] self.m_noise_std = struct['noise_std_meter'] self.m_noisy_positions_latlon = np.zeros((2, self.m_acquisition_length)) self.m_noisy_positions_wm = np.zeros((2, self.m_acquisition_length)) self.m_noise_level = noise_level self.noise = np.transpose( np.random.multivariate_normal([0, 0], [[1 ** 2, 0], [0, 1 ** 2]], self.m_acquisition_length)) self.noise_dist =
np.zeros(self.m_acquisition_length)
numpy.zeros
from unittest.mock import patch import datetime as dt import os import unittest from nose.tools import assert_equals, assert_true, assert_false, assert_raises import numpy as np import numpy.testing as npt import pandas as pd import seaice.data as sid import seaice.data.api as api import seaice.data.errors as e import seaice.data.getter as getter import seaice.data.gridset_filters as gf import seaice.nasateam as nt TEST_ROOT = [os.path.join( os.path.dirname(__file__), os.path.pardir, os.path.pardir, os.path.pardir, os.path.pardir, 'test_data', 'seaice.data' )] class Test_concentration_daily(unittest.TestCase): def test_concentration_daily(self): result = sid.concentration_daily(hemisphere=nt.NORTH, year=2001, month=1, day=7, search_paths=TEST_ROOT) actual = result['data'].shape rows, cols = nt.NORTH['shape'] expected = (rows, cols) assert_false(np.all(result['data'] == 255.)) assert_equals(expected, actual) def test_missing_day_returns_empty_grid(self): result = sid.concentration_daily(hemisphere=nt.NORTH, year=2002, month=1, day=1, search_paths=TEST_ROOT) actual = result['data'].shape rows, cols = nt.NORTH['shape'] expected = (rows, cols) assert_true(np.all(result['data'] == 255.)) assert_equals(expected, actual) def test_missing_day_raises_when_asked_to(self): assert_raises(e.SeaIceDataNoData, sid.concentration_daily, hemisphere=nt.NORTH, year=2002, month=1, day=1, search_paths=TEST_ROOT, allow_empty_gridset=False) @patch('seaice.data.getter._concentration_gridset_by_filelist') @patch('seaice.datastore.get_bad_days_for_hemisphere') @patch('seaice.data.locator.daily_file_path') def test_with_bad_date_and_empty_gridset_not_allowed(self, mock_daily_file_path, mock_get_bad_days_for_hemisphere, mock__concentration_gridset_by_filelist): files = ['doesnt_matter1.bin', 'doesnt_matter2.bin' 'doesnt_matter3.bin'] mock_daily_file_path.return_value = files shape = (5, 5, 2) missing = 255 mock__concentration_gridset_by_filelist.return_value = { 'data': np.full(shape, missing, dtype=np.int), 'metadata': { 'period_index': pd.period_range('1980-10-21', '1980-10-23', freq='D'), 'missing_value': 255, 'files': files } } bad_dates = pd.period_range('1980-10-20', '1980-10-27', freq='D') mock_get_bad_days_for_hemisphere.return_value = bad_dates with self.assertRaises(e.SeaIceDataNoData): sid.concentration_daily(nt.NORTH, 1980, 10, 25, ['/who/cares'], interpolation_radius=0, allow_empty_gridset=False, allow_bad_dates=False) @patch('seaice.datastore.get_bad_days_for_hemisphere') @patch('seaice.data.gridset_filters._interpolate_missing') @patch('seaice.data.getter._concentration_gridset_by_filelist') @patch('seaice.data.locator.daily_file_path') def test_daily_multiple_files_interpolated(self, mock_daily_file_path, _mockgridset_by_filelist, mock__interpolate_missing, mock_get_bad_days_for_hemisphere): mock_get_bad_days_for_hemisphere.return_value = [] files = ['nt_20150831_n07_v1.1_s.bin', 'nt_20150901_n07_v1.1_s.bin', 'nt_20150902_n07_v1.1_s.bin'] gridset = {'data': np.full((2, 2, 3), 2, dtype=np.int), 'metadata': {'files': files, 'period_index': pd.period_range(start='2015-08-31', end='2015-09-02', freq='D')}} mock_daily_file_path.return_value = files _mockgridset_by_filelist.return_value = gridset interpolated = np.full((2, 2), 2, dtype=np.int) mock__interpolate_missing.return_value = interpolated hemisphere = nt.NORTH search_paths = ['/anyroot'] # act sid.concentration_daily(hemisphere, 2015, 9, 1, search_paths, interpolation_radius=1) # assert getter._concentration_gridset_by_filelist.assert_called_with(files) npt.assert_array_equal(mock__interpolate_missing.call_args[0][0], interpolated) npt.assert_array_equal(mock__interpolate_missing.call_args[0][1], np.full((2, 2, 2), 2, dtype=np.int)) @patch('seaice.datastore.get_bad_days_for_hemisphere') @patch('seaice.data.gridset_filters._interpolate_missing') @patch('seaice.data.getter._concentration_gridset_by_filelist') @patch('seaice.data.locator.daily_file_path') def test_no_interpolation_needed_only_includes_file_for_date(self, mock_daily_file_path, mock__gridset_by_filelist, mock__interpolate_missing, mock_get_bad_days_for_hemisphere): mock_get_bad_days_for_hemisphere.return_value = [] files = ['nt_20112131_n07_v1.1_s.bin', 'nt_20120101_n07_v1.1_s.bin', 'nt_20120102_n07_v1.1_s.bin'] gridset = {'data': np.full((2, 2, 3), 4, dtype=np.int), 'metadata': {'files': files, 'period_index': pd.period_range(start='2011-12-31', periods=3, freq='D')}} mock_daily_file_path.return_value = files mock__gridset_by_filelist.return_value = gridset mock__interpolate_missing.return_value = np.full((2, 2), 4, dtype=np.int) interpolation_radius = 1 nt_hemi = nt.NORTH actual_gridset = sid.concentration_daily(nt_hemi, 2012, 1, 1, ['/anypaths'], interpolation_radius=interpolation_radius) actual = actual_gridset['metadata']['files'] expected = ['nt_20120101_n07_v1.1_s.bin'] self.assertEqual(actual, expected) class Test_concentration_daily_average_over_date_range(unittest.TestCase): def test_concentration_daily_average_over_date_range(self): date_range = pd.DatetimeIndex(['2001-01-06', '2001-01-07']) result = sid.concentration_daily_average_over_date_range('N', date_range, search_paths=TEST_ROOT) actual = result['data'].shape rows, cols = nt.NORTH['shape'] expected = (rows, cols) assert_false(np.all(result['data'] == 255.)) assert_equals(expected, actual) def test_different_from_each_day(self): date_range = pd.DatetimeIndex(['2001-01-06', '2001-01-07']) first = sid.concentration_daily(hemisphere=nt.NORTH, year=2001, month=1, day=6, search_paths=TEST_ROOT) last = sid.concentration_daily(hemisphere=nt.NORTH, year=2001, month=1, day=7, search_paths=TEST_ROOT) average = sid.concentration_daily_average_over_date_range('N', date_range, search_paths=TEST_ROOT) self.assertFalse(np.all(average['data'] == first['data'])) self.assertFalse(np.all(average['data'] == last['data'])) class Test_concentration_daily___failed_qa_logic(unittest.TestCase): def setUp(self): self.day_before_grid = np.full(nt.NORTH['shape'], 1, dtype=np.int) target_grid = np.full(nt.NORTH['shape'], 2, dtype=np.int) target_grid[0:3, 0:3] = nt.FLAGS['missing'] self.target_grid = target_grid.copy() self.day_after_grid = np.full(nt.NORTH['shape'], 11, dtype=np.int) self.cube = np.dstack([self.day_before_grid, target_grid, self.day_after_grid]) target_grid[0:3, 0:3] = (1 + 11) / 2 self.interpolated_grid = target_grid.copy() self.empty_grid = np.full(nt.NORTH['shape'], nt.FLAGS['missing'], dtype=np.int) self.target_date = dt.date(1980, 10, 25) self.period_index = pd.period_range(start='1980-10-24', end='1980-10-26', freq='D') self.file_list = ['nt_19801024_n07_v1.1_n.bin', 'nt_19801025_n07_v1.1_n.bin', 'nt_19801026_n07_v1.1_n.bin'] @patch('seaice.data.getter._concentration_gridset_by_filelist') @patch('seaice.data.locator.daily_file_path') @patch('seaice.datastore.get_bad_days_for_hemisphere') def test_good_day_interpolates_with_good_days_with_allow_bad_dates_false_and_empty_false( self, mock_get_bad_days_for_hemisphere, mock_daily_file_path, mock__concentration_gridset_by_filelist): allow_empty_gridset = False allow_bad_dates = False interpolation_radius = 1 mock_get_bad_days_for_hemisphere.return_value = [] file_list = self.file_list mock_daily_file_path.return_value = file_list gridset = {'data': self.cube, 'metadata': {'files': file_list, 'missing_value': nt.FLAGS['missing'], 'period_index': self.period_index, 'valid_data_range': (0, 100)}} mock__concentration_gridset_by_filelist.return_value = gridset actual = sid.concentration_daily(nt.NORTH, self.target_date.year, self.target_date.month, self.target_date.day, ['/who/cares'], interpolation_radius=interpolation_radius, allow_empty_gridset=allow_empty_gridset, allow_bad_dates=allow_bad_dates) expected_grid = self.interpolated_grid
npt.assert_array_equal(actual['data'], expected_grid)
numpy.testing.assert_array_equal
import numpy as np class ENV_net(): def __init__(self,SNR_mat, UE, BS, Bh): self.UE = UE self.BS = BS self.episode = 0 self.step = 0 self.max_level = 500 self.power_default = 37 self.renew_max = 60 self.renew_min = 37 self.tx_dBm = 30 self.tx_w = np.power(10, self.tx_dBm/10)/1000 self.delta = 2.6 self.grid_power_min = 200 self.grid_power_max = 200 self.QoS_pool = np.array([0.192,2.22,1.5,0.6,4.44]) ## Mbps [Audio, Video, Image, Web_bro, Email] self.SNR_mat = SNR_mat self.renew = (np.arange(self.BS) != self.BS-1).astype(int) #np.array([1,1,1,0]) self.grid_power = self.grid_power_min + (self.grid_power_max-self.grid_power_min)*np.random.uniform(size= [self.BS]) self.grid_power = self.grid_power * (1-self.renew) self.Backhaul_lim = Bh self.Backhaul = self.Backhaul_lim + (50-self.Backhaul_lim )*(1-self.renew) self.RB = 100 self.BW = 2e+7 self.action_size_PC = self.BS self.action_size_UA = 2*self.BS self.reward_size_PC = 2 * self.BS #3*self.BS self.reward_size_UA = 4*self.BS #+ 2*self.UE self.state_size_PC = self.UE*self.BS + 5*self.BS + self.UE self.state_size_UA = self.UE*self.BS + 2* self.BS + self.UE self.QoS_penalty = 4.0 self.Backhaul_penalty =100 def reset(self,is_test=False): if is_test: self.UA_set = np.arange(self.UE) self.H_mat = self.SNR_mat[self.episode, :, :,:].copy() else: self.UA_set = np.random.permutation(self.SNR_mat.shape[2])[0:self.UE] self.H_mat = self.SNR_mat[np.mod(self.episode+int(np.random.uniform(0,self.SNR_mat.shape[0])) ,self.SNR_mat.shape[0]), :, :,:].copy() self.H_mat = self.H_mat[:,self.UA_set,:].copy() H = self.H_mat[0,:,:].copy() UA = np.zeros([self.UE]).astype(int) for i in range(self.UE): BS_ind = np.mod(i, self.BS) UE_ind = np.argmax(H[:,BS_ind]) H[UE_ind,:] = -1.0 UA[BS_ind * int(self.UE/self.BS) + int(i/self.BS)] = UE_ind self.H_mat = self.H_mat[:,UA,:].copy() self.H = self.H_mat[0, :,:].copy() self.QoS = np.random.choice(self.QoS_pool.shape[0],[self.UE,1])+0.0 for i in range(self.QoS_pool.shape[0]): self.QoS[self.QoS == i] = self.QoS_pool[i] self.QoS[self.QoS==2.22] = (0.6 + (1.4-0.6)*np.random.uniform(size= [np.sum(self.QoS==2.22)]) ) self.QoS[self.QoS==4.44] = (2.0 + (6.0-2.0)*np.random.uniform(size= [np.sum(self.QoS==4.44)]) ) self.b_level = 100 * self.renew self.res_source =(self.renew_min+ (self.renew_max - self.renew_min)*np.random.uniform(size = [self.BS]))*self.renew self.state_PC = np.concatenate([(self.H*(self.b_level + self.grid_power - self.power_default)/260).reshape([1,-1])/2000.0, self.QoS.reshape([1,-1]), (np.maximum(self.b_level+self.grid_power - self.power_default,0.0).reshape([1,-1])/260.0), self.b_level.reshape([1,-1])/260, self.grid_power.reshape([1,-1])/260, (self.res_source).reshape([1,-1])/260,self.Backhaul.reshape([1,-1])/10.0], axis=1) def get_state_UA(self): self.P = np.clip( (self.renew * (0.01 + 0.69 * (self.action[0,0:self.BS]+1)/2) + (1-self.renew) * (0.01 + 0.99 * (self.action[0,0:self.BS]+1)/2))*(self.b_level + self.grid_power -self.power_default)/self.delta/self.RB, 0, 1).reshape([1,-1]) SNR = self.H * self.P SINR = SNR/ ( 1+ np.tile(np.sum(SNR,axis=1,keepdims=True),[1, self.BS]) - SNR) self.Rate = np.log2(1+SINR)*100*0.18 + 0.001 self.state_UA = np.concatenate([np.max(self.Rate,axis=0).reshape([1,-1]),-np.log(1+self.QoS/self.Rate).reshape([1,-1]),self.Backhaul.reshape([1,-1]), self.QoS.reshape([1,-1])],axis=1) def get_X(self, Rate, QoS, Backhaul, mu, rho, is_print=False): mu = np.expand_dims(mu,axis=1) rho = np.expand_dims(rho,axis=1) Backhaul = np.expand_dims(Backhaul,axis=1) X = (np.expand_dims(np.argmax(Rate,axis=2),2) == np.arange(self.BS).reshape([1,1,self.BS]))+0.0 lamb = np.max(Rate*X,axis=1,keepdims=True) count = 0 while 1: lamb_old = lamb.copy() if X.shape[0] > 0: UE_order = np.random.permutation(self.UE) else: UE_order = np.argsort(np.min(np.maximum(QoS/Rate, QoS/Backhaul)[0,:,:],axis=1)) for UE_ind in UE_order: X[:,UE_ind,:] = 0 lamb = np.max(Rate*X,axis=1,keepdims=True) UE_opt = -(1+mu)*QoS * lamb/Rate - rho * QoS ## Tie Break UE_select = np.argmax(UE_opt[:,UE_ind,:],axis=1)[0] BB= -UE_opt[0,UE_ind,:].copy() indices = np.argsort(BB,axis=0) R_remain = 1-np.sum(np.sum(QoS/Rate*X,axis=1),axis=0) B_remain = Backhaul[0,0,:] - np.sum(np.sum(QoS*X,axis=1),axis=0) if R_remain[UE_select] < QoS[0,UE_ind,0]/Rate[0,UE_ind,UE_select] or B_remain[UE_select] < QoS[0,UE_ind,0]: X[:,UE_ind,:] = 0.0 X[:,UE_ind,:] = (UE_select == np.arange(self.BS).reshape([1,self.BS]))+0.0 Y = self.get_Y(X[0,:,:],mu[0,:,:],rho[0,:,:]) reward_org = np.sum(self.Rate * X[0,:,:] * Y)/40 - np.sum(self.QoS > np.sum(self.Rate * X[0,:,:]*Y,axis=1,keepdims=True)+1e-7)/self.UE * 40 for B_ind in indices: if abs(np.log(abs(BB[UE_select] / BB[B_ind])))<0.5: X[:,UE_ind,:] = 0 X[:,UE_ind,:] = (B_ind == np.arange(self.BS).reshape([1,self.BS]))+0.0 Y=self.get_Y(X[0,:,:],mu[0,:,:],rho[0,:,:]) reward_new = np.sum(self.Rate * X[0,:,:] * Y)/40 - np.sum(self.QoS > np.sum(self.Rate * X[0,:,:]*Y,axis=1,keepdims=True)+1e-7)/self.UE * 40 if reward_new >reward_org: UE_select = B_ind break X[:,UE_ind,:] = 0.0 X[:,UE_ind,:] = (UE_select == np.arange(self.BS).reshape([1,self.BS]))+0.0 lamb = np.max(Rate*X,axis=1,keepdims=True) if np.sum(abs(lamb_old-lamb)>1e-7) == 0: count = count+1 if count > 1: break Y = QoS / Rate * X #[Batch, UE, BS] Y_opt = Y.copy() Y_opt[Y_opt==0] = 9999999.9 Y_s = np.sort(Y_opt,axis=1) QoS_tile = np.tile(QoS, [1,1,self.BS]) ind = np.argsort(Y_opt,axis=1) QoS_s = np.take_along_axis(QoS_tile, ind, axis=1) fail_rate = 1-np.sum((np.cumsum(Y_s,axis=1) < 1) * (np.cumsum(QoS_s,axis=1)<Backhaul) )/self.UE return X.copy(), fail_rate def get_Y(self,X,mu,rho): Z = (np.argmax(self.Rate*X,axis=0).reshape([1,-1]) == np.arange(self.UE).reshape([-1,1]))* X+0.0 Y = self.QoS/(self.Rate)*X for BS_ind in range(self.BS): while
np.sum(Y[:,BS_ind])
numpy.sum
""" Copyright (c) 2018, <NAME>, <NAME>, <NAME> https://github.com/spagliarini Mnemosyne team, Inria, Bordeaux, France https://team.inria.fr/mnemosyne/fr/ Distributed under the BSD-2-Clause License PLOT: comparison between different normalizations (Fig. 4) """ import os import numpy as np import matplotlib.pyplot as plt csfont = {'fontname':'Times New Roman'} os.chdir('C://Users//Mnemosyne//Documents//Python Scripts//InverseModelBirdsong//results//IMsimple_model//AllNormalizations//NormalizedAN') #or NormalizedMN #load distance files err_wn=np.load('Distance_simple.npy') err_2avrg=np.load('Distance_2avrg.npy') err_2norm=np.load('Distance_2norm.npy') err_3avrg=np.load('Distance_3avrg.npy') err_3norm=np.load('Distance_3norm.npy') err_4avrg=np.load('Distance_4avrg.npy') err_4norm=np.load('Distance_4norm.npy') err_5avrg=np.load('Distance_5avrg.npy') err_5norm=np.load('Distance_5norm.npy') #definition of the end_time end_time=err_wn.shape[1] #smooth average distance over all the simulations mean_err_wn=np.zeros((end_time,1)) mean_err_2avrg=np.zeros((end_time,1)) mean_err_2norm=np.zeros((end_time,1)) mean_err_3avrg=np.zeros((end_time,1)) mean_err_3norm=np.zeros((end_time,1)) mean_err_4avrg=np.zeros((end_time,1)) mean_err_4norm=np.zeros((end_time,1)) mean_err_5avrg=np.zeros((end_time,1)) mean_err_5norm=np.zeros((end_time,1)) for k in range(0,end_time): mean_err_wn[k]=np.mean(err_wn[:,k]) mean_err_2avrg[k]=np.mean(err_2avrg[:,k]) mean_err_2norm[k]=np.mean(err_2norm[:,k]) mean_err_3avrg[k]=np.mean(err_3avrg[:,k]) mean_err_3norm[k]=np.mean(err_3norm[:,k]) mean_err_4avrg[k]=
np.mean(err_4avrg[:,k])
numpy.mean
from typing import Any, Optional, Union import numpy as np class Batch: def __init__( self, obss: np.ndarray, acts: np.ndarray, rews: np.ndarray, dones: np.ndarray, next_obss: np.ndarray, indexes: np.ndarray = None, weights: Optional[np.ndarray] = None, ): self.obss = obss self.acts = acts self.rews = rews self.dones = dones self.next_obss = next_obss self.indexes = indexes self.weights = weights class ReplayBuffer: """Experience replay >>> buffer = ReplayBuffer(10, 2) >>> for i in range(3): ... assert i == len(buffer) ... buffer.add(1, 2, 3, False, 4) >>> for i in range(20): ... assert 2 == len(buffer) >>> batch = buffer.sample() >>> len(batch.obss) == len(batch.acts) == len(batch.rews) == len(batch.dones) True >>> len(batch.dones) == len(batch.next_obss) == len(batch.indexes) True """ def __init__(self, buffer_size: int, batch_size: int): assert buffer_size >= batch_size self.buffer_size = buffer_size self.batch_size = batch_size self.obss: np.ndarray = None self.acts: np.ndarray = None self.rews: np.ndarray = None self.dones: np.ndarray = None self.next_obss: np.ndarray = None self.indexes =
np.arange(buffer_size)
numpy.arange
# -*- coding: utf-8 -*- # # Authors: Swolf <<EMAIL>> # Date: 2021/1/07 # License: MIT License """ Common Spatial Patterns and his happy little buddies! """ from copy import deepcopy from typing import Union, Optional, List, Dict, Tuple from functools import partial import numpy as np from numpy import ndarray from scipy.linalg import eigh, pinv, solve from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import GridSearchCV, StratifiedKFold, ShuffleSplit from sklearn.feature_selection import SelectKBest, mutual_info_classif from sklearn.svm import SVC from sklearn.linear_model import Ridge from sklearn.multiclass import OneVsRestClassifier, OneVsOneClassifier from sklearn.pipeline import make_pipeline from .base import robust_pattern, FilterBank from ..utils.covariance import nearestPD, covariances def csp_kernel(X: ndarray, y: ndarray) -> Tuple[ndarray, ndarray, ndarray]: """The kernel in CSP algorithm based on paper [1]_. Parameters ---------- X: ndarray eeg data, shape (n_trials, n_channels, n_samples). y: ndarray labels of X, shape (n_trials,). Returns ------- W: ndarray Spatial filters, shape (n_channels, n_filters). D: ndarray Eigenvalues of spatial filters, shape (n_filters,). A: ndarray Spatial patterns, shape (n_channels, n_patterns). References ---------- .. [1] <NAME>, <NAME>, <NAME>. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ X, y = np.copy(X), np.copy(y) labels = np.unique(y) X = X - np.mean(X, axis=-1, keepdims=True) if len(labels) != 2: raise ValueError("the current kernel is for 2-class problem.") C1 = covariances(X[y==labels[0]]) C2 = covariances(X[y==labels[1]]) # # trace normalization # # this operation equals to trial normalization # C1 = C1 / np.trace(C1, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] # C2 = C2 / np.trace(C2, axis1=-1, axis2=-2)[:, np.newaxis, np.newaxis] C1 = np.mean(C1, axis=0) C2 = np.mean(C2, axis=0) Cc = C1 + C2 # check positive-definiteness Cc = nearestPD(Cc) # generalized eigenvalue problem D, W = eigh(C1, Cc) ix = np.argsort(D)[::-1] W = W[:, ix] D = D[ix] A = robust_pattern(W, C1, W.T@C1@W) return W, D, A def csp_feature(W: ndarray, X: ndarray, n_components: int = 2) -> ndarray: """Return CSP features in paper [1]_. Parameters ---------- W : ndarray spatial filters from csp_kernel, shape (n_channels, n_filters) X : ndarray eeg data, shape (n_trials, n_channels, n_samples) n_components : int, optional the first k components to use, usually even number, by default 2 Returns ------- ndarray features of shape (n_trials, n_features) Raises ------ ValueError n_components should less than the number of channels References ---------- .. [1] <NAME>, <NAME>, <NAME>. Optimal spatial filtering of single trial EEG during imagined hand movement[J]. IEEE transactions on rehabilitation engineering, 2000, 8(4): 441-446. """ W, X = np.copy(W), np.copy(X) max_components = W.shape[1] if n_components > max_components: raise ValueError("n_components should less than the number of channels") eps = np.finfo(X.dtype).eps X = X - np.mean(X, axis=-1, keepdims=True) # normalized variance features = np.mean(np.square(np.matmul(W[:, :n_components].T, X)), axis=-1) features = features / (np.sum(features, axis=-1, keepdims=True) + eps) # log-transformation features = np.log(np.clip(features, eps, None)) return features def _rjd(X, eps=1e-9, n_iter_max=1000): """Approximate joint diagonalization based on jacobi angle. Parameters ---------- X : ndarray A set of covariance matrices to diagonalize, shape (n_trials, n_channels, n_channels). eps : float, optional Tolerance for stopping criterion (default 1e-8). n_iter_max : int, optional The maximum number of iteration to reach convergence (default 1000). Returns ------- V : ndarray The diagonalizer, shape (n_channels, n_filters), usually n_filters == n_channels. D : ndarray The set of quasi diagonal matrices, shape (n_trials, n_channels, n_channels). Notes ----- This is a direct implementation of the Cardoso AJD algorithm [1]_ used in JADE. The code is a translation of the matlab code provided in the author website. References ---------- .. [1] Cardoso, Jean-Francois, and <NAME>. Jacobi angles for simultaneous diagonalization. SIAM journal on matrix analysis and applications 17.1 (1996): 161-164. """ # reshape input matrix A = np.concatenate(X, 0).T # init variables m, nm = A.shape V = np.eye(m) encore = True k = 0 while encore: encore = False k += 1 if k > n_iter_max: break for p in range(m - 1): for q in range(p + 1, m): Ip = np.arange(p, nm, m) Iq = np.arange(q, nm, m) # computation of Givens angle g = np.array([A[p, Ip] - A[q, Iq], A[p, Iq] + A[q, Ip]]) gg = np.dot(g, g.T) ton = gg[0, 0] - gg[1, 1] toff = gg[0, 1] + gg[1, 0] theta = 0.5 * np.arctan2(toff, ton + np.sqrt(ton * ton + toff * toff)) c =
np.cos(theta)
numpy.cos
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jul 22 11:24:01 2021 @author: ja17375 """ import pygmt import numpy as np import pandas as pd import xarray as xr import netCDF4 as nc def plot_forte_gmt(): tx2008 = np.loadtxt('/Users/ja17375/SWSTomo/ForteModels/Flow_Models/TX2008/forteV2_1deg_150km.txt') shp = (181, 361) dg = 15 lat = tx2008[:,1].reshape(shp) lon = tx2008[:,2].reshape(shp) Ur = tx2008[:,3].reshape(shp) Utheta = tx2008[:,4].reshape(shp)*-1 # theta is colat so invert Uphi = tx2008[:,5].reshape(shp) hzdeg = ((lat % dg == 0) & (lon % dg == 0)) # Cast Ur (radial velocity) into xarry for pyGMT U_grid = xr.DataArray(data=np.flipud(Ur), coords=[('latitude', np.linspace(-90,90,181), {'units': 'degrees_north'}), ('longitude', np.linspace(-180,180,361), {'units': 'degrees_east'})], ) fig = pygmt.Figure() africa_med = [-25,80,-5,60] easia = [60,150,10,70] epac = [-170, -80, 10, 65] proj = "M15c" gproj = "Ks12c" fig.basemap(region=africa_me, projection=proj, frame="afg",) # Flow model TX2008 # pygmt.makecpt(cmap='roma', series=[-1.5, 1.5], reverse=True) # fig.grdimage(grid=U_grid) # fig.colorbar(frame=['a0.5', 'x+l"Vertical Velocity (cm/yr)"' ]) # S40RTS fig.grdimage(grid='/Users/ja17375/DiscrePy/Data/S40RTS/S40RTS_2800km.grd', cmap='/Users/ja17375/DiscrePy/Data/S40RTS/S40RTS.cpt') fig.colorbar(frame=['a0.5', 'x+l"dVs (%)"' ], cmap='/Users/ja17375/DiscrePy/Data/S40RTS/S40RTS.cpt') fig.coast(shorelines=True) # flow_ang = np.rad2deg(np.arctan2(np.ravel(Utheta[hzdeg]), np.ravel(Uphi[hzdeg]))) # flow_len = np.sqrt(np.ravel(Utheta[hzdeg])**2 + np.ravel(Uphi[hzdeg])**2) # flow_data = np.zeros((325, 4)) # flow_data[:,0] = lon[hzdeg] # flow_data[:,1] = lat[hzdeg] # flow_data[:,2] = flow_ang # flow_data[:,3] = flow_len *0.5 # fig.plot(data=flow_data, style = 'v0.2c+e', color='black', pen='1p') # flow_data[:,2] = flow_data[:,2] + 180 # fig.plot(data=flow_data, style = 'v0c', color='black', pen='1p') fig.plot(x=130, y=20, direction = [[0], [1]], style = 'v0c', color='black', pen='1p') data = pd.read_csv('~/DiscrePy/Sheba/Results/Combined/Filt_05Hz/Combined_goodQ.pairs', delim_whitespace=True) for i, row in data.iterrows(): fig.plot(x=[row['SKS_PP_LON'], row['SKKS_PP_LON']], y=[row['SKS_PP_LAT'], row['SKKS_PP_LAT']], pen="1p,black") if (row['Q_SKS'] >= 0.5): #Plot split SKS - black circle fig.plot(x=row['SKS_PP_LON'], y=row['SKS_PP_LAT'], style='c0.15c', color='black', pen='black') vec = np.array([[row['SKS_PP_LON'], row['SKS_PP_LAT'], row['FAST_SKS'], row['TLAG_SKS']*0.5], [row['SKS_PP_LON'], row['SKS_PP_LAT'], row['FAST_SKS']+180, row['TLAG_SKS']*0.5]]) fig.plot(data=vec, style = 'v0c', color='black', pen='0.75p') elif (row['Q_SKS'] <= -0.5): fig.plot(x=row['SKS_PP_LON'], y=row['SKS_PP_LAT'], style='c0.15c', color='white', pen='black') else: print('Bad Q for SKS') if (row['Q_SKKS'] >= 0.5): #Plot split SKKS - black circle fig.plot(x=row['SKKS_PP_LON'], y=row['SKKS_PP_LAT'], style='d0.15c', color='black', pen='black') vec = np.array([[row['SKKS_PP_LON'], row['SKKS_PP_LAT'], row['FAST_SKKS'], row['TLAG_SKKS']*0.5], [row['SKKS_PP_LON'], row['SKKS_PP_LAT'], row['FAST_SKKS']+180, row['TLAG_SKKS']*0.5]]) fig.plot(data=vec, style = 'v0c', color='black', pen='0.75p') elif (row['Q_SKKS'] <= -0.5): fig.plot(x=row['SKKS_PP_LON'], y=row['SKKS_PP_LAT'], style='d0.15c', color='white', pen='black') fig.savefig('/Users/ja17375/Documents/Thesis-enclosing/Thesis/chapters/chapter02/Figs/Africa_Med_SKS_SKKS_onS40RTS.eps', crop=True, show=True) # fig.show(method='external') def plot_flament(dpath='/Users/ja17375/SWSTomo/FlamentModel',extent='epac'): nc_vx = nc.Dataset(f'{dpath}/C3-vx-000Ma-2677km.grd') nc_vy = nc.Dataset(f'{dpath}/C3-vy-000Ma-2677km.grd') nc_vz = nc.Dataset(f'{dpath}/C3-vz-000Ma-2677km.grd') vel_conv = 4.9e-4 # converts velocity to cm/year (from N. Flament - see model README.txt) Utheta = nc_vx['z'][:] * vel_conv *-1 #theta is colat so invert Uphi = nc_vy['z'][:] * vel_conv # longitudl velocity Ur = nc_vz['z'][:] * vel_conv # radial velocity lon, lat = np.meshgrid(nc_vx['lon'][:], nc_vx['lat'][:]) dg = 15 hzdeg = ((lat % dg == 0) & (lon % dg == 0)) U_grid = xr.DataArray(data=np.flipud(Ur), coords=[('latitude', np.linspace(-90,90,181), {'units': 'degrees_north'}), ('longitude', np.linspace(-180,180,361), {'units': 'degrees_east'})], ) fig = pygmt.Figure() africa_med = [25,70,-5,50] fig.basemap(region=africa_med, projection="Ks12c", frame="afg",) fig.grdimage(grid=U_grid) fig.coast(shorelines=True) flow_ang = np.rad2deg(np.arctan2(np.ravel(Utheta[hzdeg]),
np.ravel(Uphi[hzdeg])
numpy.ravel
"""Methods for geodetic calculations.""" import os import numpy import srtm import geopy from geopy.distance import GeodesicDistance from gewittergefahr.gg_utils import longitude_conversion as lng_conversion from gewittergefahr.gg_utils import file_system_utils from gewittergefahr.gg_utils import error_checking RADIANS_TO_DEGREES = 180. / numpy.pi DEGREES_TO_RADIANS = numpy.pi / 180 MIN_LATITUDE_DEG = -90. MAX_LATITUDE_DEG = 90. MIN_LONGITUDE_NEGATIVE_IN_WEST_DEG = -180. MAX_LONGITUDE_NEGATIVE_IN_WEST_DEG = 180. MIN_LONGITUDE_POSITIVE_IN_WEST_DEG = 0. MAX_LONGITUDE_POSITIVE_IN_WEST_DEG = 360. POSITIVE_LONGITUDE_ARG = 'positive' NEGATIVE_LONGITUDE_ARG = 'negative' EITHER_SIGN_LONGITUDE_ARG = 'either' VALID_LONGITUDE_SIGN_ARGS = [ POSITIVE_LONGITUDE_ARG, NEGATIVE_LONGITUDE_ARG, EITHER_SIGN_LONGITUDE_ARG] class ElevationFileHandler: """File-handler for elevation data. This class mimics the class `FileHandler` in main.py of the `srtm` package. """ working_dir_name = '' def __init__(self, working_dir_name=None): """Creates new instance. :param working_dir_name: Path to working directory. Elevation files will be read from here and, if necessary, downloaded to here. If `working_dir_name is None`, will try to create subdirectory ".cache/srtm" in the home directory. :raises: ValueError: if `working_dir_name is None` and this method cannot create ".cache/srtm" in the home directory. """ if working_dir_name is None: if 'HOME' in os.environ: top_working_dir_name = os.environ['HOME'] elif 'HOMEPATH' in os.environ: top_working_dir_name = os.environ['HOMEPATH'] else: raise ValueError('Cannot find home directory.') working_dir_name = '{0:s}/.cache/srtm'.format(top_working_dir_name) file_system_utils.mkdir_recursive_if_necessary( directory_name=working_dir_name) self.working_dir_name = working_dir_name def get_srtm_dir(self): """Returns path to working directory. :return: working_dir_name: See doc for `__init__`. """ return self.working_dir_name def exists(self, file_name): """Returns flag, indicating whether or not a file exists. :param file_name: Pathless file name. :return: does_file_exist: Boolean flag. """ full_file_name = '{0:s}/{1:s}'.format(self.get_srtm_dir(), file_name) return os.path.isfile(full_file_name) def write(self, file_name, contents): """Writes elevation file to working directory. :param file_name: Pathless file name. :param contents: Stuff to be written. """ full_file_name = '{0:s}/{1:s}'.format(self.get_srtm_dir(), file_name) with open(full_file_name, 'wb') as f: f.write(contents) def read(self, file_name): """Reads elevation file from working directory. :param file_name: Pathless file name. :return: contents: Stuff contained in file. """ full_file_name = '{0:s}/{1:s}'.format(self.get_srtm_dir(), file_name) with open(full_file_name, 'rb') as f: return f.read() def _get_elevation( latitude_deg, longitude_deg, srtm_data_object=None, working_dir_name=None): """Gets elevation at a single point. WARNING: Input longitudes in western hemisphere must be negative. If `srtm_data_object is None`, it will be created on the fly. :param latitude_deg: Latitude (deg N). :param longitude_deg: Longitude (deg E). :param srtm_data_object: Instance of `srtm.data.GeoElevationData`. :param working_dir_name: See doc for `__init__` in class `ElevationFileHandler`. :return: elevation_m_asl: Elevation (metres above sea level). :return: srtm_data_object: Instance of `srtm.data.GeoElevationData`. """ if srtm_data_object is None: srtm_data_object = srtm.get_data( file_handler=ElevationFileHandler(working_dir_name)) elevation_m_asl = srtm_data_object.get_elevation( latitude=latitude_deg, longitude=longitude_deg) # TODO(thunderhoser): I am concerned about this hack. if elevation_m_asl is None: elevation_m_asl = 0. return elevation_m_asl, srtm_data_object def find_invalid_latitudes(latitudes_deg): """Returns array indices of invalid latitudes. :param latitudes_deg: 1-D numpy array of latitudes (deg N). :return: invalid_indices: 1-D numpy array with array indices of invalid latitudes. """ error_checking.assert_is_real_numpy_array(latitudes_deg) error_checking.assert_is_numpy_array(latitudes_deg, num_dimensions=1) valid_flags = numpy.logical_and( latitudes_deg >= MIN_LATITUDE_DEG, latitudes_deg <= MAX_LATITUDE_DEG) return numpy.where(numpy.invert(valid_flags))[0] def find_invalid_longitudes( longitudes_deg, sign_in_western_hemisphere=POSITIVE_LONGITUDE_ARG): """Returns array indices of invalid longitudes. :param longitudes_deg: 1-D numpy array of longitudes (deg E). :param sign_in_western_hemisphere: Required sign in western hemisphere. May be "positive", "negative", or "either". :return: invalid_indices: 1-D numpy array with array indices of invalid longitudes. :raises: ValueError: if `sign_in_western_hemisphere` is not one of the 3 aforelisted options. """ error_checking.assert_is_real_numpy_array(longitudes_deg) error_checking.assert_is_numpy_array(longitudes_deg, num_dimensions=1) error_checking.assert_is_string(sign_in_western_hemisphere) if sign_in_western_hemisphere == POSITIVE_LONGITUDE_ARG: valid_flags = numpy.logical_and( longitudes_deg >= MIN_LONGITUDE_POSITIVE_IN_WEST_DEG, longitudes_deg <= MAX_LONGITUDE_POSITIVE_IN_WEST_DEG) elif sign_in_western_hemisphere == NEGATIVE_LONGITUDE_ARG: valid_flags = numpy.logical_and( longitudes_deg >= MIN_LONGITUDE_NEGATIVE_IN_WEST_DEG, longitudes_deg <= MAX_LONGITUDE_NEGATIVE_IN_WEST_DEG) elif sign_in_western_hemisphere == EITHER_SIGN_LONGITUDE_ARG: valid_flags = numpy.logical_and( longitudes_deg >= MIN_LONGITUDE_NEGATIVE_IN_WEST_DEG, longitudes_deg <= MAX_LONGITUDE_POSITIVE_IN_WEST_DEG) else: error_string = ( '\n\n{0:s}Valid options for `sign_in_western_hemisphere` are listed' ' above and do not include "{1:s}".' ).format(str(VALID_LONGITUDE_SIGN_ARGS), sign_in_western_hemisphere) raise ValueError(error_string) return numpy.where(numpy.invert(valid_flags))[0] def get_latlng_centroid(latitudes_deg, longitudes_deg, allow_nan=True): """Finds centroid of lat-long points. P = number of points :param latitudes_deg: length-P numpy array of latitudes (deg N). :param longitudes_deg: length-P numpy array of longitudes (deg E). :param allow_nan: Boolean flag. If True, input arrays may contain NaN's (however, NaN's must occur at the exact same positions in the two arrays). :return: centroid_lat_deg: Centroid latitude (deg N). :return: centroid_lng_deg: Centroid longitude (deg E). :raises: ValueError: if allow_nan = True but NaN's do not occur at the same positions in the two arrays. """ error_checking.assert_is_boolean(allow_nan) error_checking.assert_is_valid_lat_numpy_array(latitudes_deg, allow_nan) error_checking.assert_is_numpy_array(latitudes_deg, num_dimensions=1) num_points = len(latitudes_deg) longitudes_deg = lng_conversion.convert_lng_positive_in_west( longitudes_deg, allow_nan) error_checking.assert_is_numpy_array( longitudes_deg, exact_dimensions=numpy.array([num_points])) nan_latitude_indices = numpy.where(numpy.isnan(latitudes_deg))[0] nan_longitude_indices = numpy.where(numpy.isnan(longitudes_deg))[0] if not numpy.array_equal(nan_latitude_indices, nan_longitude_indices): error_string = ( '\nNaN''s occur at the following positions in `latitudes_deg`:\n' + str(nan_latitude_indices) + '\nand the following positions in `longitudes_deg`:\n' + str(nan_longitude_indices) + '\nNaN''s should occur at the same positions in the two arrays.') raise ValueError(error_string) return numpy.nanmean(latitudes_deg), numpy.nanmean(longitudes_deg) def get_elevations(latitudes_deg, longitudes_deg, working_dir_name=None): """Returns elevation of each point. N = number of points :param latitudes_deg: length-N numpy array of latitudes (deg N). :param longitudes_deg: length-N numpy array of longitudes (deg E). :param working_dir_name: See doc for `__init__` in class `ElevationFileHandler`. :return: elevations_m_asl: length-N numpy array of elevations (metres above sea level). """ error_checking.assert_is_valid_lat_numpy_array(latitudes_deg) error_checking.assert_is_numpy_array(latitudes_deg, num_dimensions=1) num_points = len(latitudes_deg) longitudes_deg = lng_conversion.convert_lng_negative_in_west( longitudes_deg, allow_nan=False) error_checking.assert_is_numpy_array( longitudes_deg, exact_dimensions=numpy.array([num_points])) srtm_data_object = None elevations_m_asl = numpy.full(num_points, numpy.nan) for i in range(num_points): elevations_m_asl[i], srtm_data_object = _get_elevation( latitude_deg=latitudes_deg[i], longitude_deg=longitudes_deg[i], srtm_data_object=srtm_data_object, working_dir_name=working_dir_name) return elevations_m_asl def start_points_and_displacements_to_endpoints( start_latitudes_deg, start_longitudes_deg, scalar_displacements_metres, geodetic_bearings_deg): """Computes endpoint from each start point and displacement. :param start_latitudes_deg: numpy array with latitudes (deg N) of start points. :param start_longitudes_deg: equivalent-size numpy array with longitudes (deg E) of start points. :param scalar_displacements_metres: equivalent-size numpy array of scalar displacements. :param geodetic_bearings_deg: equivalent-size numpy array of geodetic bearings (from start point to end point, measured clockwise from due north). :return: end_latitudes_deg: equivalent-size numpy array with latitudes (deg N) of endpoints. :return: end_longitudes_deg: equivalent-size numpy array with longitudes (deg E) of endpoints. """ error_checking.assert_is_valid_lat_numpy_array( start_latitudes_deg, allow_nan=False) start_longitudes_deg = lng_conversion.convert_lng_positive_in_west( start_longitudes_deg, allow_nan=False) error_checking.assert_is_numpy_array( start_longitudes_deg, exact_dimensions=numpy.array(start_latitudes_deg.shape)) error_checking.assert_is_geq_numpy_array(scalar_displacements_metres, 0.) error_checking.assert_is_numpy_array( scalar_displacements_metres, exact_dimensions=numpy.array(start_latitudes_deg.shape)) error_checking.assert_is_geq_numpy_array(geodetic_bearings_deg, 0.) error_checking.assert_is_leq_numpy_array(geodetic_bearings_deg, 360.) error_checking.assert_is_numpy_array( geodetic_bearings_deg, exact_dimensions=numpy.array(start_latitudes_deg.shape)) end_latitudes_deg = numpy.full(start_latitudes_deg.shape, numpy.nan) end_longitudes_deg = numpy.full(start_latitudes_deg.shape, numpy.nan) num_points = start_latitudes_deg.size for i in range(num_points): this_start_point_object = geopy.Point( start_latitudes_deg.flat[i], start_longitudes_deg.flat[i]) this_end_point_object = GeodesicDistance( meters=scalar_displacements_metres.flat[i]).destination( this_start_point_object, geodetic_bearings_deg.flat[i]) end_latitudes_deg.flat[i] = this_end_point_object.latitude end_longitudes_deg.flat[i] = this_end_point_object.longitude end_longitudes_deg = lng_conversion.convert_lng_positive_in_west( end_longitudes_deg, allow_nan=False) return end_latitudes_deg, end_longitudes_deg def xy_to_scalar_displacements_and_bearings( x_displacements_metres, y_displacements_metres): """For each displacement vector, converts x-y to magnitude and direction. :param x_displacements_metres: numpy array of eastward displacements. :param y_displacements_metres: equivalent-size numpy array of northward displacements. :return: scalar_displacements_metres: equivalent-size numpy array of total displacements. :return: geodetic_bearings_deg: equivalent-size numpy array of geodetic bearings (from start point to end point, measured clockwise from due north). """ error_checking.assert_is_numpy_array_without_nan(x_displacements_metres) error_checking.assert_is_numpy_array_without_nan(y_displacements_metres) error_checking.assert_is_numpy_array( y_displacements_metres, exact_dimensions=numpy.array(y_displacements_metres.shape)) scalar_displacements_metres = numpy.sqrt( x_displacements_metres ** 2 + y_displacements_metres ** 2) standard_bearings_deg = RADIANS_TO_DEGREES * numpy.arctan2( y_displacements_metres, x_displacements_metres) return scalar_displacements_metres, standard_to_geodetic_angles( standard_bearings_deg) def scalar_displacements_and_bearings_to_xy( scalar_displacements_metres, geodetic_bearings_deg): """For each displacement vector, converts magnitude and direction to x-y. :param scalar_displacements_metres: numpy array of total displacements. :param geodetic_bearings_deg: equivalent-size numpy array of geodetic bearings (from start point to end point, measured clockwise from due north). :return: x_displacements_metres: equivalent-size numpy array of eastward displacements. :return: y_displacements_metres: equivalent-size numpy array of northward displacements. """ error_checking.assert_is_geq_numpy_array(scalar_displacements_metres, 0.) error_checking.assert_is_geq_numpy_array(geodetic_bearings_deg, 0.) error_checking.assert_is_leq_numpy_array(geodetic_bearings_deg, 360.) error_checking.assert_is_numpy_array( geodetic_bearings_deg, exact_dimensions=numpy.array(scalar_displacements_metres.shape)) standard_angles_radians = DEGREES_TO_RADIANS * geodetic_to_standard_angles( geodetic_bearings_deg) return (scalar_displacements_metres * numpy.cos(standard_angles_radians), scalar_displacements_metres * numpy.sin(standard_angles_radians)) def rotate_displacement_vectors( x_displacements_metres, y_displacements_metres, ccw_rotation_angle_deg): """Rotates each displacement vector by a certain angle. :param x_displacements_metres: numpy array of eastward displacements. :param y_displacements_metres: equivalent-size numpy array of northward displacements. :param ccw_rotation_angle_deg: Rotation angle (degrees). Each displacement vector will be rotated counterclockwise by this amount. :return: x_prime_displacements_metres: equivalent-size numpy array of "eastward" displacements (in the rotated coordinate system). :return: y_prime_displacements_metres: equivalent-size numpy array of "northward" displacements (in the rotated coordinate system). """ error_checking.assert_is_numpy_array_without_nan(x_displacements_metres) error_checking.assert_is_numpy_array_without_nan(y_displacements_metres) error_checking.assert_is_numpy_array( y_displacements_metres, exact_dimensions=numpy.array(y_displacements_metres.shape)) error_checking.assert_is_greater(ccw_rotation_angle_deg, -360.) error_checking.assert_is_less_than(ccw_rotation_angle_deg, 360.) ccw_rotation_angle_rad = DEGREES_TO_RADIANS * ccw_rotation_angle_deg rotation_matrix = numpy.array([ [numpy.cos(ccw_rotation_angle_rad), -
numpy.sin(ccw_rotation_angle_rad)
numpy.sin
#!/usr/bin/env python """ @package ion_functions.data.prs_functions @file ion_functions/data/prs_functions.py @author <NAME>, <NAME> @brief Module containing calculations related to instruments in the Seafloor Pressure family. """ import numexpr as ne import numpy as np import scipy as sp from scipy import signal """ Listing of functions, in order encountered. Functions calculating data products. BOTTILT: prs_bottilt_ccmp -- computes the BOTTILT-CCMP_L1 data product prs_bottilt_tmag -- computes the BOTTILT-TMAG_L1 data product prs_bottilt_tdir -- computes the BOTTILT-TDIR_L1 data product BOTSFLU: prs_botsflu_time15s -- computes the TIME15S-AUX auxiliary data product prs_botsflu_meanpres -- computes the BOTSFLU-MEANPRES_L2 data product prs_botsflu_predtide -- computes the BOTSFLU-PREDTIDE_L2 data product prs_botsflu_meandepth -- computes the BOTSFLU-MEANDEPTH_L2 data product prs_botsflu_5minrate -- computes the BOTSFLU-5MINRATE_L2 data product prs_botsflu_10minrate -- computes the BOTSFLU-10MINRATE_L2 data product prs_botsflu_time24h -- computes the TIME24H-AUX auxiliary data product prs_botsflu_daydepth -- computes the BOTSFLU-DAYDEPTH_L2 data product prs_botsflu_4wkrate -- computes the BOTSFLU-4WKRATE_L2 data product prs_botsflu_8wkrate -- computes the BOTSFLU-8WKRATE_L2 data product Functions calculating event notifications; they return either True or False. BOTSFLU: prs_tsunami_detection -- event notification specified by DPS prs_eruption_imminent -- event notification specified by DPS prs_eruption_occurred -- event notification specified by DPS Worker functions called by functions calculating data products. BOTSFLU anchor_bin calc_daydepth_plus calc_meandepth_plus calculate_sliding_means calculate_sliding_slopes """ def prs_bottilt_ccmp(scmp, sn): """ Description: OOI Level 1 Seafloor High-Resolution tilt (BOTTILT) core data product, derived from data output by the Applied Geomechanics LILY tilt sensor on board the Bottom Pressure Tilt (BOTPT) instruments on the Regional Scale Nodes (RSN) at Axial Seamount. This function computes BOTTILT-CCMP_L1. Implemented by: 2013-06-10: <NAME>. Initial code. 2014-03-20: <NAME>. Alternate code: faster, but less direct. Usage: ccmp = prs_bottilt_ccmp(scmp, sn) where ccmp = Corrected compass direction (BOTTILT-CCMP_L1) [degrees] scmp = Uncorrected sensor compass direction (BOTTILT-SCMP_L0) [degrees] sn = LILY sensor serial number [unitless] References: OOI (2013). Data Product Specification for Seafloor High-Resolution Tilt. Document Control Number 1341-00060. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00060_Data_Product_SPEC_BOTTILT_OOI.pdf) """ """ Currently, there are two coded algorithms: (1) the straightforward original, which uses a two-element keyed dictionary; (2) a faster version, which uses serial number keys to the dictionary. Since each algorithm uses its own dictionary, the corresponding import statements are TEMPORARILY placed at the beginning of their respective code sections instead of at module top. """ ### Original coding, using a dictionary constructed with 2-element keys. # load the corrected compass directions table [(sn, scmp) keys] from ion_functions.data.prs_functions_ccmp import cmp_lookup # use the lookup table to get the ccmp ccmp = np.zeros(len(scmp)) for i in range(len(scmp)): ccmp[i] = cmp_lookup[(sn[i], int(round(scmp[i])))] return ccmp #### Faster coding, using a dictionary constructed with 1-element keys. # ## load the corrected compass directions table [sn keys] #from ion_functions.data.prs_functions_ccmp_lily_compass_cals import cmp_cal # ## initialize output array for vectorized masking operations. this will 'break' ## the code if an invalid serial number is specified in the argument list. #ccmp = np.zeros(len(scmp)) + np.nan # ## round the uncorrected compass values to the nearest integer as specified in the DPS, ## which uses a lookup table consisting of integral values to do the correction. #scmp = np.round(scmp) # ## find the supported tilt sensor serial numbers, which are keys in the dictionary #sernum = cmp_cal.keys() # #for ii in range(len(sernum)): # # get the cal coeffs as a function of the iterated serial number; # # x is the raw, uncorrected reading (scmp) # # y is the corrected reading (ccmp) # [x, y] = cmp_cal[sernum[ii]] # # # the boolean mask has 'true' entries where the elements of input vector sn # # agree with the iterated serial number. # # np.core.defchararray.equal handles vector string comparisons. # mask = np.core.defchararray.equal(sn, sernum[ii]) # # ## np.interp is used to do the 'lookup' for performance reasons (vectorized) # ccmp[mask] = np.interp(scmp[mask], x, y) # ## round to make sure we get an integral value (but not int type) #return np.round(ccmp) def prs_bottilt_tmag(x_tilt, y_tilt): """ Description: OOI Level 1 Seafloor High-Resolution Tilt (BOTTILT) core data product, derived from data output by the Applied Geomechanics LILY tilt sensor on board the Bottom Pressure Tilt (BOTPT) instruments on the Regional Scale Nodes (RSN) at Axial Seamount. This function computes BOTTILT-TMAG_L1. Implemented by: 2013-06-10: <NAME>. Initial code. Usage: tmag = prs_bottilt(x_tilt, y_tilt) where tmag = Resultant tilt magnitude (BOTTILT-TMAG_L1) [microradians] x_tilt = Sensor X_tilt (BOTTILT-XTLT_L0) [microradians] y_tilt = Sensor Y_tilt (BOTTILT-YTLT_L0) [microradians] References: OOI (2013). Data Product Specification for Seafloor High-Resolution Tilt. Document Control Number 1341-00060. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00060_Data_Product_SPEC_BOTTILT_OOI.pdf) """ tmag = ne.evaluate('sqrt(x_tilt**2 + y_tilt**2)') return tmag def prs_bottilt_tdir(x_tilt, y_tilt, ccmp): """ Description: OOI Level 1 Seafloor High-Resolution Tilt (BOTTILT) core data product, derived from data output by the Applied Geomechanics LILY tilt sensor on board the Bottom Pressure Tilt (BOTPT) instruments on the Regional Scale Nodes (RSN) at Axial Seamount. This function computes BOTTILT-TDIR_L1. Implemented by: 2013-06-10: <NAME>. Initial code. 2014-03-20: <NAME>. Replaced initial code with arctan2 implementation. Usage: tdir = prs_bottilt(x_tilt, y_tilt, ccmp) where tdir = Resultant tilt direction (BOTTILT-TDIR_L1) [degrees] x_tilt = Sensor X_tilt (BOTTILT-XTLT_L0) [microradians] y_tilt = Sensor Y_tilt (BOTTILT-YTLT_L0) [microradians] ccmp = Corrected compass direction (BOTTILT-CCMP_L1) [degrees] References: OOI (2013). Data Product Specification for Seafloor High-Resolution Tilt. Document Control Number 1341-00060. https://alfresco.oceanobservatories.org/ (See: Company Home >> OOI >> Controlled >> 1000 System Level >> 1341-00060_Data_Product_SPEC_BOTTILT_OOI.pdf) """ ### As originally coded, according to the algorithm specified in the DPS: ## Calculate the angle to use in the tilt direction formula ## default angle calculation -- in degrees #angle = ne.evaluate('arctan(y_tilt / x_tilt)') #angle = np.degrees(angle) # ## if X-Tilt == 0 and Y-Tilt > 0 #mask = np.logical_and(x_tilt == 0, y_tilt > 0) #angle[mask] = 90.0 # ## if X-Tilt == 0 and Y-Tilt < 0 #mask = np.logical_and(x_tilt == 0, y_tilt < 0) #angle[mask] = -90.0 # ## if Y-Tilt == 0 #mask = np.equal(y_tilt, np.zeros(len(y_tilt))) #angle[mask] = 0.0 # ### Calculate the tilt direction, using the X-Tilt to set the equation ## default tilt direction equation #tdir = ne.evaluate('(270 - angle + ccmp) % 360') # ## if X-Tilt >= 0 #tmp = ne.evaluate('(90 - angle + ccmp) % 360') #mask = np.greater_equal(x_tilt, np.zeros(len(x_tilt))) #tdir[mask] = tmp[mask] # #return np.round(tdir) # The preceding calculation is faster and simpler if the arctan2 function is used. # Use 450 as an addend in the first argument to the mod function to make sure the result is positive. return np.round(np.mod(450 - np.degrees(np.arctan2(y_tilt, x_tilt)) + ccmp, 360)) def prs_botsflu_time15s(timestamp): """ Description: Calculates the auxiliary BOTSFLU data product TIME15S-AUX. These are timestamps anchored at multiples of 15 seconds past the minute which correspond to the time base for the BOTSFLU data products which are binned on 15 seconds. Implemented by: 2015-01-13: <NAME>. Initial code. Usage time15s = prs_botsflu_time15s(timestamp) where time15s = BOTSFLU-TIME15S-AUX [sec since 01-01-1900] timestamp = OOI system timestamps [sec since 01-01-1900] Notes: The BOTSFLU data products associated with this timebase are: MEANPRES PREDTIDE MEANDEPTH 5MINRATE 10MINRATE References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ bin_duration = 15.0 # seconds # the second calling argument is a placeholder time15s = anchor_bin(timestamp, None, bin_duration, 'time') return time15s def prs_botsflu_meanpres(timestamp, botpres): """ Description: Calculates the BOTSFLU data product MEANPRES_L1. Implemented by: 2015-01-13: <NAME>. Initial code. Usage meanpres = prs_botsflu_meanpres(timestamp, botpres) where meanpres = BOTSFLU-MEANPRES_L2 [psi] timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME15S. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ bin_duration = 15.0 # seconds meanpres, _ = anchor_bin(timestamp, botpres, bin_duration, 'data') return meanpres def prs_botsflu_predtide(time): """ Description: Assigns tide values for the 3 BOTPT instrument sites about 500 km west of Astoria. When the input argument is the data product TIME15S, the output of this function will be the BOTSFLU data product PREDTIDE. Implemented by: 2015-01-13: <NAME>. Initial code. Usage: PREDTIDE = prs_botsflu_predtide(TIME15S) where PREDTIDE = BOTSFLU-PREDTIDE data product [m] TIME15S = BOTSFLU-TIME15S data product [sec since 01-01-1900]. Notes: Lookup table in binary file: 'ion_functions/data/prs_functions_tides_2014_thru_2019.mat' The lookup table contains tide values every 15 seconds from 2014-01-01 to 2020-01-01 at lat = 45.95547 lon = -130.00957 calculated by the Tide Model Driver software written in Matlab (Mathworks, Natick, MA) using the TPXO7.2 global model. The tides corresponding to time are determined by positional indexing (the first value is for 2014-01-01 00:00:00, the second is for 2014-01-01 00:00:15, etc). The 3 BOTPT sites are close enough together that the caldera center location can be used for all, as above: lat = 45.95547 lon = -130.00957. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. Matlab code to calculate tides using TPXO7.2 global model: http://polaris.esr.org/ptm_index.html Further documentation for the TPXO7.2 global tide model: http://volkov.oce.orst.edu/tides/global.html """ time0 = 3597523200.0 # midnight, 2014-01-01 time_interval = 15.0 # seconds # for unit test data, only, feb-apr 2011 if time[0] < time0: time0 = 3502828800.0 # midnight, 2011-01-01 # tide values are signed 4 byte integers, units [0.001mm] matpath = 'ion_functions/data/matlab_scripts/botpt/' dict_tides = sp.io.loadmat(matpath + 'tides_15sec_2011_for_unit_tests.mat') tidevector = 0.000001 * dict_tides['tides_mat'] tidevector = tidevector.reshape((-1)) # calculate tide vector index as a function of timestamp idx = np.around((time - time0)/time_interval) tide = tidevector[idx.astype(int)] return tide # else, OOI data from 2014 onwards # tide values are signed 4 byte integers, units [0.001mm] dict_tides = sp.io.loadmat('ion_functions/data/prs_functions_tides_2014_thru_2019.mat') tidevector = 0.000001 * dict_tides['tides_mat'] tidevector = tidevector.reshape((-1)) # calculate tide vector index as a function of timestamp idx = np.around((time - time0)/time_interval) tide = tidevector[idx.astype(int)] return tide def prs_botsflu_meandepth(timestamp, botpres): """ Description: Calculates the BOTSFLU data product MEANDEPTH_L2, de-tided bottom depth as a function of time (15sec bins). Implemented by: 2015-01-14: <NAME>. Initial code. Usage meandepth = prs_botsflu_meandepth(timestamp, botpres) where meandepth = BOTSFLU-MEANDEPTH_L2 [m] timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME15S. The DPS specifies that atmospheric pressure not be subtracted from the L1 pressure data even though its units are [psia]. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ _, meandepth, _ = calc_meandepth_plus(timestamp, botpres) return meandepth def prs_botsflu_5minrate(timestamp, botpres): """ Description: Calculates the BOTSFLU data product 5MINRATE_L2, the instantaneous rate of depth change using 5 minute backwards-looking meandepth data. Implemented by: 2015-01-14: <NAME>. Initial code. Usage botsflu_5minrate = pprs_botsflu_5minrate(timestamp, botpres) where botsflu_5minrate = BOTSFLU-5MINRATE_L2 [cm/min] timestamp = CI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME15S. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ # calculate de-tided depth and the positions of non-zero bins in the original data. _, meandepth, mask_nonzero = calc_meandepth_plus(timestamp, botpres) # initialize data product including elements representing data gap positions botsflu_5minrate = np.zeros(mask_nonzero.size) + np.nan # re-constitute the original data, with data gaps represented by nans. data_w_gaps = np.copy(botsflu_5minrate) data_w_gaps[mask_nonzero] = meandepth # for 15s binned data, 5 minutes comes out to (5 minutes)/(0.25 min) = 20 intervals shift = 20 # units of the subtraction are meter/5min; to convert to cm/min, # multiply by 100cm/m and divide by 5 = 20. botsflu_5minrate[shift:] = 20.0 * (data_w_gaps[shift:] - data_w_gaps[:-shift]) # this rate product now has potentially two sources of nans; # definitely those at the start of the data record, and any that might # have been propagated into the calculation because of the presence of # data gaps. remove those only at the data dropout positions (if present) # so that this data product will have a 1:1 correspondence with # its associated timestamp variable (TIME15S). botsflu_5minrate = botsflu_5minrate[mask_nonzero] return botsflu_5minrate def prs_botsflu_10minrate(timestamp, botpres): """ Description: Calculates the BOTSFLU data product 10MINRATE_L2, the mean seafloor uplift rate calculated using 10 minute backwards-looking 10 minute running mean depth data. Implemented by: 2015-01-14: <NAME>. Initial code. Usage botsflu_10minrate = pprs_botsflu_10minrate(timestamp, botpres) where botsflu_10minrate = BOTSFLU-10MINRATE_L2 [cm/hr] timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME15S. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ # calculate de-tided depth and the positions of non-zero bins in the original data. _, meandepth, mask_nonzero = calc_meandepth_plus(timestamp, botpres) # initialize data product including elements representing data gap positions botsflu_10minrate = np.zeros(mask_nonzero.size) + np.nan # re-constitute the original data, with data gaps represented by nans. data_w_gaps = np.copy(botsflu_10minrate) data_w_gaps[mask_nonzero] = meandepth # now calculate sliding 10 minute means. # the mean of the 1st 40 values will be located at timestamp position 20 # (python index 19). window_size = 40 # 10min averages on 0.25min binned data means = calculate_sliding_means(data_w_gaps, window_size) # as above, 10 minutes = 40 intervals for 15sec binned data. shift = 40 # units of the subtraction are meter/10min; to convert to cm/hr, # multiply by 100cm/m and multiply by 6 = 600. botsflu_10minrate[shift:] = 600.0 * (means[shift:] - means[:-shift]) # this rate product now has potentially two sources of nans; # definitely those at the start of the data record, and any that might # have been propagated into the calculation because of the presence of # data gaps. remove those only at the data dropout positions (if present) # so that this data product will have a 1:1 correspondence with # its associated timestamp variable (TIME15S). botsflu_10minrate = botsflu_10minrate[mask_nonzero] return botsflu_10minrate def prs_botsflu_time24h(time15s): """ Description: Calculates the auxiliary BOTSFLU data product TIME24H-AUX. These are timestamps anchored at midnight which correspond to the time base for the BOTSFLU data products which are binned on a day's worth of data. Implemented by: 2015-01-14: <NAME>. Initial code. Usage time24h = prs_botsflu_time24h(time15s) where time24h = BOTSFLU-TIME24H-AUX [sec since 01-01-1900] time15s = BOTSFLU-TIME15S-AUX [sec since 01-01-1900] Notes: The BOTSFLU data products associated with this timebase are: DAYDEPTH 4WKRATE 8WKRATE References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ bin_duration = 86400.0 # seconds in a bin # the second calling argument is a placeholder time24h = anchor_bin(time15s, None, bin_duration, 'time') return time24h def prs_botsflu_daydepth(timestamp, botpres): """ Description: Calculates the BOTSFLU data product DAYDEPTH_L2, de-tided bottom depth as a function of time (1 day bins). Implemented by: 2015-01-14: <NAME>. Initial code. Usage daydepth = prs_botsflu_daydepth(timestamp, botpres) where daydepth = BOTSFLU-DAYDEPTH_L2 [m] timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME24H. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ daydepth, _ = calc_daydepth_plus(timestamp, botpres) return daydepth def prs_botsflu_4wkrate(timestamp, botpres): """ Description: Calculates the BOTSFLU data product 4WKRATE_L2, the mean rate of seafloor change as calculated by 4-week backwards-looking linear regressions. Implemented by: 2015-01-14: <NAME>. Initial code. Usage botsflu_4wkrate = pprs_botsflu_4wkrate(timestamp, botpres) where botsflu_4wkrate = BOTSFLU-4WKRATE_L2 [cm/yr] timestamp = CI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME24H. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ # calculate daydepth and the mask of nonzero data bins. daydepth, mask_nonzero = calc_daydepth_plus(timestamp, botpres) # re-constitute the original data, with data gaps represented by nans. data_w_gaps = np.zeros(mask_nonzero.size) + np.nan data_w_gaps[mask_nonzero] = daydepth # 4 weeks of data window_size = 29 botsflu_4wkrate = calculate_sliding_slopes(data_w_gaps, window_size) # (1) remove appropriate bins to re-establish the 1:1 correspondence # to TIME24H timestamps; # (2) convert units: # the units of the slopes are [y]/[x] = meters/day; # to get units of cm/yr, multiply by 100cm/m * 365 days/yr botsflu_4wkrate = 100.0 * 365.0 * botsflu_4wkrate[mask_nonzero] return botsflu_4wkrate def prs_botsflu_8wkrate(timestamp, botpres): """ Description: Calculates the BOTSFLU data product 8WKRATE_L2, the mean rate of seafloor change as calculated by 8-week backwards-looking linear regressions. Implemented by: 2015-01-14: <NAME>. Initial code. Usage botsflu_8wkrate = pprs_botsflu_8wkrate(timestamp, botpres) where botsflu_8wkrate = BOTSFLU-8WKRATE_L2 [cm/yr] timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The timebase data product associated with this data product is TIME24H. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ # calculate daydepth and the mask of nonzero data bins. daydepth, mask_nonzero = calc_daydepth_plus(timestamp, botpres) # re-constitute the original data, with data gaps represented by nans. data_w_gaps = np.zeros(mask_nonzero.size) + np.nan data_w_gaps[mask_nonzero] = daydepth # 8 weeks of data window_size = 57 botsflu_8wkrate = calculate_sliding_slopes(data_w_gaps, window_size) # (1) remove appropriate bins to re-establish the 1:1 correspondence # to TIME24H timestamps; # (2) convert units: # the units of the slopes are [y]/[x] = meters/day; # to get units of cm/yr, multiply by 100cm/m * 365 days/yr botsflu_8wkrate = 100.0 * 365.0 * botsflu_8wkrate[mask_nonzero] return botsflu_8wkrate #********************************************************************** #.. EVENT NOTIFICATION: tsunami detection #********************************************************************** def prs_tsunami_detection(botsflu_5minrate, tsunami_detection_threshold=1.0): """ Implemented by: 2015-01-14: <NAME>. Initial code. Usage: TF = prs_tsunami_detection(BOTSFLU-5MINRATE_L2) where TF = True or False; whether a tsunami event has been detected. WARNING: This function and its data product input argument were coded as instructed in the DPS using the pseudocode specified. The robustness of this code has not been checked with actual data. """ # units of variable and threshold are [cm/min] boolean_tsunami_detection = False # get rid of runtime warnings if nans are present botsflu_5minrate[np.isnan(botsflu_5minrate)] = 0.0 if np.any(np.abs(botsflu_5minrate) >= tsunami_detection_threshold): boolean_tsunami_detection = True return boolean_tsunami_detection #********************************************************************** #.. EVENT NOTIFICATION: eruption imminent #********************************************************************** def prs_eruption_imminent(botsflu_10minrate, eruption_imminent_threshold=5.0): """ Implemented by: 2015-01-14: <NAME>. Initial code. Usage: TF = prs_eruption_imminent(BOTSFLU-10MINRATE_L2) where TF = True or False; whether an eruption event is imminent. WARNING: This function and its data product input argument were coded as instructed in the DPS using the pseudocode specified. The robustness of this code has not been checked with actual data. """ # units of variable and threshold are [cm/hr] boolean_eruption_imminent = False # get rid of runtime warnings if nans are present botsflu_10minrate[np.isnan(botsflu_10minrate)] = 0.0 if np.any(botsflu_10minrate >= eruption_imminent_threshold): boolean_eruption_imminent = True return boolean_eruption_imminent #********************************************************************** #.. EVENT NOTIFICATION: eruption occurred #********************************************************************** def prs_eruption_occurred(botsflu_10minrate, eruption_occurred_threshold=-5.0): """ Implemented by: 2015-01-14: <NAME>iderio. Initial code. Usage: TF = prs_eruption_occurred(BOTSFLU-10MINRATE_L2) where TF = True or False; whether an eruption event has occurred. WARNING: This function and its data product input argument were coded as instructed in the DPS using the pseudocode specified. The robustness of this code has not been checked with actual data. """ # units of variable and threshold are [cm/hr] boolean_eruption_occurred = False # get rid of runtime warnings if nans are present botsflu_10minrate[np.isnan(botsflu_10minrate)] = 0.0 if np.any(botsflu_10minrate <= eruption_occurred_threshold): boolean_eruption_occurred = True return boolean_eruption_occurred def anchor_bin(time, data, bin_duration, mode): """ Description: Calculates 'anchored' timestamps (see Notes) and binned data based on timestamps in units of seconds since midnight. Written explicitly for the BOTSFLU DPA which requires two stages of binning: 20hz data on 15 seconds, then the 15sec data on 24 hours. Implemented by: 2015-01-13: <NAME>. Initial code. 2015-01-14: <NAME>. Changed output arguments and incorporated conditionals to improve program efficiency. Usage (1): bin_timestamps = anchor_bin(time, None, bin_duration, 'time') where bin_timestamps = 1D array of centered timestamps for non-empty bins time = 1D array of timestamps, units of sec since 01-01-1900 None = not used; python placeholder object bin_duration = size of bin [s] mode = the string 'time' Usage (2): binned_data, mask_nonzero = anchor_bin(time, data, bin_duration, 'data') where binned_data = 1D array of binned data; no empty bins are represented mask_nonzero = boolean where True values represent locations of non-empty bins time = 1D array of timestamps, units of sec since 01-01-1900 data = data to be binned bin_duration = size of bin [s] mode = the string 'data' Usage (3): bin_timestamps, binned_data, mask_nonzero = anchor_bin(time, data, bin_duration, 'both') where bin_timestamps = 1D array of centered timestamps for non-empty bins binned_data = 1D array of binned data; no empty bins are represented mask_nonzero = boolean where True values represent locations of non-empty bins time = 1D array of timestamps, units of sec since 01-01-1900 data = data to be binned bin_duration = size of bin [s] mode = the string 'both' Notes: The conditional construction is used so that only necessary statements are executed; when multiple years' worth of 20 Hz data is operated on, each np.bincount operation may take multiple tens of seconds to execute. The np.bincount routine is used in the same way accumarray in matlab is used to bin data. The key to the routine is to convert the timestamps into elapsed time in units of bin_duration and to construct bins based on the floored bin_duration times. The summing is then carried out by using the weighting feature of the np.bincount function, as described in the example in the numpy.bincount documentation as listed in the References. The BOTSFLU data products require binning at two stages. Bin results both with and without empty bins are required. The output arguments have been selected to provide this flexibility (in particular mask_nonzero). This routine has been constructed to supply 'anchored' timestamps. For example, if the bin_duration is 86400 (the number of seconds in a day) then the start time will be half a bin earlier than the first day of data (at noon) and all timestamps will be 'anchored' at midnight. Similarly, if the bin_duration is 15 sec, all timestamps will be at 00, 15, 30, and 45 seconds past the minute. References: http://docs.scipy.org/doc/numpy-1.8.1/reference/generated/numpy.bincount.html. """ half_bin = bin_duration/2.0 # anchor time-centered bins by determining the start time to be half a bin # before the first 'anchor timestamp', which will an integral number of # bin_durations after midnight. start_time = np.floor((time[0] - half_bin)/bin_duration) * bin_duration + half_bin # calculate elapsed time from start in units of bin_duration. time_elapsed = (time - start_time)/bin_duration # assign each timestamp a bin number index based on its elapsed time. bin_number = np.floor(time_elapsed).astype(int) # the number of elements in each bin is given by bin_count = np.bincount(bin_number).astype(float) # create a logical mask of non-zero bin_count values mask_nonzero = (bin_count != 0) # to calculate timestamps and to get tides, without also binning data. # mask_nonzero is not needed. if mode == 'time': # directly calculate bin timestamp, units of [sec]: # the midpoint of the data interval is used. bin_timestamps = start_time + half_bin + bin_duration * np.arange(bin_count.size) # keep only the bins with values bin_timestamps = bin_timestamps[mask_nonzero] return bin_timestamps # for binning data when the resultant timestamps are not explicitly required. # daydepth_plus also requires mask_nonzero for downstream products 4wkrate and 8wkrate. elif mode == 'data': # sum the values in each time bin, and put into the variable binned_data binned_data = np.bincount(bin_number, data) # divide the values in non-empty bins by the number of values in each bin binned_data = binned_data[mask_nonzero]/bin_count[mask_nonzero] return binned_data, mask_nonzero # for when both timestamps and binned data are required. elif mode == 'both': bin_timestamps = start_time + half_bin + bin_duration * np.arange(bin_count.size) bin_timestamps = bin_timestamps[mask_nonzero] binned_data = np.bincount(bin_number, data) binned_data = binned_data[mask_nonzero]/bin_count[mask_nonzero] return bin_timestamps, binned_data, mask_nonzero def calc_daydepth_plus(timestamp, botpres): """ Description: Worker function to calculate the botsflu data product daydepth plus an additional boolean mask required to calculate other botsflu data products downstream from daydepth. Implemented by: 2015-01-14: <NAME>. Initial code. Usage daydepth, mask_nonzero = calc_daydepth_plus(timestamp, botpres) where daydepth = BOTSFLU-DAYDEPTH_L2 [m] mask_nonzero = boolean of positions of non-empty 24 hr bins timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ # calculate 15sec bin timestamps and de-tided depth. time15s, meandepth, _ = calc_meandepth_plus(timestamp, botpres) # bin the 15sec data into 24 hour bins so that the timestamps are at midnight. # to calculate daydepth, don't need the time24h timestamps. bin_duration = 86400.0 # number of seconds in a day daydepth, mask_nonzero = anchor_bin(time15s, meandepth, bin_duration, 'data') # downstream data products require the mask_nonzero variable, so pass # it as an output argument so that it doesn't need to be recalculated. return daydepth, mask_nonzero def calc_meandepth_plus(timestamp, botpres): """ Description: Worker function to calculate the botsflu data product meandepth plus additional variables required to calculate other botsflu data products downstream from meandepth. Implemented by: 2015-01-14: <NAME>. Initial code. Usage time15s, meandepth, mask_nonzero = calc_meandepth_plus(timestamp, botpres) where time15s = TIME15S [sec since 01-01-1900] meandepth = BOTSFLU-MEANDEPTH_L2 [m] mask_nonzero = boolean of positions of non-empty bins in the original data timestamp = OOI system timestamps [sec since 01-01-1900] botpres = BOTPRES_L1 [psia] Notes: The DPS specifies that atmospheric pressure not be subtracted from the L1 pressure data even though its units are [psia]. The DPS convention is that depths are negative, so that to detide the pressure record, the predicted tide is added to the negative depths. This function was written as a way to eliminate the execution of time consuming duplicate calculations in the botsflu coding within the OOI CI architecture constraints. References: OOI (2015). Data Product Specification for Seafloor Uplift and Subsidence (BOTSFLU) from the BOTPT instrument. Document Control Number 1341-00080. """ # The pressure values do have units of psia. However, historically at these sites # atmospheric pressure has *not* been subtracted when converting the pressure data # to depth. Therefore the DPS authors do not want atmospheric pressure subtracted # in the DPA. To emphasize this, I have created the variable atm_press_psi and set # it to 0. atm_press_psi = 0.0 psi_2_depth = -0.67 # psi to depth in meters bin_duration = 15.0 # seconds time15s, meanpres, mask_nonzero = anchor_bin(timestamp, botpres, bin_duration, 'both') # look up tide data tide = prs_botsflu_predtide(time15s) # de-tide meandepth = ((meanpres - atm_press_psi) * psi_2_depth) + tide # downstream data products require the time15s and mask_nonzero variables, # so pass these as output arguments so that they won't have to be recalculated. return time15s, meandepth, mask_nonzero def calculate_sliding_means(data, window_size): """ Description: Calculates time-centered means using digital convolution for the BOTSFLU data product 10MINRATE. Implemented by: 2015-01-13: <NAME>. Initial code. Usage means = calculate_sliding_means(data, window_size) where means = 1D array of sliding means data = 1D array of data window_size = even integer """ kk = np.ones(window_size) / window_size means = np.convolve(data, kk, 'same') # matlab and numpy behave differently for even window sizes, so means = np.roll(means, -1) # in this application, window_size is always even. hfwin = window_size/2 - 1 # nan out data with boundary effects at edges. # the values in the array means will be of type float because kk is a float, # so that the np.nan assignment statements will work as intended. means[0:hfwin] = np.nan means[-hfwin-1:] = np.nan return means def calculate_sliding_slopes(data, window_size): """ Description: Calculates backwards-looking sliding slopes using Moore_Penrose pseudo-inverse matrices; required for the BOTSFLU data products 4WKRATE and 8WKRATE. Implemented by: 2015-01-13: <NAME>. Initial code. Usage slopes = calculate_sliding_slopes(data, window_size) where slopes = 1D array of sliding slopes data = 1D array of data window_size = integer Notes Code lifted from <NAME>'s response on Matlab Central (thread 49181) to a query on how to calculate vectorized rolling regressions. For a more generalized application of the pinv\filter method, see D'Errico's 2007 code for movingslope.m on Matlab Central's file exchange (16997). The slopes are backwards-looking, not centered. The first non-nan value occurs at index window_size, and is the slope of a regression of the first (window_size + 1) points. """ column1 = np.ones((window_size, 1)) column2 = -np.arange(float(window_size)).reshape(-1, 1) X =
np.hstack((column1, column2))
numpy.hstack
import numpy as np from scipy import interpolate from sklearn.model_selection import KFold def evaluate(distances, labels, nrof_folds=10): thresholds = np.arange(0, 4, 0.01) tpr, fpr, accuracy, best_thresholds = calculate_roc(thresholds, distances, labels, nrof_folds=nrof_folds) thresholds = np.arange(0, 4, 0.001) val, val_std, far = calculate_val(thresholds, distances, labels, 1e-3, nrof_folds=nrof_folds) return tpr, fpr, accuracy, val, val_std, far, best_thresholds def calculate_roc(thresholds, distances, labels, nrof_folds=10): nrof_pairs = min(len(labels), len(distances)) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds,nrof_thresholds)) fprs = np.zeros((nrof_folds,nrof_thresholds)) accuracy = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = calculate_accuracy(threshold, distances[train_set], labels[train_set]) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx,threshold_idx], fprs[fold_idx,threshold_idx], _ = calculate_accuracy(threshold, distances[test_set], labels[test_set]) _, _, accuracy[fold_idx] = calculate_accuracy(thresholds[best_threshold_index], distances[test_set], labels[test_set]) tpr = np.mean(tprs,0) fpr = np.mean(fprs,0) return tpr, fpr, accuracy, thresholds[best_threshold_index] def calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn) fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn) acc = float(tp+tn)/dist.size return tpr, fpr, acc def calculate_val(thresholds, distances, labels, far_target=1e-3, nrof_folds=10): nrof_pairs = min(len(labels), len(distances)) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) indices =
np.arange(nrof_pairs)
numpy.arange
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Model an instrument response for spectroscopic simulations. An instrument model is usually initialized from a configuration used to create a simulator and then accessible via its ``instrument`` attribute, for example: >>> import specsim.simulator >>> simulator = specsim.simulator.Simulator('test') # doctest: +IGNORE_OUTPUT >>> print(np.round(simulator.instrument.fiber_diameter, 1)) 107.0 um See :doc:`/api` for examples of changing model parameters defined in the configuration. No attributes can be changed after a simulator has been created. File a github issue if you would like to change this. An :class:`Instrument` includes one or more :class:`Cameras <specsim.camera.Camera>`. """ from __future__ import print_function, division import numpy as np import os.path import scipy.interpolate import scipy.integrate import astropy.constants import astropy.units as u import specsim.camera import specsim.fastfiberacceptance import specsim.config class Instrument(object): """Model the instrument response of a fiber spectrograph. A spectrograph can have multiple :mod:`cameras <specsim.camera>` with different wavelength coverages. Objects representing each camera are contained in a list accessible from our ``cameras`` attribute, which will be in order of increasing effective wavelength. No instrument attributes can be changed after an instrument has been created. Create a github issue if you would like to change this. Parameters ---------- name : str Descriptive name of this instrument. wavelength : astropy.units.Quantity Array of wavelength bin centers where the instrument response is calculated, with units. fiberloss_method : str Must be "table" or "galsim" or "fastsim". Specifies how fiber acceptance fractions will be loaded or calculated. fiber_acceptance_dict : dict or None Dictionary of fiber acceptance fractions tabulated for different source models, with keys corresponding to source model names. Ignored when fiberloss_method is "galsim". fast_fiber_acceptance : specsim.fastfiberacceptance.FastFiberAcceptance or None Initialized instance to use when fiberloss_method is "fastsim". Ignored for other values of fiberloss_method. fiberloss_num_wlen : int Number of wavelengths where the fiberloss fraction should be tabulated for interpolation. Ignored when fiberloss_method is not "galsim". fiberloss_num_pixels : int Number of pixels used to subdivide the fiber diameter for numerical convolution and integration calculations. Ignored when fiberloss_method is not "galsim". blur_function : callable Function of field angle and wavelength that returns the corresponding RMS blur in length units (e.g., microns). offset_function : callable Function of focal-plane position (x,y) in angular units and wavelength that returns the corresponding radial centroid offset in length units (e.g., microns). cameras : list List of :class:`specsim.camera.Camera` instances representing the camera(s) of this instrument. primary_mirror_diameter : astropy.units.Quantity Diameter of the primary mirror, with units. obscuration_diameter : astropy.units.Quantity Diameter of a central obscuration of the primary mirror, with units. support_width : astropy.units.Quantity Width of the obscuring supports, with units. fiber_diameter : astropy.units.Quantity Physical diameter of the simulated fibers, with units of length. Converted to an on-sky diameter using the plate scale. field_radius : astropy.units.Quantity Maximum radius of the field of view in length units measured at the focal plane. Converted to an angular field of view using the plate scale. radial_scale : callable Callable function that returns the plate scale in the radial (meridional) direction (with appropriate units) as a function of focal-plane distance (with length units) from the boresight. azimuthal_scale : callable Callable function that returns the plate scale in the azimuthal (sagittal) direction (with appropriate units) as a function of focal-plane distance (with length units) from the boresight. """ def __init__(self, name, wavelength, fiberloss_method, fiber_acceptance_dict, fast_fiber_acceptance, fiberloss_num_wlen, fiberloss_num_pixels, blur_function, offset_function, cameras, primary_mirror_diameter, obscuration_diameter, support_width, fiber_diameter, field_radius, radial_scale, azimuthal_scale): self.name = name self._wavelength = wavelength self.fiber_acceptance_dict = fiber_acceptance_dict self.fast_fiber_acceptance = fast_fiber_acceptance # Both fiber_acceptance_dict and fast_fiber_acceptance must be initialized # before assigning to fiberloss_method (since its setter checks their values). self.fiberloss_method = fiberloss_method self.fiberloss_num_wlen = fiberloss_num_wlen self.fiberloss_num_pixels = fiberloss_num_pixels self._blur_function = blur_function self._offset_function = offset_function self.cameras = cameras self.primary_mirror_diameter = primary_mirror_diameter self.obscuration_diameter = obscuration_diameter self.support_width = support_width self.fiber_diameter = fiber_diameter self.field_radius = field_radius self.radial_scale = radial_scale self.azimuthal_scale = azimuthal_scale # Calculate the effective area of the primary mirror. D = self.primary_mirror_diameter obs = self.obscuration_diameter support_area = 0.5*(D - obs) * self.support_width self.effective_area = ( np.pi * ((0.5 * D) ** 2 - (0.5 * obs) ** 2) - 4 * support_area) # Tabulate the mapping between focal plane radius and boresight # opening angle by integrating the radial plate scale. # Use mm and radians as the canonical units. self._radius_unit, self._angle_unit = u.mm, u.rad radius = np.linspace( 0., self.field_radius.to(self._radius_unit).value, 1000) dradius_dangle = self.radial_scale(radius * self._radius_unit).to( self._radius_unit / self._angle_unit).value angle = scipy.integrate.cumtrapz( 1. / dradius_dangle, radius, initial=0.) # Record the maximum field angle corresponding to our field radius. self.field_angle = angle[-1] * self._angle_unit # Build dimensionless linear interpolating functions of the # radius <-> angle map using the canonical units. self._radius_to_angle = scipy.interpolate.interp1d( radius, angle, kind='linear', copy=True, bounds_error=True) self._angle_to_radius = scipy.interpolate.interp1d( angle, radius, kind='linear', copy=True, bounds_error=True) # Calculate the energy per photon at each wavelength. hc = astropy.constants.h * astropy.constants.c energy_per_photon = (hc / self._wavelength).to(u.erg) # Calculate the rate of photons incident on the focal plane per # wavelength bin per unit spectral flux density. The fiber acceptance # fraction is not included in this calculation. wavelength_bin_size = np.gradient(self._wavelength) self.photons_per_bin = ( self.effective_area * wavelength_bin_size / energy_per_photon ).to((u.cm**2 * u.Angstrom) / u.erg) wave_mid = [] for i, camera in enumerate(self.cameras): wave_min, wave_max = camera.wavelength_min, camera.wavelength_max wave_mid.append(0.5 * (wave_min + wave_max)) if i == 0: self.wavelength_min = wave_min self.wavelength_max = wave_max else: self.wavelength_min = min(self.wavelength_min, wave_min) self.wavelength_max = max(self.wavelength_max, wave_max) # Sort cameras in order of increasing wavelength. self.cameras = [x for (y, x) in sorted(zip(wave_mid, self.cameras))] @property def fiberloss_method(self): """The current method used to calculate fiber acceptance fractions. """ return self._fiberloss_method @fiberloss_method.setter def fiberloss_method(self, fiberloss_method): """Set the method used to calculate fiber acceptance fractions. Must be one of "table" or "galsim" or "fastsim". """ if fiberloss_method not in ('table', 'galsim', 'fastsim' ): raise ValueError( 'fiberloss_method must be "table" or "galsim" or "fastsim".') if fiberloss_method == 'table' and self.fiber_acceptance_dict is None: raise ValueError('Missing required instrument.fiberloss.table.') if fiberloss_method == 'fastsim' and self.fast_fiber_acceptance is None: raise ValueError( 'Missing required instrument.fiberloss.fast_fiber_acceptance_path.') if fiberloss_method == 'galsim': try: import galsim except ImportError: raise ValueError('The galsim package is not installed.') self._fiberloss_method = fiberloss_method def field_radius_to_angle(self, radius): """Convert focal plane radius to an angle relative to the boresight. The mapping is derived from the radial (meridional) plate scale function :math:`dr/d\\theta(r)` via the integral: .. math:: \\theta(r) = \\int_0^{r} \\frac{dr}{dr/d\\theta(r')}\\, dr' The input values must be within the field of view. Use :meth:`field_angle_to_radius` for the inverse transform. Parameters ---------- radius : astropy.units.Quantity One or more radius values where the angle should be calculated. Values must be between 0 and ``field radius``. Returns ------- astropy.units.Quantity Opening angle(s) relative to the boresight corresponding to the input radius value(s). Raises ------ ValueError One or more input values are outside the allowed range. """ return self._radius_to_angle( radius.to(self._radius_unit)) * self._angle_unit def field_angle_to_radius(self, angle): """Convert focal plane radius to an angle relative to the boresight. The mapping :math:`r(\\theta)` is calculated by numerically inverting the function :math:`\\theta(r)`. The input values must be within the field of view. Use :meth:`field_radius_to_angle` for the inverse transform. Parameters ---------- angle : astropy.units.Quantity One or more angle values where the radius should be calculated. Values must be between 0 and ``field_angle``. Returns ------- astropy.units.Quantity Radial coordinate(s) in the focal plane corresponding to the input angle value(s). Raises ------ ValueError One or more input values are outside the allowed range. """ return self._angle_to_radius( angle.to(self._angle_unit)) * self._radius_unit def get_blur_rms(self, wavelength, angle): """Get the instrument PSF blur at the specified field angle. Parameters ---------- wavelength : astropy.units.Quantity Wavelength where the blur should be calculated. angle : astropy.units.Quantity Angular separation from the field center. Returns ------- astropy.units.Quantity RMS blur of the instrument at this wavelength and field radius in length units. """ return self._blur_function(angle, wavelength) def get_centroid_offset(self, angle_x, angle_y, wavelength): """Get the instrument centroid offset at the specified field angles. This method does not make any assumptions about how the x and y axes are defined, as long as (0, 0) is the field center. Note that the focal-plane position is input as angles relative to the field center, while the offsets are returned as lengths relative to the nominal fiber center. Parameters ---------- angle_x : astropy.units.Quantity Angular separation from the field center along x. angle_y : astropy.units.Quantity Angular separation from the field center along y. wavelength : astropy.units.Quantity Wavelength where the blur should be calculated. Returns ------- tuple Tuple (dx, dy) of astropy quantities giving the spot centroid offset components at this wavelength and position in the focal plane. Offsets are given in length units, e.g., microns. """ return self._offset_function(angle_x, angle_y, wavelength) def get_focal_plane_optics(self, focal_x, focal_y, wlen_grid): """Calculate the optical parameters at a set of focal-plane positions. Uses :meth:`get_centroid_offset`, :meth:`get_blur_rms`, and :meth:`field_radius_to_angle` to calculate the optics at each focal plane location. This method does not make any assumptions about how the x and y axes are defined, as long as (0, 0) is the field center. However radial symmetry is broken by the (dx, dy) offsets calculated by :meth:`get_centroid_offset`. Note that units are required for the input arrays and included with the returned arrays. Parameters ---------- focal_x : :class:`astropy.units.Quantity` 1D array of X coordinates in the focal plane relative to the boresight, with length units. focal_y : :class:`astropy.units.Quantity` 1D array of Y coordinates in the focal plane relative to the boresight, with length units. wlen_grid : :class:`astropy.units.Quantity` 1D array of wavelengths where parameters should be tabulated, with length units. Returns ------- tuple Tuple of arrays scale, blur, offset with shapes (N,2), (N,M) and (N,M,2) where N is the size of the 1D input (x,y) arrays, M is the size of the input wavelength grid, and axes of length 2 correspond to radial and azimuthal axes (not the input x,y!). All output arrays have units. """ # Check for valid units on the input arrays. try: focal_x_mm = focal_x.to(u.mm).value focal_y_mm = focal_y.to(u.mm).value wlen_grid_ang = wlen_grid.to(u.Angstrom).value except astropy.units.UnitConversionError: raise ValueError('Input arrays have invalid units.') except AttributeError: raise ValueError('Input arrays are missing required units.') # Check for expected input array shapes. if len(focal_x_mm.shape) != 1 or len(wlen_grid_ang.shape) != 1: raise ValueError('Input arrays must be 1D.') if focal_x_mm.shape != focal_y_mm.shape: raise ValueError('Input (x,y) arrays have different shapes.') # Allocate output arrays. n_xy = len(focal_x_mm) n_wlen = len(wlen_grid_ang) scale = np.empty((n_xy, 2)) blur = np.empty((n_xy, n_wlen)) offset = np.empty((n_xy, n_wlen, 2)) # Convert x, y offsets in length units to field angles. focal_r = np.sqrt(focal_x**2+focal_y**2) angle_r = self.field_radius_to_angle(focal_r) angle_x = np.zeros(focal_x.shape) * angle_r.unit angle_y = np.zeros(focal_y.shape) * angle_r.unit positive_radius = focal_r>0 angle_x[positive_radius] = ( angle_r[positive_radius] / focal_r[positive_radius] ) * focal_x[positive_radius] angle_y[positive_radius] = ( angle_r[positive_radius] / focal_r[positive_radius] ) * focal_y[positive_radius] # Calculate the radial and azimuthal plate scales at each location. scale[:, 0] = self.radial_scale(focal_r).to(u.um / u.arcsec).value scale[:, 1] = self.azimuthal_scale(focal_r).to(u.um / u.arcsec).value # Calculate the transformations between polar and Cartesian coordinates. phi =
np.arctan2(focal_y_mm, focal_x_mm)
numpy.arctan2
# This Python file uses the following encoding: utf-8 # The upper line is needed for one comment in this module. """ Calculate performance measures from classification results and store them All performance sink nodes interface to the :mod:`~pySPACE.resources.dataset_defs.metric` datasets, where the final metric values . are calculated. These results can be put together using the :class:`~pySPACE.resources.dataset_defs.performance_result.PerformanceResultSummary`. """ import os import copy import warnings import cPickle import numpy import timeit from pySPACE.missions.nodes.base_node import BaseNode from pySPACE.tools.filesystem import create_directory from pySPACE.resources.dataset_defs.metric import metricdict, \ BinaryClassificationDataset, \ MultinomialClassificationDataset,\ RegressionDataset import logging class PerformanceSinkNode(BaseNode): """ Calculate performance measures from standard prediction vectors and store them It takes all classification vectors that are passed on to it from a continuous classifier, calculates the performance measures and stores them. The results can be later on collected and merged into one tabular with the :class:`~pySPACE.missions.operations.node_chain.NodeChainOperation`. This one can be read manually or it can be visualized with a gui. .. note:: FeatureVectorSinkNode was the initial model of this node. **Parameters** :evaluation_type: Define type of incoming results to be processed. Currently ``binary`` (:class:`~pySPACE.resources.dataset_defs.metric.BinaryClassificationDataset`) and ``multinomial`` (:class:`~pySPACE.resources.dataset_defs.metric.MultinomialClassificationDataset`) classification (also denoted as ``multiclass'' classification) and ``regression`` (even for n-dimensional output) (:class:`~pySPACE.resources.dataset_defs.metric.RegressionDataset`) metrics can be calculated. For the multinomial and regression case several parameters are not yet important. These are: * ir_class * save_roc_points * calc_AUC * calc_soft_metrics * calc_loss * sum_up_splits .. warning:: Multinomial classification and regression have not yet been used often enough with pySPACE and require additional testing. (*optional, default: "binary"*) :ir_class: The class name (as string) for which IR statistics are to be output. (*recommended, default: 'Target'*) :sec_class: For binary classification the second class (not the *ir_class*) can be specified. Normally it is detected by default and not required, except for one_vs_REST scenarios, where it can not be determined. (*optional, default: None*) :save_individual_classifications: If True, for every processed split a pickle file will be generated that contains the numerical classification result (cresult) for every individual window along with the estimated class label (c_est), the true class label (c_true) and the number of features used (nr_feat). The result is a list whose elements correspond to a single window and have the following shape: :: [ [c_est, cresult, nr_feat], c_true ] (*optional, default: False*) :save_roc_points: If True, for every processed split a pickle file will be generated that contains a list of tuples (=points) increasing by FP rate, that can be used to plot a Receiver Operator Curve (ROC) and a list, that contains the actually used point in the ROC space together with (0|0) and (1|1). The result has the following shape: :: ( [(fp_rate_1,tp_rate_1), ... ,(fp_rate_n,tp_rate_n)], [(0.0,0.0), (fp_rate, tp_rate), (1.0,1.0)]) For comparing ROC curves, you can use the analysis GUI (*performance_results_analysis.py*). (*optional, default: False*) :weight: weight is the weight for the weighted accuracy. For many scenarios a relevant performance measure is a combination of True-Positive-Rate (TPR) and True-Negative-Rate (TNR), where one of the two might be of higher importance than the other, and thus gets a higher weight. Essentially, the weighted accuracy is calculated by .. math:: \\text{Weighted\_accuracy} = weight \\cdot TPR + (1 - weight) \\cdot TNR If this parameter is not set, the value equals the balanced accuracy. In the case of `multinomial` classification, this parameter has to be a dictionary. (*optional, default: 0.5*) :measure_times: measure the average and maximum time that is needed for the processing of the data between the last sink node in the node chain and this node. (*optional, default: True*) :calc_soft_metrics: integrate uncertainty of classifier into metric prediction value is projected to interval [-1,1] (*optional, default: False*) :calc_train: Switch for calculating metrics on the training data (*optional, default: True*) :calc_AUC: Calculate the AUC metric (*optional, default: True*) :calc_loss: Integrates the calculated losses into the final csv-file. (L1, L2), (LDA, SVM, RMM), (restricted, unrestricted) and (equal weighted, *balanced*) losses are calculated in all combinations, resulting in 24 entries. (*optional, default: True*) :loss_restriction: Maximum value of the single loss values. Everything above is reduced to the maximum. (*optional, default: 2*) :sum_up_splits: If you use a CV-Splitter in your node chain, the performance sink adds up the basic metrics and calculates confusion matrix metrics with these values. The other metrics are averaged. So a lot of more testing examples are relevant for the calculation. (*optional, default: False*) :dataset_pattern: If the __Dataset__ is of the form "X_Y_Z", then this pattern can be specified with this parameter. The different values X, Y, Z will then appear in corresponding columns in the results.csv. Example: If the datasets are of the form "NJ89_20111128_3", and one passes the dataset_pattern "subject_date_setNr", then the results.csv will have the columns __Subject__, __Date__ and __SetNr__ with the corresponding values parsed (note the added underscores and capitalized first letter). (*optional, default: None*) :decision_boundary: If your decision boundary is not at zero you should specify this for the calculation of metrics depending on the prediction values. Probabilistic classifiers often have a boundary at 0.5. (*optional, default: 0.0*) :save_trace: Generates a table which contains a confusion matrix over time/samples. There are two types of traces: short traces and long traces. The short traces contain only the information, if a classification was a TP, FN, FP or TN. The long traces furthermore contain loss values and are saved as a dictionary. To save only short traces (for, e.g. performance reasons), set save_trace to ``short``. To save long and short traces, set save_trace to True. The encoding in trace is: :TP: 0 :FN: 1 :FP: 2 :TN: 3 (*optional, default: False*) **Exemplary Call** .. code-block:: yaml - node : Classification_Performance_Sink parameters : ir_class : "Target" weight : 0.5 :input: PredictionVector :output: ClassificationDataset :Author: <NAME> (<EMAIL>) :Created: 2012/08/02 """ input_types = ["PredictionVector"] def __init__(self, classes_names=[], ir_class="Target", sec_class=None, save_individual_classifications=False, save_roc_points=False, weight=0.5, measure_times=True, calc_soft_metrics=False, sum_up_splits=False, dataset_pattern=None, calc_AUC=True, calc_loss=True, calc_train=True, save_trace=False, decision_boundary=None, loss_restriction=2, evaluation_type="binary", **kwargs): super(PerformanceSinkNode, self).__init__(**kwargs) if save_roc_points: calc_AUC = True if evaluation_type in ["multinomial", "multiclass"]: evaluation_type = "multinomial" save_trace = False save_roc_points = False calc_AUC = False calc_loss = False calc_soft_metrics = False sum_up_splits = False cc = MultinomialClassificationDataset(dataset_pattern= dataset_pattern) elif evaluation_type == "binary": cc = BinaryClassificationDataset(dataset_pattern=dataset_pattern) elif evaluation_type == "regression": save_trace = False save_roc_points = False calc_AUC = False calc_loss = False calc_soft_metrics = False sum_up_splits = False cc = RegressionDataset(dataset_pattern=dataset_pattern) store = \ save_individual_classifications or \ save_roc_points or \ self.store or \ save_trace self.set_permanent_attributes( ir_class=ir_class.strip(), classification_dataset=cc, classes_names=classes_names, # determined later on for checks in binary classification sec_class=sec_class, weight=weight, save_individual_classifications=save_individual_classifications, save_roc_points=save_roc_points, measure_times=measure_times, calc_soft_metrics=calc_soft_metrics, example=None, sum_up_splits=sum_up_splits, calc_AUC=calc_AUC, calc_loss=calc_loss, decision_boundary=decision_boundary, loss_restriction=loss_restriction, calc_train=calc_train, save_trace=save_trace, store=store, evaluation_type=evaluation_type, invert_classification=False) def reset(self): """ classification_dataset has to be kept over all splits """ # We have to create a temporary reference since we remove # the self.permanent_state reference in the next step by overwriting # self.__dict__ tmp = self.permanent_state # reset should not delete classification dataset # if you want to delete the dataset just do it explicitly. tmp["classification_dataset"] = self.classification_dataset self.__dict__ = copy.copy(tmp) self.permanent_state = tmp def is_trainable(self): """ Return whether this node is trainable. .. todo:: Check if return should be False and edit documentation """ # Though this node is not really trainable, it returns true in order # to request the training data from previous notes. return True def is_supervised(self): """ Return whether this node requires supervised training. """ return True def _train(self, data, label): # We do nothing pass def process_current_split(self): """ Main processing part on test and training data of current split Performance metrics are calculated for training and test data separately. Metrics on training data help to detect errors in classifier construction and to compare in how far it behaves the same way as on testing data. The function only collects the data, measures execution times and calls functions to update confusion matrices. """ ################ ### TRAINING ### ################ self._log("Processing training data",level=logging.INFO) self.train_classification_outcome = [] self.training_time = 0 if self.measure_times: start_time_stamp = timeit.default_timer() for classification_vector, label in self.input_node.request_data_for_training(False): if self.calc_train: self.set_helper_parameters(classification_vector,label) self.train_classification_outcome.append((classification_vector, label)) if self.measure_times: stop_time_stamp = timeit.default_timer() self.training_time = stop_time_stamp - start_time_stamp if self.calc_train and self.evaluation_type == "binary" and not self.train_classification_outcome==[]: if self.decision_boundary is None and self.train_classification_outcome[0][0].predictor.node_name in \ ["PlattsSigmoidFitNode", "LinearFitNode", "SigmoidTransformationNode"]: self.decision_boundary=0.5 elif self.decision_boundary is None: self.decision_boundary=0 train_result = BinaryClassificationDataset.calculate_metrics( classification_results=self.train_classification_outcome, calc_soft_metrics=self.calc_soft_metrics, invert_classification=self.invert_classification, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, time_periods=[], calc_AUC=self.calc_AUC,calc_loss=self.calc_loss, weight=self.weight,save_roc_points=self.save_roc_points, decision_boundary=self.decision_boundary) try: train_metrics, self.train_R = train_result except: train_metrics = train_result elif self.calc_train and self.evaluation_type == "multinomial": train_metrics = MultinomialClassificationDataset.calculate_metrics( classification_results=self.train_classification_outcome, weight=self.weight, classes=self.classes_names) elif self.calc_train and self.evaluation_type == "regression": train_metrics = RegressionDataset.calculate_metrics( regression_results=self.train_classification_outcome, weight=self.weight) elif not self.train_classification_outcome: train_metrics = metricdict() ############### ### TESTING ### ############### self._log("Processing testing data",level=logging.INFO) # for saving the actual numerical classification results self.classification_outcome = [] # class\guess ir sec # ir_class: TP FN # sec_class: FP TN # initialization to measure execution speed self.time_periods = [] if self.measure_times: self.time_periods = [] start_time_stamp = timeit.default_timer() self.example = None for classification_vector, label in \ self.input_node.request_data_for_testing(): if self.measure_times: stop_time_stamp = timeit.default_timer() self.time_periods.append(stop_time_stamp - start_time_stamp) self.set_helper_parameters(classification_vector,label) self.classification_outcome.append((classification_vector, label)) # re-initialization of time before next item is requested if self.measure_times: start_time_stamp = timeit.default_timer() if self.decision_boundary is None and \ len(self.classification_outcome) > 0 and \ self.classification_outcome[0][0].predictor.node_name in \ ["PlattsSigmoidFitNode", "LinearFitNode", "SigmoidTransformationNode"]: self.decision_boundary=0.5 elif self.decision_boundary is None: self.decision_boundary=0 if self.evaluation_type == "binary": result = BinaryClassificationDataset.calculate_metrics( classification_results=self.classification_outcome, calc_soft_metrics=self.calc_soft_metrics, invert_classification=self.invert_classification, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, time_periods=self.time_periods, calc_AUC=self.calc_AUC,calc_loss=self.calc_loss, weight=self.weight,save_roc_points=self.save_roc_points, decision_boundary=self.decision_boundary) try: metrics, self.R = result except: metrics = result elif self.evaluation_type=="multinomial": metrics = MultinomialClassificationDataset.calculate_metrics( classification_results=self.classification_outcome, weight=self.weight) elif self.evaluation_type=="regression": metrics = RegressionDataset.calculate_metrics( regression_results=self.classification_outcome, weight=self.weight) # add the training time if training was done if self.measure_times: metrics["Training_time"] = self.training_time try: classifier_information = self.classification_outcome[0][0].\ predictor.classifier_information except: classifier_information=dict() # add the training metrics if self.calc_train: skip_keys = classifier_information.keys() for key,value in train_metrics.items(): if not key in skip_keys: metrics["train_"+key] = value self.classification_dataset.add_split(metrics, train=False, split=self.current_split, run=self.run_number) if self.save_trace: self.trace, self.long_trace=self.calculate_classification_trace( classification_results=self.classification_outcome, calc_soft_metrics=self.calc_soft_metrics, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, calc_loss=self.calc_loss, decision_boundary=self.decision_boundary, save_trace=self.save_trace) self._log("Metrics added to dataset",level=logging.INFO) def set_helper_parameters(self, classification_vector, label): """ Fetch some node parameters from the classification vector """ # get an example for a classification vector for further analysis if self.example is None: self.example = classification_vector if not self.evaluation_type == "binary": return try: self.decision_boundary = \ classification_vector.predictor.classifier_information["decision_boundary"] except: pass if self.decision_boundary is None and classification_vector.predictor.node_name in \ ["PlattsSigmoidFitNode", "LinearFitNode", "SigmoidTransformationNode"]: self.decision_boundary = 0.5 elif self.decision_boundary is None: self.decision_boundary = 0 if (self.example.prediction > self.decision_boundary and self.example.label == self.ir_class) or \ (self.example.prediction <= self.decision_boundary and not self.example.label == self.ir_class): self.invert_classification = False elif self.evaluation_type == "binary": self.invert_classification = True warnings.warn( "Your ir_class did not get the higher value " + "from the classifier.\n " + "Label %s, got value %f.\n" % (self.example.label, self.example.prediction) + "You should adjust that and " + "maybe switch the given class_labels or add " + "preserve_score: False to the " + "Threshold_Optimization node! " + "Furthermore you should check the parameter" + ": decision_boundary!") if self.evaluation_type == "binary": if self.sec_class is None: p_label = classification_vector.label.strip() if self.sec_class is None and not (p_label == self.ir_class): self.sec_class = p_label @classmethod def calculate_classification_trace(cls,classification_results, calc_soft_metrics=False, ir_class="Target", sec_class=None, loss_restriction=2.0, calc_loss=False, decision_boundary=0.0, save_trace=True): """ Calculate the classification trace, i.e. TN,TP,FN,FP for every sample The trace entries are encoded for size reasons as short (trace) or in a comprehensive version as dicts (long_trace) The encoding in trace is: :TP: 0 :FN: 1 :FP: 2 :TN: 3 :Author: <NAME> (<EMAIL>), <NAME> (<EMAIL>) :Returns: trace, long_trace """ trace = [] long_trace = [] for prediction_vector,label in classification_results: if sec_class is None and not label == ir_class: sec_class = label confusion_matrix = metricdict(float) BinaryClassificationDataset.update_confusion_matrix(prediction_vector, label,calc_soft_metrics=calc_soft_metrics, ir_class=ir_class, sec_class=sec_class, confusion_matrix=confusion_matrix, decision_boundary=decision_boundary) # if calc_loss and not save_trace == "short": BinaryClassificationDataset.update_loss_values(classification_vector=prediction_vector, label=label, ir_class=ir_class, sec_class=sec_class, loss_dict=confusion_matrix, loss_restriction=loss_restriction) if not save_trace == "short": long_trace.append(confusion_matrix) if confusion_matrix["True_positives"] == 1: trace.append(0) elif confusion_matrix["False_negatives"] == 1: trace.append(1) elif confusion_matrix["False_positives"] == 1: trace.append(2) elif confusion_matrix["True_negatives"] == 1: trace.append(3) else: raise ValueError("At least one element in the confusion matrix should be 1") return trace, long_trace def get_result_dataset(self): """ Return the result dataset """ if not self.sum_up_splits: return self.classification_dataset else: self.classification_dataset.merge_splits() return self.classification_dataset def store_state(self, result_dir, index=None): """ Stores additional information (classification_outcome, roc_points) in the *result_dir* """ if self.store: node_dir = os.path.join(result_dir, self.__class__.__name__) create_directory(node_dir) if self.save_individual_classifications: name = 'classification_outcome_sp%s.pickle' % self.current_split result_file = open(os.path.join(node_dir, name), "wb") # predictor is a reference to the actual classification node # object. This can not be pickled! Therefore, replace the # predictor attribute by the classification node's node_specs for single_classification in self.classification_outcome: single_classification[0].predictor = \ single_classification[0].predictor.node_specs result_file.write(cPickle.dumps(self.classification_outcome, protocol=2)) result_file.close() if self.save_roc_points: name = 'roc_points_sp%s.pickle' % self.current_split result_file = open(os.path.join(node_dir, name), "wb") result_file.write(cPickle.dumps(self.R, protocol=2)) result_file.close() if self.save_trace: name = 'trace_sp%s.pickle' % self.current_split result_file = open(os.path.join(node_dir, name), "wb") result_file.write(cPickle.dumps(self.trace, protocol=2)) result_file.close() if len(self.long_trace) > 0: name = 'long_trace_sp%s.pickle' % self.current_split result_file = open(os.path.join(node_dir, name), "wb") result_file.write(cPickle.dumps(self.long_trace, protocol=2)) result_file.close() class LeaveOneOutSinkNode(PerformanceSinkNode): """ Request the leave one out metrics from the input node **Parameters** see: :class:`PerformanceSinkNode` **Exemplary Call** .. code-block:: yaml - node : LOO_Sink parameters : ir_class : "Target" """ def process_current_split(self): """ Get training results and input node metrics """ ### TRAINING ### # code copy till main part self.train_classification_outcome = [] if self.measure_times: start_time_stamp = timeit.default_timer() for classification_vector, label in \ self.input_node.request_data_for_training(False): if self.calc_train: self.set_helper_parameters(classification_vector,label) self.train_classification_outcome.append((classification_vector, label)) if self.measure_times: stop_time_stamp = timeit.default_timer() self.training_time = stop_time_stamp - start_time_stamp if self.calc_train: train_result = BinaryClassificationDataset.calculate_metrics( classification_results=self.train_classification_outcome, calc_soft_metrics=self.calc_soft_metrics, invert_classification=self.invert_classification, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, time_periods=[], calc_AUC=self.calc_AUC, calc_loss=self.calc_loss, weight=self.weight, save_roc_points=self.save_roc_points, decision_boundary=self.decision_boundary) try: train_metrics,self.train_R = train_result except: train_metrics = train_result ######################### Main Part ######################### try: metrics = copy.deepcopy(self.train_classification_outcome[0][0].predictor.loo_metrics) except AttributeError: warnings.warn("Input node does not provide LOO metrics.") metrics = metricdict(float) ############################################################# # add the training time #Code copy from here if self.measure_times: metrics["Training_time"] = self.training_time # add the training metrics if self.calc_train: try: classifier_information = \ self.train_classification_outcome[0][0].predictor.\ classifier_information except: classifier_information=dict() skip_keys=classifier_information.keys() for key,value in train_metrics.items(): if not key in skip_keys: metrics["train_"+key] = value self.classification_dataset.add_split(metrics, train=False, split=self.current_split, run=self.run_number) class SlidingWindowSinkNode(PerformanceSinkNode): """ Calculate and store performance measures from classifications of sliding windows This node inherits most of its functionality from *PerformanceSinkNode*. Thus, for parameter description of super class parameters see documentation of *PerformanceSinkNode*. Additionally the following functionality is provided: 1) The definition of uncertain areas, which are excluded in the metrics calculation process, are possible. This is useful for sliding window classification, i.e. if the true label is not known in each sliding step. 2) It is possible to label the test data only now. For that an epoch signal (e.g. a movement marker window) must be specified. 3) Instead of excluding sliding windows from classifier evaluation, the 'true' label function shape (a step function, which is zero for the negative class and one for the positive class) can be somehow fit in the uncertain range. At the moment there is only one way for doing this: * from_right_count_negatives: Find the point where prediction of the negative class starts by searching backwards in time. There can be specified how many 'outliers' are ignored, i.e. how stable the prediction has to be. **Parameters** :uncertain_area: A list of tuples of the lower and the upper time value (in ms) for which no metrics calculation is done. The values should be given with respect to the last window of an epoch, i.e. sliding window series (which has time value zero). If additionally *determine_labels* is specified then the first tuple of *uncertain_area* describes the bounds in which the label-change-point is determined. The lower bound should be the earliest time point when the detection makes sense; the upper bound should be the earliest time point when there MUST BE a member of the positive class. (*optional, default: None*) :sliding_step: The time (in ms) between two consecutive windows. (*optional, default: 50*) :determine_labels: If specified the label-change-point (index where the class label changes from negative to positive class) is determined for every epoch. This is done via counting the occurrence of negative classified sliding windows from the index point where the positive class is sure (uncertain_area[1]) to the index point where the negative class is sure (uncertain_area[0]) If *determine_labels* instances were found in consecutively windows the label-change-point is has been reached. If *determine_labels* > 1, the methods accounts for outliers. .. note:: Using this option makes it hard to figure out to which true class errors pertain (since it is somehow arbitrary). You should be careful which metric you analyze for performance evaluation (different class instance costs can't be modeled). :epoch_signal: The class name (label) of the event that marks the end of an epoch, e.g. the movement. This can be used when null_marker windows (of an unknown class) and a signal window which marks the event were cut out. With respect to this event the former windows will be relabeled according to *classes_names*. (*optional, default: None*) :epoch_eval: If True, evaluation is done per epoch, i.e. per movement. Performance metrics are averaged across epochs for every split. This option might be necessary if the epochs have variable length, i.e. the class distribution alters in every epoch. (*optional, default: False*) :save_score_plot: If True a plot is stored which shows the average prediction value against the time point of classification. (*optional, default: False*) :save_trial_plot: If True a plot is stored which shows developing of the prediction scores for each single trial. (*optional, default: False*) :save_time_plot: If True a plot is stored which shows the predicted labels for all trials across time. (*optional, default: False*) :sort: If True the data has to be sorted according to the time (encoded in the tag attribute. Be aware that this only makes sense for data sets with unique time tags. (*optional, default: False*) :unused_win_defs: List of window definition names which shall not be used for evaluation. (*optional, default: []*) **Exemplary Call** .. code-block:: yaml - node : Sliding_Window_Performance_Sink parameters : ir_class : "LRP" classes_names : ['NoLRP','LRP'] uncertain_area : ['(-600,-350)'] calc_soft_metrics : True save_score_plot : True :input: PredictionVector :output: ClassificationCollection :Author: <NAME> (<EMAIL>) :Created: 2011/01/23 """ def __init__(self, uncertain_area=None, sliding_step=50, save_score_plot=False, save_trial_plot=False, save_time_plot=False, determine_labels=None, epoch_eval=False, epoch_signal=None, sort=False, unused_win_defs=[], **kwargs): if epoch_eval: kwargs["save_roc_points"] = False kwargs["calc_AUC"] = False super(SlidingWindowSinkNode,self).__init__(**kwargs) self.set_permanent_attributes(uncertain_area=uncertain_area, sliding_step=sliding_step, determine_labels=determine_labels, epoch_signal=epoch_signal, epoch_eval=epoch_eval, save_score_plot=save_score_plot, save_trial_plot=save_trial_plot, save_time_plot=save_time_plot, sort=sort, unused_win_defs=unused_win_defs) if self.store == False: self.store = save_score_plot or save_trial_plot or save_time_plot def process_current_split(self): """ Compute for the current split of training and test data performance one sliding windows. """ ### TRAINING ### # Code from classificationSinkNode # self._log("Processing training data", level=logging.INFO) self.train_classification_outcome = [] self.training_time = 0 if self.measure_times: start_time_stamp = timeit.default_timer() for classification_vector, label in self.input_node.request_data_for_training(False): if classification_vector.specs["wdef_name"] in self.unused_win_defs: continue if self.calc_train: self.set_helper_parameters(classification_vector,label) self.train_classification_outcome.append((classification_vector, label)) if self.measure_times: stop_time_stamp = timeit.default_timer() self.training_time = stop_time_stamp - start_time_stamp # we assume that in the training case no sliding windows are used, i.e., # the windows have a known true label if self.calc_train and self.evaluation_type == "binary" and not self.train_classification_outcome==[]: if self.decision_boundary is None and \ self.train_classification_outcome[0][0].predictor.node_name in [ "PlattsSigmoidFitNode", "LinearFitNode", "SigmoidTransformationNode"]: self.decision_boundary = 0.5 elif self.decision_boundary is None: self.decision_boundary = 0 train_result = BinaryClassificationDataset.calculate_metrics( classification_results=self.train_classification_outcome, calc_soft_metrics=self.calc_soft_metrics, invert_classification=self.invert_classification, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, time_periods=[], calc_AUC=self.calc_AUC,calc_loss=self.calc_loss, weight=self.weight,save_roc_points=self.save_roc_points, decision_boundary=self.decision_boundary) try: train_metrics,self.train_R = train_result except: train_metrics = train_result elif self.calc_train and self.evaluation_type == "multinomial": train_metrics = MultinomialClassificationDataset.calculate_metrics( classification_results=self.train_classification_outcome, weight=self.weight) elif self.calc_train and self.evaluation_type == "regression": train_metrics = RegressionDataset.calculate_metrics( regression_results=self.train_classification_outcome, weight=self.weight) elif not self.train_classification_outcome: train_metrics = metricdict() # TESTING self._log("Processing testing data",level=logging.INFO) # for saving the actual numerical classification results self.classification_outcome = [] # class\guess ir sec # ir_class: TP FN # sec_class: FP TN # initialization to measure execution speed self.time_periods = [] if self.measure_times: start_time_stamp = timeit.default_timer() for classification_vector, label in \ self.input_node.request_data_for_testing(): if self.measure_times: stop_time_stamp = timeit.default_timer() self.time_periods.append(stop_time_stamp - start_time_stamp) # parse 'tag': 'Epoch Start: 395772ms; End: 396772ms; Class: Target' classification_vector.specs['start_time']= \ float(classification_vector.tag.split(';')[0].split(':')[1].strip('ms')) classification_vector.specs['end_time']= \ float(classification_vector.tag.split(';')[1].split(':')[1].strip('ms')) self.set_helper_parameters(classification_vector,label) self.classification_outcome.append((classification_vector,label)) if self.measure_times: start_time_stamp = timeit.default_timer() if self.sort: # sort classification vectors in time self.classification_outcome.sort(key=lambda tupel:tupel[0].specs['start_time']) if self.decision_boundary is None and len(self.classification_outcome) \ > 0 and self.classification_outcome[0][0].predictor.node_name \ in ["PlattsSigmoidFitNode", "LinearFitNode", "SigmoidTransformationNode"]: self.decision_boundary = 0.5 elif self.decision_boundary is None: self.decision_boundary = 0 self.data_time = dict() if self.epoch_signal is not None: marker = 0 self.data_time[marker] = [] # split according to signal for classification_vector, label in self.classification_outcome: if label == self.epoch_signal: marker += 1 self.data_time[marker] = [] else: self.data_time[marker].append((classification_vector, label)) del self.data_time[marker] else: # split windows according to the time last_window_end_time = 0.0 marker = -1 for classification_vector, label in self.classification_outcome: if classification_vector.specs['start_time'] > \ last_window_end_time or \ classification_vector.specs['end_time'] < \ last_window_end_time: marker += 1 self.data_time[marker] = [(classification_vector, label)] elif classification_vector.specs['end_time'] == \ last_window_end_time + self.sliding_step: self.data_time[marker].append((classification_vector, label)) elif "bis-2000" in classification_vector.specs['wdef_name']: marker += 1 self.data_time[marker] = [(classification_vector, label)] else: # TODO: overlapping epochs - what shall we do??? # may be store it with marker = -1 and handle it afterwards self._log("Error: Overlapping epochs in Sink detected!", level=logging.ERROR) #raise Exception("Overlapping epochs in Sink detected!") last_window_end_time = classification_vector.specs['end_time'] # delete uncertain classification outcomes or relabel data in # self.classification_outcome and calculate the confusion matrix self.classification_outcome = [] self.label_change_points = [] performance = None for k in self.data_time.keys(): if self.determine_labels: # calculate uncertain indices nr_sliding_windows = len(self.data_time[k]) if self.uncertain_area!=None: bound_indices = range(nr_sliding_windows - \ abs(self.uncertain_area[0][0])/self.sliding_step - 1, nr_sliding_windows-abs(self.uncertain_area[0][1])/ \ self.sliding_step) if len(self.uncertain_area)>1: uncertain_indices = [] for t in self.uncertain_area[1:]: uncertain_indices.extend(range(nr_sliding_windows - \ abs(t[0])/self.sliding_step - 1, nr_sliding_windows-abs(t[1])/ \ self.sliding_step)) else: uncertain_indices = [] else: # if not specified, assume unbound bound_indices = range(nr_sliding_windows) uncertain_indices = [] label_change_point = self.from_right_count_negatives( self.data_time[k], self.determine_labels, bound_indices) self.label_change_points.append(label_change_point) for index, (classification_vector, label) \ in enumerate(self.data_time[k]): if index not in uncertain_indices: if index < label_change_point: # assume neg class self.classification_outcome.append( (classification_vector, self.classes_names[0])) else: # assume that last elem in trial has correct label self.classification_outcome.append( (classification_vector, self.data_time[k][-1][1])) else: # calculate uncertain indices if self.uncertain_area!=None: nr_sliding_windows = len(self.data_time[0]) uncertain_indices = [] for t in self.uncertain_area: uncertain_indices.extend(range(nr_sliding_windows - \ abs(t[0])/self.sliding_step - 1, nr_sliding_windows-abs(t[1]) / self.sliding_step)) else: uncertain_indices = [] for index, (classification_vector, label) \ in enumerate(self.data_time[k]): if index not in uncertain_indices: if self.epoch_signal: if index < uncertain_indices[0]: # negative class new_label = self.classes_names[0] else: # assume last elem in trial has correct label new_label = self.data_time[k][-1][1] self.classification_outcome.append( (classification_vector, new_label)) if self.epoch_eval: result = self.get_result_metrics() if performance == None: performance = result else: # combine with old performance new_performance = result performance = self.combine_perf_dict(performance, new_performance, k+1) self.classification_outcome = [] if not self.epoch_eval: result = self.get_result_metrics() try: performance, self.R = result except: performance = result # add the training time if self.measure_times: performance["Training_time"] = self.training_time try: classifier_information = self.classification_outcome[0][0].\ predictor.classifier_information except: classifier_information = dict() # add the training metrics if self.calc_train: skip_keys = classifier_information.keys() for key, value in train_metrics.items(): if not key in skip_keys: performance["train_"+key] = value if self.determine_labels: performance["~~Avg_Label_Change_Index~~"] = \ numpy.mean(self.label_change_points) self.classification_dataset.add_split(performance, train=False, split=self.current_split, run=self.run_number) if self.save_trace: self.trace, self.long_trace=self.calculate_classification_trace( classification_results=self.classification_outcome, calc_soft_metrics=self.calc_soft_metrics, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, calc_loss=self.calc_loss, decision_boundary=self.decision_boundary, save_trace=self.save_trace) self._log("Metrics added to dataset",level=logging.INFO) def get_result_metrics(self): """ Calculate metrics based on evaluation type """ if self.evaluation_type == 'binary': result = BinaryClassificationDataset.calculate_metrics( classification_results=self.classification_outcome, calc_soft_metrics=self.calc_soft_metrics, invert_classification=self.invert_classification, ir_class=self.ir_class, sec_class=self.sec_class, loss_restriction=self.loss_restriction, time_periods=self.time_periods, weight=self.weight, calc_AUC=self.calc_AUC, calc_loss=self.calc_loss, save_roc_points=self.save_roc_points, decision_boundary=self.decision_boundary) elif self.evaluation_type == 'multinomial': result = MultinomialClassificationDataset.calculate_metrics( classification_results=self.classification_outcome, weight=self.weight) elif self.evaluation_type=="regression": result = RegressionDataset.calculate_metrics( regression_results=self.classification_outcome, weight=self.weight) return result def from_right_count_negatives(self, y, target_number, bounds): """Go through the bounded y (reverse) and find the index i, where target_number values have been consecutively the negative class. Return i+target_number as critical index point (labels change)""" countNegatives = 0 countTotal = 0 for index in range(len(y)-1,-1,-1): if index not in bounds: continue countTotal+=1 if y[index][0].label==self.classes_names[0]: countNegatives+=1 if countNegatives==target_number: if countTotal==target_number: return bounds[-1] else: return index+target_number else: countNegatives=0 return bounds[0]+countNegatives def combine_perf_dict(self, old_dict, new_dict, weight): """ Combine the values of the dicts by a weighting (iterative) average .. math:: \\frac{weight-1}{weight} \\cdot \\text{old\_dict} + \\frac{1}{weight} \\cdot \\text{new\_dict} """ return_dict = dict() for key in old_dict.keys(): try: return_dict[key] = (weight-1.0)/weight * old_dict[key] + \ 1.0/weight * new_dict[key] except TypeError: # for Strings (like parameters) # they should not be different among epochs if old_dict[key] == new_dict[key]: return_dict[key] = old_dict[key] return return_dict def store_state(self, result_dir, index=None): """ Stores additional information in the given directory *result_dir* """ if self.store: node_dir = os.path.join(result_dir, self.__class__.__name__) create_directory(node_dir) super(SlidingWindowSinkNode,self).store_state(result_dir) if self.save_score_plot or self.save_trial_plot or self.save_time_plot: import matplotlib.pyplot as plt data = [[pv.prediction for pv, _ in self.data_time[k]] for \ k in self.data_time.keys()] if self.save_time_plot: label_data = [numpy.array([(pv.label, float(pv.tag.split(';')[1].split(':')[1][:-2])) \ for pv, _ in self.data_time[k]]) \ for k in self.data_time.keys()] fig = plt.figure() ax1 = plt.subplot(111) ax1.yaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5) ax1.xaxis.grid(True, linestyle='-', which='major', color='grey', alpha=0.5) for trial in label_data: ind = numpy.arange(-1.0*(len(trial)-1)*self.sliding_step, 50, 50) x = [ind[i] for i, (label, start_time) in enumerate(trial) \ if label == self.ir_class] y = [start_time] * len(x) if x == []: plt.plot(ind[0],start_time,'ro') else: plt.plot(x, y,'bo') plt.xlabel("Time (ms)") plt.ylabel("Start time of trial (s)") name = 'trail-time_plot_sp%s.pdf' % self.current_split plt.savefig(os.path.join(node_dir,name),dpi=None,facecolor='w', edgecolor='w',orientation='portrait',papertype=None, format=None,transparent=False) plt.close(fig) if self.save_score_plot: max_time = max([len(trial) for trial in data]) data_across_time = [[] for time_step in range(max_time)] for trial in data: for i, elem in enumerate(trial[::-1]): data_across_time[i].append(elem) means = [numpy.mean(time_step) for time_step in data_across_time] stds = [numpy.std(time_step) for time_step in data_across_time] ind =
numpy.arange(-1.0*(max_time-1)*self.sliding_step, 50, 50)
numpy.arange
from swan import pycwt import numpy as np import matplotlib.pyplot as plt import wave #import struct from scipy import fromstring, int16 #from pylab import * #from scipy import signal wavfile = 'hirakegoma.wav' #wavfile = 'ohayo.wav' wr = wave.open(wavfile, "rb") ch = wr.getnchannels() width = wr.getsampwidth() fr = wr.getframerate() fn = wr.getnframes() fs = fn / fr print('ch', ch) print('frame', fn) print('fr',fr) print('sampling fs ', fs, 'sec') print('width', width) origin = wr.readframes(wr.getnframes()) data = origin[:fn] wr.close() amp = max(data) print(amp) print('len of origin', len(origin)) print('len of sampling: ', len(data)) # ステレオ前提 > monoral y =
np.frombuffer(data, dtype="int16")
numpy.frombuffer
# coding=utf-8 # Copyright 2021 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ..test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTFeatureExtractor class ImageGPTFeatureExtractionTester(unittest.TestCase): def __init__( self, parent, batch_size=7, num_channels=3, image_size=18, min_resolution=30, max_resolution=400, do_resize=True, size=18, do_normalize=True, ): self.parent = parent self.batch_size = batch_size self.num_channels = num_channels self.image_size = image_size self.min_resolution = min_resolution self.max_resolution = max_resolution self.do_resize = do_resize self.size = size self.do_normalize = do_normalize def prepare_feat_extract_dict(self): return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class ImageGPTFeatureExtractionTest(FeatureExtractionSavingTestMixin, unittest.TestCase): feature_extraction_class = ImageGPTFeatureExtractor if is_vision_available() else None def setUp(self): self.feature_extract_tester = ImageGPTFeatureExtractionTester(self) @property def feat_extract_dict(self): return self.feature_extract_tester.prepare_feat_extract_dict() def test_feat_extract_properties(self): feature_extractor = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(feature_extractor, "clusters")) self.assertTrue(hasattr(feature_extractor, "do_resize")) self.assertTrue(hasattr(feature_extractor, "size")) self.assertTrue(hasattr(feature_extractor, "do_normalize")) def test_feat_extract_to_json_string(self): feat_extract = self.feature_extraction_class(**self.feat_extract_dict) obj = json.loads(feat_extract.to_json_string()) for key, value in self.feat_extract_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(value, obj[key])) else: self.assertEqual(obj[key], value) def test_feat_extract_to_json_file(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: json_file_path = os.path.join(tmpdirname, "feat_extract.json") feat_extract_first.to_json_file(json_file_path) feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path).to_dict() feat_extract_first = feat_extract_first.to_dict() for key, value in feat_extract_first.items(): if key == "clusters": self.assertTrue(np.array_equal(value, feat_extract_second[key])) else: self.assertEqual(feat_extract_first[key], value) def test_feat_extract_from_and_save_pretrained(self): feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict) with tempfile.TemporaryDirectory() as tmpdirname: feat_extract_first.save_pretrained(tmpdirname) feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname).to_dict() feat_extract_first = feat_extract_first.to_dict() for key, value in feat_extract_first.items(): if key == "clusters": self.assertTrue(
np.array_equal(value, feat_extract_second[key])
numpy.array_equal
__copyright__ = "Copyright (c) Microsoft Corporation and Mila - Quebec AI Institute" __license__ = "MIT" """Noise distributions for locations in the sim. """ __all__ = ( "RandomMiddleLocation", "CenterLocation", "RandomEdgeLocation", "RandomUniformLocation", "RandomBottomLocation", "RandomRightLocation", "RandomTopLocation", "RandomTopRightLocation", "RandomBottomRightLocation", "RandomLeftLocation", "RandomBottomLeftLocation", "RandomTopLeftLocation", ) import random from typing import Tuple, Union import numpy as np from scipy.stats import uniform from segar.factors import Noise, Position def _get_boundaries(min_distance: float = 0.1) -> Tuple[float, float]: """Adds a margin to boundaries if distances are enforced. """ low, high = (-1.0, 1.0) if min_distance: low += min_distance / 2.0 high -= min_distance / 2.0 return low, high # These methods are for sampling from specific locations around the arena. class Position2D(Noise[np.ndarray]): def __init__(self, lows: np.ndarray, highs: np.ndarray): self.lows = lows self.highs = highs self._dists = [uniform(lows[0], highs[0]), uniform(lows[1], highs[1])] super().__init__(params=dict(lows=lows, highs=highs)) def cdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: cdfs = [dist.cdf(samples[i]) for i, dist in enumerate(self._dists)] return np.prod(cdfs, axis=1) def log_cdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: log_cdfs = [dist.logcdf(samples[i]) for i, dist in enumerate(self._dists)] return sum(log_cdfs) def pdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: pdfs = [dist.pdf(samples[i]) for i, dist in enumerate(self._dists)] return np.prod(pdfs, axis=1) def log_pdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: log_pdfs = [dist.logpdf(samples[i]) for i, dist in enumerate(self._dists)] return sum(log_pdfs) def sample(self) -> Position: return Position(np.random.uniform(self.lows, self.highs)) class RandomMiddleLocation(Position2D): def __init__(self): low, high = _get_boundaries() mid = (high + low) / 2.0 mid1 = (mid + low) / 2.0 mid2 = (high + mid) / 2.0 super().__init__(np.array([mid1, mid1]), np.array([mid2, mid2])) class CenterLocation(Position2D): def __init__(self): low, high = _get_boundaries() mid = (high + low) / 2.0 super().__init__(np.array([mid, mid]), np.array([mid, mid])) class RandomEdgeLocation(Noise[np.ndarray]): def __init__(self): self.low, self.high = _get_boundaries() mid = (self.high + self.low) / 2.0 self.q = (mid + self.low) / 2.0 super().__init__(params=dict(low=self.low, high=self.high, q=self.q)) def cdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: xs = samples[0] ys = samples[1] def _cdf(x): if x < self.low: return 0.0 elif self.low <= x < self.high - self.q: return uniform(self.low, self.q).cdf(x) elif self.high - self.q <= x: return uniform(self.high - self.q, self.high).cdf(x) else: raise ValueError xcdfs = np.array([map(_cdf, xs)]) ycdfs = np.array([map(_cdf, ys)]) return xcdfs * ycdfs def log_cdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: return np.log(self.cdf(samples)) def pdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: xs = samples[0] ys = samples[1] def _pdf(x): if x < self.low: return 0.0 elif self.low <= x < self.high - self.q: return uniform(self.low, self.q).pdf(x) elif self.high - self.q <= x: return uniform(self.high - self.q, self.high).pdf(x) else: raise ValueError xpdfs = np.array([map(_pdf, xs)]) ypdfs = np.array([map(_pdf, ys)]) return xpdfs * ypdfs def log_pdf(self, samples: np.ndarray) -> Union[np.ndarray, None]: return np.log(self.pdf(samples)) def sample(self) -> Position: # Bottom left "tile" pos =
np.random.uniform(self.low, self.q, (2,))
numpy.random.uniform
# plotting import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns # numpy import numpy as np # scipy import scipy as sp import scipy.interpolate from scipy.special import erfinv, erf from scipy.stats import poisson as pss import scipy.fftpack import scipy.sparse # jit from numba import jit import ctypes import astropy import astropy as ap from astropy.convolution import convolve_fft, AiryDisk2DKernel import pickle # multiprocessing import multiprocessing as mp from copy import deepcopy # utilities import os, time, sys, glob, fnmatch, inspect, traceback, functools # HealPix import healpy as hp # ignore warnings if not in diagnostic mode import warnings #seterr(divide='raise', over='raise', invalid='raise') #seterr(all='raise') #seterr(under='ignore') #warnings.simplefilter('ignore') #np.set_printoptions(linewidth=180) #sns.set(context='poster', style='ticks', color_codes=True) import h5py # utilities # secondaries ## Symbolic Jacobian calculation #import sympy # tdpy import tdpy from tdpy.util import summgene # photometry related ### find the spectra of sources def retr_spec(gdat, flux, sind=None, curv=None, expc=None, sindcolr=None, elin=None, edisintp=None, sigm=None, gamm=None, spectype='powr', plot=False): if gdat.numbener == 1: spec = flux[None, :] else: if plot: meanener = gdat.meanpara.enerplot else: meanener = gdat.meanpara.ener if gmod.spectype == 'gaus': spec = 1. / edis[None, :] / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis[None, :])**2) if gmod.spectype == 'voig': args = (gdat.meanpara.ener[:, None] + 1j * gamm[None, :]) / np.sqrt(2.) / sigm[None, :] spec = 1. / sigm[None, :] / np.sqrt(2. * pi) * flux[None, :] * real(scipy.special.wofz(args)) if gmod.spectype == 'edis': edis = edisintp(elin)[None, :] spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'pvoi': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'lore': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'powr': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) if gmod.spectype == 'colr': if plot: spec = np.zeros((gdat.numbenerplot, flux.size)) else: spec = np.empty((gdat.numbener, flux.size)) for i in gdat.indxener: if i < gdat.indxenerpivt: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i]) elif i == gdat.indxenerpivt: spec[i, :] = flux else: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i-1]) if gmod.spectype == 'curv': spec = flux[None, :] * meanener[:, None]**(-sind[None, :] - gdat.factlogtenerpivt[:, None] * curv[None, :]) if gmod.spectype == 'expc': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) * np.exp(-(meanener - gdat.enerpivt)[:, None] / expc[None, :]) return spec ### find the surface brightness due to one point source def retr_sbrtpnts(gdat, lgal, bgal, spec, psfnintp, indxpixlelem): # calculate the distance to all pixels from each point source dist = retr_angldistunit(gdat, lgal, bgal, indxpixlelem) # interpolate the PSF onto the pixels if gdat.kernevaltype == 'ulip': psfntemp = psfnintp(dist) if gdat.kernevaltype == 'bspx': pass # scale by the PS spectrum sbrtpnts = spec[:, None, None] * psfntemp return sbrtpnts def retr_psfnwdth(gdat, psfn, frac): ''' Return the PSF width ''' wdth = np.zeros((gdat.numbener, gdat.numbevtt)) for i in gdat.indxener: for m in gdat.indxevtt: psfntemp = psfn[i, :, m] indxanglgood = np.argsort(psfntemp) intpwdth = max(frac * np.amax(psfntemp), np.amin(psfntemp)) if intpwdth >= np.amin(psfntemp[indxanglgood]) and intpwdth <= np.amax(psfntemp[indxanglgood]): wdthtemp = sp.interpolate.interp1d(psfntemp[indxanglgood], gdat.binspara.angl[indxanglgood], fill_value='extrapolate')(intpwdth) else: wdthtemp = 0. wdth[i, m] = wdthtemp return wdth # lensing-related def samp_lgalbgalfromtmpl(gdat, probtmpl): indxpixldraw = np.random.choice(gdat.indxpixl, p=probtmpl) lgal = gdat.lgalgrid[indxpixldraw] + randn(gdat.sizepixl) bgal = gdat.bgalgrid[indxpixldraw] + randn(gdat.sizepixl) return lgal, bgal ## custom random variables, pdfs, cdfs and icdfs ### probability distribution functions def retr_lprbpois(data, modl): lprb = data * np.log(modl) - modl - sp.special.gammaln(data + 1) return lprb ### probability density functions def pdfn_self(xdat, minm, maxm): pdfn = 1. / (maxm - minm) return pdfn def pdfn_expo(xdat, maxm, scal): if (xdat > maxm).any(): pdfn = 0. else: pdfn = 1. / scal / (1. - np.exp(-maxm / scal)) * np.exp(-xdat / scal) return pdfn def pdfn_dexp(xdat, maxm, scal): pdfn = 0.5 * pdfn_expo(np.fabs(xdat), maxm, scal) return pdfn def pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr): if np.isscalar(xdat): xdat = np.array([xdat]) faca = 1. / (brek**(sloplowr - slopuppr) * (brek**(1. - sloplowr) - minm**(1. - sloplowr)) / \ (1. - sloplowr) + (maxm**(1. - slopuppr) - brek**(1. - slopuppr)) / (1. - slopuppr)) facb = faca * brek**(sloplowr - slopuppr) / (1. - sloplowr) pdfn = np.empty_like(xdat) indxlowr = np.where(xdat <= brek)[0] indxuppr = np.where(xdat > brek)[0] if indxlowr.size > 0: pdfn[indxlowr] = faca * brek**(sloplowr - slopuppr) * xdat[indxlowr]**(-sloplowr) if indxuppr.size > 0: pdfn[indxuppr] = faca * xdat[indxuppr]**(-slopuppr) return pdfn def pdfn_powr(xdat, minm, maxm, slop): norm = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) pdfn = norm * xdat**(-slop) return pdfn def pdfn_logt(xdat, minm, maxm): pdfn = 1. / (np.log(maxm) - np.log(minm)) / xdat return pdfn def pdfn_igam(xdat, slop, cutf): pdfn = sp.stats.invgamma.pdf(xdat, slop - 1., scale=cutf) return pdfn def pdfn_lnor(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_gaus(xdat, mean, stdv): pdfn = 1. / np.sqrt(2. * pi) / stdv * np.exp(-0.5 * ((xdat - mean) / stdv)**2) return pdfn def pdfn_lgau(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_atan(para, minmpara, maxmpara): pdfn = 1. / (para**2 + 1.) / (np.arctan(maxmpara) - np.arctan(minmpara)) return pdfn def cdfn_paragenrscalbase(gdat, strgmodl, paragenrscalbase, thisindxparagenrbase): gmod = getattr(gdat, strgmodl) scalparagenrbase = gmod.scalpara.genrbase[thisindxparagenrbase] if scalparagenrbase == 'self' or scalparagenrbase == 'logt' or scalparagenrbase == 'atan': listminmparagenrscalbase = gmod.minmpara.genrbase[thisindxparagenrbase] factparagenrscalbase = gmod.factparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'self': paragenrscalbaseunit = cdfn_self(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'logt': paragenrscalbaseunit = cdfn_logt(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'atan': gmod.listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[thisindxparagenrbase] paragenrscalbaseunit = cdfn_atan(paragenrscalbase, listminmparagenrscalbase, gmod.listmaxmparagenrscalbase) elif scalparagenrbase == 'gaus' or scalparagenrbase == 'eerr': gmod.listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[thisindxparagenrbase] gmod.liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'eerr': gmod.cdfnlistminmparagenrscalbaseunit = gmod.cdfnlistminmparagenrscalbaseunit[thisindxparagenrbase] gmod.listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[thisindxparagenrbase] paragenrscalbaseunit = cdfn_eerr(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase, \ gmod.cdfnlistminmparagenrscalbaseunit, gmod.listparagenrscalbaseunitdiff) else: paragenrscalbaseunit = cdfn_gaus(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase) elif scalparagenrbase == 'pois': paragenrscalbaseunit = paragenrscalbase if gdat.booldiagmode: if paragenrscalbaseunit == 0: print('Warning. CDF is zero.') return paragenrscalbaseunit def icdf_paragenrscalfull(gdat, strgmodl, paragenrunitfull, indxparagenrfullelem): gmod = getattr(gdat, strgmodl) # tobechanged # temp -- change zeros to empty paragenrscalfull = np.zeros_like(paragenrunitfull) for scaltype in gdat.listscaltype: listindxparagenrbasescal = gmod.listindxparagenrbasescal[scaltype] if len(listindxparagenrbasescal) == 0: continue paragenrscalfull[listindxparagenrbasescal] = icdf_paragenrscalbase(gdat, strgmodl, paragenrunitfull[listindxparagenrbasescal], scaltype, listindxparagenrbasescal) if not np.isfinite(paragenrscalfull).all(): raise Exception('') if indxparagenrfullelem is not None: for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: indxparagenrfulltemp = indxparagenrfullelem[l][gmod.namepara.genrelem[l][g]] if indxparagenrfulltemp.size == 0: continue paragenrscalfull[indxparagenrfulltemp] = icdf_trap(gdat, strgmodl, paragenrunitfull[indxparagenrfulltemp], paragenrscalfull, \ gmod.listscalparagenrelem[l][g], gmod.namepara.genrelem[l][g], l) if gdat.booldiagmode: if not np.isfinite(paragenrscalfull[indxparagenrfulltemp]).all(): raise Exception('') if not np.isfinite(paragenrscalfull).all(): raise Exception('') return paragenrscalfull def icdf_paragenrscalbase(gdat, strgmodl, paragenrunitbase, scaltype, indxparagenrbasescal): gmod = getattr(gdat, strgmodl) if scaltype == 'self' or scaltype == 'logt' or scaltype == 'atan': minmparagenrscalbase = gmod.minmpara.genrbase[indxparagenrbasescal] factparagenrscalbase = gmod.factpara.genrbase[indxparagenrbasescal] if scaltype == 'self': paragenrscalbase = tdpy.icdf_self(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'logt': paragenrscalbase = tdpy.icdf_logt(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'atan': listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_atan(paragenrunitbase, minmparagenrscalbase, listmaxmparagenrscalbase) elif scaltype == 'gaus' or scaltype == 'eerr': listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[indxparagenrbasescal] liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[indxparagenrbasescal] if scaltype == 'eerr': cdfnminmparagenrscalbaseunit = gmod.cdfnminmparagenrscalbaseunit[indxparagenrbasescal] listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_eerr(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase, cdfnminmparagenrscalbaseunit, listparagenrscalbaseunitdiff) else: paragenrscalbase = tdpy.icdf_gaus(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase) elif scaltype == 'pois': paragenrscalbase = paragenrunitbase if gdat.booldiagmode: if not np.isfinite(paragenrscalbase).all(): print('scaltype') print(scaltype) print('paragenrscalbase') print(paragenrscalbase) print('type(paragenrscalbase)') print(type(paragenrscalbase)) print('paragenrscalbase.dtype') print(paragenrscalbase.dtype) raise Exception('') return paragenrscalbase def icdf_trap(gdat, strgmodl, cdfn, paragenrscalfull, scalcomp, nameparagenrelem, l): gmod = getattr(gdat, strgmodl) if scalcomp == 'self' or scalcomp == 'powr' or scalcomp == 'dpowslopbrek' or scalcomp == 'logt': minm = getattr(gmod.minmpara, nameparagenrelem) if scalcomp != 'self': maxm = getattr(gmod.maxmpara, nameparagenrelem) if scalcomp == 'powr': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio%spop%d' % (nameparagenrelem, l))] if gdat.booldiagmode: if not np.isfinite(slop): raise Exception('') if maxm < minm: raise Exception('') icdf = tdpy.icdf_powr(cdfn, minm, maxm, slop) if scalcomp == 'dpowslopbrek': distbrek = paragenrscalfull[getattr(gmod.indxpara, 'brekprio' + nameparagenrelem)[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + nameparagenrelem)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + nameparagenrelem)[l]] icdf = tdpy.icdf_dpow(cdfn, minm, maxm, distbrek, sloplowr, slopuppr) if scalcomp == 'expo': sexp = getattr(gmod, nameparagenrelem + 'distsexppop%d' % l) icdf = tdpy.icdf_expo(cdfn, maxm, sexp) if scalcomp == 'self': fact = getattr(gmod.factpara, nameparagenrelem) icdf = tdpy.icdf_self_fact(cdfn, minm, fact) if scalcomp == 'logt': icdf = tdpy.icdf_logt(cdfn, minm, fact) if scalcomp == 'dexp': scal = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] icdf = tdpy.icdf_dexp(cdfn, maxm, scal) if scalcomp == 'lnormeanstdv': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_lnor(cdfn, distmean, diststdv) if scalcomp == 'igam': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem)[l]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) icdf = tdpy.icdf_igam(cdfn, slop, cutf) if scalcomp == 'gaus': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_gaus(cdfn, distmean, diststdv) if gdat.booldiagmode: if not np.isfinite(icdf).all(): print('icdf') print(icdf) raise Exception('') return icdf def cdfn_trap(gdat, gdatmodi, strgmodl, icdf, indxpoplthis): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmod.listscalparagenrelem = gmod.listscalparagenrelem[indxpoplthis] cdfn = np.empty_like(icdf) for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[indxpoplthis]): if gmod.listscalparagenrelem[k] == 'self' or gmod.listscalparagenrelem[k] == 'dexp' or gmod.listscalparagenrelem[k] == 'expo' \ or gmod.listscalparagenrelem[k] == 'powr' or gmod.listscalparagenrelem[k] == 'dpowslopbrek': minm = getattr(gdat.fitt.minm, nameparagenrelem) if gmod.listscalparagenrelem[k] == 'powr': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) slop = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cdfn[k] = cdfn_powr(icdf[k], minm, maxm, slop) elif gmod.listscalparagenrelem[k] == 'dpowslopbrek': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) brek = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[indxpoplthis]] sloplowr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[indxpoplthis]] slopuppr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[indxpoplthis]] cdfn[k] = cdfn_dpow(icdf[k], minm, maxm, brek, sloplowr, slopuppr) else: fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) cdfn[k] = cdfn_self(icdf[k], minm, fact) if gmod.listscalparagenrelem[k] == 'lnormeanstdv': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_lnor(icdf[k], distmean, slop) if gmod.listscalparagenrelem[k] == 'igam': slop = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) cdfn[k] = cdfn_igam(icdf[k], slop, cutf) if gmod.listscalparagenrelem[k] == 'gaus': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_gaus(icdf[k], distmean, diststdv) return cdfn ### update sampler state def updt_stat(gdat, gdatmodi): if gdat.typeverb > 1: print('updt_stat()') # update the sample and the unit sample vectors gdatmodi.this.lpritotl = gdatmodi.next.lpritotl gdatmodi.this.lliktotl = gdatmodi.next.lliktotl gdatmodi.this.lpostotl = gdatmodi.next.lpostotl gdatmodi.this.paragenrscalfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrscalfull[gdatmodi.indxsampmodi]) gdatmodi.this.paragenrunitfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrunitfull[gdatmodi.indxsampmodi]) if gdatmodi.this.indxproptype > 0: gdatmodi.this.indxelemfull = deepcopy(gdatmodi.next.indxelemfull) gdatmodi.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdatmodi.this.indxelemfull, 'fitt') def initcompfromstat(gdat, gdatmodi, namerefr): for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): minm = getattr(gdat.fitt.minmpara, nameparagenrelem) maxm = getattr(gdat.fitt.maxmpara, nameparagenrelem) try: comp = getattr(gdat, namerefr + nameparagenrelem)[l][0, :] if gmod.listscalparagenrelem[l][g] == 'self' or gmod.listscalparagenrelem[l][g] == 'logt': fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) if gmod.listscalparagenrelem[l][g] == 'self': compunit = cdfn_self(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'logt': compunit = cdfn_logt(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'expo': scal = getattr(gdat.fitt, 'gangdistsexp') maxm = getattr(gdat.fitt.maxm, nameparagenrelem) compunit = cdfn_expo(icdf, maxm, scal) if gmod.listscalparagenrelem[l][g] == 'powr' or gmod.listscalparagenrelem[l][g] == 'igam': slop = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[l]] if gmod.listscalparagenrelem[l][g] == 'powr': compunit = cdfn_powr(comp, minm, maxm, slop) if gmod.listscalparagenrelem[l][g] == 'igam': cutf = getattr(gdat, 'cutf' + nameparagenrelem) compunit = cdfn_igam(comp, slop, cutf) if gmod.listscalparagenrelem[l][g] == 'dpowslopbrek': brek = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[l]] sloplowr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[l]] slopuppr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[l]] compunit = cdfn_powr(comp, minm, maxm, brek, sloplowr, slopuppr) if gmod.listscalparagenrelem[l][g] == 'gaus': distmean = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[l]] diststdv = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[l]] compunit = cdfn_gaus(comp, distmean, diststdv) except: if gdat.typeverb > 0: print('Initialization from the reference catalog failed for %s. Sampling randomly...' % nameparagenrelem) compunit = np.random.rand(gdatmodi.this.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int)) gdatmodi.this.paragenrunitfull[gdatmodi.this.indxparagenrfullelem[l][nameparagenrelem]] = compunit ### find the set of pixels in proximity to a position on the map def retr_indxpixlelemconc(gdat, strgmodl, dictelem, l): gmod = getattr(gdat, strgmodl) lgal = dictelem[l]['lgal'] bgal = dictelem[l]['bgal'] varbampl = dictelem[l][gmod.nameparagenrelemampl[l]] if gmod.typeelemspateval[l] == 'locl': listindxpixlelem = [[] for k in range(lgal.size)] for k in range(lgal.size): indxpixlpnts = retr_indxpixl(gdat, bgal[k], lgal[k]) indxfluxproxtemp = np.digitize(varbampl[k], gdat.binspara.prox) if indxfluxproxtemp > 0: indxfluxproxtemp -= 1 if indxfluxproxtemp == gdat.binspara.prox.size - 1: print('Warning! Index of the proximity pixel list overflew. Taking the largest list...') indxfluxproxtemp -= 1 indxpixlelem = gdat.indxpixlprox[indxfluxproxtemp][indxpixlpnts] if isinstance(indxpixlelem, int): indxpixlelem = gdat.indxpixl listindxpixlelem[k] = indxpixlelem listindxpixlelemconc = np.unique(np.concatenate(listindxpixlelem)) else: listindxpixlelemconc = gdat.indxpixl listindxpixlelem = gdat.indxpixl return listindxpixlelem, listindxpixlelemconc ### find the distance between two points on the map def retr_angldistunit(gdat, lgal, bgal, indxpixlelem, retranglcosi=False): if gdat.typepixl == 'heal': xdat, ydat, zaxi = retr_unit(lgal, bgal) anglcosi = gdat.xdatgrid[indxpixlelem] * xdat + gdat.ydatgrid[indxpixlelem] * ydat + gdat.zaxigrid[indxpixlelem] * zaxi if retranglcosi: return anglcosi else: angldist = np.arccos(anglcosi) return angldist else: angldist = np.sqrt((lgal - gdat.lgalgrid[indxpixlelem])**2 + (bgal - gdat.bgalgrid[indxpixlelem])**2) return angldist ### find the pixel index of a point on the map def retr_indxpixl(gdat, bgal, lgal): if gdat.typepixl == 'heal': indxpixl = gdat.pixlcnvt[hp.ang2pix(gdat.numbsideheal, np.pi / 2. - bgal, lgal)] if gdat.booldiagmode: if (indxpixl == -1).any(): raise Exception('pixlcnvt went negative!') if gdat.typepixl == 'cart': indxlgcr = np.floor(gdat.numbsidecart * (lgal - gdat.minmlgaldata) / 2. / gdat.maxmgangdata).astype(int) indxbgcr = np.floor(gdat.numbsidecart * (bgal - gdat.minmbgaldata) / 2. / gdat.maxmgangdata).astype(int) if np.isscalar(indxlgcr): if indxlgcr < 0: indxlgcr = 0 if indxlgcr >= gdat.numbsidecart: indxlgcr = gdat.numbsidecart - 1 else: indxlgcr[np.where(indxlgcr < 0)] = 0 indxlgcr[np.where(indxlgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 if np.isscalar(indxbgcr): if indxbgcr < 0: indxbgcr = 0 if indxbgcr >= gdat.numbsidecart: indxbgcr = gdat.numbsidecart - 1 else: indxbgcr[np.where(indxbgcr < 0)] = 0 indxbgcr[np.where(indxbgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 indxpixl = indxlgcr * gdat.numbsidecart + indxbgcr # convert to an index of non-zero exposure pixels #indxpixl = gdat.indxpixlroficnvt[indxpixl] return indxpixl ## obtain count maps def retr_cntp(gdat, sbrt): cntp = sbrt * gdat.expo * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] return cntp ## plotting ### construct path for plots def retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgplot, nameinte=''): if strgmodl == 'true' or strgstat == '': path = gdat.pathinit + nameinte + strgplot + '.pdf' elif strgstat == 'pdfn' or strgstat == 'mlik': path = gdat.pathplotrtag + strgpdfn + '/finl/' + nameinte + strgstat + strgplot + '.pdf' elif strgstat == 'this': path = gdat.pathplotrtag + strgpdfn + '/fram/' + nameinte + strgstat + strgplot + '_swep%09d.pdf' % gdatmodi.cntrswep return path ### determine the marker size def retr_mrkrsize(gdat, strgmodl, compampl, nameparagenrelemampl): gmod = getattr(gdat, strgmodl) minm = getattr(gdat.minmpara, nameparagenrelemampl) maxm = getattr(gdat.maxmpara, nameparagenrelemampl) mrkrsize = (np.sqrt(compampl) - np.sqrt(minm)) / (np.sqrt(maxm) - np.sqrt(minm)) * (gdat.maxmmrkrsize - gdat.minmmrkrsize) + gdat.minmmrkrsize return mrkrsize ## experiment specific def retr_psfphubb(gmod): # temp gmod.psfpexpr = np.array([0.080, 0.087]) / gdat.anglfact def retr_psfpchan(gmod): # temp #gmod.psfpexpr = np.array([0.25, 0.3, 0.4, 0.6, 0.7]) / gdat.anglfact if gdat.numbenerfull == 5: gmod.psfpexpr = np.array([0.424 / gdat.anglfact, 2.75, 0.424 / gdat.anglfact, 2.59, 0.440 / gdat.anglfact, 2.47, 0.457 / gdat.anglfact, 2.45, 0.529 / gdat.anglfact, 3.72]) if gdat.numbenerfull == 2: gmod.psfpexpr = np.array([0.427 / gdat.anglfact, 2.57, 0.449 / gdat.anglfact, 2.49]) #gdat.psfpchan = gmod.psfpexpr[(2 * gdat.indxenerincl[:, None] + np.arange(2)[None, :]).flatten()] #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, # 0.30 / gdat.anglfacti\ # 0.40 / gdat.anglfacti\ # 0.60 / gdat.anglfacti\ # 0.70 / gdat.anglfacti #gmod.psfpexpr = np.array([0.35 / gdat.anglfact, 2e-1, 1.9, 0.5 / gdat.anglfact, 1.e-1, 2.]) #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, 2.0e-1, 1.9, \ # 0.30 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.40 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.60 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.70 / gdat.anglfact, 1.0e-1, 2.0]) def retr_psfpsdyn(gmod): gmod.psfpexpr = np.array([0.05]) def retr_psfpferm(gmod): if gdat.anlytype.startswith('rec8'): path = gdat.pathdata + 'expr/irfn/psf_P8R2_SOURCE_V6_PSF.fits' else: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' irfn = astropy.io.fits.getdata(path, 1) minmener = irfn['energ_lo'].squeeze() * 1e-3 # [GeV] maxmener = irfn['energ_hi'].squeeze() * 1e-3 # [GeV] enerirfn = np.sqrt(minmener * maxmener) numbpsfpscal = 3 numbpsfpform = 5 fermscal = np.zeros((gdat.numbevtt, numbpsfpscal)) fermform = np.zeros((gdat.numbener, gdat.numbevtt, numbpsfpform)) strgpara = ['score', 'gcore', 'stail', 'gtail', 'ntail'] for m in gdat.indxevtt: if gdat.anlytype.startswith('rec8'): irfn = astropy.io.fits.getdata(path, 1 + 3 * gdat.indxevttincl[m]) fermscal[m, :] = astropy.io.fits.getdata(path, 2 + 3 * gdat.indxevttincl[m])['PSFSCALE'] else: if m == 1: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_front.fits' elif m == 0: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' else: continue irfn = astropy.io.fits.getdata(path, 1) fermscal[m, :] = astropy.io.fits.getdata(path, 2)['PSFSCALE'] for k in range(numbpsfpform): fermform[:, m, k] = sp.interpolate.interp1d(enerirfn, np.mean(irfn[strgpara[k]].squeeze(), axis=0), fill_value='extrapolate')(gdat.meanpara.ener) # convert N_tail to f_core for m in gdat.indxevtt: for i in gdat.indxener: fermform[i, m, 4] = 1. / (1. + fermform[i, m, 4] * fermform[i, m, 2]**2 / fermform[i, m, 0]**2) # calculate the scale factor gdat.fermscalfact = np.sqrt((fermscal[None, :, 0] * (10. * gdat.meanpara.ener[:, None])**fermscal[None, :, 2])**2 + fermscal[None, :, 1]**2) # store the fermi PSF parameters gmod.psfpexpr = np.zeros(gdat.numbener * gdat.numbevtt * numbpsfpform) for m in gdat.indxevtt: for k in range(numbpsfpform): indxfermpsfptemp = m * numbpsfpform * gdat.numbener + gdat.indxener * numbpsfpform + k gmod.psfpexpr[indxfermpsfptemp] = fermform[:, m, k] def retr_refrchaninit(gdat): gdat.indxrefr = np.arange(gdat.numbrefr) gdat.dictrefr = [] for q in gdat.indxrefr: gdat.dictrefr.append(dict()) gdat.refr.namepara.elemsign = ['flux', 'magt'] gdat.refr.lablelem = ['Xue+2011', 'Wolf+2008'] gdat.listnamerefr += ['xu11', 'wo08'] setattr(gdat, 'plotminmotyp', 0.) setattr(gdat, 'plottmaxmotyp', 1.) setattr(gmod.lablrootpara, 'otyp', 'O') setattr(gdat, 'scalotypplot', 'self') setattr(gmod.lablrootpara, 'otypxu11', 'O') for name in gdat.listnamerefr: setattr(gdat, 'plotminmotyp' + name, 0.) setattr(gdat, 'plotmaxmotyp' + name, 1.) if gdat.strgcnfg == 'pcat_chan_inpt_home4msc': with open(gdat.pathinpt + 'ECDFS_Cross_ID_Hsu2014.txt', 'r') as thisfile: for k, line in enumerate(thisfile): if k < 18: continue rasccand =line[2] declcand =line[2] gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'otyp', 'lumi'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'magt', 'reds', 'otyp'] def retr_refrchanfinl(gdat): booltemp = False if gdat.anlytype.startswith('extr'): if gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] = 1490 gdat.numbpixlbgalshft[0] = 1430 else: booltemp = True elif gdat.anlytype.startswith('home'): gdat.numbpixllgalshft[0] = 0 gdat.numbpixlbgalshft[0] = 0 if gdat.numbsidecart == 600: pass elif gdat.numbsidecart == 100: indxtile = int(gdat.anlytype[-4:]) numbsidecntr = int(gdat.anlytype[8:12]) numbtileside = numbsidecntr / gdat.numbsidecart indxtilexaxi = indxtile // numbtileside indxtileyaxi = indxtile % numbtileside gdat.numbpixllgalshft[0] += indxtilexaxi * gdat.numbsidecart gdat.numbpixlbgalshft[0] += indxtileyaxi * gdat.numbsidecart elif gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] += 150 gdat.numbpixlbgalshft[0] += 150 else: booltemp = True else: booltemp = True if booltemp: raise Exception('Reference elements cannot be aligned with the spatial axes!') ## WCS object for rotating reference elements into the ROI if gdat.numbener == 2: gdat.listpathwcss[0] = gdat.pathinpt + 'CDFS-4Ms-0p5to2-asca-im-bin1.fits' else: gdat.listpathwcss[0] = gdat.pathinpt + '0.5-0.91028_flux_%sMs.img' % gdat.anlytype[4] # Xue et al. (2011) #with open(gdat.pathinpt + 'chancatl.txt', 'r') as thisfile: pathfile = gdat.pathinpt + 'Xue2011.fits' hdun = pf.open(pathfile) hdun.info() lgalchan = hdun[1].data['_Glon'] / 180. * pi bgalchan = hdun[1].data['_Glat'] / 180. * pi fluxchansoft = hdun[1].data['SFlux'] fluxchanhard = hdun[1].data['HFlux'] objttypechan = hdun[1].data['Otype'] gdat.refrlumi[0][0] = hdun[1].data['Lx'] # position gdat.refr.dictelem[0]['lgal'] = lgalchan gdat.refr.dictelem[0]['bgal'] = bgalchan # spectra gdat.refrspec = [[np.zeros((3, gdat.numbener, lgalchan.size))]] if gdat.numbener == 2: gdat.refrspec[0][0, 0, :] = fluxchansoft * 0.624e9 gdat.refrspec[0][0, 1, :] = fluxchanhard * 0.624e9 / 16. else: gdat.refrspec[0][0, :, :] = 2. * fluxchansoft[None, :] * 0.624e9 gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] # fluxes gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] # spectral indices if gdat.numbener > 1: gdat.refrsind[0] = -np.log(gdat.refrspec[0][0, 1, :] / gdat.refrspec[0][0, 0, :]) / np.log(np.sqrt(7. / 2.) / np.sqrt(0.5 * 2.)) ## object type objttypechantemp = np.zeros(lgalchan.size) - 1. indx = np.where(objttypechan == 'AGN')[0] objttypechantemp[indx] = 0.165 indx = np.where(objttypechan == 'Galaxy')[0] objttypechantemp[indx] = 0.495 indx = np.where(objttypechan == 'Star')[0] objttypechantemp[indx] = 0.835 gdat.refrotyp[0][0] = objttypechantemp # Wolf et al. (2011) path = gdat.pathdata + 'inpt/Wolf2008.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['_Glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - pi) % (2. * pi)) - pi gdat.refrbgal[1] = np.deg2rad(data['_Glat']) gdat.refrmagt[1][0] = data['Rmag'] gdat.refrreds[1][0] = data['MCz'] #listname = [] #for k in range(data['MCclass'].size): # if not data['MCclass'][k] in listname: # listname.append(data['MCclass'][k]) listname = ['Galaxy', 'Galaxy (Uncl!)', 'QSO (Gal?)', 'Galaxy (Star?)', 'Star', 'Strange Object', 'QSO', 'WDwarf'] gdat.refrotyp[1][0] = np.zeros_like(gdat.refrreds[1][0]) - 1. for k, name in enumerate(listname): indx = np.where(data['MCclass'] == name)[0] gdat.refrotyp[1][0][indx] = k / 10. # error budget for name in ['lgal', 'bgal', 'sind', 'otyp', 'lumi', 'magt', 'reds']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_refrferminit(gdat): gdat.listnamerefr += ['ac15', 'ma05'] gdat.indxrefr = np.arange(gdat.numbrefr) gdat.refr.lablelem = ['Acero+2015', 'Manchester+2005'] gdat.refr.namepara.elemsign = ['flux', 'flux0400'] setattr(gmod.lablrootpara, 'curvac15', '%s_{3FGL}' % gdat.lablcurv) setattr(gmod.lablrootpara, 'expcac15', 'E_{c,3FGL}') for name in gdat.listnamerefr: setattr(gdat.minmpara, 'curv' + name, -1.) setattr(gdat.maxmpara, 'curv' + name, 1.) setattr(gdat.minmpara, 'expc' + name, 0.1) setattr(gdat.maxmpara, 'expc' + name, 10.) gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'curv', 'expc', 'tvar', 'etag', 'styp', 'sindcolr0001', 'sindcolr0002'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'flux0400', 'per0', 'per1'] def retr_refrfermfinl(gdat): gdat.minmstyp = -0.5 gdat.maxmstyp = 3.5 gdat.lablstyp = 'S' gmod.scalstypplot = 'self' gdat.minmtvar = 0. gdat.maxmtvar = 400. gdat.labltvar = 'T' gmod.scaltvarplot = 'logt' # Acero+2015 path = gdat.pathdata + 'expr/pnts/gll_psc_v16.fit' fgl3 = astropy.io.fits.getdata(path) gdat.refr.dictelem[0]['lgal'] = np.deg2rad(fgl3['glon']) gdat.refr.dictelem[0]['lgal'] = np.pi - ((gdat.refr.dictelem[0]['lgal'] - np.pi) % (2. * np.pi)) gdat.refr.dictelem[0]['bgal'] = np.deg2rad(fgl3['glat']) gdat.refr.numbelemfull = gdat.refr.dictelem[0]['lgal'].size gdat.refrspec = [np.empty((3, gdat.numbener, gdat.refr.dictelem[0]['lgal'].size))] gdat.refrspec[0][0, :, :] = np.stack((fgl3['Flux300_1000'], fgl3['Flux1000_3000'], fgl3['Flux3000_10000']))[gdat.indxenerincl, :] / gdat.deltener[:, None] fgl3specstdvtemp = np.stack((fgl3['Unc_Flux100_300'], fgl3['Unc_Flux300_1000'], fgl3['Unc_Flux1000_3000'], fgl3['Unc_Flux3000_10000'], \ fgl3['Unc_Flux10000_100000']))[gdat.indxenerincl, :, :] / gdat.deltener[:, None, None] gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 0] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 1] gdat.refrspec[0][np.where(np.isfinite(gdat.refrspec[0]) == False)] = 0. gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] gdat.refrsindcolr0001[0] = -np.log(gdat.refrspec[0][:, 1, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[1] / gdat.enerpivt) gdat.refrsindcolr0002[0] = -np.log(gdat.refrspec[0][:, 2, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[2] / gdat.enerpivt) fgl3axisstdv = (fgl3['Conf_68_SemiMinor'] + fgl3['Conf_68_SemiMajor']) * 0.5 fgl3anglstdv = np.deg2rad(fgl3['Conf_68_PosAng']) # [rad] fgl3lgalstdv = fgl3axisstdv * abs(np.cos(fgl3anglstdv)) fgl3bgalstdv = fgl3axisstdv * abs(np.sin(fgl3anglstdv)) gdat.refretag[0] = np.zeros(gdat.refr.dictelem[0]['lgal'].size, dtype=object) for k in range(gdat.refr.dictelem[0]['lgal'].size): gdat.refretag[0][k] = '%s, %s, %s' % (fgl3['Source_Name'][k], fgl3['CLASS1'][k], fgl3['ASSOC1'][k]) gdat.refrtvar[0] = fgl3['Variability_Index'] gdat.refrstyp[0] = np.zeros_like(gdat.refr.dictelem[0]['lgal']) - 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PowerLaw ')] = 0 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'LogParabola ')] = 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLExpCutoff ')] = 2 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLSuperExpCutoff')] = 3 indx = np.where(gdat.refrstyp[0] == -1)[0] if indx.size > 0: raise Exception('') gdat.refrsind[0] = fgl3['Spectral_Index'] gdat.refrcurv[0] = fgl3['beta'] gdat.refrexpc[0] = fgl3['Cutoff'] * 1e-3 gdat.refrcurv[0][np.where(np.logical_not(np.isfinite(gdat.refrcurv[0])))] = -10. gdat.refrexpc[0][np.where(np.logical_not(np.isfinite(gdat.refrexpc[0])))] = 0. gdat.refrsind[0] = np.tile(gdat.refrsind[0], (3, 1)) gdat.refrcurv[0] = np.tile(gdat.refrcurv[0], (3, 1)) gdat.refrexpc[0] = np.tile(gdat.refrexpc[0], (3, 1)) # Manchester+2005 path = gdat.pathdata + 'inpt/Manchester2005.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - np.pi) % (2. * np.pi)) - np.pi gdat.refrbgal[1] = np.deg2rad(data['glat']) gdat.refrper0[1] = data['P0'] gdat.refrper1[1] = data['P1'] gdat.refrflux0400[1] = data['S400'] #gdat.refrdism[1] = data['DM'] #gdat.refrdlos[1] = data['Dist'] # error budget for name in ['lgal', 'bgal', 'per0', 'per1', 'flux0400', 'tvar', 'styp']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_singgaus(scaldevi, sigc): psfn = 1. / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_singking(scaldevi, sigc, gamc): psfn = 1. / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) return psfn def retr_doubgaus(scaldevi, frac, sigc, sigt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_gausking(scaldevi, frac, sigc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_doubking(scaldevi, frac, sigc, gamc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) + \ (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_lgalbgal(gang, aang): lgal = gang * np.cos(aang) bgal = gang * np.sin(aang) return lgal, bgal def retr_gang(lgal, bgal): gang = np.arccos(np.cos(lgal) * np.cos(bgal)) return gang def retr_aang(lgal, bgal): aang = np.arctan2(bgal, lgal) return aang def show_paragenrscalfull(gdat, gdatmodi, strgstat='this', strgmodl='fitt', indxsampshow=None): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) print('strgmodl: ' + strgmodl) print('strgstat: ' + strgstat) print('%5s %20s %30s %30s %15s' % ('index', 'namepara', 'paragenrunitfull', 'paragenrscalfull', 'scalpara')) for k in gmod.indxparagenrfull: if indxsampshow is not None and not k in indxsampshow: continue if gmod.numbparaelem > 0: booltemp = False for l in gmod.indxpopl: if k == gmod.indxparagenrelemsing[l][0]: booltemp = True if booltemp: print('') print('%5d %20s %30g %30g %15s' % (k, gmod.namepara.genrfull[k], gmodstat.paragenrunitfull[k], gmodstat.paragenrscalfull[k], gmod.scalpara.genrfull[k])) def prop_stat(gdat, gdatmodi, strgmodl, thisindxelem=None, thisindxpopl=None, brth=False, deth=False): if gdat.typeverb > 1: print('prop_stat()') #indxproptype # within, birth, death, split, merge # 0, 1, 2, 3, 4 gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodthis = getattr(gdatobjt, 'this') gmodnext = getattr(gdatobjt, 'next') if gmod.numbparaelem > 0: if gdat.booldiagmode: for l in gmod.indxpopl: if len(gmodthis.indxelemfull[l]) > len(set(gmodthis.indxelemfull[l])): raise Exception('Repeating entry in the element index list!') thisindxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodthis.indxelemfull, strgmodl) setattr(gmodthis, 'indxparagenrfullelem', thisindxparagenrfullelem) else: thisindxparagenrfullelem = None gdatmodi.this.boolpropfilt = True # index of the population in which a transdimensional proposal will be attempted if gmod.numbparaelem > 0: if thisindxpopl is None: gdatmodi.indxpopltran = np.random.choice(gmod.indxpopl) else: gdatmodi.indxpopltran = thisindxpopl numbelemtemp = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # forced death or birth does not check for the prior on the dimensionality on purpose! if gmod.numbparaelem > 0 and (deth or brth or np.random.rand() < gdat.probtran) and \ not (numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if brth or deth or np.random.rand() < gdat.probbrde or \ numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == 1 or numbelemtemp == 0: ## births and deaths if numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] or deth: gdatmodi.this.indxproptype = 2 elif numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or brth: gdatmodi.this.indxproptype = 1 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 1 else: gdatmodi.this.indxproptype = 2 else: ## splits and merges if numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or numbelemtemp < 2: gdatmodi.this.indxproptype = 3 elif numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]: gdatmodi.this.indxproptype = 4 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 3 else: gdatmodi.this.indxproptype = 4 else: if gdat.booldiagmode and (gdatmodi.stdp > 1e2).any(): raise Exception('') thisindxparagenrfullelemconc = [] for l in gmod.indxpopl: thisindxparagenrfullelemconc.append(thisindxparagenrfullelem[l]['full']) # get the indices of the current parameter vector if gmod.numbparaelem > 0: thisindxsampfull = np.concatenate([gmod.indxparagenrbasestdv] + thisindxparagenrfullelemconc) else: thisindxsampfull = gmod.indxparagenrbasestdv thisstdp = gdatmodi.stdp[gdat.indxstdppara[thisindxsampfull]] if not np.isfinite(thisstdp).all(): raise Exception('') gdatmodi.this.indxproptype = 0 if gdat.booldiagmode and gdat.probspmr == 0 and gdatmodi.this.indxproptype > 2: raise Exception('') if gdat.typeverb > 1: print('gdatmodi.this.indxproptype') print(gdatmodi.this.indxproptype) if gdatmodi.this.indxproptype == 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = gmodthis.indxelemfull if gdatmodi.this.indxproptype > 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) gmodnext.paragenrscalfull = np.copy(gmodthis.paragenrscalfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = deepcopy(gmodthis.indxelemfull) if gdatmodi.this.indxproptype == 0: ## proposal scale if False: # amplitude-dependent proposal scale for l in gmod.indxpopl: thiscompampl = gmodthis.paragenrscalfull[thisindxparagenrfullelem[indxelemfull][gmod.nameparagenrelemampl[l]][l]] compampl = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] minmcompampl = getattr(gmod.minmpara, gmod.nameparagenrelemampl[l]) thiscompunit = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] compunit = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] if nameparagenrelem == gmod.nameparagenrelemampl[l]: # temp -- this only works if compampl is powr distributed gdatmodi.this.stdp = stdpcomp / (thiscompampl / minmcompampl)**2. gdatmodi.this.stdv = stdpcomp / (compampl / minmcompampl)**2. gdatmodi.this.ltrp += np.sum(0.5 * (nextcompunit - thiscompunit)**2 * (1. / gdatmodi.this.stdv**2 - 1. / gdatmodi.this.stdv**2)) else: gdatmodi.this.stdp = stdpcomp / (np.minimum(thiscompampl, compampl) / minmcompampl)**0.5 ## propose a step diffparagenrunitfull = np.random.normal(size=thisindxsampfull.size) * thisstdp gmodnext.paragenrunitfull[thisindxsampfull] = gmodthis.paragenrunitfull[thisindxsampfull] + diffparagenrunitfull if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') indxsamplowr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] < 0.)[0] if indxsamplowr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr] = abs(gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr]) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') indxsampuppr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] > 1.)[0] if indxsampuppr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] = (gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] - 1.) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') gmodnext.paragenrscalfull = icdf_paragenrscalfull(gdat, strgmodl, gmodnext.paragenrunitfull, thisindxparagenrfullelem) if gdat.booldiagmode: if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') if np.amin(gmodnext.paragenrunitfull[gmod.numbpopl:]) < 0.: raise Exception('') if np.amax(gmodnext.paragenrunitfull[gmod.numbpopl:]) > 1.: raise Exception('') if not np.isfinite(gmodnext.paragenrscalfull).all(): raise Exception('') if gdatmodi.this.indxproptype > 0: gdatmodi.indxsamptran = [] if gdatmodi.this.indxproptype == 1: gdatmodi.this.auxipara = np.random.rand(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) elif gdatmodi.this.indxproptype != 2: gdatmodi.this.auxipara = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: # find an empty slot in the element list for u in range(gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if not u in gdatmodi.this.indxelemfull[gdatmodi.indxpopltran]: break gdatmodi.indxelemmodi = [u] gdatmodi.indxelemfullmodi = [gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)] # sample indices to add the new element gdatmodi.indxparagenrfullelemaddd = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemaddd) gmodnext.indxelemfull[gdatmodi.indxpopltran].append(gdatmodi.indxelemmodi[0]) if gdatmodi.this.indxproptype == 1: # sample auxiliary variables gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.this.auxipara # death if gdatmodi.this.indxproptype == 2: # occupied element index to be killed if thisindxelem is None: dethindxindxelem = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) else: dethindxindxelem = thisindxelem # element index to be killed gdatmodi.indxelemmodi = [] gdatmodi.indxelemfullmodi = [] if gdat.typeverb > 1: print('dethindxindxelem') print(dethindxindxelem) gdatmodi.indxelemmodi.append(gmodthis.indxelemfull[gdatmodi.indxpopltran][dethindxindxelem]) gdatmodi.indxelemfullmodi.append(dethindxindxelem) # parameter indices to be killed indxparagenrfullelemdeth = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(indxparagenrfullelemdeth) gdatmodi.this.auxipara = gmodthis.paragenrscalfull[indxparagenrfullelemdeth] if gdatmodi.this.indxproptype > 2: gdatmodi.comppare = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compfrst = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compseco = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) # split if gdatmodi.this.indxproptype == 3: # find the probability of splitting elements gdatmodi.indxelemfullsplt = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) gdatmodi.indxelemsplt = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullsplt] gdatmodi.indxelemfullmodi.insert(0, gdatmodi.indxelemfullsplt) gdatmodi.indxelemmodi.insert(0, gdatmodi.indxelemsplt) # sample indices for the first element gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.insert(0, gdatmodi.indxparagenrfullelemfrst) # sample indices for the second element gdatmodi.indxsampseco = gdatmodi.indxparagenrfullelemaddd # take the parent element parameters for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gdatmodi.comppare[k] = np.copy(gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]]) # draw the auxiliary parameters for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.auxipara[g] = np.random.randn() * gdat.radispmr elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = np.random.rand() else: gdatmodi.this.auxipara[g] = icdf_trap(gdat, strgmodl, np.random.rand(), gmodthis.paragenrscalfull, gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], l) # determine the new parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[1]) * gdatmodi.this.auxipara[0] else: gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[0] gdatmodi.compfrst[1] = gdatmodi.comppare[1] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[1] gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[1] * gdatmodi.this.auxipara[0] else: gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[0] gdatmodi.compseco[1] = gdatmodi.comppare[1] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[1] gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] for g in range(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.compfrst[g] = gdatmodi.comppare[g] gdatmodi.compseco[g] = gdatmodi.this.auxipara[g] # place the new parameters into the sample vector gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compfrst, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.compfrst gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compseco, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = gdatmodi.compseco # check for prior boundaries if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): if np.fabs(gdatmodi.compfrst[0]) > gdat.maxmelin or np.fabs(gdatmodi.compseco[0]) > gdat.maxmelin: gdatmodi.this.boolpropfilt = False else: if np.fabs(gdatmodi.compfrst[0]) > maxmlgal or np.fabs(gdatmodi.compseco[0]) > maxmlgal or \ np.fabs(gdatmodi.compfrst[1]) > maxmbgal or np.fabs(gdatmodi.compseco[1]) > maxmbgal: gdatmodi.this.boolpropfilt = False if gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]) or \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: if not gdatmodi.this.boolpropfilt: print('Rejecting the proposal due to a split that falls out of the prior...') if gdatmodi.this.indxproptype == 4: # determine the index of the primary element to be merged (in the full element list) gdatmodi.indxelemfullmergfrst = np.random.choice(np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran]))) ## first element index to be merged gdatmodi.mergindxelemfrst = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergfrst] # find the probability of merging this element with the others probmerg = retr_probmerg(gdat, gdatmodi, gmodthis.paragenrscalfull, thisindxparagenrfullelem, gdatmodi.indxpopltran, 'seco', typeelem=gmod.typeelem) indxelemfulltemp = np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran])) if gdat.booldiagmode: if indxelemfulltemp.size < 2: raise Exception('') gdatmodi.indxelemfullmergseco = np.random.choice(np.setdiff1d(indxelemfulltemp, np.array([gdatmodi.indxelemfullmergfrst])), p=probmerg) gdatmodi.indxelemfullmodi = np.sort(np.array([gdatmodi.indxelemfullmergfrst, gdatmodi.indxelemfullmergseco])) # parameters of the first element to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## first gdatmodi.compfrst[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]] # determine indices of the modified elements in the sample vector ## first element # temp -- this would not work for multiple populations ! gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemfrst) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemfrst) ## second element index to be merged gdatmodi.mergindxelemseco = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergseco] ## second element gdatmodi.indxparagenrfullelemseco = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemseco) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemseco) # parameters of the elements to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## second gdatmodi.compseco[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[1]]] # indices of the element to be merged gdatmodi.indxelemmodi = [gdatmodi.mergindxelemfrst, gdatmodi.mergindxelemseco] # auxiliary parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] else: gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] gdatmodi.this.auxipara[1] = gdatmodi.compseco[1] - gdatmodi.compfrst[1] gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] / \ (gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = gdatmodi.compseco[g] # merged element gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] > getattr(gdat, 'maxm' + gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: print('Proposal rejected due to falling outside the prior.') return if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[1]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) else: gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) gdatmodi.comppare[1] = gdatmodi.compfrst[1] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[1] - gdatmodi.compfrst[1]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ (gdatmodi.compseco[g] - gdatmodi.compfrst[g]) elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + gdatmodi.compseco[g] else: gdatmodi.comppare[g] = gdatmodi.compfrst[g] gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.comppare, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.comppare # calculate the proposed list of pairs if gdat.typeverb > 1: print('mergindxfrst: ', gdatmodi.mergindxelemfrst) print('gdatmodi.indxelemfullmergfrst: ', gdatmodi.indxelemfullmergfrst) print('mergindxseco: ', gdatmodi.mergindxelemseco) print('gdatmodi.indxelemfullmergseco: ', gdatmodi.indxelemfullmergseco) print('indxparagenrfullelemfrst: ', gdatmodi.indxparagenrfullelemfrst) print('indxparagenrfullelemseco: ', gdatmodi.indxparagenrfullelemseco) if gdat.typeverb > 1 and (gdatmodi.this.indxproptype == 3 or gdatmodi.this.boolpropfilt and gdatmodi.this.indxproptype == 4): if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): print('elinfrst: ', gdatmodi.compfrst[0]) print('amplfrst: ', gdatmodi.compfrst[1]) print('elinseco: ', gdatmodi.compseco[0]) print('amplseco: ', gdatmodi.compseco[1]) print('elinpare: ', gdatmodi.comppare[0]) print('fluxpare: ', gdatmodi.comppare[1]) print('auxipara[0][0]: ', gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdatmodi.this.auxipara[1]) else: print('lgalfrst: ', gdat.anglfact * gdatmodi.compfrst[0]) print('bgalfrst: ', gdat.anglfact * gdatmodi.compfrst[1]) print('amplfrst: ', gdatmodi.compfrst[2]) print('lgalseco: ', gdat.anglfact * gdatmodi.compseco[0]) print('bgalseco: ', gdat.anglfact * gdatmodi.compseco[1]) print('amplseco: ', gdatmodi.compseco[2]) print('lgalpare: ', gdat.anglfact * gdatmodi.comppare[0]) print('bgalpare: ', gdat.anglfact * gdatmodi.comppare[1]) print('fluxpare: ', gdatmodi.comppare[2]) print('auxipara[0][0]: ', gdat.anglfact * gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdat.anglfact * gdatmodi.this.auxipara[1]) print('auxipara[0][2]: ', gdatmodi.this.auxipara[2]) if gmod.numbparaelem > 0 and gdatmodi.this.indxproptype > 0 and gdatmodi.this.boolpropfilt: # change the number of elements if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] + 1 if gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] - 1 gmodnext.paragenrunitfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # remove the element from the occupied element list if (gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4): for a, indxelem in enumerate(gdatmodi.indxelemmodi): if a == 0 and gdatmodi.this.indxproptype == 2 or a == 1 and gdatmodi.this.indxproptype == 4: gmodnext.indxelemfull[gdatmodi.indxpopltran].remove(indxelem) if gdatmodi.this.indxproptype == 0: gdatmodi.indxsampmodi = thisindxsampfull else: if gdatmodi.this.indxproptype == 1: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gdatmodi.this.indxproptype == 2: gdatmodi.indxsampmodi = [gmod.indxpara.numbelem[gdatmodi.indxpopltran]] if gdatmodi.this.indxproptype == 3: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), \ gdatmodi.indxsamptran[0], gdatmodi.indxsamptran[1])) if gdatmodi.this.indxproptype == 4: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gmod.numbparaelem > 0: if gdatmodi.this.indxproptype == 0: indxparagenrfullelem = thisindxparagenrfullelem else: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodnext.indxelemfull, strgmodl) if gdat.typeverb > 1: print('gdatmodi.indxsampmodi') print(gdatmodi.indxsampmodi) if gmod.numbparaelem > 0: print('gmodthis.indxelemfull') print(gmodthis.indxelemfull) print('gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)') print(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)) if gdatmodi.this.indxproptype > 0: print('gdatmodi.indxelemmodi') print(gdatmodi.indxelemmodi) print('gdatmodi.indxelemfullmodi') print(gdatmodi.indxelemfullmodi) print('gdatmodi.this.boolpropfilt') print(gdatmodi.this.boolpropfilt) print('indxparagenrfullelem') print(indxparagenrfullelem) if gdatmodi.this.indxproptype == 1: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0][g]] = icdf_trap(gdat, strgmodl, gdatmodi.this.auxipara[g], gmodthis.paragenrscalfull, \ gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gdatmodi.indxpopltran) if gdat.booldiagmode: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]]): print('l') print(l) print('gmod.indxpara.numbelem') print(gmod.indxpara.numbelem) print('gmodthis.paragenrunitfull') print(gmodthis.paragenrunitfull) raise Exception('') if gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if strgmodl == 'fitt': diffparagenrscalfull = abs(gmodnext.paragenrscalfull - gmodthis.paragenrscalfull) #size = np.where(((gmodthis.paragenrscalfull == 0.) & (diffparagenrscalfull > 0.)) | ((gmodthis.paragenrscalfull != 0.) & (diffparagenrscalfull / gmodthis.paragenrscalfull > 0)))[0].size size = np.where(diffparagenrscalfull != 0.)[0].size if gdatmodi.this.indxproptype == 1: if size - 1 != gmod.numbparagenrelemsing[gdatmodi.indxpopltran]: raise Exception('') def calc_probprop(gdat, gdatmodi): gmod = gdat.fitt # calculate the factor to multiply the acceptance rate, i.e., ## probability of the auxiliary parameters, if gdatmodi.this.indxproptype == 0: gdatmodi.this.lpau = 0. elif gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau = gdatmodi.next.lpritotl - gdatmodi.this.lpritotl lpautemp = 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[gdatmodi.indxpopltran] if gdatmodi.this.indxproptype == 1: gdatmodi.this.lpau += lpautemp if gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau -= lpautemp elif gdatmodi.this.indxproptype == 3 or gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau = 0. dictelemtemp = [dict()] for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.lpau += -0.5 * np.log(2. * np.pi * gdat.radispmr**2) - 0.5 * (gdatmodi.this.auxipara[g] / gdat.radispmr)**2 elif g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: dictelemtemp[0][nameparagenrelem] = gdatmodi.this.auxipara[g] gdatmodi.this.lpau += retr_lprielem(gdat, 'fitt', gdatmodi.indxpopltran, g, \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gdatmodi.this.paragenrscalfull, dictelemtemp, [1]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau *= -1. if gdatmodi.this.indxproptype > 2 and gdatmodi.this.boolpropfilt: ## the ratio of the probability of the reverse and forward proposals, and if gdatmodi.this.indxproptype == 3: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.next.paragenrscalfull, gdatmodi.next.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran] + 1) + np.log(gdatmodi.this.probmergtotl) else: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.this.paragenrscalfull, gdatmodi.this.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = -np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran]) - np.log(gdatmodi.this.probmergtotl) ## Jacobian if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.ljcb = np.log(gdatmodi.comppare[1]) else: gdatmodi.this.ljcb = np.log(gdatmodi.comppare[2]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.ljcb *= -1. else: gdatmodi.this.ljcb = 0. gdatmodi.this.ltrp = 0. for l in gmod.indxpopl: if gdatmodi.this.indxproptype > 0: setattr(gdatmodi, 'auxiparapop%d' % l, gdatmodi.this.auxipara) def retr_indxparagenrfullelem(gdat, indxelemfull, strgmodl): gmod = getattr(gdat, strgmodl) ## element parameters if gmod.numbparaelem > 0: indxparagenrfullelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: indxparagenrfulltemp = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + np.array(indxelemfull[l], dtype=int) * gmod.numbparagenrelemsing[l] cntr = tdpy.cntr() indxparagenrfullelem[l] = dict() for nameparagenrelem in gmod.namepara.genrelem[l]: indxparagenrfullelem[l][nameparagenrelem] = indxparagenrfulltemp + cntr.incr() indxparagenrfullelem[l]['full'] = np.repeat(indxparagenrfulltemp, gmod.numbparagenrelemsing[l]) + np.tile(gmod.indxparagenrelemsing[l], len(indxelemfull[l])) if gdat.booldiagmode: for l in gmod.indxpopl: if len(indxparagenrfullelem[l]['full']) > 0: if np.amax(indxparagenrfullelem[l]['full']) > gmod.numbparagenrelem[l] + gmod.numbparagenrbase: print('strgmodl') print(strgmodl) print('strgstat') print(strgstat) print('gmod.numbparagenrbase') print(gmod.numbparagenrbase) print('gmod.numbparagenrelem[l]') print(gmod.numbparagenrelem[l]) print('indxparagenrfullelem[l][full]') summgene(indxparagenrfullelem[l]['full']) print('gdat.fitt.minmpara.numbelempop0') print(gdat.fitt.minmpara.numbelempop0) print('gdat.fitt.maxmpara.numbelempop0') print(gdat.fitt.maxmpara.numbelempop0) raise Exception('Element parameter indices are bad.') else: indxparagenrfullelem = None return indxparagenrfullelem def retr_weigmergodim(gdat, elin, elinothr): weigmerg = np.exp(-0.5 * ((elin - elinothr) / gdat.radispmr)**2) return weigmerg def retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr): weigmerg = np.exp(-0.5 * (((lgal - lgalothr) / gdat.radispmr)**2 + ((bgal - bgalothr) / gdat.radispmr)**2)) return weigmerg def retr_probmerg(gdat, gdatmodi, paragenrscalfull, indxparagenrfullelem, indxpopltran, strgtype, typeelem=None): # calculate the weights if strgtype == 'seco': numb = 1 if strgtype == 'pair': numb = 2 listweigmerg = [] for a in range(numb): if gmod.typeelem[indxpopltran].startswith('lghtline'): elintotl = paragenrscalfull[indxparagenrfullelem['elin'][indxpopltran]] elin = elintotl[gdatmodi.indxelemfullmodi[0]] elinothr = np.concatenate((elintotl[:gdatmodi.indxelemfullmodi[0]], elintotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergodim(gdat, elin, elinothr) else: lgaltotl = paragenrscalfull[indxparagenrfullelem['lgal'][indxpopltran]] bgaltotl = paragenrscalfull[indxparagenrfullelem['bgal'][indxpopltran]] lgal = lgaltotl[gdatmodi.indxelemfullmodi[0]] bgal = bgaltotl[gdatmodi.indxelemfullmodi[0]] lgalothr = np.concatenate((lgaltotl[:gdatmodi.indxelemfullmodi[0]], lgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) bgalothr = np.concatenate((bgaltotl[:gdatmodi.indxelemfullmodi[0]], bgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr) listweigmerg.append(weigmerg) # determine the probability of merging the second element given the first element if strgtype == 'seco': probmerg = listweigmerg[0] / np.sum(listweigmerg[0]) # determine the probability of merging the pair if strgtype == 'pair': if gmod.typeelem[indxpopltran].startswith('lghtline'): weigpair = retr_weigmergtdim(gdat, elin, elintotl[gdatmodi.indxelemfullmodi[1]]) else: weigpair = retr_weigmergtdim(gdat, lgal, lgaltotl[gdatmodi.indxelemfullmodi[1]], bgal, bgaltotl[gdatmodi.indxelemfullmodi[1]]) probmerg = weigpair / np.sum(listweigmerg[0]) + weigpair / np.sum(listweigmerg[1]) if gdat.booldiagmode: if not np.isfinite(probmerg).all(): raise Exception('Merge probability is infinite.') return probmerg def retr_indxparaelem(gmod, l, u): indxsamppnts = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + u * gmod.numbparagenrelemsing[l] + gmod.indxparagenrelemsing[l] return indxsamppnts def gang_detr(): gang, aang, lgal, bgal = sympy.symbols('gang aang lgal bgal') AB = sympy.matrices.Matrix([[a1*b1,a1*b2,a1*b3],[a2*b1,a2*b2,a2*b3],[a3*b1,a3*b2,a3*b3]]) def retr_psfn(gdat, psfp, indxenertemp, thisangl, typemodlpsfn, strgmodl): gmod = getattr(gdat, strgmodl) indxpsfpinit = gmod.numbpsfptotl * (indxenertemp[:, None] + gdat.numbener * gdat.indxevtt[None, :]) if gdat.typeexpr == 'ferm': scalangl = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(thisangl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] scalanglnorm = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(gdat.binspara.angl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] else: scalangl = thisangl[None, :, None] if typemodlpsfn == 'singgaus': sigc = psfp[indxpsfpinit] sigc = sigc[:, None, :] psfn = retr_singgaus(scalangl, sigc) elif typemodlpsfn == 'singking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigc = sigc[:, None, :] gamc = gamc[:, None, :] psfn = retr_singking(scalangl, sigc, gamc) elif typemodlpsfn == 'doubking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigt = psfp[indxpsfpinit+2] gamt = psfp[indxpsfpinit+3] frac = psfp[indxpsfpinit+4] sigc = sigc[:, None, :] gamc = gamc[:, None, :] sigt = sigt[:, None, :] gamt = gamt[:, None, :] frac = frac[:, None, :] psfn = retr_doubking(scalangl, frac, sigc, gamc, sigt, gamt) if gdat.typeexpr == 'ferm': psfnnorm = retr_doubking(scalanglnorm, frac, sigc, gamc, sigt, gamt) # normalize the PSF if gdat.typeexpr == 'ferm': fact = 2. * np.pi * np.trapz(psfnnorm * np.sin(gdat.binspara.angl[None, :, None]), gdat.binspara.angl, axis=1)[:, None, :] psfn /= fact return psfn def retr_unit(lgal, bgal): xdat = np.cos(bgal) * np.cos(lgal) ydat = -np.cos(bgal) * np.sin(lgal) zaxi = np.sin(bgal) return xdat, ydat, zaxi def retr_psec(gdat, conv): # temp conv = conv.reshape((gdat.numbsidecart, gdat.numbsidecart)) psec = (abs(scipy.fftpack.fft2(conv))**2)[:gdat.numbsidecarthalf, :gdat.numbsidecarthalf] * 1e-3 psec = psec.flatten() return psec def retr_psecodim(gdat, psec): psec = psec.reshape((gdat.numbsidecarthalf, gdat.numbsidecarthalf)) psecodim = np.zeros(gdat.numbsidecarthalf) for k in gdat.indxmpolodim: indxmpol = np.where((gdat.meanpara.mpol > gdat.binspara.mpolodim[k]) & (gdat.meanpara.mpol < gdat.binspara.mpolodim[k+1])) psecodim[k] = np.mean(psec[indxmpol]) psecodim *= gdat.meanpara.mpolodim**2 return psecodim def retr_eerrnorm(minmvarb, maxmvarb, meanvarb, stdvvarb): cdfnminm = 0.5 * (sp.special.erf((minmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfnmaxm = 0.5 * (sp.special.erf((maxmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfndiff = cdfnmaxm - cdfnminm return cdfnminm, cdfndiff def retr_condcatl(gdat): # setup ## number of stacked samples numbstks = 0 indxtupl = [] indxstks = [] indxstksparagenrscalfull = [] for n in gdat.indxsamptotl: indxstks.append([]) indxstkssamptemp = [] for l in gmod.indxpopl: indxstks[n].append([]) for k in range(len(gdat.listpostindxelemfull[n][l])): indxstks[n][l].append(numbstks) indxstkssamptemp.append(numbstks) indxtupl.append([n, l, k]) numbstks += 1 indxstkssamp.append(np.array(indxstkssamptemp)) if gdat.typeverb > 1: print('indxstks') print(indxstks) print('indxtupl') print(indxtupl) print('indxstkssamp') print(indxstksparagenrscalfull) print('numbstks') print(numbstks) cntr = 0 arrystks = np.zeros((numbstks, gmod.numbparagenrelemtotl)) for n in gdat.indxsamptotl: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdat.listpostindxelemfull[n], 'fitt') for l in gmod.indxpopl: for k in np.arange(len(gdat.listpostindxelemfull[n][l])): for m, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): arrystks[indxstks[n][l][k], m] = gdat.listpostparagenrscalfull[n, gmodstat.indxparagenrfullelem[l][nameparagenrelem][k]] if gdat.typeverb > 0: print('Constructing the distance matrix for %d stacked samples...' % arrystks.shape[0]) timeinit = gdat.functime() gdat.distthrs = np.empty(gmod.numbparagenrelemtotl) for k, nameparagenrelem in enumerate(gmod.namepara.elem): # temp l = 0 gdat.distthrs[k] = gdat.stdp[getattr(gdat, 'indxstdppop%d' % l + nameparagenrelem)] # construct lists of samples for each proposal type listdisttemp = [[] for k in range(gmod.numbparagenrelemtotl)] indxstksrows = [[] for k in range(gmod.numbparagenrelemtotl)] indxstkscols = [[] for k in range(gmod.numbparagenrelemtotl)] thisperc = 0 cntr = 0 for k in gmod.indxparagenrelemtotl: for n in range(numbstks): dist = np.fabs(arrystks[n, k] - arrystks[:, k]) indxstks = np.where(dist < gdat.distthrs[k])[0] if indxstks.size > 0: for j in indxstks: cntr += 1 listdisttemp[k].append(dist[j]) indxstksrows[k].append(n) indxstkscols[k].append(j) nextperc = np.floor(100. * float(k * numbstks + n) / numbstks / gmod.numbparagenrelemtotl) if nextperc > thisperc: thisperc = nextperc if cntr > 1e6: break listdisttemp[k] = np.array(listdisttemp[k]) indxstksrows[k] = np.array(indxstksrows[k]) indxstkscols[k] = np.array(indxstkscols[k]) if cntr > 1e6: break listdist = [[] for k in range(gmod.numbparagenrelemtotl)] for k, nameparagenrelem in enumerate(gmod.namepara.elem): listdist[k] = scipy.sparse.csr_matrix((listdisttemp[k], (indxstksrows[k], indxstkscols[k])), shape=(numbstks, numbstks)) listindxstkspair = [] indxstksleft = [] if gdat.typeverb > 0: timefinl = gdat.functime() indxstksleft = range(numbstks) # list of sample lists of the labeled element indxstksassc = [] cntr = 0 gdat.prvlthrs = 0.05 while len(indxstksleft) > 0: # count number of associations numbdist = np.zeros(numbstks, dtype=int) - 1 for p in range(len(indxstksleft)): indxindx = np.where((listdist[0][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmlgal < gdat.anglassc) & \ (listdist[1][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmbgal < gdat.anglassc))[0] numbdist[indxstksleft[p]] = indxindx.size prvlmaxmesti = np.amax(numbdist) / float(gdat.numbsamptotl) if prvlmaxmesti < gdat.prvlthrs: break # determine the element with the highest number of neighbors indxstkscntr = np.argmax(numbdist) indxsamptotlcntr = indxtupl[indxstkscntr][0] indxpoplcntr = indxtupl[indxstkscntr][1] indxelemcntr = indxtupl[indxstkscntr][2] # add the central element sample indxstksassc.append([]) indxstksassc[cntr].append(indxstkscntr) indxstksleft.remove(indxstkscntr) if gdat.typeverb > 1: print('Match step %d' % cntr) print('numbdist') print(numbdist) print('indxstkscntr') print(indxstkscntr) print('indxstksleft') print(indxstksleft) # add the associated element samples if len(indxstksleft) > 0: for n in gdat.indxsamptotl: indxstkstemp = np.intersect1d(np.array(indxstksleft), indxstksparagenrscalfull[n]) if n == indxsamptotlcntr: continue if indxstkstemp.size > 0: totl = np.zeros_like(indxstkstemp) for k in gmod.indxparagenrelemtotl: temp = listdist[k][indxstkscntr, indxstkstemp].tonp.array()[0] totl = totl + temp**2 indxleft = np.argsort(totl)[0] indxstksthis = indxstkstemp[indxleft] thisbool = True for k in gmod.indxparagenrelemtotl: if listdist[k][indxstkscntr, indxstksthis] > gdat.distthrs[k]: thisbool = False if thisbool: indxstksassc[cntr].append(indxstksthis) indxstksleft.remove(indxstksthis) # temp #if gdat.makeplot: # gdatmodi = tdpy.gdatstrt() # gdatmodi.this.indxelemfull = deepcopy(listindxelemfull[n]) # for r in range(len(indxstksassc)): # calc_poststkscond(gdat, indxstksassc) # gdatmodi.this.indxelemfull = [[] for l in gmod.indxpopl] # for indxstkstemp in indxstksleft: # indxsamptotlcntr = indxtupl[indxstkstemp][0] # indxpoplcntr = indxtupl[indxstkstemp][1] # indxelemcntr = indxtupl[indxstkstemp][2] # gdatmodi.this.paragenrscalfull = gdat.listparagenrscalfull[indxsamptotlcntr, :] # gdatmodi.this.indxelemfull[].append() # plot_genemaps(gdat, gdatmodi, 'this', 'cntpdata', strgpdfn, indxenerplot=0, indxevttplot=0, cond=True) cntr += 1 gdat.dictglob['poststkscond'] = [] gdat.dictglob['liststkscond'] = [] # for each condensed element for r in range(len(indxstksassc)): gdat.dictglob['liststkscond'].append([]) gdat.dictglob['liststkscond'][r] = {} gdat.dictglob['poststkscond'].append([]) gdat.dictglob['poststkscond'][r] = {} for strgfeat in gmod.namepara.genrelem: gdat.dictglob['liststkscond'][r][strgfeat] = [] # for each associated sample associated with the central stacked sample for k in range(len(indxstksassc[r])): indxsamptotlcntr = indxtupl[indxstksassc[r][k]][0] indxpoplcntr = indxtupl[indxstksassc[r][k]][1] indxelemcntr = indxtupl[indxstksassc[r][k]][2] for strgfeat in gmod.namepara.genrelem: temp = getattr(gdat, 'list' + strgfeat) if temp[indxsamptotlcntr][indxpoplcntr].size > 0: temp = temp[indxsamptotlcntr][indxpoplcntr][..., indxelemcntr] gdat.dictglob['liststkscond'][r][strgfeat].append(temp) for r in range(len(gdat.dictglob['liststkscond'])): for strgfeat in gmod.namepara.genrelem: arry = np.stack(gdat.dictglob['liststkscond'][r][strgfeat], axis=0) gdat.dictglob['poststkscond'][r][strgfeat] = np.zeros(([3] + list(arry.shape[1:]))) gdat.dictglob['poststkscond'][r][strgfeat][0, ...] = median(arry, axis=0) gdat.dictglob['poststkscond'][r][strgfeat][1, ...] = percennp.tile(arry, 16., axis=0) gdat.dictglob['poststkscond'][r][strgfeat][2, ...] = percennp.tile(arry, 84., axis=0) gdat.numbstkscond = len(gdat.dictglob['liststkscond']) gdat.indxstkscond = np.arange(gdat.numbstkscond) gdat.prvl = np.empty(gdat.numbstkscond) for r in gdat.indxstkscond: gdat.prvl[r] = len(gdat.dictglob['liststkscond'][r]['deltllik']) gdat.prvl /= gdat.numbsamptotl gdat.minmprvl = 0. gdat.maxmprvl = 1. retr_axis(gdat, 'prvl') gdat.histprvl = np.histogram(gdat.prvl, bins=gdat.binspara.prvl)[0] if gdat.makeplot: pathcond = getattr(gdat, 'path' + strgpdfn + 'finlcond') for k, nameparagenrelem in enumerate(gmod.namepara.elem): path = pathcond + 'histdist' + nameparagenrelem listtemp = np.copy(listdist[k].tonp.array()).flatten() listtemp = listtemp[np.where(listtemp != 1e20)[0]] tdpy.mcmc.plot_hist(path, listtemp, r'$\Delta \tilde{' + getattr(gmod.lablrootpara, nameparagenrelem) + '}$') path = pathcond + 'histprvl' tdpy.mcmc.plot_hist(path, gdat.prvl, r'$p$') gdat.prvlthrs = 0.1 gdat.indxprvlhigh = np.where(gdat.prvl > gdat.prvlthrs)[0] gdat.numbprvlhigh = gdat.indxprvlhigh.size def retr_conv(gdat, defl): defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) # temp conv = abs(np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0) + np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) / 2. conv = conv.flatten() return conv def retr_invm(gdat, defl): # temp defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) invm = (1. - np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0)) * (1. - np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) - \ np.gradient(defl[:, :, 0], gdat.sizepixl, axis=1) * np.gradient(defl[:, :, 1], gdat.sizepixl, axis=0) invm = invm.flatten() return invm def setp_indxswepsave(gdat): gdat.indxswep = np.arange(gdat.numbswep) gdat.boolsave = np.zeros(gdat.numbswep, dtype=bool) gdat.indxswepsave = np.arange(gdat.numbburn, gdat.numbburn + gdat.numbsamp * gdat.factthin, gdat.factthin) gdat.boolsave[gdat.indxswepsave] = True gdat.indxsampsave = np.zeros(gdat.numbswep, dtype=int) - 1 gdat.indxsampsave[gdat.indxswepsave] = np.arange(gdat.numbsamp) def retr_cntspnts(gdat, listposi, spec): cnts = np.zeros((gdat.numbener, spec.shape[1])) if gdat.boolbinsspat: lgal = listposi[0] bgal = listposi[1] indxpixlpnts = retr_indxpixl(gdat, bgal, lgal) else: elin = listposi[0] indxpixlpnts = np.zeros_like(elin, dtype=int) for k in range(spec.shape[1]): cnts[:, k] += spec[:, k] * gdat.expototl[:, indxpixlpnts[k]] if gdat.enerdiff: cnts *= gdat.deltener[:, None] cnts = np.sum(cnts, axis=0) return cnts def retr_mdencrit(gdat, adissour, adishost, adishostsour): mdencrit = gdat.factnewtlght / 4. / np.pi * adissour / adishostsour / adishost return mdencrit def retr_massfrombein(gdat, adissour, adishost, adishostsour): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) massfrombein = np.pi * adishost**2 * mdencrit return massfrombein def retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) fracacutasca = acut / asca factmcutfromdefs = np.pi * adishost**2 * mdencrit * asca * retr_mcutfrommscl(fracacutasca) return factmcutfromdefs def retr_mcut(gdat, defs, asca, acut, adishost, mdencrit): mscl = defs * np.pi * adishost**2 * mdencrit * asca fracacutasca = acut / asca mcut = mscl * retr_mcutfrommscl(fracacutasca) return mcut def retr_mcutfrommscl(fracacutasca): mcut = fracacutasca**2 / (fracacutasca**2 + 1.)**2 * ((fracacutasca**2 - 1.) * np.log(fracacutasca) + fracacutasca * np.pi - (fracacutasca**2 + 1.)) return mcut def retr_negalogt(varb): negalogt = sign(varb) * np.log10(np.fabs(varb)) return negalogt def retr_gradmaps(gdat, maps): # temp -- this does not work with vanishing exposure maps = maps.reshape((gdat.numbsidecart, gdat.numbsidecart)) grad = np.dstack((np.gradient(maps, gdat.sizepixl, axis=0), np.gradient(maps, gdat.sizepixl, axis=1))).reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) grad = grad.reshape((gdat.numbpixlcart, 2)) return grad def retr_spatmean(gdat, inpt, boolcntp=False): listspatmean = [[] for b in gdat.indxspatmean] listspatstdv = [[] for b in gdat.indxspatmean] for b, namespatmean in enumerate(gdat.listnamespatmean): if boolcntp: cntp = inpt[gdat.listindxcubespatmean[b]] else: cntp = inpt[gdat.listindxcubespatmean[b]] * gdat.expo[gdat.listindxcubespatmean[b]] * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] spatmean = np.mean(np.sum(cntp, 2), axis=1) / gdat.apix spatstdv = np.sqrt(np.sum(cntp, axis=(1, 2))) / gdat.numbdata / gdat.apix if gdat.boolcorrexpo: spatmean /= gdat.expototlmean spatstdv /= gdat.expototlmean if gdat.enerdiff: spatmean /= gdat.deltener spatstdv /= gdat.deltener listspatmean[b] = spatmean listspatstdv[b] = spatstdv return listspatmean, listspatstdv def retr_rele(gdat, maps, lgal, bgal, defs, asca, acut, indxpixlelem, absv=True, cntpmodl=None): grad = retr_gradmaps(gdat, maps) defl = retr_defl(gdat, indxpixlelem, lgal, bgal, defs, asca=asca, acut=acut) prod = grad * defl if cntpmodl is not None: prod /= cntpmodl[:, None] dotstemp = np.sum(prod, 1) if absv: dotstemp = np.fabs(dotstemp) else: dotstemp = dotstemp dots = np.mean(dotstemp) return dots def retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn, strgmome='pmea', indxvarb=None, indxlist=None): if strgvarb.startswith('cntpdata'): varb = getattr(gdat, strgvarb) elif strgvarb.startswith('histcntpdata'): varb = getattr(gdat, strgvarb) else: if strgmodl == 'true': gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) varb = getattr(gmodstat, strgvarb) if strgmodl == 'fitt': if strgstat == 'this': if strgmome == 'errr': varb = getattr(gdatmodi, strgstat + 'errr' + strgvarb) else: varb = getattr(gdatmodi, strgstat + strgvarb) if strgstat == 'pdfn': varb = getattr(gdat, strgmome + strgpdfn + strgvarb) if indxlist is not None: varb = varb[indxlist] if indxvarb is not None: if strgmome == 'errr': varb = varb[[slice(None)] + indxvarb] else: varb = varb[indxvarb] return np.copy(varb) def setp_indxpara(gdat, typesetp, strgmodl='fitt'): print('setp_indxpara(): Building parameter indices for model %s with type %s...' % (strgmodl, typesetp)) gmod = getattr(gdat, strgmodl) if typesetp == 'init': if strgmodl == 'fitt': gmod.lablmodl = 'Model' if strgmodl == 'true': gmod.lablmodl = 'True' # transdimensional element populations gmod.numbpopl = len(gmod.typeelem) gmod.indxpopl = np.arange(gmod.numbpopl) if gdat.typeexpr != 'user': # background component gmod.numbback = 0 gmod.indxback = [] for c in range(len(gmod.typeback)): if isinstance(gmod.typeback[c], str): if gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): namebfun = gmod.typeback[c][:8] ordrexpa = int(gmod.typeback[c][8:]) numbexpa = 4 * ordrexpa**2 indxexpa = np.arange(numbexpa) del gmod.typeback[c] for k in indxexpa: gmod.typeback.insert(c+k, namebfun + '%04d' % k) gmod.numbback = len(gmod.typeback) gmod.indxback = np.arange(gmod.numbback) gmod.numbbacktotl = np.sum(gmod.numbback) gmod.indxbacktotl = np.arange(gmod.numbbacktotl) # galaxy components gmod.indxsersfgrd = np.arange(gmod.numbsersfgrd) # name of the generative element parameter used for the amplitude gmod.nameparagenrelemampl = [[] for l in gmod.indxpopl] gmod.indxparagenrelemampl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmod.nameparagenrelemampl[l] = 'per0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.nameparagenrelemampl[l] = 'lum0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtline'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 1 elif gmod.typeelem[l].startswith('lghtpnts'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtgausbgrd'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l].startswith('clus'): gmod.nameparagenrelemampl[l] = 'nobj' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' if gmod.typeelem[l] == 'clus': gmod.nameparagenrelemampl[l] = 'nobj' if len(gmod.nameparagenrelemampl[l]) == 0: raise Exception('Amplitude feature undefined.') for featpara in gdat.listfeatpara: for strggrop in gdat.liststrggroppara: setattr(gmod, 'list' + featpara + 'para' + strggrop, []) if typesetp == 'finl': # number of elements in the current state of the true model if strgmodl == 'true': gmod.numbelem = np.zeros(gmod.numbpopl) for l in gmod.indxpopl: gmod.numbelem[l] += getattr(gmod.maxmpara, 'numbelempop%d' % l) gmod.numbelemtotl = np.sum(gmod.numbelem) # element setup ## flag to calculate the kernel approximation errors boolcalcerrr = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelemspateval[l] == 'locl' and gdat.numbpixlfull < 1e5: # temp boolcalcerrr[l] = False else: boolcalcerrr[l] = False setp_varb(gdat, 'boolcalcerrr', valu=boolcalcerrr, strgmodl=strgmodl) # maximum number of elements for each population gmod.maxmpara.numbelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = getattr(gmod.maxmpara, 'numbelempop%d' % l) # maximum number of elements summed over all populations gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) ## sorting feature nameparaelemsort = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # feature to be used to sort elements if gmod.typeelem[l].startswith('lght'): nameparaelemsort[l] = 'flux' if gmod.typeelem[l] == 'lens': nameparaelemsort[l] = 'defs' if gmod.typeelem[l].startswith('clus'): nameparaelemsort[l] = 'nobj' ## label extensions gmod.lablelemextn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{fps}' if gmod.typeelem[l] == 'lghtgausbgrd': gmod.lablelemextn[l] = r'\rm{bgs}' else: if gmod.typeelem[l].startswith('lghtpntspuls'): gmod.lablelemextn[l] = r'\rm{pul}' if gmod.typeelem[l].startswith('lghtpntsagnn'): gmod.lablelemextn[l] = r'\rm{agn}' elif gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{pts}' if gmod.typeelem[l] == 'lens': gmod.lablelemextn[l] = r'\rm{sub}' if gmod.typeelem[l].startswith('clus'): gmod.lablelemextn[l] = r'\rm{cls}' if gmod.typeelem[l].startswith('lghtline'): gmod.lablelemextn[l] = r'\rm{lin}' gmod.indxpoplgrid = [[] for y in gdat.indxgrid] for y in gdat.indxgrid: for indx, typeelemtemp in enumerate(gmod.typeelem): # foreground grid (image plane) -- the one np.where the data is measured if y == 0: if typeelemtemp.startswith('lght') and not typeelemtemp.endswith('bgrd') or typeelemtemp.startswith('clus'): gmod.indxpoplgrid[y].append(indx) # foreground mass grid if y == 1: if typeelemtemp.startswith('lens'): gmod.indxpoplgrid[y].append(indx) # background grid (source plane) if y == 2: if typeelemtemp.endswith('bgrd'): gmod.indxpoplgrid[y].append(indx) indxgridpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for y in gdat.indxgrid: if l in gmod.indxpoplgrid[y]: indxgridpopl[l] = y calcelemsbrt = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts'): calcelemsbrt = True if 'lghtgausbgrd' in gmod.typeelem: calcelemsbrtbgrd = True else: calcelemsbrtbgrd = False if gmod.boollenssubh: calcelemdefl = True else: calcelemdefl = False ## element Boolean flags gmod.boolelemlght = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.boolelemlght[l] = True else: gmod.boolelemlght[l] = False gmod.boolelemlghtanyy = True in gmod.boolelemlght gmod.boolelemlens = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lens'): gmod.boolelemlens = True gmod.boolelemsbrtdfnc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0 and (gmod.typeelem[l].startswith('lght') and not gmod.typeelem[l].endswith('bgrd') or gmod.typeelem[l].startswith('clus')): gmod.boolelemsbrtdfnc[l] = True else: gmod.boolelemsbrtdfnc[l] = False gmod.boolelemsbrtdfncanyy = True in gmod.boolelemsbrtdfnc gmod.boolelemdeflsubh = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': gmod.boolelemdeflsubh[l] = True else: gmod.boolelemdeflsubh[l] = False gmod.boolelemdeflsubhanyy = True in gmod.boolelemdeflsubh gmod.boolelemsbrtextsbgrd = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l].endswith('bgrd'): gmod.boolelemsbrtextsbgrd[l] = True else: gmod.boolelemsbrtextsbgrd[l] = False gmod.boolelemsbrtextsbgrdanyy = True in gmod.boolelemsbrtextsbgrd if gmod.boolelemsbrtextsbgrdanyy: gmod.indxpopllens = 1 else: gmod.indxpopllens = 0 gmod.boolelemsbrtpnts = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l] != 'lghtline' or gmod.typeelem[l] == 'clus': gmod.boolelemsbrtpnts[l] = True else: gmod.boolelemsbrtpnts[l] = False gmod.boolelemsbrtpntsanyy = True in gmod.boolelemsbrtpnts # temp -- because there is currently no extended source gmod.boolelemsbrt = gmod.boolelemsbrtdfnc gmod.boolelempsfn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts') or gmod.typeelem[l] == 'clus': gmod.boolelempsfn[l] = True else: gmod.boolelempsfn[l] = False gmod.boolelempsfnanyy = True in gmod.boolelempsfn spectype = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.boolelemlght[l]: spectype[l] = 'powr' else: spectype[l] = 'none' setp_varb(gdat, 'spectype', valu=spectype, strgmodl=strgmodl) minmgwdt = 2. * gdat.sizepixl maxmgwdt = gdat.maxmgangdata / 4. setp_varb(gdat, 'gwdt', minm=minmgwdt, maxm=maxmgwdt, strgmodl=strgmodl) setp_varb(gdat, 'aerr', minm=-100, maxm=100, strgmodl=strgmodl, popl='full') if gmod.boolelemlghtanyy: # flux if gdat.typeexpr == 'ferm': minmflux = 1e-9 maxmflux = 1e-6 if gdat.typeexpr == 'tess': minmflux = 1. maxmflux = 1e3 if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': minmflux = 1e4 maxmflux = 1e7 else: minmflux = 3e-9 maxmflux = 1e-6 if gdat.typeexpr == 'gene': minmflux = 0.1 maxmflux = 100. if gdat.typeexpr == 'hubb': minmflux = 1e-20 maxmflux = 1e-17 if gdat.typeexpr == 'fire': minmflux = 1e-20 maxmflux = 1e-17 setp_varb(gdat, 'flux', limt=[minmflux, maxmflux], strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'brekprioflux', limt=[3e-9, 1e-6], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'sloplowrprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'slopupprprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) if gdat.boolbinsener: ### spectral parameters if gdat.typeexpr == 'ferm': sind = [1., 3.] minmsind = 1. maxmsind = 3. if gdat.typeexpr == 'chan': minmsind = 0.4 maxmsind = 2.4 sind = [0.4, 2.4] if gdat.typeexpr == 'hubb': minmsind = 0.5 maxmsind = 2.5 sind = [0.4, 2.4] if gdat.typeexpr != 'fire': setp_varb(gdat, 'sind', limt=[minmsind, maxmsind], strgmodl=strgmodl) setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) setp_varb(gdat, 'expc', limt=[0.1, 10.], strgmodl=strgmodl) setp_varb(gdat, 'sinddistmean', limt=sind, popl='full', strgmodl=strgmodl) #### standard deviations should not be too small setp_varb(gdat, 'sinddiststdv', limt=[0.3, 2.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdistmean', limt=[-1., 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdiststdv', limt=[0.1, 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdistmean', limt=[1., 8.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdiststdv', limt=[0.01 * gdat.maxmener, gdat.maxmener], popl='full', strgmodl=strgmodl) for i in gdat.indxenerinde: setp_varb(gdat, 'sindcolr0001', limt=[-2., 6.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr0002', limt=[0., 8.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr%04d' % i, limt=[-5., 10.], strgmodl=strgmodl) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': setp_varb(gdat, 'gang', limt=[1e-1 * gdat.sizepixl, gdat.maxmgangdata], strgmodl=strgmodl) setp_varb(gdat, 'geff', limt=[0., 0.4], strgmodl=strgmodl) setp_varb(gdat, 'dglc', limt=[10., 3e3], strgmodl=strgmodl) setp_varb(gdat, 'phii', limt=[0., 2. * np.pi], strgmodl=strgmodl) setp_varb(gdat, 'thet', limt=[0., np.pi], strgmodl=strgmodl) setp_varb(gdat, 'per0distmean', limt=[5e-4, 1e1], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdistmean', limt=[1e7, 1e16], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'per0diststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdiststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'gangslop', limt=[0.5, 4.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'dglcslop', limt=[0.5, 2.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'spatdistcons', limt=[1e-4, 1e-2], popl='full') setp_varb(gdat, 'bgaldistscal', limt=[0.5 / gdat.anglfact, 5. / gdat.anglfact], popl='full', strgmodl=strgmodl) if gmod.typeelem[l] == 'lghtpntsagnntrue': setp_varb(gdat, 'dlos', limt=[1e7, 1e9], strgmodl=strgmodl) setp_varb(gdat, 'dlosslop', limt=[-0.5, -3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0', limt=[1e43, 1e46], strgmodl=strgmodl) setp_varb(gdat, 'lum0distbrek', limt=[1e42, 1e46], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0sloplowr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0slopuppr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) # construct background surface brightness templates from the user input gmod.sbrtbacknorm = [[] for c in gmod.indxback] gmod.boolunifback = np.ones(gmod.numbback, dtype=bool) for c in gmod.indxback: gmod.sbrtbacknorm[c] = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gmod.typeback[c] == 'data': gmod.sbrtbacknorm[c] = np.copy(gdat.sbrtdata) gmod.sbrtbacknorm[c][np.where(gmod.sbrtbacknorm[c] == 0.)] = 1e-100 elif isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c] elif isinstance(gmod.typeback[c], list) and isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = retr_spec(gdat, np.array([gmod.typeback[c]]), sind=np.array([gmod.typeback[c]]))[:, 0, None, None] elif isinstance(gmod.typeback[c], np.ndarray) and gmod.typeback[c].ndim == 1: gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c][:, None, None] elif gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): indxexpatemp = int(gmod.typeback[c][8:]) indxterm = indxexpatemp // ordrexpa**2 indxexpaxdat = (indxexpatemp % ordrexpa**2) // ordrexpa + 1 indxexpaydat = (indxexpatemp % ordrexpa**2) % ordrexpa + 1 if namebfun == 'bfunfour': ampl = 1. func = gdat.meanpara.bgalcart if namebfun == 'bfunwfou': functemp = np.exp(-0.5 * (gdat.meanpara.bgalcart / (1. / gdat.anglfact))**2) ampl = np.sqrt(functemp) func = functemp argslgal = 2. * np.pi * indxexpaxdat * gdat.meanpara.lgalcart / gdat.maxmgangdata argsbgal = 2. * np.pi * indxexpaydat * func / gdat.maxmgangdata if indxterm == 0: termfrst = np.sin(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 1: termfrst = np.sin(argslgal) termseco = ampl * np.cos(argsbgal) if indxterm == 2: termfrst = np.cos(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 3: termfrst = np.cos(argslgal) termseco = ampl * np.cos(argsbgal) gmod.sbrtbacknorm[c] = (termfrst[None, :] * termseco[:, None]).flatten()[None, :, None] * \ np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) else: path = gdat.pathinpt + gmod.typeback[c] gmod.sbrtbacknorm[c] = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': if not gdat.boolforccart: if gmod.sbrtbacknorm[c].shape[2] != gdat.numbsidecart: raise Exception('Provided background template must have the chosen image dimensions.') gmod.sbrtbacknorm[c] = gmod.sbrtbacknorm[c].reshape((gmod.sbrtbacknorm[c].shape[0], -1, gmod.sbrtbacknorm[c].shape[-1])) if gdat.typepixl == 'cart' and gdat.boolforccart: sbrtbacknormtemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtbacknormtemp[i, :, m] = tdpy.retr_cart(gmod.sbrtbacknorm[c][i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gmod.sbrtbacknorm[c] = sbrtbacknormtemp # determine spatially uniform background templates for i in gdat.indxenerfull: for m in gdat.indxevttfull: if np.std(gmod.sbrtbacknorm[c][i, :, m]) > 1e-6: gmod.boolunifback[c] = False boolzero = True gmod.boolbfun = False for c in gmod.indxback: if np.amin(gmod.sbrtbacknorm[c]) < 0. and isinstance(gmod.typeback[c], str) and not gmod.typeback[c].startswith('bfun'): booltemp = False raise Exception('Background templates must be positive-definite every where.') if not np.isfinite(gmod.sbrtbacknorm[c]).all(): raise Exception('Background template is not finite.') if np.amin(gmod.sbrtbacknorm[c]) > 0. or gmod.typeback[c] == 'data': boolzero = False if isinstance(gmod.typeback[c], str) and gmod.typeback[c].startswith('bfun'): gmod.boolbfun = True if boolzero and not gmod.boolbfun: raise Exception('At least one background template must be positive everynp.where.') # temp -- does not take into account dark hosts gmod.boolhost = gmod.typeemishost != 'none' # type of PSF evaluation if gmod.maxmpara.numbelemtotl > 0 and gmod.boolelempsfnanyy: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'full' else: # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'kern' else: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is convolved by a kernel, no point source exists typeevalpsfn = 'conv' else: # the background is not convolved by a kernel, no point source exists typeevalpsfn = 'none' setp_varb(gdat, 'typeevalpsfn', valu=typeevalpsfn, strgmodl=strgmodl) if gdat.typeverb > 1: print('gmod.typeevalpsfn') print(gmod.typeevalpsfn) gmod.boolapplpsfn = gmod.typeevalpsfn != 'none' ### PSF model if gmod.typeevalpsfn != 'none': if gmod.typemodlpsfn == 'singgaus': numbpsfpform = 1 elif gmod.typemodlpsfn == 'singking': numbpsfpform = 2 elif gmod.typemodlpsfn == 'doubgaus': numbpsfpform = 3 elif gmod.typemodlpsfn == 'gausking': numbpsfpform = 4 elif gmod.typemodlpsfn == 'doubking': numbpsfpform = 5 gmod.numbpsfptotl = numbpsfpform if gdat.boolpriopsfninfo: for i in gdat.indxener: for m in gdat.indxevtt: meansigc = gmod.psfpexpr[i * gmod.numbpsfptotl + m * gmod.numbpsfptotl * gdat.numbener] stdvsigc = meansigc * 0.1 setp_varb(gdat, 'sigcen%02devt%d' % (i, m), mean=meansigc, stdv=stdvsigc, lablroot='$\sigma$', scal='gaus', \ strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': meangamc = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 1] stdvgamc = meangamc * 0.1 setp_varb(gdat, 'gamcen%02devt%d' % (i, m), mean=meangamc, stdv=stdvgamc, strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking': meansigt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 2] stdvsigt = meansigt * 0.1 setp_varb(gdat, 'sigten%02devt%d' % (i, m), mean=meansigt, stdv=stdvsigt, strgmodl=strgmodl) meangamt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 3] stdvgamt = meangamt * 0.1 setp_varb(gdat, 'gamten%02devt%d' % (i, m), mean=meangamt, stdv=stdvgamt, strgmodl=strgmodl) meanpsff = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 4] stdvpsff = meanpsff * 0.1 setp_varb(gdat, 'psffen%02devt%d' % (i, m), mean=meanpsff, stdv=stdvpsff, strgmodl=strgmodl) else: if gdat.typeexpr == 'gene': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'ferm': minmsigm = 0.1 maxmsigm = 10. if gdat.typeexpr == 'hubb': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'chan': minmsigm = 0.1 / gdat.anglfact maxmsigm = 2. / gdat.anglfact minmgamm = 1.5 maxmgamm = 20. setp_varb(gdat, 'sigc', minm=minmsigm, maxm=maxmsigm, lablroot='$\sigma_c$', ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'sigt', minm=minmsigm, maxm=maxmsigm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamc', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamt', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'psff', minm=0., maxm=1., ener='full', evtt='full', strgmodl=strgmodl) # background ## number of background parameters numbbacp = 0 for c in gmod.indxback: if gmod.boolspecback[c]: numbbacp += 1 else: numbbacp += gdat.numbener ## background parameter indices gmod.indxbackbacp = np.zeros(numbbacp, dtype=int) indxenerbacp = np.zeros(numbbacp, dtype=int) cntr = 0 for c in gmod.indxback: if gmod.boolspecback[c]: gmod.indxbackbacp[cntr] = c cntr += 1 else: for i in gdat.indxener: indxenerbacp[cntr] = i gmod.indxbackbacp[cntr] = c cntr += 1 # indices of background parameters for each background component gmod.indxbacpback = [[] for c in gmod.indxback] for c in gmod.indxback: gmod.indxbacpback[c] = np.where((gmod.indxbackbacp == c))[0] # list of names of diffuse components gmod.listnamediff = [] for c in gmod.indxback: gmod.listnamediff += ['back%04d' % c] if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: gmod.listnamediff += ['hostisf%d' % e] if gmod.boollens: gmod.listnamediff += ['lens'] # list of names of emission components listnameecom = deepcopy(gmod.listnamediff) for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: if strgmodl == 'true' and gmod.numbelem[l] > 0 or strgmodl == 'fitt' and gmod.maxmpara.numbelem[l] > 0: if not 'dfnc' in listnameecom: listnameecom += ['dfnc'] if not 'dfncsubt' in listnameecom: listnameecom += ['dfncsubt'] gmod.listnameecomtotl = listnameecom + ['modl'] for c in gmod.indxback: setp_varb(gdat, 'cntpback%04d' % c, lablroot='$C_{%d}$' % c, minm=1., maxm=100., scal='logt', strgmodl=strgmodl) gmod.listnamegcom = deepcopy(gmod.listnameecomtotl) if gmod.boollens: gmod.listnamegcom += ['bgrd'] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: gmod.listnamegcom += ['bgrdgalx', 'bgrdexts'] numbdiff = len(gmod.listnamediff) convdiff = np.zeros(numbdiff, dtype=bool) for k, namediff in enumerate(gmod.listnamediff): if not (gdat.boolthindata or gmod.typeevalpsfn == 'none' or gmod.typeevalpsfn == 'kern'): if namediff.startswith('back'): indx = int(namediff[-4:]) convdiff[k] = not gmod.boolunifback[indx] else: convdiff[k] = True # element parameters that correlate with the statistical significance of the element gmod.namepara.elemsign = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.namepara.elemsign[l] = 'flux' if gmod.typeelem[l] == 'lens': gmod.namepara.elemsign[l] = 'defs' if gmod.typeelem[l].startswith('clus'): gmod.namepara.elemsign[l] = 'nobj' if gdat.typeverb > 0: if strgmodl == 'true': strgtemp = 'true' if strgmodl == 'fitt': strgtemp = 'fitting' print('Building elements for the %s model...' % strgtemp) # define the names and scalings of element parameters gmod.namepara.genrelem = [[] for l in gmod.indxpopl] gmod.listscalparagenrelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] = ['elin'] gmod.listscalparagenrelem[l] = ['logt'] elif gmod.typespatdist[l] == 'diskscal': gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'dexp'] elif gmod.typespatdist[l] == 'gangexpo': gmod.namepara.genrelem[l] = ['gang', 'aang'] gmod.listscalparagenrelem[l] = ['expo', 'self'] elif gmod.typespatdist[l] == 'glc3': gmod.namepara.genrelem[l] = ['dglc', 'thet', 'phii'] gmod.listscalparagenrelem[l] = ['powr', 'self', 'self'] else: gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'self'] # amplitude if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['lum0'] gmod.listscalparagenrelem[l] += ['dpowslopbrek'] elif gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['per0'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] elif gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['flux'] gmod.listscalparagenrelem[l] += [gmod.typeprioflux[l]] elif gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['defs'] gmod.listscalparagenrelem[l] += ['powr'] elif gmod.typeelem[l].startswith('clus'): gmod.namepara.genrelem[l] += ['nobj'] gmod.listscalparagenrelem[l] += ['powr'] # shape if gmod.typeelem[l] == 'lghtgausbgrd' or gmod.typeelem[l] == 'clusvari': gmod.namepara.genrelem[l] += ['gwdt'] gmod.listscalparagenrelem[l] += ['powr'] if gmod.typeelem[l] == 'lghtlinevoig': gmod.namepara.genrelem[l] += ['sigm'] gmod.listscalparagenrelem[l] += ['logt'] gmod.namepara.genrelem[l] += ['gamm'] gmod.listscalparagenrelem[l] += ['logt'] # others if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['magf'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] gmod.namepara.genrelem[l] += ['geff'] gmod.listscalparagenrelem[l] += ['self'] elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['dlos'] gmod.listscalparagenrelem[l] += ['powr'] if gdat.numbener > 1 and gmod.typeelem[l].startswith('lghtpnts'): if gmod.spectype[l] == 'colr': for i in gdat.indxener: if i == 0: continue gmod.namepara.genrelem[l] += ['sindcolr%04d' % i] gmod.listscalparagenrelem[l] += ['self'] else: gmod.namepara.genrelem[l] += ['sind'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'curv': gmod.namepara.genrelem[l] += ['curv'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'expc': gmod.namepara.genrelem[l] += ['expc'] gmod.listscalparagenrelem[l] += ['self'] if gmod.typeelem[l] == 'lens': if gdat.variasca: gmod.namepara.genrelem[l] += ['asca'] gmod.listscalparagenrelem[l] += ['self'] if gdat.variacut: gmod.namepara.genrelem[l] += ['acut'] gmod.listscalparagenrelem[l] += ['self'] # names of element parameters for each scaling gmod.namepara.genrelemscal = [{} for l in gmod.indxpopl] for l in gmod.indxpopl: for scaltype in gdat.listscaltype: gmod.namepara.genrelemscal[l][scaltype] = [] for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if scaltype == gmod.listscalparagenrelem[l][k]: gmod.namepara.genrelemscal[l][scaltype].append(nameparagenrelem) # variables for which whose marginal distribution and pair-correlations will be plotted gmod.namepara.derielemodim = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.derielemodim[l] = deepcopy(gmod.namepara.genrelem[l]) gmod.namepara.derielemodim[l] += ['deltllik'] if gdat.boolbinsspat: if not 'lgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['lgal'] if not 'bgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['bgal'] if not 'gang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['gang'] if not 'aang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['aang'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.derielemodim[l] += ['cnts'] if gdat.typeexpr == 'ferm': gmod.namepara.derielemodim[l] + ['sbrt0018'] if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.derielemodim[l] += ['reds'] gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] gmod.namepara.derielemodim[l] += ['mass'] gmod.namepara.derielemodim[l] += ['dlos'] if gmod.typeelem[l] == 'lens': gmod.namepara.derielemodim[l] += ['mcut', 'diss', 'rele', 'reln', 'relk', 'relf', 'relm', 'reld', 'relc'] #for k in range(len(gmod.namepara.derielemodim[l])): # gmod.namepara.derielemodim[l][k] += 'pop%d' % l # check later # temp #if strgmodl == 'fitt': # for q in gdat.indxrefr: # if gmod.nameparagenrelemampl[l] in gdat.refr.namepara.elem[q]: # gmod.namepara.derielemodim[l].append('aerr' + gdat.listnamerefr[q]) if gdat.typeverb > 1: print('gmod.namepara.derielemodim') print(gmod.namepara.derielemodim) # derived element parameters gmod.namepara.derielem = gmod.namepara.derielemodim[:] if gdat.typeverb > 1: print('gmod.namepara.derielem') print(gmod.namepara.derielem) # derived parameters gmod.listnameparaderitotl = [temptemp for temp in gmod.namepara.derielem for temptemp in temp] #gmod.listnameparaderitotl += gmod.namepara.scal for namediff in gmod.listnamediff: gmod.listnameparaderitotl += ['cntp' + namediff] if gdat.typeverb > 1: print('gmod.listnameparaderitotl') print(gmod.listnameparaderitotl) if strgmodl == 'fitt': # add reference element parameters that are not available in the fitting model gdat.refr.namepara.elemonly = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] gmod.namepara.extrelem = [[] for l in gmod.indxpopl] for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for name in gdat.refr.namepara.elem[q]: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and (name == 'defs' or name == 'acut' or name == 'asca' or name == 'mass'): continue if gmod.typeelem[l] == ('lens') and (name == 'cnts' or name == 'flux' or name == 'spec' or name == 'sind'): continue if not name in gmod.namepara.derielemodim[l]: nametotl = name + gdat.listnamerefr[q] if name == 'etag': continue gmod.namepara.derielemodim[l].append(nametotl) if gdat.refr.numbelem[q] == 0: continue gdat.refr.namepara.elemonly[q][l].append(name) if not nametotl in gmod.namepara.extrelem[l]: gmod.namepara.extrelem[l].append(nametotl) #if name == 'reds': # for nametemp in ['lumi', 'dlos']: # nametemptemp = nametemp + gdat.listnamerefr[q] # if not nametemptemp in gmod.namepara.extrelem[l]: # gmod.namepara.derielemodim[l].append(nametemp + gdat.listnamerefr[q]) # gmod.namepara.extrelem[l].append(nametemptemp) if gdat.typeverb > 1: print('gdat.refr.namepara.elemonly') print(gdat.refr.namepara.elemonly) if gdat.typeexpr == 'chan' and gdat.typedata == 'inpt': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpnts': gmod.namepara.extrelem[l].append('lumiwo08') gmod.namepara.derielemodim[l].append('lumiwo08') if gdat.typeverb > 1: print('gmod.namepara.extrelem') print(gmod.namepara.extrelem) # defaults gmod.liststrgpdfnmodu = [[] for l in gmod.indxpopl] gmod.namepara.genrelemmodu = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0.: if l == 1: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] if l == 2: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for liststrg in [gmod.namepara.genrelem[l], gmod.namepara.derielemodim[l]]: for strgthis in liststrg: if not strgthis in gmod.namepara.elem[l]: gmod.namepara.elem[l].append(strgthis) # temp for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] += ['spec'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['spec', 'specplot'] if gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['deflprof'] #gmod.namepara.genrelemeval = [[] for l in gmod.indxpopl] #for l in gmod.indxpopl: # if gmod.typeelem[l].startswith('clus'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'nobj'] # if gmod.typeelem[l] == 'clusvari': # gmod.namepara.genrelemeval[l] += ['gwdt'] # if gmod.typeelem[l] == 'lens': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'defs', 'asca', 'acut'] # if gmod.typeelem[l].startswith('lghtline'): # gmod.namepara.genrelemeval[l] = ['elin', 'spec'] # elif gmod.typeelem[l] == 'lghtgausbgrd': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'gwdt', 'spec'] # elif gmod.typeelem[l].startswith('lght'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'spec'] ## element legends lablpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': lablpopl[l] = 'FPS' if gmod.typeelem[l] == 'lghtgausbgrd': lablpopl[l] = 'BGS' else: if gmod.typeelem[l] == 'lghtpntspuls': lablpopl[l] = 'Pulsar' elif gmod.typeelem[l].startswith('lghtpntsagnn'): lablpopl[l] = 'AGN' elif gmod.typeelem[l].startswith('lghtpnts'): lablpopl[l] = 'PS' if gmod.typeelem[l] == 'lens': lablpopl[l] = 'Subhalo' if gmod.typeelem[l].startswith('clus'): lablpopl[l] = 'Cluster' if gmod.typeelem[l].startswith('lghtline'): lablpopl[l]= 'Line' setp_varb(gdat, 'lablpopl', valu=lablpopl, strgmodl=strgmodl) if strgmodl == 'true': gmod.indxpoplassc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.numbpopl == 3 and gmod.typeelem[1] == 'lens': gmod.indxpoplassc[l] = [l] else: gmod.indxpoplassc[l] = gmod.indxpopl # variables for which two dimensional histograms will be calculated gmod.namepara.genrelemcorr = [[] for l in gmod.indxpopl] if gdat.boolplotelemcorr: for l in gmod.indxpopl: for strgfeat in gmod.namepara.derielemodim[l]: gmod.namepara.genrelemcorr[l].append(strgfeat) # number of element parameters if gmod.numbpopl > 0: gmod.numbparagenrelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcuml = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcumr = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: # number of generative element parameters for a single element of a specific population gmod.numbparagenrelemsing[l] = len(gmod.namepara.genrelem[l]) # number of derived element parameters for a single element of a specific population gmod.numbparaderielemsing[l] = len(gmod.namepara.derielem[l]) # number of element parameters for a single element of a specific population gmod.numbparaelemsing[l] = len(gmod.namepara.elem[l]) # number of generative element parameters for all elements of a specific population gmod.numbparagenrelem[l] = gmod.numbparagenrelemsing[l] * gmod.maxmpara.numbelem[l] # number of generative element parameters up to the beginning of a population gmod.numbparagenrelemcuml[l] = np.sum(gmod.numbparagenrelem[:l]) # number of generative element parameters up to the end of a population gmod.numbparagenrelemcumr[l] = np.sum(gmod.numbparagenrelem[:l+1]) # number of derived element parameters for all elements of a specific population gmod.numbparaderielem[l] = gmod.numbparaderielemsing[l] * gmod.numbelem[l] # number of element parameters for all elements of a specific population gmod.numbparaelem[l] = gmod.numbparaelemsing[l] * gmod.numbelem[l] # number of generative element parameters summed over all populations gmod.numbparagenrelemtotl = np.sum(gmod.numbparagenrelem) # number of derived element parameters summed over all populations gmod.numbparaderielemtotl = np.sum(gmod.numbparaderielem) # number of element parameters summed over all populations gmod.numbparaelemtotl = np.sum(gmod.numbparaderielem) gmod.indxparagenrelemsing = [] for l in gmod.indxpopl: gmod.indxparagenrelemsing.append(np.arange(gmod.numbparagenrelemsing[l])) gmod.indxparaderielemsing = [] for l in gmod.indxpopl: gmod.indxparaderielemsing.append(np.arange(gmod.numbparaderielemsing[l])) gmod.indxparaelemsing = [] for l in gmod.indxpopl: gmod.indxparaelemsing.append(np.arange(gmod.numbparaelemsing[l])) # size of the auxiliary variable propobability density vector if gmod.maxmpara.numbelemtotl > 0: gmod.numblpri = 3 + gmod.numbparagenrelem * gmod.numbpopl else: gmod.numblpri = 0 if gdat.penalpridiff: gmod.numblpri += 1 indxlpri = np.arange(gmod.numblpri) # append the population tags to element parameter names #for l in gmod.indxpopl: # gmod.namepara.genrelem[l] = [gmod.namepara.genrelem[l][g] + 'pop%d' % l for g in gmod.indxparagenrelemsing[l]] gmod.boolcompposi = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.boolcompposi[l] = np.zeros(gmod.numbparagenrelemsing[l], dtype=bool) if gmod.typeelem[l].startswith('lghtline'): gmod.boolcompposi[l][0] = True else: gmod.boolcompposi[l][0] = True gmod.boolcompposi[l][1] = True # list of strings across all populations ## all (generative and derived) element parameters gmod.numbparaelem = len(gmod.namepara.elem) gmod.indxparaelem = np.arange(gmod.numbparaelem) # flattened list of generative element parameters gmod.listnameparagenfelem = [] for l in gmod.indxpopl: for nameparagenrelem in gmod.namepara.genrelem[l]: gmod.listnameparagenfelem.append(nameparagenrelem + 'pop%d' % l) # concatenated list of flattened generative and derived element parameters gmod.listnameparatotlelem = gmod.listnameparagenfelem + gmod.namepara.derielem gmod.numbparaelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.numbparaelem[l] = len(gmod.namepara.elem[l]) numbdeflsubhplot = 2 numbdeflsingplot = numbdeflsubhplot if gmod.numbparaelem > 0: numbdeflsingplot += 3 gmod.convdiffanyy = True in convdiff cntr = tdpy.cntr() if gmod.boollens: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost massfrombein = retr_massfrombein(gdat, adissour, adishost, adishostsour) mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) # object of parameter indices gmod.indxpara = tdpy.gdatstrt() # define parameter indices if gmod.numbparaelem > 0: # number of elements #gmod.indxpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: indx = cntr.incr() setattr(gmod.indxpara, 'numbelempop%d' % l, indx) #gmod.indxpara.numbelem[l] = indx # hyperparameters ## mean number of elements if gmod.typemodltran == 'pois': #gmod.indxpara.meanelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: indx = cntr.incr() setattr(gmod.indxpara, 'meanelempop%d' % l, indx) #gmod.indxpara.meanelem[l] = indx ## parameters parametrizing priors on element parameters liststrgvarb = [] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: for strgpdfnelemgenr, strgfeat in zip(gmod.listscalparagenrelem[l], gmod.namepara.genrelem[l]): if strgpdfnelemgenr == 'expo' or strgpdfnelemgenr == 'dexp': liststrgvarb += [strgfeat + 'distscal'] if strgpdfnelemgenr == 'powr': liststrgvarb += ['slopprio' + strgfeat + 'pop%d' % l] if strgpdfnelemgenr == 'dpow': liststrgvarb += [strgfeat + 'distbrek'] liststrgvarb += [strgfeat + 'sloplowr'] liststrgvarb += [strgfeat + 'slopuppr'] if strgpdfnelemgenr == 'gausmean' or strgpdfnelemgenr == 'lnormean': liststrgvarb += [strgfeat + 'distmean'] if strgpdfnelemgenr == 'gausstdv' or strgpdfnelemgenr == 'lnorstdv': liststrgvarb += [strgfeat + 'diststdv'] if strgpdfnelemgenr == 'gausmeanstdv' or strgpdfnelemgenr == 'lnormeanstdv': liststrgvarb += [nameparagenrelem + 'distmean', nameparagenrelem + 'diststdv'] for strgvarb in liststrgvarb: setattr(gmod.indxpara, strgvarb, np.zeros(gmod.numbpopl, dtype=int) - 1) for l in gmod.indxpopl: strgpopl = 'pop%d' % l if gmod.maxmpara.numbelem[l] > 0: for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if gmod.listscalparagenrelem[l][k] == 'self': continue indx = cntr.incr() if gmod.listscalparagenrelem[l][k] == 'dpow': for nametemp in ['brek', 'sloplowr', 'slopuppr']: strg = '%s' % nametemp + nameparagenrelem setattr(gmod.indxpara, strg, indx) setattr(gmod.indxpara, strg, indx) else: if gmod.listscalparagenrelem[l][k] == 'expo' or gmod.listscalparagenrelem[l][k] == 'dexp': strghypr = 'scal' if gmod.listscalparagenrelem[l][k] == 'powr': strghypr = 'slop' if gmod.listscalparagenrelem[l][k] == 'gausmean' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnormean' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'mean' if gmod.listscalparagenrelem[l][k] == 'gausstdv' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnorstdv' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'stdv' strg = strghypr + 'prio' + nameparagenrelem + 'pop%d' % l setattr(gmod.indxpara, strg, indx) # group PSF parameters if gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full': for m in gdat.indxevtt: for i in gdat.indxener: setattr(gmod.indxpara, 'sigcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': setattr(gmod.indxpara, 'gamcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking': setattr(gmod.indxpara, 'sigten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'gamten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'ffenen%02devt%d' % (i, m), cntr.incr()) gmod.indxpara.psfp = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith('sigce') or strg.startswith('sigte') or strg.startswith('gamce') or strg.startswith('gamte') or strg.startswith('psffe'): gmod.indxpara.psfp.append(valu) gmod.indxpara.psfp = np.array(gmod.indxpara.psfp) gmod.numbpsfptotlevtt = gdat.numbevtt * gmod.numbpsfptotl gmod.numbpsfptotlener = gdat.numbener * gmod.numbpsfptotl numbpsfp = gmod.numbpsfptotl * gdat.numbener * gdat.numbevtt indxpsfpform = np.arange(numbpsfpform) indxpsfptotl = np.arange(gmod.numbpsfptotl) indxpsfp = np.arange(numbpsfp) gmod.indxpara.psfp = np.sort(gmod.indxpara.psfp) gmod.indxparapsfpinit = gmod.indxpara.psfp[0] # group background parameters gmod.indxpara.bacp = [] for c in gmod.indxback: if gmod.boolspecback[c]: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04d' % c, indx) gmod.indxpara.bacp.append(indx) else: for i in gdat.indxener: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04den%02d' % (c, i), indx) gmod.indxpara.bacp.append(indx) gmod.indxpara.bacp = np.array(gmod.indxpara.bacp) # temp #gmod.indxpara.anglsour = [] #gmod.indxpara.anglhost = [] #gmod.indxpara.angllens = [] if gmod.typeemishost != 'none': gmod.indxpara.specsour = [] gmod.indxpara.spechost = [] if gmod.boollens: gmod.indxpara.lgalsour = cntr.incr() gmod.indxpara.bgalsour = cntr.incr() gmod.indxpara.fluxsour = cntr.incr() if gdat.numbener > 1: gmod.indxpara.sindsour = cntr.incr() gmod.indxpara.sizesour = cntr.incr() gmod.indxpara.ellpsour = cntr.incr() gmod.indxpara.anglsour = cntr.incr() if gmod.typeemishost != 'none' or gmod.boollens: for e in gmod.indxsersfgrd: if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'lgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'bgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'fluxhostisf%d' % e, cntr.incr()) if gdat.numbener > 1: setattr(gmod.indxpara, 'sindhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'sizehostisf%d' % e, cntr.incr()) if gmod.boollens: setattr(gmod.indxpara, 'beinhostisf%d' % e, cntr.incr()) if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'ellphostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'anglhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'serihostisf%d' % e, cntr.incr()) if gmod.boollens: gmod.indxpara.sherextr = cntr.incr() gmod.indxpara.sangextr = cntr.incr() gmod.indxpara.sour = [] if gmod.boollens and gmod.typeemishost == 'none': raise Exception('Lensing cannot be modeled without host galaxy emission.') # collect groups of parameters if gdat.typeexpr == 'hubb': gmod.listnamecomplens = ['hostlght', 'hostlens', 'sour', 'extr'] for namecomplens in gmod.listnamecomplens: setattr(gmod, 'liststrg' + namecomplens, []) setattr(gmod.indxpara, namecomplens, []) if gmod.boollens or gmod.typeemishost != 'none': gmod.liststrghostlght += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] gmod.liststrghostlens += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] if gmod.typeemishost != 'none': gmod.liststrghostlght += ['fluxhost', 'sizehost', 'serihost'] if gdat.numbener > 1: gmod.liststrghostlght += ['sindhost'] if gmod.boollens: gmod.liststrghostlens += ['beinhost'] gmod.liststrgextr += ['sherextr', 'sangextr'] gmod.liststrgsour += ['lgalsour', 'bgalsour', 'fluxsour', 'sizesour', 'ellpsour', 'anglsour'] if gdat.numbener > 1: gmod.liststrgsour += ['sindsour'] for strg, valu in gmod.__dict__.items(): if isinstance(valu, list) or isinstance(valu, np.ndarray): continue if gdat.typeexpr == 'hubb': for namecomplens in gmod.listnamecomplens: for strgtemp in getattr(gmod, 'liststrg' + namecomplens): if strg[12:].startswith(strgtemp): if isinstance(valu, list): for valutemp in valu: gmod['indxparagenr' + namecomplens].append(valutemp) else: gmod['indxparagenr' + namecomplens].append(valu) # remove indxpara. from strg strg = strg[12:] if strg.startswith('fluxsour') or strg.startswith('sindsour'): gmod.indxpara.specsour.append(valu) if strg.startswith('fluxhost') or strg.startswith('sindhost'): gmod.indxpara.spechost.append(valu) if gmod.boollens or gmod.boolhost: gmod.indxpara.host = gmod.indxparahostlght + gmod.indxparahostlens gmod.indxpara.lens = gmod.indxpara.host + gmod.indxpara.sour + gmod.indxpara.extr ## number of model spectral parameters for each population #numbspep = np.empty(gmod.numbpopl, dtype=int) #liststrgspep = [[] for l in range(gmod.numbpopl)] #for l in gmod.indxpopl: # if gdat.numbener > 1: # liststrgspep[l] += ['sind'] # if gmod.spectype[l] == 'expc': # liststrgspep[l] += ['expc'] # if gmod.spectype[l] == 'curv': # liststrgspep[l] = ['curv'] # numbspep[l] = len(liststrgspep[l]) def setp_paragenrscalbase(gdat, strgmodl='fitt'): ''' Setup labels and scales for base parameters ''' print('setp_paragenrscalbase(): Building the %s model base paremeter names and scales...' % strgmodl) gmod = getattr(gdat, strgmodl) listlablback = [] listlablback = [] for nameback in gmod.listnameback: if nameback == 'isot': listlablback.append('Isotropic') listlablback.append(r'$\mathcal{I}$') if nameback == 'fdfm': listlablback.append('FDM') listlablback.append(r'$\mathcal{D}$') if nameback == 'dark': listlablback.append('NFW') listlablback.append(r'$\mathcal{D}_{dark}$') if nameback == 'part': listlablback.append('Particle Back.') listlablback.append(r'$\mathcal{I}_p$') # background templates listlablsbrt = deepcopy(listlablback) numblablsbrt = 0 for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: listlablsbrt.append(gmod.lablpopl[l]) listlablsbrt.append(gmod.lablpopl[l] + ' subt') numblablsbrt += 2 if gmod.boollens: listlablsbrt.append('Source') numblablsbrt += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listlablsbrt.append('Host %d' % e) numblablsbrt += 1 if gmod.numbpopl > 0: if 'clus' in gmod.typeelem or 'clusvari' in gmod.typeelem: listlablsbrt.append('Uniform') numblablsbrt += 1 listlablsbrtspec = ['Data'] listlablsbrtspec += deepcopy(listlablsbrt) if len(listlablsbrt) > 1: listlablsbrtspec.append('Total Model') numblablsbrtspec = len(listlablsbrtspec) # number of generative parameters per element, depends on population #numbparaelem = gmod.numbparagenrelem + numbparaelemderi # maximum total number of parameters #numbparagenrfull = gmod.numbparagenrbase + gmod.numbparaelem #numbparaelemkind = gmod.numbparagenrbase #for l in gmod.indxpopl: # numbparaelemkind += gmod.numbparagenrelemsing[l] #nameparagenrbase #gmod.namepara.genrelem #listnameparaderifixd #listnameparaderielem #gmod.namepara.genrelemextd = gmod.namepara.genrelem * maxm.numbelem #listnameparaderielemextd = gmod.namepara.genrelem * maxm.numbelem gmod.listindxparakindscal = {} for scaltype in gdat.listscaltype: gmod.listindxparakindscal[scaltype] = np.where(scaltype == gmod.listscalparakind)[0] # ## stack ## gmod.listnameparastck #gmod.listnameparastck = np.zeros(gmod.maxmnumbpara, dtype=object) #gmod.listscalparastck = np.zeros(gmod.maxmnumbpara, dtype=object) # #gmod.listnameparastck[gmod.indxparagenrbase] = gmod.nameparagenrbase #gmod.listscalparastck[gmod.indxparagenrbase] = gmod.listscalparagenrbase #for k in range(gmod.numbparaelem): # for l in gmod.indxpopl: # if k >= gmod.numbparagenrelemcuml[l]: # indxpopltemp = l # indxelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) // gmod.numbparagenrelemsing[indxpopltemp] # gmod.indxparagenrelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) % gmod.numbparagenrelemsing[indxpopltemp] # break # gmod.listnameparastck[gmod.numbparagenrbase+k] = '%spop%d%04d' % (gmod.namepara.genrelem[indxpopltemp][gmod.indxparagenrelemtemp], indxpopltemp, indxelemtemp) # gmod.listscalparastck[gmod.numbparagenrbase+k] = gmod.listscalparagenrelem[indxpopltemp][gmod.indxparagenrelemtemp] # # #if np.where(gmod.listscalpara == 0)[0].size > 0: # print('gmod.listscalpara[gmod.indxparagenrbase]') # print(gmod.listscalpara[gmod.indxparagenrbase]) # raise Exception('') # ## labels and scales for variables if gmod.boollens: setattr(gmod.lablrootpara, 'masssubhintg', r'$M_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhdelt', r'$\rho_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhintgbein', r'$M_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhdeltbein', r'$\rho_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhintgunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'masssubhintgbeinunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltbeinunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'fracsubhintg', r'f_{\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhdelt', r'f_{\rho,\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhintgbein', r'$f_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'fracsubhdeltbein', r'$f_{\rho,\rm{sub,E}}$') for e in gmod.indxsersfgrd: setattr(gmod.lablrootpara, 'masshostisf%dbein' % e, r'$M_{\rm{hst,%d,C}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintg' % e, r'$M_{\rm{hst,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddelt' % e, r'$M_{\rm{hst,%d}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintgbein' % e, r'$M_{\rm{hst,E,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddeltbein' % e, r'$M_{\rm{hst,E,%d}}$' % e) for namevarb in ['fracsubh', 'masssubh']: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scal' + namevarb + strgcalcmasssubh + nameeval, 'logt') for e in gmod.indxsersfgrd: setattr(gdat, 'scalmasshostisf%d' % e + 'bein', 'logt') for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scalmasshostisf%d' % e + strgcalcmasssubh + nameeval, 'logt') # scalar variable setup gdat.lablhistcntplowrdfncsubten00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncsubten00evt0 = 'N_{pix,h}' gdat.lablhistcntplowrdfncen00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncen00evt0 = 'N_{pix,h}' gdat.lablbooldfncsubt = 'H' gdat.lablpriofactdoff = r'$\alpha_{p}$' gmod.scalpriofactdoff = 'self' gdat.minmreds = 0. gdat.maxmreds = 1.5 gdat.minmmagt = 19. gdat.maxmmagt = 28. gmod.scalpara.numbelem = 'logt' gmod.scalpara.lliktotl = 'logt' gdat.lablener = 'E' #gdat.lablenertotl = '$%s$ [%s]' % (gdat.lablener, gdat.strgenerunit) # width of the Gaussian clusters gdat.lablgwdt = r'\sigma_G' gdat.lablgang = r'\theta' gdat.lablaang = r'\phi' gdat.labllgalunit = gdat.lablgangunit gdat.lablbgalunit = gdat.lablgangunit gdat.lablanglfromhost = r'\theta_{\rm{0,hst}}' gdat.lablanglfromhostunit = gdat.lablgangunit gdat.labldefs = r'\alpha_s' gdat.lablflux = 'f' gdat.lablnobj = 'p' gdat.lablelin = r'\mathcal{E}' gdat.lablsbrt = r'\Sigma' gdat.labldeflprof = r'\alpha_a' gdat.labldeflprofunit = u'$^{\prime\prime}$' gdat.strgenerkevv = 'keV' gdat.strgenergevv = 'GeV' gdat.strgenerergs = 'erg' gdat.strgenerimum = '\mu m^{-1}' gdat.labldefsunit = u'$^{\prime\prime}$' gdat.lablprat = 'cm$^{-2}$ s$^{-1}$' ### labels for derived fixed dimensional parameters if gdat.boolbinsener: for i in gdat.indxener: setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubten%02d' % i, 'f_{D/ST,%d}' % i) else: gmod.lablrootpara.fracsdenmeandarkdfncsubt = 'f_{D/ST}' setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubt', 'f_{D/ST}') ### labels for background units if gdat.typeexpr == 'ferm': for nameenerscaltype in ['en00', 'en01', 'en02', 'en03']: for labltemptemp in ['flux', 'sbrt']: # define the label if nameenerscaltype == 'en00': strgenerscal = '%s' % labltemp if nameenerscaltype == 'en01': strgenerscal = 'E%s' % labltemp if nameenerscaltype == 'en02': strgenerscal = 'E^2%s' % labltemp if nameenerscaltype == 'en03': strgenerscal = '%s' % labltemp labl = '%s' % strgenerscal for nameenerunit in ['gevv', 'ergs', 'kevv', 'imum']: strgenerunit = getattr(gdat, 'strgener' + nameenerunit) if nameenerscaltype == 'en00': strgenerscalunit = '%s$^{-1}$' % strgenerunit if nameenerscaltype == 'en01': strgenerscalunit = '' if nameenerscaltype == 'en02': strgenerscalunit = '%s' % strgenerunit if nameenerscaltype == 'en03': strgenerscalunit = '%s' % strgenerunit # define the label unit for namesoldunit in ['ster', 'degr']: if labltemptemp == 'flux': lablunit = '%s %s' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'lablflux' + nameenerscaltype + nameenerunit + 'unit', lablunit) else: if namesoldunit == 'ster': lablunit = '%s %s sr$^{-1}$' % (strgenerscalunit, gdat.lablprat) if namesoldunit == 'degr': lablunit = '%s %s deg$^{-2}$' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'sbrt' + nameenerscaltype + nameenerunit + namesoldunit + 'unit', lablunit) if gdat.boolbinsener: gdat.lablfluxunit = getattr(gmod.lablunitpara, 'fluxen00' + gdat.nameenerunit + 'unit') gdat.lablsbrtunit = getattr(gmod.lablunitpara, 'sbrten00' + gdat.nameenerunit + 'sterunit') gdat.lablexpo = r'$\epsilon$' gdat.lablexpounit = 'cm$^2$ s' gdat.lablprvl = '$p$' gdat.lablreds = 'z' gdat.lablmagt = 'm_R' gdat.lablper0 = 'P_0' gmod.scalper0plot = 'logt' gdat.labldglc = 'd_{gc}' gmod.scaldglcplot = 'logt' gdat.labldlos = 'd_{los}' gmod.scaldlosplot = 'logt' if gdat.typeexpr == 'ferm': gdat.labldlosunit = 'kpc' gdat.labllumi = r'L_{\gamma}' if gdat.typeexpr == 'chan': gdat.labldlosunit = 'Mpc' gdat.labllumi = r'L_{X}' gdat.labllum0 = r'L_{X, 0}' gdat.lablgeff = r'\eta_{\gamma}' gmod.scalgeffplot = 'logt' gmod.scallumiplot = 'logt' gdat.labllumiunit = 'erg s$^{-1}$' gdat.labllum0unit = 'erg s$^{-1}$' gdat.lablthet = r'\theta_{gc}' gmod.scalthetplot = 'self' gdat.lablphii = r'\phi_{gc}' gmod.scalphiiplot = 'self' setattr(gmod.lablrootpara, 'magf', 'B') setattr(gdat, 'scalmagfplot', 'logt') setattr(gmod.lablrootpara, 'per1', 'P_1') if gdat.typedata == 'inpt': gdat.minmpara.per0 = 1e-3 gdat.maxmpara.per0 = 1e1 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.flux0400 = 1e-1 gdat.maxmpara.flux0400 = 1e4 setattr(gdat, 'scalper1plot', 'logt') setattr(gmod.lablrootpara, 'flux0400', 'S_{400}') setattr(gdat, 'scalflux0400plot', 'logt') for q in gdat.indxrefr: setattr(gmod.lablrootpara, 'aerr' + gdat.listnamerefr[q], '\Delta_{%d}' % q) gdat.lablsigm = '\sigma_l' gdat.lablgamm = '\gamma_l' gdat.lablbcom = '\eta' gdat.lablinfopost = 'D_{KL}' gdat.lablinfopostunit = 'nat' gdat.lablinfoprio = 'D_{KL,pr}' gdat.lablinfopriounit = 'nat' gdat.labllevipost = '\ln P(D)' gdat.labllevipostunit = 'nat' gdat.lablleviprio = '\ln P_{pr}(D)' gdat.labllevipriounit = 'nat' gdat.lablsind = 's' if gdat.boolbinsener: for i in gdat.indxenerinde: setattr(gmod.lablrootpara, 'sindcolr%04d' % i, 's_%d' % i) gdat.lablexpcunit = gdat.strgenerunit gdat.labllliktotl = r'\ln P(D|M)' gdat.labllpripena = r'\ln P(N)' gdat.lablasca = r'\theta_s' gdat.lablascaunit = gdat.lablgangunit gdat.lablacut = r'\theta_c' gdat.lablacutunit = gdat.lablgangunit gdat.lablmcut = r'M_{c,n}' gdat.lablmcutunit = r'$M_{\odot}$' gdat.lablmcutcorr = r'\bar{M}_{c,n}' gdat.lablmcutcorrunit = r'$M_{\odot}$' gdat.lablspec = gdat.lablflux gdat.lablspecunit = gdat.lablfluxunit gdat.lablspecplot = gdat.lablflux gdat.lablspecplotunit = gdat.lablfluxunit gdat.lablcnts = 'C' gdat.labldeltllik = r'\Delta_n \ln P(D|M)' gdat.labldiss = r'\theta_{sa}' gdat.labldissunit = gdat.lablgangunit gdat.lablrele = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_l| \rangle' gdat.lablrelc = r'\langle\vec{\alpha}_n \cdot \vec{\nabla} k_l \rangle' gdat.lablreld = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_d| \rangle' gdat.lablreln = r'\langle \Delta \theta_{pix} |\hat{\alpha}_n \cdot \vec{\nabla} k_l| / \alpha_{s,n} \rangle' gdat.lablrelm = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelk = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelf = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle / k_m' for q in gdat.indxrefr: for l in gmod.indxpopl: setp_varb(gdat, 'fdispop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$F_{%d%d}$' % (l, q)) setp_varb(gdat, 'cmplpop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$C_{%d%d}$' % (l, q)) if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.minmspec = 1e-2 gdat.maxmspec = 1e1 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 if gdat.typeexpr == 'ferm': gdat.minmlumi = 1e32 gdat.maxmlumi = 1e36 elif gdat.typeexpr == 'chan': if gdat.typedata == 'inpt': gdat.minmlum0 = 1e42 gdat.maxmlum0 = 1e46 gdat.minmlumi = 1e41 gdat.maxmlumi = 1e45 try: gdat.minmdlos except: if gdat.typeexpr == 'chan': gdat.minmdlos = 1e7 gdat.maxmdlos = 1e9 else: gdat.minmdlos = 6e3 gdat.maxmdlos = 1.1e4 if gdat.typeexpr == 'ferm': gdat.minmcnts = 1e1 gdat.maxmcnts = 1e5 if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: gdat.minmcnts = 1e4 gdat.maxmcnts = 1e8 else: gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'hubb': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'fire': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 gdat.minmspecplot = gdat.minmspec gdat.maxmspecplot = gdat.maxmspec gdat.minmdeltllik = 1. gdat.maxmdeltllik = 1e3 gdat.minmdiss = 0. gdat.maxmdiss = gdat.maxmgangdata * np.sqrt(2.) gdat.minmrele = 1e-3 gdat.maxmrele = 1e1 gdat.minmreln = 1e-3 gdat.maxmreln = 1. gdat.minmrelk = 1e-3 gdat.maxmrelk = 1. gdat.minmrelf = 1e-5 gdat.maxmrelf = 1e-1 gdat.minmrelm = 1e-3 gdat.maxmrelm = 1e1 gdat.minmreld = 1e-3 gdat.maxmreld = 1e1 gdat.minmrelc = 1e-3 gdat.maxmrelc = 1. gdat.minmmcut = 3e7 gdat.maxmmcut = 2e9 gdat.minmmcutcorr = gdat.minmmcut gdat.maxmmcutcorr = gdat.maxmmcut if gdat.boolbinsspat: gdat.minmbein = 0. gdat.maxmbein = 1. / gdat.anglfact # scalar variables if gdat.boolbinsspat: gdat.minmdeflprof = 1e-3 / gdat.anglfact gdat.maxmdeflprof = 0.1 / gdat.anglfact #gdat.minmfracsubh = 0. #gdat.maxmfracsubh = 0.3 #gmod.scalfracsubh = 'self' #gdat.minmmasshost = 1e10 #gdat.maxmmasshost = 1e13 #gmod.scalmasshost = 'self' # #gdat.minmmasssubh = 1e8 #gdat.maxmmasssubh = 1e10 #gmod.scalmasssubh = 'self' # collect groups of parameter indices into lists ## labels and scales for base parameters gmod.nameparagenrbase = [] for name, k in gmod.indxpara.__dict__.items(): if not np.isscalar(k): print('name') print(name) print('temp: no nonscalar should be here!') continue gmod.nameparagenrbase.append(name) gmod.numbparagenrbase = len(gmod.nameparagenrbase) gmod.indxparagenrbase = np.arange(gmod.numbparagenrbase) gmod.indxparagenrbasestdv = gmod.indxparagenrbase[gmod.numbpopl:] ## list of scalar variable names gmod.namepara.scal = list(gmod.nameparagenrbase) gmod.namepara.scal += ['lliktotl'] # derived parameters print('Determining the list of derived, fixed-dimensional parameter names...') gmod.namepara.genrelemextd = [[[] for g in gmod.indxparagenrelemsing[l]] for l in gmod.indxpopl] gmod.namepara.derielemextd = [[[] for k in gmod.indxparaderielemsing[l]] for l in gmod.indxpopl] gmod.namepara.genrelemflat = [] gmod.namepara.derielemflat = [] gmod.namepara.genrelemextdflat = [] gmod.namepara.derielemextdflat = [] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: gmod.namepara.genrelemflat.append(gmod.namepara.genrelem[l][g] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.genrelemextd[l][g].append(gmod.namepara.genrelem[l][g] + 'pop%d' % l + '%04d' % d) gmod.namepara.genrelemextdflat.append(gmod.namepara.genrelemextd[l][g][d]) for k in gmod.indxparaderielemsing[l]: gmod.namepara.derielemflat.append(gmod.namepara.derielem[l][k] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.derielemextd[l][k].append(gmod.namepara.derielem[l][k] + 'pop%d' % l + '%04d' % d) gmod.namepara.derielemextdflat.append(gmod.namepara.derielemextd[l][k][d]) # list of element parameter names (derived and generative), counting label-degenerate element parameters only once gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.elem[l].extend(gmod.namepara.genrelem[l]) gmod.namepara.elem[l].extend(gmod.namepara.derielem[l]) gmod.namepara.elemflat = [] for l in gmod.indxpopl: gmod.namepara.elemflat.extend(gmod.namepara.elem[l]) gmod.namepara.genrelemdefa = deepcopy(gmod.namepara.elemflat) if gmod.boolelemlghtanyy: for strgfeat in ['sind', 'curv', 'expc'] + ['sindcolr%04d' % i for i in gdat.indxenerinde]: if not strgfeat in gmod.namepara.genrelemdefa: gmod.namepara.genrelemdefa.append(strgfeat) # list of flattened generative element parameter names, counting label-degenerate element parameters only once gmod.namepara.genrelemkind = gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparagenrelemkind = len(gmod.namepara.genrelemkind) #gmod.inxparagenrscalelemkind = np.arange(gmod.numbparagenrelemkind) gmod.inxparagenrscalelemkind = tdpy.gdatstrt() gmod.numbparagenrelemextdflat = len(gmod.namepara.genrelemextdflat) gmod.indxparagenrelemextdflat = np.arange(gmod.numbparagenrelemextdflat) # list of parameter names (derived and generative), counting label-degenerate element parameters only once, element lists flattened gmod.namepara.kind = gmod.nameparagenrbase + gmod.listnameparaderitotl + gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparakind = len(gmod.namepara.kind) gmod.indxparakind = np.arange(gmod.numbparakind) # list of generative parameter names, separately including all label-degenerate element parameters, element lists flattened gmod.namepara.genrscalfull = gmod.nameparagenrbase + gmod.namepara.genrelemextdflat gmod.namepara.genrscalfull = np.array(gmod.namepara.genrscalfull) gmod.numbparagenrfull = len(gmod.namepara.genrscalfull) gmod.indxparagenrfull = np.arange(gmod.numbparagenrfull) # list of generative parameter names, counting label-degenerate element parameters only once, element lists flattened gmod.listnameparagenrscal = gmod.nameparagenrbase + gmod.namepara.genrelemflat gmod.numbparagenr = len(gmod.listnameparagenrscal) gmod.indxparagenr = np.arange(gmod.numbparagenr) # list of parameter names (derived and generative), element lists flattened gmod.listnameparatotl = gmod.nameparagenrbase + gmod.listnameparaderitotl + \ gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.nameparagenrbase = np.array(gmod.nameparagenrbase) for e in gmod.indxsersfgrd: gmod.namepara.scal += ['masshost' + strgsersfgrd + 'bein'] for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masshost' + strgsersfgrd + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: if gmod.boollenssubh: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masssubh' + strgcalcmasssubh + 'bein', 'fracsubh' + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: gmod.namepara.scal += ['lpripena'] if False and gmod.boolelemsbrtdfncanyy: for strgbins in ['lowr', 'higr']: gmod.namepara.scal += ['histcntp%sdfncen00evt0' % strgbins] gmod.namepara.scal += ['histcntp%sdfncsubten00evt0' % strgbins] for i in gdat.indxener: gmod.namepara.scal += ['fracsdenmeandarkdfncsubten%02d' % i] gmod.namepara.scal += ['booldfncsubt'] if gmod.numbparaelem > 0: for q in gdat.indxrefr: if gdat.boolasscrefr[q]: for l in gmod.indxpopl: gmod.namepara.scal += ['cmplpop%dpop%d' % (l, q)] gmod.namepara.scal += ['fdispop%dpop%d' % (q, l)] gmod.numbvarbscal = len(gmod.namepara.scal) gmod.indxvarbscal = np.arange(gmod.numbvarbscal) # determine total label gmod.listnameparaglob = gmod.namepara.kind + gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.listnameparaglob += ['cntpmodl'] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: if not gmod.namepara.genrelem[l][g] in gmod.listnameparaglob: gmod.listnameparaglob.append(gmod.namepara.genrelem[l][g]) gmod.listnameparaglob.append(gmod.namepara.derielem[l][g]) for name in gmod.listnameparaglob: lablroot = getattr(gmod.lablrootpara, name) lablunit = getattr(gmod.lablunitpara, name) labltotl = tdpy.retr_labltotlsing(lablroot, lablunit) setattr(gmod.labltotlpara, name, labltotl) # define fact for l in gmod.indxpopl: for k in gmod.indxparakind: name = gmod.namepara.kind[k] scal = getattr(gmod.scalpara, name) if scal == 'self' or scal == 'logt': minm = getattr(gmod.minmpara, name) maxm = getattr(gmod.maxmpara, name) if scal == 'self': fact = maxm - minm if scal == 'logt': fact = np.log(maxm / minm) if fact == 0: print('name') print(name) raise Exception('') setattr(gmod.factpara, name, fact) if gmod.numbparaelem > 0: gmod.indxparagenrfulleleminit = gmod.indxparagenrbase[-1] + 1 else: gmod.indxparagenrfulleleminit = -1 ## arrays of parameter features (e.g., minm, maxm, labl, scal, etc.) for featpara in gdat.listfeatparalist: gmodfeat = getattr(gmod, featpara + 'para') ### elements #for strgtypepara in gdat.liststrgtypepara: # listname = getattr(gmod.namepara, strgtypepara + 'elem') # listfeat = [[] for l in gmod.indxpopl] # listfeatflat = [] # for l in gmod.indxpopl: # # numb = getattr(gmod, 'numbpara' + strgtypepara + 'elemsing')[l] # listfeat[l] = [[] for k in range(numb)] # for k in range(numb): # scal = getattr(gmod.scalpara, listname[l][k]) # if featpara == 'fact' and not (scal == 'self' or scal == 'logt'): # continue # if featpara == 'mean' and (scal != 'gaus' and scal != 'lnor'): # continue # if featpara == 'stdv' and (scal != 'gaus' and scal != 'lnor'): # continue # # if strgtypepara == 'genr': # strgextn = 'pop%d' % l # else: # strgextn = '' # print('featpara') # print(featpara) # print('listname') # print(listname) # listfeat[l][k] = getattr(gmodfeat, listname[l][k] + strgextn) # listfeatflat.append(listfeat[l][k]) # setattr(gmodfeat, strgtypepara + 'elem', listfeat) # setattr(gmodfeat, strgtypepara + 'elemflat', listfeatflat) ### groups of parameters inside the parameter vector ### 'base': all fixed-dimensional generative parameters ### 'full': all generative parameters for strggroppara in ['base', 'full']: indx = getattr(gmod, 'indxparagenr' + strggroppara) feat = [0. for k in indx] for attr, valu in gmod.indxpara.__dict__.items(): if not np.isscalar(valu): continue scal = getattr(gmod.scalpara, attr) if not (scal == 'self' or scal == 'logt') and featpara == 'fact': continue if scal != 'gaus' and (featpara == 'mean' or featpara == 'stdv'): print('Mean or Std for non-Gaussian') continue if featpara == 'name': feat[valu] = attr else: feat[valu] = getattr(gmodfeat, attr) feat = np.array(feat) setattr(gmodfeat, 'genr' + strggroppara, feat) #print('gmod.minmpara') #for attr, varb in gmod.minmpara.__dict__.items(): # print(attr, varb) #print('gmod.maxmpara') #for attr, varb in gmod.maxmpara.__dict__.items(): # print(attr, varb) #print('gmod.scalpara') #for attr, varb in gmod.scalpara.__dict__.items(): # print(attr, varb) #raise Exception('') ## population groups ### number of elements for strgvarb in ['numbelem', 'meanelem']: listindxpara = [] if strgmodl == 'true': listpara = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith(strgvarb + 'p'): listindxpara.append(valu) if strgmodl == 'true': listpara.append(getattr(gmod.this, strg)) listindxpara = np.array(listindxpara) setattr(gmod.indxpara, strgvarb, listindxpara) if strgmodl == 'true': listpara = np.array(listpara) setattr(gmod, strgvarb, listpara) ### parameters of priors for element parameters gmod.indxpara.prioelem = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg == 'dist' and np.isscalar(valu): gmod.indxpara.prioelem.append(valu) gmod.indxpara.prioelem = np.array(gmod.indxpara.prioelem) ### hyperparameters if gmod.typemodltran == 'pois': gmod.indxpara.hypr = np.array(list(gmod.indxpara.prioelem) + list(gmod.indxpara.meanelem)) else: gmod.indxpara.hypr = gmod.indxpara.prioelem ## generative base parameter indices for each scaling gmod.listindxparagenrbasescal = dict() for scaltype in gdat.listscaltype: gmod.listindxparagenrbasescal[scaltype] = np.where(np.array(gmod.scalpara.genrbase) == scaltype)[0] if gdat.booldiagmode: if np.where(gmod.scalpara.genrfull == 0)[0].size > 0: raise Exception('') def plot_lens(gdat): if gmod.boolelemdeflsubh: xdat = gdat.binspara.angl[1:] * gdat.anglfact lablxdat = gdat.labltotlpara.gang listdeflscal = np.array([4e-2, 4e-2, 4e-2]) / gdat.anglfact listanglscal = np.array([0.05, 0.1, 0.05]) / gdat.anglfact listanglcutf = np.array([1., 1., 10.]) / gdat.anglfact listasym = [False, False, False] listydat = [] for deflscal, anglscal, anglcutf, asym in zip(listdeflscal, listanglscal, listanglcutf, listasym): listydat.append(retr_deflcutf(gdat.binspara.angl[1:], deflscal, anglscal, anglcutf, asym=asym) * gdat.anglfact) for scalxdat in ['self', 'logt']: path = gdat.pathinitintr + 'deflcutf' + scalxdat + '.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat=scalxdat, scalydat='logt', lablxdat=lablxdat, \ lablydat=r'$\alpha_n$ [$^{\prime\prime}$]', limtydat=[1e-3, 1.5e-2], limtxdat=[None, 2.]) # pixel-convoltuion of the Sersic profile # temp -- y axis labels are wrong, should be per solid angle xdat = gdat.binspara.lgalsers * gdat.anglfact for n in range(gdat.numbindxsers + 1): for k in range(gdat.numbhalfsers + 1): if k != 5: continue path = gdat.pathinitintr + 'sersprofconv%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, gdat.sersprof[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) #path = gdat.pathinitintr + 'sersprofcntr%04d%04d.pdf' % (n, k) #tdpy.plot_gene(path, xdat, gdat.sersprofcntr[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], scalxdat='logt', \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) xdat = gdat.binspara.angl * gdat.anglfact listspec = np.array([1e-19, 1e-18, 1e-18, 1e-18]) / gdat.anglfact listsize = np.array([0.3, 1., 1., 1.]) / gdat.anglfact listindx = np.array([4., 2., 4., 10.]) listydat = [] listlabl = [] for spec, size, indx in zip(listspec, listsize, listindx): listydat.append(spec * retr_sbrtsersnorm(gdat.binspara.angl, size, indxsers=indx)) listlabl.append('$R_e = %.3g ^{\prime\prime}, n = %.2g$' % (size * gdat.anglfact, indx)) path = gdat.pathinitintr + 'sersprof.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, \ listlegd=listlegd, listhlin=1e-7, limtydat=[1e-8, 1e0]) minmredshost = 0.01 maxmredshost = 0.4 minmredssour = 0.01 maxmredssour = 2. numbreds = 200 retr_axis(gdat, 'redshost') retr_axis(gdat, 'redssour') gdat.meanpara.adishost = np.empty(numbreds) for k in range(numbreds): gdat.meanpara.adishost[k] = gdat.adisobjt(gdat.meanpara.redshost[k]) asca = 0.1 / gdat.anglfact acut = 1. / gdat.anglfact minmmass = np.zeros((numbreds + 1, numbreds + 1)) maxmmass = np.zeros((numbreds + 1, numbreds + 1)) for k, redshost in enumerate(gdat.binspara.redshost): for n, redssour in enumerate(gdat.binspara.redssour): if redssour > redshost: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) minmmass[n, k] = np.log10(factmcutfromdefs * gdat.minmdefs) maxmmass[n, k] = np.log10(factmcutfromdefs * gdat.maxmdefs) #valulevl = np.linspace(7.5, 9., 5) valulevl = [7.0, 7.3, 7.7, 8., 8.6] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, minmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=20, fmt='%.3g') axis.set_xlabel(r'$z_{\rm{hst}}$') axis.set_ylabel(r'$z_{\rm{src}}$') axis.set_title(r'$M_{c,min}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsminm.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) valulevl = np.linspace(9., 11., 20) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.imshow(maxmmass, extent=[minmredshost, maxmredshost, minmredssour, maxmredssour], aspect='auto', vmin=9., vmax=11.) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, maxmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=15, fmt='%.3g') axis.set_xlabel('$z_{hst}$') axis.set_ylabel('$z_{src}$') axis.set_title(r'$M_{c,max}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsmaxm.pdf' plt.colorbar(imag) plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * gdat.sizepixl * 1e-3) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * 2. * gdat.maxmgangdata * 1e-3) axis.set_xlabel('$z_h$') axis.set_yscale('log') axis.set_ylabel(r'$\lambda$ [kpc]') path = gdat.pathinitintr + 'wlenreds.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) fracacutasca = np.logspace(-1., 2., 20) mcut = retr_mcutfrommscl(fracacutasca) axis.lognp.log(fracacutasca, mcut) axis.set_xlabel(r'$\tau_n$') axis.set_ylabel(r'$M_{c,n} / M_{0,n}$') axis.axhline(1., ls='--') path = gdat.pathinitintr + 'mcut.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) def retr_listrtagprev(strgcnfg, pathpcat): # list of PCAT run plot outputs pathimag = pathpcat + '/imag/' listrtag = fnmatch.filter(os.listdir(pathimag), '2*') listrtagprev = [] for rtag in listrtag: strgstat = pathpcat + '/data/outp/' + rtag if chec_statfile(pathpcat, rtag, 'gdatmodipost', typeverb=0) and strgcnfg + '_' + rtag[16:].split('_')[-1] == rtag[16:]: listrtagprev.append(rtag) listrtagprev.sort() return listrtagprev def make_legd(axis, offs=None, loca=1, numbcols=1, ptch=None, line=None): hand, labl = axis.get_legend_handles_labels() legd = axis.legend(hand, labl, fancybox=True, frameon=True, bbox_to_anchor=offs, bbox_transform=axis.transAxes, ncol=numbcols, loc=loca, labelspacing=1, handlelength=2) legd.get_frame().set_fill(True) legd.get_frame().set_facecolor('white') def setp_namevarbsing(gdat, gmod, strgmodl, strgvarb, popl, ener, evtt, back, isfr, iele): if popl == 'full': indxpopltemp = gmod.indxpopl elif popl != 'none': indxpopltemp = [popl] if ener == 'full': indxenertemp = gdat.indxener elif ener != 'none': indxenertemp = [ener] if evtt == 'full': indxevtttemp = gdat.indxevtt elif evtt != 'none': indxevtttemp = [evtt] if back == 'full': gmod.indxbacktemp = gmod.indxback elif isinstance(back, int): gmod.indxbacktemp = np.array([back]) liststrgvarb = [] if iele != 'none': for l in gmod.indxpopl: if iele == 'full': listiele = np.arange(gmod.maxmpara.numbelem) else: listiele = [iele] for k in listiele: liststrgvarb.append(strgvarb + 'pop%d%04d' % (l, k)) if popl != 'none' and ener == 'none' and evtt == 'none' and back == 'none' and iele == 'none': for l in indxpopltemp: liststrgvarb.append(strgvarb + 'pop%d' % l) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr != 'none': for e in indxisfrtemp: liststrgvarb.append(strgvarb + 'isf%d' % e) if popl == 'none' and ener != 'none' and evtt != 'none' and back == 'none': for i in indxenertemp: for m in indxevtttemp: liststrgvarb.append(strgvarb + 'en%02devt%d' % (i, m)) if popl == 'none' and ener != 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: for i in indxenertemp: liststrgvarb.append(strgvarb + 'back%04den%02d' % (c, i)) if popl == 'none' and ener == 'none' and evtt == 'none' and back != 'none': for c in gmod.indxbacktemp: liststrgvarb.append(strgvarb + 'back%04d' % c) if popl == 'none' and ener != 'none' and evtt == 'none' and back == 'none': for i in indxenertemp: liststrgvarb.append(strgvarb + 'en%02d' % i) if popl == 'none' and ener == 'none' and evtt == 'none' and back == 'none' and isfr == 'none': liststrgvarb.append(strgvarb) if gdat.booldiagmode: for strgvarb in liststrgvarb: if liststrgvarb.count(strgvarb) != 1: print('liststrgvarb') print(liststrgvarb) print('popl') print(popl) print('ener') print(ener) print('evtt') print(evtt) print('back') print(back) print('isfr') print(isfr) print('iele') print(iele) raise Exception('') return liststrgvarb def setp_varb(gdat, strgvarbbase, valu=None, minm=None, maxm=None, scal='self', lablroot=None, lablunit='', mean=None, stdv=None, cmap=None, numbbins=10, \ popl='none', ener='none', evtt='none', back='none', isfr='none', iele='none', \ boolinvr=False, \ strgmodl=None, strgstat=None, \ ): ''' Set up variable values across all models (true and fitting) as well as all populations, energy bins, event bins, background components, and Sersic components ''' # determine the list of models if strgmodl is None: if gdat.typedata == 'mock': liststrgmodl = ['true', 'fitt', 'plot'] else: liststrgmodl = ['fitt', 'plot'] else: if strgmodl == 'true' or strgmodl == 'plot' or strgmodl == 'refr': liststrgmodl = [strgmodl] else: liststrgmodl = ['fitt', 'plot'] print('liststrgmodl') print(liststrgmodl) for strgmodl in liststrgmodl: if strgmodl == 'plot': gmod = gdat.fitt gmodoutp = gdat else: gmod = getattr(gdat, strgmodl) gmodoutp = gmod # get the list of names of the variable liststrgvarbnone = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, 'none') if iele != 'none': liststrgvarb = setp_namevarbsing(gdat, gmod, strgmodl, strgvarbbase, popl, ener, evtt, back, isfr, iele) else: liststrgvarb = liststrgvarbnone # set the values of each variable in the list for strgvarb in liststrgvarb: if minm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.minmpara, strgvarb, minm) if maxm is not None: setp_varbcore(gdat, strgmodl, gmodoutp.maxmpara, strgvarb, maxm) if mean is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, mean) if stdv is not None: setp_varbcore(gdat, strgmodl, gmodoutp.meanpara, strgvarb, stdv) if valu is not None: if strgstat is None: print('strgvarb') print(strgvarb) print('strgmodl') print(strgmodl) print('valu') print(valu) print('') setp_varbcore(gdat, strgmodl, gmodoutp, strgvarb, valu) elif strgstat == 'this': setp_varbcore(gdat, strgmodl, gmodoutp.this, strgvarb, valu) if scal is not None: setp_varbcore(gdat, strgmodl, gmodoutp.scalpara, strgvarb, scal) if lablroot is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablrootpara, strgvarb, lablroot) if lablunit is not None: setp_varbcore(gdat, strgmodl, gmodoutp.lablunitpara, strgvarb, lablunit) if cmap is not None: setp_varbcore(gdat, strgmodl, gmodoutp.cmappara, strgvarb, cmap) setp_varbcore(gdat, strgmodl, gmodoutp.numbbinspara, strgvarb, numbbins) # create limt, bins, mean, and delt if minm is not None and maxm is not None or mean is not None and stdv is not None: # determine minima and maxima for Gaussian or log-Gaussian distributed parameters if mean is not None: minm = mean - gdat.numbstdvgaus * stdv maxm = mean + gdat.numbstdvgaus * stdv # uniformly-distributed if scal == 'self' or scal == 'pois' or scal == 'gaus': binsunif = np.linspace(minm, maxm, numbbins + 1) if scal == 'logt' or scal == 'powr': binsunif = np.linspace(np.log10(minm), np.log10(maxm), numbbins + 1) if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsunif = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numbbins + 1) if boolinvr: binsunif = binsunif[::-1] meanparaunif = (binsunif[1:] + binsunif[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanpara = meanparaunif bins = binsunif minmunif = minm maxmunif = maxm if scal == 'logt' or scal == 'powr': meanpara = 10**meanparaunif bins = 10**binsunif minmunif = np.log10(minm) maxmunif = np.log10(maxm) if scal == 'asnh': meanpara = np.sinh(meanparaunif) bins = np.sinh(binsunif) minmunif = np.arcsinh(minm) maxmunif = np.arcsinh(maxm) delt = np.diff(bins) limt = np.array([minm, maxm]) # 'self' is not yet defined if scal == 'asnh' or scal == 'logt' or scal == 'powr': listvalutickmajr, listlabltickmajr, listvalutickminr, listlabltickminr = tdpy.retr_valulabltick(minm, maxm, scal) setattr(gmodoutp.labltickmajrpara, strgvarb, listlabltickmajr) setattr(gmodoutp.valutickmajrpara, strgvarb, listvalutickmajr) setattr(gmodoutp.labltickminrpara, strgvarb, listlabltickminr) setattr(gmodoutp.valutickminrpara, strgvarb, listvalutickminr) #labltick = np.empty(gdat.numbtickcbar, dtype=object) #for k in range(gdat.numbtickcbar): # if scal == 'asnh': # valutick[k] = np.sinh(tickunif[k]) # if scal == 'logt' or scal == 'powr': # valutick[k] = 10**(tickunif[k]) # # avoid very small, but nonzero central values in the residual count color maps # if strgcbar == 'cntpresi' and np.fabs(valutick[k]) < 1e-5: # valutick[k] = 0. # if strgcbar == 'cntpdata' and np.amax(valutick) > 1e3: # labltick[k] = '%d' % valutick[k] # else: # labltick[k] = '%.3g' % valutick[k] setattr(gmodoutp.limtpara, strgvarb, limt) setattr(gmodoutp.binspara, strgvarb, bins) setattr(gmodoutp.meanpara, strgvarb, meanpara) setattr(gmodoutp.deltpara, strgvarb, delt) def retr_ticklabltemp(gdat, strgcbar): minm = getattr(gdat.minmpara, strgcbar) maxm = getattr(gdat.maxmpara, strgcbar) scal = getattr(gdat.scalpara, strgcbar) numb = gdat.numbtickcbar - 1 retr_axis(gdat, strgcbar, numb=numb) minmscal = minm if scal == 'asnh': minmscal = np.arcsinh(minmscal) if scal == 'logt': minmscal = np.log10(minmscal) maxmscal = maxm if scal == 'asnh': maxmscal = np.arcsinh(maxmscal) if scal == 'logt': maxmscal = np.log10(maxmscal) tickscal = np.linspace(minmscal, maxmscal, gdat.numbtickcbar) labl = np.empty(gdat.numbtickcbar, dtype=object) tick = np.copy(tickscal) for k in range(gdat.numbtickcbar): if scal == 'asnh': tick[k] = np.sinh(tickscal[k]) elif scal == 'logt': tick[k] = 10**(tickscal[k]) # avoid very small, but nonzero central values in the residual count color maps if strgcbar == 'cntpresi' and np.fabs(tick[k]) < 1e-5: tick[k] = 0. if strgcbar == 'cntpdata' and np.amax(tick) > 1e3: labl[k] = '%d' % tick[k] else: labl[k] = '%.3g' % tick[k] setattr(gdat.tickpara, strgcbar, tick) def retr_axistemp(gdat, strgvarb, strgmodl=None, boolinvr=False): if strgmodl is None: listgdattemp = [gdat] for strgmodl in gdat.liststrgmodl: listgdattemp.append(getattr(gdat, strgmodl)) elif strgmodl == 'fitt' or strgmodl == 'true': listgdattemp = [getattr(gdat, strgmodl)] elif strgmodl == 'allm': listgdattemp = [] for strgmodl in gdat.liststrgmodl: listgdattemp = getattr(gdat, strgmodl) for gdattemp in listgdattemp: minm = getattr(gdattemp.minmpara, strgvarb) maxm = getattr(gdattemp.maxmpara, strgvarb) numb = getattr(gdattemp.numbbinspara, strgvarb) scal = getattr(gdattemp.scalpara, strgvarb) if scal == 'self' or scal == 'pois' or scal == 'gaus': binsscal = np.linspace(minm, maxm, numb + 1) if scal == 'logt': print('minm') print(minm) print('maxm') print(maxm) print('strgvarb') print(strgvarb) binsscal = np.linspace(np.log10(minm), np.log10(maxm), numb + 1) print('') if gdat.booldiagmode: if minm <= 0.: raise Exception('') if scal == 'asnh': binsscal = np.linspace(np.arcsinh(minm), np.arcsinh(maxm), numb + 1) if boolinvr: binsscal = binsscal[::-1] meanvarbscal = (binsscal[1:] + binsscal[:-1]) / 2. if scal == 'self' or scal == 'pois' or scal == 'gaus': meanvarb = meanvarbscal bins = binsscal if scal == 'logt': meanvarb = 10**meanvarbscal bins = 10**binsscal if scal == 'asnh': meanvarb = np.sinh(meanvarbscal) bins = np.sinh(binsscal) delt = np.diff(bins) limt = np.array([np.amin(bins), np.amax(bins)]) setattr(gdattemp.limtpara, strgvarb, limt) setattr(gdattemp.binspara, strgvarb, bins) setattr(gdattemp.meanpara, strgvarb, meanvarb) setattr(gdattemp.deltpara, strgvarb, delt) def setp_varbcore(gdat, strgmodl, gdattemp, strgvarbtemp, valu): # check if the variable is defined by the user try: valutemp = getattr(gdattemp, strgvarbtemp) if valutemp is None: raise if gdat.typeverb > 0: print('Received custom value for %s, %s: %s' % (strgvarbtemp, strgmodl, valutemp)) # if not defined or defined as None, define it except: setattr(gdattemp, strgvarbtemp, valu) def intp_sinc(gdat, lgal, bgal): intpsinc = 4. * gdat.numbsidepsfn**2 * np.sum(gdat.temppsfn * sinc(gdat.numbsidepsfn * (gdat.gridpsfnlgal + lgal) - gdat.gridpsfnlgal) * \ sinc(gdat.numbsidepsfn * (gdat.gridpsfnbgal + bgal) - gdat.gridpsfnbgal)) return intpsinc def retr_fluxbrgt(gdat, lgal, bgal, flux): if lgal.size == 0: fluxbrgt = np.array([0.]) fluxbrgtassc = np.array([0.]) else: indxbrgt = np.argmax(flux) fluxbrgt = flux[indxbrgt] return fluxbrgt, fluxbrgtassc def init_figr(gdat, gdatmodi, strgpdfn, strgplot, strgstat, strgmodl, indxenerplot, indxevttplot, indxpoplplot): figrsize = (gdat.sizeimag, gdat.sizeimag) figr, axis = plt.subplots(figsize=figrsize) nameplot = strgplot if gdat.numbener > 1: nameplot += 'en%02d' % gdat.indxenerincl[indxenerplot] if gdat.numbener > 1: if indxevttplot == -1: nameplot += 'evtA' else: nameplot += 'evt%d' % gdat.indxevttincl[indxevttplot] if gdat.fitt.numbpopl > 1: if indxpoplplot == -1: nameplot += 'popA' else: nameplot += 'pop%d' % indxpoplplot path = retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, nameplot) print('gdat.fitt.labltotlpara.lgalpop0') print(gdat.fitt.labltotlpara.lgalpop0) print('gdat.fitt.labltotlpara.bgalpop0') print(gdat.fitt.labltotlpara.bgalpop0) axis.set_xlabel(gdat.fitt.labltotlpara.lgalpop0) axis.set_ylabel(gdat.fitt.labltotlpara.bgalpop0) titl = '' if indxenerplot is not None and gdat.numbener > 1 and strgplot.endswith('cnts'): titl = gdat.strgener[indxenerplot] if indxevttplot is not None and gdat.numbevtt > 1 and strgplot.endswith('cnts'): titl += ' ' + gdat.strgevtt[indxevttplot] axis.set_title(titl) return figr, axis, path def draw_frambndr(gdat, axis): outr = max(gdat.frambndrmodl, gdat.frambndrdata) axis.set_xlim([-outr, outr]) axis.set_ylim([-outr, outr]) innr = min(gdat.frambndrmodl, gdat.frambndrdata) axis.axvline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axvline(-innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(innr, ls='--', alpha=gdat.alphbndr, color='black') axis.axhline(-innr, ls='--', alpha=gdat.alphbndr, color='black') def retr_imag(gdat, axis, maps, strgstat, strgmodl, strgcbar, indxenerplot=None, indxevttplot=-1, booltdim=False, imag=None): draw_frambndr(gdat, axis) # take the relevant energy and PSF bins if indxenerplot is not None: if indxevttplot == -1: maps = np.sum(maps[indxenerplot, ...], axis=1) else: maps = maps[indxenerplot, :, indxevttplot] # project the map to 2D if gdat.typepixl == 'heal': maps = tdpy.retr_cart(maps, indxpixlrofi=gdat.indxpixlrofi, numbsideinpt=gdat.numbsideheal, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata) if gdat.typepixl == 'cart': shap = [gdat.numbsidecart] + list(maps.shape) shap[1] = gdat.numbsidecart shapflat = list(maps.shape) shapflat[0] = gdat.numbpixlfull mapstemp = np.zeros(shapflat) if maps.size == gdat.indxpixlrofi.size: mapstemp[gdat.indxpixlrofi, ...] = maps else: mapstemp[:, ...] = maps maps = mapstemp.reshape(shap).swapaxes(0, 1) # temp -- this is needed to bring the Fermi-LAT map to the right direction #maps = fliplr(maps) # rescale the map if strgmodl is not None: gmod = getattr(gdat, strgmodl) else: gmod = gdat scal = getattr(gdat.scalpara, strgcbar) cmap = getattr(gdat.cmappara, strgcbar) vmin = getattr(gdat.minmpara, strgcbar) vmax = getattr(gdat.maxmpara, strgcbar) if scal == 'asnh': maps = np.arcsinh(maps) if scal == 'logt': maps = np.log10(maps) if imag is None: imag = axis.imshow(maps, cmap=cmap, origin='lower', extent=gdat.exttrofi, interpolation='nearest', vmin=vmin, vmax=vmax, alpha=gdat.alphmaps) return imag else: imag.set_data(maps) def make_cbar(gdat, axis, imag, strgvarb): # make a color bar valutickmajr = getattr(gdat.valutickmajrpara, strgvarb) labltickmajr = getattr(gdat.labltickmajrpara, strgvarb) print('valutickmajr') print(valutickmajr) print('labltickmajr') print(labltickmajr) cbar = plt.colorbar(imag, ax=axis, fraction=0.05, aspect=15) cbar.set_ticks(valutickmajr) cbar.set_ticklabels(labltickmajr) return cbar def make_legdmaps(gdat, strgstat, strgmodl, axis, mosa=False, assc=False): gmod = getattr(gdat, strgmodl) # transdimensional elements if strgmodl == 'fitt' and (strgstat == 'pdfn' and gdat.boolcondcatl or strgstat == 'this') and gmod.numbparaelem > 0: for l in gmod.indxpopl: colr = retr_colr(gdat, strgstat, strgmodl, l) if strgstat == 'pdfn': labl = 'Condensed %s %s' % (gmod.legd, gmod.legdpopl[l]) else: labl = 'Sample %s %s' % (gmod.legd, gmod.legdpopl[l]) if not gmod.maxmpara.numbelem[l] == 0: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=labl, marker=gmod.listelemmrkr[l], lw=gdat.mrkrlinewdth, color=colr) for q in gdat.indxrefr: if not np.amax(gdat.refr.numbelem[q]) == 0: if assc: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, \ label=gdat.refr.lablhits[q], marker=gdat.refr.listmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablmiss[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) else: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.lablelem[q], marker=gdat.refr.listmrkrmiss[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) # fixed-dimensional objects if strgmodl == 'fitt': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gmod.lablmodl, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gmod.lablmodl, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gdat.typedata == 'mock': if gmod.boollens: axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Source' % gdat.refr.labl, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.typeemishost != 'none': axis.scatter(gdat.anglfact * gdat.maxmgangdata * 5., gdat.anglfact * gdat.maxmgangdata * 5, s=50, alpha=gdat.alphelem, facecolor='none', \ label='%s Host' % gdat.refr.labl, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) temphand, temp = axis.get_legend_handles_labels() numblabl = len(temp) if numblabl == 4: numbcols = 2 else: numbcols = 3 if mosa: axis.legend(bbox_to_anchor=[1., 1.15], loc='center', ncol=numbcols) else: axis.legend(bbox_to_anchor=[0.5, 1.15], loc='center', ncol=numbcols) def supr_fram(gdat, gdatmodi, strgstat, strgmodl, axis, indxpoplplot=-1, assc=False): gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) # associations with the reference elements for q in gdat.indxrefr: if gdat.refr.numbelem[q] > 0: if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: reframpl = gdat.refr.dictelem[q][gdat.refr.nameparagenrelemampl[q]][0, :] mrkrsize = retr_mrkrsize(gdat, strgmodl, reframpl, gdat.refr.nameparagenrelemampl[q]) lgal = np.copy(gdat.refr.dictelem[q]['lgal'][0, :]) bgal = np.copy(gdat.refr.dictelem[q]['bgal'][0, :]) numbelem = int(gdat.refr.numbelem[q]) if gdatmodi is not None and gmod.numbparaelem > 0 and assc: ### hit indx = gdatmodi.this.indxelemrefrasschits[q][l] if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, label=gdat.refr.lablhits, \ marker=gdat.refrlistmrkrhits[q], lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) ### missed indx = gdatmodi.this.indxelemrefrasscmiss[q][l] else: indx = np.arange(lgal.size) if indx.size > 0: axis.scatter(gdat.anglfact * lgal[indx], gdat.anglfact * bgal[indx], s=mrkrsize[indx], alpha=gdat.alphelem, facecolor='none', \ label=gdat.refr.listlablmiss, marker=gdat.refr.listmrkrmiss[q], \ lw=gdat.mrkrlinewdth, color=gdat.refr.colrelem[q]) sizexoff = gdat.maxmgangdata * 0.05 * gdat.anglfact sizeyoff = gdat.maxmgangdata * 0.05 * gdat.anglfact if 'etag' in gdat.refr.namepara.elem[q]: for k in range(indx.size): axis.text(gdat.anglfact * lgal[indx[k]] + sizexoff, gdat.anglfact * bgal[indx[k]] + sizeyoff, gdat.refretag[q][indx[k]], \ verticalalignment='center', horizontalalignment='center', \ color='red', fontsize=1) # temp -- generalize this to input refrlgalhost vs. if gdat.typedata == 'mock': ## host galaxy position if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: lgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost, gdat.anglfact * bgalhost, facecolor='none', alpha=0.7, \ label='%s Host %d' % (gdat.refr.labl, e), s=300, marker='D', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) if gmod.boollens: ## host galaxy Einstein radius for e in gmod.indxsersfgrd: truelgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] truebgalhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] truebeinhost = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * truelgalhost, \ gdat.anglfact * truebgalhost), \ gdat.anglfact * truebeinhost, \ edgecolor=gdat.refr.colr, facecolor='none', lw=gdat.mrkrlinewdth)) if gmod.boollens: ## source galaxy position axis.scatter(gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.lgalsour], \ gdat.anglfact * gmodstat.paragenrscalfull[gmod.indxpara.bgalsour], \ facecolor='none', \ alpha=0.7, \ #alpha=gdat.alphelem, \ label='%s Source' % gdat.refr.labl, s=300, marker='>', lw=gdat.mrkrlinewdth, color=gdat.refr.colr) # model catalog if indxpoplplot == -1: listindxpoplplot = gmod.indxpopl else: listindxpoplplot = [indxpoplplot] for l in listindxpoplplot: if gdatmodi is not None: if gmod.numbparaelem > 0: colr = retr_colr(gdat, strgstat, strgmodl, l) mrkrsize = retr_mrkrsize(gdat, strgmodl, gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[gmod.nameparagenrelemampl[l]][l]], gmod.nameparagenrelemampl[l]) if 'lgal' in gdatmodi.this.indxparagenrfullelem: lgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['lgal']] bgal = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['bgal']] else: gang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['gang']] aang = gdatmodi.this.paragenrscalfull[gdatmodi.this.indxparagenrfullelem[l]['aang']] lgal, bgal = retr_lgalbgal(gang, aang) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, alpha=gdat.alphelem, label='Sample', marker=gmod.listelemmrkr[l], \ lw=gdat.mrkrlinewdth, color=colr) ## source if gmod.boollens: lgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gdatmodi.this.paragenrscalfull[gmod.indxpara.bgalsour] axis.scatter(gdat.anglfact * lgalsour, gdat.anglfact * bgalsour, facecolor='none', \ alpha=gdat.alphelem, \ label='%s Source' % gmod.lablpara, s=300, marker='<', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.typeemishost != 'none': ## host lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % (e))] bgalhost[e] = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % (e))] axis.scatter(gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e], facecolor='none', \ alpha=gdat.alphelem, \ label='%s Host' % gmod.lablpara, s=300, marker='s', lw=gdat.mrkrlinewdth, color=gmod.colr) if gmod.boollens: beinhost = gdatmodi.this.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % (e))] axis.add_patch(plt.Circle((gdat.anglfact * lgalhost[e], gdat.anglfact * bgalhost[e]), \ gdat.anglfact * beinhost, edgecolor=gmod.colr, facecolor='none', \ lw=gdat.mrkrlinewdth, ls='--')) # temp if strgstat == 'pdfn' and gdat.boolcondcatl and gmod.numbparaelem > 0: lgal = np.zeros(gdat.numbprvlhigh) bgal = np.zeros(gdat.numbprvlhigh) ampl = np.zeros(gdat.numbprvlhigh) cntr = 0 for r in gdat.indxstkscond: if r in gdat.indxprvlhigh: lgal[cntr] = gdat.dictglob['poststkscond'][r]['lgal'][0] bgal[cntr] = gdat.dictglob['poststkscond'][r]['bgal'][0] # temp -- this does not allow sources with different spectra to be assigned to the same stacked sample ampl[cntr] = gdat.dictglob['poststkscond'][r][gmod.nameparagenrelemampl[l]][0] cntr += 1 mrkrsize = retr_mrkrsize(gdat, strgmodl, ampl, gmod.nameparagenrelemampl[l]) colr = retr_colr(gdat, strgstat, strgmodl, l) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ label='Condensed', marker=gmod.listelemmrkr[l], color='black', lw=gdat.mrkrlinewdth) for r in gdat.indxstkscond: lgal = np.array([gdat.dictglob['liststkscond'][r]['lgal']]) bgal = np.array([gdat.dictglob['liststkscond'][r]['bgal']]) axis.scatter(gdat.anglfact * lgal, gdat.anglfact * bgal, s=mrkrsize, \ marker=gmod.listelemmrkr[l], color='black', alpha=0.1, lw=gdat.mrkrlinewdth) def retr_colr(gdat, strgstat, strgmodl, indxpopl=None): if strgmodl == 'true': if indxpopl is None: colr = gdat.refr.colr else: colr = gdat.refr.colrelem[indxpopl] if strgmodl == 'fitt': if strgstat == 'this' or strgstat == 'pdfn': if indxpopl is None: colr = gmod.colr else: colr = gmod.colrelem[indxpopl] if strgstat == 'mlik': colr = 'r' return colr def retr_levipost(listllik): minmlistllik = np.amin(listllik) levipost = np.log(np.mean(1. / np.exp(listllik - minmlistllik))) + minmlistllik return levipost def retr_infofromlevi(pmeallik, levi): info = pmeallik - levi return info def retr_jcbn(): fluxpare, lgalpare, bgalpare, fluxauxi, lgalauxi, bgalauxi = sympy.symbols('fluxpare lgalpare bgalpare fluxauxi lgalauxi bgalauxi') matr = sympy.Matrix([[ fluxpare, fluxauxi, 0, 0, 0, 0], \ [-fluxpare, 1 - fluxauxi, 0, 0, 0, 0], \ [-lgalauxi, 0, 1, 1 - fluxauxi, 0, 0], \ [-lgalauxi, 0, 1, -fluxauxi, 0, 0], \ [-bgalauxi, 0, 0, 0, 1, 1 - fluxauxi], \ [-bgalauxi, 0, 0, 0, 1, -fluxauxi]]) jcbn = matr.det() return jcbn # f1 = uf f0 # f2 = (1 - uf) f0 # x1 = x0 + (1 - uf) ux # x2 = x0 - uf ux # y1 = y0 + (1 - uf) uy # y2 = y0 - uf uy # f1/uf f1/f0 f1/x0 f1/ux f1/y0 f1/uy # f2/uf f2/f0 f2/x0 f2/ux f2/y0 f2/uy # x1/uf x1/f0 x1/x0 x1/ux x1/y0 x1/uy # x2/uf x2/f0 x2/x0 x2/ux x2/y0 x2/uy # y1/uf y1/f0 y1/x0 y1/ux y1/y0 y1/uy # y2/uf y2/f0 y2/x0 y2/ux y2/y0 y2/uy # f0 uf 0 0 0 0 # -f0 1 - uf 0 0 0 0 # -ux 0 1 1 - uf 0 0 # -ux 0 1 -uf 0 0 # -uy 0 0 0 1 1 - uf # -uy 0 0 0 1 -uf # f0 #retr_jcbn() def retr_angldist(gdat, lgalfrst, bgalfrst, lgalseco, bgalseco): # temp -- heal does not work when the dimension of lgalfrst is 1 if gdat.typepixl == 'heal': dir1 = np.array([lgalfrst, bgalfrst]) dir2 = np.array([lgalseco, bgalseco]) angldist = hp.rotator.angdist(dir1, dir2) else: angldist = np.sqrt((lgalfrst - lgalseco)**2 + (bgalfrst - bgalseco)**2) return angldist def retr_deflextr(gdat, indxpixlelem, sher, sang): factcosi = sher * np.cos(2. * sang) factsine = sher * np.cos(2. * sang) defllgal = factcosi * gdat.lgalgrid[indxpixlelem] + factsine * gdat.bgalgrid[indxpixlelem] deflbgal = factsine * gdat.lgalgrid[indxpixlelem] - factcosi * gdat.bgalgrid[indxpixlelem] return np.vstack((defllgal, deflbgal)).T def readfile(path): print('Reading %s...' % path) filepick = open(path + '.p', 'rb') filearry = h5py.File(path + '.h5', 'r') gdattemptemp = pickle.load(filepick) for attr in filearry: setattr(gdattemptemp, attr, filearry[attr][()]) filepick.close() filearry.close() if 'gdatfinl' in path or 'gdatinit' in path: if hasattr(gdattemptemp, 'edis') and gdattemptemp.edis is not None and hasattr(gdattemptemp, 'binsener'): gdattemptemp.edisintp = sp.interpolate.interp1d(gdattemptemp.binsener, gdattemptemp.edis, fill_value='extrapolate') gdattemptemp.adisobjt = sp.interpolate.interp1d(gdattemptemp.redsintp, gdattemptemp.adisintp, fill_value='extrapolate') gdattemptemp.redsfromdlosobjt = sp.interpolate.interp1d(gdattemptemp.adisintp * gdattemptemp.redsintp, \ gdattemptemp.redsintp, fill_value='extrapolate') return gdattemptemp def init_stat(gdat): # construct the initial state if gdat.typeverb > 0: print('Initializing the sampler state...') print('inittype') print(gdat.inittype) gmod = gdat.fitt ## initialization ### initialize the unit sample vector randomly gmod.this.paragenrunitfull = np.random.rand(gmod.numbparagenrfull) gmod.this.paragenrscalfull = np.empty(gmod.numbparagenrfull) ## impose user-specified initial state ### number of elements ## create dummy indxparagenrfullelem gmod.this.indxparagenrfullelem = None if gmod.numbparaelem > 0: if gdat.inittype == 'refr': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] else: for l in gmod.indxpopl: if gmod.typemodltran == 'pois': meanelemtemp = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, \ gmod.this.indxparagenrfullelem)[gmod.indxpara.meanelem[l]] print('temp -- user input is not working for numbelem') #namevarb = 'numbelempop%d' % l #initvalu = getattr(gmod.init, namevarb) #if initvalu > gmod.maxmpara.numbelem[l] or initvalu < gmod.minmpara.numbelem[l]: # raise Exception('Bad initial number of elements...') #gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = initvalu if gmod.typemodltran == 'pois': gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = np.random.poisson(meanelemtemp) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = round(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ min(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.maxmpara.numbelem[l]) gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = \ max(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]], gmod.minmpara.numbelem[l]) gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] = gmod.this.paragenrscalfull[gmod.indxpara.numbelem[l]] if gdat.booldiagmode: if gdat.typedata == 'mock' and gdat.inittype == 'refr': for l in gmod.indxpopl: if gmod.paragenrunitfull[gmod.indxpara.numbelem[l]] > gmod.maxmpara.numbelem[l]: raise Exception('') if gmod.numbparaelem > 0: gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.inittype == 'reco': if gdat.namerecostat is not None: strgcnfg = gdat.namerecostat else: strgcnfg = gdat.strgcnfg path = gdat.pathoutp + 'stat_' + strgcnfg + '.h5' if os.path.exists(path): boolinitreco = True thisfile = h5py.File(path, 'r') if gdat.typeverb > 0: print('Initializing from the state %s...' % path) print('Likelihood:') print(thisfile['lliktotl'][...]) # find the number of populations provided maxmindxpopl = 0 for l in range(10): for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) if gmod.indxpopl > maxmindxpopl: maxmindxpopl = gmod.indxpopl numbpoplinpt = maxmindxpopl + 1 if numbpoplinpt != gmod.numbpopl: print('State file and fitting metamodel have different number of populations.') # find the number of elements provided cntr = np.zeros(gmod.numbpoplinpt, dtype=int) for attr in thisfile: if attr.startswith('lgalpop'): gmod.indxpopl = int(attr[7]) cntr[indxpopl] += 1 if gdat.typeverb > 0: print('Number of elements found:') print(cntr) for attr in thisfile: for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase == attr: if gmod.nameparagenrbase.startswith('numbelem'): try: indxpopltemp = int(gmod.nameparagenrbase[-1]) initnumbelem = getattr(gdat, 'initnumbelempop%d' % indxpopltemp) print('Initial condition for the number of elements conflicts with the state file. Defaulting to the argument...') except: initnumbelem = thisfile[attr][()] gmod.this.paragenrunitfull[k] = initnumbelem else: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', thisfile[attr][()], k) if gmod.this.paragenrunitfull[k] == 0.: print('Warning CDF is zero.') if not np.isfinite(thisfile[attr][()]): raise Exception('Retreived state parameter is not finite.') if (gmod.numbparaelem == 0 or gmod.numbparaelem > 0 and not k in gmod.indxpara.numbelem) and \ (not np.isfinite(gmod.this.paragenrunitfull[k]) or gmod.this.paragenrunitfull[k] < 0. or \ gmod.this.paragenrunitfull[k] > 1.): raise Exception('CDF of the retreived state parameter is bad.') if gmod.numbparaelem > 0: for l in gmod.indxpopl: maxm.numbelem = getattr(gdat.fitt.maxm, 'numbelempop%d' % l) if gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] > maxm.numbelem: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = maxm.numbelem if gdat.typeverb > 0: print('Tapering off the element list...') gmod.this.indxelemfull = [] for l in gmod.indxpopl: gmod.this.indxelemfull.append(list(range(gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]].astype(int)))) if gdat.typeverb > 0: print('gmod.this.paragenrunitfull[gmod.indxpara.numbelem]') print(gmod.this.paragenrunitfull[gmod.indxpara.numbelem]) gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if (gmod.this.paragenrunitfull == 0).all(): raise Exception('Bad initialization.') if gmod.numbparaelem > 0 and gmod.this.indxparagenrfullelem is not None: for nameparagenrelem in gmod.namepara.elem: initcomp = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: initcomp[l] = np.empty(len(gmod.this.indxelemfull[l])) for k in range(len(gmod.this.indxelemfull[l])): namefiel = '%spop%d%04d' % (nameparagenrelem, l, k) for attr in thisfile: if namefiel == attr: initcomp[l][k] = thisfile[namefiel][()] setattr(gdat, 'init' + nameparagenrelem, initcomp) initcompfromstat(gdat, gdatmodi, 'init') thisfile.close() else: boolinitreco = False if gdat.typeverb > 0: print('Could not find the state file, %s, to initialize the sampler.' % path) if gdat.inittype == 'refr': if gdat.typedata == 'inpt': for l in gmod.indxpopl: gmod.this.paragenrunitfull[gmod.indxpara.numbelem[l]] = gdat.refr.numbelem[l] if gdat.typedata == 'mock': for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if not (gdat.inittype == 'pert' and gmod.nameparagenrbase.startswith('numbelem')) and \ gmod.nameparagenrbase in gmod.nameparagenrbase: gmod.indxpara.true = np.where(gmod.nameparagenrbase == gmod.nameparagenrbase)[0] gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmodstat.paragenrscalfull[gmod.indxpara.true], k) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') if gdat.typeverb > 1: show_paragenrscalfull(gdat, gdatmodi) if gmod.this.indxparagenrfullelem is not None: print('Initializing elements from the reference element parameters...') show_paragenrscalfull(gdat, gdatmodi) gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) show_paragenrscalfull(gdat, gdatmodi) initcompfromstat(gdat, gdatmodi, 'refr') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) ## impose user-specified individual initial values for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if gmod.nameparagenrbase.startswith('numbelem'): continue if gdat.inittype == 'reco' or gdat.inittype == 'refr' or gdat.inittype == 'pert': try: getattr(gdat, 'init' + gmod.nameparagenrbase) print('Conflicting initial state arguments detected, init keyword takes precedence.') except: pass try: raise Exception('') initvalu = getattr(gdat, 'init' + gmod.nameparagenrbase) gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', initvalu, k) if gdat.typeverb > 0: print('Received initial condition for %s: %.3g' % (gmod.nameparagenrbase, initvalu)) except: pass ## PSF if gdat.initpsfp is not None: print('Initializing the metamodel PSF from the provided initial state...') if gdat.initpsfp.size != gmod.indxpara.psfp.size: raise Exception('') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gdat.initpsfp[k-gmod.indxpara.psfp[0]], k) if gdat.initpsfprefr: print('Initializing the metamodel PSF from the reference state...') for k, gmod.nameparagenrbase in enumerate(gmod.nameparagenrbase): if k in gmod.indxpara.psfp: gmod.this.paragenrunitfull[k] = cdfn_paragenrscalbase(gdat.fitt, '', gmod.psfpexpr[k-gmod.indxpara.psfp[0]], k) if gdat.inittype == 'rand' or gdat.inittype == 'reco' and not boolinitreco: if gdat.typeverb > 0: print('Initializing from a random state...') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) if gmod.numbparaelem > 0: gmod.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmod.this.indxelemfull, 'fitt') # check the initial unit sample vector for bad entries if gmod.numbparaelem > 0: indxsampdiff = np.setdiff1d(gmod.indxparagenrfull, gmod.indxpara.numbelem) if np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])).any(): raise Exception('') indxsampbaddlowr = np.where((gmod.this.paragenrunitfull[indxsampdiff] <= 0.) | np.logical_not(np.isfinite(gmod.this.paragenrunitfull[indxsampdiff])))[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull[indxsampdiff] >= 1.)[0] indxsampbaddlowr = indxsampdiff[indxsampbaddlowr] indxsampbadduppr = indxsampdiff[indxsampbadduppr] else: indxsampbaddlowr = np.where(gmod.this.paragenrunitfull <= 0.)[0] indxsampbadduppr = np.where(gmod.this.paragenrunitfull >= 1.)[0] indxsampbadd = np.concatenate((indxsampbaddlowr, indxsampbadduppr)) if indxsampbadd.size > 0: print('Initial value caused unit sample vector to go outside the unit interval...') show_paragenrscalfull(gdat, gdatmodi, indxsampshow=indxsampbadd) gmod.this.paragenrunitfull[indxsampbadd] = np.random.rand(indxsampbadd.size) raise Exception('') gmod.this.paragenrscalfull = icdf_paragenrscalfull(gdat, 'fitt', gmod.this.paragenrunitfull, gmod.this.indxparagenrfullelem) indxbadd = np.where(np.logical_not(np.isfinite(gmod.this.paragenrscalfull)))[0] if indxbadd.size > 0: raise Exception('') def writfile(gdattemp, path): filepick = open(path + '.p', 'wb') filearry = h5py.File(path + '.h5', 'w') gdattemptemp = tdpy.gdatstrt() for attr, valu in gdattemp.__dict__.items(): if attr.endswith('psfnintp'): continue if isinstance(valu, np.ndarray) and valu.dtype != np.dtype('O') and valu.dtype != np.dtype('<U4'):# or isinstance(valu, str) or \ #isinstance(valu, float) or isinstance(valu, bool) or isinstance(valu, int) or isinstance(valu, np.float): filearry.create_dataset(attr, data=valu) else: # temp -- make sure interpolation objects are not written. if attr != 'adisobjt' and attr != 'redsfromdlosobjt' and attr != 'edisintp': setattr(gdattemptemp, attr, valu) print('Writing to %s...' % path) pickle.dump(gdattemptemp, filepick, protocol=pickle.HIGHEST_PROTOCOL) filepick.close() filearry.close() def retr_deflcutf(angl, defs, asca, acut, asym=False): fracanglasca = angl / asca deflcutf = defs / fracanglasca # second term in the NFW deflection profile fact = np.ones_like(fracanglasca) indxlowr = np.where(fracanglasca < 1.)[0] indxuppr = np.where(fracanglasca > 1.)[0] fact[indxlowr] = np.arccosh(1. / fracanglasca[indxlowr]) / np.sqrt(1. - fracanglasca[indxlowr]**2) fact[indxuppr] = np.arccos(1. / fracanglasca[indxuppr]) / np.sqrt(fracanglasca[indxuppr]**2 - 1.) if asym: deflcutf *= np.log(fracanglasca / 2.) + fact else: fracacutasca = acut / asca factcutf = fracacutasca**2 / (fracacutasca**2 + 1)**2 * ((fracacutasca**2 + 1. + 2. * (fracanglasca**2 - 1.)) * fact + \ np.pi * fracacutasca + (fracacutasca**2 - 1.) * np.log(fracacutasca) + np.sqrt(fracanglasca**2 + fracacutasca**2) * (-np.pi + (fracacutasca**2 - 1.) / fracacutasca * \ np.log(fracanglasca / (np.sqrt(fracanglasca**2 + fracacutasca**2) + fracacutasca)))) deflcutf *= factcutf return deflcutf def initchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime()) def stopchro(gdat, gdatmodi, name): if gdatmodi is not None: setattr(gdatmodi.this, 'chro' + name, gdat.functime() - getattr(gdatmodi.this, 'chro' + name)) def retr_defl(gdat, indxpixlelem, lgal, bgal, angllens, ellp=None, angl=None, rcor=None, asca=None, acut=None): # translate the grid lgaltran = gdat.lgalgrid[indxpixlelem] - lgal bgaltran = gdat.bgalgrid[indxpixlelem] - bgal if acut is not None: defs = angllens angl = np.sqrt(lgaltran**2 + bgaltran**2) defl = retr_deflcutf(angl, defs, asca, acut) defllgal = lgaltran / angl * defl deflbgal = bgaltran / angl * defl else: bein = angllens # rotate the grid lgalrttr = np.cos(angl) * lgaltran - np.sin(angl) * bgaltran bgalrttr = np.sin(angl) * lgaltran + np.cos(angl) * bgaltran axisrati = 1. - ellp facteccc = np.sqrt(1. - axisrati**2) factrcor = np.sqrt(axisrati**2 * lgalrttr**2 + bgalrttr**2) defllgalrttr = bein * axisrati / facteccc * np.arctan(facteccc * lgalrttr / factrcor) deflbgalrttr = bein * axisrati / facteccc * np.arctanh(facteccc * bgalrttr / factrcor) # totate back vector to original basis defllgal = np.cos(angl) * defllgalrttr + np.sin(angl) * deflbgalrttr deflbgal = -np.sin(angl) * defllgalrttr + np.cos(angl) * deflbgalrttr defl = np.vstack((defllgal, deflbgal)).T return defl def retr_lpriselfdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_self(feat, minm, maxm))) return lpri def retr_lprilogtdist(gdat, strgmodl, feat, strgfeat): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) lpri = np.sum(np.log(pdfn_logt(feat, minm, maxm))) return lpri def retr_lpripowrdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): gmod = getattr(gdat, strgmodl) minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + strgfeat + 'pop%d' % l)] lpri = np.sum(np.log(pdfn_powr(feat, minm, maxm, slop))) return lpri def retr_lpridpowdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): minm = getattr(gmod.minmpara, strgfeat) maxm = getattr(gmod.maxmpara, strgfeat) brek = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distbrek')[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + strgfeat)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + strgfeat)[l]] lpri = np.sum(np.log(pdfn_dpow(feat, minm, maxm, brek, sloplowr, slopuppr))) return lpri def retr_lprigausdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): distmean = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'diststdv')[l]] lpri = np.sum(np.log(pdfn_gaus(feat, distmean, diststdv))) return lpri def retr_lpriigamdist(gdat, strgmodl, feat, strgfeat, paragenrscalfull, l): slop = paragenrscalfull[getattr(gmod.indxpara, strgfeat + 'slop')[l]] cutf = getattr(gmod, 'cutf' + strgfeat) lpri = np.sum(np.log(pdfn_igam(feat, slop, cutf))) return lpri def traptdim(gdat, arry): s1 = arry[0, 0] + arry[-1, 0] + arry[0, -1] + arry[-1, -1] s2 = np.sum(arry[1:-1, 0]) + np.sum(arry[1:-1, -1]) + np.sum(arry[0, 1:-1]) + np.sum(arry[-1, 1:-1]) s3 = np.sum(arry[1:-1, 1:-1]) summ = (s1 + 2*s2 + 4*s3) * gdat.apix return summ def retr_spatprio(gdat, pdfnspatpriotemp, spatdistcons=None): pdfnspatprio = pdfnspatpriotemp if spatdistcons is not None: pdfnspatprio += spatdistcons summ = traptdim(gdat, pdfnspatprio) pdfnspatprio /= summ lpdfspatprio = np.log(pdfnspatprio) lpdfspatprioobjt = sp.interpolate.RectBivariateSpline(gdat.binspara.bgalcart, gdat.binspara.lgalcart, lpdfspatprio) return lpdfspatprio, lpdfspatprioobjt def retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=False): if strgmodl == 'true': gdatobjt = gdat.true elif strgmodl == 'fitt' and boolinit: gdatobjt = gdat.fitt else: gdatobjt = gdatmodi return gdatobjt def proc_samp(gdat, gdatmodi, strgstat, strgmodl, fast=False, boolinit=False): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl, boolinit=boolinit) gmodstat = getattr(gdatobjt, strgstat) initchro(gdat, gdatmodi, 'pars') # grab the sample vector indxpara = np.arange(gmodstat.paragenrscalfull.size) if gdat.booldiagmode: if not np.isfinite(gmodstat.paragenrscalfull).all(): raise Exception('') if gmod.typeevalpsfn != 'none' and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): psfp = gmodstat.paragenrscalfull[gmod.indxpara.psfp] if gdat.booldiagmode: if np.where(psfp == 0)[0].size == psfp.size: raise Exception('') setattr(gmodstat, 'psfp', psfp) bacp = gmodstat.paragenrscalfull[gmod.indxpara.bacp] if gmod.numbparaelem > 0: # temp -- this may slow down execution gmodstat.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodstat.indxelemfull, strgmodl) gmodstat.numbelem = np.empty(gmod.numbpopl, dtype=int) indxelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.numbelem[l] = gmodstat.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int) indxelem[l] = np.arange(gmodstat.numbelem[l]) gmodstat.numbelem[l] = np.sum(gmodstat.numbelem[l]) gmodstat.numbelemtotl = np.sum(gmodstat.numbelem) gmodstat.dictelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmodstat.dictelem[l] = dict() for strgfeat in gmod.namepara.genrelemdefa: gmodstat.dictelem[l][strgfeat] = [] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem] = gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]] if gdat.booldiagmode: if ((abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) < 1e-100 ) & (abs(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l][nameparagenrelem]]) > 0.)).any(): raise Exception('') if gmodstat.numbelem[l] != len(gmodstat.dictelem[l][nameparagenrelem]): print('l') print(l) print('numbelem') print(numbelem) print('gmodstat.dictelem') print(gmodstat.dictelem) print('nameparagenrelem') print(nameparagenrelem) raise Exception('') if gdat.boolbinsener: if gdat.typeverb > 2: print('Calculating element spectra...') initchro(gdat, gdatmodi, 'spec') for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], \ edisintp=gdat.edisintp, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'spec') if gdat.typeverb > 2: print('Element features:') for l in gmod.indxpopl: print('l') print(l) for strgfeat in gmod.namepara.genrelem[l]: print(strgfeat) print(gmodstat.dictelem[l][strgfeat]) if gdat.booldiagmode: for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if (gmod.listscalparagenrelem[l][g] != 'gaus' and not gmod.listscalparagenrelem[l][g].startswith('lnor')) and \ (gmod.listscalparagenrelem[l][g] != 'expo' and (gmodstat.dictelem[l][nameparagenrelem] < getattr(gmod.minmpara, nameparagenrelem)).any()) or \ (gmodstat.dictelem[l][nameparagenrelem] > getattr(gmod.maxmpara, nameparagenrelem)).any(): print('l, g') print(l, g) print('nameparagenrelem') print(nameparagenrelem) print('gmodstat.dictelem[l][nameparagenrelem]') summgene(gmodstat.dictelem[l][nameparagenrelem]) print('getattr(gmod, minm + nameparagenrelem)') print(getattr(gmod.minmpara, nameparagenrelem)) print('getattr(gmod, maxm + nameparagenrelem)') print(getattr(gmod.maxmpara, nameparagenrelem)) print('gmod.listscalparagenrelem[l][g]') print(gmod.listscalparagenrelem[l][g]) raise Exception('') # calculate element spectra # temp if gdat.booldiagmode: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gdat.variasca: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['acut']] < 0.)[0] if indx.size > 0: raise Exception('') if gdat.variacut: indx = np.where(gmodstat.paragenrscalfull[gmodstat.indxparagenrfullelem[l]['asca']] < 0.)[0] if indx.size > 0: raise Exception('') for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): # evaluate horizontal and vertical position for elements whose position is a power law in image-centric radius if gmod.typespatdist[l] == 'glc3': gmodstat.dictelem[l]['dlos'], gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'] = retr_glc3(gmodstat.dictelem[l]['dglc'], \ gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii']) if gmod.typespatdist[l] == 'gangexpo': gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], = retr_lgalbgal(gmodstat.dictelem[l]['gang'], \ gmodstat.dictelem[l]['aang']) if gdat.booldiagmode: if gmodstat.numbelem[l] > 0: if np.amin(gmodstat.dictelem[l]['lgal']) < gmod.minmlgal or \ np.amax(gmodstat.dictelem[l]['lgal']) > gmod.maxmlgal or \ np.amin(gmodstat.dictelem[l]['bgal']) < gmod.minmbgal or \ np.amax(gmodstat.dictelem[l]['bgal']) > gmod.maxmbgal: raise Exception('Bad coordinates!') if gmod.typespatdist[l] == 'los3': gmodstat.dictelem[l]['dglc'], gmodstat.dictelem[l]['thet'], gmodstat.dictelem[l]['phii'] = retr_los3(gmodstat.dictelem[l]['dlos'], \ gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) # evaluate flux for pulsars if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['lumi'] = retr_lumipuls(gmodstat.dictelem[l]['geff'], gmodstat.dictelem[l]['magf'], gmodstat.dictelem[l]['per0']) if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) gmodstat.dictelem[l]['lumi'] = gmodstat.dictelem[l]['lum0'] * (1. + gmodstat.dictelem[l]['reds'])**4 if gmod.typeelem[l] == 'lghtpntspuls' or gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['flux'] = retr_flux(gdat, gmodstat.dictelem[l]['lumi'], gmodstat.dictelem[l]['dlos']) # evaluate spectra if gmod.typeelem[l].startswith('lghtline'): if gmod.typeelem[l] == 'lghtlinevoig': gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], sigm=gmodstat.dictelem[l]['sigm'], \ gamm=gmodstat.dictelem[l]['gamm'], spectype=gmod.spectype[l]) else: gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], elin=gmodstat.dictelem[l]['elin'], edisintp=gdat.edisintp, spectype=gmod.spectype[l]) else: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['spec'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], curv=gmodstat.dictelem[l]['curv'], \ expc=gmodstat.dictelem[l]['expc'], sindcolr=sindcolr, spectype=gmod.spectype[l]) stopchro(gdat, gdatmodi, 'pars') ### loglikelihood initchro(gdat, gdatmodi, 'modl') if gmod.boollens: lgalsour = gmodstat.paragenrscalfull[gmod.indxpara.lgalsour] bgalsour = gmodstat.paragenrscalfull[gmod.indxpara.bgalsour] if gdat.typeverb > 2: print('Evaluating the likelihood...') # process a sample vector and the occupancy list to calculate secondary variables if gmod.boollens: fluxsour = gmodstat.paragenrscalfull[gmod.indxpara.fluxsour] if gdat.numbener > 1: sindsour = gmodstat.paragenrscalfull[gmod.indxpara.sindsour] sizesour = gmodstat.paragenrscalfull[gmod.indxpara.sizesour] ellpsour = gmodstat.paragenrscalfull[gmod.indxpara.ellpsour] anglsour = gmodstat.paragenrscalfull[gmod.indxpara.anglsour] if gmod.typeemishost != 'none': lgalhost = [[] for e in gmod.indxsersfgrd] bgalhost = [[] for e in gmod.indxsersfgrd] fluxhost = [[] for e in gmod.indxsersfgrd] if gdat.numbener > 1: sindhost = [[] for e in gmod.indxsersfgrd] sizehost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: lgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'lgalhostisf%d' % e)] bgalhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'bgalhostisf%d' % e)] fluxhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'fluxhostisf%d' % e)] if gdat.numbener > 1: sindhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sindhostisf%d' % e)] sizehost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sizehostisf%d' % e)] if gmod.boollens: beinhost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: beinhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'beinhostisf%d' % e)] if gmod.typeemishost != 'none': ellphost = [[] for e in gmod.indxsersfgrd] anglhost = [[] for e in gmod.indxsersfgrd] serihost = [[] for e in gmod.indxsersfgrd] for e in gmod.indxsersfgrd: ellphost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'ellphostisf%d' % e)] anglhost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'anglhostisf%d' % e)] serihost[e] = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'serihostisf%d' % e)] if gmod.boollens: numbpixltemp = gdat.numbpixlcart defl = np.zeros((numbpixltemp, 2)) # determine the indices of the pixels over which element kernels will be evaluated if gdat.boolbinsspat: if gmod.numbparaelem > 0: listindxpixlelem = [[] for l in gmod.indxpopl] listindxpixlelemconc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: listindxpixlelem[l], listindxpixlelemconc[l] = retr_indxpixlelemconc(gdat, strgmodl, gmodstat.dictelem, l) if gmod.boollens: sherextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sherextr')] sangextr = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'sangextr')] ## host halo deflection initchro(gdat, gdatmodi, 'deflhost') deflhost = [[] for e in gmod.indxsersfgrd] indxpixlmiss = gdat.indxpixlcart for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the deflection field due to host galaxy %d' % e) print('lgalhost[e]') print(lgalhost[e]) print('bgalhost[e]') print(bgalhost[e]) print('beinhost[e]') print(beinhost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) deflhost[e] = retr_defl(gdat, indxpixlmiss, lgalhost[e], bgalhost[e], beinhost[e], ellp=ellphost[e], angl=anglhost[e]) if gdat.booldiagmode: indxpixltemp = slice(None) setattr(gmodstat, 'deflhostisf%d' % e, deflhost[e]) if gdat.typeverb > 2: print('deflhost[e]') summgene(deflhost[e]) defl += deflhost[e] if gdat.typeverb > 2: print('After adding the host deflection...') print('defl') summgene(defl) if gdat.booldiagmode: if not np.isfinite(deflhost).all(): raise Exception('') stopchro(gdat, gdatmodi, 'deflhost') ## external shear initchro(gdat, gdatmodi, 'deflextr') deflextr = [] indxpixltemp = gdat.indxpixlcart deflextr = retr_deflextr(gdat, indxpixltemp, sherextr, sangextr) defl += deflextr if gdat.typeverb > 2: print('After adding the external deflection...') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'deflextr') # Boolean flag to indicate that the object to convolve the image will be needed boolneedpsfnconv = gdat.typepixl == 'cart' and (gmod.typeevalpsfn == 'conv' or gmod.typeevalpsfn == 'full') ## Boolean flag to indicate that the object to convolve the image will be constructed boolcalcpsfnconv = strgmodl == 'true' or boolinit or gdat.boolmodipsfn # get the convolution object if boolneedpsfnconv and boolcalcpsfnconv: initchro(gdat, gdatmodi, 'psfnconv') if gdat.typeverb > 2: print('Evaluating the PSF convolution kernel...') psfnconv = [[[] for i in gdat.indxener] for m in gdat.indxevtt] if gdat.typepixl == 'cart': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) for mm, m in enumerate(gdat.indxevtt): for ii, i in enumerate(gdat.indxener): if gmod.typemodlpsfn == 'singgaus': sigm = psfp[i+m*gdat.numbener] else: sigm = fwhm[i, m] / 2.355 gmodstat.psfnconv[mm][ii] = AiryDisk2DKernel(sigm / gdat.sizepixl) stopchro(gdat, gdatmodi, 'psfnconv') if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and gmod.numbparaelem > 0: if strgmodl == 'true' or boolinit or gdat.boolmodipsfn: if gdat.typepixl == 'heal': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gdat.typepixl == 'cart': if gdat.kernevaltype == 'ulip': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) gmodstat.psfnintp = sp.interpolate.interp1d(gdat.binspara.angl, gmodstat.psfn, axis=1, fill_value='extrapolate') if gdat.booldiagmode: if not np.isfinite(gmodstat.psfnintp(0.05)).all(): raise Exception('') if gdat.kernevaltype == 'bspx': gmodstat.psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.anglcart.flatten(), gmod.typemodlpsfn, strgmodl) # side length of the upsampled kernel gdat.numbsidekernusam = 100 # side length of the original kernel gdat.numbsidekern = gdat.numbsidekernusam / factkernusam gdat.indxsidekern = np.arange(gdat.numbsidekern) # pad by one row and one column #psf = np.zeros((gdat.numbsidekernusam+1, gdat.numbsidekernusam+1)) #psf[0:gdat.numbsidekernusam, 0:gdat.numbsidekernusam] = psf0 # make design matrix for each factkernusam x factkernusam region nx = factkernusam + 1 y, x = mgrid[0:nx, 0:nx] / float(factkernusam) x = x.flatten() y = y.flatten() kernmatrdesi = np.array([full(nx*nx, 1), x, y, x*x, x*y, y*y, x*x*x, x*x*y, x*y*y, y*y*y]).T # output np.array of coefficients gmodstat.psfnintp = np.empty((gdat.numbsidekern, gdat.numbsidekern, kernmatrdesi.shape[1])) # solve p = kernmatrdesi psfnintp for psfnintp for iy in gdat.indxsidekern: for ix in gdat.indxsidekern: p = psf[iy*factkernusam:(iy+1)*factkernusam+1, ix*factkernusam:(ix+1)*factkernusam+1].flatten() gmodstat.psfnintp[iy, ix, :] = dot(linalg.inv(dot(kernmatrdesi.T, kernmatrdesi)), dot(kernmatrdesi.T, p)) else: gmodstat.psfnintp = gdat.fitt.this.psfnintp sbrt = dict() for name in gmod.listnamediff: sbrt[name] = [] if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: sbrtdfnc = [] if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = [] if gmod.boolelemdeflsubhanyy: deflsubh = [] # retrieve or initialize state variable if gmod.boolelemsbrtdfncanyy: sbrtdfnc = np.zeros_like(gdat.expo) if gmod.boolelemdeflsubhanyy: deflsubh = np.zeros((gdat.numbpixl, 2)) if gmod.boolelemsbrtextsbgrdanyy: sbrtextsbgrd = np.zeros_like(gdat.expo) # element kernel evaluation if gmod.boolelemsbrtdfncanyy: initchro(gdat, gdatmodi, 'elemsbrtdfnc') sbrt['dfnc'] = [] for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: for k in range(gmodstat.numbelem[l]): if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] if gmod.typeelem[l] == 'clusvari': sbrtdfnc[0, listindxpixlelem[l][k], 0] += gmodstat.dictelem[l]['nobj'][k] / 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[listindxpixlelem[l][k]])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[listindxpixlelem[l][k]])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) if gmod.boolelempsfn[l]: print('sbrtdfnc') summgene(sbrtdfnc) sbrtdfnc[:, listindxpixlelem[l][k], :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) if gmod.typeelem[l].startswith('lghtline'): sbrtdfnc[:, 0, 0] += gmodstat.dictelem[l]['spec'][:, k] sbrt['dfnc'] = sbrtdfnc if gdat.booldiagmode: if not np.isfinite(sbrtdfnc).all(): raise Exception('Element delta function brightness not finite.') setattr(gmodstat, 'sbrtdfnc', sbrt['dfnc']) if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['dfnc']) numbelemtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtdfnc[l]: numbelemtemp += np.sum(gmodstat.numbelem[l]) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtdfnc') if gmod.boolelemdeflsubhanyy: initchro(gdat, gdatmodi, 'elemdeflsubh') if gdat.typeverb > 2: print('Perturbing subhalo deflection field') for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': for kk, k in enumerate(indxelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] if gmod.typeelemspateval[l] == 'locl': indxpixl = listindxpixlelem[l][kk] else: indxpixl = gdat.indxpixl deflsubh[indxpixl, :] += retr_defl(gdat, indxpixl, \ gmodstat.dictelem[l]['lgal'][kk], gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['defs'][kk], \ asca=asca, acut=acut) # temp -- find out what is causing the features in the element convergence maps #for kk, k in enumerate(indxelem[l]): # indxpixlpnts = retr_indxpixl(gdat, gmodstat.dictelem[l]['bgal'][kk], gmodstat.dictelem[l]['lgal'][kk]) # if deflsubh[listindxpixlelem[l][kk], :] if gdat.typeverb > 2: print('deflsubh') summgene(deflsubh) setattr(gmodstat, 'deflsubh', deflsubh) if gdat.booldiagmode: if not np.isfinite(deflsubh).all(): raise Exception('Element deflection is not finite.') defl += deflsubh if gdat.typeverb > 2: print('After adding subhalo deflection to the total deflection') print('defl') summgene(defl) stopchro(gdat, gdatmodi, 'elemdeflsubh') if gmod.boolelemsbrtextsbgrdanyy: initchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if strgstat == 'this': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtgausbgrd': for k in range(gmodstat.numbelem[l]): sbrtextsbgrd[:, listindxpixlelem[l][k], :] += gmodstat.dictelem[l]['spec'][:, k, None, None] / \ 2. / np.pi / gmodstat.dictelem[l]['gwdt'][k]**2 * \ np.exp(-0.5 * ((gmodstat.dictelem[l]['lgal'][k] - gdat.lgalgrid[None, listindxpixlelem[l][k], None])**2 + \ (gmodstat.dictelem[l]['bgal'][k] - gdat.bgalgrid[None, listindxpixlelem[l][k], None])**2) / gmodstat.dictelem[l]['gwdt'][k]**2) setattr(gmodstat, 'sbrtextsbgrd', sbrtextsbgrd) sbrt['extsbgrd'] = [] sbrt['extsbgrd'] = sbrtextsbgrd if gdat.booldiagmode: cntppntschec = retr_cntp(gdat, sbrt['extsbgrd']) if np.amin(cntppntschec) < -0.1: raise Exception('Point source spectral surface brightness is not positive-definite.') stopchro(gdat, gdatmodi, 'elemsbrtextsbgrd') if gdat.typeverb > 2: print('Element related state variables after perturbations...') if gmod.boolelemsbrtdfncanyy: print('sbrtdfnc') summgene(sbrtdfnc) if gmod.boolelemdeflsubhanyy: print('deflsubh') summgene(deflsubh) if gmod.boolelemsbrtextsbgrdanyy: print('sbrtextsbgrd') summgene(sbrtextsbgrd) if gmod.boollens: # lensed surface brightness initchro(gdat, gdatmodi, 'sbrtlens') if gdat.typeverb > 2: print('Evaluating lensed surface brightness...') if strgstat == 'this' or gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrd'] = [] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: sbrt['bgrdgalx'] = [] if gdat.numbener > 1: specsour = retr_spec(gdat, np.array([fluxsour]), sind=np.array([sindsour])) if gdat.typeverb > 2: print('sindsour') print(sindsour) else: specsour = np.array([fluxsour]) if gdat.typeverb > 2: print('lgalsour') print(lgalsour) print('bgalsour') print(bgalsour) print('sizesour') print(sizesour) print('ellpsour') print(ellpsour) print('anglsour') print(anglsour) print('fluxsour') print(fluxsour) print('specsour') print(specsour) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.typeverb > 2: print('Interpolating the background emission...') sbrt['bgrdgalx'] = retr_sbrtsers(gdat, gdat.lgalgrid[indxpixlelem[0]], gdat.bgalgrid[indxpixlelem[0]], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) if gdat.typeverb > 2: print('sbrt[bgrdgalx]') summgene(sbrt['bgrdgalx']) print('sbrtextsbgrd') summgene(sbrtextsbgrd) sbrt['bgrd'] = sbrt['bgrdgalx'] + sbrtextsbgrd sbrt['lens'] = np.empty_like(gdat.cntpdata) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): sbrtbgrdobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ sbrt['bgrd'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) bgalprim = gdat.bgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 1] lgalprim = gdat.lgalgrid[indxpixlelem[0]] - defl[indxpixlelem[0], 0] # temp -- T? sbrt['lens'][ii, :, m] = sbrtbgrdobjt(bgalprim, lgalprim, grid=False).flatten() else: if gdat.typeverb > 2: print('Not interpolating the background emission...') sbrt['lens'] = retr_sbrtsers(gdat, gdat.lgalgrid - defl[gdat.indxpixl, 0], \ gdat.bgalgrid - defl[gdat.indxpixl, 1], \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) sbrt['bgrd'] = retr_sbrtsers(gdat, gdat.lgalgrid, \ gdat.bgalgrid, \ lgalsour, bgalsour, specsour, sizesour, ellpsour, anglsour) setattr(gmodthis, 'sbrtlens', sbrt['lens']) if gdat.booldiagmode: if not np.isfinite(sbrt['lens']).all(): raise Exception('Lensed emission is not finite.') if (sbrt['lens'] == 0).all(): raise Exception('Lensed emission is zero everynp.where.') stopchro(gdat, gdatmodi, 'sbrtlens') ### background surface brightness sbrtback = [] # temp #sbrtback = np.empty((numbback, gdat.numbener, indxpixlelem[yy].size, gdat.numbevtt)) # evaluate host galaxy surface brightness if gmod.typeemishost != 'none': initchro(gdat, gdatmodi, 'sbrthost') for e in gmod.indxsersfgrd: if gdat.typeverb > 2: print('Evaluating the host galaxy surface brightness...') if gdat.numbener > 1: spechost = retr_spec(gdat, np.array([fluxhost[e]]), sind=np.array([sindhost[e]])) else: spechost = np.array([fluxhost[e]]) if gdat.typeverb > 2: print('lgalhost[e]') print(lgalhost[e] * gdat.anglfact) print('bgalhost[e]') print(bgalhost[e] * gdat.anglfact) print('spechost') print(spechost) print('sizehost[e]') print(sizehost[e]) print('ellphost[e]') print(ellphost[e]) print('anglhost[e]') print(anglhost[e]) print('serihost[e]') print(serihost[e]) sbrt['hostisf%d' % e] = retr_sbrtsers(gdat, gdat.lgalgrid, gdat.bgalgrid, lgalhost[e], \ bgalhost[e], spechost, sizehost[e], ellphost[e], anglhost[e], serihost[e]) setattr(gmodstat, 'sbrthostisf%d' % e, sbrt['hostisf%d' % e]) #sbrthost = sbrt['host'] if gdat.typeverb > 2: for e in gmod.indxsersfgrd: print('e') print(e) print('sbrt[hostisf%d]') summgene(sbrt['hostisf%d' % e]) stopchro(gdat, gdatmodi, 'sbrthost') ## model emission initchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('Summing up the model emission...') sbrt['modlraww'] = np.zeros((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt)) for name in gmod.listnamediff: if name.startswith('back'): gmod.indxbacktemp = int(name[4:8]) if gdat.typepixl == 'heal' and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv') and not gmod.boolunifback[gmod.indxbacktemp]: sbrttemp = getattr(gmod, 'sbrtbackhealfull')[gmod.indxbacktemp] else: sbrttemp = gmod.sbrtbacknorm[gmod.indxbacktemp] if gmod.boolspecback[gmod.indxbacktemp]: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp]] else: sbrt[name] = sbrttemp * bacp[gmod.indxbacpback[gmod.indxbacktemp][gdat.indxener]][:, None, None] sbrt['modlraww'] += sbrt[name] if gdat.booldiagmode: if np.amax(sbrttemp) == 0.: raise Exception('') if gdat.typeverb > 2: print('name') print(name) print('sbrt[name]') summgene(sbrt[name]) if gdat.typeverb > 2: for ii, i in enumerate(gdat.indxener): print('ii, i') print(ii, i) for mm, m in enumerate(gdat.indxevtt): print('mm, m') print(mm, m) print('sbrt[modlraww][ii, :, mm]') summgene(sbrt['modlraww'][ii, :, mm]) # convolve the model with the PSF if gmod.convdiffanyy and (gmod.typeevalpsfn == 'full' or gmod.typeevalpsfn == 'conv'): sbrt['modlconv'] = [] # temp -- isotropic background proposals are unnecessarily entering this clause if gdat.typeverb > 2: print('Convolving the model image with the PSF...') sbrt['modlconv'] = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for ii, i in enumerate(gdat.indxener): for mm, m in enumerate(gdat.indxevtt): if gdat.strgcnfg == 'pcat_ferm_igal_mock_test': print('Convolving ii, i, mm, m') print(ii, i, mm, m) if gdat.typepixl == 'cart': if gdat.numbpixl == gdat.numbpixlcart: sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrt['modlraww'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)), \ psfnconv[mm][ii]).flatten() else: sbrtfull = np.zeros(gdat.numbpixlcart) sbrtfull[gdat.indxpixlrofi] = sbrt['modlraww'][ii, :, mm] sbrtfull = sbrtfull.reshape((gdat.numbsidecart, gdat.numbsidecart)) sbrt['modlconv'][ii, :, mm] = convolve_fft(sbrtfull, psfnconv[mm][ii]).flatten()[gdat.indxpixlrofi] indx = np.where(sbrt['modlconv'][ii, :, mm] < 1e-50) sbrt['modlconv'][ii, indx, mm] = 1e-50 if gdat.typepixl == 'heal': sbrt['modlconv'][ii, :, mm] = hp.smoothing(sbrt['modlraww'][ii, :, mm], fwhm=fwhm[i, m])[gdat.indxpixlrofi] sbrt['modlconv'][ii, :, mm][np.where(sbrt['modlraww'][ii, :, mm] <= 1e-50)] = 1e-50 setattr(gmodstat, 'sbrtmodlconv', sbrt['modlconv']) # temp -- this could be made faster -- need the copy() statement because sbrtdfnc gets added to sbrtmodl afterwards sbrt['modl'] = np.copy(sbrt['modlconv']) else: if gdat.typeverb > 2: print('Skipping PSF convolution of the model...') sbrt['modl'] = np.copy(sbrt['modlraww']) if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ## add PSF-convolved delta functions to the model if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gdat.typeverb > 2: print('Adding delta functions into the model...') print('sbrt[dfnc]') summgene(sbrt['dfnc']) sbrt['modl'] += sbrt['dfnc'] stopchro(gdat, gdatmodi, 'sbrtmodl') if gdat.typeverb > 2: print('sbrt[modl]') summgene(sbrt['modl']) ### count map initchro(gdat, gdatmodi, 'expo') cntp = dict() cntp['modl'] = retr_cntp(gdat, sbrt['modl']) if gdat.booldiagmode: setattr(gmodstat, 'cntpmodl', cntp['modl']) stopchro(gdat, gdatmodi, 'expo') # mock data specific if strgmodl == 'true' and strgstat == 'this': # generate count data cntptemp = np.zeros((gdat.numbener, gdat.numbpixl, gdat.numbevtt)) for i in gdat.indxener: for j in gdat.indxpixl: for m in gdat.indxevtt: cntptemp[i, j, m] = np.random.poisson(cntp['modl'][i, j, m]) setattr(gdat, 'cntpdata', cntptemp) if not gdat.boolsqzeexpo and np.amax(cntptemp) == 0: print('cntp[modl]') summgene(cntp['modl']) print('gdat.boolsqzeexpo') print(gdat.boolsqzeexpo) print('cntptemp') summgene(cntptemp) raise Exception('Data is zero.') proc_cntpdata(gdat) ## diagnostics if gdat.booldiagmode: frac = cntp['modl'] / np.mean(cntp['modl']) if np.amin(frac) < -1e-3 and np.amin(cntp['modl']) < -0.1: raise Exception('') indxcubebadd = np.where(cntp['modl'] < 0.)[0] if indxcubebadd.size > 0: print('Warning! Model prediction is negative. Correcting to 1e-20...') cntp['modl'][indxcubebadd] = 1e-20 stopchro(gdat, gdatmodi, 'modl') # log-prior initchro(gdat, gdatmodi, 'lpri') if gdat.typeverb > 2: print('Evaluating the prior...') lpri = np.zeros(gmod.numblpri) if gmod.numbparaelem > 0: for l in gmod.indxpopl: lpri[0] -= 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[l] * gmodstat.numbelem[l] if gdat.penalpridiff: sbrtdatapnts = gdat.sbrtdata - sbrt['dfnc'] if gdat.typepixl == 'heal': raise Exception('') if gdat.typepixl == 'cart': psecodimdatapnts = np.empty((gdat.numbener, gdat.numbsidecarthalf, gdat.numbevtt)) psfn = retr_psfn(gdat, psfp, gdat.indxener, gdat.binspara.angl, gmod.typemodlpsfn, strgmodl) fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) sigm = fwhm / 2.355 psecodimdatapntsprio = np.exp(-2. * gdat.meanpara.mpolodim[None, :, None] / (0.1 / sigm[:, None, :])) lpridiff = 0. for i in gdat.indxener: for m in gdat.indxevtt: psecdatapnts = retr_psec(gdat, sbrtdatapnts[i, :, m]) psecodimdatapnts[i, :, m] = retr_psecodim(gdat, psecdatapnts) psecodimdatapnts[i, :, m] /= psecodimdatapnts[i, 0, m] lpridiff += -0.5 * np.sum((psecodimdatapnts[i, :, m] - psecodimdatapntsprio[i, :, m])**2) setattr(gmodstat, 'psecodimdatapntsen%02devt%d' % (i, m), psecodimdatapnts[i, :, m]) setattr(gmodstat, 'psecodimdatapntsprioen%02devt%d'% (i, m), psecodimdatapntsprio[i, :, m]) lpri[1] = lpridiff setattr(gmodstat, 'lpridiff', lpridiff) if gmod.typemodltran == 'pois': meanelem = gmodstat.paragenrscalfull[gmod.indxpara.meanelem] for l in gmod.indxpopl: lpri[2] += retr_lprbpois(gmodstat.numbelem[l], meanelem[l]) for l in gmod.indxpopl: for g, (strgfeat, strgpdfn) in enumerate(zip(gmod.namepara.genrelem[l], gmod.listscalparagenrelem[l])): indxlpritemp = 3 + l * gmod.numbparagenrelem + g lpri[indxlpritemp] = retr_lprielem(gdat, strgmodl, l, g, strgfeat, strgpdfn, gmodstat.paragenrscalfull, gmodstat.dictelem, gmodstat.numbelem) lpritotl = np.sum(lpri) if gdat.typeverb > 1: print('lpritotl') print(lpritotl) ### log-likelihood initchro(gdat, gdatmodi, 'llik') llik = retr_llik(gdat, strgmodl, cntp['modl']) if gdat.typeverb > 2: print('cntp[modl]') summgene(cntp['modl']) print('np.sum(cntp[modl], (1, 2))') print(np.sum(cntp['modl'], (1, 2))) print('np.sum(gdat.cntpdata, (1, 2))') print(np.sum(gdat.cntpdata, (1, 2))) if gdat.booldiagmode: if not np.isfinite(llik).all(): raise Exception('Likelihood is not finite.') gmodstat.lliktotl = np.sum(llik) if gdat.booldiagmode: if isinstance(gmodstat.lliktotl, np.ndarray): raise Exception('') if not np.isfinite(gmodstat.lliktotl).all(): raise Exception('') numbdoff = gdat.numbdata - gmod.numbparagenrbase if gmod.numbparaelem > 0: for l in gmod.indxpopl: numbdoff -= len(gmodstat.indxparagenrfullelem[l]['full']) setattr(gmodstat, 'llik', llik) setattr(gmodstat, 'llikmean', gmodstat.lliktotl / gdat.numbdata) setattr(gmodstat, 'llikcmea', gmodstat.lliktotl / (gdat.numbdata - numbdoff)) if gdat.typeverb > 2: print('llik') summgene(llik) if gdat.typeverb > 1: print('gmodstat.lliktotl') print(gmodstat.lliktotl) stopchro(gdat, gdatmodi, 'llik') lpostotl = lpritotl + gmodstat.lliktotl if gdat.typeverb > 1: print('lpostotl') print(lpostotl) setattr(gmodstat, 'lpritotl', lpritotl) setattr(gmodstat, 'gmodstat.lliktotl', gmodstat.lliktotl) setattr(gmodstat, 'lpostotl', lpostotl) stopchro(gdat, gdatmodi, 'lpri') if strgstat == 'next': return initchro(gdat, gdatmodi, 'tert') setattr(gmodstat, 'lpri', lpri) if gmod.numbparaelem > 0: setattr(gmodstat, 'lpripena', lpri[0]) dicttert = {} ## load necessary variables ## derived variables ## residual count map cntp['resi'] = [] cntp['resi'] = gdat.cntpdata - cntp['modl'] setattr(gmodstat, 'cntpmodl', cntp['modl']) setattr(gmodstat, 'cntpresi', cntp['resi']) setattr(gmodstat, 'llik', llik) #if gmod.boollens: # setattr(gmodstat, 'deflhost', deflhost) if gmod.boollens: setattr(gmodstat, 'defl', defl) for e in gmod.indxsersfgrd: masshostbein = massfrombein * beinhost[e]**2 setattr(gmodstat, 'masshostisf%dbein' % e, masshostbein) ### sort with respect to deflection at scale radius if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodstat.numbelem[l] > 0: indxelemsortampl = np.argsort(gmodstat.dictelem[l][nameparaelemsort[l]])[::-1] for nameparagenrelem in gmod.namepara.genrelem[l]: gmodstat.dictelem[l][nameparagenrelem + 'sort'] = gmodstat.dictelem[l][nameparagenrelem][indxelemsortampl] deflsing = np.zeros((gdat.numbpixlcart, 2, numbdeflsingplot)) conv = np.zeros((gdat.numbpixlcart)) convpsec = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecodim = np.zeros((gdat.numbsidecarthalf)) if gmod.numbparaelem > 0: if boolelemlens: gmod.indxpopllens = gmod.typeelem.index('lens') numbdeflsing = 2 if gmod.numbparaelem > 0: if boolelemlens: if numbelem[indxpopllens] > 0: numbdeflsing += min(numbdeflsubhplot, numbelem[indxpopllens]) numbdeflsing += 1 for k in range(numbdeflsing): indxpixltemp = gdat.indxpixlcart if k == 0: # temp -- should take other sersics into account deflsing[indxpixltemp, :, k] = deflhost[0] elif k == 1: deflsing[indxpixltemp, :, k] = deflextr elif k == 2: deflsing[indxpixltemp, :, k] = defl - deflextr - deflhost[0] else: asca = gmodstat.dictelem[indxpopllens]['ascasort'][None, k-3] acut = gmodstat.dictelem[indxpopllens]['acutsort'][None, k-3] deflsing[listindxpixlelem[indxpopllens][k], :, k] = retr_defl(gdat, listindxpixlelem[indxpopllens][k], \ gmodstat.dictelem[indxpopllens]['lgalsort'][None, k-3], gmodstat.dictelem[indxpopllens]['bgalsort'][None, k-3], \ gmodstat.dictelem[indxpopllens]['defssort'][None, k-3], asca=asca, acut=acut) # convergence ## total conv[:] = retr_conv(gdat, defl) convhost = np.zeros((gmod.numbsersfgrd, gdat.numbpixlcart)) for e in gmod.indxsersfgrd: convhost[e, :] = retr_conv(gdat, deflhost[e]) ### power spectrum #### two dimensional convpsec[:] = retr_psec(gdat, conv[:]) #### one dimensional convpsecodim[:] = retr_psecodim(gdat, convpsec[:]) setattr(gmodstat, 'convpsec', convpsec) setattr(gmodstat, 'convpsecodim', convpsecodim) setattr(gmodstat, 'conv', conv[...]) for e in gmod.indxsersfgrd: setattr(gmodstat, 'convisf%d' % e, convhost[e, ...]) ## subhalos if gmod.numbparaelem > 0: if boolelemlens: convelem = np.zeros((gdat.numbpixl)) convpsecelem = np.zeros(((gdat.numbsidecarthalf)**2)) convpsecelemodim = np.zeros((gdat.numbsidecarthalf)) ### convergence convelem[:] = retr_conv(gdat, deflsubh) ### power spectrum ##### two dimensional convpsecelem[:] = retr_psec(gdat, convelem[:]) ##### one dimensional convpsecelemodim[:] = retr_psecodim(gdat, convpsecelem[:]) setattr(gmodstat, 'convpsecelem', convpsecelem) setattr(gmodstat, 'convpsecelemodim', convpsecelemodim) setattr(gmodstat, 'convelem', convelem[...]) setattr(gmodstat, 'defl', defl) ### magnification magn = np.empty((gdat.numbpixlcart)) histdefl = np.empty((gdat.numbdefl)) if gmod.numbparaelem > 0 and boolelemlens: histdeflsubh = np.empty((gdat.numbdefl)) deflsingmgtd = np.zeros((gdat.numbpixlcart, numbdeflsingplot)) magn[:] = 1. / retr_invm(gdat, defl) histdefl[:] = np.histogram(defl, bins=gdat.binspara.defl)[0] if gmod.numbparaelem > 0: if boolelemlens: histdeflsubh[:] = np.histogram(deflsubh, bins=gdat.binspara.deflsubh)[0] deflsingmgtd[:, :] = np.sqrt(np.sum(deflsing[...]**2, axis=1)) if gmod.numbparaelem > 0: if boolelemlens: setattr(gmodstat, 'histdeflsubh', histdeflsubh) setattr(gmodstat, 'histdefl', histdefl) setattr(gmodstat, 'magn', magn[...]) setattr(gmodstat, 'deflsing', deflsing[...]) setattr(gmodstat, 'deflsingmgtd', deflsingmgtd[...]) ## element related if gmod.numbparaelem > 0: if gdat.numbpixl == 1: for l in gmod.indxpopl: for k in range(gmodstat.numbelem[l]): setattr(gmodstat, 'speclinepop%d%04d' % (l, k), gmodstat.dictelem[l]['spec'][:, k]) if gdat.typedata == 'mock' and strgmodl == 'true' and gdat.numbpixl > 1: gdat.refrlgal = [[] for l in gmod.indxpopl] gdat.refrbgal = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gdat.refrlgal[l] = np.tile(gmodstat.dictelem[l]['lgal'], [3] + list(np.ones(gmodstat.dictelem[l]['lgal'].ndim, dtype=int))) gdat.refrbgal[l] = np.tile(gmodstat.dictelem[l]['bgal'], [3] + list(np.ones(gmodstat.dictelem[l]['bgal'].ndim, dtype=int))) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['per1'] = retr_per1(gmodstat.dictelem[l]['per0'], gmodstat.dictelem[l]['magf']) if gmod.numbparaelem > 0: if strgstat == 'this' or gdat.boolrefeforc and strgmodl == 'fitt': # correlate the fitting model elements with the reference elements if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: indxelemrefrasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasschits = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] == 0: continue indxelemfittmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) indxelemrefrmatr = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l]), dtype=int) matrdist = np.empty((gdat.refr.numbelem[q], gmodstat.numbelem[l])) for k in range(gmodstat.numbelem[l]): # construct a matrix of angular distances between reference and fitting elements if gmod.typeelem[l].startswith('lghtline'): matrdist[:, k] = abs(gdat.refrelin[q][0, :] - gmodstat.dictelem[l]['elin'][k]) / gdat.refrelin[q][0, :] else: matrdist[:, k] = retr_angldist(gdat, gdat.refr.dictelem[q]['lgal'][0, :], gdat.refr.dictelem[q]['bgal'][0, :], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k]) indxelemrefrmatr[:, k] = np.arange(gdat.refr.numbelem[q]) indxelemfittmatr[:, k] = k matrdist = matrdist.flatten() indxelemrefrmatr = indxelemrefrmatr.flatten() indxelemfittmatr = indxelemfittmatr.flatten() # take only angular separations smaller than some threshold indxmatrthrs = np.where(matrdist < gdat.anglassc) matrdist = matrdist[indxmatrthrs] indxelemrefrmatr = indxelemrefrmatr[indxmatrthrs] indxelemfittmatr = indxelemfittmatr[indxmatrthrs] # sort the remaining associations with respect to distance indxmatrsort = np.argsort(matrdist) matrdist = matrdist[indxmatrsort] indxelemrefrmatr = indxelemrefrmatr[indxmatrsort] indxelemfittmatr = indxelemfittmatr[indxmatrsort] for c in range(matrdist.size): if indxelemrefrmatr[c] in indxelemrefrasschits[q][l] or indxelemfittmatr[c] in indxelemfittasschits[q][l]: continue indxelemrefrasschits[q][l].append(indxelemrefrmatr[c]) indxelemfittasschits[q][l].append(indxelemfittmatr[c]) indxelemrefrasschits[q][l] = np.array(indxelemrefrasschits[q][l]) indxelemfittasschits[q][l] = np.array(indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasschits', indxelemrefrasschits) setattr(gmodstat, 'indxelemfittasschits', indxelemfittasschits) indxelemrefrasscmiss = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] indxelemfittasscfals = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: # indices of the reference elements not associated with the fitting model elements if gdat.refr.numbelem[q] > 0: indxelemrefrasscmiss[q][l] = np.setdiff1d(np.arange(gdat.refr.numbelem[q]), indxelemrefrasschits[q][l]) # indices of the fitting model elements not associated with the reference elements if gmodstat.numbelem[l] > 0: indxelemfittasscfals[q][l] = np.setdiff1d(np.arange(gmodstat.numbelem[l]), indxelemfittasschits[q][l]) setattr(gmodstat, 'indxelemrefrasscmiss', indxelemrefrasscmiss) setattr(gmodstat, 'indxelemfittasscfals', indxelemfittasscfals) for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for l in gmod.indxpopl: # collect the associated reference element parameter for each fitting element for strgfeat in gdat.refr.namepara.elemonly[q][l]: name = strgfeat + gdat.listnamerefr[q] if strgfeat != 'spec' and strgfeat != 'specplot': refrfeat = getattr(gdat.refr, strgfeat) gmodstat.dictelem[l][name] = np.zeros(gmodstat.numbelem[l]) if len(refrfeat[q]) > 0 and len(indxelemrefrasschits[q][l]) > 0: gmodstat.dictelem[l][name][indxelemfittasschits[q][l]] = refrfeat[q][0, indxelemrefrasschits[q][l]] print('temp') continue # collect the error in the associated reference element amplitude for strgfeat in gdat.listnameparaetotlelemcomm[q][l]: refrfeat = getattr(gdat.refr, strgfeat) if strgfeat == gmod.nameparagenrelemampl[l] and len(indxelemfittasschits[q][l]) > 0: gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]] = np.zeros(gmodstat.numbelem[l]) fittfeattemp = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] refrfeattemp = refrfeat[q][0, indxelemrefrasschits[q][l]] if gdat.booldiagmode: if not np.isfinite(refrfeattemp).all(): raise Exception('') gmodstat.dictelem[l]['aerr' + gdat.listnamerefr[q]][indxelemfittasschits[q][l]] = 100. * (fittfeattemp - refrfeattemp) / refrfeattemp if gdat.boolrefeforc and strgmodl == 'fitt': for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat in gdat.refr.namepara.elem[gdat.indxrefrforc[l]]: if len(indxelemrefrasschits[gdat.indxrefrforc[l]][l]) == 0: continue refrfeat = getattr(gdat.refr, strgfeat)[gdat.indxrefrforc[l]][0, indxelemrefrasschits[gdat.indxrefrforc[l]][l]] if len(gmodstat.dictelem[l][strgfeat]) == 0: continue lpritotl += -2. * np.sum(1e6 * (gmodstat.dictelem[l][strgfeat][indxelemfittasschits[gdat.indxrefrforc[l]][l]] - refrfeat)**2 / refrfeat**2) # other tertiary variables continues ## number of degrees of freedom chi2doff = np.sum(cntp['resi']**2 / gdat.varidata) / numbdoff if gdat.booldiagmode: if not np.isfinite(cntp['resi']).all(): raise Exception('') if not np.isfinite(numbdoff): raise Exception('') if not np.isfinite(chi2doff): raise Exception('') setattr(gmodstat, 'numbdoff', numbdoff) setattr(gmodstat, 'chi2doff', chi2doff) if gmod.boolelempsfn and gmod.numbparaelem > 0: gmodstat.fwhmpsfn = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) if gmod.numbparaelem > 0: ### derived parameters for l in gmod.indxpopl: # luminosity if gmod.boolelemlght[l] and 'flux' in gmod.namepara.genrelem[l]: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat.startswith('reds') and strgfeat != 'reds': namerefr = strgfeat[-4:] gmodstat.dictelem[l]['lumi' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan gmodstat.dictelem[l]['dlos' + namerefr] = np.zeros(gmodstat.numbelem[l]) + np.nan reds = gmodstat.dictelem[l]['reds' + namerefr] indxgood = np.where(np.isfinite(gmodstat.dictelem[l]['reds' + namerefr]))[0] if indxgood.size > 0: # temp -- these units only work for energy units of keV dlos = gdat.adisobjt(reds) gmodstat.dictelem[l]['dlos' + namerefr][indxgood] = dlos lumi = retr_lumi(gdat, gmodstat.dictelem[l]['flux'], dlos, reds) gmodstat.dictelem[l]['lumi' + namerefr][indxgood] = lumi if gmod.typeelem[l] == 'lghtpntsagnntrue': gmodstat.dictelem[l]['reds'] = gdat.redsfromdlosobjt(gmodstat.dictelem[l]['dlos']) if gmod.typeelem[l] == 'lghtpntspuls': gmodstat.dictelem[l]['mass'] = full([numbelem[l]], 3.) if gdat.typeverb > 2: print('l') print(l) if gdat.boolbinsspat: #### radial and angular coordinates gmodstat.dictelem[l]['gang'] = retr_gang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) gmodstat.dictelem[l]['aang'] = retr_aang(gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']) if gmod.boolelemlght[l]: #### number of expected counts if gdat.boolbinsspat: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal']], gmodstat.dictelem[l]['spec']) else: gmodstat.dictelem[l]['cnts'] = retr_cntspnts(gdat, [gmodstat.dictelem[l]['elin']], gmodstat.dictelem[l]['spec']) #### delta log-likelihood gmodstat.dictelem[l]['deltllik'] = np.zeros(gmodstat.numbelem[l]) if not (strgmodl == 'true' and gdat.checprio): if gdat.typeverb > 2: print('Calculating log-likelihood differences when removing elements from the model.') for k in range(gmodstat.numbelem[l]): # construct gdatmodi gdatmoditemp = tdpy.gdatstrt() gdatmoditemp.this = tdpy.gdatstrt() gdatmoditemp.next = tdpy.gdatstrt() gdatmoditemp.this.indxelemfull = gmodstat.indxelemfull gdatmoditemp.this.paragenrscalfull = gmodstat.paragenrscalfull gdatmoditemp.this.paragenrunitfull = gmodstat.paragenrunitfull prop_stat(gdat, gdatmoditemp, strgmodl, deth=True, thisindxpopl=l, thisindxelem=k) proc_samp(gdat, gdatmoditemp, 'next', strgmodl)#, boolinit=boolinit) if gdat.booldiagmode: if not np.isfinite(gmodstat.lliktotl): raise Exception('') gdatobjttemp = retr_gdatobjt(gdat, gdatmoditemp, strgmodl)#, boolinit=boolinit) nextlliktotl = gdatobjttemp.next.lliktotl gmodstat.dictelem[l]['deltllik'][k] = gmodstat.lliktotl - nextlliktotl if gdat.typeverb > 2: print('deltllik calculation ended.') # more derived parameters if (gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full') and (strgmodl == 'true' or boolinit or gdat.boolmodipsfn): ### PSF FWHM if gdat.typepixl == 'cart': fwhm = 2. * retr_psfnwdth(gdat, gmodstat.psfn, 0.5) setattr(gmodstat, 'fwhm', fwhm) if gmod.numbparaelem > 0 and gmod.boolelemsbrtdfncanyy: if gmod.numbparaelem > 0: sbrt['dfnctotl'] = np.zeros_like(gdat.expo) sbrt['dfncsubt'] = np.zeros_like(gdat.expo) sbrt['dfncsupt'] = np.zeros_like(gdat.expo) for l in gmod.indxpopl: if gmod.boolcalcerrr[l]: sbrt['dfncfull'] = np.zeros_like(gdat.expo) if gmod.boolelemsbrt[l]: for k in range(gmodstat.numbelem[l]): # read normalization from the element dictionary if gmod.boolelemlght[l]: varbamplextd = gmodstat.dictelem[l]['spec'][:, k] if gmod.typeelem[l].startswith('clus'): varbamplextd = gmodstat.dictelem[l]['nobj'][None, k] # calculate imprint on the element surface brightness state variable if gmod.boolelempsfn[l]: sbrttemp = retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, listindxpixlelem[l][k]) indxpixltemp = listindxpixlelem[l][k] if gmod.typeelem[l].startswith('lghtline'): sbrttemp = gmodstat.dictelem[l]['spec'][:, k, None, None] # add it to the state variable depending on the significance sbrt['dfnctotl'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] > 35: sbrt['dfncsupt'][:, indxpixltemp, :] += sbrttemp if gmodstat.dictelem[l]['deltllik'][k] < 35: sbrt['dfncsubt'][:, indxpixltemp, :] += sbrttemp # calculate imprint without PSF truncation to calculate approximation errors if gmod.boolcalcerrr[l]: sbrt['dfncfull'][:, :, :] += retr_sbrtpnts(gdat, gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ varbamplextd, gmodstat.psfnintp, gdat.indxpixl) setattr(gmodstat, 'sbrtdfncsubtpop%d' % l, sbrt['dfncsubt']) if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: if gdat.booldiagmode: numbtemp = 0 for l in gmod.indxpopl: if gmod.boolelemsbrtextsbgrd[l]: numbtemp += np.sum(gmodstat.numbelem[l]) if numbtemp > 0 and (sbrtextsbgrd == 0.).all(): raise Exception('') sbrt['bgrdexts'] = sbrtextsbgrd #### count maps cntp = dict() for name in gmod.listnamegcom: cntp[name] = retr_cntp(gdat, sbrt[name]) setattr(gmodstat, 'cntp' + name, cntp[name]) ### spatial averages sbrtmean = dict() sbrtstdv = dict() for name in gmod.listnamegcom: sbrtmean[name], sbrtstdv[name] = retr_spatmean(gdat, sbrt[name]) for b in gdat.indxspatmean: setattr(gmodstat, 'sbrt%smea%d' % (name, b), sbrtmean[name][b]) setattr(gmodstat, 'sbrt%sstd%d' % (name, b), sbrtstdv[name][b]) if gmod.numbparaelem > 0: if gmod.boolelemsbrtdfncanyy: for i in gdat.indxener: if 'dark' in gmod.listnamegcom: fracsdenmeandarkdfncsubt = sbrtmean['dfncsubt'][0][0][i] / (sbrtmean['dfncsubt'][0][0][i] + sbrtmean['dark'][0][0][i]) else: fracsdenmeandarkdfncsubt = 1. setattr(gmodstat, 'fracsdenmeandarkdfncsubten%02d' % i, np.array([fracsdenmeandarkdfncsubt])) if 'dark' in gmod.listnamegcom: booldfncsubt = float(np.where(sbrtmean['dfncsubt'][0][0] > sbrtmean['dark'][0][0])[0].any()) else: booldfncsubt = 1. setattr(gmodstat, 'booldfncsubt', np.array([booldfncsubt])) # find the 1-point function of the count maps of all emission components including the total emission for name in gmod.listnamegcom: namehistcntp = 'histcntp' + name for m in gdat.indxevtt: if gdat.numbevtt > 1: namehistcntp += 'evt%d' % m for i in gdat.indxener: if gdat.numbener > 1: namehistcntp += 'en%02d' % i histcntp = np.histogram(cntp[name][i, :, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, namehistcntp, histcntp) if False and i == 0 and m == 0 and (name == 'dfnc' or name == 'dfncsubt'): for strgbins in ['lowr', 'higr']: strgtemp = 'histcntp' + strgbins + name + 'en%02devt%d' % (i, m) if strgbins == 'lowr': setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[:gdat.numbtickcbar-1]))])) else: setattr(gmod, strgtemp, np.array([float(np.sum(histcntp[gdat.numbtickcbar-1:]))])) else: histcntp = np.histogram(cntp[name][:, 0, m], bins=gdat.binspara.cntpmodl)[0] setattr(gmodstat, 'histcntp' + name + 'evt%d' % m, histcntp) if gmod.boollens: if strgmodl == 'true': s2nr = [] s2nr = cntp['lens'] / np.sqrt(cntp['modl']) setattr(gmodstat, 's2nr', s2nr) cntplensgrad = np.empty((gdat.numbener, gdat.numbpixlcart, gdat.numbevtt, 2)) for i in gdat.indxener: for m in gdat.indxevtt: cntplenstemp = np.zeros(gdat.numbpixlcart) cntplenstemp[gdat.indxpixlrofi] = cntp['lens'][i, :, m] cntplensgrad[i, :, m, :] = retr_gradmaps(gdat, cntplenstemp) * gdat.sizepixl cntplensgradmgtd = np.sqrt(np.sum(cntplensgrad**2, axis=3)) cntplensgrad *= gdat.sizepixl indx = np.where(np.fabs(cntplensgrad) > 1. * gdat.sizepixl) cntplensgrad[indx] = np.sign(cntplensgrad[indx]) * 1. * gdat.sizepixl deflmgtd = np.sqrt(np.sum(defl**2, axis=1)) setattr(gmodstat, 'deflmgtd', deflmgtd) setattr(gmodstat, 'cntplensgrad', cntplensgrad) setattr(gmodstat, 'cntplensgradmgtd', cntplensgradmgtd) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.boolelemlght[l]: #### spectra if gdat.boolbinsspat: sindcolr = [gmodstat.dictelem[l]['sindcolr%04d' % i] for i in gdat.indxenerinde] gmodstat.dictelem[l]['specplot'] = retr_spec(gdat, gmodstat.dictelem[l]['flux'], sind=gmodstat.dictelem[l]['sind'], \ curv=gmodstat.dictelem[l]['curv'], expc=gmodstat.dictelem[l]['expc'], \ sindcolr=sindcolr, spectype=gmod.spectype[l], plot=True) if gdat.typedata == 'inpt': if gdat.typeexpr == 'ferm': # temp try: gmodstat.dictelem[l]['sbrt0018'] = gdat.sbrt0018objt(gmodstat.dictelem[l]['bgal'], gmodstat.dictelem[l]['lgal']) except: gmodstat.dictelem[l]['sbrt0018'] = gmodstat.dictelem[l]['bgal'] * 0. if gmod.typeelem[l] == 'lens': #### distance to the source if gmod.boollens: gmodstat.dictelem[l]['diss'] = retr_angldist(gdat, gmodstat.dictelem[l]['lgal'], gmodstat.dictelem[l]['bgal'], lgalsour, bgalsour) if gmod.boollenssubh: gmodstat.dictelem[l]['deflprof'] = np.empty((gdat.numbanglfull, gmodstat.numbelem[l])) gmodstat.dictelem[l]['mcut'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['rele'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reln'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relk'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relf'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['reld'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relc'] = np.empty(gmodstat.numbelem[l]) gmodstat.dictelem[l]['relm'] = np.empty(gmodstat.numbelem[l]) # temp -- this can be placed earlier in the code cntplensobjt = sp.interpolate.RectBivariateSpline(gdat.meanpara.bgalcart, gdat.meanpara.lgalcart, \ cntp['lens'][ii, :, mm].reshape((gdat.numbsidecart, gdat.numbsidecart)).T) for k in np.arange(gmodstat.numbelem[l]): asca = gmodstat.dictelem[l]['asca'][k] acut = gmodstat.dictelem[l]['acut'][k] #### deflection profiles gmodstat.dictelem[l]['deflprof'][:, k] = retr_deflcutf(gdat.meanpara.anglfull, gmodstat.dictelem[l]['defs'][k], asca, acut) ### truncated mass gmodstat.dictelem[l]['mcut'][k] = retr_mcut(gdat, gmodstat.dictelem[l]['defs'][k], asca, acut, adishost, mdencrit) #### dot product with the source flux gradient # temp -- weigh the energy and PSF bins gmodstat.dictelem[l]['rele'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relf'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, cntpmodl=cntp['modl'][0, :, 0]) deflelem = retr_defl(gdat, gdat.indxpixl, gmodstat.dictelem[l]['lgal'][k], \ gmodstat.dictelem[l]['bgal'][k], gmodstat.dictelem[l]['defs'][k], asca=asca, acut=acut) bgalprim = gdat.bgalgrid - deflelem[:, 1] lgalprim = gdat.lgalgrid - deflelem[:, 0] gmodstat.dictelem[l]['relm'][k] = np.mean(abs(cntp['lens'][0, :, 0] - cntplensobjt(bgalprim, lgalprim, grid=False).flatten())) gmodstat.dictelem[l]['relk'][k] = gmodstat.dictelem[l]['relm'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reln'][k] = gmodstat.dictelem[l]['rele'][k] / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl gmodstat.dictelem[l]['reld'][k] = retr_rele(gdat, gdat.cntpdata[0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl) gmodstat.dictelem[l]['relc'][k] = retr_rele(gdat, cntp['lens'][0, :, 0], gmodstat.dictelem[l]['lgal'][k], gmodstat.dictelem[l]['bgal'][k], \ gmodstat.dictelem[l]['defs'][k], asca, acut, gdat.indxpixl, absv=False) / gmodstat.dictelem[l]['defs'][k] * gdat.sizepixl ### distribution of element parameters and features #### calculate the model filter listindxelemfilt = [[[] for l in gmod.indxpopl] for namefilt in gdat.listnamefilt] for k, namefilt in enumerate(gdat.listnamefilt): for l in gmod.indxpopl: if namefilt == '': listindxelemfilt[k][l] = np.arange(gmodstat.numbelem[l]) if namefilt == 'imagbndr': listindxelemfilt[k][l] = np.where((np.fabs(gmodstat.dictelem[l]['lgal']) < gdat.maxmgangdata) & (np.fabs(gmodstat.dictelem[l]['bgal']) < gdat.maxmgangdata))[0] if namefilt == 'deltllik': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['deltllik'] > 0.5 * gmod.numbparagenrelemsing[l])[0] if namefilt == 'nrel': listindxelemfilt[k][l] = np.where(gmodstat.dictelem[l]['reln'] > 0.3)[0] for l in gmod.indxpopl: # histograms of element parameters for namefrst in gmod.namepara.elem[l]: ## one dimensional if namefrst[:-4] == 'etag': continue if namefrst == 'specplot' or namefrst == 'deflprof': continue elif namefrst == 'spec': histfrst = np.zeros((gdat.numbbinsplot, gdat.numbener)) for i in gdat.indxener: histfrst[:, i] = np.histogram(gmodstat.dictelem[l]['spec'][i, listindxelemfilt[0][l]], gdat.binspara.spec)[0] elif namefrst == 'cnts': histfrst = np.histogram(gmodstat.dictelem[l]['cnts'][listindxelemfilt[0][l]], gdat.binspara.cnts)[0] else: #elif not (namefrst == 'curv' and gmod.spectype[l] != 'curv' or namefrst == 'expc' \ # and gmod.spectype[l] != 'expc' or namefrst.startswith('sindarry') and \ # gmod.spectype[l] != 'colr'): binsfrst = getattr(gdat.binspara, namefrst) #if len(gmodstat.dictelem[l][namefrst]) > 0 and len(listindxelemfilt[0][l]) > 0: histfrst = np.histogram(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], binsfrst)[0] strgvarb = 'hist' + namefrst + 'pop%d' % l setattr(gmodstat, strgvarb, histfrst) #### two dimensional for nameseco in gmod.namepara.elem[l]: if namefrst == 'spec' or namefrst == 'specplot' or namefrst == 'deflprof' or \ nameseco == 'spec' or nameseco == 'specplot' or nameseco == 'deflprof': continue if not checstrgfeat(namefrst, nameseco): continue binsseco = getattr(gdat.binspara, nameseco) histtdim = np.histogram2d(gmodstat.dictelem[l][namefrst][listindxelemfilt[0][l]], \ gmodstat.dictelem[l][nameseco][listindxelemfilt[0][l]], [binsfrst, binsseco])[0] setattr(gmodstat, 'hist' + namefrst + nameseco + 'pop%d' % l, histtdim) ### priors on element parameters and features for nameparagenrelem in gmod.namepara.genrelem[l]: xdat = gmodstat.dictelem[l][nameparagenrelem] minm = getattr(gmod.minmpara, nameparagenrelem + 'pop%d' % l) maxm = getattr(gmod.maxmpara, nameparagenrelem + 'pop%d' % l) scal = getattr(gmod.scalpara, nameparagenrelem + 'pop%d' % l) booltemp = False if scal.startswith('expo') or scal.startswith('dexp'): if scal.startswith('expo'): if scal == 'expo': sexp = getattr(gmod, 'gangdistsexppop%d' % l) else: sexp = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] pdfn = pdfn_expo(xdat, maxm, sexp) if scal.startswith('dexp'): pdfn = pdfn_dnp.exp(xdat, maxm, scal) booltemp = True if scal.startswith('self') or scal.startswith('logt'): if scal.startswith('self'): pdfn = 1. / (maxm - minm) + np.zeros_like(xdat) else: pdfn = 1. / (np.log(maxm) - np.log(minm)) + np.zeros_like(xdat) booltemp = True # temp if scal.startswith('powr'): slop = gmodstat.paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem + 'pop%d' % l)] pdfn = pdfn_powr(xdat, minm, maxm, slop) booltemp = True if scal.startswith('dpowslopbrek'): pdfn = pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr) booltemp = True if scal == 'lnormeanstdv': pdfn = pdfn_lnor(xdat, meanlnor, stdvlnor) booltemp = True if scal.startswith('igam'): cutf = getattr(gdat, 'cutf' + nameparagenrelem) pdfn = pdfn_igam(xdat, slop, cutf) booltemp = True if scal.startswith('gaus'): # this does not work for mismodeling meanvarb = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] stdv = gmodstat.paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] if nameparagenrelem == 'expc' and gmod.spectype[l] == 'expc': pdfn = pdfn_gaus(xdat, meanvarb, stdv) else: pdfn = pdfn_gaus(xdat, meanvarb, stdv) booltemp = True # temp -- meanelem will not be defined #if booltemp: # gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio'] = gmodstat.numbelem[l] * pdfn * np.interp(xdat, xdatplot, delt) #setattr(gmodstat, 'hist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) #if strgmodl == 'true': # setattr(gmodstat, 'refrhist' + nameparagenrelem + 'pop%dprio' % l, gmodstat.dictelem[l]['hist' + nameparagenrelem + 'prio']) if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': if gmodstat.numbelem[l] > 0: ## total truncated mass of the subhalo as a cross check # temp -- generalize asca = gmodstat.dictelem[l]['asca'] acut = gmodstat.dictelem[l]['acut'] factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) masssubh = np.array([np.sum(factmcutfromdefs * gmodstat.dictelem[l]['defs'])]) ## derived variables as a function of other derived variables if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpntspuls'): massshel = np.empty(gdat.numbanglhalf) for k in gdat.indxanglhalf: indxelemshel = np.where((gdat.binspara.anglhalf[k] < gmodstat.dictelem[l]['gang']) & (gmodstat.dictelem[l]['gang'] < gdat.binspara.anglhalf[k+1])) massshel[k] = np.sum(gmodstat.dictelem[l]['mass'][indxelemshel]) setattr(gmodstat, 'massshelpop%d' % l, massshel) if gmod.boollens or gmod.numbparaelem > 0 and gmod.boollenssubh: # find the host, subhalo masses and subhalo mass fraction as a function of halo-centric radius listnametemp = gdat.liststrgcalcmasssubh listnamevarbmass = [] listnamevarbmassscal = [] listnamevarbmassvect = [] for e in gmod.indxsersfgrd: if boolllenshost: listnamevarbmassscal += ['masshosttotl'] for strgtemp in listnametemp: listnamevarbmassvect.append('masshostisf%d' % e + strgtemp) listnamevarbmassscal.append('masshostisf%d' % e + strgtemp + 'bein') if gmod.numbparaelem > 0 and gmod.boollenssubh: listnamevarbmassscal.append('masssubhtotl') listnamevarbmassscal.append('fracsubhtotl') for strgtemp in listnametemp: listnamevarbmassvect.append('masssubh' + strgtemp) listnamevarbmassvect.append('fracsubh' + strgtemp) listnamevarbmassscal.append('masssubh' + strgtemp + 'bein') listnamevarbmassscal.append('fracsubh' + strgtemp + 'bein') for name in listnamevarbmassvect: dicttert[name] = np.zeros(gdat.numbanglhalf) if 'isf' in name: indxisfrtemp = int(name.split('isf')[1][0]) angl = np.sqrt((gdat.meanpara.lgalcartmesh - lgalhost[indxisfrtemp])**2 + (gdat.meanpara.bgalcartmesh - bgalhost[indxisfrtemp])**2).flatten() for k in gdat.indxanglhalf: if name[4:8] == 'host': convtemp = conv[:] if name[4:8] == 'subh': convtemp = convelem[:] if name.endswith('delt'): indxpixl = np.where((gdat.binspara.anglhalf[k] < angl) & (angl < gdat.binspara.anglhalf[k+1]))[0] dicttert[name][k] = 1e6 * np.sum(convtemp[indxpixl]) * mdencrit * \ gdat.apix * adishost**2 / 2. / np.pi * gdat.deltanglhalf[k] / gdat.meanpara.anglhalf[k] if name.endswith('intg'): indxpixl = np.where(angl < gdat.meanpara.anglhalf[k])[0] dicttert[name][k] = np.sum(convtemp[indxpixl]) * mdencrit * gdat.apix * adishost**2 if name[:4] == 'frac': masshosttotl = 0. for e in gmod.indxsersfgrd: masshosttotl += dicttert['masshostisf%d' % e + name[-4:]][k] if masshosttotl != 0.: dicttert['fracsubh' + name[8:]][k] = dicttert['masssubh' + name[8:]][k] / masshosttotl setattr(gmodstat, name, dicttert[name]) # interpolate the host, subhalo masses and subhalo mass fraction at the Einstein radius and save it as a scalar variable dicttert[name + 'bein'] = np.interp(beinhost, gdat.meanpara.anglhalf, dicttert[name]) setattr(gmodstat, name + 'bein', dicttert[name + 'bein']) #if gmod.numbparaelem > 0: # ## copy element parameters to the global object # feat = [[] for l in gmod.indxpopl] # for l in gmod.indxpopl: # feat[l] = dict() # for strgfeat in gmod.namepara.genrelem[l]: # if strgfeat[:-4] == 'etag': # continue # if len(gmodstat.dictelem[l][strgfeat]) > 0: # if strgmodl == 'true': # shap = list(np.ones(gmodstat.dictelem[l][strgfeat].ndim, dtype=int)) # feat[l][strgfeat] = np.tile(gmodstat.dictelem[l][strgfeat], [3] + shap) # if strgmodl == 'fitt': # feat[l][strgfeat] = gmodstat.dictelem[l][strgfeat] # # #for strgfeat in gmod.namepara.elem: # # feattemp = [[] for l in gmod.indxpopl] # # for l in gmod.indxpopl: # # if strgfeat in gmod.namepara.genrelem[l]: # # if strgfeat in feat[l]: # # feattemp[l] = feat[l][strgfeat] # # else: # # feattemp[l] = np.array([]) # # setattr(gmodstat, strgfeat, feattemp) # copy true state to the reference state #if strgmodl == 'true': # for name, valu in deepcopy(gdat.__dict__).items(): # if name.startswith('true'): # #indx = name.find('pop') # #if indx != -1 and not name.endswith('pop') and name[indx+3].isdigit(): # # namerefr = name.replace('pop%s' % name[indx+3], 'ref%s' % name[indx+3]) # #else: # # namerefr = name # #namerefr = name # #namerefr = namerefr.replace('true', 'refr') # name = name.replace('true', 'refr') # setattr(gdat, name, valu) if gmod.numbparaelem > 0 and gdat.priofactdoff != 0.: if strgmodl == 'true': for q in gdat.indxrefr: for strgfeat in gdat.refr.namepara.elem[q]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof': continue reca = np.zeros(gdat.numbbinsplot) - 1. indxelempars = np.where(gmodstat.dictelem[q]['deltllik'] > 2.5)[0] refrhistpars = np.zeros(gdat.numbbinsplot) - 1. histparaelem = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) indxrefrgood = np.where(histparaelem > 0)[0] reca[indxrefrgood] = 0. refrhistpars[indxrefrgood] = 0. refrhist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % q) bins = getattr(gdat.binspara, strgfeat) if len(indxelempars) > 0: refrhistpars = np.histogram(gmodstat.dictelem[q][strgfeat][indxelempars], bins=bins)[0].astype(float) if indxrefrgood.size > 0: reca[indxrefrgood] = refrhistpars[indxrefrgood] / refrhist[indxrefrgood] setattr(gmodstat, 'histpars' + strgfeat + 'pop%d' % q, refrhistpars) setattr(gmodstat, 'reca' + strgfeat + 'pop%d' % q, reca) print('gdat.rtagmock') print(gdat.rtagmock) if gdat.rtagmock is not None: if gmod.numbparaelem > 0: for l in gmod.indxpopl: for strgfeat in gmod.namepara.genrelem[l]: if strgfeat == 'spec' or strgfeat == 'specplot' or strgfeat == 'deflprof':# or strgfeat.startswith('aerr'): continue if strgfeat in gmod.namepara.genrelem[l]: hist = getattr(gmodstat, 'hist' + strgfeat + 'pop%d' % l) reca = getattr(gdat.true.this, 'reca' + strgfeat + 'pop%d' % l) histcorrreca = hist / reca setattr(gmodstat, 'histcorrreca' + strgfeat + 'pop%d' % l, histcorrreca) ### Exculusive comparison with the true state if strgmodl == 'fitt' and gdat.typedata == 'mock': if gmod.boollens: numbsingcomm = min(deflsing.shape[2], gmod.deflsing.shape[2]) deflsingresi = deflsing[0, ..., :numbsingcomm] - gmod.deflsing[..., :numbsingcomm] deflsingresimgtd = np.sqrt(np.sum(deflsingresi**2, axis=1)) deflsingresiperc = 100. * deflsingresimgtd / gmod.deflsingmgtd[..., :numbsingcomm] setattr(gmodstat, 'numbsingcomm', numbsingcomm) setattr(gmodstat, 'deflsingresi', deflsingresi) truedeflmgtd = getattr(gdat.true.this, 'deflmgtd') truedefl = getattr(gdat.true.this, 'defl') deflresi = defl - truedefl deflresimgtd = np.sqrt(np.sum(deflresi**2, axis=1)) deflresiperc = 100. * deflresimgtd / truedeflmgtd setattr(gmodstat, 'deflresi', deflresi) setattr(gmodstat, 'deflresimgtd', deflresimgtd) if gmod.numbparaelem > 0: trueconvelem = getattr(gdat.true.this, 'convelem') convelemresi = convelem[:] - trueconvelem convelemresiperc = 100. * convelemresi / trueconvelem setattr(gmodstat, 'convelemresi', convelemresi) setattr(gmodstat, 'convelemresiperc', convelemresiperc) truemagn = getattr(gdat.true.this, 'magn') magnresi = magn[:] - truemagn magnresiperc = 100. * magnresi / truemagn setattr(gmodstat, 'magnresi', magnresi) setattr(gmodstat, 'magnresiperc', magnresiperc) if gmod.numbparaelem > 0: # correlate the catalog sample with the reference catalog if gdat.boolinforefr and not (strgmodl == 'true' and gdat.typedata == 'mock') and gdat.boolasscrefr: for q in gdat.indxrefr: for l in gmod.indxpopl: if gdat.refr.numbelem[q] > 0: cmpl = np.array([float(len(indxelemrefrasschits[q][l])) / gdat.refr.numbelem[q]]) if gdat.booldiagmode: if cmpl > 1. or cmpl < 0.: raise Exception('') else: cmpl = np.array([-1.]) setattr(gmodstat, 'cmplpop%dpop%d' % (l, q), cmpl) if gmodstat.numbelem[l] > 0: fdis = np.array([float(indxelemfittasscfals[q][l].size) / gmodstat.numbelem[l]]) if gdat.booldiagmode: if fdis > 1. or fdis < 0.: raise Exception('') else: fdis = np.array([-1.]) setattr(gmodstat, 'fdispop%dpop%d' % (q, l), fdis) # collect the associated fitting element parameter for each reference element featrefrassc = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] for q in gdat.indxrefr: for l in gmod.indxpopl: featrefrassc[q][l] = dict() for strgfeat in gdat.refr.namepara.elem[q]: if not strgfeat in gmod.namepara.genrelem[l] or strgfeat in gdat.refr.namepara.elemonly[q][l]: continue if isinstance(gmodstat.dictelem[l][strgfeat], np.ndarray) and gmodstat.dictelem[l][strgfeat].ndim > 1: continue featrefrassc[q][l][strgfeat] = np.zeros(gdat.refr.numbelem[q]) + np.nan if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][strgfeat]) > 0: featrefrassc[q][l][strgfeat][indxelemrefrasschits[q][l]] = gmodstat.dictelem[l][strgfeat][indxelemfittasschits[q][l]] name = strgfeat + 'asscpop%dpop%d' % (q, l) setattr(gmodstat, name, featrefrassc[q][l][strgfeat]) # completeness for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue l = gdat.refr.indxpoplfittassc[q] for nameparaelemfrst in gdat.refr.namepara.elem[q]: if nameparaelemfrst.startswith('etag'): continue if nameparaelemfrst == 'spec' or nameparaelemfrst == 'specplot': continue refrfeatfrst = gdat.refr.dictelem[q][nameparaelemfrst][0, :] binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gdat.refr.namepara.elem[q]: if nameparaelemfrst == nameparaelemseco: continue if nameparaelemseco.startswith('etag'): continue if nameparaelemseco == 'spec' or nameparaelemseco == 'specplot': continue if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the cmpl np.array should depend on strgmodl cmpltdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeattdim = getattr(gdat.refr, 'hist%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q)) refrfeatseco = gdat.refr.dictelem[q][nameparaelemseco][0, :] binsfeatseco = getattr(gdat.binspara, nameparaelemseco) refrhistfeattdimassc = np.histogram2d(refrfeatfrst[indxelemrefrasschits[q][l]], \ refrfeatseco[indxelemrefrasschits[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(refrhistfeattdim != 0.) if indxgood[0].size > 0: cmpltdim[indxgood] = refrhistfeattdimassc[indxgood].astype(float) / refrhistfeattdim[indxgood] if gdat.booldiagmode: if np.where((cmpltdim[indxgood] > 1.) | (cmpltdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%s%spop%d' % (nameparaelemfrst, nameparaelemseco, q), cmpltdim) cmplfrst = np.zeros(gdat.numbbinsplot) - 1. if len(indxelemrefrasschits[q][l]) > 0: refrhistfeatfrst = getattr(gdat.refr, 'hist' + nameparaelemfrst + 'pop%d' % q) binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) refrhistfeatfrstassc = np.histogram(refrfeatfrst[indxelemrefrasschits[q][l]], bins=binsfeatfrst)[0] indxgood = np.where(refrhistfeatfrst != 0.)[0] if indxgood.size > 0: cmplfrst[indxgood] = refrhistfeatfrstassc[indxgood].astype(float) / refrhistfeatfrst[indxgood] if gdat.booldiagmode: if np.where((cmplfrst[indxgood] > 1.) | (cmplfrst[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'cmpl%spop%d' % (nameparaelemfrst, q), cmplfrst) # false discovery rate for l in gmod.indxpopl: q = gmod.indxpoplrefrassc[l] for nameparaelemfrst in gmod.namepara.elem[l]: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) for nameparaelemseco in gmod.namepara.elem[l]: if not checstrgfeat(nameparaelemfrst, nameparaelemseco): continue # temp -- the size of the fdis np.array should depend on strgmodl fdistdim = np.zeros((gdat.numbbinsplot, gdat.numbbinsplot)) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemseco]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: strgfeattdim = nameparaelemfrst + nameparaelemseco + 'pop%d' % l fitthistfeattdim = getattr(gmodstat, 'hist' + strgfeattdim) binsfeatseco = getattr(gdat.binspara, nameparaelemseco) fitthistfeattdimfals = np.histogram2d(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], \ gmodstat.dictelem[l][nameparaelemseco][indxelemfittasscfals[q][l]], bins=(binsfeatfrst, binsfeatseco))[0] indxgood = np.where(fitthistfeattdim != 0.) if indxgood[0].size > 0: fdistdim[indxgood] = fitthistfeattdimfals[indxgood].astype(float) / fitthistfeattdim[indxgood] if gdat.booldiagmode: if np.where((fdistdim[indxgood] > 1.) | (fdistdim[indxgood] < 0.))[0].size > 0: raise Exception('') setattr(gmodstat, 'fdis%s%spop%d' % (nameparaelemfrst, nameparaelemseco, l), fdistdim) fdisfrst = np.zeros(gdat.numbbinsplot) if len(indxelemrefrasschits[q][l]) > 0 and len(gmodstat.dictelem[l][nameparaelemfrst]) > 0: binsfeatfrst = getattr(gdat.binspara, nameparaelemfrst) fitthistfeatfrstfals = np.histogram(gmodstat.dictelem[l][nameparaelemfrst][indxelemfittasscfals[q][l]], bins=binsfeatfrst)[0] fitthistfeatfrst = getattr(gmodstat, 'hist' + nameparaelemfrst + 'pop%d' % l) indxgood = np.where(fitthistfeatfrst != 0.)[0] if indxgood.size > 0: fdisfrst[indxgood] = fitthistfeatfrstfals[indxgood].astype(float) / fitthistfeatfrst[indxgood] if gdat.booldiagmode: if
np.where((fdisfrst[indxgood] > 1.) | (fdisfrst[indxgood] < 0.))
numpy.where
from typing import Any, Dict, Union import numpy as np from numpy.core.defchararray import center import panda_gym from panda_gym.envs.core import Task from panda_gym.utils import distance class ReachBimanual(Task): def __init__( self, sim, get_ee_position0, get_ee_position1, reward_type="sparse", distance_threshold=0.05, goal_range=0.35, has_object = False, absolute_pos = False, obj_not_in_hand_rate = 1, ) -> None: super().__init__(sim) self.has_object = has_object self.absolute_pos = absolute_pos self.object_size = 0.04 self.reward_type = reward_type self.distance_threshold = distance_threshold self.obj_not_in_hand_rate = obj_not_in_hand_rate self.get_ee_position0 = get_ee_position0 self.get_ee_position1 = get_ee_position1 self.goal_range_low = np.array([goal_range / 4, goal_range / 4, -goal_range/1.5]) self.goal_range_high = np.array([goal_range, goal_range, goal_range/1.5]) obj_xyz_range=[0.3, 0.3, 0] self.obj_range_low = np.array([0.1, -obj_xyz_range[1] / 2, self.object_size/2]) self.obj_range_high = np.array(obj_xyz_range) + self.obj_range_low with self.sim.no_rendering(): self._create_scene() self.sim.place_visualizer(target_position=np.zeros(3), distance=0.9, yaw=45, pitch=-30) self._max_episode_steps = 50 def _create_scene(self) -> None: self.sim.create_plane(z_offset=-0.4) self.sim.create_table(length=1., width=0.7, height=0.4, x_offset=-0.575) self.sim.create_table(length=1., width=0.7, height=0.4, x_offset=0.575) self.sim.create_sphere( body_name="target0", radius=0.02, mass=0.0, ghost=True, position=np.zeros(3), rgba_color=np.array([0.1, 0.9, 0.1, 0.3]), ) self.sim.create_sphere( body_name="target1", radius=0.02, mass=0.0, ghost=True, position=
np.zeros(3)
numpy.zeros
#!/usr/bin/env python u""" radial_basis.py Written by <NAME> (01/2022) Interpolates data using radial basis functions CALLING SEQUENCE: ZI = radial_basis(xs, ys, zs, XI, YI, polynomial=0, smooth=smooth, epsilon=epsilon, method='inverse') INPUTS: xs: scaled input X data ys: scaled input Y data zs: input data XI: scaled grid X for output ZI YI: scaled grid Y for output ZI OUTPUTS: ZI: interpolated data grid OPTIONS: smooth: smoothing weights metric: distance metric to use (default euclidean) epsilon: adjustable constant for distance functions default is mean Euclidean distance polynomial: polynomial order if augmenting radial basis functions default None: no polynomials method: radial basis function multiquadric inverse_multiquadric or inverse (default) inverse_quadratic gaussian linear (first-order polyharmonic spline) cubic (third-order polyharmonic spline) quintic (fifth-order polyharmonic spline) thin_plate: thin-plate spline PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python (https://numpy.org) scipy: Scientific Tools for Python (https://docs.scipy.org/doc/) REFERENCES: <NAME>, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76(8), 1905-1915, 1971. <NAME>, "Radial Basis Functions", Cambridge Monographs on Applied and Computational Mathematics, 2003. UPDATE HISTORY: Updated 01/2022: added function docstrings Updated 07/2021: using scipy spatial distance routines Updated 09/2017: using rcond=-1 in numpy least-squares algorithms Updated 01/2017: epsilon in polyharmonic splines (linear, cubic, quintic) Updated 08/2016: using format text within ValueError, edit constant vector added low-order polynomial option (previously used default constant) Updated 01/2016: new hierarchical_radial_basis function that first reduces to points within distance. added cutoff option Updated 10/2014: added third dimension (spherical) Written 08/2014 """ from __future__ import print_function, division import numpy as np import scipy.spatial def radial_basis(xs, ys, zs, XI, YI, smooth=0.0, metric='euclidean', epsilon=None, method='inverse', polynomial=None): """ Interpolates data using radial basis functions Arguments --------- xs: scaled input x-coordinates ys: scaled input y-coordinates zs: input data XI: scaled output x-coordinates for data grid YI: scaled output y-coordinates for data grid Keyword arguments ----------------- smooth: smoothing weights metric: distance metric to use (default euclidean) epsilon: adjustable constant for distance functions method: radial basis function - multiquadric - inverse_multiquadric or inverse (default) - inverse_quadratic - gaussian - linear (first-order polyharmonic spline) - cubic (third-order polyharmonic spline) - quintic (fifth-order polyharmonic spline) - thin_plate: thin-plate spline polynomial: polynomial order if augmenting radial basis functions Returns ------- ZI: interpolated data grid """ #-- remove singleton dimensions xs = np.squeeze(xs) ys = np.squeeze(ys) zs = np.squeeze(zs) XI = np.squeeze(XI) YI = np.squeeze(YI) #-- size of new matrix if (np.ndim(XI) == 1): nx = len(XI) else: nx,ny = np.shape(XI) #-- Check to make sure sizes of input arguments are correct and consistent if (len(zs) != len(xs)) | (len(zs) != len(ys)): raise Exception('Length of X, Y, and Z must be equal') if (np.shape(XI) != np.shape(YI)): raise Exception('Size of XI and YI must be equal') #-- create python dictionary of radial basis function formulas radial_basis_functions = {} radial_basis_functions['multiquadric'] = multiquadric radial_basis_functions['inverse_multiquadric'] = inverse_multiquadric radial_basis_functions['inverse'] = inverse_multiquadric radial_basis_functions['inverse_quadratic'] = inverse_quadratic radial_basis_functions['gaussian'] = gaussian radial_basis_functions['linear'] = poly_spline1 radial_basis_functions['cubic'] = poly_spline3 radial_basis_functions['quintic'] = poly_spline5 radial_basis_functions['thin_plate'] = thin_plate #-- check if formula name is listed if method in radial_basis_functions.keys(): RBF = radial_basis_functions[method] else: raise ValueError("Method {0} not implemented".format(method)) #-- Creation of data distance matrix #-- Data to Data if (metric == 'brute'): #-- use linear algebra to compute euclidean distances Rd = distance_matrix( np.array([xs, ys]), np.array([xs, ys]) ) else: #-- use scipy spatial distance routines Rd = scipy.spatial.distance.cdist(
np.array([xs, ys])
numpy.array
""" Data preproc functions: adjust_to_see: adjust image to better visualize (rotate and transpose) augmentation: apply variations to a list of images normalization: apply normalization and variations on images (if required) encode_ctc: encode batch of texts in sparse array with padding standardize_texts: standardize batch of texts preproc: main function to the preprocess. Make the image: illumination_compensation: apply illumination regularitation remove_cursive_style: remove cursive style from image (if necessary) sauvola: apply sauvola binarization """ import unicodedata import numpy as np import string import cv2 def adjust_to_see(img): """Rotate and transpose to image visualize (cv2 method or jupyter notebook)""" (h, w) = img.shape[:2] (cX, cY) = (w // 2, h // 2) M = cv2.getRotationMatrix2D((cX, cY), -90, 1.0) cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) M[0, 2] += (nW / 2) - cX M[1, 2] += (nH / 2) - cY img = cv2.warpAffine(img, M, (nW + 1, nH + 1)) img = cv2.warpAffine(img.transpose(), M, (nW, nH)) return img def augmentation(imgs, dilate_range=1, erode_range=1, height_shift_range=0, rotation_range=0, scale_range=0, width_shift_range=0): """Apply variations to a list of images (rotate, width and height shift, scale, erode, dilate)""" imgs = imgs.astype(np.float32) _, h, w = imgs.shape dilate_kernel = np.ones((int(np.random.uniform(1, dilate_range)),), np.uint8) erode_kernel = np.ones((int(np.random.uniform(1, erode_range)),), np.uint8) height_shift = np.random.uniform(-height_shift_range, height_shift_range) rotation = np.random.uniform(-rotation_range, rotation_range) scale = np.random.uniform(1 - scale_range, 1) width_shift = np.random.uniform(-width_shift_range, width_shift_range) trans_map = np.float32([[1, 0, width_shift * w], [0, 1, height_shift * h]]) rot_map = cv2.getRotationMatrix2D((w // 2, h // 2), rotation, scale) trans_map_aff = np.r_[trans_map, [[0, 0, 1]]] rot_map_aff = np.r_[rot_map, [[0, 0, 1]]] affine_mat = rot_map_aff.dot(trans_map_aff)[:2, :] for i in range(len(imgs)): imgs[i] = cv2.warpAffine(imgs[i], affine_mat, (w, h), flags=cv2.INTER_NEAREST, borderValue=255) imgs[i] = cv2.erode(imgs[i], erode_kernel, iterations=1) imgs[i] = cv2.dilate(imgs[i], dilate_kernel, iterations=1) return imgs def normalization(imgs): """Normalize list of images""" imgs = imgs.astype(np.float32) _, h, w = imgs.shape for i in range(len(imgs)): m, s = cv2.meanStdDev(imgs[i]) imgs[i] = imgs[i] - m[0][0] imgs[i] = imgs[i] / s[0][0] if s[0][0] > 0 else imgs[i] return np.expand_dims(imgs, axis=-1) def decode_ctc(texts, charset): """Decode sparse array (sparse to text)""" decoded = [] for i in range(len(texts)): text = "".join([charset[int(c)] for c in texts[i]]) decoded.append(" ".join(text.split())) return decoded def encode_ctc(texts, charset, max_text_length): """Encode text array (text to sparse)""" pad_encoded = np.zeros((len(texts), max_text_length)) for i in range(len(texts)): texts[i] = unicodedata.normalize("NFKD", texts[i]).encode("ASCII", "ignore").decode("ASCII") texts[i] = " ".join(texts[i].split()) encoded = [float(charset.find(x)) for x in texts[i] if charset.find(x) > -1] encoded = [float(charset.find("&"))] if len(encoded) == 0 else encoded pad_encoded[i, 0:len(encoded)] = encoded return pad_encoded def standardize_texts(texts): """Organize/add spaces around punctuation marks""" for i in range(len(texts)): texts[i] = " ".join(texts[i].split()).replace(" '", "'").replace("' ", "'") texts[i] = texts[i].replace("«", "").replace("»", "") for y in texts[i]: if y in string.punctuation.replace("'", ""): texts[i] = texts[i].replace(y, f" {y} ") texts[i] = " ".join(texts[i].split()) return texts """ Preprocess metodology based in: <NAME>, <NAME> and <NAME>, Word Beam Search: A Connectionist Temporal Classification Decoding Algorithm, in 16th International Conference on Frontiers in Handwriting Recognition, pp. 256-258, 2018. """ def preproc(img, img_size): """Make the process with the `img_size` to the scale resize""" wt, ht, _ = img_size h, w = img.shape f = max((w / wt), (h / ht)) new_size = (max(min(wt, int(w / f)), 1), max(min(ht, int(h / f)), 1)) img = cv2.resize(img, new_size) img = illumination_compensation(img) img = remove_cursive_style(img) target = np.ones([ht, wt], dtype=np.uint8) * 255 target[0:new_size[1], 0:new_size[0]] = img img = cv2.transpose(target) return img """ Illumination Compensation based in: <NAME>, <NAME>, <NAME>, Efficient illumination compensation techniques for text images, in Digital Signal Processing, 22(5), pp. 726-733, 2012. """ def illumination_compensation(img): """Illumination compensation technique for text image""" def scale(img): s = np.max(img) - np.min(img) res = img / s res -= np.min(res) res *= 255 return res img = img.astype(np.float32) height, width = img.shape sqrt_hw = np.sqrt(height * width) bins = np.arange(0, 300, 10) bins[26] = 255 hp = np.histogram(img, bins) for i in range(len(hp[0])): if hp[0][i] > sqrt_hw: hr = i * 10 break
np.seterr(divide='ignore', invalid='ignore')
numpy.seterr
""" Feature extraction """ # Author: <NAME> <<EMAIL>> # # License: Apache, Version 2.0 import numpy as np from sklearn.base import BaseEstimator from sklearn.metrics import adjusted_mutual_info_score from scipy.special import psi from scipy.stats.stats import pearsonr from scipy.stats import skew, kurtosis from collections import Counter, defaultdict from multiprocessing import Pool import pandas as pd import operator from .hsic import FastHsicTestGamma import math BINARY = "Binary" CATEGORICAL = "Categorical" NUMERICAL = "Numerical" class FeatureMapper: def __init__(self, features): self.features = features def fit(self, X, y=None): for feature_name in self.features: extractor.fit(X[feature_name].values[:, np.newaxis], y) def transform(self, X): return X[self.features].values def fit_transform(self, X, y=None): return self.transform(X) def weighted_mean_and_std(values, weights): """ Returns the weighted average and standard deviation. values, weights -- numpy ndarrays with the same shape. """ average = np.average(values, weights=weights, axis=0) variance = np.dot(weights, (values - average) ** 2) / weights.sum() # Fast and numerically precise return (average, np.sqrt(variance)) def count_unique(x): try: return len(set(x)) except TypeError: return len(set(x.flat)) def count_unique_ratio(x): try: return len(set(x)) / float(len(x)) except TypeError: return len(set(x.flat))/float(len(x)) def binary(tp): assert type(tp) is str return tp == BINARY def categorical(tp): assert type(tp) is str return tp == CATEGORICAL def numerical(tp): assert type(tp) is str return tp == NUMERICAL def binary_entropy(p, base): assert p <= 1 and p >= 0 h = -(p * np.log(p) + (1 - p) * np.log(1 - p)) if (p != 0) and (p != 1) else 0 return h / np.log(base) def discrete_probability(x, tx, ffactor, maxdev): x = discretized_sequence(x, tx, ffactor, maxdev) try: return Counter(x) except TypeError as e: return Counter(np.array(x).flat) if isinstance(x, list) else Counter(x.flat) def discretized_values(x, tx, ffactor, maxdev): if numerical(tx) and count_unique(x) > (2 * ffactor * maxdev + 1): vmax = ffactor * maxdev vmin = -ffactor * maxdev return range(vmin, vmax + 1) else: try: return sorted(list(set(x))) except TypeError: return sorted(list(set(x.flat))) def len_discretized_values(x, tx, ffactor, maxdev): return len(discretized_values(x, tx, ffactor, maxdev)) def discretized_sequence(x, tx, ffactor, maxdev, norm=True): if not norm or (numerical(tx) and count_unique(x) > len_discretized_values(x, tx, ffactor, maxdev)): if norm: x = (x - np.mean(x)) / np.std(x) xf = x[abs(x) < maxdev] x = (x - np.mean(xf)) / np.std(xf) x = np.round(x * ffactor) vmax = ffactor * maxdev vmin = -ffactor * maxdev x[x > vmax] = vmax x[x < vmin] = vmin return x def discretized_sequences(x, tx, y, ty, ffactor=3, maxdev=3): return discretized_sequence(x, tx, ffactor, maxdev), discretized_sequence(y, ty, ffactor, maxdev) def normalized_error_probability(x, tx, y, ty, ffactor=3, maxdev=3): x, y = discretized_sequences(x, tx, y, ty, ffactor, maxdev) try: cx = Counter(x) cy = Counter(y) except TypeError: cx = Counter(x.flat) cy = Counter(y.flat) nx = len(cx) ny = len(cy) pxy = defaultdict(lambda: 0) try: for p in zip(x, y): pxy[p] += 1 except TypeError: for p in zip(x.flat, y.flat): pxy[p] += 1 pxy = np.array([[pxy[(a, b)] for b in cy] for a in cx], dtype=float) pxy = pxy / pxy.sum() perr = 1 - np.sum(pxy.max(axis=1)) max_perr = 1 - np.max(pxy.sum(axis=0)) pnorm = perr / max_perr if max_perr > 0 else perr return pnorm def discrete_entropy(x, tx, ffactor=3, maxdev=3, bias_factor=0.7): c = discrete_probability(x, tx, ffactor, maxdev) # print(c, len(c)) pk = np.array(list(c.values()), dtype=float) pk = pk / pk.sum() vec = pk * np.log(pk) S = -np.sum(vec, axis=0) return S + bias_factor * (len(pk) - 1) / float(2 * len(list(x))) def discrete_divergence(cx, cy): for a, v in cx.most_common(): if cy[a] == 0: cy[a] = 1 nx = float(sum(cx.values())) ny = float(sum(cy.values())) sum = 0. for a, v in cx.most_common(): px = v / nx py = cy[a] / ny sum += px * np.log(px / py) return sum def discrete_joint_entropy(x, tx, y, ty, ffactor=3, maxdev=3): x, y = discretized_sequences(x, tx, y, ty, ffactor, maxdev) return discrete_entropy(list(zip(x, y)), CATEGORICAL) def normalized_discrete_joint_entropy(x, tx, y, ty, ffactor=3, maxdev=3): x, y = discretized_sequences(x, tx, y, ty, ffactor, maxdev) e = discrete_entropy(list(zip(x, y)), CATEGORICAL) nx = len_discretized_values(x, tx, ffactor, maxdev) ny = len_discretized_values(y, ty, ffactor, maxdev) if nx * ny > 0: e = e / np.log(nx * ny) return e def discrete_conditional_entropy(x, tx, y, ty): return discrete_joint_entropy(x, tx, y, ty) - discrete_entropy(y, ty) def adjusted_mutual_information(x, tx, y, ty, ffactor=3, maxdev=3): x, y = discretized_sequences(x, tx, y, ty, ffactor, maxdev) try: return adjusted_mutual_info_score(x, y) except ValueError: return adjusted_mutual_info_score(x.squeeze(1), y.squeeze(1)) def discrete_mutual_information(x, tx, y, ty): ex = discrete_entropy(x, tx) ey = discrete_entropy(y, ty) exy = discrete_joint_entropy(x, tx, y, ty) mxy = max((ex + ey) - exy, 0) # Mutual information is always positive: max() avoid negative values due to numerical errors return mxy def normalized_discrete_entropy(x, tx, ffactor=3, maxdev=3): e = discrete_entropy(x, tx, ffactor, maxdev) n = len_discretized_values(x, tx, ffactor, maxdev) if n > 0: e = e / np.log(n) return e # Continuous information measures def to_numerical(x, y): dx = defaultdict(lambda: np.zeros(2)) for i, a in enumerate(x): dx[a][0] += y[i] dx[a][1] += 1 for a in dx.keys(): dx[a][0] /= dx[a][1] x = np.array([dx[a][0] for a in x], dtype=float) return x def normalize(x, tx): if not numerical(tx): # reassign labels according to its frequency try: cx = Counter(x) except TypeError: cx = Counter(x.flat) xmap = dict() # nx = len(cx) # center = nx/2 if (nx % 4) == 0 else (nx-1)//2 # for i, k in enumerate(cx.most_common()): # offset = (i+1)//2 # if (i % 4) > 1: offset = -offset # xmap[k[0]] = center + offset for i, k in enumerate(cx.most_common()): xmap[k[0]] = i y = np.array([xmap[a] for a in x.flat], dtype=float) else: y = x y = y - np.mean(y) if
np.std(y)
numpy.std
"""PyFstat search & follow-up classes using MCMC-based methods The general approach is described in Ashton & Prix (PRD 97, 103020, 2018): https://arxiv.org/abs/1802.05450 and we use the `ptemcee` sampler described in Vousden et al. (MNRAS 455, 1919-1937, 2016): https://arxiv.org/abs/1501.05823 and based on Foreman-Mackey et al. (PASP 125, 306, 2013): https://arxiv.org/abs/1202.3665 Defining the prior ################## The MCMC based searches (i.e. `pyfstat.MCMC*`) require a prior specification for each model parameter, implemented via a `python dictionary <https://docs.python.org/tutorial/datastructures.html#dictionaries>`_. This is best explained through a simple example, here is the prior for a *directed* search with a *uniform* prior on the frequency and a *normal* prior on the frequency derivative: .. code-block:: python theta_prior = {'F0': {'type': 'unif', 'lower': 29.9, 'upper': 30.1}, 'F1': {'type': 'norm', 'loc': 0, 'scale': 1e-10}, 'F2': 0, 'Alpha': 2.3, 'Delta': 1.8 } For the sky positions ``Alpha`` and ``Delta``, we give the fixed values (i.e. they are considered *known* by the MCMC simulation), the same is true for ``F2``, the second derivative of the frequency which we fix at ``0``. Meanwhile, for the frequency ``F0`` and first frequency derivative ``F1`` we give a dictionary specifying their prior distribution. This dictionary must contain three arguments: the ``type`` (in this case either ``unif`` or ``norm``) which specifies the type of distribution, then two shape arguments. The shape parameters will depend on the ``type`` of distribution, but here we use ``lower`` and ``upper``, required for the ``unif`` prior while ``loc`` and ``scale`` are required for the ``norm`` prior. Currently, two other types of prior are implemented: ``halfnorm``, ``neghalfnorm`` (both of which require ``loc`` and ``scale`` shape parameters). Further priors can be added by modifying ``pyfstat.MCMCSearch._generic_lnprior``. """ import sys import os import copy import logging from collections import OrderedDict import numpy as np import matplotlib import matplotlib.pyplot as plt from ptemcee import Sampler as PTSampler import corner import dill as pickle from scipy.stats import lognorm import pyfstat.core as core from pyfstat.core import BaseSearchClass, tqdm, args import pyfstat.optimal_setup_functions as optimal_setup_functions import pyfstat.helper_functions as helper_functions class MCMCSearch(BaseSearchClass): """ MCMC search using ComputeFstat. Evaluates the coherent F-statistic across a parameter space region corresponding to an isolated/binary-modulated CW signal. """ symbol_dictionary = dict( F0=r"$f$", F1=r"$\dot{f}$", F2=r"$\ddot{f}$", Alpha=r"$\alpha$", Delta=r"$\delta$", asini=r"asini", period=r"P", ecc=r"ecc", tp=r"tp", argp=r"argp", ) """ Key, val pairs of the parameters (`F0`, `F1`, ...), to LaTeX math symbols for plots """ unit_dictionary = dict( F0=r"Hz", F1=r"Hz/s", F2=r"Hz/s$^2$", Alpha=r"rad", Delta=r"rad", asini="", period=r"s", ecc="", tp=r"s", argp="", ) """ Key, val pairs of the parameters (i.e. `F0`, `F1`), and the units (i.e. `Hz`) """ transform_dictionary = {} """ Key, val pairs of the parameters (i.e. `F0`, `F1`), where the key is itself a dictionary which can item `multiplier`, `subtractor`, or `unit` by which to transform by and update the units. """ def __init__( self, theta_prior, tref, label, outdir="data", minStartTime=None, maxStartTime=None, sftfilepattern=None, detectors=None, nsteps=[100, 100], nwalkers=100, ntemps=1, log10beta_min=-5, theta_initial=None, rhohatmax=1000, binary=False, BSGL=False, SSBprec=None, RngMedWindow=None, minCoverFreq=None, maxCoverFreq=None, injectSources=None, assumeSqrtSX=None, transientWindowType=None, tCWFstatMapVersion="lal", earth_ephem=None, sun_ephem=None, allowedMismatchFromSFTLength=None, ): """ Parameters ---------- theta_prior: dict Dictionary of priors and fixed values for the search parameters. For each parameters (key of the dict), if it is to be held fixed the value should be the constant float, if it is be searched, the value should be a dictionary of the prior. tref, minStartTime, maxStartTime: int GPS seconds of the reference time, start time and end time. While tref is requirede, minStartTime and maxStartTime default to None in which case all available data is used. label, outdir: str A label and output directory (optional, default is `data`) to name files sftfilepattern: str, optional Pattern to match SFTs using wildcards (`*?`) and ranges [0-9]; mutiple patterns can be given separated by colons. detectors: str, optional Two character reference to the detectors to use, specify None for no contraint and comma separated strings for multiple references. nsteps: list (2,), optional Number of burn-in and production steps to take, [nburn, nprod]. See `pyfstat.MCMCSearch.setup_initialisation()` for details on adding initialisation steps. nwalkers, ntemps: int, optional The number of walkers and temperates to use in the parallel tempered PTSampler. log10beta_min: float < 0, optional The log_10(beta) value. If given, the set of betas passed to PTSampler are generated from `np.logspace(0, log10beta_min, ntemps)` (given in descending order to ptemcee). theta_initial: dict, array, optional A dictionary of distribution about which to distribute the initial walkers about. rhohatmax: float, optional Upper bound for the SNR scale parameter (required to normalise the Bayes factor) - this needs to be carefully set when using the evidence. binary: bool, optional If true, search over binary orbital parameters. BSGL: bool, optional If true, use the BSGL statistic. SSBPrec: int, optional SSBPrec (SSB precision) to use when calling ComputeFstat. See `core.ComputeFstat`. RngMedWindow: int, optional Running-Median window size (number of bins) for ComputeFstat. See `core.ComputeFstat`. minCoverFreq, maxCoverFreq: float, optional Minimum and maximum instantaneous frequency which will be covered over the SFT time span as passed to CreateFstatInput. See `core.ComputeFstat`. injectSources: dict, optional If given, inject these properties into the SFT files before running the search. See `core.ComputeFstat`. assumeSqrtSX: float or list or str Don't estimate noise-floors, but assume (stationary) per-IFO sqrt{SX}. See `core.ComputeFstat`. transientWindowType: str If 'rect' or 'exp', compute atoms so that a transient (t0,tau) map can later be computed. ('none' instead of None explicitly calls the transient-window function, but with the full range, for debugging). See `core.ComputeFstat`. Currently only supported for nsegs=1. tCWFstatMapVersion: str Choose between standard 'lal' implementation, 'pycuda' for gpu, and some others for devel/debug. allowedMismatchFromSFTLength: float Maximum allowed mismatch from SFTs being too long [Default: what's hardcoded in XLALFstatMaximumSFTLength]. """ self._set_init_params_dict(locals()) self.theta_prior = theta_prior self.tref = tref self.label = label self.outdir = outdir self.minStartTime = minStartTime self.maxStartTime = maxStartTime self.sftfilepattern = sftfilepattern self.detectors = detectors self.nsteps = nsteps self.nwalkers = nwalkers self.ntemps = ntemps self.log10beta_min = log10beta_min self.theta_initial = theta_initial self.rhohatmax = rhohatmax self.binary = binary self.BSGL = BSGL self.SSBprec = SSBprec self.RngMedWindow = RngMedWindow self.minCoverFreq = minCoverFreq self.maxCoverFreq = maxCoverFreq self.injectSources = injectSources self.assumeSqrtSX = assumeSqrtSX self.transientWindowType = transientWindowType self.tCWFstatMapVersion = tCWFstatMapVersion self.set_ephemeris_files(earth_ephem, sun_ephem) self.allowedMismatchFromSFTLength = allowedMismatchFromSFTLength os.makedirs(outdir, exist_ok=True) self.output_file_header = self.get_output_file_header() self._add_log_file(self.output_file_header) logging.info("Set-up MCMC search for model {}".format(self.label)) if sftfilepattern: logging.info("Using data {}".format(self.sftfilepattern)) else: logging.info("No sftfilepattern given") if injectSources: logging.info("Inject sources: {}".format(injectSources)) self.pickle_path = os.path.join(self.outdir, self.label + "_saved_data.p") self._unpack_input_theta() self.ndim = len(self.theta_keys) if self.log10beta_min: self.betas = np.logspace(0, self.log10beta_min, self.ntemps) else: self.betas = None if args.clean and os.path.isfile(self.pickle_path): os.rename(self.pickle_path, self.pickle_path + ".old") self._set_likelihoodcoef() self._log_input() def _set_likelihoodcoef(self): """Additional constant terms to turn a detection statistic into a likelihood. In general, the (log-)likelihood can be obtained from the signal-to-noise (log-)Bayes factor (omitting the overall Gaussian-noise normalization term) but the detection statistic may only be a monotonic function of the Bayes factor, not the full thing. E.g. this is the case for the standard CW F-statistic! """ if self.BSGL: # In this case, the corresponding term is already included # in the detection statistic itself. # See Eq. (36) in Keitel et al (PRD 89, 064023, 2014): # https://arxiv.org/abs/1311.5738 # where Fstar0 = ln(cstar) = ln(rhohatmax**4/70). # We just need to switch to natural log basis. self.likelihooddetstatmultiplier = np.log(10) self.likelihoodcoef = 0 else: # If assuming only Gaussian noise + signal, # the likelihood is essentially the F-statistic, # but with an extra constant term depending on the amplitude prior. # See Eq. (9) of Ashton & Prix (PRD 97, 103020, 2018): # https://arxiv.org/abs/1802.05450 # Also need to go from twoF to F. self.likelihooddetstatmultiplier = 0.5 self.likelihoodcoef = np.log(70.0 / self.rhohatmax ** 4) def _log_input(self): logging.info("theta_prior = {}".format(self.theta_prior)) logging.info("nwalkers={}".format(self.nwalkers)) logging.info("nsteps = {}".format(self.nsteps)) logging.info("ntemps = {}".format(self.ntemps)) logging.info("log10beta_min = {}".format(self.log10beta_min)) def _get_search_ranges(self): """take prior widths as proxy "search ranges" to allow covering band estimate""" if (self.minCoverFreq is None) or (self.maxCoverFreq is None): normal_stds = 3 # this might not always be enough prior_bounds, norm_trunc_warn = self._get_prior_bounds(normal_stds) if norm_trunc_warn: logging.warning( "Gaussian priors (normal / half-normal) have been truncated" " at {:f} standard deviations for estimating the coverage" " frequency band. If sampling fails at any point, please" " consider manually setting [minCoverFreq,maxCoverFreq] to" " more generous values.".format(normal_stds) ) # first start with parameters that have non-delta prior ranges search_ranges = { key: [bound["lower"], bound["upper"]] for key, bound in prior_bounds.items() } # then add fixed-point (delta prior) parameters for key in self.theta_prior: if key not in self.theta_keys: search_ranges[key] = [self.theta_prior[key]] return search_ranges else: return None def _initiate_search_object(self): logging.info("Setting up search object") search_ranges = self._get_search_ranges() self.search = core.ComputeFstat( tref=self.tref, sftfilepattern=self.sftfilepattern, minCoverFreq=self.minCoverFreq, maxCoverFreq=self.maxCoverFreq, search_ranges=search_ranges, detectors=self.detectors, BSGL=self.BSGL, transientWindowType=self.transientWindowType, minStartTime=self.minStartTime, maxStartTime=self.maxStartTime, binary=self.binary, injectSources=self.injectSources, assumeSqrtSX=self.assumeSqrtSX, SSBprec=self.SSBprec, RngMedWindow=self.RngMedWindow, tCWFstatMapVersion=self.tCWFstatMapVersion, earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem, allowedMismatchFromSFTLength=self.allowedMismatchFromSFTLength, ) if self.minStartTime is None: self.minStartTime = self.search.minStartTime if self.maxStartTime is None: self.maxStartTime = self.search.maxStartTime def _logp(self, theta_vals, theta_prior, theta_keys, search): H = [ self._generic_lnprior(**theta_prior[key])(p) for p, key in zip(theta_vals, theta_keys) ] return np.sum(H) def _set_point_for_evaluation(self, theta): """Combines fixed and variable parameters to form a valid evaluation point. Parameters ---------- theta: list or np.ndarray The sampled (variable) parameters. Returns ------- p: list The full parameter space point as a list. """ p = copy.copy(self.fixed_theta) for j, theta_i in enumerate(self.theta_idxs): p[theta_i] = theta[j] return p def _logl(self, theta, search): in_theta = self._set_point_for_evaluation(theta) detstat = search.get_det_stat(*in_theta) return detstat * self.likelihooddetstatmultiplier + self.likelihoodcoef def _unpack_input_theta(self): self.full_theta_keys = ["F0", "F1", "F2", "Alpha", "Delta"] if self.binary: self.full_theta_keys += ["asini", "period", "ecc", "tp", "argp"] full_theta_keys_copy = copy.copy(self.full_theta_keys) self.theta_keys = [] fixed_theta_dict = {} for key, val in self.theta_prior.items(): if type(val) is dict: fixed_theta_dict[key] = 0 self.theta_keys.append(key) elif type(val) in [float, int, np.float64]: fixed_theta_dict[key] = val else: raise ValueError( "Type {} of {} in theta not recognised".format(type(val), key) ) full_theta_keys_copy.pop(full_theta_keys_copy.index(key)) if len(full_theta_keys_copy) > 0: raise ValueError( ("Input dictionary `theta` is missing the" "following keys: {}").format( full_theta_keys_copy ) ) self.fixed_theta = [fixed_theta_dict[key] for key in self.full_theta_keys] self.theta_idxs = [self.full_theta_keys.index(k) for k in self.theta_keys] self.theta_symbols = [self.symbol_dictionary[k] for k in self.theta_keys] idxs = np.argsort(self.theta_idxs) self.theta_idxs = [self.theta_idxs[i] for i in idxs] self.theta_symbols = [self.theta_symbols[i] for i in idxs] self.theta_keys = [self.theta_keys[i] for i in idxs] self.output_keys = self.theta_keys.copy() self.output_keys.append("twoF") if self.BSGL: self.output_keys.append("log10BSGL") def _evaluate_logpost(self, p0vec): init_logp = np.array( [ self._logp(p, self.theta_prior, self.theta_keys, self.search) for p in p0vec ] ) init_logl = np.array([self._logl(p, self.search) for p in p0vec]) return init_logl + init_logp def _check_initial_points(self, p0): for nt in range(self.ntemps): logging.info("Checking temperature {} chains".format(nt)) num = sum(self._evaluate_logpost(p0[nt]) == -np.inf) if num > 0: logging.warning( "Of {} initial values, {} are -np.inf due to the prior".format( len(p0[0]), num ) ) p0 = self._generate_new_p0_to_fix_initial_points(p0, nt) def _generate_new_p0_to_fix_initial_points(self, p0, nt): logging.info("Attempting to correct intial values") init_logpost = self._evaluate_logpost(p0[nt]) idxs = np.arange(self.nwalkers)[init_logpost == -np.inf] count = 0 while sum(init_logpost == -np.inf) > 0 and count < 100: for j in idxs: p0[nt][j] = p0[nt][np.random.randint(0, self.nwalkers)] * ( 1 + np.random.normal(0, 1e-10, self.ndim) ) init_logpost = self._evaluate_logpost(p0[nt]) count += 1 if sum(init_logpost == -np.inf) > 0: logging.info("Failed to fix initial priors") else: logging.info("Suceeded to fix initial priors") return p0 def setup_initialisation(self, nburn0, scatter_val=1e-10): """Add an initialisation step to the MCMC run If called prior to `run()`, adds an intial step in which the MCMC simulation is run for `nburn0` steps. After this, the MCMC simulation continues in the usual manner (i.e. for nburn and nprod steps), but the walkers are reset scattered around the maximum likelihood position of the initialisation step. Parameters ---------- nburn0: int Number of initialisation steps to take. scatter_val: float Relative number to scatter walkers around the maximum likelihood position after the initialisation step. If the maximum likelihood point is located at `p`, the new walkers are randomly drawn from a multivariate gaussian distribution centered at `p` with standard deviation `diag(scatter_val * p)`. """ logging.info( "Setting up initialisation with nburn0={}, scatter_val={}".format( nburn0, scatter_val ) ) self.nsteps = [nburn0] + self.nsteps self.scatter_val = scatter_val def _run_sampler(self, p0, nprod=0, nburn=0, window=50): for result in tqdm( self.sampler.sample(p0, iterations=nburn + nprod), total=nburn + nprod ): pass self.mean_acceptance_fraction = np.mean( self.sampler.acceptance_fraction, axis=1 ) logging.info( "Mean acceptance fraction: {}".format(self.mean_acceptance_fraction) ) if self.ntemps > 1: self.tswap_acceptance_fraction = self.sampler.tswap_acceptance_fraction logging.info( "Tswap acceptance fraction: {}".format( self.sampler.tswap_acceptance_fraction ) ) self.autocorr_time = self.sampler.get_autocorr_time(window=window) logging.info("Autocorrelation length: {}".format(self.autocorr_time)) def _estimate_run_time(self): """Print the estimated run time Uses timing coefficients based on a Lenovo T460p Intel(R) Core(TM) i5-6300HQ CPU @ 2.30GHz. """ # Todo: add option to time on a machine, and move coefficients to # ~/.pyfstat.conf if ( type(self.theta_prior["Alpha"]) == dict or type(self.theta_prior["Delta"]) == dict ): tau0LD = 5.2e-7 tau0T = 1.5e-8 tau0S = 1.2e-4 tau0C = 5.8e-6 else: tau0LD = 1.3e-7 tau0T = 1.5e-8 tau0S = 9.1e-5 tau0C = 5.5e-6 Nsfts = (self.maxStartTime - self.minStartTime) / 1800.0 if hasattr(self, "run_setup"): ts = [] for row in self.run_setup: nsteps = row[0] nsegs = row[1] numb_evals = np.sum(nsteps) * self.nwalkers * self.ntemps t = (tau0S + tau0LD * Nsfts) * numb_evals if nsegs > 1: t += (tau0C + tau0T * Nsfts) * nsegs * numb_evals ts.append(t) time = np.sum(ts) else: numb_evals = np.sum(self.nsteps) * self.nwalkers * self.ntemps time = (tau0S + tau0LD * Nsfts) * numb_evals if getattr(self, "nsegs", 1) > 1: time += (tau0C + tau0T * Nsfts) * self.nsegs * numb_evals logging.info( "Estimated run-time = {} s = {:1.0f}:{:1.0f} m".format( time, *divmod(time, 60) ) ) def run( self, proposal_scale_factor=2, save_pickle=True, export_samples=True, save_loudest=True, plot_walkers=True, walker_plot_args=None, window=50, ): """Run the MCMC simulatation Parameters ---------- proposal_scale_factor: float The proposal scale factor `a > 1` used by the sampler. See <NAME> (Comm App Math Comp Sci, Vol 5, No. 1, 2010): 10.2140/camcos.2010.5.65. The bigger the value, the wider the range to draw proposals from. If the acceptance fraction is too low, you can raise it by decreasing the `a` parameter; and if it is too high, you can reduce it by increasing the `a` parameter. See Foreman-Mackay et al. (PASP 125 306, 2013): https://arxiv.org/abs/1202.3665. save_pickle: bool If true, save a pickle file of the full sampler state. export_samples: bool If true, save ASCII samples file to disk. See `MCMCSearch.export_samples_to_disk`. save_loudest: bool If true, save a CFSv2 .loudest file to disk. See `MCMCSearch.generate_loudest`. plot_walkers: bool If true, save trace plots of the walkers. walker_plot_args: Dictionary passed as kwargs to _plot_walkers to control the plotting. Histogram of sampled detection statistic values can be retrieved setting "plot_det_stat" to `True`. Parameters corresponding to an injected signal can be passed through "injection_parameters" as a dictionary containing the parameters of said signal. All parameters being searched for must be present, otherwise this option is ignored. If both "fig" and "axes" entries are set, the plot is not saved to disk directly, but (fig, axes) are returned. window: int The minimum number of autocorrelation times needed to trust the result when estimating the autocorrelation time (see ptemcee.Sampler.get_autocorr_time for further details. """ self._initiate_search_object() self.old_data_is_okay_to_use = self._check_old_data_is_okay_to_use() if self.old_data_is_okay_to_use is True: logging.warning("Using saved data from {}".format(self.pickle_path)) d = self.get_saved_data_dictionary() self.samples = d["samples"] self.lnprobs = d["lnprobs"] self.lnlikes = d["lnlikes"] self.all_lnlikelihood = d["all_lnlikelihood"] self.chain = d["chain"] return self._estimate_run_time() walker_plot_args = walker_plot_args or {} self.sampler = PTSampler( ntemps=self.ntemps, nwalkers=self.nwalkers, dim=self.ndim, logl=self._logl, logp=self._logp, logpargs=(self.theta_prior, self.theta_keys, self.search), loglargs=(self.search,), betas=self.betas, a=proposal_scale_factor, ) p0 = self._generate_initial_p0() p0 = self._apply_corrections_to_p0(p0) self._check_initial_points(p0) # Run initialisation steps if required ninit_steps = len(self.nsteps) - 2 for j, n in enumerate(self.nsteps[:-2]): logging.info( "Running {}/{} initialisation with {} steps".format(j, ninit_steps, n) ) self._run_sampler(p0, nburn=n, window=window) if plot_walkers: try: walker_fig, walker_axes = self._plot_walkers(**walker_plot_args) walker_fig.tight_layout() walker_fig.savefig( os.path.join( self.outdir, "{}_init_{}_walkers.png".format(self.label, j) ) ) plt.close(walker_fig) except Exception as e: logging.warning( "Failed to plot initialisation walkers due to Error {}".format( e ) ) p0 = self._get_new_p0() p0 = self._apply_corrections_to_p0(p0) self._check_initial_points(p0) self.sampler.reset() if len(self.nsteps) > 1: nburn = self.nsteps[-2] else: nburn = 0 nprod = self.nsteps[-1] logging.info("Running final burn and prod with {} steps".format(nburn + nprod)) self._run_sampler(p0, nburn=nburn, nprod=nprod) samples = self.sampler.chain[0, :, nburn:, :].reshape((-1, self.ndim)) lnprobs = self.sampler.logprobability[0, :, nburn:].reshape((-1)) lnlikes = self.sampler.loglikelihood[0, :, nburn:].reshape((-1)) all_lnlikelihood = self.sampler.loglikelihood[:, :, nburn:] self.samples = samples self.chain = self.sampler.chain self.lnprobs = lnprobs self.lnlikes = lnlikes self.all_lnlikelihood = all_lnlikelihood if save_pickle: self._pickle_data(samples, lnprobs, lnlikes, all_lnlikelihood) if export_samples: self.export_samples_to_disk() if save_loudest: self.generate_loudest() if plot_walkers: try: walkers_fig, walkers_axes = self._plot_walkers( nprod=nprod, **walker_plot_args ) walkers_fig.tight_layout() except Exception as e: logging.warning("Failed to plot walkers due to Error {}".format(e)) if (walker_plot_args.get("fig") is not None) and ( walker_plot_args.get("axes") is not None ): self.walker_fig = walkers_fig self.walker_axes = walkers_axes else: try: walkers_fig.savefig( os.path.join(self.outdir, self.label + "_walkers.png") ) plt.close(walkers_fig) except Exception as e: logging.warning( "Failed to save walker plots due to Error {}".format(e) ) def _get_rescale_multiplier_for_key(self, key): """Get the rescale multiplier from the transform_dictionary Can either be a float, a string (in which case it is interpretted as a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent in which case 0 is returned """ if key not in self.transform_dictionary: return 1 if "multiplier" in self.transform_dictionary[key]: val = self.transform_dictionary[key]["multiplier"] if type(val) == str: if hasattr(self, val): multiplier = getattr( self, self.transform_dictionary[key]["multiplier"] ) else: raise ValueError("multiplier {} not a class attribute".format(val)) else: multiplier = val else: multiplier = 1 return multiplier def _get_rescale_subtractor_for_key(self, key): """Get the rescale subtractor from the transform_dictionary Can either be a float, a string (in which case it is interpretted as a attribute of the MCMCSearch class, e.g. minStartTime, or non-existent in which case 0 is returned """ if key not in self.transform_dictionary: return 0 if "subtractor" in self.transform_dictionary[key]: val = self.transform_dictionary[key]["subtractor"] if type(val) == str: if hasattr(self, val): subtractor = getattr( self, self.transform_dictionary[key]["subtractor"] ) else: raise ValueError("subtractor {} not a class attribute".format(val)) else: subtractor = val else: subtractor = 0 return subtractor def _scale_samples(self, samples, theta_keys): """Scale the samples using the transform_dictionary""" for key in theta_keys: if key in self.transform_dictionary: idx = theta_keys.index(key) s = samples[:, idx] subtractor = self._get_rescale_subtractor_for_key(key) s = s - subtractor multiplier = self._get_rescale_multiplier_for_key(key) s *= multiplier samples[:, idx] = s return samples def _get_labels(self, newline_units=False): """Combine the units, symbols and rescaling to give labels""" labels = [] for key in self.theta_keys: values = self.transform_dictionary.get(key, {}) s, label, u = [ values.get(slu_key, None) for slu_key in ["symbol", "label", "unit"] ] if label is None: s = s or self.symbol_dictionary[key].replace( "_{glitch}", r"_\mathrm{glitch}" ) u = u or self.unit_dictionary[key] label = ( f"{s}" + ("\n" if newline_units else " ") + (f"[{u}]" if u != "" else "") ) labels.append(label) return labels def plot_corner( self, figsize=(10, 10), add_prior=False, nstds=None, label_offset=0.4, dpi=300, rc_context={}, tglitch_ratio=False, fig_and_axes=None, save_fig=True, **kwargs, ): """Generate a corner plot of the posterior Using the `corner` package (https://pypi.python.org/pypi/corner/), generate estimates of the posterior from the production samples. Parameters ---------- figsize: tuple (7, 7) Figure size in inches (passed to plt.subplots) add_prior: bool, str If true, plot the prior as a red line. If 'full' then for uniform priors plot the full extent of the prior. nstds: float The number of standard deviations to plot centered on the median. Standard deviation is computed from the samples using `numpy.std`. label_offset: float Offset the labels from the plot: useful to prevent overlapping the tick labels with the axis labels. This option is passed to `ax.[x|y]axis.set_label_coords`. dpi: int Passed to plt.savefig. rc_context: dict Dictionary of rc values to set while generating the figure (see matplotlib rc for more details). tglitch_ratio: bool If true, and tglitch is a parameter, plot posteriors as the fractional time at which the glitch occurs instead of the actual time. fig_and_axes: tuple (fig, axes) tuple to plot on. The axes must be of the right shape, namely (ndim, ndim) save_fig: bool If true, save the figure, else return the fig, axes. **kwargs: Passed to corner.corner. Use "truths" to plot the true parameters of a signal. Returns ------- fig, axes: The matplotlib figure and axes, only returned if save_fig = False. """ if "truths" in kwargs: if not isinstance(kwargs["truths"], dict): raise ValueError("'truths' must be a dictionary.") missing_keys = set(self.theta_keys) - kwargs["truths"].keys() if missing_keys: logging.warning( f"plot_corner(): Missing keys {missing_keys} in 'truths' dictionary," " argument will be ignored." ) kwargs["truths"] = None else: kwargs["truths"] = [kwargs["truths"][key] for key in self.theta_keys] kwargs["truths"] = self._scale_samples( np.reshape(kwargs["truths"], (1, -1)), self.theta_keys ).ravel() if "truth_color" not in kwargs: kwargs["truth_color"] = "black" if self.ndim < 2: with plt.rc_context(rc_context): if fig_and_axes is None: fig, ax = plt.subplots(figsize=figsize) else: fig, ax = fig_and_axes ax.hist(self.samples, bins=50, histtype="stepfilled") ax.set_xlabel(self.theta_symbols[0]) fig.savefig(os.path.join(self.outdir, self.label + "_corner.png"), dpi=dpi) plt.close(fig) return with plt.rc_context(rc_context): if fig_and_axes is None: fig, axes = plt.subplots(self.ndim, self.ndim, figsize=figsize) else: fig, axes = fig_and_axes samples_plt = copy.copy(self.samples) labels = self._get_labels(newline_units=False) samples_plt = self._scale_samples(samples_plt, self.theta_keys) if tglitch_ratio: for j, k in enumerate(self.theta_keys): if k == "tglitch": s = samples_plt[:, j] samples_plt[:, j] = (s - self.minStartTime) / ( self.maxStartTime - self.minStartTime ) labels[j] = r"$R_{\mathrm{glitch}}$" if type(nstds) is int and "range" not in kwargs: _range = [] for j, s in enumerate(samples_plt.T): median = np.median(s) std = np.std(s) _range.append((median - nstds * std, median + nstds * std)) elif "range" in kwargs: _range = kwargs.pop("range") else: _range = None hist_kwargs = kwargs.pop("hist_kwargs", dict()) if "density" not in hist_kwargs: hist_kwargs["density"] = True fig_triangle = corner.corner( samples_plt, labels=labels, fig=fig, bins=50, max_n_ticks=4, plot_contours=True, plot_datapoints=True, label_kwargs={"fontsize": 12}, data_kwargs={"alpha": 0.1, "ms": 0.5}, range=_range, hist_kwargs=hist_kwargs, show_titles=True, fill_contours=True, quantiles=[0.05, 0.95] if "quantiles" not in kwargs else kwargs.pop("quantiles"), verbose=True if "verbose" not in kwargs else kwargs.pop("verbose"), **kwargs, ) axes_list = fig_triangle.get_axes() axes = np.array(axes_list).reshape(self.ndim, self.ndim) plt.draw() for ax in axes[:, 0]: ax.yaxis.set_label_coords(-label_offset, 0.5) for ax in axes[-1, :]: ax.xaxis.set_label_coords(0.5, -label_offset) for ax in axes_list: ax.set_rasterized(True) ax.set_rasterization_zorder(-10) for tick in ax.xaxis.get_major_ticks(): # tick.label1.set_fontsize(8) tick.label1.set_rotation(30) for tick in ax.yaxis.get_major_ticks(): # tick.label1.set_fontsize(8) tick.label1.set_rotation(30) plt.tight_layout() fig.subplots_adjust(hspace=0.1, wspace=0.1) if add_prior: self._add_prior_to_corner(axes, self.samples, add_prior) if save_fig: fig_triangle.savefig( os.path.join(self.outdir, self.label + "_corner.png"), dpi=dpi ) plt.close(fig_triangle) else: return fig, axes def plot_chainconsumer(self, save_fig=True, label_offset=0.25, dpi=300, **kwargs): """Generate a corner plot of the posterior using the `chaniconsumer` package. `chainconsumer` is an optional dependency of PyFstat. See https://samreay.github.io/ChainConsumer/. Parameters are akin to the ones described in MCMCSearch.plot_corner. Only the differing parameters are explicitly described. Parameters ---------- **kwargs: Passed to chainconsumer.plotter.plot. Use "truths" to plot the true parameters of a signal. """ try: import chainconsumer except ImportError: logging.warning( "Could not import 'chainconsumer' package, please install it to use this method." ) return samples_plt = copy.copy(self.samples) labels = self._get_labels(newline_units=True) samples_plt = self._scale_samples(samples_plt, self.theta_keys) if "truth" in kwargs: if not isinstance(kwargs["truth"], dict): raise ValueError("'truth' must be a dictionary.") missing_keys = np.setdiff1d(self.theta_keys, list(kwargs["truth"].keys())) if len(missing_keys) > 0: logging.warning( "plot_chainconsumer(): Missing keys {} in 'truth' dictionary," " argument will be ignored.".format(missing_keys) ) kwargs["truth"] = None else: parameters_in_order = np.array( [kwargs["truth"][key] for key in self.theta_keys] ).reshape((1, -1)) kwargs["truth"] = self._scale_samples( parameters_in_order, self.theta_keys ).ravel() c = chainconsumer.ChainConsumer() c.add_chain(samples_plt, parameters=labels) # We set usetex=False to avoid dependency on 'kpsewhich' TeX tool c.configure(smooth=0, summary=False, sigma2d=True, usetex=False) fig = c.plotter.plot(**kwargs) axes_list = fig.get_axes() axes = np.array(axes_list).reshape(self.ndim, self.ndim) plt.draw() for ax in axes[:, 0]: ax.yaxis.set_label_coords(-label_offset, 0.5) for ax in axes[-1, :]: ax.xaxis.set_label_coords(0.5, -label_offset) for ax in axes_list: ax.set_rasterized(True) ax.set_rasterization_zorder(-10) plt.tight_layout(h_pad=0.0, w_pad=0.0) fig.subplots_adjust(hspace=0.05, wspace=0.05) if save_fig: fig.savefig( os.path.join(self.outdir, self.label + "_chainconsumer_corner.png"), dpi=dpi, ) plt.close(fig) else: return fig, axes def _add_prior_to_corner(self, axes, samples, add_prior): for i, key in enumerate(self.theta_keys): ax = axes[i][i] s = samples[:, i] lnprior = self._generic_lnprior(**self.theta_prior[key]) if add_prior == "full" and self.theta_prior[key]["type"] == "unif": lower = self.theta_prior[key]["lower"] upper = self.theta_prior[key]["upper"] r = upper - lower xlim = [lower - 0.05 * r, upper + 0.05 * r] x = np.linspace(xlim[0], xlim[1], 1000) else: xlim = ax.get_xlim() x = np.linspace(s.min(), s.max(), 1000) multiplier = self._get_rescale_multiplier_for_key(key) subtractor = self._get_rescale_subtractor_for_key(key) ax.plot( (x - subtractor) * multiplier, [np.exp(lnprior(xi)) for xi in x], "-C3", label="prior", ) for j in range(i, self.ndim): axes[j][i].set_xlim(xlim[0], xlim[1]) for k in range(0, i): axes[i][k].set_ylim(xlim[0], xlim[1]) def _get_prior_bounds(self, normal_stds=2): """Get the lower/upper bounds of all priors Parameters ---------- normal_stds: float Number of standard deviations to cut normal (Gaussian) or half-norm distributions at. Returns ------- prior_bounds: dict Dictionary of ["lower","upper"] pairs for each parameter norm_warning: bool A flag that is true if any parameter has a norm or half-norm prior. Caller functions may wish to warn the user that the prior has been truncated at normal_stds. """ prior_bounds = {} norm_trunc_warning = False for key in self.theta_keys: prior_bounds[key] = {} prior_dict = self.theta_prior[key] norm_trunc_warning = "norm" in prior_dict["type"] or norm_trunc_warning if prior_dict["type"] == "unif": prior_bounds[key]["lower"] = prior_dict["lower"] prior_bounds[key]["upper"] = prior_dict["upper"] elif prior_dict["type"] == "log10unif": prior_bounds[key]["lower"] = 10 ** prior_dict["log10lower"] prior_bounds[key]["upper"] = 10 ** prior_dict["log10upper"] elif prior_dict["type"] == "norm": prior_bounds[key]["lower"] = ( prior_dict["loc"] - normal_stds * prior_dict["scale"] ) prior_bounds[key]["upper"] = ( prior_dict["loc"] + normal_stds * prior_dict["scale"] ) elif prior_dict["type"] == "halfnorm": prior_bounds[key]["lower"] = prior_dict["loc"] prior_bounds[key]["upper"] = ( prior_dict["loc"] + normal_stds * prior_dict["scale"] ) elif prior_dict["type"] == "neghalfnorm": prior_bounds[key]["upper"] = prior_dict["loc"] prior_bounds[key]["lower"] = ( prior_dict["loc"] - normal_stds * prior_dict["scale"] ) elif prior_dict["type"] == "lognorm": prior_bounds[key]["lower"] = np.exp( prior_dict["loc"] - normal_stds * prior_dict["scale"] ) prior_bounds[key]["upper"] = np.exp( prior_dict["loc"] + normal_stds * prior_dict["scale"] ) else: raise ValueError( "Not implemented for prior type {}".format(prior_dict["type"]) ) return prior_bounds, norm_trunc_warning def plot_prior_posterior( self, normal_stds=2, injection_parameters=None, fig_and_axes=None, save_fig=True, ): """Plot the prior and posterior probability distributions in the same figure Parameters ---------- normal_stds: int Bounds of priors in terms of their standard deviation. Only used if `norm`, `halfnorm`, `neghalfnorm` or `lognorm` priors are given, otherwise ignored. injection_parameters: dict Dictionary containing the parameters of a signal. All parameters being searched must be present as dictionary keys, otherwise this option is ignored. fig_and_axes: tuple (fig, axes) tuple to plot on. save_fig: bool If true, save the figure, else return the fig, axes. Returns ------- (fig, ax): (matplotlib.pyplot.figure, matplotlib.pyplot.axes) If `save_fig` evaluates to `False`, return figure and axes. """ # Check injection parameters first injection_parameters = injection_parameters or {} missing_keys = set(self.theta_keys) - injection_parameters.keys() if missing_keys: logging.warning( f"plot_prior_posterior(): Missing keys {missing_keys} in 'injection_parameters'," " no injection parameters will be highlighted." ) injection_parameters = None if fig_and_axes is None: fig, axes = plt.subplots(nrows=self.ndim, figsize=(8, 4 * self.ndim)) else: fig, ax = fig_and_axes if self.ndim == 1: axes = [axes] N = 1000 from scipy.stats import gaussian_kde prior_bounds, _ = self._get_prior_bounds(normal_stds) for i, (ax, key) in enumerate(zip(axes, self.theta_keys)): prior_dict = self.theta_prior[key] ln_prior_func = self._generic_lnprior(**prior_dict) x = np.linspace(prior_bounds[key]["lower"], prior_bounds[key]["upper"], N) prior = np.exp([ln_prior_func(xi) for xi in x]) # may not be vectorized priorln = ax.plot(x, prior, "C3", label="prior") ax.set(xlabel=self.theta_symbols[i], yticks=[]) s = self.samples[:, i] while len(s) > 10 ** 4: # random downsample to avoid slow calculation of kde s = np.random.choice(s, size=int(len(s) / 2.0)) kde = gaussian_kde(s) ax2 = ax.twinx() postln = ax2.plot(x, kde.pdf(x), "k", label="posterior") ax2.set(yticks=[], yticklabels=[]) if injection_parameters is not None: injection = ax.axvline( injection_parameters[key], label="Injection", color="purple", ls="--", ) plotlines = priorln + postln labs = [plotline.get_label() for plotline in plotlines] if injection_parameters is not None: plotlines.append(injection) labs.append("injection") axes[0].legend(plotlines, labs, loc=1, framealpha=0.8) if save_fig: fig.savefig(os.path.join(self.outdir, self.label + "_prior_posterior.png")) plt.close(fig) else: return fig, axes def plot_cumulative_max(self, **kwargs): """Plot the cumulative twoF for the maximum posterior estimate. This method accepts the same arguments as `pyfstat.core.ComputeFstat.plot_twoF_cumulative`, except for `CFS_input`, which is taken from the loudest candidate; and `label` and `outdir`, which are taken from the instance of this class. For example, one can pass signal arguments to predic_twoF_cumulative through `PFS_kwargs`, or set the number of segments using `num_segments_(CFS|PFS)`. The same applies for other options such as `tstart`, `tend` or `savefig`. Every single of these arguments will be passed to `pyfstat.core.ComputeFstat.plot_twoF_cumulative` as they are, using their default argument otherwise. See `pyfstat.core.ComputeFstat.plot_twoF_cumulative` for a comprehensive list of accepted arguments and their default values. Unlike the core function, here savefig=True is the default, for consistency with other MCMC plotting functions. """ logging.info("Getting cumulative 2F") d, maxtwoF = self.get_max_twoF() for key, val in self.theta_prior.items(): if key not in d: d[key] = val if kwargs.get("savefig") is None: kwargs["savefig"] = True self.search.plot_twoF_cumulative( CFS_input=d, label=self.label, outdir=self.outdir, **kwargs ) def _generic_lnprior(self, **kwargs): """Return a lambda function of the pdf Parameters ---------- **kwargs: A dictionary containing 'type' of pdf and shape parameters """ def log_of_unif(x, a, b): above = x < b below = x > a if type(above) is not np.ndarray: if above and below: return -np.log(b - a) else: return -np.inf else: idxs = np.array([all(tup) for tup in zip(above, below)]) p = np.zeros(len(x)) - np.inf p[idxs] = -np.log(b - a) return p def log_of_log10unif(x, log10lower, log10upper): log10x = np.log10(x) above = log10x < log10upper below = log10x > log10lower if type(above) is not np.ndarray: if above and below: return -np.log(x * np.log(10) * (log10upper - log10lower)) else: return -np.inf else: idxs = np.array([all(tup) for tup in zip(above, below)]) p = np.zeros(len(x)) - np.inf p[idxs] = -np.log(x * np.log(10) * (log10upper - log10lower)) return p def log_of_halfnorm(x, loc, scale): if x < loc: return -np.inf else: return -0.5 * ( (x - loc) ** 2 / scale ** 2 + np.log(0.5 * np.pi * scale ** 2) ) def cauchy(x, x0, gamma): return 1.0 / (np.pi * gamma * (1 + ((x - x0) / gamma) ** 2)) def exp(x, x0, gamma): if x > x0: return np.log(gamma) - gamma * (x - x0) else: return -np.inf if kwargs["type"] == "unif": return lambda x: log_of_unif(x, kwargs["lower"], kwargs["upper"]) if kwargs["type"] == "log10unif": return lambda x: log_of_log10unif( x, kwargs["log10lower"], kwargs["log10upper"] ) elif kwargs["type"] == "halfnorm": return lambda x: log_of_halfnorm(x, kwargs["loc"], kwargs["scale"]) elif kwargs["type"] == "neghalfnorm": return lambda x: log_of_halfnorm(-x, kwargs["loc"], kwargs["scale"]) elif kwargs["type"] == "norm": return lambda x: -0.5 * ( (x - kwargs["loc"]) ** 2 / kwargs["scale"] ** 2 + np.log(2 * np.pi * kwargs["scale"] ** 2) ) elif kwargs["type"] == "lognorm": # as of scipy 1.4.1 and numpy 1.18.1 the following parametrisation # should be consistent with np.random.lognormal in _generate_rv() return lambda x: lognorm.pdf( x, s=kwargs["scale"], scale=np.exp(kwargs["loc"]) ) else: logging.info("kwargs:", kwargs) raise ValueError("Prior pdf type {:s} unknown.".format(kwargs["type"])) def _generate_rv(self, **kwargs): dist_type = kwargs.pop("type") if dist_type == "unif": return np.random.uniform(low=kwargs["lower"], high=kwargs["upper"]) if dist_type == "log10unif": return 10 ** ( np.random.uniform(low=kwargs["log10lower"], high=kwargs["log10upper"]) ) if dist_type == "norm": return np.random.normal(loc=kwargs["loc"], scale=kwargs["scale"]) if dist_type == "halfnorm": return np.abs(np.random.normal(loc=kwargs["loc"], scale=kwargs["scale"])) if dist_type == "neghalfnorm": return -1 * np.abs( np.random.normal(loc=kwargs["loc"], scale=kwargs["scale"]) ) if dist_type == "lognorm": return np.random.lognormal(mean=kwargs["loc"], sigma=kwargs["scale"]) else: raise ValueError("dist_type {} unknown".format(dist_type)) def _plot_walkers( self, symbols=None, alpha=0.8, color="k", temp=0, lw=0.1, nprod=0, add_det_stat_burnin=False, fig=None, axes=None, xoffset=0, injection_parameters=None, plot_det_stat=False, context="ggplot", labelpad=5, ): """Plot all the chains from a sampler""" if injection_parameters is not None: if not isinstance(injection_parameters, dict): raise ValueError("injection_parameters is not a dictionary") missing_keys = set(self.theta_keys) - injection_parameters.keys() if missing_keys: logging.warning( f"plot_walkers(): Missing keys {missing_keys} in 'injection_parameters'," " argument will be ignored." ) injection_parameters = None else: scaled_injection_parameters = { key: ( injection_parameters[key] - self._get_rescale_subtractor_for_key(key) ) * self._get_rescale_multiplier_for_key(key) for key in injection_parameters.keys() } if symbols is None: symbols = self._get_labels() if context not in plt.style.available: raise ValueError( ( "The requested context {} is not available; please select a" " context from `plt.style.available`" ).format(context) ) if np.ndim(axes) > 1: axes = axes.flatten() shape = self.sampler.chain.shape if len(shape) == 3: nwalkers, nsteps, ndim = shape chain = self.sampler.chain[:, :, :].copy() if len(shape) == 4: ntemps, nwalkers, nsteps, ndim = shape if temp < ntemps: logging.info("Plotting temperature {} chains".format(temp)) else: raise ValueError( ("Requested temperature {} outside of" "available range").format( temp ) ) chain = self.sampler.chain[temp, :, :, :].copy() samples = chain.reshape((nwalkers * nsteps, ndim)) samples = self._scale_samples(samples, self.theta_keys) chain = chain.reshape((nwalkers, nsteps, ndim)) if plot_det_stat: extra_subplots = 1 else: extra_subplots = 0 with plt.style.context((context)): if fig is None and axes is None: fig = plt.figure(figsize=(4, 3.0 * ndim)) ax = fig.add_subplot(ndim + extra_subplots, 1, 1) axes = [ax] + [ fig.add_subplot(ndim + extra_subplots, 1, i) for i in range(2, ndim + 1) ] idxs = np.arange(chain.shape[1]) burnin_idx = chain.shape[1] - nprod last_idx = burnin_idx if ndim > 1: for i in range(ndim): axes[i].ticklabel_format(useOffset=False, axis="y") cs = chain[:, :, i].T if burnin_idx > 0: axes[i].plot( xoffset + idxs[: last_idx + 1], cs[: last_idx + 1], color="C3", alpha=alpha, lw=lw, ) axes[i].axvline(xoffset + last_idx, color="k", ls="--", lw=0.5) axes[i].plot( xoffset + idxs[burnin_idx:], cs[burnin_idx:], color="k", alpha=alpha, lw=lw, ) if injection_parameters is not None: axes[i].axhline( scaled_injection_parameters[self.theta_keys[i]], ls="--", lw=2.0, color="orange", ) axes[i].set_xlim(0, xoffset + idxs[-1]) if symbols: axes[i].set_ylabel(symbols[i], labelpad=labelpad) else: axes[0].ticklabel_format(useOffset=False, axis="y") cs = chain[:, :, temp].T if burnin_idx: axes[0].plot( idxs[:burnin_idx], cs[:burnin_idx], color="C3", alpha=alpha, lw=lw, ) axes[0].plot( idxs[burnin_idx:], cs[burnin_idx:], color="k", alpha=alpha, lw=lw ) if injection_parameters is not None: axes[0].axhline( scaled_injection_parameters[self.theta_keys[0]], ls="--", lw=5.0, color="orange", ) if symbols: axes[0].set_ylabel(symbols[0], labelpad=labelpad) axes[-1].set_xlabel(r"Number of steps", labelpad=0.2) if plot_det_stat: if len(axes) == ndim: axes.append(fig.add_subplot(ndim + 1, 1, ndim + 1)) lnl = self.sampler.loglikelihood[temp, :, :] if burnin_idx and add_det_stat_burnin: burn_in_vals = lnl[:, :burnin_idx].flatten() try: detstat_burnin = ( burn_in_vals[~np.isnan(burn_in_vals)] - self.likelihoodcoef ) / self.likelihooddetstatmultiplier axes[-1].hist( detstat_burnin, bins=50, histtype="step", color="C3" ) except ValueError: logging.info( "Histogram of detection statistic failed, " "most likely all values were the same." ) pass else: detstat_burnin = [] prod_vals = lnl[:, burnin_idx:].flatten() try: detstat = ( prod_vals[~np.isnan(prod_vals)] - self.likelihoodcoef ) / self.likelihooddetstatmultiplier axes[-1].hist(detstat, bins=50, histtype="step", color="k") except ValueError: logging.info( "Histogram of detection statistic failed, " "most likely all values were the same." ) pass if self.BSGL: axes[-1].set_xlabel(r"$\log_{10}\mathcal{B}_\mathrm{S/GL}$") else: axes[-1].set_xlabel(r"$\widetilde{2\mathcal{F}}$") axes[-1].set_ylabel(r"$\mathrm{Counts}$") combined_vals = np.append(detstat_burnin, detstat) if len(combined_vals) > 0: minv = np.min(combined_vals) maxv = np.max(combined_vals) Range = abs(maxv - minv) axes[-1].set_xlim(minv - 0.1 * Range, maxv + 0.1 * Range) xfmt = matplotlib.ticker.ScalarFormatter() xfmt.set_powerlimits((-4, 4)) axes[-1].xaxis.set_major_formatter(xfmt) return fig, axes def _apply_corrections_to_p0(self, p0): """Apply any correction to the initial p0 values""" return p0 def _generate_scattered_p0(self, p): """Generate a set of p0s scattered about p""" p0 = [ [ p + self.scatter_val * p * np.random.randn(self.ndim) for i in range(self.nwalkers) ] for j in range(self.ntemps) ] return p0 def _generate_initial_p0(self): """Generate a set of init vals for the walkers""" if type(self.theta_initial) == dict: logging.info("Generate initial values from initial dictionary") if hasattr(self, "nglitch") and self.nglitch > 1: raise ValueError("Initial dict not implemented for nglitch>1") p0 = [ [ [ self._generate_rv(**self.theta_initial[key]) for key in self.theta_keys ] for i in range(self.nwalkers) ] for j in range(self.ntemps) ] elif self.theta_initial is None: logging.info("Generate initial values from prior dictionary") p0 = [ [ [ self._generate_rv(**self.theta_prior[key]) for key in self.theta_keys ] for i in range(self.nwalkers) ] for j in range(self.ntemps) ] else: raise ValueError("theta_initial not understood") return p0 def _get_new_p0(self): """Returns new initial positions for walkers are burn0 stage This returns new positions for all walkers by scattering points about the maximum posterior with scale `scatter_val`. """ temp_idx = 0 pF = self.sampler.chain[temp_idx, :, :, :] lnl = self.sampler.loglikelihood[temp_idx, :, :] lnp = self.sampler.logprobability[temp_idx, :, :] # General warnings about the state of lnp if np.any(np.isnan(lnp)): logging.warning( "Of {} lnprobs {} are nan".format(np.shape(lnp), np.sum(np.isnan(lnp))) ) if np.any(np.isposinf(lnp)): logging.warning( "Of {} lnprobs {} are +np.inf".format( np.shape(lnp), np.sum(np.isposinf(lnp)) ) ) if np.any(np.isneginf(lnp)): logging.warning( "Of {} lnprobs {} are -np.inf".format( np.shape(lnp), np.sum(np.isneginf(lnp)) ) ) lnp_finite = copy.copy(lnp) lnp_finite[np.isinf(lnp)] = np.nan idx = np.unravel_index(np.nanargmax(lnp_finite), lnp_finite.shape) p = pF[idx] p0 = self._generate_scattered_p0(p) logging.info( ( "Gen. new p0 from pos {} which had det. stat.={:2.1f}" " and lnp={:2.1f}" ).format(idx[1], lnl[idx], lnp_finite[idx]) ) return p0 def _get_data_dictionary_to_save(self): d = dict( nsteps=self.nsteps, nwalkers=self.nwalkers, ntemps=self.ntemps, theta_keys=self.theta_keys, theta_prior=self.theta_prior, log10beta_min=self.log10beta_min, BSGL=self.BSGL, minStartTime=self.minStartTime, maxStartTime=self.maxStartTime, ) return d def _pickle_data(self, samples, lnprobs, lnlikes, all_lnlikelihood): d = self._get_data_dictionary_to_save() d["samples"] = samples d["lnprobs"] = lnprobs d["lnlikes"] = lnlikes d["chain"] = self.sampler.chain d["all_lnlikelihood"] = all_lnlikelihood if os.path.isfile(self.pickle_path): logging.info( "Saving backup of {} as {}.old".format( self.pickle_path, self.pickle_path ) ) os.rename(self.pickle_path, self.pickle_path + ".old") with open(self.pickle_path, "wb") as File: pickle.dump(d, File) def get_saved_data_dictionary(self): """Read the data saved in `self.pickel_path` and return it as a dictionary. Returns -------- d: dict Dictionary containing the data saved in the pickle `self.pickle_path`. """ with open(self.pickle_path, "rb") as File: d = pickle.load(File) return d def _check_old_data_is_okay_to_use(self): if os.path.isfile(self.pickle_path) is False: logging.info("No pickled data found") return False if self.sftfilepattern is not None: oldest_sft = min( [os.path.getmtime(f) for f in self._get_list_of_matching_sfts()] ) if os.path.getmtime(self.pickle_path) < oldest_sft: logging.info("Pickled data outdates sft files") return False old_d = self.get_saved_data_dictionary().copy() new_d = self._get_data_dictionary_to_save().copy() old_d.pop("samples") old_d.pop("lnprobs") old_d.pop("lnlikes") old_d.pop("all_lnlikelihood") old_d.pop("chain") for key in "minStartTime", "maxStartTime": if new_d[key] is None: new_d[key] = old_d[key] setattr(self, key, new_d[key]) mod_keys = [] for key in list(new_d.keys()): if key in old_d: if new_d[key] != old_d[key]: mod_keys.append((key, old_d[key], new_d[key])) else: raise ValueError("Keys {} not in old dictionary".format(key)) if len(mod_keys) == 0: return True else: logging.warning("Saved data differs from requested") logging.info("Differences found in following keys:") for key in mod_keys: if len(key) == 3: if np.isscalar(key[1]) or key[0] == "nsteps": logging.info(" {} : {} -> {}".format(*key)) else: logging.info(" " + key[0]) else: logging.info(key) return False def _get_savetxt_fmt_dict(self): fmt_dict = helper_functions.get_doppler_params_output_format(self.theta_keys) fmt_dict["twoF"] = "%.9g" if self.BSGL: fmt_dict["log10BSGL"] = "%.9g" return fmt_dict def _get_savetxt_gmt_list(self): """Returns a list of output format specifiers, ordered like the samples This is required because the output of _get_savetxt_fmt_dict() will depend on the order in which those entries have been coded up. """ fmt_dict = self._get_savetxt_fmt_dict() fmt_list = [fmt_dict[key] for key in self.output_keys] return fmt_list def export_samples_to_disk(self): """ Export MCMC samples into a text file using `numpy.savetxt`. """ self.samples_file = os.path.join(self.outdir, self.label + "_samples.dat") logging.info("Exporting samples to {}".format(self.samples_file)) header = "\n".join(self.output_file_header) header += "\n" + " ".join(self.output_keys) outfmt = self._get_savetxt_gmt_list() samples_out = copy.copy(self.samples) # For convenience, we always save a twoF column, # even if log10BSGL was used for the likelihood. detstat = np.atleast_2d(self._get_detstat_from_loglikelihood()).T if self.BSGL: twoF = np.zeros_like(detstat) self.search.BSGL = False for idx, samp in enumerate(self.samples): p = self._set_point_for_evaluation(samp) if isinstance(p, dict): twoF[idx] = self.search.get_det_stat(**p) else: twoF[idx] = self.search.get_det_stat(*p) self.search.BSGL = self.BSGL samples_out = np.concatenate((samples_out, twoF), axis=1) # TODO: add single-IFO F-stats? samples_out = np.concatenate((samples_out, detstat), axis=1) Ncols = np.shape(samples_out)[1] if len(outfmt) != Ncols: raise RuntimeError( "Lengths of data rows ({:d})" " and output format ({:d})" " do not match." " If your search class uses different" " keys than the base MCMCSearch class," " override the _get_savetxt_fmt_dict" " method.".format(Ncols, len(outfmt)) ) np.savetxt( self.samples_file, samples_out, delimiter=" ", header=header, fmt=outfmt, ) def _get_detstat_from_loglikelihood(self, idx=None): """Inverts the extra terms applied in logl().""" return ( self.lnlikes[idx if idx is not None else ...] - self.likelihoodcoef ) / self.likelihooddetstatmultiplier def get_max_twoF(self): """Get the max. likelihood (loudest) sample and the compute its corresponding detection statistic. The employed detection statistic depends on `self.BSGL` (i.e. 2F if `self.BSGL` evaluates to `False`, log10BSGL otherwise). Returns ------- d: dict Parameters of the loudest sample. maxtwoF: float Detection statistic (2F or log10BSGL) corresponding to the loudest sample. """ if not hasattr(self, "search"): raise RuntimeError( "Object has no self.lnlikes attribute, please execute .run() first." ) if any(np.isposinf(self.lnlikes)): logging.info("lnlike values contain positive infinite values") if any(np.isneginf(self.lnlikes)): logging.info("lnlike values contain negative infinite values") if any(np.isnan(self.lnlikes)): logging.info("lnlike values contain nan") idxs = np.isfinite(self.lnlikes) jmax = np.nanargmax(self.lnlikes[idxs]) d = OrderedDict() if self.BSGL: # need to recompute twoF at the max likelihood if hasattr(self, "search") is False: self._initiate_search_object() p = self._set_point_for_evaluation(self.samples[jmax]) self.search.BSGL = False if isinstance(p, dict): maxtwoF = self.search.get_det_stat(**p) else: maxtwoF = self.search.get_det_stat(*p) self.search.BSGL = self.BSGL else: # can just reuse the logl value maxtwoF = self._get_detstat_from_loglikelihood(jmax) repeats = [] for i, k in enumerate(self.theta_keys): if k in d and k not in repeats: d[k + "_0"] = d[k] # relabel the old key d.pop(k) repeats.append(k) if k in repeats: k = k + "_0" count = 1 while k in d: k = k.replace("_{}".format(count - 1), "_{}".format(count)) count += 1 d[k] = self.samples[jmax][i] return d, maxtwoF def get_summary_stats(self): """Returns a dict of point estimates for all production samples. Point estimates are computed on the MCMC samples using `numpy.mean`, `numpy.std` and `numpy.quantiles` with q=[0.005, 0.05, 0.25, 0.5, 0.75, 0.95, 0.995]. Returns ------- d: dict Dictionary containing point estimates corresponding to ["mean", "std", "lower99", "lower90", "lower50", "median", "upper50", "upper90", "upper99"]. """ d = OrderedDict() repeats = [] # taken from old get_median_stds(), not sure why necessary for s, k in zip(self.samples.T, self.theta_keys): if k in d and k not in repeats: d[k + "_0"] = d[k] # relabel the old key d.pop(k) repeats.append(k) if k in repeats: k = k + "_0" count = 1 while k in d: k = k.replace("_{}".format(count - 1), "_{}".format(count)) count += 1 d[k] = {} d[k]["mean"] = np.mean(s) d[k]["std"] = np.std(s) ( d[k]["lower99"], d[k]["lower90"], d[k]["lower50"], d[k]["median"], d[k]["upper50"], d[k]["upper90"], d[k]["upper99"], ) = np.quantile(s, [0.005, 0.05, 0.25, 0.5, 0.75, 0.95, 0.995]) return d def check_if_samples_are_railing(self, threshold=0.01): """Returns a boolean estimate of if the samples are railing Parameters ---------- threshold: float [0, 1] Fraction of the uniform prior to test (at upper and lower bound) Returns ------- return_flag: bool IF true, the samples are railing """ return_flag = False for s, k in zip(self.samples.T, self.theta_keys): prior = self.theta_prior[k] if prior["type"] == "unif": prior_range = prior["upper"] - prior["lower"] edges = [] fracs = [] for bound in ["lower", "upper"]: bools = np.abs(s - prior[bound]) / prior_range < threshold if np.any(bools): edges.append(bound) fracs.append(str(100 * float(np.sum(bools)) / len(bools))) if len(edges) > 0: logging.warning( "{}% of the {} posterior is railing on the {} edges".format( "% & ".join(fracs), k, " & ".join(edges) ) ) return_flag = True return return_flag def write_par(self, method="median"): """Writes a .par of the best-fit params with an estimated std Parameters ---------- method: str How to select the `best-fit` params. Available methods: "median", "mean", "twoFmax". """ if method == "med": method = "median" if method in ["median", "mean"]: summary_stats = self.get_summary_stats() filename = os.path.join(self.outdir, self.label + "_" + method + ".par") logging.info("Writing {} using {} parameters.".format(filename, method)) elif method == "twoFmax": max_twoF_d, max_twoF = self.get_max_twoF() filename = os.path.join(self.outdir, self.label + "_max2F.par") logging.info("Writing {} at max twoF = {}.".format(filename, max_twoF)) else: raise ValueError("Method '{}' not supported.".format(method)) with open(filename, "w+") as f: for hline in self.output_file_header: f.write("# {:s}\n".format(hline)) if method == "twoFmax": f.write("MaxtwoF = {}\n".format(max_twoF)) f.write("tref = {}\n".format(self.tref)) if hasattr(self, "theta0_index"): f.write("theta0_index = {}\n".format(self.theta0_idx)) if method in ["median", "mean"]: for key, stat_d in summary_stats.items(): f.write( "{} = {:1.16e}\n".format( key, stat_d[method], ) ) elif method == "twoFmax": for key, val in max_twoF_d.items(): f.write("{} = {:1.16e}\n".format(key, val)) def generate_loudest(self): """Use lalapps_ComputeFstatistic_v2 to produce a .loudest file""" max_params, max_twoF = self.get_max_twoF() for key in self.theta_prior: if key not in max_params: max_params[key] = self.theta_prior[key] max_params = self.translate_keys_to_lal(max_params) for key in ["transient-t0Epoch", "transient-t0Offset", "transient-tau"]: if key in max_params and not int(max_params[key]) == max_params[key]: rounded = int(round(max_params[key])) logging.warning( "Rounding {:s}={:f} to {:d} for CFSv2 call.".format( key, max_params[key], rounded ) ) max_params[key] = rounded signal_parameter_keys = list( self.translate_keys_to_lal(self.theta_prior).keys() ) par_keys = list(max_params.keys()) pardiff = np.setdiff1d(par_keys, signal_parameter_keys) if len(pardiff) > 0: raise RuntimeError( f"Dictionary for parameters at max2F point {par_keys}" " did include keys" # " (other than refTime)" " not expected from signal parameters being searched over:" f" {pardiff} not in {signal_parameter_keys}." ) self.loudest_file = helper_functions.generate_loudest_file( max_params=max_params, tref=self.tref, outdir=self.outdir, label=self.label, sftfilepattern=self.sftfilepattern, minStartTime=self.minStartTime, maxStartTime=self.maxStartTime, transientWindowType=getattr(self, "transientWindowType", None), earth_ephem=self.earth_ephem, sun_ephem=self.sun_ephem, ) def write_prior_table(self): """Generate a .tex file of the prior""" with open(os.path.join(self.outdir, self.label + "_prior.tex"), "w") as f: f.write( r"\begin{tabular}{c l c} \hline" + "\n" r"Parameter & & & \\ \hhline{====}" ) for key, prior in self.theta_prior.items(): if type(prior) is dict: Type = prior["type"] if Type == "unif": a = prior["lower"] b = prior["upper"] line = r"{} & $\mathrm{{Unif}}$({}, {}) & {}\\" elif Type == "norm": a = prior["loc"] b = prior["scale"] line = r"{} & $\mathcal{{N}}$({}, {}) & {}\\" elif Type == "halfnorm": a = prior["loc"] b = prior["scale"] line = r"{} & $|\mathcal{{N}}$({}, {})| & {}\\" u = self.unit_dictionary[key] s = self.symbol_dictionary[key] f.write("\n") a = helper_functions.texify_float(a) b = helper_functions.texify_float(b) f.write(" " + line.format(s, a, b, u) + r" \\") f.write("\n\\end{tabular}\n") def print_summary(self): """Prints a summary of the max twoF found to the terminal""" max_twoFd, max_twoF = self.get_max_twoF() summary_stats = self.get_summary_stats() logging.info("Summary:") if hasattr(self, "theta0_idx"): logging.info("theta0 index: {}".format(self.theta0_idx)) logging.info("Max twoF: {} with parameters:".format(max_twoF)) for k in np.sort(list(max_twoFd.keys())): logging.info(" {:10s} = {:1.9e}".format(k, max_twoFd[k])) logging.info("Mean +- std for production values:") for k in np.sort(list(summary_stats.keys())): logging.info( " {:10s} = {:1.9e} +/- {:1.9e}".format( k, summary_stats[k]["mean"], summary_stats[k]["std"] ) ) logging.info("Median and 90% quantiles for production values:") for k in np.sort(list(summary_stats.keys())): logging.info( " {:10s} = {:1.9e} - {:1.9e} + {:1.9e}".format( k, summary_stats[k]["median"], summary_stats[k]["median"] - summary_stats[k]["lower90"], summary_stats[k]["upper90"] - summary_stats[k]["median"], ) ) logging.info("\n") def _CF_twoFmax(self, theta, twoFmax, ntrials): Fmax = twoFmax / 2.0 return ( np.exp(1j * theta * twoFmax) * ntrials / 2.0 * Fmax * np.exp(-Fmax) * (1 - (1 + Fmax) * np.exp(-Fmax)) ** (ntrials - 1) ) def _pdf_twoFhat(self, twoFhat, nglitch, ntrials, twoFmax=100, dtwoF=0.1): if np.ndim(ntrials) == 0: ntrials = np.zeros(nglitch + 1) + ntrials twoFmax_int = np.arange(0, twoFmax, dtwoF) theta_int = np.arange(-1 / dtwoF, 1.0 / dtwoF, 1.0 / twoFmax) CF_twoFmax_theta = np.array( [ [ np.trapz(self._CF_twoFmax(t, twoFmax_int, ntrial), twoFmax_int) for t in theta_int ] for ntrial in ntrials ] ) CF_twoFhat_theta = np.prod(CF_twoFmax_theta, axis=0) pdf = (1 / (2 * np.pi)) * np.array( [ np.trapz( np.exp(-1j * theta_int * twoFhat_val) * CF_twoFhat_theta, theta_int ) for twoFhat_val in twoFhat ] ) return pdf.real def _p_val_twoFhat(self, twoFhat, ntrials, twoFhatmax=500, Npoints=1000): """Caluculate the p-value for the given twoFhat in Gaussian noise Parameters ---------- twoFhat: float The observed twoFhat value ntrials: int, array of len Nglitch+1 The number of trials for each glitch+1 """ twoFhats = np.linspace(twoFhat, twoFhatmax, Npoints) pdf = self._pdf_twoFhat(twoFhats, self.nglitch, ntrials) return np.trapz(pdf, twoFhats) def get_p_value(self, delta_F0=0, time_trials=0): """Gets the p-value for the maximum twoFhat value assuming Gaussian noise Parameters ---------- delta_F0: float Frequency variation due to a glitch. time_trials: int, optional Number of trials in each glitch + 1. """ d, max_twoF = self.get_max_twoF() if self.nglitch == 1: tglitches = [d["tglitch"]] else: tglitches = [d["tglitch_{}".format(i)] for i in range(self.nglitch)] tboundaries = [self.minStartTime] + tglitches + [self.maxStartTime] deltaTs = np.diff(tboundaries) ntrials = [time_trials + delta_F0 * dT for dT in deltaTs] p_val = self._p_val_twoFhat(max_twoF, ntrials) logging.info("p-value = {}".format(p_val)) return p_val def compute_evidence(self, make_plots=False, write_to_file=None): """Computes the evidence/marginal likelihood for the model. Parameters ---------- make_plots: bool Plot the results and save them to os.path.join(self.outdir, self.label + "_beta_lnl.png") write_to_file: str If given, dump evidence and uncertainty estimation to the specified path. Returns ------- log10evidence: float Estimation of the log10 evidence. log10evidence_err: float Log10 uncertainty of the evidence estimation. """ betas = self.betas mean_lnlikes = np.mean(np.mean(self.all_lnlikelihood, axis=1), axis=1) mean_lnlikes = mean_lnlikes[::-1] betas = betas[::-1] if any(np.isinf(mean_lnlikes)): logging.warning( "mean_lnlikes contains inf: recalculating without" " the {} infs".format(len(betas[np.isinf(mean_lnlikes)])) ) idxs = np.isinf(mean_lnlikes) mean_lnlikes = mean_lnlikes[~idxs] betas = betas[~idxs] log10evidence = np.trapz(mean_lnlikes, betas) /
np.log(10)
numpy.log
import numpy as np def majority_voting(masks, voting='hard', weights=None, threshold=0.5): """Soft Voting/Majority Rule mask merging; Signature based upon the Scikit-learn VotingClassifier (https://github.com/scikit-learn/scikit-learn/blob/2beed55847ee70d363bdbfe14ee4401438fba057/sklearn/ensemble/_voting.py#L141) Parameters ---------- masks : segmentations masks to merge, ndarray Expected shape is num_of_masks * 1 * h * w Accepts masks in range 0-1 (i.e apply sigmoid before passing to this function) voting : {'hard', 'soft'}, default='hard' If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like of shape (n_classifiers,), default=None Sequence of weights (`float` or `int`) to weight the occurrences of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. threshold : for separating between the positive and negative class, default=0.5 Applied first in case of hard voting and applied last in case of soft voting """ assert len(masks.shape) == 4 if voting not in ('soft', 'hard'): raise ValueError(f"Voting must be 'soft' or 'hard'; got (voting= {voting})") for m in masks: assert (m >= 0.).all() and (m <= 1.).all() if voting == 'hard': masks = (masks >= threshold).astype(np.float32) if weights is None: weights = np.array([1] * masks.shape[0]) else: weights = np.array(weights) # Broadcasting starts with the trailing (i.e. rightmost) dimensions and works its way left, therefore we move the "mask" dimension to the right masks= np.transpose(masks, (1, 2, 3, 0)) masks = masks * weights masks= np.transpose(masks, (3, 0, 1, 2)) masks = masks.sum(axis=0) if voting == 'soft': masks = (masks >= (threshold * weights.sum())).astype(np.float32) elif voting == 'hard': # Same as doing a majority vote masks = (masks > (0.5 * weights.sum())).astype(np.float32) assert len(masks.shape) == 3 return masks.astype(np.float32) def test_majority_voting(): m1 = np.zeros((1,2,2)) m2 = np.ones((1,2,2)) m3 = np.array([[[0.4, 0.4], [0.4, 0.4]]]) m4 = np.array([[[0.6, 0.6], [0.6, 0.6]]]) m5 = np.array([[[0.7, 0.7], [0.2, 0.1]]]) m6 = np.array([[[0.55, 0.1], [0.2, 0.6]]]) masks = np.stack([m1, m2], axis=0) assert (majority_voting(masks, voting='hard') == np.array([[[0., 0.], [0., 0.]]])).all() # since threshold is > masks = np.stack([m1, m2], axis=0) assert (majority_voting(masks, weights=[2,1]) == np.array([[[0., 0.], [0., 0.]]])).all() masks = np.stack([m1, m2, m3], axis=0) assert (majority_voting(masks) == np.array([[[0., 0.], [0., 0.]]])).all() masks = np.stack([m3, m4], axis=0) assert (majority_voting(masks, weights=[2,1]) == np.array([[[0., 0.], [0., 0.]]])).all() assert (majority_voting(masks, weights=[1,2]) == np.array([[[1., 1.], [1., 1.]]])).all() masks = np.stack([m1, m2, m3, m4, m5], axis=0) assert (majority_voting(masks) == np.array([[[1., 1.], [0., 0.]]])).all() masks =
np.stack([m4, m5, m6], axis=0)
numpy.stack
# -*- coding: utf-8 -*- # MegEngine is Licensed under the Apache License, Version 2.0 (the "License") # # Copyright (c) 2014-2021 Megvii Inc. All rights reserved. # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. import itertools import platform from functools import partial import numpy as np import pytest from utils import opr_test import megengine.amp as amp import megengine.config as config import megengine.core.ops.builtin as builtin import megengine.core.tensor.dtype as dtype import megengine.functional as F import megengine.jit as jit from megengine import Parameter, Tensor, is_cuda_available, tensor from megengine.core._trace_option import use_symbolic_shape from megengine.core.autodiff.grad import Grad from megengine.core.tensor.utils import make_shape_tuple from megengine.device import get_device_count from megengine.module import LayerNorm def test_where(): maskv0 = np.array([[1, 0], [0, 1]], dtype=np.bool_) xv0 = np.array([[1, np.inf], [np.nan, 4]], dtype=np.float32) yv0 = np.array([[5, 6], [7, 8]], dtype=np.float32) maskv1 = np.array([[1, 0, 1], [1, 0, 0], [1, 1, 0]], dtype=np.bool_) xv1 = np.array([[1, np.inf, 2], [0, np.nan, 4], [1, 5, 7]], dtype=np.float32) yv1 = np.array([[5, 6, 9], [2, 7, 8], [2, 1, 9]], dtype=np.float32) cases = [ {"input": [maskv0, xv0, yv0]}, {"input": [maskv1, xv1, yv1]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=False) maskv2 = np.array([1, 1, 1], dtype=np.bool_) xv2 = np.array([1, 3, 2], dtype=np.float32) yv2 = np.array([5, 6, 9], dtype=np.float32) maskv3 = np.array([0, 0, 0], dtype=np.bool_) xv3 = np.array([1, 3, 2], dtype=np.float32) yv3 = np.array([5, 6, 9], dtype=np.float32) cases = [ {"input": [maskv2, xv2, yv2]}, {"input": [maskv3, xv3, yv3]}, ] opr_test(cases, F.where, ref_fn=np.where, test_trace=False) def test_dropout(): from megengine.autodiff import GradManager from megengine.core._imperative_rt.ops import set_global_rng_seed def test_dropout_with_shape(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out = F.nn.dropout(data, rate, training=True) gm.backward(out, tensor(np.ones(shape, dtype=np.float32))) assert not out.numpy().all() np.testing.assert_allclose(out.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_multiple_dropout(shape, rate): data = tensor(np.ones(shape, dtype=np.float32)) gm = GradManager().attach([data]) with gm: out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(out1, rate, training=True) out3 = F.nn.dropout(out2, rate, training=True) gm.backward(out3, tensor(np.ones(shape, dtype=np.float32))) np.testing.assert_allclose(out3.numpy(), data.grad.numpy(), 1e-7, 1e-7) def test_dropout_seed(shape, rate): data = tensor(np.random.randn(*shape), dtype="float32") set_global_rng_seed(111) out1 = F.nn.dropout(data, rate, training=True) out2 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out2.numpy()).all() set_global_rng_seed(111) out3 = F.nn.dropout(data, rate, training=True) assert (out1.numpy() == out3.numpy()).all() set_global_rng_seed(222) out4 = F.nn.dropout(data, rate, training=True) assert not (out1.numpy() == out4.numpy()).all() test_dropout_with_shape([13, 17, 63, 21], 0.4) test_dropout_with_shape([16, 32, 64], 0.3) test_multiple_dropout([1024], 0.2) test_dropout_seed([16, 32], 0.2) def test_matinv(): shape1 = (5, 5) shape2 = (3, 9, 9) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") # make matrix diagonally dominant for numerical stability data1 += (np.eye(shape1[0]) * shape1[0]).astype("float32") data2 += np.broadcast_to((np.eye(shape2[1]) * shape2[1]).astype("float32"), shape2) cases = [ {"input": data1}, {"input": data2}, ] opr_test( cases, F.matinv, compare_fn=lambda x, y: np.testing.assert_allclose(x.numpy(), y, rtol=1e-4), ref_fn=np.linalg.inv, ) def test_matmul(): shape1 = 3 shape2 = 3 shape3 = (3, 5) shape4 = (5, 6) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) batch_size = 10 shape1 = (2,) shape2 = (batch_size, 2, 3) shape3 = (batch_size, 3, 4) shape4 = (batch_size, 10, 4, 2) shape5 = (batch_size, 10, 2, 4) data1 = np.random.random(shape1).astype("float32") data2 = np.random.random(shape2).astype("float32") data3 = np.random.random(shape3).astype("float32") data4 = np.random.random(shape4).astype("float32") data5 = np.random.random(shape5).astype("float32") cases = [ {"input": [data1, data2]}, {"input": [data2, data3]}, {"input": [data3, data4]}, {"input": [data4, data5]}, ] opr_test(cases, F.matmul, ref_fn=np.matmul) opr_test( [{"input": [data1, data4]}], F.matmul, ref_fn=lambda x, y: np.matmul(x, y.transpose(0, 1, 3, 2)), transpose_b=True, ) opr_test( [{"input": [data3, data2]}], F.matmul, ref_fn=lambda x, y: np.matmul(x.transpose(0, 2, 1), y.transpose(0, 2, 1)), transpose_a=True, transpose_b=True, ) @pytest.mark.parametrize( "shape_a, shape_b", [((0,), (0,)), ((10, 0), (0, 10)), ((3, 10, 0), (3, 0, 10)),], ) @pytest.mark.parametrize("is_symbolic", [None, True, False]) def test_matmul_empty_tensor(shape_a, shape_b, is_symbolic): def func(a, b): return F.matmul(a, b) if is_symbolic is not None: func = jit.trace(symbolic=is_symbolic)(func) a = tensor(np.random.randn(*shape_a)) b = tensor(np.random.randn(*shape_b)) for _ in range(3): out = func(a, b) assert np.all(out.numpy() == 0) if is_symbolic is None: break def test_interpolate(): def linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) out = F.vision.interpolate(inp, scale_factor=2.0, mode="linear") out2 = F.vision.interpolate(inp, 4, mode="linear") np.testing.assert_allclose( out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) ) np.testing.assert_allclose( out2.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) ) def many_batch_interpolate(): inp = tensor(np.arange(1, 9, dtype=np.float32).reshape(2, 1, 2, 2)) out = F.vision.interpolate(inp, [4, 4]) out2 = F.vision.interpolate(inp, scale_factor=2.0) np.testing.assert_allclose(out.numpy(), out2.numpy()) def assign_corner_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) out = F.vision.interpolate(inp, [4, 4], align_corners=True) out2 = F.vision.interpolate(inp, scale_factor=2.0, align_corners=True) np.testing.assert_allclose(out.numpy(), out2.numpy()) def error_shape_linear_interpolate(): inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) with pytest.raises(ValueError): F.vision.interpolate(inp, scale_factor=2.0, mode="linear") def inappropriate_scale_linear_interpolate(): inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) with pytest.raises(ValueError): F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear") linear_interpolate() many_batch_interpolate() assign_corner_interpolate() error_shape_linear_interpolate() inappropriate_scale_linear_interpolate() def _save_to(self, name="grad"): def callback(grad): setattr(self, name, grad) return callback def _gen_roi_inp(): inp_feat = np.random.randn(2, 32, 256, 256) rois = np.zeros((4, 5)) rois[:, 0] = [0, 0, 1, 1] rois[:, 1:3] = np.random.rand(4, 2) * 100 rois[:, 3:] = np.random.rand(4, 2) * 100 + 150 inp_feat = tensor(inp_feat) rois = tensor(rois) return inp_feat, rois def test_roi_align(): inp_feat, rois = _gen_roi_inp() grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) output_shape = (7, 7) out_feat = F.vision.roi_align( inp_feat, rois, output_shape=output_shape, mode="average", spatial_scale=1.0 / 4, sample_points=2, aligned=True, ) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape) def _gen_correlation(random=True, constant=1, image_shape=(2, 1, 160, 160)): if random: inp_feat1 = np.random.randn( image_shape[0], image_shape[1], image_shape[2], image_shape[3] ) inp_feat2 = np.random.randn( image_shape[0], image_shape[1], image_shape[2], image_shape[3] ) else: inp_feat1 = np.ones(image_shape) * constant inp_feat2 = np.ones(image_shape) * constant return tensor(inp_feat1), tensor(inp_feat2) def test_correlation(): ##test case 0 check the grad shape data1, data2 = _gen_correlation() grad = Grad().wrt(data1, callback=_save_to(data1)) out_feat = F.vision.correlation( data1, data2, kernel_size=5, max_displacement=4, stride1=2, stride2=2, pad_size=2, is_multiply=True, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(data1.grad.shape) == make_shape_tuple(data1.shape) ##test case 1 from https://github.com/NVIDIA/flownet2-pytorch/issues/194 data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=True, ) assert abs(out_feat.sum() - 1) < 1e-9 ##test case 2 check same image subduction data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=False, ) assert out_feat.sum() < 1e-9 ##test case 3 check same image subduction data1, data2 = _gen_correlation(random=False, image_shape=(1, 1, 3, 3)) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=0, stride1=1, stride2=1, pad_size=0, is_multiply=False, ) assert out_feat.sum() < 1e-9 ##test case 4 check correlation data1, _ = _gen_correlation( random=False, image_shape=(1, 1, 220, 220), constant=2.0 ) _, data2 = _gen_correlation( random=False, image_shape=(1, 1, 220, 220), constant=1.0 ) out_feat = F.vision.correlation( data1, data2, kernel_size=3, max_displacement=2, stride1=1, stride2=2, pad_size=0, is_multiply=False, ) assert abs(out_feat.mean() - 1) < 1e-9 def test_roi_pooling(): inp_feat, rois = _gen_roi_inp() grad = Grad().wrt(inp_feat, callback=_save_to(inp_feat)) output_shape = (7, 7) out_feat = F.vision.roi_pooling( inp_feat, rois, output_shape=output_shape, mode="max", scale=1.0 / 4, ) assert make_shape_tuple(out_feat.shape) == ( rois.shape[0], inp_feat.shape[1], *output_shape, ) grad(out_feat, tensor(F.ones_like(out_feat))) assert make_shape_tuple(inp_feat.grad.shape) == make_shape_tuple(inp_feat.shape) def test_adaptive_avg_pool2d(): inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4)) oshp = (2, 2) grad = Grad().wrt(inp, callback=_save_to(inp)) outp = F.adaptive_avg_pool2d(inp, oshp,) assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,) np.testing.assert_equal( outp.numpy(), np.array([[[[2.5, 4.5], [10.5, 12.5]]]], dtype=np.float32) ) grad(outp, tensor(F.ones_like(outp))) assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape) np.testing.assert_equal( inp.grad.numpy(), np.array( [ [ [ [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], [0.25, 0.25, 0.25, 0.25], ] ] ], dtype=np.float32, ), ) def test_adaptive_max_pool2d(): inp = tensor(np.arange(0, 16, dtype=np.float32).reshape(1, 1, 4, 4)) oshp = (2, 2) grad = Grad().wrt(inp, callback=_save_to(inp)) outp = F.adaptive_max_pool2d(inp, oshp,) assert make_shape_tuple(outp.shape) == (inp.shape[0], inp.shape[1], *oshp,) np.testing.assert_equal( outp.numpy(), np.array([[[[5, 7], [13, 15]]]], dtype=np.float32) ) grad(outp, tensor(F.ones_like(outp))) assert make_shape_tuple(inp.grad.shape) == make_shape_tuple(inp.shape) np.testing.assert_equal( inp.grad.numpy(), np.array( [ [ [ [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], [0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 1.0], ] ] ], dtype=np.float32, ), ) def test_one_hot(): def onehot_low_dimension(): inp = tensor(np.arange(1, 4, dtype=np.int32)) out = F.one_hot(inp, num_classes=4) np.testing.assert_allclose( out.numpy(), np.eye(4, dtype=np.int32)[np.arange(1, 4, dtype=np.int32)] ) def onehot_high_dimension(): arr = np.array( [[3, 2, 4, 4, 2, 4, 0, 4, 4, 1], [4, 1, 1, 3, 2, 2, 4, 2, 4, 3]], dtype=np.int32, ) inp = tensor(arr) out = F.one_hot(inp, 10) np.testing.assert_allclose(out.numpy(), np.eye(10, dtype=np.int32)[arr]) onehot_low_dimension() onehot_high_dimension() def test_interpolate_fastpath(): # check shape test_cases = [ [(1, 1, 10, 10), (5, 5)], [(1, 3, 10, 10), (20, 20)], [(10, 1, 10, 10), (1, 1)], # [(10, 10, 1, 1), (10, 10)], # FIXME, it causes random CI failure ] for inp_shape, target_shape in test_cases: x = tensor(np.random.randn(*inp_shape), dtype=np.float32) out = F.vision.interpolate(x, target_shape, mode="bilinear") assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] # check value x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) out = F.vision.interpolate(x, (15, 5), mode="bilinear") np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) np_x = np.arange(32) x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) out = F.vision.interpolate(x, (1, 1), mode="bilinear") np.testing.assert_equal(out.item(), np_x.mean()) @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) def test_warp_perspective(dt): inp_shape = (1, 1, 4, 4) x = tensor(np.arange(16, dtype=dt).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) outp = F.vision.warp_perspective(x, M, (2, 2)) np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt)) @pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) def test_warp_perspective_mat_idx(dt): inp_shape = (2, 1, 4, 4) x = tensor(np.arange(32, dtype=dt).reshape(inp_shape)) M_shape = (1, 3, 3) # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) M = tensor( np.array( [[1.0, 0.0, 1.0], [0.0, 1.0, 1.0], [0.0, 0.0, 1.0]], dtype=np.float32 ).reshape(M_shape) ) M = F.concat([M,] * 4, 0) outp = F.vision.warp_perspective(x, M, (2, 2), mat_idx=[0, 1, 1, 0]) np.testing.assert_equal( outp.numpy(), np.array( [ [[[5, 6], [9, 10]]], [[[21, 22], [25, 26]]], [[[21, 22], [25, 26]]], [[[5, 6], [9, 10]]], ], dtype=dt, ), ) def test_warp_affine(): inp_shape = (1, 3, 3, 3) x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap") res = np.array( [ [ [[7.875, 8.875, 9.875], [8.90625, 9.90625, 10.90625]], [[18.75, 19.75, 20.75], [14.90625, 15.90625, 16.90625]], ] ], dtype=np.float32, ) if not is_cuda_available(): np.testing.assert_almost_equal(outp.numpy(), res, 5) def test_remap(): inp_shape = (1, 1, 4, 4) inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) map_xy_shape = (1, 2, 2, 2) map_xy = tensor( np.array( [[[1.0, 0.0], [0.0, 1.0]], [[0.0, 1.0], [0.0, 1.0]]], dtype=np.float32 ).reshape(map_xy_shape) ) outp = F.vision.remap(inp, map_xy) np.testing.assert_equal( outp.numpy(),
np.array([[[[1.0, 4.0], [4.0, 4.0]]]], dtype=np.float32)
numpy.array
import numpy as np import cv2 import os from os import listdir from os.path import isfile, join import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.callbacks import EarlyStopping, Callback as TfCallback marked_path = r'C:\Users\ASUS\PycharmProjects\AI_Image\sso_image\scnu-sso-captcha-master\src\dataset\codes\small_mark/' files = [f for f in listdir(marked_path)] np.random.shuffle(files) def cv_im_process(img, flatten=False, normalize=False): img = cv2.resize(img, (100, 75), interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 转换为灰度图 # 二值化 im2 = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 15, 15) # 去除噪点,尤其是椒盐噪点 im3 = cv2.medianBlur(im2, 3) # 线降噪 h, w = im3.shape[:2] for y in range(1, w - 1): for x in range(1, h - 1): count = 0 if np.all(im3[x, y - 1] > 245): count = count + 1 if np.all(im3[x, y + 1] > 245): count = count + 1 if np.all(im3[x - 1, y] > 245): count = count + 1 if np.all(im3[x + 1, y] > 245): count = count + 1 if count > 2: im3[x, y] = 255 im3 = im3 if flatten: im3 = im3.flatten() if normalize: im3 = im3 / 255 return im3 idict = '0123456789abcdefghijklmnopqrstuvwxyz' def text2vec(code): # ont-hot编码 code = code.lower() print(code) t = np.zeros((len(code), 36), np.float) for i in range(t.shape[0]): t[i][idict.index(code[i])] = 1 return t def vec2text(t): idx =
np.argmax(t, axis=1)
numpy.argmax
# Methods related to statistical analysis of simulation output files import numpy as np import pandas as pd import numba as nb import warnings from . import datautil from . import util class Seismograph: """Finds the avalanches and corresponding sizes and durations in a signal. Parameters ---------- t : np.ndarray Time v : np.ndarray Signal to be watched for avalanches vt : float Threshold value; events are found when the signal crosses this threshold s : np.ndarray Signal to be integrated during an avalanche to get avalanche sizes; by default, this is v-vt. But it can also be different, e.g., a domain wall avalanche can be thresholded on the velocity, but can be integrated to get the avalanche sizes in terms of Axy and Az. If this parameter is applied, no threshold is subtracted from s before it is integrated. """ def __init__(self, t, v, vt, s=None): self.t = t self.v = v self.vt = vt self.s = s if s is not None else v - vt if t.shape != v.shape != s.shape: warnings.warn(f't, v, and s must be the same shape. (t, v, s): ({len(t)}, {len(v)}, {len(s)})') self.sizes = np.zeros(0) self.durations = np.zeros(0) return self.istart, self.istop = _events(v, vt) # self.istart, self.istop = _remove_length1_events(*_events(v, vt)) self.tstart, self.tstop = self.t[self.istart], self.t[self.istop] self.durations = self.tstop - self.tstart self.sizes = _event_sizes(self.t, self.s, self.istart, self.istop) return def _remove_length1_events(istart, istop): longer_than_1 = istop - istart > 1 return istart[longer_than_1], istop[longer_than_1] def _start_indices(v, vt): """Find the starting indices of each event in the signal. Parameters ---------- v : np.ndarray Signal to be searched for avalanches vt : float Threshold value; events are found when the signal crosses this threshold Returns ------- np.ndarray The starting indices of each event """ return np.nonzero(np.logical_and(v[1:] > vt, v[:-1] <= vt))[0]+1 def _end_indices(v, vt): """Find the stopping indices of each event in the signal. Parameters ---------- v : np.ndarray Signal to be searched for avalanches vt : float Threshold value; events are found when the signal crosses this threshold Returns ------- np.ndarray The ending indices of each event """ return np.nonzero(np.logical_and(v[1:] <= vt, v[:-1] > vt))[0]+1 def _events(v, vt): """Return the starting and stopping indices of each event in the signal. The returned arrays have same size. The first event is always ignored. If v[-1] > vt, the last event is considered to end at v[-1], unless v[-2] < vt, in which case the last event is dropped to avoid issues with finding the event size. Parameters ---------- v : np.ndarray Signal to be searched for avalanches vt : float Threshold value; events are found when the signal crosses this threshold Returns ------- (np.ndarray, np.ndarray) Pair of arrays: first array contains the starting indices of each event, the second array contains the ending indices of each event """ i_start = _start_indices(v, vt) i_stop = _end_indices(v, vt) if i_start[0] > i_stop[0]: i_stop = i_stop[1:] if i_start[-1] > i_stop[-1]: i_start = i_start[:-1] if i_start.shape != i_stop.shape: raise ValueError('Starting and stopping indices of avalanches do not have same number of elements.') return i_start, i_stop def _event_sizes(t, s, i_start, i_stop): """Compute the size of each avalanche in the signal. The size of an avalanche is the integral of the signal over the time the signal is above the threshold. This integration is done using rectangles, with dt[i] = (t[i+1]-t[i-1])/2 except at the edges, where the forward (for t[0]) or backward (for t[-1]) differences are taken. Parameters ---------- t : np.ndarray Time s : np.ndarray Signal to be integrated i_start : np.ndarray Array of starting indices of the events i_stop : np.ndarray Array of ending indices of the events Returns ------- np.ndarray Size of each event """ # Calculate the central difference, and use forward and backward differences for the edge to preserve length dt = np.hstack((np.array([t[1] - t[0]]), (t[2:]-t[:-2])*0.5, np.array([t[-1]-t[-2]]))) ret = np.empty(i_start.shape[0]) for i in range(len(i_start)): ret[i] = np.sum(s[i_start[i]:i_stop[i]]*dt[i_start[i]:i_stop[i]], axis=0) return ret def bin_avg_event_shape(data, duration=None, tol=None, drange=None, nbins=None, norm=True, normy=False): """Get the binned-average event shapes from the data. Each event has a time array (t) and signal array (s). If tol is specified and range is None, events of duration d which fall within duration - tol < d < duration + tol are collected. If drange is specified, events of duration d which fall within drange[0] < d < drange[1] are collected. The time arrays are then normalized to the interval [0, 1]. The time-axis is then divided into nbins number of time bins, and the value of s in each bin is averaged across all events. Parameters ---------- data : datautil.SimRun or datautil.Simdata Data to analyze duration : float Set the duration of the bins to average. If None, drange is used. tol : float or None Sets the tolerance determining which events to include in the average. If None, drange is used. drange : (float, float) or None Sets the range determining which events to include in the average. If None, tol is used. nbins : int Number of bins to divide the time axis into. If nbins==None, uses the smallest number of bins possible; see docstring for bin_avg() norm : bool Set to True to normalize the time to the interval [0, 1] Returns ------- 4-tuple of np.ndarray (event times, event signals, binned-normalized time, binned-average signal) """ if drange is None and tol is not None and duration is not None: t, s = data.events_by_duration(duration-tol, duration+tol) elif tol is None and duration is None and drange is not None: t, s = data.events_by_duration(drange[0], drange[1]) else: raise ValueError('Must specify either a range or tolerance for bin_avg_event_shape()') t = normalize_t(t) tbin, sbin = bin_avg(t, s, nbins=nbins, norm=norm, normy=normy) return t, s, tbin, sbin def bin_avg(t, s, nbins=None, norm=True, normy=False): """Bin and average the input signals. The times of each event are normalized from 0 to 1 if norm=True. Parameters ---------- t : list or np.ndarray Can be 1. A list of np.ndarrays, each containing a set of times (usually corresponding to measurements durng an avalanche) 2. A 1D np.ndarray containing times s : list or np.ndarray Values of the signal measured at times t. Must be same shape as t. nbins : int or None Number of bins to use. If None, then the number of bins is set equal to the length of the smallest event array. norm : bool Scale the t-axis to [0, 1]. Returns ------- t_bin : np.ndarray Binned timesteps s_bin : np.ndarray Average value of the signal at each timestep """ if norm: t = normalize_t(t) if isinstance(t, list): f_t = np.hstack(t).flatten() else: f_t = t.flatten() if isinstance(s, list): f_s = np.hstack(s).flatten() else: f_s = s.flatten() if nbins is None: nbins = np.min([len(_t) for _t in t]) t_bin = np.linspace(np.min(f_t), np.max(f_t), nbins+1) # Array of bin edges s_bin = np.zeros(t_bin.shape) else: t_bin = np.linspace(np.min(f_t), np.max(f_t), nbins+1) s_bin = np.zeros(nbins+1) for i in range(nbins): in_bin_i = np.nonzero(np.logical_and(t_bin[i] <= f_t, f_t < t_bin[i+1])) s_bin[i] = np.mean(f_s[in_bin_i]) # in_last_bin = np.nonzero(np.logical_and(t_bin[-2] <= f_t, f_t <= t_bin[-1])) # s_bin[-1] = np.mean(f_s[in_last_bin]) if normy == 'max': return t_bin, (s_bin - np.min(s_bin))/(np.max(s_bin)-np.min(s_bin)) elif normy == 'area': return t_bin, (s_bin)/np.trapz(s_bin, t_bin) else: return t_bin, s_bin def normalize_t(t): """For a list of arrays, normalize each array to fall between 0 and 1. Parameters ---------- t : list of np.ndarray Returns ------- list of np.ndarray """ return [(_t - np.min(_t))/(np.max(_t)-np.min(_t)) for _t in t] def event_hists(data, bins, key='vdw'): """Get event histograms. The event sizes and durations are log-distributed; the absolute value of the abscissa is taken before the log binning. Parameters ---------- data : datautil.SimRun or datautil.SimData Data from which to generate histograms bins : int Number of bins in which the data should be binned Returns ------- tuple of np.ndarray size_bins, size_hist, time_bins, time_hist """ if isinstance(data, datautil.SimRun) or isinstance(data, datautil.SimData): size_bins, size_hist = loghist(data.get_avalanche_sizes(key=key), bins) time_bins, time_hist = loghist(data.get_avalanche_durations(), bins) return size_bins, size_hist, time_bins, time_hist else: raise NotImplementedError def loghist(_data, bins): """Generate bins and a histogram, properly normalized by bin size and number of samples, using log spaced bins. The absolute value of the data is taken before being binned. Parameters ---------- data : np.ndarray Data from which to generate histograms bins : int Number of bins in which the data should be binned Returns ------- tuple of np.ndarray bins, hist """ data = np.abs(_data) logbins = np.logspace(np.log10(np.min(data)), np.log10(np.max(data)), bins) # density=True apparently makes this a PDF by dividing by the bin width and sample size hist, _ = np.histogram(data, bins=logbins, density=True) # Normalize the distributions; the number of occurences in each bin is divided by the bin width and the sample size # hist = hist/(np.diff(logbins)*len(data)) # Validate the histograms util.validate_pdf(logbins, hist) return logbins, hist def avg_event_size(data, bins=40, key='vdw'): sizes = data.get_avalanche_sizes(key=key) times = data.get_avalanche_durations() log_time_bins = np.logspace(np.log10(np.min(times)), np.log10(np.max(times)), bins+1) # Bin edges avg_size = np.ones(bins) for i in range(bins): avg_size[i] = np.mean(sizes[np.logical_and(times > log_time_bins[i], times < log_time_bins[i+1])]) return log_time_bins, avg_size @nb.jit(nopython=True) def loghist2d(datax, datay, nbinsx, nbinsy): datax = np.abs(datax) datay = np.abs(datay) # These define the bin edges. binsx = 10**np.linspace(np.log10(np.min(datax)), np.log10(np.max(datax)), nbinsx+1) binsy = 10**np.linspace(np.log10(np.min(datay)), np.log10(np.max(datay)), nbinsy+1) hist = np.zeros((nbinsx, nbinsy)) bin_areas = np.outer((binsx[1:] - binsx[:-1]), (binsy[1:] - binsy[:-1])) for i in range(datax.size): # Find the correct bin to increment _iy = np.nonzero(datay[i] >= binsy[:-1])[0] _ix = np.nonzero(datax[i] >= binsx[:-1])[0] iy = -1 ix = -1 if _iy.size > 0: iy = _iy[-1] if _ix.size > 0: ix = _ix[-1] # Increment hist[iy, ix] += 1 hist = hist/(bin_areas*datax.size) return hist, binsx, binsy def joint_pdf_bin_areas(binsx, binsy): """Given a 1D set of bin edges along x and y, compute the 2D set of bin areas formed by the grid. Parameters ---------- binsx : np.ndarray 1D array of bin edges binsy : np.ndarray 1D array of bin edges along y Returns ------- np.ndarray 2D array of bin areas for the given bin sizes """ xbsize = binsx[1:] - binsx[:-1] ybsize = binsy[1:] - binsy[:-1] return np.outer(xbsize, ybsize) # def joint_pdf_bin_centers(binsx, binsy): def bin_centers(*bins): """Compute the centers of bins given the bin edges. Parameters ---------- bins : np.ndarray bin edges Returns ------- np.ndarray bin centers. This array is 1 element shorter than the inputs. """ # return (binsx[1:] + binsx[:-1])*0.5, (binsy[1:] + binsy[:-1])*0.5 return [(b[1:] + b[:-1])*0.5 for b in bins] def joint_pdf_mean_y(pdf, binsx, binsy): """From a joint PDF, calculate the mean along the y-direction for each x-bin. Parameters ---------- pdf : np.ndarray Array of shape (binsy.size - 1, binsx.size - 1). This is the probability density function binsx : np.ndarray Array of bin edges along the x direction binsy : np.ndarray Array of bin edges along the y direction Returns ------- np.ndarray The mean along the y-direction for each x-bin; should be of shape (binsx.size - 2). """ # Get the bin centers # bincx, bincy = joint_pdf_bin_centers(binsx, binsy) bincx, bincy = bin_centers(binsx, binsy) # Get the frequency distribution from the probability density by multiplying by bin areas freq = pdf*joint_pdf_bin_areas(binsx, binsy) # Find the frequency distribution along each column, effectively finding conditional probabilities P(X=x0, Y) col_freq = freq/np.outer(np.ones(bincy.size), np.sum(freq, axis=0)) # Find the average y-value for each column col_mean = np.sum(col_freq*np.outer(bincy, np.ones(bincx.size)), axis=0) return col_mean def extent(binsx, binsy): """Get the extent of the 2D histogram generated from binsx and binsy. Parameters ---------- binsx : np.ndarray Bin edges along x binsy : np.ndarray Bin edges along y Returns ------- np.ndarray Array of [xmin, xmax, ymin, ymax] """ return np.array([binsx.min(), binsx.max(), binsy.min(), binsy.max()]) def lognan(pdf): """Compute the log10 of the input PDF. This function gets around errors associated with taking the log of a histogram which has one or more bins with 0 events by masking those bins with np.nan values before taking the log. Parameters ---------- pdf : np.ndarray Input probability distribution function Returns ------- np.ndarray Returns log10(pdf), except if there are any bins where the pdf == 0, those bins now have np.nan values. """ _pdf = pdf.copy() _pdf[pdf <= 0] = np.nan return
np.log10(_pdf)
numpy.log10
#!/usr/bin/env ipython import gpxpy import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from geopy.distance import vincenty def gps_distance_elevation(fname): segment = gpxpy.parse(open(fname + '.gpx', 'r')).tracks[0].segments[0] elevation = [] loc = [] for p in segment.points: elevation.append(p.elevation) lat, lon = p.latitude, p.longitude loc.append((lat, lon)) distance = np.array([0] + [vincenty(loc[i], loc[i-1]).meters for i in range(len(loc)-1)]).cumsum() plt.plot(distance, elevation, label=fname) plt.savefig(fname + '.png') plt.clf() return distance, elevation def downsample_mountain(fname, length=30): """ Downsample trace to specified length """ distance, elevation = gps_distance_elevation(fname) d = np.linspace(distance[0], distance[-1], length) e = np.interp(d, distance, elevation) plt.plot(d, e, label=fname) plt.savefig(fname + '_downsampled.png') plt.clf() assert len(d) == length assert len(e) == length return d, e def get_mts(): d_m, e_m = downsample_mountain('tour-mont-blanc-anti-clockwise') d_c, e_c = downsample_mountain('carrauntoohil') # scale both e_m -= np.mean(e_m) e_m /= np.max(e_m) e_c -= np.mean(e_c) e_c /= np.max(e_c) # combine samples =
np.array([e_m, e_c])
numpy.array
#!/usr/bin/env python """ Convert a svg file into 2D triangle mesh. """ import argparse import logging import pymesh import numpy as np from numpy.linalg import norm import os.path from subprocess import check_call from time import time def parse_args(): parser = argparse.ArgumentParser(__doc__); parser.add_argument("--engine", help="Triangulation engine", choices=( "triangle_conforming_delaunay", "triangle_constrained_delaunay", "cgal_constrained_delaunay", "cgal_conforming_delaunay", "geogram_delaunay", "jigsaw_frontal_delaunay", "mmg_delaunay", "triwild"), default="triangle_conforming_delaunay"); parser.add_argument("--resolve-self-intersection", "-r", action="store_true"); parser.add_argument("--with-frame", '-f', action="store_true"); parser.add_argument("--with-cell-label", "-l", action="store_true"); parser.add_argument("--with-cleanup", "-c", action="store_true"); parser.add_argument("--with-triangulation", "-t", action="store_true"); parser.add_argument("--stage", type=int, default=1); parser.add_argument("--epsilon", type=float, default=1e-3); parser.add_argument("--log", type=str, help="Logging level", choices=["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"], default="INFO"); parser.add_argument("--with-features", '-F', action="store_true", help="TriWild specific option to preserve features"); parser.add_argument("input_svg"); parser.add_argument("output_mesh"); return parser.parse_args(); def get_logger(level): numeric_level = getattr(logging, level, None); if not isinstance(numeric_level, int): raise ValueError('Invalid log level: {}'.format(level)); logging.basicConfig(level=numeric_level); return logging.getLogger("PyMesh.Triangulation"); def drop_zero_dim(wires): # Trim zero dimension. if wires.dim == 3: vertices = wires.vertices; assert(np.all(vertices[:,2] == 0)); vertices = vertices[:, [0,1]]; wires.load(vertices, wires.edges); return wires; def cleanup(wires, logger): if wires.num_vertices == 0: return wires; start_time = time(); tol = 1e-6; vertices, edges, __ = pymesh.remove_duplicated_vertices_raw( wires.vertices, wires.edges, tol); # Remove duplicated edges. ordered_edges = np.sort(edges, axis=1); __, unique_edge_ids, __ = pymesh.unique_rows(ordered_edges); edges = edges[unique_edge_ids, :]; wires.load(vertices, edges); # Remove topologically degenerate edges. is_not_topologically_degenerate = edges[:,0] != edges[:,1]; if not
np.all(is_not_topologically_degenerate)
numpy.all
""" Classes for generating pseudo-random surfaces based on description of FFT: =========================================================================== =========================================================================== Each class inherits functionality from the Surface but changes the __init__ and discretise functions =========================================================================== =========================================================================== DiscFreqSurface: Generate a surface containing only specific frequency components ProbFreqSurface: Generate a surface containing normally distributed amplitudes with a specified function for the variance of the distribution based on the frequency DiscFreqSurface: Generate a surface containing frequency components with amplitude specified by a function of the frequency =========================================================================== =========================================================================== """ import typing from numbers import Number import numpy as np from .Surface_class import _AnalyticalSurface, Surface __all__ = ["DiscFreqSurface", "ProbFreqSurface", "HurstFractalSurface"] class DiscFreqSurface(_AnalyticalSurface): r""" Surfaces with discrete frequency components This surface produces a profile with frequency components which are constant in th y direction, these can be rotated and combined by addition or subtraction to give any combination of frequencies. Parameters ---------- frequencies: Sequence[float] The frequencies present in the surface amplitudes: Sequence[float], optional ((1, )) The amplitude of each frequency, must be same length as frequencies phases: typing.Sequence[float] = (0,) The phases of each of the frequencies, must be the same length as frequencies rotation: Number = 0 If set the surface is rotated by the set amount, in radians shift: tuple, optional (None) If set the origin of the surface is shifted by the set amount in the x and y directions, should be a two element tuple of float. By default, the surface is shifted so that the origin becomes the centre of the surface. To stop this behaviour specify a shift of (0, 0) generate: bool, optional (False) If True the surface profile is generated on instantiation, else it can be generated by the discretise method. If True two of the: grid_spacing, extent or shape must also be set grid_spacing: float, optional (None) The grid spacing of the surface profile extent: tuple, optional (None) The overall dimensions of the surface in the same units as the grid spacing, should be a two element tuple of float shape: tuple = None The number of points in each direction of the surface array, should be a two element tuple of integers See Also -------- ProbFreqSurface HurstFractalSurface Notes ----- Roughness functions are aliased from the functions provided in the surface module Examples -------- >>> mySurf=DiscFreqSurface(10, 0.1) >>> mySurf.extent=[0.5,0.5] >>> mySurf.discretise(0.001) """ is_discrete = False surface_type = 'discreteFreq' def __init__(self, frequencies: typing.Sequence[float], amplitudes: typing.Sequence[float] = (1,), phases: typing.Sequence[float] = (0,), rotation: Number = 0, shift: typing.Optional[tuple] = None, generate: bool = False, grid_spacing: float = None, extent: tuple = None, shape: tuple = None): if type(frequencies) is list or type(frequencies) is np.ndarray: self.frequencies = frequencies else: raise ValueError('Frequencies, amplitudes and phases must be equal' 'length lists or np.arrays') is_complex = [type(amp) is complex for amp in amplitudes] if any(is_complex): if not len(frequencies) == len(amplitudes): raise ValueError('Frequencies, amplitudes and phases must be' ' equal length lists or np.arrays') else: self.amplitudes = amplitudes else: if not len(frequencies) == len(amplitudes) == len(phases): raise ValueError('Frequencies, amplitudes and phases must be' ' equal length lists or np.arrays') else: cplx_amps = [] for idx in range(len(amplitudes)): cplx_amps.append(amplitudes[idx] * np.exp(1j * phases[idx])) self.amplitudes = cplx_amps super().__init__(generate=generate, rotation=rotation, shift=shift, grid_spacing=grid_spacing, extent=extent, shape=shape) def _height(self, x_mesh, y_mesh): profile = np.zeros_like(x_mesh) for idx in range(len(self.frequencies)): profile += np.real(self.amplitudes[idx] * np.exp(-1j * self.frequencies[idx] * x_mesh * 2 * np.pi)) return profile def __repr__(self): string = self._repr_helper() return f'DiscFreqSurface({self.frequencies}, {self.amplitudes}{string})' class ProbFreqSurface(_AnalyticalSurface): """ ProbFreqSurface(H, qr, qs) Generates a surface with all possible frequencies in the fft represented with amplitudes described by the probability distribution given as input. Defaults to the parameters used in the contact mechanics challenge This class only works for square 2D domains For more information the definitions of the input parameters refer to XXXXXX contact mechanics challenge paper """ is_discrete = False surface_type = 'Random' def __init__(self, h=2, qr=0.05, qs=10, generate: bool = False, grid_spacing: float = None, extent: tuple = None, shape: tuple = None): self.h = h self.qs = qs self.qr = qr super().__init__(grid_spacing=grid_spacing, extent=extent, shape=shape, generate=generate) def rotate(self, radians: Number): raise NotImplementedError("Probabilistic frequency surface cannot be rotated") def shift(self, shift: tuple = None): if shift is None: return raise NotImplementedError("Probabilistic frequency surface cannot be shifted") def _height(self, x_mesh, y_mesh): grid_spacing, extent, shape = check_coords_are_simple(x_mesh, y_mesh) qny = np.pi / grid_spacing u = np.linspace(0, qny, shape[0]) u_mesh, v_mesh = np.meshgrid(u, u) freqs = np.abs(u_mesh + v_mesh) varience = np.zeros(freqs.shape) varience[np.logical_and((1 / freqs) > (1 / self.qr), (2 * np.pi / freqs) <= (extent[0]))] = 1 varience[np.logical_and((1 / freqs) >= (1 / self.qs), (1 / freqs) < (1 / self.qr))] = \ (freqs[np.logical_and(1 / freqs >= 1 / self.qs, 1 / freqs < 1 / self.qr)] / self.qr) ** (-2 * (1 + self.h)) fou_trans = np.reshape(np.array([np.random.normal() * var ** 0.5 for var in varience.flatten()]), freqs.shape) return np.real(np.fft.ifft2(fou_trans)) def __repr__(self): string = self._repr_helper() return f'ProbFreqSurface(h={self.h}, qr={self.qr}, qs={self.qs}{string})' class HurstFractalSurface(Surface): r"""Hurst fractal surfaces Parameters ---------- sigma: float The RSM roughness of the surface hurst_exponent: float The hurst exponent, must be between 0 and 1, related to the fractal dimension by D = 3-H roll_off_frequency: float, optional (0.0) generate: bool, optional (False) If true the surface profile is generated on instantiation, two of: grid_spacing, extent or shape must be set grid_spacing: float, optional (None) The grid spacing of the surface profile extent: tuple, optional (None) The overall surface dimensions in the x and y directions shape: tuple, optional (None) The number of grid points in the x and y directions, computation is faster for powers of 2 See Also -------- ProbFreqSurface RandomSurface surface_like Notes ----- generates a hurst fractal surface with frequency components from q0 to cut off frequency in even steps of q0. amplitudes are given by: q0 amplitude\*\*2 \*((h\*\*2+k\*\*2)/2)\*\*(1-Hurst parameter) where h,k = \-N...N where N=cut off frequency/ q0 phases are randomly generated on construction of the surface object, repeated calls to the discretise function will discretise on the same surface but repeated calls to this class will generate different realisations References ---------- A new efficient numerical method for contact mechanics of rough surfaces <NAME> <NAME> Examples -------- >>> #create the surface object with the specified fractal parameters >>> my_surface=HurstFractalSurface(1,0.2,1000, shape=(128, 128), grid_spacing=0.01) >>> #descrtise the surface over a grid 1 unit by 1 unit with a grid_spacing of 0.01 >>> my_surface.discretise() >>> my_surface.show() """ is_discrete = False surface_type = "hurstFractal" def __init__(self, sigma: float, hurst_exponent: float, roll_off_frequency: float = 0, generate: bool = False, grid_spacing: float = None, extent: tuple = None, shape: tuple = None): self.input_params = (sigma, hurst_exponent, roll_off_frequency) if hurst_exponent > 1 or hurst_exponent < 0: raise ValueError('Hurst exponent must be between 0 and 1') self._hurst_exponent = hurst_exponent self._sigma = sigma self._roll_off_frequency = roll_off_frequency super().__init__(grid_spacing=grid_spacing, extent=extent, shape=shape) if generate: self.discretise() def discretise(self, return_new: bool = False): """Generate a new profile realisation, return a new surface if needed Parameters ---------- return_new: bool If True a new surface instance is returned, else the profile property of the current surface is set Returns ------- out: Surface A new surface object with the profile set, will have the same shape and grid spacing as the current object only returned if return_new is True Notes ----- As a side effect this will set the FFT and PSD properties of the discretised surface. Copyright (c) 2016, <NAME> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution * Neither the name of Aalto University nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. References ---------- Code ported from the matlab version: https://uk.mathworks.com/matlabcentral/fileexchange/60817-surface-generator-artificial-randomly-rough-surfaces?s_tid=mwa_osa_a """ if self.profile is not None and not return_new: raise ValueError('Profile is already set, set the return_new argument to true to return a new surface ' 'instance with the same fractal properties') if self.shape is None or self.grid_spacing is None: raise ValueError('Grid spacing and shape of the surface must be set before a hurst fractal can be ' 'generated') m, n = [s + s % 2 for s in self.shape] grid_spacing = self.grid_spacing hurst_exponent = self._hurst_exponent sigma = self._sigma qr = self._roll_off_frequency lx, ly = [n_pts * grid_spacing for n_pts in [m, n]] # make the wave vectors qx = np.array([2 * np.pi / m * k for k in range(m)]) qx = np.unwrap((np.fft.fftshift(qx)) - 2 * np.pi) / grid_spacing qy = np.array([2 * np.pi / n * k for k in range(n)]) qy = np.unwrap((
np.fft.fftshift(qy)
numpy.fft.fftshift
import numpy as np import matplotlib.pyplot as plt def plot_xy(x, y, ax=None): if ax == None: ax = plt.gca() ax.scatter(x, y) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_title("Training data") ax.grid(True) def plot_abline(slope, intercept, xmin, xmax, ax=None): if ax == None: ax = plt.gca() ax.plot([xmin, xmax], [xmin*slope + intercept, xmax*slope + intercept], linewidth=3, color='red') class SimpleOnlineLinearRegressor: ## keep track of sufficient statistics def __init__(self): self.N = 0 self.x_sum = 0 self.y_sum = 0 self.x_squared_sum = 0 self.y_squared_sum = 0 self.xy_sum = 0 self.w0 = 0 self.w1 = 0 self.sigma2 = 0 def predict(self, X): return self.w0 + self.w1*X def fit(self, X, y): cov = np.cov(X,y,bias=True) self.N = len(y) self.w1 = cov[0,1]/cov[0,0] self.w0 =
np.mean(y)
numpy.mean
# Standard lib import unittest # 3rd party import numpy as np # Our own imports from deep_hipsc_tracking import tracking from .. import helpers # Data T1 = np.array([ [1.0, 2.0, 3.0, 4.0, 5.0], [1.0, 2.0, 3.0, 4.0, 5.0], ]).T T2 = np.array([ [1.1, 2.1, 3.1, 4.1], [1.1, 2.1, 3.1, 4.1], ]).T T3 = np.array([ [1.2, 2.2, 3.2, 4.2, 5.2], [1.2, 2.2, 3.2, 4.2, 5.2], ]).T T4 = np.array([ [1.3, 3.3, 4.3, 5.3], [1.3, 3.3, 4.3, 5.3], ]).T T5 = np.array([ [1.4, 2.4, 3.4, 5.4], [1.4, 2.4, 3.4, 5.4], ]).T TRACKS = [ (1, None, T1), (2, None, T2), (3, None, T3), (4, None, T4), (5, None, T5), ] # Tests class TestFindFlatRegions(unittest.TestCase): def test_finds_flat_region_all_flat(self): tt = np.linspace(0, 100, 100) yy = tt * 2 res = tracking.find_flat_regions(tt, yy, interp_points=10, cutoff=10, noise_points=5) exp = [np.ones((100, ), dtype=np.bool)] msg = 'Got {} rois expected {}'.format(len(res), len(exp)) self.assertEqual(len(res), len(exp), msg) for r, e in zip(res, exp): np.testing.assert_almost_equal(r, e) def test_finds_flat_region_all_spikey(self): tt = np.linspace(0, 100, 100) yy = np.array([-100, 0, 100] * 50) res = tracking.find_flat_regions(tt, yy, interp_points=5, cutoff=1, noise_points=1) exp = [] msg = 'Got {} rois expected {}'.format(len(res), len(exp)) self.assertEqual(len(res), len(exp), msg) for r, e in zip(res, exp): np.testing.assert_almost_equal(r, e) def test_finds_flat_region_square_waves(self): tt = np.linspace(0, 100, 100) yy = np.array(([-100] * 10 + [100] * 10)*5) res = tracking.find_flat_regions(tt, yy, interp_points=5, cutoff=1, noise_points=1) exp = [] for i in range(0, 100, 10): mask = np.zeros((100, ), dtype=np.bool) if i == 0: mask[i:i+8] = 1 elif i == 90: mask[i+2:i+10] = 1 else: mask[i+2:i+8] = 1 exp.append(mask) msg = 'Got {} rois expected {}'.format(len(res), len(exp)) self.assertEqual(len(res), len(exp), msg) for r, e in zip(res, exp): np.testing.assert_almost_equal(r, e) class TestRollingFuncs(unittest.TestCase): def test_rolling_rolling_window(self): xp = np.array([1, 2, 3, 4, 5]) exp = np.array([2, 3, 4]) res = np.mean(tracking.rolling_window(xp, window=3), axis=-1) np.testing.assert_almost_equal(res, exp) exp = np.array([1.5, 2.5, 3.5, 4.5]) res = np.mean(tracking.rolling_window(xp, window=2), axis=-1) np.testing.assert_almost_equal(res, exp) exp = np.array([1.3333, 2, 3, 4, 4.6666]) res = np.mean(tracking.rolling_window(xp, window=3, pad='same'), axis=-1) np.testing.assert_almost_equal(res, exp, decimal=3) def test_interpolate_window(self): xp = np.array([1, 2, 3, 4, 5]) yp = np.array([5, 4, 3, 2, 1]) x = np.array([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 5.5]) y = np.array([5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2, 1, 0.5]) res = tracking.rolling_interp(x, xp, yp, 3) np.testing.assert_almost_equal(y, res) def test_slope_window(self): xp = np.array([1, 2, 3, 4, 5]) yp = np.array([5, 4, 3, 2, 1]) x = np.array([0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 5.5]) a = np.array([-1, -1, -1, -1, -1, -1, -1, -1, -1, -1]) res = tracking.rolling_slope(x, xp, yp, 3) np.testing.assert_almost_equal(a, res) class TestMergePointsCluster(unittest.TestCase): def test_merges_points_with_nans(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, np.nan], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_same_set(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points = tracking.tracking.merge_points_cluster(points1, points1, max_dist=0.1) np.testing.assert_almost_equal(points, points1) def test_merges_both_different(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_left(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_right(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [2.0, 2.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_slight_motion(self): points1 = np.array([ [0.0, 0.2], [1.0, 1.2], [2.0, 2.2], [3.0, 3.2], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [4.0, 4.1], ]) points = tracking.tracking.merge_points_cluster(points1, points2, max_dist=0.2) exp_points = np.array([ [0.0, 0.15], [1.0, 1.15], [2.0, 2.2], [3.0, 3.15], [4.0, 4.1], ]) np.testing.assert_almost_equal(points, exp_points) class TestMergePointsPairwise(unittest.TestCase): def test_merges_same_set(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points1, max_dist=0.1) np.testing.assert_almost_equal(points, points1) def test_merges_both_different(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_left(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [2.0, 2.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_right(self): points1 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [2.0, 2.1], [3.0, 3.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.1) exp_points = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [2.0, 2.1], ]) np.testing.assert_almost_equal(points, exp_points) def test_merges_superset_slight_motion(self): points1 = np.array([ [0.0, 0.2], [1.0, 1.2], [2.0, 2.2], [3.0, 3.2], ]) points2 = np.array([ [0.0, 0.1], [1.0, 1.1], [3.0, 3.1], [4.0, 4.1], ]) points = tracking.tracking.merge_points_pairwise(points1, points2, max_dist=0.2) exp_points = np.array([ [0.0, 0.15], [1.0, 1.15], [3.0, 3.15], [2.0, 2.2], [4.0, 4.1], ]) np.testing.assert_almost_equal(points, exp_points) class TestFindLinkFunctions(unittest.TestCase): def test_finds_all_the_links(self): res = tracking.find_link_functions() exp = {'softassign', 'balltree', 'bipartite_match'} self.assertEqual(set(res.keys()), exp) class TestLinks(unittest.TestCase): def test_to_padded_arrays(self): tt = np.array([3, 5, 7, 9, 11]) xx = np.array([0, 1, 2, 3, 4]) yy = np.array([1, 2, 3, 4, 5]) chain = tracking.Link.from_arrays(tt, xx, yy) nan = np.nan in_tt = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) in_xx = np.array([nan, nan, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, nan]) in_yy = np.array([nan, nan, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, nan]) res_tt, res_xx, res_yy = chain.to_padded_arrays(min_t=1, max_t=13) np.testing.assert_almost_equal(res_tt, in_tt) np.testing.assert_almost_equal(res_xx, in_xx) np.testing.assert_almost_equal(res_yy, in_yy) in_tt = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]) in_xx = np.array([0, 0, 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4]) in_yy = np.array([1, 1, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5]) res_tt, res_xx, res_yy = chain.to_padded_arrays(min_t=1, max_t=13, extrapolate=True) np.testing.assert_almost_equal(res_tt, in_tt) np.testing.assert_almost_equal(res_xx, in_xx) np.testing.assert_almost_equal(res_yy, in_yy) def test_interpolate_chain_regular(self): tt = np.array([3, 5, 7, 9, 11]) xx = np.array([0, 1, 2, 3, 4]) yy = np.array([1, 2, 3, 4, 5]) chain = tracking.Link.from_arrays(tt, xx, yy) self.assertEqual(len(chain), 5) chain.interpolate_points() self.assertEqual(len(chain), 9) tt = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11]) xx = np.array([0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]) yy = np.array([1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) exp_chain = tracking.Link() for t, x, y in zip(tt, xx, yy): exp_chain.add(-1, t, x, y) self.assertEqual(chain, exp_chain) def test_interpolate_chain_irregular(self): tt = np.array([3, 5, 9, 11]) xx = np.array([0, 1, 3, 4]) yy = np.array([1, 2, 4, 5]) chain = tracking.Link.from_arrays(tt, xx, yy) self.assertEqual(len(chain), 4) chain.interpolate_points() self.assertEqual(len(chain), 9) tt = np.array([3, 4, 5, 6, 7, 8, 9, 10, 11]) xx = np.array([0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4]) yy = np.array([1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5]) exp_chain = tracking.Link() for t, x, y in zip(tt, xx, yy): exp_chain.add(-1, t, x, y) self.assertEqual(chain, exp_chain) def test_chain_from_arrays(self): tt = np.array([1, 3, 5, 7, 9]) xx = np.array([0, 1, 2, 3, 4]) yy = np.array([1, 2, 3, 4, 5]) chain = tracking.Link.from_arrays(tt, xx, yy) exp_chain = tracking.Link() for t, x, y in zip(tt, xx, yy): exp_chain.add(-1, t, x, y) self.assertEqual(chain, exp_chain) def test_to_arrays(self): tt = np.array([1, 3, 5, 7, 9]) xx = np.array([0, 1, 2, 3, 4]) yy =
np.array([1, 2, 3, 4, 5])
numpy.array
#!/usr/bin/env python """Module to drive ws2812 from SPI Copyright 2021 <NAME> SPDX Apache License 2.0 """ import logging import math import re import time from ipaddress import IPv4Address, IPv6Address, ip_address from pathlib import Path from threading import BoundedSemaphore, Event, Thread from typing import Any, ClassVar, Dict, List, Optional, Tuple, Union import attr import numpy as np # type: ignore import pendulum from cattr import Converter from pendulum import DateTime from spidev import SpiDev # type: ignore logger = logging.getLogger(__name__) def to_iso8601(datetime: DateTime) -> str: return datetime.to_iso8601_string() IPType = Union[IPv4Address, IPv6Address] converter = Converter() converter.register_unstructure_hook(Path, str) converter.register_structure_hook(Path, lambda pathstr, _: Path(pathstr)) converter.register_unstructure_hook(DateTime, to_iso8601) converter.register_structure_hook(DateTime, lambda isostr, _: pendulum.parse(isostr)) converter.register_unstructure_hook(IPv4Address, str) converter.register_structure_hook(IPv4Address, lambda ipstr, _: ip_address(ipstr)) converter.register_unstructure_hook(IPv6Address, str) converter.register_structure_hook(IPv6Address, lambda ipstr, _: ip_address(ipstr)) converter.register_structure_hook(IPType, lambda ipstr, _: ip_address(ipstr)) np.set_printoptions(formatter={"int": lambda i: f"{i:3}"}) class SPIws2821BusNotFound(Exception): pass @attr.s class SPIws2812Config: spidev: Path = attr.ib() @spidev.validator def _check_spidev(self, attribute, value: Path): if not value.exists(): raise ValueError(f"Path '{value}' does not exist") num_leds: int = attr.ib() @num_leds.validator def _check_num_leds(self, attribute, value: int): if value <= 0: raise ValueError("num_leds must be an integer greater than one") bus: int = attr.ib() @bus.default def _get_bus(self): m = self.bus_cs_pattern.match(str(self.spidev)) if m: return int(m.group(1)) else: raise ValueError( f"Failed to extract bus (first digit) from spidev '{self.spidev}'" ) cs: int = attr.ib() @cs.default def _get_cs(self): m = self.bus_cs_pattern.match(str(self.spidev)) if m: return int(m.group(2)) else: raise ValueError( f"Failed to extract cs (second digit) from spidev '{self.spidev}'" ) bus_cs_pattern: ClassVar[re.Pattern] = re.compile(r"/dev/spidev(\d+).(\d+)") @attr.s class SPIws2812: """Class to drive a string of ws2812 attached to a SPI bus. Notes: The MOSI line idles high. This causes the first LED to be green most of the time as the MSB of the GRB 24 bit code is seen as a "1". Clear it out by appending a bus reset of RESET_BYTES_COUNT of 0b0 bytes on the front of any transmission. This class uses RESET_BYTES_COUNT of 0b0 bytes + 24 bytes for each led, 8 green, 8 red and 8 blue. Using numpy arrays should be fast as SpiDev.writebytes2 consumes them directly without copying. """ spidev: SpiDev = attr.ib() num_leds: int = attr.ib() led_string_ones: np.ndarray = attr.ib() led_string_zeros: np.ndarray = attr.ib() tx_buf_clear: np.ndarray = attr.ib() tx_buf: np.ndarray = attr.ib() tx_thread: "Optional[SimpleTimer]" = attr.ib() tx_thread_stop: Event = attr.ib() tx_array_lock: BoundedSemaphore = attr.ib() fps: int = attr.ib() tx_array: "Optional[np.ndarray]" = attr.ib() LED_ZERO: ClassVar[int] = 0b1100_0000 # ws2812 "0" 0.15385us * 2 "1's" = 0.308us LED_ONE: ClassVar[int] = 0b1111_1100 # ws2812 "1" 0.15385us * 6 "1's" = 0.923us RESET_BYTES_COUNT: ClassVar[int] = 42 # 51.7us of flatline output class SimpleTimer(Thread): """Runs inside and is responsible for animations. It accesses its parent to do things, which is rather suboptimal but made creating it easier. """ def __init__(self, parent: "SPIws2812", *args, **kwargs): Thread.__init__(self, *args, **kwargs) self.parent = parent self.index = 0 def run(self): while not self.parent.tx_thread_stop.wait(1 / self.parent.fps): with self.parent.tx_array_lock: if self.parent.tx_array is not None: rows, _ = self.parent.tx_array.shape if self.index >= rows: self.index = 0 self.parent.write_array(self.parent.tx_array[self.index]) self.index += 1 @classmethod def init_from_dict(cls, config_dict: "Dict[str, Any]") -> "SPIws2812": config = converter.structure(config_dict, SPIws2812Config) return cls.init((config.bus, config.cs), config.num_leds) @classmethod def init(cls, spi_bus_cs: "Tuple[int,int]", num_leds: int) -> "SPIws2812": """Initialize an instance of this class correctly from supplied info. Use instead of SPIws2812() Args: spi_bus_cs: (bus, cs) - from /dev/spidev1.0 the bus is 1, and the cs is 0 so (1, 0) num_leds: The number of leds in the string of ws2812 leds Returns: Fully initialized SPIws2812 class, ready to write """ spi = SpiDev() try: logger.debug("SPI BUS %d CS %s", spi_bus_cs[0], spi_bus_cs[1]) spi.open(spi_bus_cs[0], spi_bus_cs[1]) except OSError as e: logger.error("Failed to open spidev", exc_info=e) raise SPIws2821BusNotFound spi.max_speed_hz = 6_500_000 spi.mode = 0b00 spi.lsbfirst = False tx_unpacked_ones = np.full(num_leds * 24, SPIws2812.LED_ONE, dtype=np.uint8) tx_unpacked_zeros =
np.full(num_leds * 24, SPIws2812.LED_ZERO, dtype=np.uint8)
numpy.full
"""This module/class contains functionality for computing (and plotting) radial velocities and creating reference spectra for extracted fluxes. This should ideally remain independent of the extraction method, such that it does not matter which spectrograph took the data, nor what "Spectrograph" object was used for extraction. Most of the code below has been moved from the script "test_rhea2_extract.py". Work still needs to be done post-refactor to ensure function input and outputs are sensible, their docstrings are informative and they follow the principles of Object Oriented Programming - such as the Single Responsibility Principle (Along with a general clean up of the code and comments, such as having the code meet the python line length guidelines --> the main benefit of which is having multiple editors open side by side on smaller screens) TODO 1) Move extract method to either extract module or rhea 2) Try to separate calculation/processing of data from saving/loading/displaying 3) Tidy up inputs to functions (e.g. cull unnecessary input parameters) 4) Make create_ref_spect() output variances (Median Absolute Deviations) 5) Possibly have dark calibration (for both flats and science frames) in its own method. This would clean up the existing extract method, removing the need to check whether darks and flats had been passed in (or varying permutations of each - e.g. in the case where some of the data has already been dark corrected, such as the solar data) """ from __future__ import division, print_function import numpy as np import matplotlib.pyplot as plt import scipy.optimize as op import scipy.interpolate as interp from astropy.time import Time from astropy.coordinates import SkyCoord from astropy import constants as const import PyAstronomy.pyasl as pyasl import opticstools as ot import pdb try: import pyfits except: import astropy.io.fits as pyfits class RadialVelocity(): """A RadialVelocity object for calculating and plotting RVS and generating reference spectra. Unclear if the object needs to be initialised with any parameters at this stage. Perhaps a file path? """ def __init__(self): """(Presently empty) constructor. """ pass def rv_shift_resid(self, params, wave, spect, spect_sdev, spline_ref, return_spect=False): """Find the residuals to a fit of a (subsampled)reference spectrum to an observed spectrum. The function for parameters p[0] through p[3] is: .. math:: y(x) = Ref[ wave(x) * (1 - p[0]/c) ] * exp(p[1] * x^2 + p[2] * x + p[3]) Here "Ref" is a function f(wave) Parameters ---------- params: array-like wave: float array Wavelengths for the observed spectrum. spect: float array The observed spectra spect_sdev: float array standard deviation of the input spectra. spline_ref: InterpolatedUnivariateSpline instance For interpolating the reference spectrum return_spect: boolean Whether to return the fitted spectrum or the residuals. wave_ref: float array The wavelengths of the reference spectrum ref: float array The reference spectrum Returns ------- resid: float array The fit residuals """ ny = len(spect) xx = (np.arange(ny)-ny//2)/ny norm = np.exp(params[1]*xx**2 + params[2]*xx + params[3]) # Lets get this sign correct. A redshift (positive velocity) means that # a given wavelength for the reference corresponds to a longer # wavelength for the target, which in turn means that the target # wavelength has to be interpolated onto shorter wavelengths for the # reference. fitted_spect = spline_ref(wave*(1.0 - params[0]/const.c.si.value))*norm if return_spect: return fitted_spect else: return (fitted_spect - spect)/spect_sdev def rv_shift_chi2(self, params, wave, spect, spect_sdev, spline_ref): """Find the chi-squared for an RV fit. Just a wrapper for rv_shift_resid, so the docstring is cut and paste! The function for parameters p[0] through p[3] is: .. math:: y(x) = Ref[ wave(x) * (1 - p[0]/c) ] * exp(p[1] * x^2 + p[2] * x + p[3]) Here "Ref" is a function f(wave) Parameters ---------- params: ... wave: float array Wavelengths for the observed spectrum. spect: float array The observed spectrum spect_sdev: ... spline_ref: ... return_spect: boolean Whether to return the fitted spectrum or the wave_ref: float array The wavelengths of the reference spectrum ref: float array The reference spectrum Returns ------- chi2: The fit chi-squared """ return np.sum(self.rv_shift_resid(params, wave, spect, spect_sdev, spline_ref)**2) def rv_shift_jac(self, params, wave, spect, spect_sdev, spline_ref): r"""Explicit Jacobian function for rv_shift_resid. This is not a completely analytic solution, but without it there seems to be numerical instability. The key equations are: .. math:: f(x) = R( \lambda(x) (1 - p_0/c) ) \times \exp(p_1 x^2 + p_2 + p_3) g(x) = (f(x) - d(x))/\sigma(x) \frac{dg}{dp_0}(x) \approx [f(x + 1 m/s) -f(x) ]/\sigma(x) \frac{dg}{dp_1}(x) = x^2 f(x) / \sigma(x) \frac{dg}{dp_2}(x) = x f(x) / \sigma(x) \frac{dg}{dp_3}(x) = f(x) / \sigma(x) Parameters ---------- params: float array wave: float array Wavelengths for the observed spectrum. spect: float array The observed spectrum spect_sdev: ... spline_ref: ... Returns ------- jac: The Jacobian. """ ny = len(spect) xx = (np.arange(ny)-ny//2)/ny norm = np.exp(params[1]*xx**2 + params[2]*xx + params[3]) fitted_spect = spline_ref(wave*(1.0 - params[0]/const.c.si.value))*norm jac = np.empty( (ny,4) ) #The Jacobian is the derivative of fitted_spect/sdev with respect to #p[0] through p[3] jac[:,3] = fitted_spect/spect_sdev jac[:,2] = fitted_spect*xx/spect_sdev jac[:,1] = fitted_spect*xx**2/spect_sdev jac[:,0] = (spline_ref(wave*(1.0 - (params[0] + 1.0)/const.c.si.value))* norm - fitted_spect)/spect_sdev return jac def create_ref_spect(self, wave, fluxes, vars, bcors, rebin_fact=2, gauss_sdev=1.0, med_cut=0.6,gauss_hw=7,threshold=100): """Create a reference spectrum from a series of target spectra. The process is: 1) Re-grid the spectra into a rebin_fact times smaller wavelength grid. 2) The spectra are barycentrically corrected by linear interpolation. Note that when used on a small data set, typically the spectra will be shifted by many km/s. For an RV-stable star, the fitting process then needs to find the opposite of this barycentric velocity. 3) Remove bad (i.e. low flux) files. 4) Median combine the spectra. 5) Convolve the result by a Gaussian to remove high spatial frequency noise. This can be important when the reference spectrum is created from only a small number of input spectra, and high-frequency noise can be effectively fitted to itself. Parameters ---------- wave: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel) fluxes: 3D np.array(float) Fluxes of form (Observation, Order, Flux/pixel) vars: 3D np.array(float) Variance of form (Observation, Order, Variance/pixel) bcors: 1D np.array(float) Barycentric correction for each observation. rebin_fact: int Factor by which to rebin. gauss_sdev: ... med_cut: ... gauss_hw: ... Returns ------- wave_ref: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel*2+2), where the wavelength scale has been interpolated. ref_spect: 2D np.array(float) Reference spectrum of form (Order, Flux/pixel*2+2), where the flux scale has been interpolated. """ nm = fluxes.shape[1] ny = fluxes.shape[2] nf = fluxes.shape[0] C = const.c.si.value #Create arrays for our outputs. wave_ref = np.empty( (nm,rebin_fact*ny + 2) ) ref_spect = np.empty( (nm,rebin_fact*ny + 2) ) #First, rebin everything, using opticstools.utils.regrid_fft new_shape = (fluxes.shape[1],rebin_fact*fluxes.shape[2]) fluxes_rebin = np.empty( (fluxes.shape[0],fluxes.shape[1], rebin_fact*fluxes.shape[2]) ) for i in range(nf): fluxes_rebin[i] = ot.utils.regrid_fft(fluxes[i],new_shape) #Create the final wavelength grid. for j in range(nm): wave_ref[j,1:-1] = np.interp(np.arange(rebin_fact*ny)/rebin_fact, np.arange(ny),wave[j,:]) #Fill in the end wavelengths, including +/-100 km/s from the ends. wave_ref[j,-2] = wave_ref[j,-3] + (wave_ref[j,-3]-wave_ref[j,-4]) wave_ref[j,0] = wave_ref[j,1] * (C + 1e5)/C wave_ref[j,-1] = wave_ref[j,-2] * (C - 1e5)/C #Barycentric correct. For a positive barycentric velocity, the observer is #moving towards the star, which means that star is blue-shifted and the #correct rest-frame spectrum is at longer wavelengths. The interpolation #below shifts the spectrum to the red, as required. for i in range(nf): for j in range(nm): # Awkwardly, we've extended the wavelength scale by 2 elements, # but haven't yet extended the fluxes... ww = wave_ref[j,1:-1] fluxes_rebin[i,j] = np.interp(ww*(1-bcors[i]/C), ww[::-1], fluxes_rebin[i,j,::-1]) #!!! New Code. This was already checked and makes no sense. #Combine the spectra. flux_meds = np.median(fluxes_rebin,axis=2) flux_files = np.median(flux_meds,axis=1) if med_cut > 0: good_files = np.where(flux_files > med_cut*np.median(flux_files))[0] else: good_files = np.arange(len(flux_files),dtype=np.int) flux_orders = np.median(flux_meds[good_files],axis=0) flux_norm = fluxes_rebin.copy() for g in good_files: for j in range(nm): flux_norm[g,j,:] /= flux_meds[g,j] #pdb.set_trace() #Create a median over files flux_ref = np.median(flux_norm[good_files],axis=0) #Multiply this by the median for each order for j in range(nm): flux_ref[j] *= flux_orders[j] #Threshold the data whenever the flux is less than "threshold" if (threshold > 0): bad = flux_ref<2*threshold flux_ref[bad] *= np.maximum(flux_ref[bad]-threshold,0)/threshold # Create a Gaussian smoothing function for the reference spectrum. This # is needed to prevent a bias to zero radial velocity, especially in the # case of few data points. gg = np.exp(-(np.arange(2*gauss_hw+1)-gauss_hw)**2/2.0/gauss_sdev**2) gg /= np.sum(gg) one_order = np.empty(flux_ref.shape[1] + 2*gauss_hw) for j in range(nm): one_order[gauss_hw:-gauss_hw] = flux_ref[j,:] one_order[:gauss_hw] = one_order[gauss_hw] one_order[-gauss_hw:] = one_order[-gauss_hw-1] ref_spect[j,:] = np.convolve(one_order, gg, mode='same')[gauss_hw-1:1-gauss_hw] return wave_ref, ref_spect def extract_spectra(self, files, extractor, star_dark=None, flat_files=None, flat_dark=None, location=('151.2094','-33.865',100.0), coord=None, do_bcor=True, ra_dec_hr=False): """Extract the spectrum from a file, given a dark file, a flat file and a dark for the flat. The process is: 1) Dark correcting the data and the flat fields. 2) Computing (but not applying) Barycentric corrections. 3) Extracting the data and the flat fields using the extract module, to form :math:`f_m(x)`, the flux for orders m and dispersion direction pixels x. 4) Normalising the flat fields, so that the median of each order is 1.0. 5) Dividing by the extracted flat field. Uncertainties from the flat field are added in quadrature. TODO: Not the neatest implementation, but should account for the fact that there are no flats or darks for the ThAr frames. Might be worth tidying up and making the implementation a little more elegant. Parameters ---------- files: list of strings One string for each file. CAn be on separate nights - a full pathname should be given. star_dark: flat_files: list of strings. One string for each star file. CAn be on separate nights - a full pathname should be given. flat_dark: location: (lattitude:string, longitude:string, elevation:string) The location on Earth where the data were taken. coord: astropy.coordinates.sky_coordinate.SkyCoord The coordinates of the observation site do_bcor: boolean Flag for whether to do barycentric correction Returns ------- fluxes: 3D np.array(float) Fluxes of form (Observation, Order, Flux/pixel) vars: 3D np.array(float) Variance of form (Observation, Order, Variance/pixel) bcors: 1D np.array(float) Barycentric correction for each observation. wave: 2D np.array(float) Wavelength coordinate map of form (Order, Wavelength/pixel) mjds: 1D np.array(float) Modified Julian Date (MJD) of each observation. """ # Initialise list of return values # Each index represents a single observation fluxes = [] vars = [] dates = [] bcors = [] #!!! This is dodgy, as files and flat_files should go together in a dict for ix,file in enumerate(files): # Dark correct the science and flat frames # Only if flat/darks have been supplied --> ThAr might not have them # If not supplied, just use science/reference data try: # Dark correct science frames if len(star_dark) > 0: data = pyfits.getdata(file) - star_dark else: data = pyfits.getdata(file) # Dark correct flats if len(flat_files) > 0 and len(flat_dark) > 0: flat = pyfits.getdata(flat_files[ix]) - flat_dark elif len(flat_files) > 0: flat = pyfits.getdata(flat_files[ix]) except: print('Unable to calibrate file ' + file + '. Check that format of data arrays are consistent.') print(pyfits.getdata(file).shape) print(star_dark.shape) continue header = pyfits.getheader(file) date = Time(header['JD'], format='jd', location=location) dates.append(date) # Determine the barycentric correction if do_bcor: if not coord: # Depending on whether the RA and DEC is saved in hours or # degrees, load and create a SkyCoord object if ra_dec_hr: ra_deg = float(header['RA'])*15 else: ra_deg = float(header['RA']) dec_deg = float(header['DEC']) coord = SkyCoord(ra=ra_deg, dec=dec_deg, unit='deg') if not location: location=(float(header['LONG']), float(header['LAT']), float(header['HEIGHT'])) #(obs_long, obs_lat, obs_alt, ra2000, dec2000, jd, debug=False) #pdb.set_trace() bcors.append(1e3*pyasl.helcorr(float(location[0]), float(location[1]),location[2],coord.ra.deg, coord.dec.deg,date.jd)[0] ) else: bcors.append(0.0) # Extract the fluxes and variance for the science and flat frames print("Extracting spectra from file #", str(ix)) flux, var = extractor.one_d_extract(data=data, rnoise=20.0) # Continue only when flats have been supplied # Perform flat field correction and adjust variances if len(flat_files) > 0: flat_flux, fvar = extractor.one_d_extract(data=flat, rnoise=20.0) for j in range(flat_flux.shape[0]): medf =
np.median(flat_flux[j])
numpy.median
""" :mod:`meshes` -- Discretization =============================== Everything related to meshes appropriate for the multigrid solver. """ # Copyright 2018-2020 The emg3d Developers. # # This file is part of emg3d. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import numpy as np from copy import deepcopy from scipy import optimize __all__ = ['TensorMesh', 'get_hx_h0', 'get_cell_numbers', 'get_stretched_h', 'get_domain', 'get_hx'] class TensorMesh: """Rudimentary mesh for multigrid calculation. The tensor-mesh :class:`discretize.TensorMesh` is a powerful tool, including sophisticated mesh-generation possibilities in 1D, 2D, and 3D, plotting routines, and much more. However, in the multigrid solver we have to generate a mesh at each level, many times over and over again, and we only need a very limited set of attributes. This tensor-mesh class provides all required attributes. All attributes here are the same as their counterparts in :class:`discretize.TensorMesh` (both in name and value). .. warning:: This is a slimmed-down version of :class:`discretize.TensorMesh`, meant principally for internal use by the multigrid modeller. It is highly recommended to use :class:`discretize.TensorMesh` to create the input meshes instead of this class. There are no input-checks carried out here, and there is only one accepted input format for `h` and `x0`. Parameters ---------- h : list of three ndarrays Cell widths in [x, y, z] directions. x0 : ndarray of dimension (3, ) Origin (x, y, z). """ def __init__(self, h, x0): """Initialize the mesh.""" self.x0 = x0 # Width of cells. self.hx = h[0] self.hy = h[1] self.hz = h[2] # Cell related properties. self.nCx = int(self.hx.size) self.nCy = int(self.hy.size) self.nCz = int(self.hz.size) self.vnC = np.array([self.hx.size, self.hy.size, self.hz.size]) self.nC = int(self.vnC.prod()) self.vectorCCx = np.r_[0, self.hx[:-1].cumsum()]+self.hx*0.5+self.x0[0] self.vectorCCy = np.r_[0, self.hy[:-1].cumsum()]+self.hy*0.5+self.x0[1] self.vectorCCz = np.r_[0, self.hz[:-1].cumsum()]+self.hz*0.5+self.x0[2] # Node related properties. self.nNx = self.nCx + 1 self.nNy = self.nCy + 1 self.nNz = self.nCz + 1 self.vnN = np.array([self.nNx, self.nNy, self.nNz], dtype=int) self.nN = int(self.vnN.prod()) self.vectorNx = np.r_[0., self.hx.cumsum()] + self.x0[0] self.vectorNy = np.r_[0., self.hy.cumsum()] + self.x0[1] self.vectorNz = np.r_[0., self.hz.cumsum()] + self.x0[2] # Edge related properties. self.vnEx = np.array([self.nCx, self.nNy, self.nNz], dtype=int) self.vnEy = np.array([self.nNx, self.nCy, self.nNz], dtype=int) self.vnEz = np.array([self.nNx, self.nNy, self.nCz], dtype=int) self.nEx = int(self.vnEx.prod()) self.nEy = int(self.vnEy.prod()) self.nEz = int(self.vnEz.prod()) self.vnE = np.array([self.nEx, self.nEy, self.nEz], dtype=int) self.nE = int(self.vnE.sum()) def __repr__(self): """Simple representation.""" return (f"TensorMesh: {self.nCx} x {self.nCy} x {self.nCz} " f"({self.nC:,})") def copy(self): """Return a copy of the TensorMesh.""" return TensorMesh.from_dict(self.to_dict(True)) def to_dict(self, copy=False): """Store the necessary information of the TensorMesh in a dict.""" out = {'hx': self.hx, 'hy': self.hy, 'hz': self.hz, 'x0': self.x0, '__class__': self.__class__.__name__} if copy: return deepcopy(out) else: return out @classmethod def from_dict(cls, inp): """Convert dictionary into :class:`TensorMesh` instance. Parameters ---------- inp : dict Dictionary as obtained from :func:`TensorMesh.to_dict`. The dictionary needs the keys `hx`, `hy`, `hz`, and `x0`. Returns ------- obj : :class:`TensorMesh` instance """ try: return cls(h=[inp['hx'], inp['hy'], inp['hz']], x0=inp['x0']) except KeyError as e: print(f"* ERROR :: Variable {e} missing in `inp`.") raise @property def vol(self): """Construct cell volumes of the 3D model as 1D array.""" if getattr(self, '_vol', None) is None: self._vol = (self.hx[None, None, :]*self.hy[None, :, None] * self.hz[:, None, None]).ravel() return self._vol def get_hx_h0(freq, res, domain, fixed=0., possible_nx=None, min_width=None, pps=3, alpha=None, max_domain=100000., raise_error=True, verb=1, return_info=False): r"""Return cell widths and origin for given parameters. Returns cell widths for the provided frequency, resistivity, domain extent, and other parameters using a flexible amount of cells. See input parameters for more details. A maximum of three hard/fixed boundaries can be provided (one of which is the grid center). The minimum cell width is calculated through :math:`\delta/\rm{pps}`, where the skin depth is given by :math:`\delta = 503.3 \sqrt{\rho/f}`, and the parameter `pps` stands for 'points-per-skindepth'. The minimum cell width can be restricted with the parameter `min_width`. The actual calculation domain adds a buffer zone around the (survey) domain. The thickness of the buffer is six times the skin depth. The field is basically zero after two wavelengths. A wavelength is :math:`2\pi\delta`, hence roughly 6 times the skin depth. Taking a factor 6 gives therefore almost two wavelengths, as the field travels to the boundary and back. The actual buffer thickness can be steered with the `res` parameter. One has to take into account that the air is very resistive, which has to be considered not just in the vertical direction, but also in the horizontal directions, as the airwave will bounce back from the sides otherwise. In the marine case this issue reduces with increasing water depth. See Also -------- get_stretched_h : Get `hx` for a fixed number `nx` and within a fixed domain. Parameters ---------- freq : float Frequency (Hz) to calculate the skin depth. The skin depth is a concept defined in the frequency domain. If a negative frequency is provided, it is assumed that the calculation is carried out in the Laplace domain. To calculate the skin depth, the value of `freq` is then multiplied by :math:`-2\pi`, to simulate the closest frequency-equivalent. res : float or list Resistivity (Ohm m) to calculate the skin depth. The skin depth is used to calculate the minimum cell width and the boundary thicknesses. Up to three resistivities can be provided: - float: Same resistivity for everything; - [min_width, boundaries]; - [min_width, left boundary, right boundary]. domain : list Contains the survey-domain limits [min, max]. The actual calculation domain consists of this domain plus a buffer zone around it, which depends on frequency and resistivity. fixed : list, optional Fixed boundaries, one, two, or maximum three values. The grid is centered around the first value. Hence it is the center location with the smallest cell. Two more fixed boundaries can be added, at most one on each side of the first one. Default is 0. possible_nx : list, optional List of possible numbers of cells. See :func:`get_cell_numbers`. Default is ``get_cell_numbers(500, 5, 3)``, which corresponds to [16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384]. min_width : float, list or None, optional Minimum cell width restriction: - None : No restriction; - float : Fixed to this value, ignoring skin depth and `pps`. - list [min, max] : Lower and upper bounds. Default is None. pps : int, optional Points per skindepth; minimum cell width is calculated via `dmin = skindepth/pps`. Default = 3. alpha : list, optional Maximum alpha and step size to find a good alpha. The first value is the maximum alpha of the survey domain, the second value is the maximum alpha for the buffer zone, and the third value is the step size. Default = [1, 1.5, .01], hence no stretching within the survey domain and a maximum stretching of 1.5 in the buffer zone; step size is 0.01. max_domain : float, optional Maximum calculation domain from fixed[0] (usually source position). Default is 100,000. raise_error : bool, optional If True, an error is raised if no suitable grid is found. Otherwise it just prints a message and returns None's. Default is True. verb : int, optional Verbosity, 0 or 1. Default = 1. return_info : bool If True, a dictionary is returned with some grid info (min and max cell width and alpha). Returns ------- hx : ndarray Cell widths of mesh. x0 : float Origin of the mesh. info : dict Dictionary with mesh info; only if ``return_info=True``. Keys: - `dmin`: Minimum cell width; - `dmax`: Maximum cell width; - `amin`: Minimum alpha; - `amax`: Maximum alpha. """ # Get variables with default lists: if alpha is None: alpha = [1, 1.5, 0.01] if possible_nx is None: possible_nx = get_cell_numbers(500, 5, 3) # Cast resistivity value(s). res = np.array(res, ndmin=1) if res.size == 1: res_arr = np.array([res[0], res[0], res[0]]) elif res.size == 2: res_arr = np.array([res[0], res[1], res[1]]) else: res_arr = np.array([res[0], res[1], res[2]]) # Cast and check fixed. fixed = np.array(fixed, ndmin=1) if fixed.size > 2: # Check length. if fixed.size > 3: print("\n* ERROR :: Maximum three fixed boundaries permitted.\n" f" Provided: {fixed.size}.") raise ValueError("Wrong input for fixed") # Sort second and third, so it doesn't matter how it was provided. fixed = np.array([fixed[0], max(fixed[1:]), min(fixed[1:])]) # Check side. if np.sign(np.diff(fixed[:2])) == np.sign(np.diff(fixed[::2])): print("\n* ERROR :: 2nd and 3rd fixed boundaries have to be " "left and right of the first one.\n " f"Provided: [{fixed[0]}, {fixed[1]}, {fixed[2]}]") raise ValueError("Wrong input for fixed") # Calculate skin depth. skind = 503.3*np.sqrt(res_arr/abs(freq)) if freq < 0: # For Laplace-domain calculations. skind /= np.sqrt(2*np.pi) # Minimum cell width. dmin = skind[0]/pps if min_width is not None: # Respect user input. min_width = np.array(min_width, ndmin=1) if min_width.size == 1: dmin = min_width else: dmin = np.clip(dmin, *min_width) # Survey domain; contains all sources and receivers. domain = np.array(domain, dtype=float) # Calculation domain; big enough to avoid boundary effects. # To avoid boundary effects we want the signal to travel two wavelengths # from the source to the boundary and back to the receiver. # => 2*pi*sd ~ 6.3*sd = one wavelength => signal is ~ 0.2 %. # Two wavelengths we can safely assume it is zero. # # The air does not follow the concept of skin depth, as it is a wave rather # than diffusion. For this is the factor `max_domain`, which restricts # the domain in each direction to this value from the center. # (a) Source to edges of domain. dist_in_domain = abs(domain - fixed[0]) # (b) Two wavelengths. two_lambda = skind[1:]*4*np.pi # (c) Required buffer, additional to domain. dist_buff = np.max([np.zeros(2), (two_lambda - dist_in_domain)/2], axis=0) # (d) Add buffer to domain. calc_domain = np.array([domain[0]-dist_buff[0], domain[1]+dist_buff[1]]) # (e) Restrict total domain to max_domain. calc_domain[0] = max(calc_domain[0], fixed[0]-max_domain) calc_domain[1] = min(calc_domain[1], fixed[0]+max_domain) # Initiate flag if terminated. finished = False # Initiate alpha variables for survey and calculation domains. sa, ca = 1.0, 1.0 # Loop over possible cell numbers from small to big. for nx in np.unique(possible_nx): # Loop over possible alphas for domain. for sa in np.arange(1.0, alpha[0]+alpha[2]/2, alpha[2]): # Get current stretched grid cell sizes. thxl = dmin*sa**np.arange(nx) # Left of origin. thxr = dmin*sa**np.arange(nx) # Right of origin. # 0. Adjust stretching for fixed boundaries. if fixed.size > 1: # Move mesh to first fixed boundary. t_nx = np.r_[fixed[0], fixed[0]+np.cumsum(thxr)] ii = np.argmin(abs(t_nx-fixed[1])) thxr *= abs(fixed[1]-fixed[0])/np.sum(thxr[:ii]) if fixed.size > 2: # Move mesh to second fixed boundary. t_nx = np.r_[fixed[0], fixed[0]-np.cumsum(thxl)] ii = np.argmin(abs(t_nx-fixed[2])) thxl *= abs(fixed[2]-fixed[0])/np.sum(thxl[:ii]) # 1. Fill from center to left domain. nl = np.sum((fixed[0]-np.cumsum(thxl)) > domain[0])+1 # 2. Fill from center to right domain. nr = np.sum((fixed[0]+np.cumsum(thxr)) < domain[1])+1 # 3. Get remaining number of cells and check termination criteria. nsdc = nl+nr # Number of domain cells. nx_remain = nx-nsdc # Not good, try next. if nx_remain <= 0: continue # Create the current hx-array. hx = np.r_[thxl[:nl][::-1], thxr[:nr]] hxo = np.r_[thxl[:nl][::-1], thxr[:nr]] # Get actual domain: asurv_domain = [fixed[0]-np.sum(thxl[:nl]), fixed[0]+np.sum(thxr[:nr])] x0 = float(fixed[0]-np.sum(thxl[:nl])) # Get actual stretching (differs in case of fixed layers). sa_adj = np.max([hx[1:]/hx[:-1], hx[:-1]/hx[1:]]) # Loop over possible alphas for calc_domain. for ca in np.arange(sa, alpha[1]+alpha[2]/2, alpha[2]): # 4. Fill to left calc_domain. thxl = hx[0]*ca**np.arange(1, nx_remain+1) nl = np.sum((asurv_domain[0]-np.cumsum(thxl)) > calc_domain[0])+1 # 5. Fill to right calc_domain. thxr = hx[-1]*ca**np.arange(1, nx_remain+1) nr = np.sum((asurv_domain[1]+np.cumsum(thxr)) < calc_domain[1])+1 # 6. Get remaining number of cells and check termination # criteria. ncdc = nl+nr # Number of calc_domain cells. nx_remain2 = nx-nsdc-ncdc if nx_remain2 < 0: # Not good, try next. continue # Create hx-array. nl += int(np.floor(nx_remain2/2)) # If uneven, add one cell nr += int(np.ceil(nx_remain2/2)) # more on the right. hx = np.r_[thxl[:nl][::-1], hx, thxr[:nr]] # Calculate origin. x0 = float(asurv_domain[0]-np.sum(thxl[:nl])) # Mark it as finished and break out of the loop. finished = True break if finished: break if finished: break # Check finished and print info about found grid. if not finished: # Throw message if no solution was found. print("\n* ERROR :: No suitable grid found; relax your criteria.\n") if raise_error: raise ArithmeticError("No grid found!") else: hx, x0 = None, None elif verb > 0: print(f" Skin depth ", end="") if res.size == 1: print(f" [m] : {skind[0]:.0f}") elif res.size == 2: print(f"(m/l-r) [m] : {skind[0]:.0f} / {skind[1]:.0f}") else: print(f"(m/l/r) [m] : {skind[0]:.0f} / {skind[1]:.0f} / " f"{skind[2]:.0f}") print(f" Survey domain [m] : {domain[0]:.0f} - " f"{domain[1]:.0f}") print(f" Calculation domain [m] : {calc_domain[0]:.0f} - " f"{calc_domain[1]:.0f}") print(f" Final extent [m] : {x0:.0f} - " f"{x0+np.sum(hx):.0f}") extstr = f" Min/max cell width [m] : {min(hx):.0f} / " alstr = f" Alpha survey" nrstr = " Number of cells " if not np.isclose(sa, sa_adj): sastr = f"{sa:.3f} ({sa_adj:.3f})" else: sastr = f"{sa:.3f}" print(extstr+f"{max(hxo):.0f} / {max(hx):.0f}") print(alstr+f"/calc : {sastr} / {ca:.3f}") print(nrstr+f"(s/c/r) : {nx} ({nsdc}/{ncdc}/{nx_remain2})") print() if return_info: if not fixed.size > 1: sa_adj = sa info = {'dmin': dmin, 'dmax': np.nanmax(hx), 'amin': np.nanmin([ca, sa, sa_adj]), 'amax': np.nanmax([ca, sa, sa_adj])} return hx, x0, info else: return hx, x0 def get_cell_numbers(max_nr, max_prime=5, min_div=3): r"""Returns 'good' cell numbers for the multigrid method. 'Good' cell numbers are numbers which can be divided by 2 as many times as possible. At the end there will be a low prime number. The function adds all numbers :math:`p 2^n \leq M` for :math:`p={2, 3, ..., p_\text{max}}` and :math:`n={n_\text{min}, n_\text{min}+1, ..., \infty}`; :math:`M, p_\text{max}, n_\text{min}` correspond to `max_nr`, `max_prime`, and `min_div`, respectively. Parameters ---------- max_nr : int Maximum number of cells. max_prime : int Highest permitted prime number p for p*2^n. {2, 3, 5, 7} are good upper limits in order to avoid too big lowest grids in the multigrid method. Default is 5. min_div : int Minimum times the number can be divided by two. Default is 3. Returns ------- numbers : array Array containing all possible cell numbers from lowest to highest. """ # Primes till 20. primes = np.array([2, 3, 5, 7, 11, 13, 17, 19]) # Sanity check; 19 is already ridiculously high. if max_prime > primes[-1]: print(f"* ERROR :: Highest prime is {max_prime}, " "please use a value < 20.") raise ValueError("Highest prime too high") # Restrict to max_prime. primes = primes[primes <= max_prime] # Get possible values. # Currently restricted to prime*2**30 (for prime=2 => 1,073,741,824 cells). numbers = primes[:, None]*2**np.arange(min_div, 30) # Get unique values. numbers = np.unique(numbers) # Restrict to max_nr and return. return numbers[numbers <= max_nr] def get_stretched_h(min_width, domain, nx, x0=0, x1=None, resp_domain=False): """Return cell widths for a stretched grid within the domain. Returns `nx` cell widths within `domain`, where the minimum cell width is `min_width`. The cells are not stretched within `x0` and `x1`, and outside uses a power-law stretching. The actual stretching factor and the number of cells left and right of `x0` and `x1` are find in a minimization process. The domain is not completely respected. The starting point of the domain is, but the endpoint of the domain might slightly shift (this is more likely the case for small `nx`, for big `nx` the shift should be small). The new endpoint can be obtained with ``domain[0]+np.sum(hx)``. If you want the domain to be respected absolutely, set ``resp_domain=True``. However, be aware that this will introduce one stretch-factor which is different from the other stretch factors, to accommodate the restriction. This one-off factor is between the left- and right-side of `x0`, or, if `x1` is provided, just after `x1`. See Also -------- get_hx_x0 : Get `hx` and `x0` for a flexible number of `nx` with given bounds. Parameters ---------- min_width : float Minimum cell width. If x1 is provided, the actual minimum cell width might be smaller than min_width. domain : list [start, end] of model domain. nx : int Number of cells. x0 : float Center of the grid. `x0` is restricted to `domain`. Default is 0. x1 : float If provided, then no stretching is applied between `x0` and `x1`. The non-stretched part starts at `x0` and stops at the first possible location at or after `x1`. `x1` is restricted to `domain`. This will min_width so that an integer number of cells fit within x0 and x1. resp_domain : bool If False (default), then the domain-end might shift slightly to assure that the same stretching factor is applied throughout. If set to True, however, the domain is respected absolutely. This will introduce one stretch-factor which is different from the other stretch factors, to accommodate the restriction. This one-off factor is between the left- and right-side of `x0`, or, if `x1` is provided, just after `x1`. Returns ------- hx : ndarray Cell widths of mesh. """ # Cast to arrays domain = np.array(domain, dtype=float) x0 = np.array(x0, dtype=float) x0 = np.clip(x0, *domain) # Restrict to model domain min_width =
np.array(min_width, dtype=float)
numpy.array
#!/usr/bin/env python import numpy from idl_functions import hist_equal from idl_functions import bytscl def data_convert(scalar, dtype): """ Converts an input scalar to a given data type. :param scalar: An integer or floating point scalar, eg 6.6, 4. :param dtype: A string representing the desired data type, eg 'uint8'. :return: A scalar converted to the desired data type. If there is no matching data type, then scalar will be returned as a float64 data type. """ instr = str(dtype) return {'int8': numpy.int8(scalar), 'uint8': numpy.uint8(scalar), 'int16': numpy.int16(scalar), 'uint16': numpy.uint16(scalar), 'int32': numpy.int32(scalar), 'uint32': numpy.uint32(scalar), 'int64':
numpy.int64(scalar)
numpy.int64
#!/usr/bin/env python #ADAPTED FROM #https://github.com/bio-ontology-research-group/deepgoplus/blob/master/evaluate_deepgoplus.py import numpy as np import pandas as pd import click as ck from sklearn.metrics import classification_report from sklearn.metrics.pairwise import cosine_similarity import sys from collections import deque import time import logging from sklearn.metrics import roc_curve, auc, matthews_corrcoef from scipy.spatial import distance from scipy import sparse import math #from utils2 import FUNC_DICT, Ontology, NAMESPACES from matplotlib import pyplot as plt #copied from utils.py from collections import deque, Counter import warnings #import pandas as pd #import numpy as np #from xml.etree import ElementTree as ET #import math BIOLOGICAL_PROCESS = 'GO:0008150' MOLECULAR_FUNCTION = 'GO:0003674' CELLULAR_COMPONENT = 'GO:0005575' FUNC_DICT = { 'cc': CELLULAR_COMPONENT, 'mf': MOLECULAR_FUNCTION, 'bp': BIOLOGICAL_PROCESS} NAMESPACES = { 'cc': 'cellular_component', 'mf': 'molecular_function', 'bp': 'biological_process' } EXP_CODES = set([ 'EXP', 'IDA', 'IPI', 'IMP', 'IGI', 'IEP', 'TAS', 'IC',]) # 'HTP', 'HDA', 'HMP', 'HGI', 'HEP']) CAFA_TARGETS = set([ '10090', '223283', '273057', '559292', '85962', '10116', '224308', '284812', '7227', '9606', '160488', '237561', '321314', '7955', '99287', '170187', '243232', '3702', '83333', '208963', '243273', '44689', '8355']) def is_cafa_target(org): return org in CAFA_TARGETS def is_exp_code(code): return code in EXP_CODES class Ontology(object): def __init__(self, filename='data/go.obo', with_rels=False): self.ont = self.load(filename, with_rels) self.ic = None def has_term(self, term_id): return term_id in self.ont def calculate_ic(self, annots): cnt = Counter() for x in annots: cnt.update(x) self.ic = {} for go_id, n in cnt.items(): parents = self.get_parents(go_id) if len(parents) == 0: min_n = n else: min_n = min([cnt[x] for x in parents]) self.ic[go_id] = math.log(min_n / n, 2) def get_ic(self, go_id): if self.ic is None: raise Exception('Not yet calculated') if go_id not in self.ic: return 0.0 return self.ic[go_id] def load(self, filename, with_rels): ont = dict() obj = None with open(filename, 'r') as f: for line in f: line = line.strip() if not line: continue if line == '[Term]': if obj is not None: ont[obj['id']] = obj obj = dict() obj['is_a'] = list() obj['part_of'] = list() obj['regulates'] = list() obj['alt_ids'] = list() obj['is_obsolete'] = False continue elif line == '[Typedef]': obj = None else: if obj is None: continue l = line.split(": ") if l[0] == 'id': obj['id'] = l[1] elif l[0] == 'alt_id': obj['alt_ids'].append(l[1]) elif l[0] == 'namespace': obj['namespace'] = l[1] elif l[0] == 'is_a': obj['is_a'].append(l[1].split(' ! ')[0]) elif with_rels and l[0] == 'relationship': it = l[1].split() # add all types of relationships obj['is_a'].append(it[1]) elif l[0] == 'name': obj['name'] = l[1] elif l[0] == 'is_obsolete' and l[1] == 'true': obj['is_obsolete'] = True if obj is not None: ont[obj['id']] = obj for term_id in list(ont.keys()): for t_id in ont[term_id]['alt_ids']: ont[t_id] = ont[term_id] if ont[term_id]['is_obsolete']: del ont[term_id] for term_id, val in ont.items(): if 'children' not in val: val['children'] = set() for p_id in val['is_a']: if p_id in ont: if 'children' not in ont[p_id]: ont[p_id]['children'] = set() ont[p_id]['children'].add(term_id) return ont def get_anchestors(self, term_id): if term_id not in self.ont: return set() term_set = set() q = deque() q.append(term_id) while(len(q) > 0): t_id = q.popleft() if t_id not in term_set: term_set.add(t_id) for parent_id in self.ont[t_id]['is_a']: if parent_id in self.ont: q.append(parent_id) return term_set def get_parents(self, term_id): if term_id not in self.ont: return set() term_set = set() for parent_id in self.ont[term_id]['is_a']: if parent_id in self.ont: term_set.add(parent_id) return term_set def get_namespace_terms(self, namespace): terms = set() for go_id, obj in self.ont.items(): if obj['namespace'] == namespace: terms.add(go_id) return terms def get_namespace(self, term_id): return self.ont[term_id]['namespace'] def get_term_set(self, term_id): if term_id not in self.ont: return set() term_set = set() q = deque() q.append(term_id) while len(q) > 0: t_id = q.popleft() if t_id not in term_set: term_set.add(t_id) for ch_id in self.ont[t_id]['children']: q.append(ch_id) return term_set def evaluate_deepgoplus(train_data_file, test_data_file, terms_file, diamond_scores_file, gofile, ont, preds=None, export=False,evaluate=True,verbose=False): go_rels = Ontology(gofile, with_rels=True) if(isinstance(terms_file,list) or isinstance(terms_file,np.ndarray)): terms = terms_file else: terms_df = pd.read_pickle(terms_file) terms = terms_df['terms'].values.flatten() terms_dict = {v: i for i, v in enumerate(terms)} train_df = pd.read_pickle(train_data_file) test_df = pd.read_pickle(test_data_file) annotations = train_df['annotations'].values annotations = list(map(lambda x: set(x), annotations)) test_annotations = test_df['annotations'].values test_annotations = list(map(lambda x: set(x), test_annotations)) go_rels.calculate_ic(annotations + test_annotations) # Print IC values of terms ics = {} for term in terms: ics[term] = go_rels.get_ic(term) prot_index = {} for i, row in enumerate(train_df.itertuples()): prot_index[row.proteins] = i # BLAST Similarity (Diamond) diamond_scores = {} with open(diamond_scores_file) as f: for line in f: it = line.strip().split() if it[0] not in diamond_scores: diamond_scores[it[0]] = {} diamond_scores[it[0]][it[1]] = float(it[2]) blast_preds = [] for i, row in enumerate(test_df.itertuples()): annots = {} prot_id = row.proteins # BlastKNN if prot_id in diamond_scores: sim_prots = diamond_scores[prot_id] allgos = set() total_score = 0.0 for p_id, score in sim_prots.items(): allgos |= annotations[prot_index[p_id]] total_score += score allgos = list(sorted(allgos)) sim = np.zeros(len(allgos), dtype=np.float32) for j, go_id in enumerate(allgos): s = 0.0 for p_id, score in sim_prots.items(): if go_id in annotations[prot_index[p_id]]: s += score sim[j] = s / total_score ind = np.argsort(-sim) for go_id, score in zip(allgos, sim): annots[go_id] = score blast_preds.append(annots) # DeepGOPlus go_set = go_rels.get_namespace_terms(NAMESPACES[ont]) go_set.remove(FUNC_DICT[ont]) labels = test_df['annotations'].values labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), labels)) # print(len(go_set)) deep_preds = [] alphas = {NAMESPACES['mf']: 0.55, NAMESPACES['bp']: 0.59, NAMESPACES['cc']: 0.46} for i, row in enumerate(test_df.itertuples()): annots_dict = blast_preds[i].copy() for go_id in annots_dict: annots_dict[go_id] *= alphas[go_rels.get_namespace(go_id)] for j, score in enumerate(row.preds if preds is None else preds[i]): go_id = terms[j] score *= 1 - alphas[go_rels.get_namespace(go_id)] if go_id in annots_dict: annots_dict[go_id] += score else: annots_dict[go_id] = score deep_preds.append(annots_dict) if(export): export_cafa(test_df,deep_preds,"DeepGOPlus_1_all.txt") if(evaluate): print("Evaluating scores") compute_prmetrics(labels,deep_preds,go_rels,ont=ont,verbose=verbose) #aucs = compute_roc(labels,deep_preds) #print("aucs:",aucs) #print("mean aucs(predicted):",np.mean(aucs)) #print("mean aucs(all):",(np.sum(aucs)+(len(test_annotations)-len(aucs))*0.5)/len(test_annotations)) def evaluate(train_data_file, test_data_file, terms_file, gofile, ont, preds=None, propagate_scores=False,export=False,evaluate=True,verbose=False): ''' train_data_file: path to train_data.pkl test_data_file: path to test_data.pkl terms_file: path to terms.pkl or just a list or nparray of labels ''' go_rels = Ontology(gofile, with_rels=True) if(isinstance(terms_file,list) or isinstance(terms_file,np.ndarray)): terms = terms_file else: terms_df = pd.read_pickle(terms_file) terms = terms_df['terms'].values.flatten() terms_dict = {v: i for i, v in enumerate(terms)} train_df = pd.read_pickle(train_data_file) test_df = pd.read_pickle(test_data_file) annotations = train_df['annotations'].values annotations = list(map(lambda x: set(x), annotations)) test_annotations = test_df['annotations'].values test_annotations = list(map(lambda x: set(x), test_annotations)) go_rels.calculate_ic(annotations + test_annotations) # Print IC values of terms ics = {} for term in terms: ics[term] = go_rels.get_ic(term) prot_index = {} for i, row in enumerate(train_df.itertuples()): prot_index[row.proteins] = i go_set = go_rels.get_namespace_terms(NAMESPACES[ont]) go_set.remove(FUNC_DICT[ont]) labels = test_df['annotations'].values labels = list(map(lambda x: set(filter(lambda y: y in go_set, x)), labels)) if(preds is None): deep_preds = [] for i, row in enumerate(test_df.itertuples()): annots_dict = {} for j, score in enumerate(row.preds): go_id = terms[j] annots_dict[go_id] = score deep_preds.append(annots_dict) else: deep_preds = [{terms[i]:y for i,y in enumerate(x)} for x in preds] # Propagate scores (a la deepgo) if(propagate_scores): print("Propagating scores a la deepgo") deepgo_preds = [] for annots_dict in deep_preds: annots = {} for go_id, score in annots_dict.items(): for a_id in go_rels.get_anchestors(go_id): if a_id in annots: annots[a_id] = max(annots[a_id], score) else: annots[a_id] = score deepgo_preds.append(annots) deep_preds = deepgo_preds if(export): export_cafa(test_df,deep_preds,"UDSMProt_1_all.txt") # compute PR metrics if(evaluate): print("Evaluating scores") compute_prmetrics(labels,deep_preds,go_rels,ont=ont,verbose=False) #aucs = compute_roc(np.array(labels),np.array(deep_preds)) #print("aucs:",aucs) #print("mean aucs(predicted):",np.mean(aucs)) #print("mean aucs(all):",(np.sum(aucs)+(len(test_annotations)-len(aucs))*0.5)/len(test_annotations)) def export_cafa(test_df,deep_preds,filename='UDSMProt_1_all.txt'):#all->9606 for human print("exporting predictions to CAFA submission format") txt_out=[] txt_out.append('AUTHOR UDSMProt\n') txt_out.append('MODEL 1\n') txt_out.append('KEYWORDS natural language processing.\n') for i, row in enumerate(test_df.itertuples()): prot_id = row.proteins for go_id, score in deep_preds[i].items(): #print(f'{prot_id}\t{go_id}\t{score:.2f}') score_str = "{0:.2f}".format(score) if(score_str!="0.00"): txt_out.append(str(prot_id)+"\t"+str(go_id)+"\t"+score_str+"\n") txt_out.append('END') with open(filename, 'w') as f: f.writelines(txt_out) def compute_prmetrics(labels,deep_preds,go_rels,ont="mf",verbose=False): go_set = go_rels.get_namespace_terms(NAMESPACES[ont]) go_set.remove(FUNC_DICT[ont]) fmax = 0.0 tmax = 0.0 precisions = [] recalls = [] smin = 1000000.0 rus = [] mis = [] for t in range(0, 101): threshold = t / 100.0 preds = [] for i in range(len(deep_preds)): annots = set() for go_id, score in deep_preds[i].items(): if score >= threshold: annots.add(go_id) new_annots = set() for go_id in annots: new_annots |= go_rels.get_anchestors(go_id) preds.append(new_annots) # Filter classes preds = list(map(lambda x: set(filter(lambda y: y in go_set, x)), preds)) fscore, prec, rec, s, ru, mi, fps, fns = evaluate_annotations(go_rels, labels, preds) avg_fp = sum(map(lambda x: len(x), fps)) / len(fps) avg_ic = sum(map(lambda x: sum(map(lambda go_id: go_rels.get_ic(go_id), x)), fps)) / len(fps) if(verbose): print(f'{avg_fp} {avg_ic}') precisions.append(prec) recalls.append(rec) print(f'Fscore: {fscore}, Precision: {prec}, Recall: {rec} S: {s}, RU: {ru}, MI: {mi} threshold: {threshold}') if fmax < fscore: fmax = fscore tmax = threshold if smin > s: smin = s print(f'Fmax: {fmax:0.3f}, Smin: {smin:0.3f}, threshold: {tmax}') precisions = np.array(precisions) recalls = np.array(recalls) sorted_index = np.argsort(recalls) recalls = recalls[sorted_index] precisions = precisions[sorted_index] aupr =
np.trapz(precisions, recalls)
numpy.trapz
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """ The modelgen module provides classes for specifying designs for individual subject analysis of task-based fMRI experiments. In particular it also includes algorithms for generating regressors for sparse and sparse-clustered acquisition experiments. These functions include: * SpecifyModel: allows specification of sparse and non-sparse models Change directory to provide relative paths for doctests >>> import os >>> filepath = os.path.dirname( os.path.realpath( __file__ ) ) >>> datadir = os.path.realpath(os.path.join(filepath, '../testing/data')) >>> os.chdir(datadir) """ from copy import deepcopy import os from nibabel import load import numpy as np from scipy.special import gammaln from nipype.interfaces.base import (BaseInterface, TraitedSpec, InputMultiPath, traits, File, Bunch, BaseInterfaceInputSpec, isdefined) from nipype.utils.filemanip import filename_to_list from .. import config, logging from nipype.external import six iflogger = logging.getLogger('interface') def gcd(a, b): """Returns the greatest common divisor of two integers uses Euclid's algorithm >>> gcd(4, 5) 1 >>> gcd(4, 8) 4 >>> gcd(22, 55) 11 """ while b > 0: a, b = b, a % b return a def spm_hrf(RT, P=None, fMRI_T=16): """ python implementation of spm_hrf see spm_hrf for implementation details % RT - scan repeat time % p - parameters of the response function (two gamma % functions) % defaults (seconds) % p(0) - delay of response (relative to onset) 6 % p(1) - delay of undershoot (relative to onset) 16 % p(2) - dispersion of response 1 % p(3) - dispersion of undershoot 1 % p(4) - ratio of response to undershoot 6 % p(5) - onset (seconds) 0 % p(6) - length of kernel (seconds) 32 % % hrf - hemodynamic response function % p - parameters of the response function the following code using scipy.stats.distributions.gamma doesn't return the same result as the spm_Gpdf function hrf = gamma.pdf(u, p[0]/p[2], scale=dt/p[2]) - gamma.pdf(u, p[1]/p[3], scale=dt/p[3])/p[4] >>> print spm_hrf(2) [ 0.00000000e+00 8.65660810e-02 3.74888236e-01 3.84923382e-01 2.16117316e-01 7.68695653e-02 1.62017720e-03 -3.06078117e-02 -3.73060781e-02 -3.08373716e-02 -2.05161334e-02 -1.16441637e-02 -5.82063147e-03 -2.61854250e-03 -1.07732374e-03 -4.10443522e-04 -1.46257507e-04] """ p = np.array([6, 16, 1, 1, 6, 0, 32], dtype=float) if P is not None: p[0:len(P)] = P _spm_Gpdf = lambda x, h, l: np.exp(h * np.log(l) + (h - 1) * np.log(x) - (l * x) - gammaln(h)) # modelled hemodynamic response function - {mixture of Gammas} dt = RT/float(fMRI_T) u = np.arange(0, int(p[6]/dt+1)) - p[5]/dt hrf = _spm_Gpdf(u, p[0]/p[2], dt/p[2]) - _spm_Gpdf(u, p[1]/p[3], dt/p[3])/p[4] idx = np.arange(0, int((p[6]/RT)+1))*fMRI_T hrf = hrf[idx] hrf = hrf/np.sum(hrf) return hrf def orth(x_in, y_in): """Orthoganlize y_in with respect to x_in >>> err = np.abs(np.array(orth([1, 2, 3],[4, 5, 6]) - np.array([1.7142857142857144, 0.42857142857142883, -0.85714285714285676]))) >>> all(err<np.finfo(float).eps) True """ x = np.array(x_in)[:, None] y = np.array(y_in)[:, None] y = y - np.dot(x, np.dot(np.linalg.inv(np.dot(x.T, x)), np.dot(x.T, y))) if np.linalg.norm(y, 1) > np.exp(-32): y = y[:, 0].tolist() else: y = y_in return y def scale_timings(timelist, input_units, output_units, time_repetition): """Scales timings given input and output units (scans/secs) Parameters ---------- timelist: list of times to scale input_units: 'secs' or 'scans' output_units: Ibid. time_repetition: float in seconds """ if input_units==output_units: _scalefactor = 1. if (input_units == 'scans') and (output_units == 'secs'): _scalefactor = time_repetition if (input_units == 'secs') and (output_units == 'scans'): _scalefactor = 1./time_repetition timelist = [np.max([0., _scalefactor*t]) for t in timelist] return timelist def gen_info(run_event_files): """Generate subject_info structure from a list of event files """ info = [] for i, event_files in enumerate(run_event_files): runinfo = Bunch(conditions=[], onsets=[], durations=[], amplitudes=[]) for event_file in event_files: _, name = os.path.split(event_file) if '.run' in name: name, _ = name.split('.run%03d'%(i+1)) elif '.txt' in name: name, _ = name.split('.txt') runinfo.conditions.append(name) event_info = np.atleast_2d(np.loadtxt(event_file)) runinfo.onsets.append(event_info[:, 0].tolist()) if event_info.shape[1] > 1: runinfo.durations.append(event_info[:, 1].tolist()) else: runinfo.durations.append([0]) if event_info.shape[1] > 2: runinfo.amplitudes.append(event_info[:, 2].tolist()) else: delattr(runinfo, 'amplitudes') info.append(runinfo) return info class SpecifyModelInputSpec(BaseInterfaceInputSpec): subject_info = InputMultiPath(Bunch, mandatory=True, xor=['subject_info', 'event_files'], desc=("Bunch or List(Bunch) subject specific condition information. " "see :ref:`SpecifyModel` or SpecifyModel.__doc__ for details")) event_files = InputMultiPath(traits.List(File(exists=True)), mandatory=True, xor=['subject_info', 'event_files'], desc=('list of event description files 1, 2 or 3 column format ' 'corresponding to onsets, durations and amplitudes')) realignment_parameters = InputMultiPath(File(exists=True), desc = "Realignment parameters returned by motion correction algorithm", copyfile=False) outlier_files = InputMultiPath(File(exists=True), desc="Files containing scan outlier indices that should be tossed", copyfile=False) functional_runs = InputMultiPath(traits.Either(traits.List(File(exists=True)), File(exists=True)), mandatory=True, desc="Data files for model. List of 4D files or list of" \ "list of 3D files per session", copyfile=False) input_units = traits.Enum('secs', 'scans', mandatory=True, desc = "Units of event onsets and durations (secs or scans)" \ "Output units are always in secs") high_pass_filter_cutoff = traits.Float(mandatory=True, desc="High-pass filter cutoff in secs") time_repetition = traits.Float(mandatory=True, desc = "Time between the start of one volume to the start of " \ "the next image volume.") # Not implemented yet #polynomial_order = traits.Range(0, low=0, # desc ="Number of polynomial functions to model high pass filter.") class SpecifyModelOutputSpec(TraitedSpec): session_info = traits.Any(desc="session info for level1designs") class SpecifyModel(BaseInterface): """Makes a model specification compatible with spm/fsl designers. The subject_info field should contain paradigm information in the form of a Bunch or a list of Bunch. The Bunch should contain the following information:: [Mandatory] - conditions : list of names - onsets : lists of onsets corresponding to each condition - durations : lists of durations corresponding to each condition. Should be left to a single 0 if all events are being modelled as impulses. [Optional] - regressor_names : list of str list of names corresponding to each column. Should be None if automatically assigned. - regressors : list of lists values for each regressor - must correspond to the number of volumes in the functional run - amplitudes : lists of amplitudes for each event. This will be ignored by SPM's Level1Design. The following two (tmod, pmod) will be ignored by any Level1Design class other than SPM: - tmod : lists of conditions that should be temporally modulated. Should default to None if not being used. - pmod : list of Bunch corresponding to conditions - name : name of parametric modulator - param : values of the modulator - poly : degree of modulation Alternatively, you can provide information through event files. The event files have to be in 1, 2 or 3 column format with the columns corresponding to Onsets, Durations and Amplitudes and they have to have the name event_name.runXXX... e.g.: Words.run001.txt. The event_name part will be used to create the condition names. Examples -------- >>> from nipype.interfaces.base import Bunch >>> s = SpecifyModel() >>> s.inputs.input_units = 'secs' >>> s.inputs.functional_runs = ['functional2.nii', 'functional3.nii'] >>> s.inputs.time_repetition = 6 >>> s.inputs.high_pass_filter_cutoff = 128. >>> info = [Bunch(conditions=['cond1'], onsets=[[2, 50, 100, 180]], durations=[[1]]), \ Bunch(conditions=['cond1'], onsets=[[30, 40, 100, 150]], durations=[[1]])] >>> s.inputs.subject_info = info Using pmod: >>> info = [Bunch(conditions=['cond1', 'cond2'], onsets=[[2, 50],[100, 180]], durations=[[0],[0]], pmod=[Bunch(name=['amp'], poly=[2], param=[[1, 2]]), None]), \ Bunch(conditions=['cond1', 'cond2'], onsets=[[20, 120],[80, 160]], durations=[[0],[0]], pmod=[Bunch(name=['amp'], poly=[2], param=[[1, 2]]), None])] >>> s.inputs.subject_info = info """ input_spec = SpecifyModelInputSpec output_spec = SpecifyModelOutputSpec def _generate_standard_design(self, infolist, functional_runs=None, realignment_parameters=None, outliers=None): """ Generates a standard design matrix paradigm given information about each run """ sessinfo = [] output_units = 'secs' if 'output_units' in self.inputs.traits(): output_units = self.inputs.output_units for i, info in enumerate(infolist): sessinfo.insert(i, dict(cond=[])) if isdefined(self.inputs.high_pass_filter_cutoff): sessinfo[i]['hpf'] = np.float(self.inputs.high_pass_filter_cutoff) if hasattr(info, 'conditions') and info.conditions is not None: for cid, cond in enumerate(info.conditions): sessinfo[i]['cond'].insert(cid, dict()) sessinfo[i]['cond'][cid]['name'] = info.conditions[cid] sessinfo[i]['cond'][cid]['onset'] = scale_timings(info.onsets[cid], self.inputs.input_units, output_units, self.inputs.time_repetition) sessinfo[i]['cond'][cid]['duration'] = scale_timings(info.durations[cid], self.inputs.input_units, output_units, self.inputs.time_repetition) if hasattr(info, 'amplitudes') and info.amplitudes: sessinfo[i]['cond'][cid]['amplitudes'] = info.amplitudes[cid] if hasattr(info, 'tmod') and info.tmod and len(info.tmod)>cid: sessinfo[i]['cond'][cid]['tmod'] = info.tmod[cid] if hasattr(info, 'pmod') and info.pmod and len(info.pmod)>cid: if info.pmod[cid]: sessinfo[i]['cond'][cid]['pmod'] = [] for j, name in enumerate(info.pmod[cid].name): sessinfo[i]['cond'][cid]['pmod'].insert(j,{}) sessinfo[i]['cond'][cid]['pmod'][j]['name'] = name sessinfo[i]['cond'][cid]['pmod'][j]['poly'] = info.pmod[cid].poly[j] sessinfo[i]['cond'][cid]['pmod'][j]['param'] = info.pmod[cid].param[j] sessinfo[i]['regress']= [] if hasattr(info, 'regressors') and info.regressors is not None: for j, r in enumerate(info.regressors): sessinfo[i]['regress'].insert(j, dict(name='', val=[])) if hasattr(info, 'regressor_names') and info.regressor_names is not None: sessinfo[i]['regress'][j]['name'] = info.regressor_names[j] else: sessinfo[i]['regress'][j]['name'] = 'UR%d'%(j+1) sessinfo[i]['regress'][j]['val'] = info.regressors[j] sessinfo[i]['scans'] = functional_runs[i] if realignment_parameters is not None: for i, rp in enumerate(realignment_parameters): mc = realignment_parameters[i] for col in range(mc.shape[1]): colidx = len(sessinfo[i]['regress']) sessinfo[i]['regress'].insert(colidx, dict(name='', val=[])) sessinfo[i]['regress'][colidx]['name'] = 'Realign%d'%(col+1) sessinfo[i]['regress'][colidx]['val'] = mc[:, col].tolist() if outliers is not None: for i, out in enumerate(outliers): numscans = 0 for f in filename_to_list(sessinfo[i]['scans']): shape = load(f).get_shape() if len(shape) == 3 or shape[3] == 1: iflogger.warning("You are using 3D instead of 4D files. Are you sure this was intended?") numscans += 1 else: numscans += shape[3] for j, scanno in enumerate(out): colidx = len(sessinfo[i]['regress']) sessinfo[i]['regress'].insert(colidx, dict(name='', val=[])) sessinfo[i]['regress'][colidx]['name'] = 'Outlier%d'%(j+1) sessinfo[i]['regress'][colidx]['val'] = np.zeros((1, numscans))[0].tolist() sessinfo[i]['regress'][colidx]['val'][int(scanno)] = 1 return sessinfo def _generate_design(self, infolist=None): """Generate design specification for a typical fmri paradigm """ realignment_parameters = [] if isdefined(self.inputs.realignment_parameters): for parfile in self.inputs.realignment_parameters: realignment_parameters.append(np.loadtxt(parfile)) outliers = [] if isdefined(self.inputs.outlier_files): for filename in self.inputs.outlier_files: try: outindices = np.loadtxt(filename, dtype=int) except IOError: outliers.append([]) else: if outindices.size == 1: outliers.append([outindices.tolist()]) else: outliers.append(outindices.tolist()) if infolist is None: if isdefined(self.inputs.subject_info): infolist = self.inputs.subject_info else: infolist = gen_info(self.inputs.event_files) self._sessinfo = self._generate_standard_design(infolist, functional_runs=self.inputs.functional_runs, realignment_parameters=realignment_parameters, outliers=outliers) def _run_interface(self, runtime): """ """ self._sessioninfo = None self._generate_design() return runtime def _list_outputs(self): outputs = self._outputs().get() if not hasattr(self, '_sessinfo'): self._generate_design() outputs['session_info'] = self._sessinfo return outputs class SpecifySPMModelInputSpec(SpecifyModelInputSpec): concatenate_runs = traits.Bool(False, usedefault=True, desc="Concatenate all runs to look like a single session.") output_units = traits.Enum('secs', 'scans', usedefault=True, desc = "Units of design event onsets and durations " \ "(secs or scans)") class SpecifySPMModel(SpecifyModel): """Adds SPM specific options to SpecifyModel adds: - concatenate_runs - output_units Examples -------- >>> from nipype.interfaces.base import Bunch >>> s = SpecifySPMModel() >>> s.inputs.input_units = 'secs' >>> s.inputs.output_units = 'scans' >>> s.inputs.high_pass_filter_cutoff = 128. >>> s.inputs.functional_runs = ['functional2.nii', 'functional3.nii'] >>> s.inputs.time_repetition = 6 >>> s.inputs.concatenate_runs = True >>> info = [Bunch(conditions=['cond1'], onsets=[[2, 50, 100, 180]], durations=[[1]]), \ Bunch(conditions=['cond1'], onsets=[[30, 40, 100, 150]], durations=[[1]])] >>> s.inputs.subject_info = info """ input_spec = SpecifySPMModelInputSpec def _concatenate_info(self, infolist): nscans = [] for i, f in enumerate(self.inputs.functional_runs): if isinstance(f, list): numscans = len(f) elif isinstance(f, six.string_types): img = load(f) numscans = img.get_shape()[3] else: raise Exception('Functional input not specified correctly') nscans.insert(i, numscans) # now combine all fields into 1 # names, onsets, durations, amplitudes, pmod, tmod, regressor_names, regressors infoout = infolist[0] for i, info in enumerate(infolist[1:]): #info.[conditions, tmod] remain the same if info.onsets: for j, val in enumerate(info.onsets): if self.inputs.input_units == 'secs': infoout.onsets[j].extend((np.array(info.onsets[j])+ self.inputs.time_repetition*sum(nscans[0:(i+1)])).tolist()) else: infoout.onsets[j].extend((np.array(info.onsets[j])+sum(nscans[0:(i+1)])).tolist()) for j, val in enumerate(info.durations): if len(val) > 1: infoout.durations[j].extend(info.durations[j]) if hasattr(info, 'amplitudes') and info.amplitudes: for j, val in enumerate(info.amplitudes): infoout.amplitudes[j].extend(info.amplitudes[j]) if hasattr(info, 'pmod') and info.pmod: for j, val in enumerate(info.pmod): if val: for key, data in enumerate(val.param): infoout.pmod[j].param[key].extend(data) if hasattr(info, 'regressors') and info.regressors: #assumes same ordering of regressors across different #runs and the same names for the regressors for j, v in enumerate(info.regressors): infoout.regressors[j].extend(info.regressors[j]) #insert session regressors if not hasattr(infoout, 'regressors') or not infoout.regressors: infoout.regressors = [] onelist = np.zeros((1, sum(nscans))) onelist[0, sum(nscans[0:(i)]):sum(nscans[0:(i+1)])] = 1 infoout.regressors.insert(len(infoout.regressors), onelist.tolist()[0]) return [infoout], nscans def _generate_design(self, infolist=None): if not isdefined(self.inputs.concatenate_runs) or not self.inputs.concatenate_runs: super(SpecifySPMModel, self)._generate_design(infolist=infolist) return if isdefined(self.inputs.subject_info): infolist = self.inputs.subject_info else: infolist = gen_info(self.inputs.event_files) concatlist, nscans = self._concatenate_info(infolist) functional_runs = [filename_to_list(self.inputs.functional_runs)] realignment_parameters = [] if isdefined(self.inputs.realignment_parameters): realignment_parameters = [] for parfile in self.inputs.realignment_parameters: mc = np.loadtxt(parfile) if not realignment_parameters: realignment_parameters.insert(0, mc) else: realignment_parameters[0] = np.concatenate((realignment_parameters[0], mc)) outliers = [] if isdefined(self.inputs.outlier_files): outliers = [[]] for i, filename in enumerate(self.inputs.outlier_files): try: out = np.loadtxt(filename, dtype=int) except IOError: out = np.array([]) if out.size>0: if out.size == 1: outliers[0].extend([(np.array(out)+sum(nscans[0:i])).tolist()]) else: outliers[0].extend((np.array(out)+sum(nscans[0:i])).tolist()) self._sessinfo = self._generate_standard_design(concatlist, functional_runs=functional_runs, realignment_parameters=realignment_parameters, outliers=outliers) class SpecifySparseModelInputSpec(SpecifyModelInputSpec): time_acquisition = traits.Float(0, mandatory=True, desc = "Time in seconds to acquire a single image volume") volumes_in_cluster = traits.Range(1, usedefault=True, desc="Number of scan volumes in a cluster") model_hrf = traits.Bool(desc="model sparse events with hrf") stimuli_as_impulses = traits.Bool(True, desc = "Treat each stimulus to be impulse like.", usedefault=True) use_temporal_deriv = traits.Bool(requires=['model_hrf'], desc = "Create a temporal derivative in addition to regular regressor") scale_regressors = traits.Bool(True, desc="Scale regressors by the peak", usedefault=True) scan_onset = traits.Float(0.0, desc="Start of scanning relative to onset of run in secs", usedefault=True) save_plot = traits.Bool(desc='save plot of sparse design calculation ' \ '(Requires matplotlib)') class SpecifySparseModelOutputSpec(SpecifyModelOutputSpec): sparse_png_file = File(desc='PNG file showing sparse design') sparse_svg_file = File(desc='SVG file showing sparse design') class SpecifySparseModel(SpecifyModel): """ Specify a sparse model that is compatible with spm/fsl designers References ---------- .. [1] Ghosh et al. (2009) OHBM http://dl.dropbox.com/u/363467/OHBM2009_HRF.pdf Examples -------- >>> from nipype.interfaces.base import Bunch >>> s = SpecifySparseModel() >>> s.inputs.input_units = 'secs' >>> s.inputs.functional_runs = ['functional2.nii', 'functional3.nii'] >>> s.inputs.time_repetition = 6 >>> s.inputs.time_acquisition = 2 >>> s.inputs.high_pass_filter_cutoff = 128. >>> s.inputs.model_hrf = True >>> info = [Bunch(conditions=['cond1'], onsets=[[2, 50, 100, 180]], durations=[[1]]), \ Bunch(conditions=['cond1'], onsets=[[30, 40, 100, 150]], durations=[[1]])] >>> s.inputs.subject_info = info """ input_spec = SpecifySparseModelInputSpec output_spec = SpecifySparseModelOutputSpec def _gen_regress(self, i_onsets, i_durations, i_amplitudes, nscans): """Generates a regressor for a sparse/clustered-sparse acquisition """ bplot = False if isdefined(self.inputs.save_plot) and self.inputs.save_plot: bplot=True import matplotlib matplotlib.use(config.get("execution", "matplotlib_backend")) import matplotlib.pyplot as plt TR = np.round(self.inputs.time_repetition*1000) # in ms if self.inputs.time_acquisition: TA = np.round(self.inputs.time_acquisition*1000) # in ms else: TA = TR # in ms nvol = self.inputs.volumes_in_cluster SCANONSET = np.round(self.inputs.scan_onset*1000) total_time = TR*(nscans-nvol)/nvol + TA*nvol + SCANONSET SILENCE = TR-TA*nvol dt = TA/10.; durations = np.round(np.array(i_durations)*1000) if len(durations) == 1: durations = durations*np.ones((len(i_onsets))) onsets = np.round(np.array(i_onsets)*1000) dttemp = gcd(TA, gcd(SILENCE, TR)) if dt < dttemp: if dttemp % dt != 0: dt = gcd(dttemp, dt) if dt < 1: raise Exception("Time multiple less than 1 ms") iflogger.info("Setting dt = %d ms\n" % dt) npts = int(total_time/dt) times = np.arange(0, total_time, dt)*1e-3 timeline = np.zeros((npts)) timeline2 = np.zeros((npts)) if isdefined(self.inputs.model_hrf) and self.inputs.model_hrf: hrf = spm_hrf(dt*1e-3) reg_scale = 1.0 if self.inputs.scale_regressors: boxcar = np.zeros((50.*1e3/dt)) if self.inputs.stimuli_as_impulses: boxcar[1.*1e3/dt] = 1.0 reg_scale = float(TA/dt) else: boxcar[1.*1e3/dt:2.*1e3/dt] = 1.0 if isdefined(self.inputs.model_hrf) and self.inputs.model_hrf: response = np.convolve(boxcar, hrf) reg_scale = 1./response.max() iflogger.info('response sum: %.4f max: %.4f'%(response.sum(), response.max())) iflogger.info('reg_scale: %.4f'%reg_scale) for i, t in enumerate(onsets): idx = int(t/dt) if i_amplitudes: if len(i_amplitudes)>1: timeline2[idx] = i_amplitudes[i] else: timeline2[idx] = i_amplitudes[0] else: timeline2[idx] = 1 if bplot: plt.subplot(4, 1, 1) plt.plot(times, timeline2) if not self.inputs.stimuli_as_impulses: if durations[i] == 0: durations[i] = TA*nvol stimdur = np.ones((int(durations[i]/dt))) timeline2 = np.convolve(timeline2, stimdur)[0:len(timeline2)] timeline += timeline2 timeline2[:] = 0 if bplot: plt.subplot(4, 1, 2) plt.plot(times, timeline) if isdefined(self.inputs.model_hrf) and self.inputs.model_hrf: timeline = np.convolve(timeline, hrf)[0:len(timeline)] if isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv: #create temporal deriv timederiv = np.concatenate(([0], np.diff(timeline))) if bplot: plt.subplot(4, 1, 3) plt.plot(times, timeline) if isdefined(self.inputs.use_temporal_deriv) and self.inputs.use_temporal_deriv: plt.plot(times, timederiv) # sample timeline timeline2 = np.zeros((npts)) reg = [] regderiv = [] for i, trial in enumerate(
np.arange(nscans)
numpy.arange
''' temporary : Use this to use the forked version of GPy''' import sys sys.path.insert(1, '/home/breux/GPy') import numpy as np import matplotlib.pyplot as plt import GPy ''' Gaussian Processes regression with censored data example using artificial data as in "Gaussian Process Regression with Censored Data Using Expectation Propagation, <NAME>, <NAME>" ''' def f(x): return ((6.*x - 2.)**2)*np.sin(2.*(6.*x-2.)) def plotModels(xc, yc, xc2, yc2, m_tobit, m_normal, m_normalWithoutCensoredData): x_gt = np.linspace(0,1,200) y_gt = f(x_gt) fig, ax = plt.subplots() plt.title("Tobit GP model") plt.plot(x_gt, y_gt, linestyle='-', color="r", label="GT") plt.plot(xc, yc, linestyle='None', marker='+', markersize=10, color='k', label="Data") m_tobit.plot_f(fignum=0, ax=ax) plt.xlim([0, 1]) fig, ax = plt.subplots() plt.title("Standart GP model") plt.plot(x_gt, y_gt,linestyle='-', color="r", label="GT") plt.plot(xc, yc, linestyle='None', marker='+', markersize=10, color='k', label="Data") m_normal.plot_f(fignum=1, ax=ax) plt.xlim([0,1]) fig, ax = plt.subplots() plt.title("Standart ignoring censured data GP model") plt.plot(x_gt, y_gt, linestyle='-', color="r", label="GT") plt.plot(xc2, yc2, linestyle='None', marker='+', markersize=10, color='k', label="Data") m_normalWithoutCensoredData.plot_f(fignum=2, ax=ax) plt.xlim([0, 1]) plt.show() def artificialExample(): ''' Generate Data ''' np.random.seed(4) n = 30 x = np.linspace(0,1,n) y = f(x) + np.random.normal(0, np.sqrt(0.1), x.shape[0]) x = x.reshape((n,1)) l = -0.45 #-0.2265 lowerCensoredData = np.zeros((n,), dtype='int64') lowerCensoredData_indexes = [idx for idx, val in np.ndenumerate(y) if val < l]
np.put(lowerCensoredData, lowerCensoredData_indexes, 1)
numpy.put
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import capsule_distance capsule = capsule_distance.Capsule(0.18, -0.5, 0.45) #from matplotlib_scalebar.scalebar import ScaleBar #plt.rcParams['axes.facecolor'] = "xkcd:spring green"#'black' # plt.rcParams.update({ # "text.usetex": True, # "font.family": "serif", # "font.serif": ["Palatino"], # }) from matplotlib import rc rc('font', **{'family': 'serif', 'serif': ['Computer Modern'], 'size' : 12}) #rc('text', usetex=True) #from matplotlib.ticker import FormatStrFormatter all_traces_rds = np.genfromtxt('../traces_dynamic_systematic_rds.csv', delimiter=';') all_traces_baseline = np.genfromtxt('../traces_dynamic_systematic_baseline.csv', delimiter=';') data = [all_traces_rds, all_traces_baseline] fig, axes = plt.subplots(1, 2, sharey=True, subplot_kw={"adjustable":'box-forced'}) fig.subplots_adjust(wspace=0.025) for m in [0, 1]: all_traces = data[m] traces_max_index = np.max(all_traces[:, 4]) #traces_list = [None]*traces_max_index #for i in range(traces_max_index): # this_trace_row_indices = (all_traces[:, 4] == i) # traces_list[i] = all_traces[this_trace_row_indices, 0:4] #for trace in traces_list: # plt.plot(trace[]) trace_start_indices = [0] for i in range(all_traces.shape[0]): if len(trace_start_indices)-1 < all_traces[i, 4]: trace_start_indices.append(i) # re-arrange the data trace_start_indices.append(all_traces.shape[0]) traces_ordered = np.empty([all_traces.shape[0]*2, 3]) write_start = 0 for i in range(10): sub_range_alpha = range(trace_start_indices[i], trace_start_indices[i+1]) write_length = trace_start_indices[i+1] - trace_start_indices[i] traces_ordered[write_start:(write_start+write_length), 0:2] = all_traces[sub_range_alpha, 0:2] traces_ordered[write_start:(write_start+write_length), 2] = all_traces[sub_range_alpha, 4] write_start += write_length traces_ordered[write_start:(write_start+write_length), 0:2] = all_traces[sub_range_alpha, 2:4] traces_ordered[write_start:(write_start+write_length), 2] = all_traces[sub_range_alpha, 4] write_start += write_length sub_range_omega = range(trace_start_indices[19 - i], trace_start_indices[20 - i]) write_length = trace_start_indices[20 - i] - trace_start_indices[19 - i] traces_ordered[write_start:(write_start+write_length), 0:2] = all_traces[sub_range_omega, 0:2] traces_ordered[write_start:(write_start+write_length), 2] = all_traces[sub_range_omega, 4] write_start += write_length traces_ordered[write_start:(write_start+write_length), 0:2] = all_traces[sub_range_omega, 2:4] traces_ordered[write_start:(write_start+write_length), 2] = all_traces[sub_range_omega, 4] write_start += write_length ax = axes[m] the_cmap = cm.coolwarm#cm.PiYG#cm.brg#cm.viridis#cm.plasma #cm.cool ax.scatter(traces_ordered[:,0], traces_ordered[:,1], c=traces_ordered[:,2]/float(traces_max_index), cmap=the_cmap, marker='o', lw=0.1, s=8, edgecolor='k') ax.set_aspect("equal") ax.set_xlim([-2.7, 3.2]) ax.set_ylim([-2.7, 3.2]) ax.plot([-2.7, 3.2], [0.0, 0.0], 'k--', linewidth=1) ax.plot([0.0, 0.0], [-2.7, 3.2], 'k--', linewidth=1) if m == 0: shift_x = -5.0 shift_y = -5.0 ax.text(2.9+shift_x, 2.6+shift_y, "1 m") ax.plot([2.75+shift_x,3.75+shift_x], [2.5+shift_y, 2.5+shift_y],'k', linewidth=1) ax.plot([2.75+shift_x,2.75+shift_x], [2.45+shift_y, 2.55+shift_y],'k', linewidth=1) ax.plot([3.75+shift_x,3.75+shift_x], [2.45+shift_y, 2.55+shift_y],'k', linewidth=1) y_colorscale =
np.linspace(0.5, 1.75, 20)
numpy.linspace
#!/usr/bin/env python3 import os, sys import tensorflow as tf import numpy as np #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' #all info os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' #warning, error #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' #error def add_layer(inputs, in_size, out_size, activation_function=None): Weights = tf.Variable(tf.random_normal([in_size, out_size])) biases = tf.Variable(tf.zeros([1, out_size]) + 0.1) Wx_plus_b = tf.matmul(inputs, Weights) + biases keep_prob = 1 Wx_plus_b = tf.nn.dropout(Wx_plus_b, keep_prob) if activation_function is None: outputs = Wx_plus_b else: outputs = activation_function(Wx_plus_b) return outputs x_data =
np.linspace(-1, 1, 3000)
numpy.linspace
# Copyright 2020 <NAME> # This file is licensed under the MIT license (see LICENSE.txt). import numpy as np import torch from torch.utils import data from asvtorch.src.settings.settings import Settings from asvtorch.src.utterances.utterance_list import UtteranceList from asvtorch.src.frontend.featureloaders.featureloader import FeatureLoader def _get_clip_indices(utt_start, utt_end, batch_start, batch_end): """ Cuts the parts of the utterance that do not fit into the batch window. Arguments: utt_start {int} -- start point of the utterance utt_end {int} -- end point of the utterance batch_start {int} -- start point of the batch window batch_end {int} -- end point of the batch window Returns: (int, int), bool -- a tuple containing clipped start and end point of an utterance, the boolean flag is True if the end of the utterance is inside the batch window. """ if utt_end <= batch_start: return None if utt_start >= batch_end: return None start = 0 end = utt_end - utt_start if utt_start < batch_start: start = batch_start - utt_start if utt_end > batch_end: end = batch_end - utt_start ends = utt_end <= batch_end return (start, end), ends class _Kaldi_Dataset(data.Dataset): def __init__(self, dataset: UtteranceList): self.dataset = dataset frames_per_batch = Settings().posterior_extraction.batch_size_in_frames break_points = dataset.get_breakpoints_after_frame_selection() n_active_frames = break_points[-1] n_batches = int(
np.ceil(n_active_frames / frames_per_batch)
numpy.ceil
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import Slider, Button, RadioButtons def make_fig(): pass def update(val): amp = sld_width_upper.val freq = sld_width_lower.val l.set_ydata(amp*np.sin(2*np.pi*freq*t)) fig.canvas.draw_idle() def reset(event): sld_width_lower.reset() sld_width_upper.reset() def colorfunc(label): l.set_color(label) fig.canvas.draw_idle() if __name__ == '__main__': # The data we need for plotting points = 1000 widths =
np.arange(100)
numpy.arange
# Copyright 2020 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test_cont_break """ import numpy as np import mindspore as ms from mindspore import Tensor, context, nn, ms_function from mindspore.nn import Cell from mindspore.ops import operations as P class WhileSubGraphParam(Cell): def __init__(self): super().__init__() self.update = ms.Parameter(Tensor(1, ms.float32), "update") def construct(self, x, y, z): out1 = z while x < y: self.update = self.update + 1 out1 = out1 + 1 x = x + 1 return out1, self.update def test_while_loop_phi(): context.set_context(mode=context.GRAPH_MODE) x = Tensor(0, ms.float32) y = Tensor(10, ms.float32) z = Tensor(100, ms.float32) net = WhileSubGraphParam() net(x, y, z) class WhileSubGraphParam2(Cell): def __init__(self): super().__init__() self.update = ms.Parameter(Tensor(1, ms.float32), "update") def construct(self, x, y, z): out1 = z i = self.update while x < y: i = i + 1 out1 = out1 + 1 x = x + 1 return out1, self.update def test_while_loop_phi_2(): context.set_context(mode=context.GRAPH_MODE) x = Tensor(0, ms.float32) y = Tensor(10, ms.float32) z = Tensor(100, ms.float32) net = WhileSubGraphParam2() net(x, y, z) class WhileSubGraphParam3(Cell): def __init__(self, initial_input_x): super().__init__() self.initial_input_x = initial_input_x self.X = ms.Parameter(initial_input_x, name="parameter_x") self.Y = ms.Parameter(self.initial_input_x, name="parameter_y") def construct(self): a = 0 while a < 3: self.X = self.X + self.Y a += 1 return self.X def test_while_loop_phi_3(): context.set_context(mode=context.GRAPH_MODE) x = Tensor(0, ms.float32) net = WhileSubGraphParam3(x) net() class ControlMixedWhileIf(nn.Cell): def __init__(self): super().__init__() self.assign = P.Assign() self.var = ms.Parameter(ms.Tensor([1], ms.float32), name="var") @ms_function def construct(self, x, y, z, c2, c4): out = self.assign(self.var, c4) while x < c2: y = self.assign(self.var, c4) while y < c2 and x < c2: if 2 * y < c2: y = y + 2 else: y = y + 1 out = out + y z = self.assign(self.var, c4) while z < c2: z = z + 1 out = out + z x = x + 1 out = out + x while x < 2 * c2: y = self.assign(self.var, c4) x = x + 1 while y < c2: z = self.assign(self.var, c4) while z < c2: z = z + 1 if x < c2: y = y - 1 else: y = y + 1 out = out + z out = out + y out = out + x return out def test_mixed_while_if(): context.set_context(mode=context.PYNATIVE_MODE) x = np.array(2).astype(np.int32) y = np.array(14).astype(np.int32) z =
np.array(1)
numpy.array
# Change: Modifying so that the ends are straight coarse bricks import matplotlib.pyplot as plt import numpy as np from scipy import spatial import csv import os def NodeGen2DV45(x0,xl,y0,yl,z0,elemLenX,elemLenY,numElemX,numElemY,shiftX,shiftY): # Nodal coordinated nodeX1=np.linspace(x0,xl,numElemX); nodeY1=y0+np.zeros(np.shape(nodeX1)) #np.arange(0,specLenY+elemLenY,elemLenY); # nodeX2=np.linspace(x0+shiftX,xl-shiftX,numElemX-1); nodeY2=y0+np.zeros(np.shape(nodeX2))+shiftY # # Create all nodes count=1; Node=np.array([[0,0,0,0]]) for j in range(0,int(numElemY)-1): for i in range(0,len(nodeX1)): Node=np.append(Node,[[int(count+i),nodeX1[i],nodeY1[i]+j*elemLenY,z0]],axis=0) count=len(Node) for i in range(0,len(nodeX2)): Node=np.append(Node,[[int(count+i),nodeX2[i],nodeY2[i]+j*elemLenY,z0]],axis=0) count=len(Node) # last line for i in range(0,len(nodeX1)): Node=np.append(Node,[[int(count+i),nodeX1[i],nodeY1[i]+(j+1)*elemLenY,z0]],axis=0) Node=Node[1:len(Node)] return Node def NodeGen2DV90(x0,xl,y0,yl,z0,elemLenX,elemLenY,numElemX,numElemY): # Nodal coordinated nodeX1=np.linspace(x0,xl,numElemX); nodeY1=y0+np.zeros(np.shape(nodeX1)) #np.arange(0,specLenY+elemLenY,elemLenY) # Create all nodes count=1; Node=np.array([[0,0,0,0]]) for j in range(0,int(numElemY)): for i in range(0,len(nodeX1)): Node=np.append(Node,[[int(count+i),nodeX1[i],nodeY1[i]+j*elemLenY,z0]],axis=0) count=len(Node) # Node=Node[1:len(Node)] elemLenX=nodeX1[1]-nodeX1[0] return Node,elemLenX,elemLenY def FindNodes(loc,Node): NCorners=[[0,0,0,0]] for i in range(len(loc)): NCornersTmp=Node[(Node[:,1]==loc[i,0])] NCornersTmp=NCornersTmp[(NCornersTmp[:,2]==loc[i,1])] NCorners=np.append(NCorners,NCornersTmp, axis=0) NCorners=NCorners[1:len(NCorners)] return NCorners def FindNodeRange(loc,Node,elemLenX,elemLenY): loc=[loc[0]-1e-5,loc[1]-1e-5] NCornersTmp=Node NCornersTmp=Node[(Node[:,1]>=loc[0])] NCornersTmp=NCornersTmp[(NCornersTmp[:,1]<=loc[0]+1.5*elemLenX)] NCornersTmp=NCornersTmp[(NCornersTmp[:,2]>=loc[1])] NCornersTmp=NCornersTmp[(NCornersTmp[:,2]<=loc[1]+1.5*elemLenY)] return NCornersTmp def FindBoundariesV2(Node,x0,xl,y0,yl,numElemX,numElemY): # Find corners #loc=np.array([[x0,y0],[xl,0],[0,yl],[xl,yl]]) loc=np.array([[x0,y0]]) NCorners= FindNodes(loc,Node) # Find bottom edge Xrange=np.linspace(x0,xl,numElemX) Yrange=np.ones(np.shape(Xrange))*y0 loc=np.transpose(np.array([Xrange,Yrange])) NBtmEdge= FindNodes(loc,Node) # Find top edge Xrange=np.linspace(x0,xl,numElemX) Yrange=np.ones(np.shape(Xrange))*yl loc=np.transpose(np.array([Xrange,Yrange])) NTopEdge= FindNodes(loc,Node) # Find left edge Yrange=np.linspace(y0,yl,numElemY) Xrange=np.ones(np.shape(Yrange))*x0 loc=np.transpose(np.array([Xrange,Yrange])) NLeftEdge= FindNodes(loc,Node) # Find right edge Yrange=np.linspace(y0,yl,numElemY) Xrange=np.ones(np.shape(Yrange))*xl loc=np.transpose(np.array([Xrange,Yrange])) NRightEdge= FindNodes(loc,Node) NBoundary=np.append(NBtmEdge,NRightEdge,axis=0) NBoundary=np.append(NBoundary,NTopEdge,axis=0) NBoundary=np.append(NBoundary,NLeftEdge,axis=0) return NCorners,NBtmEdge,NTopEdge,NLeftEdge,NRightEdge,NBoundary def FindBoundaries(Node,specLenX,specLenY,elemLenX,elemLenY): # Find corners loc=np.array([[0,0],[specLenX,0],[0,specLenY],[specLenX,specLenY]]) NCorners= FindNodes(loc,Node) # Find bottom edge Xrange=np.arange(0,specLenX,elemLenX) Yrange=np.ones(np.shape(Xrange))*0 loc=np.transpose(np.array([Xrange,Yrange])) NBtmEdge= FindNodes(loc,Node) # Find top edge Xrange=np.arange(0,specLenX,elemLenX) Yrange=np.ones(np.shape(Xrange))*specLenY loc=np.transpose(np.array([Xrange,Yrange])) NTopEdge= FindNodes(loc,Node) # Find left edge Yrange=np.arange(0,specLenY,elemLenY) Xrange=np.ones(np.shape(Yrange))*0 loc=np.transpose(np.array([Xrange,Yrange])) NLeftEdge= FindNodes(loc,Node) # Find right edge Yrange=np.arange(0,specLenY,elemLenY) Xrange=np.ones(np.shape(Yrange))*specLenX loc=np.transpose(np.array([Xrange,Yrange])) NRightEdge= FindNodes(loc,Node) NBoundary=np.append(NBtmEdge,NRightEdge,axis=0) NBoundary=np.append(NBoundary,NTopEdge,axis=0) NBoundary=np.append(NBoundary,NLeftEdge,axis=0) return NCorners,NBtmEdge,NTopEdge,NLeftEdge,NRightEdge,NBoundary def DefineElem2D45(Node,NBtmEdge,NTopEdge,NLeftEdge,NRightEdge,shiftX,shiftY): A=spatial.cKDTree(Node[:,1:3]) # Find nearest XYPnt=np.array([0.0,0.0]) ElemQuad=np.array([[0,0,0,0,0]]) ElemPyrd=
np.array([[0,0,0,0]])
numpy.array
# Imports here import argparse import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import os import json from torchvision import datasets, transforms, models from PIL import Image from torch.autograd import Variable # Imports here means = [0.485, 0.456, 0.406] deviations = [0.229, 0.224, 0.225] def parse_args(): parser = argparse.ArgumentParser( description="Trains a network on a dataset of images and saves the model to a checkpoint") parser.add_argument('data_dir', action="store", help='the data directory to work') parser.add_argument('check_point', action="store", type=str, help='the save file to load') parser.add_argument('--topk', default=3, type=int, help='the num to show of possible candidates from top') parser.add_argument('--json_dir', default='./cat_to_name.json', type=str, help='select the json file path') parser.add_argument('--gpu', action='store_true', help='set the gpu mode') args = parser.parse_args() return args def process_image(image): """ Scales, crops, and normalizes a PIL image for a PyTorch model, # # TODO: Process a PIL image for use in a PyTorch model # # TODO : First, resize the images where the shortest side is 256 pixels, # # keeping the aspect ratio. This can be done with the thumbnail or resize methods # resize_to = 256 # crop_to = 224 # # resize # image_width, image_height = image.size # shorter = image_width if image_width < image_height else image_height # ratio = resize_to / shorter # resized_width = int(image_width * ratio) # resized_height = int(image_height * ratio) # image = image.resize((resized_width, resized_height)) # image = image.crop((c / 2 for c in ((resized_width - crop_to), (resized_height - crop_to), # (resized_width + crop_to), (resized_height + crop_to)))) # # TODO : Color channels of images are typically encoded as integers 0-255, # # but the model expected floats 0-1. # # You'll need to convert the values. # # It's easiest with a Numpy array, which you can get from a PIL image like so np_image = np.array(pil_image). # # 0-255 to 0-1 # image = np.array(image) # image = image / 255. # # Nomalization # mean = np.array(means) # std = np.array(deviations) # image = (image - mean) / std # # Transpose # image = np.transpose(image, (2, 0, 1)) # return image.astype(np.float32) """ preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) return preprocess(image) def imshow(image, ax=None, title=None): """Imshow for Tensor.""" if ax is None: fig, ax = plt.subplots() # PyTorch tensors assume the color channel is the first dimension # but matplotlib assumes is the third dimension image = image.transpose((1, 2, 0)) # Undo preprocessing mean = np.array(means) std = np.array(deviations) image = std * image + mean # Image needs to be clipped between 0 and 1 or it looks like noise when displayed image = np.clip(image, 0, 1) ax.imshow(image) return ax def predict(image_path, device, model, label_map, topk=5): ''' Implementation of the code to predict the class from an image file''' image = Image.open(image_path) image = process_image(image) image = np.expand_dims(image, 0) image = torch.from_numpy(image) model.eval() image = Variable(image).to(device) logits = model.forward(image) result = F.softmax(logits, dim=1) top_probs, top_labels = result.cpu().topk(topk) top_probs = top_probs.detach().numpy().tolist()[0] top_labels = top_labels.detach().numpy().tolist()[0] idx_to_class = {val: key for key, val in model.class_to_idx.items()} top_labels = [idx_to_class[lab] for lab in top_labels] top_flowers = [label_map[lab] for lab in top_labels] return top_flowers, top_probs # TODO: Display an image along with the top 5 classes def view_classify(image, ps, classes): ''' Function for viewing an image and it's predicted classes. ''' num_classes = len(ps) ps = np.array(ps) image = image.transpose((1, 2, 0)) # Undo preprocessing mean =
np.array([0.485, 0.456, 0.406])
numpy.array
# Automatically adapted for numpy.oldnumeric Aug 01, 2007 by #!/usr/bin/env python import cdms2 import numpy import os import sys import basetest class TestGenericGrids(basetest.CDMSBaseTest): def testGenGrids2(self): latb = [62.47686472, 69.70600048] lonb = [102.87075526, 105.51598035] fn = self.getDataFile('sampleCurveGrid4.nc') s = fn("sample") g = s.getGrid() lat = g.getLatitude() lon = g.getLongitude() g2 = cdms2.createGenericGrid(lat, lon) datalat = g2.getLatitude().getBounds()[22, 25] datalon = g2.getLongitude().getBounds()[22, 25] self.assertTrue(numpy.ma.allclose(datalat, latb)) self.assertTrue(numpy.ma.allclose(datalon, lonb)) def testGenGrids(self): datb = numpy.array([693., 694., ]) latb = numpy.array([-26.67690036, -30.99890917, ]) lonb = numpy.array([92.41822415, 94.4512163, ]) f = self.getDataFile('sampleGenGrid3.nc') # Slice a file variable on a curvilinear grid: by coordinates ... samp = f['sample'] x = samp(lat=(-32, -25), lon=(90, 95)) self.assertFalse(not numpy.ma.allequal(x.data, datb)) grid = x.getGrid() self.assertFalse(grid.shape != (2,)) lat = grid.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) lon = grid.getLongitude() self.assertFalse(not numpy.ma.allclose(lon.data, lonb, atol=1.e-5)) # ... and by index y = samp[693:695] self.assertFalse(not numpy.ma.allequal(y, datb)) grid = y.getGrid() self.assertFalse(not (grid.shape == (2,))) lat = grid.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) lon = grid.getLongitude() self.assertFalse(not numpy.ma.allclose(lon.data, lonb, atol=1.e-5)) #------------------------------------------------------------- # Slice a TRANSIENT variable on a curvilinear grid: by coordinates ... samp = f['sample'] x = samp(lat=(-32, -25), lon=(90, 95)) self.assertFalse(not numpy.ma.allequal(x.data, datb)) grid = x.getGrid() self.assertFalse(grid.shape != (2,)) lat = grid.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) lon = grid.getLongitude() self.assertFalse(not numpy.ma.allclose(lon.data, lonb, atol=1.e-5)) # ... and by index y = samp[693:695] self.assertFalse(not numpy.ma.allequal(y, datb)) grid = y.getGrid() self.assertFalse(not (grid.shape == (2,))) lat = grid.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) lon = grid.getLongitude() self.assertFalse(not numpy.ma.allclose(lon.data, lonb, atol=1.e-5)) #------------------------------------------------------------- # Computing with variables, coordinate variables x2 = (9. / 5.) * x + 32. lat2 = x2.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) #------------------------------------------------------------- # Slice a coordinate variable, computation latsamp = samp.getLatitude() latx = latsamp(cell=(693, 694)) self.assertFalse(not numpy.ma.allclose(latx.data, latb, atol=1.e-5)) latx = latsamp[693:695] self.assertFalse(not numpy.ma.allclose(latx.data, latb, atol=1.e-5)) latrad = latsamp * numpy.pi / 180.0 #------------------------------------------------------------- f = self.getDataFile('cdtest14.xml') # Slice a DATASET variable on a curvilinear grid: by coordinates ... samp = f['sample'] x = samp(lat=(-32, -25), lon=(90, 95)) self.assertFalse(not numpy.ma.allequal(x.data, datb)) grid = x.getGrid() self.assertFalse(grid.shape != (2,)) lat = grid.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) lon = grid.getLongitude() self.assertFalse(not numpy.ma.allclose(lon.data, lonb, atol=1.e-5)) # ... and by index y = samp[693:695] self.assertFalse(not numpy.ma.allequal(y, datb)) grid = y.getGrid() self.assertFalse(not (grid.shape == (2,))) lat = grid.getLatitude() self.assertFalse(not numpy.ma.allclose(lat.data, latb, atol=1.e-5)) lon = grid.getLongitude() self.assertFalse(not
numpy.ma.allclose(lon.data, lonb, atol=1.e-5)
numpy.ma.allclose
from ..lennard_jones import lennard_jones_forces, lennard_jones_potential, all_lennard_jones_forces, all_lennard_jones_potential, lennard_jones from ..cell_order import create_cell_order_3d, create_cell_order_2d, create_cell_order import numpy as np import numpy.testing as npt """Tests""" def test_potential_1d_0(): potential = lennard_jones_potential(0, 1, epsilon=1, sigma=1) potenital_ref = 0 npt.assert_equal(potential, potenital_ref) def test_potential_3d_0(): potential = lennard_jones_potential( np.array([1, 2, 3]), np.array([2, 2, 3]), epsilon=1, sigma=1) potenital_ref = 0 npt.assert_equal(potential, potenital_ref) def test_potential_3d(): potential = lennard_jones_potential( np.array([0, 4, 3]), np.array([0, 0, 0]), epsilon=1, sigma=1) potenital_ref = -0.00025598361 npt.assert_almost_equal(potential, potenital_ref) test_potential_1d_0() test_potential_3d_0() test_potential_3d # test forces and directions def test_force_attractive(): force = lennard_jones_forces(0, 5, epsilon=1, sigma=1) force_ref = -0.00030716067 * -1 npt.assert_almost_equal(force, force_ref) def test_force_zero(): force = lennard_jones_forces(0, 2**(1 / 6), epsilon=1, sigma=1) force_ref = 0 npt.assert_almost_equal(force, force_ref) def test_force_repulsive(): force = lennard_jones_forces(0, 1, epsilon=1, sigma=1) force_ref = 24 * -1 npt.assert_almost_equal(force, force_ref) def test_force_3d(): force = lennard_jones_forces( np.array([0, 4, 3]), np.array([0, 0, 0]), epsilon=1, sigma=1) force_ref = -0.00030716067 * np.array([0, 4, 3]) / 5 npt.assert_almost_equal(force, force_ref) test_force_repulsive() test_force_zero() test_force_attractive() test_force_3d() def test_forces_2d_1cell(): class TestNl(object): def __init__(self): self.head = np.array([1]) self.list = np.array([-1, 0]) cell_order = create_cell_order_2d(1, [1, 1]) test = TestNl() particle_position_test = np.array([[3, 4], [0, 0]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, epsilon=1, sigma=1) forces_ref = np.array( [-0.00030716067 * np.array([3, 4]) / 5, 0.00030716067 * np.array([3, 4]) / 5]) npt.assert_almost_equal(forces, forces_ref) def test_forces_2d(): class TestNl(object): """four cells", two particles""" def __init__(self): self.head = np.array([0, -1, -1, 1]) self.list = np.array([-1, -1]) cell_order = create_cell_order_2d(2, [4, 4]) test = TestNl() particle_position_test = np.array([[0, 0], [3, 4]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, epsilon=1, sigma=1) forces_ref = np.array( [0.00030716067 * np.array([3, 4]) / 5, - 0.00030716067 * np.array([3, 4]) / 5]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d(): """8 cells, two particles""" class TestNl(object): def __init__(self): self.head = np.array([-1, -1, -1, -1, 0, -1, 1, -1]) self.list = np.array([-1, -1, -1, -1, -1, -1, -1, -1]) cell_order = create_cell_order(2, [4, 4, 4]) test = TestNl() particle_position_test = np.array([[0, 0, 1.5], [3, 4, 1.5]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, epsilon=1, sigma=1) forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5, - 0.00030716067 * np.array([3, 4, 0]) / 5]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d_three_particles(): """8 cells, three particles, all in same octant""" class TestNl(object): def __init__(self): self.head = np.array([2, -1, -1, -1, -1, -1, -1, -1]) self.list = np.array([-1, 0, 1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[0, 0, 0], [3, 4, 0], [4, 3, 0]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5 + 0.00030716067 * np.array([4, 3, 0]) / 5, - 0.00030716067 * np.array([3, 4, 0]) / 5 + 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2), - 0.00030716067 * np.array([4, 3, 0]) / 5 - 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2)]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d_cutoff(): """8 cells, three particles, all in different octants and out off cuttoff radius""" class TestNl(object): def __init__(self): self.head = np.array([0, -1, 1, -1, -1, -1, -1, 2]) self.list = np.array([-1, -1, -1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[0, 0, 0], [10, 10, 10], [0, 10, 0]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) forces_ref = np.array([[0, 0, 0], [0, 0, 0], [0, 0, 0]]) npt.assert_almost_equal(forces, forces_ref) def test_forces_3d_three_particles_2(): """8 cells, three particles, all in different octants""" class TestNl(object): def __init__(self): self.head = np.array([0, 2, 1, -1, -1, -1, -1, -1]) self.list = np.array([-1, -1, -1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[2, 2, 2], [5, 6, 2], [6, 5, 2]]) forces = all_lennard_jones_forces( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) forces_ref = np.array([0.00030716067 * np.array([3, 4, 0]) / 5 + 0.00030716067 * np.array([4, 3, 0]) / 5, - 0.00030716067 * np.array([3, 4, 0]) / 5 + 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2), - 0.00030716067 * np.array([4, 3, 0]) / 5 - 1.5909902576697312 * np.array([1, -1, 0]) / np.sqrt(2)]) npt.assert_almost_equal(forces, forces_ref) test_forces_2d_1cell() test_forces_2d() test_forces_3d() test_forces_3d_three_particles() test_forces_3d_cutoff() test_forces_3d_three_particles_2() def test_potential_3d_three_particles(): """8 cells, three particles, all in same octant""" class TestNl(object): def __init__(self): self.head = np.array([2, -1, -1, -1, -1, -1, -1, -1]) self.list = np.array([-1, 0, 1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[0, 0, 0], [3, 4, 0], [4, 3, 0]]) potential = all_lennard_jones_potential( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) potential_ref = 2 * (-0.00025598361) - 0.4375 npt.assert_almost_equal(potential, potential_ref) def test_potential_3d_three_particles_cutoff(): """8 cells, three particles, all in different octants and out off cuttoff radius.""" class TestNl(object): def __init__(self): self.head = np.array([0, 1, 2, -1, -1, -1, -1, -1]) self.list = np.array([-1, -1, -1]) cell_order = create_cell_order(5, [10, 10, 10]) test = TestNl() particle_position_test = np.array([[0, 0, 0], [10, 0, 0], [0, 10, 0]]) potential = all_lennard_jones_potential( particle_position_test, test, cell_order, r_cut=5, epsilon=1, sigma=1) potential_ref = 0 npt.assert_almost_equal(potential, potential_ref) def test_potential_3d_three_particles_2(): """8 cells, three particles, all in different octants""" class TestNl(object): def __init__(self): self.head = np.array([0, 2, 1, -1, -1, -1, -1, -1]) self.list =
np.array([-1, -1, -1])
numpy.array
import numpy as np from experiments.GMM import GMM from scipy.stats import multivariate_normal as normal_pdf import os file_path = os.path.dirname(os.path.realpath(__file__)) data_path = os.path.abspath(os.path.join(file_path, os.pardir, os.pardir, os.pardir)) + "/data/" ### Gaussian Mixture Model experiment def build_GMM_lnpdf(num_dimensions, num_true_components, prior_variance=1e3): prior = normal_pdf(np.zeros(num_dimensions), prior_variance * np.eye(num_dimensions)) prior_chol = np.sqrt(prior_variance) * np.eye(num_dimensions) target_mixture = GMM(num_dimensions) for i in range(0, num_true_components): this_cov = 0.1 * np.random.normal(0, num_dimensions, (num_dimensions * num_dimensions)).reshape( (num_dimensions, num_dimensions)) this_cov = this_cov.transpose().dot(this_cov) this_cov += 1 * np.eye(num_dimensions) this_mean = 100 * (np.random.random(num_dimensions) - 0.5) target_mixture.add_component(this_mean, this_cov) target_mixture.set_weights(np.ones(num_true_components) / num_true_components) def target_lnpdf(theta, without_prior=False): target_lnpdf.counter += 1 if without_prior: return np.squeeze(target_mixture.evaluate(theta, return_log=True) - prior.logpdf(theta)) else: return np.squeeze(target_mixture.evaluate(theta, return_log=True)) target_lnpdf.counter = 0 return [target_lnpdf, prior, prior_chol, target_mixture] def build_GMM_lnpdf_autograd(num_dimensions, num_true_components): import autograd.scipy.stats.multivariate_normal as normal_auto from autograd.scipy.misc import logsumexp import autograd.numpy as np means = np.empty((num_true_components, num_dimensions)) covs = np.empty((num_true_components, num_dimensions, num_dimensions)) for i in range(0, num_true_components): covs[i] = 0.1 * np.random.normal(0, num_dimensions, (num_dimensions * num_dimensions)).reshape( (num_dimensions, num_dimensions)) covs[i] = covs[i].transpose().dot(covs[i]) covs[i] += 1 * np.eye(num_dimensions) means[i] = 100 * (
np.random.random(num_dimensions)
numpy.random.random
import numpy as np def prepareData(train, dev, embeddings): ''' Almacenamiento de palabras en nuestro vocabulario -> Añadimos al vocabulario aquellas palabras que estén en el subconjunto de los embeddings seleccionados (200000) + 2 de padding y unkown ''' vocabulary = {} vocabulary["PADDING"] = len(vocabulary) vocabulary["UNKOWN"] = len(vocabulary) #Matriz de embeddings del vocabulario embeddings_matrix = [] embeddings_matrix.append(np.zeros(300)) embeddings_matrix.append(np.random.uniform(-0.25, 0.25, 300)) for word in embeddings.wv.vocab: vocabulary[word] = len(vocabulary) #Al mismo tiempo creamos matrix de embeddings embeddings_matrix.append(embeddings[word]) train_idx = [] dev_idx = [] for sentence in train: wordIndices = [] for word in sentence: #Si la palabra está en el vocabulario, asignamos su índice en él if word in vocabulary: wordIndices.append(vocabulary[word]) else: #Padding if word == "-": wordIndices.append(vocabulary["PADDING"]) #Desconocida else: wordIndices.append(vocabulary["UNKOWN"]) train_idx.append(np.array(wordIndices)) for sentence in dev: wordIndices = [] for word in sentence: #Si tenemos embedding para la palabra if word in vocabulary: wordIndices.append(vocabulary[word]) else: #Padding if word == "-": wordIndices.append(vocabulary["PADDING"]) #Desconocida else: wordIndices.append(vocabulary["UNKOWN"]) dev_idx.append(np.array(wordIndices)) return (train_idx, dev_idx, embeddings_matrix, vocabulary) def prepareDataTest(data_test, vocabulary): ''' Preparación de conjunto de test. ''' data_test_idx = [] for sentence in data_test: wordIndices = [] for word in sentence: #Si tenemos embedding para la palabra if word in vocabulary: wordIndices.append(vocabulary[word]) else: #Padding if word == "-": wordIndices.append(vocabulary["PADDING"]) #Desconocida else: wordIndices.append(vocabulary["UNKOWN"]) data_test_idx.append(
np.array(wordIndices)
numpy.array
from HelperClass2.MnistImageDataReader import * from HelperClass2.NeuralNet_3_0 import * from torch.utils.data import TensorDataset, DataLoader import numpy as np import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F import torch from torch.optim import Adam import torch.nn.init as init import warnings warnings.filterwarnings('ignore') train_data_name = "../../Data/ch11.train.npz" test_data_name = "../../Data/ch11.test.npz" class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.fc1 = nn.Linear(28*28, 64, bias=True) self.fc2 = nn.Linear(64, 16, bias=True) self.fc3 = nn.Linear(16, 10, bias=True) def forward(self, x): x = F.sigmoid(self.fc1(x)) x = F.sigmoid(self.fc2(x)) x = F.softmax(self.fc3(x)) return x def _initialize_weights(self): for m in self.modules(): print(m) if isinstance(m, nn.Linear): init.xavier_uniform_(m.weight, gain=1) print(m.weight) def metric(pred, label): ''' :param pred: batch_size * num_classes, numpy array :param label: [batch_size,] :return: accuracy ''' real_len = label.shape[0] pred_y = np.argmax(pred, axis=1) return sum(label == pred_y) / real_len if __name__ == '__main__': # reading data dataReader = MnistImageDataReader(mode="vector") dataReader.ReadData() dataReader.NormalizeX() dataReader.NormalizeY(NetType.MultipleClassifier, base=0) dataReader.Shuffle() dataReader.GenerateValidationSet(k=12) # data preprocessing dataReader.XTrain = np.reshape(dataReader.XTrain, [-1, 28 * 28]) dataReader.YTrain = np.argmax(dataReader.YTrain, axis=1) dataReader.XDev = np.reshape(dataReader.XDev, [-1, 28 * 28]) dataReader.YDev =
np.argmax(dataReader.YDev, axis=1)
numpy.argmax
#!/usr/bin/env python #pip install opencv-python from sklearn.linear_model import LogisticRegression from sklearn import datasets from sklearn.datasets import load_digits digits = datasets.load_digits() from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix,accuracy_score import numpy as np import scipy import cv2 from fractions import Fraction from sklearn.utils.multiclass import unique_labels from matplotlib import pyplot as plt from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import validation_curve def image2Digit(image): #adjust size to 8*8 im_resized = scipy.misc.imresize(image,(8,8)) #RGB(3D) adjust to gray 1D im_gray = cv2.cvtColor(im_resized, cv2.COLOR_BGR2GRAY) #train 0-16, resolutaion - 16/255 im_hex = Fraction(16,255) * im_gray #reverse to black background and white number im_reverse = 16 - im_hex return im_reverse.astype(np.int) #split training sets Xtrain, Xtest, ytrain, ytest = train_test_split(digits.data, digits.target, random_state=2) #create clf = LogisticRegression(penalty='l2') #combine clf.fit(Xtrain, ytrain) #predict ypred = clf.predict(Xtest) #calculate the accuracy accuracy = accuracy_score(ytest, ypred) print("Recognition_accuracyLR:",accuracy) from sklearn import svm from sklearn.svm import SVC clf = svm.SVC(gamma=0.001, C=100.) x,y = digits.data[:-1], digits.target[:-1] clf.fit(x,y) #print('Prediction:', clf.predict(digits.data[-1:])) #plt.imshow(digits.images[-1], cmap=plt.cm.gray_r, interpolation="nearest") #plt.show() x = digits.data[:-1] y = digits.target[:-1] #split data into test and training set train_x, test_x, train_y, test_y=train_test_split(x,y,test_size=0.30, random_state=42,stratify=y) clf.fit(train_x, train_y) y_predict = clf.predict(test_x) accuracy_s = accuracy_score(test_y,y_predict) print("Recognition_accuracySVC:",accuracy_s) ###https://chrisalbon.com/machine_learning/model_evaluation/plot_the_validation_curve/### # Create feature matrix and target vector X, y = digits.data, digits.target # Create range of values for parameter param_range =
np.arange(1, 250, 2)
numpy.arange
""" Created on Wed Nov 7 2018 @author: <NAME> <EMAIL> <NAME> <EMAIL> """ import itertools from sklearn.metrics import (log_loss, f1_score, accuracy_score, average_precision_score, precision_score, recall_score, roc_auc_score, mean_squared_error, r2_score) from sklearn.model_selection import learning_curve import numpy as np import pandas as pd import matplotlib.pyplot as plt import scikitplot as skplt def print_metrics(y_t, y_pred_t, mode=''): """ Print metrics of various kind Parameters ---------- y_t : y_pred_t : mode : string """ print('Model performance on the {} dataset:'.format(mode)) #mse = mean_squared_error(y_t, y_pred_t) #logloss = log_loss(y_t, y_pred_t) accuracy = accuracy_score(y_t, y_pred_t) f1 = f1_score(y_t, y_pred_t) precision_micro = precision_score(y_t, y_pred_t, average='micro') precision_macro = precision_score(y_t, y_pred_t, average='macro') avg_precision = average_precision_score(y_t, y_pred_t) precision = precision_score(y_t, y_pred_t) recall = recall_score(y_t, y_pred_t, average='binary') auc = roc_auc_score(y_t, y_pred_t) r2 = r2_score(y_t, y_pred_t) print(' Metric {}'.format(mode.title())) print('accuracy........... {0:8.4f}'.format(accuracy)) print('recall............. {0:8.4f}'.format(recall)) print('auc................ {0:8.4f}'.format(auc)) print('precision (p=0.5).. {0:8.4f}'.format(precision)) print('precision (avg).... {0:8.4f}'.format(avg_precision)) print('precision (micro).. {0:8.4f}'.format(precision_micro)) print('precision (macro).. {0:8.4f}'.format(precision_macro)) print('f1................. {0:8.4f}'.format(f1)) print('r2................. {0:8.4f}'.format(r2)) print('logloss............ {0:8.4f}'.format(logloss)) print('mse................ {0:8.4f}'.format(mse)) def plot_confusion_matrix(cm, classes, normalize=False, cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. Parameters ---------- cm : matrix confusion matrix classes : list list of names of the classes normalize : bool, optional normalizes confusion matrix if True title : string, optional title of confusion matrix cmap : optional some plot object default: plt.cm.Blues """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] title = 'Normalized Confusion Matrix' else: title = 'Confusion Matrix' plt.title(title) tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.colorbar() fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') def print_confusion_matrix(cm, cr, label, mode=''): """ Print confusino matrix for binary classification Parameters ---------- cm : matrix confusion matrix cr : string label : mode : optional """ print('Confusion matrics of the {} data set:\n'.format(mode)) print('confusion matrix: \n {} \n'.format(cm)) true_negative = cm[0, 0] true_positive = cm[1, 1] false_negative = cm[1, 0] false_positive = cm[0, 1] print('True labels:') for i, j in zip(np.sum(cm, axis=1), label): print('{} {:,}'.format(j, i)) print('') print('Predicted labels:') for i, j in zip(np.sum(cm, axis=0), label): print('{} {:,}'.format(j, i)) total = true_negative + true_positive + false_negative + false_positive accuracy = (true_positive + true_negative) / total precision = true_positive / (true_positive + false_positive) recall = true_positive / (true_positive + false_negative) misclassification_rate = (false_positive + false_negative) / total f1 = (2 * true_positive) / (2 * true_positive + false_positive + false_negative) print('\n accuracy................. {0:.4f}'.format(accuracy)) print(' precision................ {0:.4f}'.format(precision)) print(' recall................... {0:.4f}'.format(recall)) print(' misclassification_rate... {0:.4f}'.format(misclassification_rate)) print(' f1....................... {0:.4f}\n'.format(f1)) print('classification report: \n {} \n '.format(cr)) def plot_learning_curve(estimator, title, x, y, ylim=None, cv=None, n_jobs=-1, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curves. Does not work with Keras/Tensorflow Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. x : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : integer, cross-validation generator, optional If an integer is passed, it is the number of folds (defaults to 3). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects n_jobs : integer, optional Number of jobs to run in parallel (default 1). train_sizes: array-like e.g. np.linspace(.1, 1.0, 5) """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, x, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std =
np.std(train_scores, axis=1)
numpy.std
# -*- coding: utf-8 -*- """ Created on Sat Jan 6 04:46:16 2018 @author: Alankar """ import numpy as np def cart_to_pol(x,y): r = np.sqrt(x**2+y**2) if (x>0 and y>0): theta = np.arctan2(np.abs(y),np.abs(x)) elif(x>0 and y<0): theta = -np.arctan2(np.abs(y),np.abs(x)) elif(x<0 and y>0): theta = np.pi - np.arctan2(np.abs(y),
np.abs(x)
numpy.abs
##------------------------------------------- ## function is to evalute the accuracy of detection result ## creaed by Xuesong(Ben) LI, on 22/1/2018 ##------------------------------------------- import numpy as np from nms_3d import convert_to_list_points from nms_3d import caculate_3d_overlap def average_precsion(recall, precesion): aveg_precision = 0. for t in np.arange(0., 1.1, 0.1): if np.sum(recall >= t) == 0: p = 0 else: p = np.max(precesion[recall>=t]) aveg_precision = aveg_precision + p/11. return aveg_precision def evaluation_3d( all_pred_boxes, all_gt_boxes, threshold = 0.5 ): ''' description: process the predication result and get the accuracy 1. putting all gt_boxes together including the index 2. sorting all_boxes according to the confidence 3. checking the every predict_box with gt_box accordingly 4. sum the tp and np and all the gt_box input: all_pred_boxes and all_gt_boxes are lists. ''' # change format of all_pred_boxes into type: index,l, w, h, theta, x, y, z, score num_all_boxes = len(all_pred_boxes) np_all_boxes = np.zeros([1 ,9]) for i in range(num_all_boxes): temp_index = np.full((all_pred_boxes[i].shape[0],1), i) temp_all_ = np.concatenate((temp_index, all_pred_boxes[i]), axis=1) np_all_boxes = np.append( np_all_boxes, temp_all_, axis=0) np_all_boxes = np.delete(np_all_boxes, 0, 0) sorted_ind = np.argsort(-np_all_boxes[:,8]) sorted_scores = np.sort(-np_all_boxes[:,8]) # convertting the gt_box into coordinate list num_gt = 0 all_gt_boxes_coordinate = [] # caculate the cooridnate list of gt_boxes for j in range(num_all_boxes): num_gt = num_gt + all_gt_boxes[j].shape[0] all_gt_boxes_coordinate.append(convert_to_list_points(all_gt_boxes[j][:,1:8])) num_ind = sorted_ind.shape[0] tp =
np.zeros(num_ind)
numpy.zeros
#%% # For scientific computing import numpy as np import pandas as pd import scipy.special import phd.viz import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sns colors, palette = phd.viz.phd_style() # Variability in fold-change as parameter change. def fold_change_oo(Ka, Ki, R, era, eai=4.5, Nns=4.6E6): ''' computes the gene expression fold change for a simple repression architecture in the limit where the inducer concentration goes to infinity Parameters ---------- Ka, Ki : float. Dissociation constants of the ligand to the active and inactive state of the repressor respectively. R : float. Mean repressor copy number per cell era : float. Repressor-DNA binding energy eai : float. Energy difference between active and inactive state of repressor Nns : float. Number of non-specific binding sites. Returns ------- fold-change ''' return (1 + 1 / (1 + np.exp(-eai) * (Ka / Ki)**2) * R / Nns * np.exp(-era))**-1 # Let us now define the numerical values for all the needed parameters era_num = np.array([-15.3, -13.9, -9.7]) # kBT Ka_num = 139.96 # µM Ki_num = 0.54 # µM # Let's now plot the change in fold-change as $K_A$ and $K_I$ vary for # different energies and repressor copy numbers. # Factor by which the Ka and Ki are varied factor = 2 Ka_array = np.logspace(np.log10(Ka_num / factor), np.log10(Ka_num * factor), 100) Ki_array = np.logspace(
np.log10(Ki_num / factor)
numpy.log10
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_inst/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_inst/suna_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_inst/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_inst/dosta_abcdjm_ctdbp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[3].name = 'ctdbp_seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcpt_m_instrument_log9_recovered' var_list[0].name = 'time' var_list[1].name = 'significant_wave_height' var_list[2].name = 'peak_wave_period' var_list[3].name = 'peak_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'seconds' var_list[3].units = 'degrees' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_no_seawater_pressure' var_list[5].name = 'ctdbp_no_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/06-CTDBPN106/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/06-CTDBPO108/streamed/ctdbp_no_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'ctd_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/10-PHSEND103/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/10-PHSEND107/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/09-PCO2WB103/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/09-PCO2WB104/streamed/pco2w_b_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/05-ADCPTB104/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'ADCP' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/05-ADCPSI103/streamed/adcp_velocity_beam' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/07-VEL3DC108/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'VEL3D' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/07-VEL3DC107/streamed/vel3d_cd_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE02SHBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE02SHBP/LJ01D/08-OPTAAD106/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSBP' and node == 'BEP' and instrument_class == 'OPTAA' and method == 'Streamed': uframe_dataset_name = 'CE04OSBP/LJ01C/08-OPTAAC104/streamed/optaa_sample' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #CSPP Data below elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/telemetered/flort_dj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/08-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/telemetered/dosta_abcdjm_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/02-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/telemetered/ctdpf_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/09-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/telemetered/parad_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/10-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/06-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/telemetered/spkir_abj_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/07-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/telemetered/velpt_j_cspp_instrument' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/05-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE01ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE01ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE06ISSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE06ISSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/07-FLORTJ000/recovered_cspp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/01-DOSTAJ000/recovered_cspp/dosta_abcdjm_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[4].name = 'optode_temperature' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'umol/L' var_list[4].units = 'degC' var_list[5].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/08-CTDPFJ000/recovered_cspp/ctdpf_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temperature' var_list[2].name = 'salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/09-PARADJ000/recovered_cspp/parad_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_j_par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/05-NUTNRJ000/recovered_cspp/nutnr_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'salinity_corrected_nitrate' var_list[2].name = 'nitrate_concentration' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/06-SPKIRJ000/recovered_cspp/spkir_abj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/02-VELPTJ000/recovered_cspp/velpt_j_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'velpt_j_eastward_velocity' var_list[2].name = 'velpt_j_northward_velocity' var_list[3].name = 'velpt_j_upward_velocity' var_list[4].name = 'heading' var_list[5].name = 'roll' var_list[6].name = 'pitch' var_list[7].name = 'temperature' var_list[8].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'degrees' var_list[5].units = 'degrees' var_list[6].units = 'degrees' var_list[7].units = 'degC' var_list[8].units = 'dbar' elif platform_name == 'CE02SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE02SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CE07SHSP' and node == 'PROFILER' and instrument_class == 'OPTAA' and method == 'RecoveredCSPP': uframe_dataset_name = 'CE07SHSP/SP001/04-OPTAAJ000/recovered_cspp/optaa_dj_cspp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/05-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/01-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CEGL386' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL386/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL384' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL384/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL383' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL383/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL382' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL382/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL381' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL381/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL327' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL327/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL326' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL326/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL320' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL320/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL319' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL319/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL312' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL312/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL311' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL311/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CEGL247' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE05MOAS/GL247/03-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_inst/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/01-CTDPFL105/recovered_wfp/dpc_ctd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'dpc_ctd_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2A-CTDPFA107/streamed/ctdpf_sbe43_sample' var_list[0].name = 'time' var_list[1].name = 'corrected_dissolved_oxygen' var_list[2].name = 'seawater_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_inst/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/06-DOSTAD105/recovered_wfp/dpc_optode_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3A-FLORTD104/streamed/flort_d_data_record' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/04-FLNTUA103/recovered_inst/dpc_flnturtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/03-FLCDRA103/recovered_wfp/dpc_flcdrtd_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'flntu_x_mmp_cds_fluorometric_chlorophyll_a' var_list[2].name = 'flntu_x_mmp_cds_total_volume_scattering_coefficient ' var_list[3].name = 'flntu_x_mmp_cds_bback_total' var_list[4].name = 'flcdr_x_mmp_cds_fluorometric_cdom' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'ug/L' var_list[2].units = 'm-1 sr-1' var_list[3].units = 'm-1' var_list[4].units = 'ppb' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/2B-PHSENA108/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3C-PARADA102/streamed/parad_sa_sample' var_list[0].name = 'time' var_list[1].name = 'par_counts_output' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'SPKIR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/3D-SPKIRA102/streamed/spkir_data_record' var_list[0].name = 'time' var_list[1].name = 'spkir_downwelling_vector' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'NUTNR' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4A-NUTNRA102/streamed/nutnr_a_sample' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4F-PCO2WA102/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' var_list[3].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PROFILER' and instrument_class == 'VELPT' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/SF01B/4B-VELPTD106/streamed/velpt_velocity_data' var_list[0].name = 'time' var_list[1].name = 'velpt_d_eastward_velocity' var_list[2].name = 'velpt_d_northward_velocity' var_list[3].name = 'velpt_d_upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[9].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' var_list[9].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_inst/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPD' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CE04OSPD/DP01B/02-VEL3DA105/recovered_wfp/dpc_acm_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_a_eastward_velocity' var_list[2].name = 'vel3d_a_northward_velocity' var_list[3].name = 'vel3d_a_upward_velocity_ascending' var_list[4].name = 'vel3d_a_upward_velocity_descending' var_list[5].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'm/s' var_list[5].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'CTD' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'seawater_pressure' var_list[5].name = 'seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'DOSTA' and method == 'Streamed': #uframe_dataset_name = 'CE04OSPS/PC01B/4A-DOSTAD109/streamed/ctdpf_optode_sample' uframe_dataset_name = 'CE04OSPS/PC01B/4A-CTDPFA109/streamed/ctdpf_optode_sample' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'seawater_pressure' #also use this for the '4A-DOSTAD109/streamed/ctdpf_optode_sample' stream var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'dbar' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PHSEN' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4B-PHSENA106/streamed/phsen_data_record' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSPS' and node == 'PLATFORM200M' and instrument_class == 'PCO2W' and method == 'Streamed': uframe_dataset_name = 'CE04OSPS/PC01B/4D-PCO2WA105/streamed/pco2w_a_sami_data_record' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #Coastal Pioneer CSM Data Streams elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #WAVSS elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_mean_directional' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_MeanDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_mean_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'mean_direction' var_list[2].name = 'number_bands' var_list[3].name = 'initial_frequency' var_list[4].name = 'frequency_spacing' var_list[5].name = 'psd_mean_directional' var_list[6].name = 'mean_direction_array' var_list[7].name = 'directional_spread_array' var_list[8].name = 'spread_direction' var_list[9].name = 'wavss_a_directional_frequency' var_list[10].name = 'wavss_a_corrected_mean_wave_direction' var_list[11].name = 'wavss_a_corrected_directional_wave_direction' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degrees' var_list[2].units = '1' var_list[3].units = 'Hz' var_list[4].units = 'Hz' var_list[5].units = 'm2 Hz-1' var_list[6].units = 'degrees' var_list[7].units = 'degrees' var_list[8].units = 'degrees' var_list[9].units = 'Hz' var_list[10].units = 'deg' var_list[11].units = 'deg' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_non_directional' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_NonDir' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_non_directional_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'psd_non_directional' var_list[5].name = 'wavss_a_non_directional_frequency' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = 'm2 Hz-1' var_list[5].units = 'Hz' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_motion' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Motion' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_motion_recovered' var_list[0].name = 'time' var_list[1].name = 'number_time_samples' var_list[2].name = 'initial_time' var_list[3].name = 'time_spacing' var_list[4].name = 'solution_found' var_list[5].name = 'heave_offset_array' var_list[6].name = 'north_offset_array' var_list[7].name = 'east_offset_array' var_list[8].name = 'wavss_a_buoymotion_time' var_list[9].name = 'wavss_a_magcor_buoymotion_x' var_list[10].name = 'wavss_a_magcor_buoymotion_y' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'sec' var_list[3].units = 'sec' var_list[4].units = '1' var_list[5].units = 'm' var_list[6].units = 'm' var_list[7].units = 'm' var_list[8].units = 'seconds since 1900-01-01' var_list[9].units = 'm' var_list[10].units = 'm' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_fourier' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'WAVSS_Fourier' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_fourier_recovered' var_list[0].name = 'time' var_list[1].name = 'number_bands' var_list[2].name = 'initial_frequency' var_list[3].name = 'frequency_spacing' var_list[4].name = 'number_directional_bands' var_list[5].name = 'initial_directional_frequency' var_list[6].name = 'directional_frequency_spacing' var_list[7].name = 'fourier_coefficient_2d_array' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = '1' var_list[2].units = 'Hz' var_list[3].units = 'Hz' var_list[4].units = '1' var_list[5].units = 'Hz' var_list[6].units = 'Hz' var_list[7].units = '1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PCO2A elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #FDCHP elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_inst/fdchp_a_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP03ISSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP04OSSM' and node == 'BUOY' and instrument_class == 'METBK1-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/SBD11/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/telemetered/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'BUOY' and instrument_class == 'METBK2-hr' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/SBD12/06-METBKA000/recovered_host/metbk_hourly' var_list[0].name = 'met_timeflx' var_list[1].name = 'met_rainrte' var_list[2].name = 'met_buoyfls' var_list[3].name = 'met_buoyflx' var_list[4].name = 'met_frshflx' var_list[5].name = 'met_heatflx' var_list[6].name = 'met_latnflx' var_list[7].name = 'met_mommflx' var_list[8].name = 'met_netlirr' var_list[9].name = 'met_rainflx' var_list[10].name = 'met_sensflx' var_list[11].name = 'met_sphum2m' var_list[12].name = 'met_stablty' var_list[13].name = 'met_tempa2m' var_list[14].name = 'met_tempskn' var_list[15].name = 'met_wind10m' var_list[16].name = 'met_netsirr_hourly' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'mm/hr' var_list[2].units = 'W/m2' var_list[3].units = 'W/m2' var_list[4].units = 'mm/hr' var_list[5].units = 'W/m2' var_list[6].units = 'W/m2' var_list[7].units = 'N/m2' var_list[8].units = 'W/m2' var_list[9].units = 'W/m2' var_list[10].units = 'W/m2' var_list[11].units = 'g/kg' var_list[12].units = 'unitless' var_list[13].units = 'degC' var_list[14].units = 'degC' var_list[15].units = 'm/s' var_list[16].units = 'W/m2' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/03-CTDBPD000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/RID26/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/06-PHSEND000/recovered_inst/phsen_abcdef_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_inst/pco2w_abc_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/recovered_inst/presf_abc_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'presf_tide_pressure' var_list[2].name = 'presf_tide_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD35/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD35/04-VELPTB000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISSM/MFD35/01-ADCPTF000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSSM/MFD35/01-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #Coastal Pioneer WireFollowing Profilers (WFP elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/SBS11/02-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP04OSPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP01CNPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP01CNPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMCO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMCO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUI' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUI/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP02PMUO' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP02PMUO/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/04-FLORTK000/recovered_wfp/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/02-DOFSTK000/recovered_wfp/dofst_k_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/01-VEL3DK000/recovered_wfp/vel3d_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP03ISPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'RecoveredWFP': uframe_dataset_name = 'CP03ISPM/WFP01/05-PARADK000/recovered_wfp/parad_k__stc_imodem_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP04OSPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP04OSPM/RII01/02-ADCPSL010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP01CNPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP01CNPM/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCI/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMCO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMCO/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUI' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUI/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP02PMUO' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP02PMUO/RII01/02-ADCPSL010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/recovered_host/adcps_jln_stc_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CP03ISPM' and node == 'RISER' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CP03ISPM/RII01/02-ADCPTG010/telemetered/adcps_jln_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'adcps_jln_heading' var_list[3].name = 'adcps_jln_pitch' var_list[4].name = 'adcps_jln_roll' var_list[5].name = 'adcps_jln_eastward_seawater_velocity2' var_list[6].name = 'adcps_jln_northward_seawater_velocity2' var_list[7].name = 'adcps_jln_upward_seawater_velocity2' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'cdegree' var_list[3].units = 'cdegree' var_list[4].units = 'cdegree' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL336/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL336' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL336/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL388/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL388' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL388/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL335/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL335' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL335/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL339/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL339' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL339/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL340/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL340' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL340/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL374/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL374' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL374/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL375/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL375' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL375/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL376/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL376' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL376/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL379/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL379' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL379/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL380/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL380' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL380/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' var_list[8].units = 'dbar' var_list[9].units = 'degree_north' var_list[10].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/03-CTDGVM000/telemetered/ctdgv_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/03-CTDGVM000/recovered_host/ctdgv_m_glider_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_water_temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'sci_seawater_density' var_list[4].name = 'sci_water_pressure_dbar' var_list[5].name = 'sci_water_cond' var_list[6].name = 'lat' var_list[7].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' var_list[6].units = 'degree_north' var_list[7].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/04-DOSTAM000/telemetered/dosta_abcdjm_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/04-DOSTAM000/recovered_host/dosta_abcdjm_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'sci_oxy4_oxygen' var_list[2].name = 'sci_abs_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[4].name = 'lat' var_list[5].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/kg' var_list[3].units = 'dbar' var_list[4].units = 'degree_north' var_list[5].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/02-FLORTM000/telemetered/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/02-FLORTM000/recovered_host/flort_m_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'sci_flbbcd_chlor_units' var_list[3].name = 'sci_flbbcd_cdom_units' var_list[4].name = 'sci_flbbcd_bb_units' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[7].name = 'lat' var_list[8].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' var_list[7].units = 'degree_north' var_list[8].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CP05MOAS/GL387/05-PARADM000/telemetered/parad_m_glider_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'PARAD' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/05-PARADM000/recovered_host/parad_m_glider_recovered' var_list[0].name = 'time' var_list[1].name = 'parad_m_par' var_list[2].name = 'int_ctd_pressure' var_list[3].name = 'lat' var_list[4].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' var_list[3].units = 'degree_north' var_list[4].units = 'degree_east' elif platform_name == 'CPGL387' and node == 'GLIDER' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CP05MOAS/GL387/01-ADCPAM000/recovered_host/adcp_velocity_glider' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[8].name = 'int_ctd_pressure' var_list[9].name = 'lat' var_list[10].name = 'lon' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data =
np.array([])
numpy.array
from numpy import sqrt,abs,zeros,log,exp,dot,log10,median,atleast_1d,var,shape,pi,where from scipy.stats import norm from scipy.linalg import solveh_banded,cholesky_banded from scipy.special import gammaln,betainc,gammaincc def lprob2sigma(lprob): """ translates a log_e(probability) to units of Gaussian sigmas """ if (lprob>-36.): sigma = norm.ppf(1.-0.5*exp(1.*lprob)) else: sigma = sqrt( log(2./pi) - 2.*log(8.2) - 2.*lprob ) return float(sigma) def chol_inverse_diag(t): """ Computes inverse of matrix given its Cholesky upper Triangular decomposition t. matrix form: ab[u + i - j, j] == a[i,j] (here u=1) (quick version: only calculates diagonal and neighboring elements) """ (uu,nrows) = shape(t) B =
zeros((uu,nrows),dtype='float64')
numpy.zeros
# Crank-Nicholson (implicit) finite difference method for a wildfire model. # Code written by <NAME>. Implicit finite difference method derived by <NAME>, <NAME>, <NAME>, and # <NAME>. 2018-12-10 import numpy as np from scipy import linalg as la from matplotlib import pyplot as plt from matplotlib import animation from scipy.optimize import fsolve def conditions(TS1, TS0, # vectors K1, K2, h, k, A, B, C1, C2, # constants hT_aj, cT_aj, dT_aj, hT_bj, cT_bj, dT_bj, hS_aj, cS_aj, dS_aj, hS_bj, cS_bj, dS_bj): # functions """Return the conditions for the wildfire model. Returns nonlinear implicit Crank-Nicholson conditions for the wildfire PDE system, derived using center difference approximations for u_x and midpoint approximation for u_xx. Boundary conditions were derived similarly. With K1 = k / (2 * h ** 2) and K2 = k * V / (4 * h), the conditions are the following: for T: [ h hT_aj = (h cT_aj - dT_aj) T1[0] + dT_aj T1[1] # left boundary `-. (T1[k] - T0[k]) = K1 * (T1[k+1] - T1[k] + T1[k-1] + T0[k+1] - T0[k] + T0[k-1]) - K2 * (T1[k+1] - T1[k-1] + T0[k+1] - T0[k-1]) # interior `-. h hT_bj = (h cT_bj + dT_bj) T1[-1] + dT_bj T1[-2] # right boundary ], and for S: [ h hS_aj = (h cS_aj - dS_aj) S1[0] + dS_aj S1[1] # left boundary `-. S1[k] - S0[k] = -k * C2 * S1[k] * exp(-B / T1[k])) # interior `-. h hS_bj = (h cS_bj + dS_bj) S1[-1] + dS_bj S1[-2] # right boundary ] Parameters TS1 (ndarray): The values of T^{n+1} and S^{n+1} TS0 (ndarray): The values of T^n and S^n K1 (float): first constant in the equations K2 (float): second constant in the equations h (float): spatial difference constant, usually (b - a) / num_x_steps k (float): temporal difference constant, usually T / num_t_steps A (float): constant from PDE system B (float): constant from PDE system C1 (float): constant from PDE system C2 (float): constant from PDE system hT_aj (float): hT_a evaluated at this time step cT_aj (float): cT_a evaluated at this time step dT_aj (float): dT_a evaluated at this time step hT_bj (float): hT_b evaluated at this time step cT_bj (float): cT_b evaluated at this time step dT_bj (float): dT_b evaluated at this time step hS_aj (float): hS_a evaluated at this time step cS_aj (float): cS_a evaluated at this time step dS_aj (float): dS_a evaluated at this time step hS_bj (float): hS_b evaluated at this time step cS_bj (float): cS_b evaluated at this time step dS_bj (float): dS_b evaluated at this time step Returns (ndarray): The residuals (differences between right- and left-hand sides) of the conditions. """ T0, S0 = np.split(TS0, 2) T1, S1 = np.split(TS1, 2) # commonly used term, computed beforehand to save time SeBT = S1[1:-1] * np.exp(-B / T1[1:-1]) # compute Crank-Nicolson conditions on interior for S S_lhs = S1[1:-1] - S0[1:-1] # S1[k] - S0[k] = -k * C2 * S1[k] * exp(-B / T1[k])) S_rhs = -k * C2 * SeBT # calculate boundary conditions for S Sa_condition = (h * cS_aj - dS_aj) * S1[0] + dS_aj * S1[1] Sb_condition = (h * cS_bj + dS_bj) * S1[-1] - dS_bj * S1[-2] # compute Crank-Nicolson conditions on interior for T T_lhs = T1[1:-1] - T0[1:-1] K1_term = K1 * (T1[2:] - 2 * T1[1:-1] + T1[:-2] + T0[2:] - 2 * T0[1:-1] + T0[:-2]) K2_term = K2 * (T1[2:] - T1[:-2] + T0[2:] - T0[:-2]) T_rhs = K1_term - K2_term + k * A * (SeBT - C1 * T1[1:-1]) # calculate boundary conditions for T Ta_condition = (h * cT_aj - dT_aj) * T1[0] + dT_aj * T1[1] Tb_condition = (h * cT_bj + dT_bj) * T1[-1] - dT_bj * T1[-2] # return the complete set of conditions for S and T return np.concatenate(( [h * hS_aj - Sa_condition], # S boundary condition at a S_lhs - S_rhs, # S interior conditions [h * hS_bj - Sb_condition], # S boundary condition at b [h * hT_aj - Ta_condition], # T boundary condition at a T_lhs - T_rhs, # T interior conditions [h * hT_bj - Tb_condition] # T boundary condition at b )) def wildfire_model(a, b, T, N_x, N_t, # constants T_0, S_0, cT_a, dT_a, hT_a, cT_b, dT_b, hT_b, cS_a, dS_a, hS_a, cS_b, dS_b, hS_b, # functions A, B, C1, C2, v): # constants """Returns a solution to the wildfire PDE system. Returns a Crank-Nicolson approximation of the solution T(x, t), S(x, t) for the following system: T_t = T_xx - v * T_x + A(S * exp(-B / T) - C1 * T), S_t = -C2 * S * exp(-B / T), a <= x <= b, 0 < t <= T T(x, 0) = T_0(x), S(x, 0) = S_0(x), hT_a(t) = cT_a(t) * T(a, t) + dT_a(t) * T_x(a, t), hT_b(t) = cT_b(t) * T(b, t) + dT_b(t) * T_x(b, t), hS_a(t) = cS_a(t) * S(a, t) + dS_a(t) * S_x(a, t), hS_b(t) = cS_b(t) * S(b, t) + dS_b(t) * S_x(b, t). In the above equations, T corresponds to temperature, S to the amount of available fuel, and v to wind conditions; A, B, C1, and C2 are constants. Parameters: a (float): left spatial endpoint b (float): right spatial endpoint T (float): final time value N_x (int): number of mesh nodes in the spatial dimension N_t (int): number of mesh nodes in the temporal dimension T_0 (callable): function specifying the initial condition for T S_0 (callable): function specifying the initial condition for S cT_a (callable): function specifying left boundary condition for T dT_a (callable): function specifying left boundary condition for T hT_a (callable): function specifying left boundary condition for T cT_b (callable): function specifying right boundary condition for T dT_b (callable): function specifying right boundary condition for T hT_b (callable): function specifying right boundary condition for T cS_a (callable): function specifying left boundary condition for S dS_a (callable): function specifying left boundary condition for S hS_a (callable): function specifying left boundary condition for S cS_b (callable): function specifying right boundary condition for S dS_b (callable): function specifying right boundary condition for S hS_b (callable): function specifying right boundary condition for S A (float): constant from PDE system B (float): constant from PDE system C1 (float): constant from PDE system C2 (float): constant from PDE system v (float): constant from PDE system Returns: Ts (np.ndarray): finite difference approximation of T(x,t). Ts[j] = T(x,t_j), where j is the index corresponding to time t_j. Ss (np.ndarray): finite difference approximation of T(x,t). Ts[j] = T(x,t_j), where j is the index corresponding to time t_j. """ if a >= b: raise ValueError('a must be less than b') if T <= 0: raise ValueError('T must be greater than or equal to zero') if N_x <= 2: raise ValueError('N_x must be greater than zero') if N_t <= 1: raise ValueError('N_t must be greater than zero') x, delx = np.linspace(a, b, N_x, retstep=True) t, delt = np.linspace(0, T, N_t, retstep=True) # evaluate the boundary condition functions along t HT_a = hT_a(t) CT_a = cT_a(t) DT_a = dT_a(t) HT_b = hT_b(t) CT_b = cT_b(t) DT_b = dT_b(t) HS_a = hS_a(t) CS_a = cS_a(t) DS_a = dS_a(t) HS_b = hS_b(t) CS_b = cS_b(t) DS_b = dS_b(t) # evaluate the initial condition functions S_x0 = S_0(x) T_x0 = T_0(x) K1 = delt / 2 / delx / delx K2 = delt * v / 4 / delx # combine the initial conditions for T and S into one vector TSs = [np.concatenate((T_x0, S_x0))] for j in range(1, N_t): TSs.append(fsolve(conditions, TSs[-1], args=(TSs[-1], K1, K2, delx, delt, A, B, C1, C2, HT_a[j], CT_a[j], DT_a[j], HT_b[j], CT_b[j], DT_b[j], HS_a[j], CS_a[j], DS_a[j], HS_b[j], CS_b[j], DS_b[j] ) )) TSs = np.array(TSs) Ts, Ss = np.split(np.array(TSs), 2, axis=1) return Ts, Ss def test_wildfire_model(): """With initial conditions T_0(x) = sech(x) S_0(x) = tanh(x) and boundary conditions specified by cT_a(t) = 1, dT_a(t) = 0, hT_a(t) = T_0(a), cT_b(t) = 1, dT_b(t) = 0, hT_b(t) = T_0(b), cS_a(t) = 1, dS_a(t) = 0, hS_a(t) = S_0(a), cS_b(t) = 1, dS_b(t) = 0, and hS_b(t) = S_0(b). the solution looks like a fire centered at zero that moves into the supply found in the positive x direction. We test using this fact. The correct result is displayed as an animation in test_wildfire.mp4. """ a = -10 b = 10 T = 1.0 N_x = 100 N_t = 100 T_0 = lambda x: 1 / np.cosh(x) S_0 = lambda x: np.tanh(x) cT_a = lambda t: np.ones_like(t) if type(t) == np.ndarray else 1 dT_a = lambda t: np.zeros_like(t) if type(t) == np.ndarray else 0 hT_a = lambda t: T_0(a) * np.ones_like(t) if type(t) == np.ndarray else T_0(a) cT_b = lambda t: np.ones_like(t) if type(t) == np.ndarray else 1 dT_b = lambda t: np.zeros_like(t) if type(t) == np.ndarray else 0 hT_b = lambda t: T_0(b) * np.ones_like(t) if type(t) == np.ndarray else T_0(b) cS_a = lambda t: np.ones_like(t) if type(t) == np.ndarray else 1 dS_a = lambda t: np.zeros_like(t) if type(t) == np.ndarray else 0 hS_a = lambda t: S_0(a) * np.ones_like(t) if type(t) == np.ndarray else S_0(a) cS_b = lambda t: np.ones_like(t) if type(t) == np.ndarray else 1 dS_b = lambda t: np.zeros_like(t) if type(t) == np.ndarray else 0 hS_b = lambda t: S_0(b) *
np.ones_like(t)
numpy.ones_like
import warnings import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from source.data_handlers import BaseDataset from source.data_loading import load_VSN_data, load_HAR_dataset pd.options.mode.chained_assignment = None class BaseFLDataset: def __init__(self, config): self.config = config self.fl_train_datasets = None self.centralized_train_dataset = None self.fl_test_datasets = None self.dataset_names = None self.input_dim = None self.output_dim = None self.feature_names = None self.participant_normalizations = {} self.class_weights = {} self._initialize_participant_datasets(config) if self.fl_test_datasets is None: self.fl_test_datasets = [None for _ in range(len(self))] warnings.warn("It is not recommended to not define the test-set") if self.input_dim is None: raise RuntimeError("The input dimension must be defined") if self.output_dim is None: raise RuntimeError("The output dimension must be defined") if self.feature_names is None: raise RuntimeError("The feature names must be defined") def __getitem__(self, index): return ( self.dataset_names[index], self.fl_train_datasets[index], self.fl_test_datasets[index], ) def __len__(self): """ Number of federated datasets which can be distributed to participants Returns: Integer """ return len(self.fl_train_datasets) def _initialize_participant_datasets(self, config): raise NotImplementedError class TabularDataset(BaseFLDataset): def __init__(self, config): super(TabularDataset, self).__init__(config) def _split_x_y(self, df: pd.DataFrame): raise NotImplementedError def _initialize_participant_datasets(self, config): self.fl_train_datasets = [] self.fl_test_datasets = [] self.dataset_names = [] def _get_counts(self, preprocessed_df, split_column): counts = preprocessed_df[split_column].value_counts().reset_index() counts.columns = [split_column, "count"] counts = counts.sort_values(by=["count", split_column], ascending=False) counts = counts[counts["count"] >= 1.33 * self.config["test_min_samples"]] return counts def _fill_normalize_steps( self, dataset, numerical_columns, categorical_columns, split_column ): # fill missing values before normalization if enabled if self.config["fill_missing_before_normalization"]: dataset = dataset.fillna(float(self.config["missing_value_fill"])) # normalize if self.config["normalization_location"] == "global": num = dataset[numerical_columns] dataset[numerical_columns] = self._normalize(num) elif self.config["normalization_location"] == "local": for participant_name in list(dataset[split_column].unique()): row_idx = dataset[split_column] == participant_name num = dataset.loc[row_idx, numerical_columns] dataset.loc[row_idx, numerical_columns] = self._normalize(num) else: pass # compute the hot-start parameters for each client for participant_name in list(dataset[split_column].unique()): row_idx = dataset[split_column] == participant_name num = dataset.loc[row_idx, numerical_columns] self.participant_normalizations[participant_name] = { "means": num.mean().fillna(0), "stds": num.std().fillna(1), } # # fill remaining missing values preprocessed_dataset = dataset preprocessed_dataset[numerical_columns] = preprocessed_dataset[ numerical_columns ].fillna(self.config["missing_value_fill"]) preprocessed_dataset[categorical_columns] = preprocessed_dataset[ categorical_columns ].fillna(self.config["missing_value_fill_binary"]) if preprocessed_dataset.isna().any().any(): raise ValueError("Missing values must be filled correctly") return preprocessed_dataset def _normalize(self, df): if self.config["normalization_mode"] == "standardization": num_normalized = (df - df.mean()) / df.std() else: num_normalized = df - df.min() num_normalized = num_normalized / num_normalized.max() # num_normalized = (num_normalized - 0.5) * 2 if self.config["clip_standardized"]: num_normalized = num_normalized.clip(-1.5, 1.5) return num_normalized def _create_tabular_federated_dataset(self, df, splits, split_column): centralized_train_x = None centralized_train_y = None for i, x in splits.iterrows(): participant_name = x[split_column] self.dataset_names.append(participant_name) subdataset = df[df[split_column] == participant_name] if len(subdataset) > self.config["max_samples"]: subdataset = subdataset.sample(self.config["max_samples"]) warnings.warn( "The number of available samples is reduced for participant " + str(participant_name) ) x, y = self._split_x_y(subdataset) self.input_dim = x.shape[1] self.feature_names = x.columns effective_test_size = int( max( self.config["test_split"] * len(y), self.config["test_min_samples"], ) ) train_x, test_x, train_y, test_y = train_test_split( x, y, test_size=effective_test_size, stratify=y, random_state=self.config["seed"], ) # set the class_weights self.class_weights[participant_name] = ( (1 / np.array(train_y.value_counts().sort_index())) / np.sum(1 / (np.array(train_y.value_counts().sort_index()))) * len(np.unique(train_y)) ) self.fl_train_datasets.append( BaseDataset(train_x.to_numpy(), train_y.to_numpy()) ) self.fl_test_datasets.append( BaseDataset(test_x.to_numpy(), test_y.to_numpy()) ) if centralized_train_x is None: centralized_train_x = train_x centralized_train_y = train_y else: centralized_train_x = pd.concat([centralized_train_x, train_x], axis=0) centralized_train_y = pd.concat([centralized_train_y, train_y], axis=0) self.class_weights["centralized"] = ( (1 / np.array(centralized_train_y.value_counts().sort_index())) / np.sum(1 / (np.array(centralized_train_y.value_counts().sort_index()))) * len(
np.unique(centralized_train_y)
numpy.unique
import os import numpy as np import tensorflow as tf import systems.fluid_createTFRecords as fluid_createTFRecords import systems.em_createTFRecords as em_createTFRecords from glob import glob as glb from tqdm import * FLAGS = tf.app.flags.FLAGS # Constants describing the input pipline. tf.app.flags.DEFINE_integer('min_queue_examples', 400, """ min examples to queue up""") tf.app.flags.DEFINE_integer('num_preprocess_threads', 2, """ number of process threads for que runner """) tf.app.flags.DEFINE_string('data_dir', '/data', """ base dir for all data""") tf.app.flags.DEFINE_string('tf_data_dir', '../data', """ base dir for saving tf records data""") tf.app.flags.DEFINE_integer('tf_seq_length', 30, """ seq length of tf saved records """) def lat_distortions(lat, distortions): if len(lat.get_shape()) == 5: lat = tf.cond(distortions[0]>0.50, lambda: tf.reverse(lat, axis=[2]), lambda: lat) elif len(lat.get_shape()) == 6: lat = tf.cond(distortions[0]>0.50, lambda: tf.reverse(lat, axis=[2]), lambda: lat) lat = tf.cond(0.75<distortions[0], lambda: tf.reverse(lat, axis=[3]), lambda: lat) lat = tf.cond(distortions[0]<0.25, lambda: tf.reverse(lat, axis=[3]), lambda: lat) return lat def read_data_fluid(filename_queue, seq_length, shape, num_frames): # make reader reader = tf.TFRecordReader() key, serialized_example = reader.read(filename_queue) # make feature dict feature_dict = {} for i in xrange(FLAGS.tf_seq_length): feature_dict['flow/frame_' + str(i)] = tf.FixedLenFeature([np.prod(
np.array(shape)
numpy.array
import os import time from os import path as osp import numpy as np import torch import json from tqdm import tqdm import matplotlib.pyplot as plt from scipy.interpolate import interp1d from tensorboardX import SummaryWriter from torch.utils.data import DataLoader from data_glob_speed import * from transformations import * from metric import compute_ate_rte from model_resnet1d import * _input_channel, _output_channel = 6, 2 _fc_config = {'fc_dim': 512, 'in_dim': 7, 'dropout': 0.5, 'trans_planes': 128} def WriteList(path, name, folders): with open(path+"/"+name, 'w') as f: for folder in folders: f.writelines(folder+"\n") f.close() def GetFolderName(path): names = os.listdir(path+"/") folders=[] for name in names: if os.path.isdir(os.path.join(os.path.abspath(path), name)): folders.append(name) folders.sort() return folders def get_model(arch): if arch == 'resnet18': network = ResNet1D(_input_channel, _output_channel, BasicBlock1D, [2, 2, 2, 2], base_plane=64, output_block=FCOutputModule, kernel_size=3, **_fc_config) elif arch == 'resnet50': # For 1D network, the Bottleneck structure results in 2x more parameters, therefore we stick to BasicBlock. _fc_config['fc_dim'] = 1024 network = ResNet1D(_input_channel, _output_channel, BasicBlock1D, [3, 4, 6, 3], base_plane=64, output_block=FCOutputModule, kernel_size=3, **_fc_config) elif arch == 'resnet101': _fc_config['fc_dim'] = 1024 network = ResNet1D(_input_channel, _output_channel, BasicBlock1D, [3, 4, 23, 3], base_plane=64, output_block=FCOutputModule, **_fc_config) else: raise ValueError('Invalid architecture: ', args.arch) return network def run_test(network, data_loader, device, eval_mode=True): targets_all = [] preds_all = [] if eval_mode: network.eval() for bid, (feat, targ, _, _) in tqdm(enumerate(data_loader)): pred = network(feat.to(device)).cpu().detach().numpy() targets_all.append(targ.detach().numpy()) preds_all.append(pred) targets_all = np.concatenate(targets_all, axis=0) preds_all = np.concatenate(preds_all, axis=0) return targets_all, preds_all def add_summary(writer, loss, step, mode): names = '{0}_loss/loss_x,{0}_loss/loss_y,{0}_loss/loss_z,{0}_loss/loss_sin,{0}_loss/loss_cos'.format( mode).split(',') for i in range(loss.shape[0]): writer.add_scalar(names[i], loss[i], step) writer.add_scalar('{}_loss/avg'.format(mode), np.mean(loss), step) def get_dataset(root_dir, data_list, args, **kwargs): mode = kwargs.get('mode', 'train') random_shift, shuffle, transforms, grv_only = 0, False, None, False if mode == 'train': random_shift = args.step_size // 2 shuffle = True transforms = RandomHoriRotate(math.pi * 2) elif mode == 'val': shuffle = True elif mode == 'test': shuffle = False grv_only = True if args.dataset == 'ronin': seq_type = GlobSpeedSequence elif args.dataset == 'ridi': from data_ridi import RIDIGlobSpeedSequence seq_type = RIDIGlobSpeedSequence elif args.dataset == 'sense': seq_type = SenseINSSequence dataset = StridedSequenceDataset( seq_type, root_dir, data_list, args.cache_path, args.step_size, args.window_size, random_shift=random_shift, transform=transforms, shuffle=shuffle, grv_only=grv_only, max_ori_error=args.max_ori_error, args=args) global _input_channel, _output_channel _input_channel, _output_channel = dataset.feature_dim, dataset.target_dim return dataset def get_dataset_from_list(root_dir, list_path, args, **kwargs): with open(list_path) as f: data_list = [s.strip().split(',' or ' ')[0] for s in f.readlines() if len(s) > 0 and s[0] != '#'] return get_dataset(root_dir, data_list, args, **kwargs) def train(args, **kwargs): # Loading data start_t = time.time() train_dataset = get_dataset_from_list(args.root_dir, args.train_list, args, mode='train') train_loader = DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True) end_t = time.time() print('Training set loaded. Feature size: {}, target size: {}. Time usage: {:.3f}s'.format( train_dataset.feature_dim, train_dataset.target_dim, end_t - start_t)) val_dataset, val_loader = None, None if args.val_list is not None: val_dataset = get_dataset_from_list(args.validation_dir, args.val_list, args, mode='val') val_loader = DataLoader(val_dataset, batch_size=512, shuffle=True) device = torch.device('cuda:0' if torch.cuda.is_available() and not args.cpu else 'cpu') summary_writer = None if args.out_dir is not None: if not osp.isdir(args.out_dir): os.makedirs(args.out_dir) write_config(args) if not osp.isdir(osp.join(args.out_dir, 'checkpoints')): os.makedirs(osp.join(args.out_dir, 'checkpoints')) if not osp.isdir(osp.join(args.out_dir, 'logs')): os.makedirs(osp.join(args.out_dir, 'logs')) global _fc_config _fc_config['in_dim'] = args.window_size // 32 + 1 network = get_model(args.arch).to(device) print('Number of train samples: {}'.format(len(train_dataset))) if val_dataset: print('Number of val samples: {}'.format(len(val_dataset))) total_params = network.get_num_params() print('Total number of parameters: ', total_params) criterion = torch.nn.MSELoss() optimizer = torch.optim.Adam(network.parameters(), args.lr) scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=0.1, patience=10, verbose=True, eps=1e-12) start_epoch = 0 if args.continue_from is not None and osp.exists(args.continue_from): checkpoints = torch.load(args.continue_from) start_epoch = checkpoints.get('epoch', 0) network.load_state_dict(checkpoints.get('model_state_dict')) optimizer.load_state_dict(checkpoints.get('optimizer_state_dict')) if args.out_dir is not None and osp.exists(osp.join(args.out_dir, 'logs')): summary_writer = SummaryWriter(osp.join(args.out_dir, 'logs')) summary_writer.add_text('info', 'total_param: {}'.format(total_params)) step = 0 best_val_loss = np.inf print('Start from epoch {}'.format(start_epoch)) total_epoch = start_epoch train_losses_all, val_losses_all = [], [] # Get the initial loss. init_train_targ, init_train_pred = run_test(network, train_loader, device, eval_mode=False) init_train_loss = np.mean((init_train_targ - init_train_pred) ** 2, axis=0) train_losses_all.append(np.mean(init_train_loss)) print('-------------------------') print('Init: average loss: {}/{:.6f}'.format(init_train_loss, train_losses_all[-1])) if summary_writer is not None: add_summary(summary_writer, init_train_loss, 0, 'train') if val_loader is not None: init_val_targ, init_val_pred = run_test(network, val_loader, device) init_val_loss = np.mean((init_val_targ - init_val_pred) ** 2, axis=0) val_losses_all.append(np.mean(init_val_loss)) print('Validation loss: {}/{:.6f}'.format(init_val_loss, val_losses_all[-1])) if summary_writer is not None: add_summary(summary_writer, init_val_loss, 0, 'val') try: for epoch in range(start_epoch, args.epochs): print('-------------------------') start_t = time.time() network.train() train_outs, train_targets = [], [] for batch_id, (feat, targ, _, _) in tqdm(enumerate(train_loader)): feat, targ = feat.to(device), targ.to(device) optimizer.zero_grad() pred = network(feat) train_outs.append(pred.cpu().detach().numpy()) train_targets.append(targ.cpu().detach().numpy()) loss = criterion(pred, targ) loss = torch.mean(loss) loss.backward() optimizer.step() step += 1 train_outs = np.concatenate(train_outs, axis=0) train_targets = np.concatenate(train_targets, axis=0) train_losses = np.average((train_outs - train_targets) ** 2, axis=0) end_t = time.time() print('Epoch {}, time usage: {:.3f}s, average loss: {}/{:.6f}'.format( epoch, end_t - start_t, train_losses, np.average(train_losses))) print('Learning rate: {}'.format(optimizer.param_groups[0]['lr'])) train_losses_all.append(np.average(train_losses)) if summary_writer is not None: add_summary(summary_writer, train_losses, epoch + 1, 'train') summary_writer.add_scalar('optimizer/lr', optimizer.param_groups[0]['lr'], epoch) if val_loader is not None: network.eval() val_outs, val_targets = run_test(network, val_loader, device) val_losses = np.average((val_outs - val_targets) ** 2, axis=0) avg_loss = np.average(val_losses) print('Validation loss: {}/{:.6f}'.format(val_losses, avg_loss)) scheduler.step(avg_loss) if summary_writer is not None: add_summary(summary_writer, val_losses, epoch + 1, 'val') val_losses_all.append(avg_loss) if avg_loss < best_val_loss: best_val_loss = avg_loss if args.out_dir and osp.isdir(args.out_dir): model_path = osp.join(args.out_dir, 'checkpoints', 'checkpoint_%d.pt' % epoch) torch.save({'model_state_dict': network.state_dict(), 'epoch': epoch, 'optimizer_state_dict': optimizer.state_dict()}, model_path) print('Model saved to ', model_path) else: if args.out_dir is not None and osp.isdir(args.out_dir): model_path = osp.join(args.out_dir, 'checkpoints', 'checkpoint_%d.pt' % epoch) torch.save({'model_state_dict': network.state_dict(), 'epoch': epoch, 'optimizer_state_dict': optimizer.state_dict()}, model_path) print('Model saved to ', model_path) total_epoch = epoch except KeyboardInterrupt: print('-' * 60) print('Early terminate') print('Training complete') if args.out_dir: model_path = osp.join(args.out_dir, 'checkpoints', 'checkpoint_latest.pt') torch.save({'model_state_dict': network.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'epoch': total_epoch}, model_path) print('Checkpoint saved to ', model_path) return train_losses_all, val_losses_all def recon_traj_with_preds(dataset, preds, seq_id=0, **kwargs): """ Reconstruct trajectory with predicted global velocities. """ ts = dataset.ts[seq_id] ind = np.array([i[1] for i in dataset.index_map if i[0] == seq_id], dtype=int) dts = np.mean(ts[ind[1:]] - ts[ind[:-1]]) # pos = np.zeros([preds.shape[0] + 2, 2]) # pos[0] = dataset.gt_pos[seq_id][0, :2] pos = np.zeros([preds.shape[0] + 2, 3]) pos[0] = dataset.gt_pos[seq_id][0, :3] # pos[1:-1] = np.cumsum(preds[:, :2] * dts, axis=0) + pos[0] pos[1:-1] = np.cumsum(preds[:, :3] * dts, axis=0) + pos[0] pos[-1] = pos[-2] ts_ext = np.concatenate([[ts[0] - 1e-06], ts[ind], [ts[-1] + 1e-06]], axis=0) pos = interp1d(ts_ext, pos, axis=0)(ts) return pos def test_sequence(args): if args.test_path is not None: if args.test_path[-1] == '/': args.test_path = args.test_path[:-1] root_dir = osp.split(args.test_path)[0] test_data_list = [osp.split(args.test_path)[1]] elif args.test_list is not None: root_dir = args.root_dir with open(args.test_list) as f: test_data_list = [s.strip().split(',' or ' ')[0] for s in f.readlines() if len(s) > 0 and s[0] != '#'] else: raise ValueError('Either test_path or test_list must be specified.') if args.out_dir is not None and not osp.isdir(args.out_dir): os.makedirs(args.out_dir) if not torch.cuda.is_available() or args.cpu: device = torch.device('cpu') checkpoint = torch.load(args.model_path, map_location=lambda storage, location: storage) else: device = torch.device('cuda:0') checkpoint = torch.load(args.model_path) # Load the first sequence to update the input and output size _ = get_dataset(root_dir, [test_data_list[0]], args) global _fc_config _fc_config['in_dim'] = args.window_size // 32 + 1 network = get_model(args.arch) network.load_state_dict(checkpoint['model_state_dict']) network.eval().to(device) print('Model {} loaded to device {}.'.format(args.model_path, device)) preds_seq, targets_seq, losses_seq, ate_all, t_rte_all, d_rte_all = [], [], [], [], [], [] traj_lens = [] pred_per_min = 200 * 60 # hard code here for data in test_data_list: seq_dataset = get_dataset(root_dir, [data], args, mode='test') seq_loader = DataLoader(seq_dataset, batch_size=1024, shuffle=False) ind = np.array([i[1] for i in seq_dataset.index_map if i[0] == 0], dtype=int) targets, preds = run_test(network, seq_loader, device, True) losses = np.mean((targets - preds) ** 2, axis=0) preds_seq.append(preds) targets_seq.append(targets) losses_seq.append(losses) # pos_pred = recon_traj_with_preds(seq_dataset, preds)[:, :2] # pos_gt = seq_dataset.gt_pos[0][:, :2] pos_pred = recon_traj_with_preds(seq_dataset, preds)[:, :3] pos_gt = seq_dataset.gt_pos[0][:, :3] traj_lens.append(np.sum(np.linalg.norm(pos_gt[1:] - pos_gt[:-1], axis=1))) ate, t_rte, d_rte = compute_ate_rte(pos_pred, pos_gt, pred_per_min) ate_all.append(ate) t_rte_all.append(t_rte) d_rte_all.append(d_rte) pos_cum_error = np.linalg.norm(pos_pred - pos_gt, axis=1) print('Sequence {}, loss {} / {}, ate {:.6f}, t_rte {:.6f}, d_rte {:.6f}'.format(data, losses, np.mean(losses), ate, t_rte, d_rte)) # Plot figures kp = preds.shape[1] if kp == 2: targ_names = ['vx', 'vy'] elif kp == 3: targ_names = ['vx', 'vy', 'vz'] plt.figure('{}'.format(data), figsize=(16, 9)) plt.subplot2grid((kp, 2), (0, 0), rowspan=kp - 1) plt.plot(pos_pred[:, 0], pos_pred[:, 1]) plt.plot(pos_gt[:, 0], pos_gt[:, 1]) # plt.plot(pos_pred[:, 0], pos_pred[:, 1], pos_pred[:, 2]) # plt.plot(pos_gt[:, 0], pos_gt[:, 1], pos_pred[:, 2]) plt.title(data) plt.axis('equal') plt.legend(['Predicted', 'Ground truth']) plt.subplot2grid((kp, 2), (kp - 1, 0)) plt.plot(pos_cum_error) plt.legend(['ATE:{:.3f}, T_RTE:{:.3f}, D_RTE:{:.3f}'.format(ate_all[-1], t_rte_all[-1], d_rte_all[-1])]) for i in range(kp): plt.subplot2grid((kp, 2), (i, 1)) plt.plot(ind, preds[:, i]) plt.plot(ind, targets[:, i]) plt.legend(['Predicted', 'Ground truth']) plt.title('{}, error: {:.6f}'.format(targ_names[i], losses[i])) plt.tight_layout() if args.show_plot: plt.show() if args.out_dir is not None and osp.isdir(args.out_dir): # np.save(osp.join(args.out_dir, data + '_gsn.npy'), # np.concatenate([pos_pred[:, :3], pos_gt[:, :2]], axis=1)) np.save(osp.join(args.out_dir, data + '_gsn.npy'), np.concatenate([pos_pred[:, :3], pos_gt[:, :3]], axis=1)) plt.savefig(osp.join(args.out_dir, data + '_gsn.png')) plt.close('all') losses_seq = np.stack(losses_seq, axis=0) losses_avg = np.mean(losses_seq, axis=1) # Export a csv file if args.out_dir is not None and osp.isdir(args.out_dir): with open(osp.join(args.out_dir, 'losses.csv'), 'w') as f: if losses_seq.shape[1] == 2: f.write('seq,vx,vy,avg,ate,t_rte,d_rte\n') else: f.write('seq,vx,vy,vz,avg,ate,t_rte,d_rte\n') for i in range(losses_seq.shape[0]): f.write('{},'.format(test_data_list[i])) for j in range(losses_seq.shape[1]): f.write('{:.6f},'.format(losses_seq[i][j])) f.write('{:.6f},{:6f},{:.6f},{:.6f}\n'.format(losses_avg[i], ate_all[i], t_rte_all[i], d_rte_all[i])) print('----------\nOverall loss: {}/{}, avg ATE:{}, avg T_RTE:{}, avg D_RTE:{}'.format( np.average(losses_seq, axis=0), np.average(losses_avg), np.mean(ate_all), np.mean(t_rte_all),
np.mean(d_rte_all)
numpy.mean
import os import sys sys.path.append("..") from utils import Logger from algorithms import * from scipy.sparse import csr_matrix import numpy as np class Bayes: def predict(self,X,label,results,param=None): Naive_param_np ,prior_p,prior_n =results["param"] # print(prior ,"prior ") n=np.arange(X.shape[1]) nn=np.repeat(n,X.shape[0],0) X_1=X.astype(int) # print(Naive_param_np[0:4,0:10],"Naive_param_np") # print(X_1[0:10,0:10],"X_1") pos=Naive_param_np[X_1,n] neg=Naive_param_np[X_1+2,n] # print(pos[0:10,0:10],"pos") pos_prob=np.sum(np.log(pos),1)+np.sum(
np.log(prior_p)
numpy.log
from tqdm import tqdm import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from scipy.optimize import fmin_slsqp from toolz import partial from sklearn.model_selection import KFold, TimeSeriesSplit, RepeatedKFold from sklearn.linear_model import ElasticNetCV, LassoCV, RidgeCV from bayes_opt import BayesianOptimization class Optimize(object): #### # Synthetic Difference in Differences (SDID) #### def est_zeta(self, Y_pre_c) -> float: """ # SDID Parameter to adjust the L2 penalty term """ return (self.n_treat * self.n_post_term) ** (1 / 4) * np.std( Y_pre_c.diff().dropna().values ) def est_omega(self, Y_pre_c, Y_pre_t, zeta): """ # SDID estimating omega """ Y_pre_t = Y_pre_t.copy() n_features = Y_pre_c.shape[1] nrow = Y_pre_c.shape[0] _w = np.repeat(1 / n_features, n_features) _w0 = 1 start_w = np.append(_w, _w0) if type(Y_pre_t) == pd.core.frame.DataFrame: Y_pre_t = Y_pre_t.mean(axis=1) # Required to have non negative values max_bnd = abs(Y_pre_t.mean()) * 2 w_bnds = tuple( (0, 1) if i < n_features else (max_bnd * -1, max_bnd) for i in range(n_features + 1) ) caled_w = fmin_slsqp( partial(self.l2_loss, X=Y_pre_c, y=Y_pre_t, zeta=zeta, nrow=nrow), start_w, f_eqcons=lambda x: np.sum(x[:n_features]) - 1, bounds=w_bnds, disp=False, ) return caled_w def est_lambda(self, Y_pre_c, Y_post_c): """ # SDID estimating lambda """ Y_pre_c_T = Y_pre_c.T Y_post_c_T = Y_post_c.T n_pre_term = Y_pre_c_T.shape[1] _lambda = np.repeat(1 / n_pre_term, n_pre_term) _lambda0 = 1 start_lambda = np.append(_lambda, _lambda0) if type(Y_post_c_T) == pd.core.frame.DataFrame: Y_post_c_T = Y_post_c_T.mean(axis=1) max_bnd = abs(Y_post_c_T.mean()) * 2 lambda_bnds = tuple( (0, 1) if i < n_pre_term else (max_bnd * -1, max_bnd) for i in range(n_pre_term + 1) ) caled_lambda = fmin_slsqp( partial(self.l2_loss, X=Y_pre_c_T, y=Y_post_c_T, zeta=0, nrow=0), start_lambda, f_eqcons=lambda x: np.sum(x[:n_pre_term]) - 1, bounds=lambda_bnds, disp=False, ) return caled_lambda[:n_pre_term] def l2_loss(self, W, X, y, zeta, nrow) -> float: """ Loss function with L2 penalty """ if type(y) == pd.core.frame.DataFrame: y = y.mean(axis=1) _X = X.copy() _X["intersept"] = 1 return np.sum((y - _X.dot(W)) ** 2) + nrow * zeta ** 2 * np.sum(W[:-1] ** 2) #### # Synthetic Control Method (SC) #### def rmse_loss(self, W, X, y, intersept=True) -> float: if type(y) == pd.core.frame.DataFrame: y = y.mean(axis=1) _X = X.copy() if intersept: _X["intersept"] = 1 return np.mean(np.sqrt((y - _X.dot(W)) ** 2)) def rmse_loss_with_V(self, W, V, X, y) -> float: if type(y) == pd.core.frame.DataFrame: y = y.mean(axis=1) _rss = (y - X.dot(W)) ** 2 _n = len(y) _importance = np.zeros((_n, _n)) np.fill_diagonal(_importance, V) return np.sum(_importance @ _rss) def _v_loss(self, V, X, y, return_loss=True): Y_pre_t = self.Y_pre_t.copy() n_features = self.Y_pre_c.shape[1] _w = np.repeat(1 / n_features, n_features) if type(Y_pre_t) == pd.core.frame.DataFrame: Y_pre_t = Y_pre_t.mean(axis=1) w_bnds = tuple((0, 1) for i in range(n_features)) _caled_w = fmin_slsqp( partial(self.rmse_loss_with_V, V=V, X=X, y=y), _w, f_eqcons=lambda x: np.sum(x) - 1, bounds=w_bnds, disp=False, ) if return_loss: return self.rmse_loss(_caled_w, self.Y_pre_c, Y_pre_t, intersept=False) else: return _caled_w def estimate_v(self, additional_X, additional_y): _len = len(additional_X) _v = np.repeat(1 / _len, _len) caled_v = fmin_slsqp( partial(self._v_loss, X=additional_X, y=additional_y), _v, f_eqcons=lambda x: np.sum(x) - 1, bounds=tuple((0, 1) for i in range(_len)), disp=False, ) return caled_v def est_omega_ADH( self, Y_pre_c, Y_pre_t, additional_X=pd.DataFrame(), additional_y=pd.DataFrame() ): """ # SC estimating omega for synthetic control method (not for synthetic diff.-in-diff.) """ Y_pre_t = Y_pre_t.copy() n_features = Y_pre_c.shape[1] nrow = Y_pre_c.shape[0] _w = np.repeat(1 / n_features, n_features) if type(Y_pre_t) == pd.core.frame.DataFrame: Y_pre_t = Y_pre_t.mean(axis=1) # Required to have non negative values w_bnds = tuple((0, 1) for i in range(n_features)) if len(additional_X) == 0: caled_w = fmin_slsqp( partial(self.rmse_loss, X=Y_pre_c, y=Y_pre_t, intersept=False), _w, f_eqcons=lambda x: np.sum(x) - 1, bounds=w_bnds, disp=False, ) return caled_w else: assert additional_X.shape[1] == Y_pre_c.shape[1] if type(additional_y) == pd.core.frame.DataFrame: additional_y = additional_y.mean(axis=1) # normalized temp_df = pd.concat([additional_X, additional_y], axis=1) ss = StandardScaler() ss_df = pd.DataFrame( ss.fit_transform(temp_df), columns=temp_df.columns, index=temp_df.index ) ss_X = ss_df.iloc[:, :-1] ss_y = ss_df.iloc[:, -1] add_X = pd.concat([Y_pre_c, ss_X]) add_y = pd.concat([Y_pre_t, ss_y]) self.caled_v = self.estimate_v(additional_X=add_X, additional_y=add_y) return self._v_loss(self.caled_v, X=add_X, y=add_y, return_loss=False) ##### # cv search for zeta #### def _zeta_given_cv_loss_inverse(self, zeta, cv=5, split_type="KFold"): return -1 * self._zeta_given_cv_loss(zeta, cv, split_type)[0] def _zeta_given_cv_loss(self, zeta, cv=5, split_type="KFold"): nrow = self.Y_pre_c.shape[0] if split_type == "KFold": kf = KFold(n_splits=cv, random_state=self.random_seed) elif split_type == "TimeSeriesSplit": kf = TimeSeriesSplit(n_splits=cv) elif split_type == "RepeatedKFold": _cv = max(2, int(cv / 2)) kf = RepeatedKFold( n_splits=_cv, n_repeats=_cv, random_state=self.random_seed ) loss_result = [] nf_result = [] for train_index, test_index in kf.split(self.Y_pre_c, self.Y_pre_t): train_w = self.est_omega( self.Y_pre_c.iloc[train_index], self.Y_pre_t.iloc[train_index], zeta ) nf_result.append(np.sum(np.round(np.abs(train_w), 3) > 0) - 1) loss_result.append( self.rmse_loss( train_w, self.Y_pre_c.iloc[test_index], self.Y_pre_t.iloc[test_index], ) ) return np.mean(loss_result), np.mean(nf_result) def grid_search_zeta( self, cv=5, n_candidate=20, candidate_zata=[], split_type="KFold" ): """ Search for zeta using grid search instead of theoretical values """ if len(candidate_zata) == 0: for _z in np.linspace(0.1, self.base_zeta * 2, n_candidate): candidate_zata.append(_z) candidate_zata.append(self.base_zeta) candidate_zata.append(0) candidate_zata = sorted(candidate_zata) result_loss_dict = {} result_nf_dict = {} print("cv: zeta") for _zeta in tqdm(candidate_zata): result_loss_dict[_zeta], result_nf_dict[_zeta] = self._zeta_given_cv_loss( _zeta, cv=cv, split_type=split_type ) loss_sorted = sorted(result_loss_dict.items(), key=lambda x: x[1]) return loss_sorted[0] def bayes_opt_zeta( self, cv=5, init_points=5, n_iter=5, zeta_max=None, zeta_min=None, split_type="KFold", ): """ Search for zeta using Bayesian Optimization instead of theoretical values """ if zeta_max == None: zeta_max = self.base_zeta * 1.02 zeta_max2 = self.base_zeta * 2 if zeta_min == None: zeta_min = self.base_zeta * 0.98 zeta_min2 = 0.01 pbounds = {"zeta": (zeta_min, zeta_max)} optimizer = BayesianOptimization( f=partial(self._zeta_given_cv_loss_inverse, cv=cv, split_type=split_type), pbounds=pbounds, random_state=self.random_seed, ) optimizer.maximize( init_points=2, n_iter=2, ) optimizer.set_bounds(new_bounds={"zeta": (zeta_min2, zeta_max2)}) optimizer.maximize( init_points=init_points, n_iter=n_iter, ) optimizer.max["params"]["zeta"] return (optimizer.max["params"]["zeta"], optimizer.max["target"] * -1) ##### # The following is for sparse estimation #### def est_omega_ElasticNet(self, Y_pre_c, Y_pre_t): Y_pre_t = Y_pre_t.copy() if type(Y_pre_t) == pd.core.frame.DataFrame: Y_pre_t = Y_pre_t.mean(axis=1) # Y_pre_t.columns = "treatment_group" regr = ElasticNetCV(cv=5, random_state=0) regr.fit(Y_pre_c, Y_pre_t) self.elastic_net_alpha = regr.alpha_ caled_w = regr.coef_ return np.append(caled_w, regr.intercept_) def est_omega_Lasso(self, Y_pre_c, Y_pre_t): Y_pre_t = Y_pre_t.copy() if type(Y_pre_t) == pd.core.frame.DataFrame: Y_pre_t = Y_pre_t.mean(axis=1) regr = LassoCV(cv=5, random_state=0) regr.fit(Y_pre_c, Y_pre_t) self.lasso_alpha = regr.alpha_ caled_w = regr.coef_ return
np.append(caled_w, regr.intercept_)
numpy.append
""" Module: LMR_verify_proxy_plot.py Purpose: Plotting of summary statistics from proxy-based verification. Both proxy chronologies that were assimilated to create reconstructions and those witheld for independent verification are considered. Input: Reads .pckl files containing verification data generated by running the LMR_verify_proxy.py script. Originator: <NAME> | Dept. of Atmospheric Sciences, Univ. of Washington | October 2015 Revisions: - Histogram plots now include overlays of distributions derived from kernel (gaussian) density estimation, as well as results from a 2-sided Kolmogorov-Smirnov significance test on distributions representing results over two different time periods [<NAME> - U. of Washington, Dec. 2017] - Added the production of plots showing results per individual proxy records. [<NAME> - U. of Washington, March 2018] """ import os import numpy as np import pickle from time import time from os.path import join from scipy import stats import statsmodels.api as sm import matplotlib import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.colors import from_levels_and_colors from mpl_toolkits.basemap import Basemap # ========================================================================================= # START: set user parameters here # ========================================================================================= # ------------------------------ # Section 1: Plotting parameters # ------------------------------ make_plots_hist = True make_plots_maps = False make_plots_individual_sites = False make_pdfs = False # set the default size of the figure in inches. ['figure.figsize'] = width, height; plt.rcParams['figure.figsize'] = 10, 8 # that's default image size for this interactive session plt.rcParams['axes.linewidth'] = 2.0 #set the value globally plt.rcParams['font.weight'] = 'bold' #set the font weight globally plt.rcParams['font.size'] = 11 #set the font size globally #plt.rc('text', usetex=True) plt.rc('text', usetex=False) plt.style.use('ggplot') # Histogram plotting parameters binwidth = 0.05 CORRrange = [-1,1] CErange = [-1,1] CEchangerange = [-1,1] alpha = 0.25 fcolor = ['blue', 'red'] # ------------------------- # Section 2: Proxy datasets # ------------------------- #proxies = 'PAGES2kv1' proxies = 'LMRdb' # Assign symbol to proxy types for plotting: dependent on proxy database used. if proxies == 'PAGES2kv1': # PAGES2kv1 proxies proxy_verif = {\ 'Tree ring_Width' :'o',\ 'Tree ring_Density' :'s',\ 'Ice core_d18O' :'v',\ 'Ice core_d2H' :'^',\ 'Ice core_Accumulation' :'D',\ 'Coral_d18O' :'p',\ 'Coral_Luminescence' :'8',\ 'Lake sediment_All' :'<',\ 'Marine sediment_All' :'>',\ 'Speleothem_All' :'h',\ } elif proxies == 'LMRdb': # LMRdb proxies proxy_verif = {\ 'Tree Rings_WoodDensity' :'s',\ 'Tree Rings_WidthPages' :'o',\ 'Tree Rings_WidthPages2' :'o',\ 'Tree Rings_WidthBreit' :'o',\ 'Tree Rings_Isotopes' :'*',\ 'Corals and Sclerosponges_d18O' :'p',\ 'Corals and Sclerosponges_SrCa' :'h',\ 'Corals and Sclerosponges_Rates':'D',\ 'Ice Cores_d18O' :'v',\ 'Ice Cores_dD' :'^',\ 'Ice Cores_Accumulation' :'D',\ 'Ice Cores_MeltFeature' :'d',\ 'Lake Cores_Varve' :'<',\ 'Lake Cores_Misc' :'>',\ 'Lake Cores_BioMarkers' :'>',\ 'Lake Cores_GeoChem' :'^',\ 'Marine Cores_d18O' :'H',\ 'Bivalve_d18O' :'8',\ 'Speleothems_d18O' :'h',\ } else: raise SystemExit('ERROR in the especification of the proxy dataset to be considered. Exiting!') # Only keep proxy sites for which the linear PSM has a correlation >= than this value r_crit = 0.0 #r_crit = 0.2 # ------------------------------------ # Section 3: Directories & experiments # ------------------------------------ #datadir_input = '/home/disk/ekman4/rtardif/LMR/output' datadir_input = '/home/disk/kalman3/rtardif/LMR/output' #datadir_input = '/home/disk/kalman3/rtardif/LMR/output/verification_production_runs' #nexp = 'production_gis_ccsm4_pagesall_0.75' #nexp = 'production_mlost_ccsm4_pagesall_0.75' nexp = 'test_py3' #verif_period = [[1880,2000],[0,1879]] verif_period = [[1900,2000],[1800,1899]] # Output directory, where the figs will be dumped. #datadir_output = datadir_input # if want to keep things tidy datadir_output = '.' # if want local plots # ========================================================================================= # END: set user parameters here # ========================================================================================= # ============================================================================= # <<<<<<<<<<<<<<<<<<<<<<<<<<<<< Main code >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> # ============================================================================= def main(): begin_time = time() # ============================= # Loading the verification data # ============================= vtype = {'assim': 'Assimilated proxies', 'verif':'Non-assimilated proxies'} nbperiods = len(verif_period) assim_dict = [dict() for x in range(nbperiods)] verif_dict = [dict() for x in range(nbperiods)] # loop over verification periods & load data in dictionaries for p in range(nbperiods): # Read the pickle files containing summary stats fname_assim = datadir_input+'/'+nexp+'/'+'verifProxy_'+str(verif_period[p][0])+'to'+str(verif_period[p][1])+\ '/reconstruction_eval_assimilated_proxy_summary.pckl' fname_verif = datadir_input+'/'+nexp+'/'+'verifProxy_'+str(verif_period[p][0])+'to'+str(verif_period[p][1])+\ '/reconstruction_eval_withheld_proxy_summary.pckl' infile_assim = open(fname_assim,'rb') assim_dict[p] = pickle.load(infile_assim) infile_assim.close() if os.path.isfile(fname_verif): infile_verif = open(fname_verif,'rb') verif_dict[p] = pickle.load(infile_verif) infile_verif.close() verif_data = True else: verif_data = False # get list of all proxy types in the assimilated/withheld data lst = [] for p in range(nbperiods): a_sites = list(assim_dict[p].keys()) lst = lst + list(set([item[0] for item in a_sites])) if verif_data: v_sites = list(verif_dict[p].keys()) lst = lst + list(set([item[0] for item in v_sites])) master_proxy_types = list(set([item for item in lst])) master_proxy_types.insert(0,'All') # ================== # Now creating plots # ================== if datadir_output != '.': figdir = datadir_output+'/VerifFigs' if not os.path.isdir(figdir): os.system('mkdir %s' % figdir) else: figdir = '.' # ============================================================================================================ # 1) Histograms of (recon, proxy) CORRELATION, CE across grand ensemble for all proxy types and per proxy type # ============================================================================================================ if make_plots_hist: # loop over proxy types for proxy in master_proxy_types: print('Proxies: %s' %proxy) fig = plt.figure(figsize=(12,8)) irow = 1 for v in list(vtype.keys()): # "assim" & "verif" proxies if v == 'verif' and not verif_data: break ax_master = fig.add_subplot(2,1,irow) # Turn off axis lines and ticks of the big subplot ax_master.tick_params(labelcolor=(1.,1.,1., 0.0), top='off', bottom='off', left='off', right='off') # Removes the white frame ax_master._frameon = False ax_master.set_title("%s\n" % vtype[v], fontsize=16, fontweight='bold') facecolor = fcolor[0] if v == 'assim': pos = [1,2,3] else: pos = [4,5,6] bins_corr = np.arange(-1.-binwidth/2, 1.+binwidth/2, binwidth) bins_ce = np.arange(-2.-binwidth/2, 1.+binwidth/2, binwidth) # 1) --- Correlation --- ax = fig.add_subplot(2,3,pos[0]) mean_stat = np.zeros([nbperiods]) std_stat = np.zeros([nbperiods]) prior_tmp = [] stat_comp = [] for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sitetag = list(workdict[p].keys()) if proxy == 'All': proxy_types = list(set([item[0] for item in sitetag])) else: proxy_types = proxy tmp = [workdict[p][k]['MCensCorr'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] stat = [item for sublist in tmp for item in sublist] # flatten list of lists nbdata = len(stat) mean_stat[p] = np.mean(stat) std_stat[p] = np.std(stat) results, edges = np.histogram(stat, bins=bins_corr, normed=True) plt.bar(edges[:-1]+binwidth/2,results,binwidth,color=fcolor[p],alpha=alpha,linewidth=0,align="center") # kernel density estimation statv = np.asarray(stat) kde = sm.nonparametric.KDEUnivariate(statv) nbpts, = statv.shape if nbpts > 0: kde.fit(kernel='gau') plt.plot(kde.support,kde.density,color=fcolor[p],lw=2,label=str(verif_period[p][0])+' to '+str(verif_period[p][1])) stat_comp.append(stat) # Accumulate prior stat tmp = [workdict[p][k]['PriorMCensCorr'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] prior_tmp.append([item for sublist in tmp for item in sublist]) # flatten list of lists # Kolmogorov-Smirnov significance testing of difference between distributions from both tested periods nbdist = len(stat_comp) if nbdist > 1: dist_test = stats.ks_2samp(stat_comp[0],stat_comp[1]) #print('Corr: %f %f' %(dist_test.statistic, dist_test.pvalue)) xmind,xmaxd,ymind,ymaxd = plt.axis() prior_corr = [item for sublist in prior_tmp for item in sublist] results, edges = np.histogram(prior_corr, bins=bins_corr, normed=True) plt.plot(edges[:-1]+binwidth,results,linewidth=1,ls='steps',color='black',label='Prior') plt.xlabel("Correlation",fontweight='bold') plt.ylabel("Probability density",fontweight='bold') ymin = 0.0 #ymax = 0.04; nbins = 4 #ymax = 0.05; nbins = 5 # for r_crit = 0.2 #ymax = 0.1; nbins = 5 #ymax = 2.0; nbins = 5 if proxy == 'All': ymax = 2.0; nbins = 5 else: ymax = ymaxd plt.axis((CORRrange[0],CORRrange[1],ymin,ymax)) plt.locator_params(axis = 'y', nbins = nbins) plt.legend(loc=2,fontsize=9,frameon=False,handlelength=1.2) xmin,xmax,ymin,ymax = plt.axis() xpos = xmin+0.025*(xmax-xmin) ypos = ymin+0.5*(ymax-ymin) for p in range(nbperiods): plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(mean_stat[p]),fontsize=10,fontweight='bold',color=fcolor[p]) ypos = ypos-0.075*(ymax-ymin) if nbdist > 1: plt.text(xpos,ypos,' p-value = %s' %"{:.3f}".format(dist_test.pvalue),fontsize=9,fontweight='bold') ypos = ypos-0.075*(ymax-ymin) plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(np.mean(prior_corr)),fontsize=10,fontweight='bold') # 2) --- CE --- ax = fig.add_subplot(2,3,pos[1]) mean_stat = np.zeros([nbperiods]) std_stat = np.zeros([nbperiods]) prior_tmp = [] stat_comp = [] for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sitetag = list(workdict[p].keys()) if proxy == 'All': proxy_types = list(set([item[0] for item in sitetag])) else: proxy_types = proxy tmp = [workdict[p][k]['MCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] stat = [item for sublist in tmp for item in sublist] # flatten list of lists nbdata = len(stat) mean_stat[p] = np.mean(stat) std_stat[p] = np.std(stat) # Since CE is not bounded at the lower end, assign values smaller than 1st bin to value of 1st bin #stat = [bins[0] if x<bins[0] else x for x in stat] results, edges = np.histogram(stat, bins=bins_ce, normed=True) plt.bar(edges[:-1],results,binwidth,color=fcolor[p],alpha=alpha,linewidth=0) # kernel density estimation statv = np.asarray(stat) kde = sm.nonparametric.KDEUnivariate(statv) nbpts, = statv.shape if nbpts > 0: kde.fit(kernel='gau') plt.plot(kde.support,kde.density,color=fcolor[p],lw=2,label=str(verif_period[p][0])+' to '+str(verif_period[p][1])) stat_comp.append(stat) # Accumulate prior stat tmp = [workdict[p][k]['PriorMCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] prior_tmp.append([item for sublist in tmp for item in sublist]) # flatten list of lists # Kolmogorov-Smirnov significance testing of difference between distributions from both tested periods nbdist = len(stat_comp) if nbdist > 1: dist_test = stats.ks_2samp(stat_comp[0],stat_comp[1]) #print('CE: %f %f' %(dist_test.statistic, dist_test.pvalue)) prior_ce = [item for sublist in prior_tmp for item in sublist] # Since CE is not bounded at the lower end, assign values smaller than 1st bin to value of 1st bin prior_ce = [bins_ce[0] if x<bins_ce[0] else x for x in prior_ce] results, edges = np.histogram(prior_ce, bins=bins_ce, normed=True) plt.plot(edges[:-1]+binwidth,results,linewidth=1,ls='steps',color='black',label='Prior') plt.xlabel("Coefficient of efficiency",fontweight='bold') plt.ylabel("Probability density",fontweight='bold') xmin,xmax,ymin,ymax = plt.axis() ymin = 0.0 #ymax = 0.45 #ymax = 0.1 # for r_crit = 0.2 #ymax = 0.5; nbins = 5 ymax = 12.0; nbins = 6 plt.axis((CErange[0],CErange[1],ymin,ymax)) plt.legend(loc=2,fontsize=9,frameon=False,handlelength=1.2) xmin,xmax,ymin,ymax = plt.axis() xpos = xmin+0.025*(xmax-xmin) ypos = ymin+0.5*(ymax-ymin) for p in range(nbperiods): plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(mean_stat[p]),fontsize=10,fontweight='bold',color=fcolor[p]) ypos = ypos-0.075*(ymax-ymin) if nbdist > 1: plt.text(xpos,ypos,' p-value = %s' %"{:.3f}".format(dist_test.pvalue),fontsize=9,fontweight='bold') ypos = ypos-0.075*(ymax-ymin) plt.text(xpos,ypos,'Mean = %s' %"{:.2f}".format(np.mean(prior_ce)),fontsize=10,fontweight='bold') # 3) --- Change in CE from prior to posterior --- ax = fig.add_subplot(2,3,pos[2]) prior_tmp = [] stat_comp = [] for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sitetag = list(workdict[p].keys()) if proxy == 'All': proxy_types = list(set([item[0] for item in sitetag])) else: proxy_types = proxy tmpPost = [workdict[p][k]['MCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] tmpPrior = [workdict[p][k]['PriorMCensCE'] for k in sitetag if k[0] in proxy_types and np.abs(workdict[p][k]['PSMinfo']['corr'])>=r_crit] statPost = [item for sublist in tmpPost for item in sublist] # flatten list of lists statPrior = [item for sublist in tmpPrior for item in sublist] # flatten list of lists # difference stat = [statPost[i]-statPrior[i] for i in range(len(statPost))] nbdata = len(stat) mean_stat = np.mean(stat) std_stat = np.std(stat) # % of positive change dCEplus = [stat[i] for i in range(len(stat)) if stat[i] > 0.0] if nbdata > 0: frac = int(float(len(dCEplus))/float(len(stat))*100.) fractiondCEplus = str(int('%d' % frac )) else: fractiondCEplus = 'n/a' print('CE_stats: period= ', str('%12s' %verif_period[p]), ' category= ', v, ':', str('%8s' %str(len(dCEplus))), str('%8s' %str(len(stat))), \ ' Fraction of +change:', fractiondCEplus, '%') results, edges = np.histogram(stat, bins=bins_ce, normed=True) leg = str(verif_period[p][0])+' to '+str(verif_period[p][1])+' : % +change='+str(fractiondCEplus) plt.bar(edges[:-1],results,binwidth,color=fcolor[p],alpha=alpha,linewidth=0) # kernel density estimation statv = np.asarray(stat) kde = sm.nonparametric.KDEUnivariate(statv) nbpts, = statv.shape if nbpts > 0: kde.fit(kernel='gau') plt.plot(kde.support,kde.density,color=fcolor[p],lw=2,label=leg) stat_comp.append(stat) # Kolmogorov-Smirnov significance testing of difference between distributions from both periods nbdist = len(stat_comp) if nbdist > 1: dist_test = stats.ks_2samp(stat_comp[0],stat_comp[1]) #print('deltaCE: %f %f' %(dist_test.statistic, dist_test.pvalue)) plt.xlabel("Change in coefficient of efficiency",fontweight='bold') plt.ylabel("Probability density",fontweight='bold') xmin,xmax,ymin,ymax = plt.axis() ymin = 0.0 ymax = 8.0; nbins = 5 plt.axis((CEchangerange[0],CEchangerange[1],ymin,ymax)) plt.legend(loc=2,fontsize=9,frameon=False,handlelength=1.2) if nbdist > 1: xmin,xmax,ymin,ymax = plt.axis() xpos = xmin+0.025*(xmax-xmin) ypos = ymin+0.75*(ymax-ymin) plt.text(xpos,ypos,' p-value = %s' %"{:.3f}".format(dist_test.pvalue),fontsize=9,fontweight='bold') irow = irow + 1 fig.tight_layout() if proxy == 'All': proxy_tag = 'Allproxies' else: proxy_tag = proxy.replace(' ','_') plt.savefig('%s/%s_verify_proxy_hist_corr_ce_%s.png' % (figdir,nexp,proxy_tag),bbox_inches='tight') if make_pdfs: plt.savefig('%s/%s_verify_proxy_hist_corr_ce_%s.pdf' % (figdir,nexp,proxy_tag),bbox_inches='tight',dpi=300, format='pdf') plt.close() # ========================================================================== # PART 2: MAPS of site-based verification metrics -------------------------- # ========================================================================== if make_plots_maps: #water = '#9DD4F0' #continents = '#888888' water = '#D3ECF8' continents = '#F2F2F2' # Loop over proxy sets (assim vs verif) for v in list(vtype.keys()): # Loop over verification periods for p in range(nbperiods): # pick right dict and associate to "workdict" dname = v+'_dict' workdict = eval(dname) sites = list(workdict[p].keys()) proxy_types = list(set([item[0] for item in sitetag])) verif_period_label = str(verif_period[p][0])+'-'+str(verif_period[p][1]) proxy_types = [] for sitetag in sites: sitetype = sitetag[0] if sitetype not in proxy_types: proxy_types.append(sitetype) proxy_types = sorted(proxy_types) m = Basemap(projection='robin', lat_0=0, lon_0=0,resolution='l', area_thresh=700.0); latres = 20.; lonres=40. # GLOBAL x, y = m(0.,0.) l = [] for sitetype in sorted(proxy_types): l.append(m.scatter(x,y,35,c='white',marker=proxy_verif[sitetype],edgecolor='black',linewidth='1')) # =========================================================================== # 2) Maps with proxy sites plotted with dots colored according to correlation # =========================================================================== verif_metric = 'Correlation' mapcolor = plt.cm.seismic cbarfmt = '%4.1f' fmin = -1.0; fmax = 1.0 fval = np.linspace(fmin, fmax, 100); fvalc = np.linspace(0, fmax, 101); scaled_colors = mapcolor(fvalc) cmap, norm = from_levels_and_colors(levels=fval, colors=scaled_colors, extend='both') cbarticks=np.linspace(fmin,fmax,11) fig = plt.figure(figsize=[8,5]) #ax = fig.add_axes([0.1,0.1,0.8,0.8]) m = Basemap(projection='robin', lat_0=0, lon_0=0,resolution='l', area_thresh=700.0); latres = 20.; lonres=40. # GLOBAL m.drawmapboundary(fill_color=water) m.drawcoastlines(linewidth=0.5); m.drawcountries(linewidth=0.5) m.fillcontinents(color=continents,lake_color=water) m.drawparallels(np.arange(-80.,81.,latres),linewidth=0.5) m.drawmeridians(np.arange(-180.,181.,lonres),linewidth=0.5) # loop over proxy sites for sitetag in sites: sitetype = sitetag[0] sitename = sitetag[1] sitemarker = proxy_verif[sitetype] lat = workdict[p][sitetag]['lat'] lon = workdict[p][sitetag]['lon'] x, y = m(lon,lat) Gplt = m.scatter(x,y,35,c=workdict[p][sitetag]['MeanCorr'],marker=sitemarker,edgecolor='black',linewidth='1',zorder=4,cmap=cmap,norm=norm) cbar = m.colorbar(Gplt,location='right',pad="2%",size="2%",ticks=cbarticks,format=cbarfmt,extend='both') cbar.outline.set_linewidth(1.0) cbar.set_label('%s' % verif_metric,size=11,weight='bold') cbar.ax.tick_params(labelsize=10) plt.title('Period: '+verif_period_label+' : '+vtype[v],fontweight='bold') plt.legend(l,proxy_types, scatterpoints=1, loc='lower center', bbox_to_anchor=(0.5, -0.30), ncol=3, fontsize=9) plt.savefig('%s/%s_verify_proxy_map_%s_corr_%s.png' % (figdir,nexp,v,verif_period_label),bbox_inches='tight') if make_pdfs: plt.savefig('%s/%s_verify_proxy_map_%s_corr_%s.pdf' % (figdir,nexp,v,verif_period_label),bbox_inches='tight', dpi=300, format='pdf') plt.close() # =========================================================================== # 3) Maps with proxy sites plotted with dots colored according to CE # =========================================================================== verif_metric = 'Coefficient of efficiency' mapcolor = plt.cm.seismic cbarfmt = '%4.1f' fmin = -1.0; fmax = 1.0 fval = np.linspace(fmin, fmax, 100); fvalc = np.linspace(0, fmax, 101); scaled_colors = mapcolor(fvalc) cmap, norm = from_levels_and_colors(levels=fval, colors=scaled_colors, extend='both') cbarticks=np.linspace(fmin,fmax,11) # Prior & Posterior fig = plt.figure(figsize=[8,10]) dplot = {'Prior':'PriorMeanCE', 'Posterior':'MeanCE'} irow = 1 for dd in list(dplot.keys()): ax = fig.add_subplot(2,1,irow) m = Basemap(projection='robin', lat_0=0, lon_0=0,resolution='l', area_thresh=700.0); latres = 20.; lonres=40. # GLOBAL m.drawmapboundary(fill_color=water) m.drawcoastlines(linewidth=0.5); m.drawcountries(linewidth=0.5) m.fillcontinents(color=continents,lake_color=water) m.drawparallels(np.arange(-80.,81.,latres),linewidth=0.5) m.drawmeridians(np.arange(-180.,181.,lonres),linewidth=0.5) # loop over proxy sites for sitetag in sites: sitetype = sitetag[0] sitename = sitetag[1] sitemarker = proxy_verif[sitetype] lat = workdict[p][sitetag]['lat'] lon = workdict[p][sitetag]['lon'] x, y = m(lon,lat) plot_var = dplot[dd] Gplt = m.scatter(x,y,35,c=workdict[p][sitetag][plot_var],marker=sitemarker,edgecolor='black',linewidth='1',zorder=4,cmap=cmap,norm=norm) cbar = m.colorbar(Gplt,location='right',pad="2%",size="2%",ticks=cbarticks,format=cbarfmt,extend='both') cbar.outline.set_linewidth(1.0) cbar.set_label('%s' % verif_metric,size=11,weight='bold') cbar.ax.tick_params(labelsize=10) if irow == 1: plt.title('Period: '+verif_period_label+'\n\n'+vtype[v]+' : '+ dd,fontweight='bold') else: plt.title(vtype[v]+' : '+ dd,fontweight='bold') irow = irow + 1 plt.legend(l,proxy_types, scatterpoints=1, loc='lower center', bbox_to_anchor=(0.5, -0.30), ncol=3, fontsize=9) fig.tight_layout() plt.savefig('%s/%s_verify_proxy_map_%s_ce_%s.png' % (figdir,nexp,v,verif_period_label),bbox_inches='tight') if make_pdfs: plt.savefig('%s/%s_verify_proxy_map_%s_ce_%s.pdf' % (figdir,nexp,v,verif_period_label),bbox_inches='tight', dpi=300, format='pdf') plt.close() # ============================================================================ # 4) Maps with proxy sites plotted with dots colored according to change in CE # ============================================================================ # Change in CE from Prior to Posterior fig = plt.figure(figsize=[8,5]) m = Basemap(projection='robin', lat_0=0, lon_0=0,resolution='l', area_thresh=700.0); latres = 20.; lonres=40. # GLOBAL m.drawmapboundary(fill_color=water) m.drawcoastlines(linewidth=0.5); m.drawcountries(linewidth=0.5) m.fillcontinents(color=continents,lake_color=water) m.drawparallels(np.arange(-80.,81.,latres),linewidth=0.5) m.drawmeridians(np.arange(-180.,181.,lonres),linewidth=0.5) # loop over proxy sites for sitetag in sites: sitetype = sitetag[0] sitename = sitetag[1] sitemarker = proxy_verif[sitetype] lat = workdict[p][sitetag]['lat'] lon = workdict[p][sitetag]['lon'] x, y = m(lon,lat) plot_var = workdict[p][sitetag]['MeanCE'] - workdict[p][sitetag]['PriorMeanCE'] Gplt = m.scatter(x,y,35,c=plot_var,marker=sitemarker,edgecolor='black',linewidth='1',zorder=4,cmap=cmap,norm=norm) cbar = m.colorbar(Gplt,location='right',pad="2%",size="2%",ticks=cbarticks,format=cbarfmt,extend='both') cbar.outline.set_linewidth(1.0) cbar.set_label('Change in coefficient of efficiency',size=11,weight='bold') cbar.ax.tick_params(labelsize=10) plt.title('Period: '+verif_period_label+' : '+vtype[v],fontweight='bold') plt.legend(l,proxy_types, scatterpoints=1, loc='lower center', bbox_to_anchor=(0.5, -0.30), ncol=3, fontsize=9) fig.tight_layout() plt.savefig('%s/%s_verify_proxy_map_%s_delta_ce_%s.png' % (figdir,nexp,v,verif_period_label),bbox_inches='tight') if make_pdfs: plt.savefig('%s/%s_verify_proxy_map_%s_delta_ce_%s.pdf' % (figdir,nexp,v,verif_period_label),bbox_inches='tight', dpi=300, format='pdf') plt.close() # ========================================================================================== # 5) Maps with proxy sites plotted with dots colored according to ensemble calibration ratio # ========================================================================================== verif_metric = 'Ensemble calibration' mapcolor = plt.cm.seismic cbarfmt = '%4.1f' fmin = 0.0; fmax = 2.0 fval = np.linspace(fmin, fmax, 100); fvalc = np.linspace(0, 1, 100); scaled_colors = mapcolor(fvalc) cmap, norm = from_levels_and_colors(levels=fval, colors=scaled_colors, extend='max') cbarticks=np.linspace(fmin,fmax,11) # Prior & Posterior fig = plt.figure(figsize=[8,10]) dplot = {'Prior':'PriorMeanCalRatio', 'Posterior':'MeanCalRatio'} irow = 1 for dd in list(dplot.keys()): ax = fig.add_subplot(2,1,irow) m = Basemap(projection='robin', lat_0=0, lon_0=0,resolution='l', area_thresh=700.0); latres = 20.; lonres=40. # GLOBAL m.drawmapboundary(fill_color=water) m.drawcoastlines(linewidth=0.5); m.drawcountries(linewidth=0.5) m.fillcontinents(color=continents,lake_color=water) m.drawparallels(np.arange(-80.,81.,latres),linewidth=0.5) m.drawmeridians(np.arange(-180.,181.,lonres),linewidth=0.5) # loop over proxy sites for sitetag in sites: sitetype = sitetag[0] sitename = sitetag[1] sitemarker = proxy_verif[sitetype] lat = workdict[p][sitetag]['lat'] lon = workdict[p][sitetag]['lon'] x, y = m(lon,lat) plot_var = dplot[dd] Gplt = m.scatter(x,y,35,c=workdict[p][sitetag][plot_var],marker=sitemarker,edgecolor='black',linewidth='1',zorder=4,cmap=cmap,norm=norm) cbar = m.colorbar(Gplt,location='right',pad="2%",size="2%",ticks=cbarticks,format=cbarfmt,extend='max') cbar.outline.set_linewidth(1.0) cbar.set_label('%s' % verif_metric,size=11,weight='bold') cbar.ax.tick_params(labelsize=10) if irow == 1: plt.title('Period: '+verif_period_label+'\n\n'+vtype[v]+' : '+ dd,fontweight='bold') else: plt.title(vtype[v]+' : '+ dd,fontweight='bold') irow = irow + 1 plt.legend(l,proxy_types, scatterpoints=1, loc='lower center', bbox_to_anchor=(0.5, -0.30), ncol=3, fontsize=9) fig.tight_layout() plt.savefig('%s/%s_verify_proxy_map_%s_EnsCal_%s.png' % (figdir,nexp,v,verif_period_label),bbox_inches='tight') if make_pdfs: plt.savefig('%s/%s_verify_proxy_map_%s_EnsCal_%s.pdf' % (figdir,nexp,v,verif_period_label),bbox_inches='tight', dpi=300, format='pdf') plt.close() # ========================================================================== # PART 3: Plots of individual time series of proxy records ---------------- # ========================================================================== if make_plots_individual_sites: assimilated_sites = sorted(assim_dict[p].keys()) withheld_sites = verif_dict[p].keys() if nbperiods > 1: period_bnds = [item[0] for item in verif_period] else: period_bnds = verif_period[0] # Loop over sites siteCount = 0 for site in assimilated_sites: sitename = site[0].replace(' ','_')+'_'+site[1].replace(' ','_') AssimPriorR = np.zeros([nbperiods],dtype=float) AssimPriorCE = np.zeros([nbperiods],dtype=float) AssimReconR = np.zeros([nbperiods],dtype=float) AssimReconCE = np.zeros([nbperiods],dtype=float) VerifPriorR = np.zeros([nbperiods],dtype=float) VerifPriorCE = np.zeros([nbperiods],dtype=float) VerifReconR = np.zeros([nbperiods],dtype=float) VerifReconCE = np.zeros([nbperiods],dtype=float) # setup the figure fig, ax = plt.subplots(2,1, figsize=(10,6)) plt.subplots_adjust(bottom=0.35,hspace=0.4) # loop over periods for p in range(nbperiods): # assimilated -- try: assimCE = '{:7.2f}'.format(
np.mean(assim_dict[p][site]['MCensCE'])
numpy.mean
import socket import time import numpy as np import os from src.algorithms.QDoubleDeepLearn import QLearn # can be QLearn, QDeepLearn, QDoubleDeepLearn or RandomAgent from src.environments.jsbsim.JSBSimEnv import Env # can be jsbsim.JSBSimEnv or xplane.XPlaneEnv from src.scenarios.deltaAttitudeControlScene import Scene # can be deltaAttitudeControlScene, sparseAttitudeControlScene or cheatingAttitudeControlScene errors = 0.0 # counts everytime the UDP packages are lost on all retries connectAttempts = 0.0 # counts everytime the UDP packages are lost on a single retry experimentName = "Testing" notes = "This experiment was run..." # add notes that will be saved to the setup file to clearify the experiment setup better dateTime = str(time.ctime(time.time())) dateTime = dateTime.replace(":", "-") dateTime = dateTime.replace(" ", "_") experimentName = experimentName + "-" + dateTime timeStart = time.time() # used to measure time timeEnd = time.time() # used to measure time logPeriod = 100 # every so many epochs the metrics will be printed into the console savePeriod = 25 # every so many epochs the table/model will be saved to a file pauseDelay = 0.01 # time an action is being applied to the environment logDecimals = 4 # sets decimals for np.arrays to X for printing np.set_printoptions(precision=logDecimals) # sets decimals for np.arrays to X for printing n_epochs = 5 # Number of generations n_steps = 2_500 # Number of inputs per generation n_actions = 4 # Number of possible inputs to choose from n_states = 182 # Number of states gamma = 0.95 # The discount rate - between 0 an 1! if = 0 then no learning, ! The higher it is the more the new q will factor into the update of the q value lr = 0.0001 # Learning Rate. If LR is 0 then the Q value would not update. The higher the value the quicker the agent will adopt the NEW Q value. If lr = 1, the updated value would be exactly be the newly calculated q value, completely ignoring the previous one epsilon = 0.0 # Starting Epsilon Rate, affects the exploration probability. Will decay decayRate = 0.00001 # Rate at which epsilon will decay per step epsilonMin = 0.1 # Minimum value at which epsilon will stop decaying n_epochsBeforeDecay = 10 # number of games to be played before epsilon starts to decay numOfInputs = 7 # Number of inputs fed to the model stateDepth = 1 # Number of old observations kept for current state. State will consist of s(t) ... s(t_n) minReplayMemSize = 1_000 # min size determines when the replay will start being used replayMemSize = 100_000 # Max size for the replay buffer batchSize = 256 # Batch size for the model updateRate = 5 # update target model every so many episodes startingOffset = 0 # is used if previous Results are loaded. loadModel = True # will load "model.h5" for tf if True (model.npy for non-Deep) loadMemory = False # will load "memory.pickle" if True loadResults = False # will load "results.npy" if True jsbRender = True # will send UDP data to flight gear for rendering if True jsbRealTime = False # will slow down the physics to portrait real time rendering usePredefinedSeeds = False # Sets seeds for tf, np and random for more replicable results (not fully replicable due to stochastic environments) saveForAutoReload = False # Saves and overrides models, results and memory to the root plotTest = True # Will plot roll, pitch and reward per episode startingVelocity = 60 startingPitchRange = 10 startingRollRange = 15 randomDesiredState = True # Set a new state to stabalize towards every episode desiredPitchRange = 5 desiredRollRange = 5 rewardListSingleEpisode = [] pitchListSingleEpisode = [] rollListSingleEpisode = [] dictObservation = { "lat": 0, "long": 1, "alt": 2, "pitch": 3, "roll": 4, "yaw": 5, "gear": 6} dictAction = { "pi+": 0, "pi-": 1, "ro+": 2, "ro-": 3, "ru+": 4, "ru-": 5, "no": 6} dictErrors = { "reset": 0, "update": 0, "step": 0} dictRotation = { "roll": 0, "pitch": 1, "yaw": 2, "northVelo": 3, "eastVelo": 4, "verticalVelo": 5} # -998->NO CHANGE flightOrigin = [35.126, 126.809, 14_000, 0, 0, 0, 1] # Gwangju SK flightDestinaion = [33.508, 126.487, 6000, -998, -998, -998, 1] # Jeju SK # Other locations to use: Memmingen: [47.988, 10.240], Chicago: [41.976, -87.902] fallbackState = [0] * numOfInputs # Used in case of connection error to XPlane fallbackState = [tuple(fallbackState)] # Will load previous results in case a experiment needs to be continued if(loadResults): movingEpRewards = np.load("results.npy", allow_pickle=True).item() # loads the file - .item() turns the loaded nparray back to a dict startingOffset = np.max(movingEpRewards["epoch"]) # loads the episode where it previously stopped epsilon =
np.min(movingEpRewards["epsilon"])
numpy.min
""" pyart.retrieve.velocity_azimuth_display ======================================= Retrieval of VADs from a radar object. This is code is adapted from code written by <NAME>. .. autosummary:: :toctreeL generated/ :template: dev_template.rst velocity_azimuth_display _vad_calculation _inverse_dist_squared _Average1D """ import numpy as np from pyart.core import HorizontalWindProfile def velocity_azimuth_display( radar, velocity, z_want=None, valid_ray_min=16, gatefilter=None, window=2, weight='equal'): """ Velocity azimuth display. Note: This code uses only one sweep. Before using the velocity_azimuth_display function, use, for example: one_sweep_radar = radar.extract_sweeps([0]) Parameters ---------- radar : Radar Radar object used. velocity : string Velocity field to use for VAD calculation. Other Parameters ---------------- z_want : array Array of desired heights to be sampled for the vad calculation. valid_ray_min : int Amount of rays required to include that level in the VAD calculation. gatefilter : GateFilter A GateFilter indicating radar gates that should be excluded when from the import vad calculation. window : int Value to use for window when determing new values in the _Averag1D function. weight : string A string to indicate weighting method to use. 'equal' for equal weighting when interpolating or 'idw' for inverse distribution squared weighting for interpolating. Default is 'equal'. Returns ------- height : array Heights in meters above sea level at which horizontal winds were sampled. speed : array Horizontal wind speed in meters per second at each height. direction : array Horizontal wind direction in degrees at each height. u_wind : array U-wind mean in meters per second. v_wind : array V-wind mean in meters per second. Reference ---------- <NAME> and <NAME>, 1968: The Determination of Kinematic Properties of a Wind Field Using Doppler Radar. J. Appl. Meteor., 7, 105–113 """ velocities = radar.fields[velocity]['data'] if gatefilter is not None: velocities = np.ma.masked_where( gatefilter.gate_excluded, velocities) azimuths = radar.azimuth['data'][:] elevation = radar.fixed_angle['data'][0] u_wind, v_wind = _vad_calculation(velocities, azimuths, elevation, valid_ray_min) bad = np.logical_or(np.isnan(u_wind), np.isnan(v_wind)) good_u_wind = u_wind[~bad] good_v_wind = v_wind[~bad] radar_height = radar.gate_z['data'][0] good_height = radar_height[~bad] if z_want is None: z_want = np.linspace(0, 1000, 100)[:50] else: z_want try: print('max height', np.max(good_height), ' meters') print('min height', np.min(good_height), ' meters') except ValueError: raise ValueError('Not enough data in this radar sweep ' \ 'for a vad calculation.') u_interp = _Average1D(good_height, good_u_wind, z_want[1] - z_want[0] / window, weight) v_interp = _Average1D(good_height, good_v_wind, z_want[1] - z_want[0] / window, weight) u_wanted = u_interp(z_want) v_wanted = v_interp(z_want) u_wanted = np.ma.masked_equal(u_wanted, 99999.) v_wanted = np.ma.masked_equal(v_wanted, 99999.) vad = HorizontalWindProfile.from_u_and_v( z_want, u_wanted, v_wanted) return vad def _vad_calculation(velocities, azimuths, elevation, valid_ray_min): """ Calculates VAD for a scan and returns u_mean and v_mean. velocities is a 2D array, azimuths is a 1D array, elevation is a number. Note: We need to solve: Ax = b where: A = [sum_sin_squared_az, sum_sin_cos_az ] = [a, b] [sum_sin_cos_az, sum_cos_squared_az] [c, d] b = [sum_sin_vel_dev] = [b_1] [sum_cos_vel_dev] [b_2] The solution to this is: x = A-1 * b A-1 is: 1 [ d, -b ] --- * [ -c, a ] |A| and the determinate, det is: det = a*d - b*c Therefore the elements of x are: x_1 = (d* b_1 + -b * b_2) / det = (d*b_1 - b*b_2) / det x_2 = (-c * b_1 + a * b_2) / det = (a*b_2 - c*b_1) / det """ velocities = velocities.filled(np.nan) shape = velocities.shape _, nbins = velocities.shape invalid = np.isnan(velocities) valid_rays_per_gate = np.sum(~np.isnan(velocities), axis=0) too_few_valid_rays = valid_rays_per_gate < valid_ray_min invalid[:, too_few_valid_rays] = True sin_az = np.sin(np.deg2rad(azimuths)) cos_az = np.cos(np.deg2rad(azimuths)) sin_az = np.repeat(sin_az, nbins).reshape(shape) cos_az = np.repeat(cos_az, nbins).reshape(shape) sin_az[invalid] = np.nan cos_az[invalid] = np.nan mean_velocity_per_gate = np.nanmean(velocities, axis=0).reshape(1, -1) velocity_deviation = velocities - mean_velocity_per_gate sum_cos_vel_dev = np.nansum(cos_az * velocity_deviation, axis=0) sum_sin_vel_dev = np.nansum(sin_az * velocity_deviation, axis=0) sum_sin_cos_az = np.nansum(sin_az * cos_az, axis=0) sum_sin_squared_az =
np.nansum(sin_az**2, axis=0)
numpy.nansum
import numpy import pytest from numpy import cos, pi, sin import quadpy def test_simple(): val, _ = quadpy.line_segment.integrate_adaptive(sin, [0.0, pi], 1.0e-10) exact = 2.0 assert abs(exact - val) < 1.0e-10 val, _ = quadpy.line_segment.integrate_adaptive( lambda x: x * sin(x), [0.0, pi], 1.0e-10 ) exact = pi assert abs(exact - val) < 1.0e-10 @pytest.mark.parametrize("k", range(1, 6)) def test_vector_valued(k): # We need to set eps_rel=None here since the second integral can be 0. This leads to # an unreachable stopping criterion. val, err = quadpy.line_segment.integrate_adaptive( lambda x: [x * sin(k * x), x * cos(k * x)], [0.0, pi], 1.0e-10, eps_rel=None ) exact = [ (sin(pi * k) - pi * k * cos(pi * k)) / k ** 2, (cos(pi * k) + pi * k * sin(pi * k) - 1.0) / k ** 2, ] assert numpy.all(err < 1.0e-10) assert numpy.all(numpy.abs(exact - val) < 1.0e-10) def test_multidim(): # simple scalar integration val, err = quadpy.line_segment.integrate_adaptive(sin, [0.0, 1.0]) assert err < 1.0e-10 assert val.shape == () exact = 1.0 - cos(1.0) assert abs(val - exact) < 1.0e-10 # scalar integration on 3 subdomains val, err = quadpy.line_segment.integrate_adaptive( sin, [[0.0, 1.0, 2.0], [1.0, 2.0, 3.0]] ) assert err.shape == (3,) assert all(e < 1.0e-10 for e in err) assert val.shape == (3,) exact = [cos(0.0) - cos(1.0), cos(1.0) - cos(2.0), cos(2.0) - cos(3.0)] assert all(abs(v - ex) < 1.0e-10 for v, ex in zip(val, exact)) # scalar integration in 3D alpha = 10.31 val, err = quadpy.line_segment.integrate_adaptive( lambda x: sin(alpha * x[0]), [[0.0, 0.0, 0.0], [1.0, 0.0, 0.0]], ) assert err < 1.0e-10 assert val.shape == () exact = -1 / alpha * (cos(alpha * 1.0) - cos(alpha * 0.0)) assert abs(val - exact) < 1.0e-10 # vector-valued integration on 1 subdomain val, err = quadpy.line_segment.integrate_adaptive( lambda x: [sin(x), cos(x)], [0.0, 1.0] ) assert err.shape == (2,) assert all(e < 1.0e-10 for e in err) exact = [cos(0.0) - cos(1.0), sin(1.0) - sin(0.0)] assert val.shape == (2,) assert all(abs(v - ex) < 1.0e-10 for v, ex in zip(val, exact)) # vector-valued integration on 3 subdomains val, err = quadpy.line_segment.integrate_adaptive( lambda x: [sin(x), cos(x)], [[0.0, 1.0, 2.0], [1.0, 2.0, 3.0]] ) assert err.shape == (2, 3) assert numpy.all(err < 1.0e-10) assert val.shape == (2, 3) exact = [ [cos(0.0) - cos(1.0), cos(1.0) - cos(2.0), cos(2.0) - cos(3.0)], [sin(1.0) - sin(0.0), sin(2.0) - sin(1.0), sin(3.0) - sin(2.0)], ] assert numpy.all(numpy.abs(val - exact) < 1.0e-10) # vector-valued integration in 3D val, err = quadpy.line_segment.integrate_adaptive( lambda x: [x[0] + sin(x[1]),
cos(x[0])
numpy.cos
""" Collection of quick and simple plotting functions horizontal_map - driver to make two nice horizontal maps next to each other depth_slice - same, but for contour plot of depth vs some coordinate _nice_plot - underlying script for a single nice figure """ from copy import copy import numpy as np import matplotlib.pyplot as plt import cmocean import xarray as xr from warnings import warn try: import ecco_v4_py as ecco except ImportError: print('You need to reorganize pych at some point') from matplotlib.ticker import MultipleLocator from .utils import get_cmap_rgb def plot_logbin(xda,x=None, y=None, nbins=3,bin_edges=None, ax=None, cmap='RdBu_r', cbar_label=None, **kwargs): """Make a plot, binning field by log10 of values Parameters ---------- xda : xarray.DataArray field to be plotted, must be 2D x, y : array_like, optional x and y coordinates for the plot nbins : int, optional number of colored bin (centers) positive and negative values i.e. we get 2*nbins+1, bins. one is neutral (middle) bin_edges : array-like, optional exclusive with nbins, specify bin edges (positive only) ax : matplotlib.axes, optional to make plot at cmap : str, optional specifies colormap cbar_label : str, optional label for colorbar, default grabs units from DataArray kwargs passed to matpotlib.pyplot.contourf Returns ------- ax : matplotlib.axes if one is not provided """ return_ax = False if ax is None: _,ax = plt.subplots() return_ax=True if nbins is not None and bin_edges is not None: raise TypeError('one or the other') log = np.log10(np.abs(xda)) log = log.where((~np.isnan(log)) & (~np.isinf(log)),0.) if nbins is not None: _,bin_edges = np.histogram(log,bins=nbins) else: nbins = len(bin_edges)-1 logbins=np.round(bin_edges) # determine if colorbar will be extended maxExtend = (xda>10**logbins[-1]).any().values minExtend = (xda<-10**logbins[-1]).any().values extend='neither' if minExtend and maxExtend: extend='both' elif maxExtend: extend='max' elif minExtend: extend='min' # determine number of colors, adding one for each extension # and always one extra, the middle color bin ncolors=2*nbins+1 ncolors = ncolors+1 if maxExtend else ncolors ncolors = ncolors+1 if minExtend else ncolors # if only one end is extended, # chop off the extreme value from the other end to fit # in the middle (neutral) colorbin if extend in ['min' ,'max']: cmap = get_cmap_rgb(cmap,ncolors+1) bot = np.arange(1,nbins+1) if extend=='max' else np.arange(0,nbins+1) top = np.arange(ncolors-nbins,ncolors) if extend=='min' else np.arange(ncolors-nbins,ncolors+1) index = list(bot)+[nbins+1]+list(top) cmap = cmap[index,:] else: cmap=get_cmap_rgb(cmap,ncolors) # levels and plot levels=10**logbins levels = np.concatenate([-levels[::-1],levels],axis=0) if x is None or y is None: im=ax.contourf(xda,levels=levels,colors=cmap,extend=extend,**kwargs) else: im=ax.contourf(x,y,xda,levels=levels,colors=cmap,extend=extend,**kwargs) # label dem ticks if cbar_label==None and 'units' in xda.attrs: cbar_label=f'[{xda.attrs["units"]}]' p=plt.colorbar(im,ax=ax,label=cbar_label) ticklabels = [f'-10^{b:.0f}' for b in logbins[::-1]] ticklabels += [f'10^{b:.0f}' for b in logbins] p.set_ticklabels(ticklabels) if return_ax: return ax else: return im def nice_inward_ticks(ax, xminor_skip=None,yminor_skip=None): """Make nice inward pointing ticks Parameters ---------- ax : matplotlib axis object xminor_skip, yminor_skip : int, optional interval of "minor" ticks, if None, then no minor ticks """ ax.tick_params(direction='in',which='major',length=8, top=True,right=True,pad=6) if xminor_skip is not None: ax.xaxis.set_minor_locator(MultipleLocator(xminor_skip)) if yminor_skip is not None: ax.yaxis.set_minor_locator(MultipleLocator(yminor_skip)) if xminor_skip is not None or yminor_skip is not None: top = xminor_skip is not None right = yminor_skip is not None ax.tick_params(direction='in',which='minor',length=5, top=top,right=right,pad=6) def fill_between_std(x,ymean,ystd, ax=None,fill_alpha=0.4,**kwargs): """A simple version of fill between to reduce typing""" fill_kwargs = copy(kwargs) if 'alpha' in kwargs: warn(f'Resetting fill_alpha with provided alpha={kwargs["alpha"]}') fill_kwargs['alpha'] = kwargs['alpha'] else: fill_kwargs['alpha'] = fill_alpha ax.plot(x,ymean,**kwargs) if ax is not None else plt.plot(x,ymean,**kwargs) ax.fill_between(x,ymean-ystd,ymean+ystd,**fill_kwargs) if ax is not None else \ plt.fill_between(x,ymean-ystd,ymean+ystd,**fill_kwargs) def plot_section(fld, left, right, datasets, grids, labels=None, collapse_dim='x', plot_diff0=False, plot_sections_at_bottom=False, single_plot=False, nrows=None, ncols=5, fig=None, xr_kwargs={}): """Plot a field in each dataset provided along a section in the domain Parameters ---------- fld : str string denoting field to grab in each dataset left, right : pair of floats denoting in longitude/latitude the coordinates of the left and rightmost points to get a section of datasets : list of xarray Datasets containing all the data grids : list of or a single xgcm Grid object(s) this allows one to get a section of the data use a single grid if all datasets have same grid information labels : list of strings, optional corresponding to the different datasets to label in figure collapse_dim : str, optional dimension along which to collapse plot_diff0 : bool, optional plot difference between first dataset and all others plot_sections_at_bottom : bool, optional if True, add a row at the bottom showing the section line for each field single_plot : bool, optional if True, plot all fields on one plot, better be 1D ncols : int, optional changes the relative width of the quantity being plotted and the rightmost plot showing the section fig : matplotlib figure object, optional for a different figure size xr_kwargs : dict, optional arguments to pass to xarray's plotting wrapper Returns ------- fig : matplotlib figure object axs : matplotlib axis object(s) """ # setup the plot if not single_plot: nrows = len(datasets) if not plot_sections_at_bottom else len(datasets)+1 else: nrows = 1 if not plot_sections_at_bottom else 2 ncols = ncols if not plot_sections_at_bottom else len(datasets) fig = plt.figure(figsize=(18,6*nrows)) if fig is None else fig axs = [] gs = fig.add_gridspec(nrows,ncols) # handle list or single datasets = [datasets] if not isinstance(datasets,list) else datasets grids = [grids] if not isinstance(grids,list) else grids labels = [labels] if not isinstance(labels,list) else labels # assumption: same grid for all datasets if length 1 if len(grids)==1: grids = grids*nrows if len(labels)==1: labels = labels*nrows # set colormap for depth plot with section cmap_deep = copy(plt.get_cmap('cmo.deep')) cmap_deep.set_bad('gray') if single_plot: ax = fig.add_subplot(gs[0,:-1]) if not plot_sections_at_bottom else \ fig.add_subplot(gs[0,:]) axs.append(ax) for i,(ds,g,lbl) in enumerate(zip(datasets,grids,labels)): # what to plot plotme = ds[fld] - datasets[0][fld] if plot_diff0 and i!=0 else ds[fld] # get the section as a mask m={} m['C'],m['W'],m['S'] = ecco.get_section_line_masks(left,right,ds,g) # get coordinates for field x,y,mask,sec_mask = _get_coords_and_mask(ds[fld].coords,m) # replace collapse dim with actual name rm_dim = x if collapse_dim == 'x' else y # get mask and field mask = mask.where(sec_mask,drop=True).mean(rm_dim) plotme = plotme.where(sec_mask,drop=True).mean(rm_dim).where(mask) # Plot the field if len(plotme.dims)>1: if single_plot: raise TypeError('Can''t put multiple fields on single plot') ax = fig.add_subplot(gs[i,:-1]) if not plot_sections_at_bottom else \ fig.add_subplot(gs[i,:]) axs.append(ax) plotme.plot.contourf(y='Z',ax=ax,**xr_kwargs) else: if not single_plot: ax = fig.add_subplot(gs[i,:-1]) if not plot_sections_at_bottom else \ fig.add_subplot(gs[i,:]) axs.append(ax) plot_dim = x if rm_dim==y else y plotme.plot.line(x=plot_dim,ax=ax,label=lbl,**xr_kwargs) ax.grid() if lbl is not None: if not single_plot: if plot_diff0 and i!=0: ax.set_title(f'{fld}({lbl}) - {fld}({labels[0]})') else: ax.set_title(f'{fld}({lbl})') else: ax.legend() # Plot the section axb = fig.add_subplot(gs[i,-1]) if not plot_sections_at_bottom else \ fig.add_subplot(gs[-1,i]) datasets[i].Depth.where(datasets[i].maskC.any('Z')).plot( ax=axb,cmap=cmap_deep,add_colorbar=False) m['C'].cumsum(dim=rm_dim[0]+'C').where(m['C']).plot(ax=axb,cmap='Greys',add_colorbar=False) axb.set(title=f'',ylabel='',xlabel='') axs.append(axb) return fig,axs def plot_zlev_with_max(xda,use_mask=True,ax=None,xr_kwargs={}): """Make a 2D plot at the vertical level where data array has it's largest value in amplitude Parameters ---------- xda : xarray DataArray with the field to be plotted, function of (Z,Y,X) use_mask : bool, optional mask the field ax : matplotlib axis object, optional current plotting axis xr_kwargs : dict, optional additional arguments for xarray plotting method Returns ------- z : float height of zlevel at maximum """ def _make_float(xarr): """useful for putting x,y,z of max val in plot title""" if len(xarr)>1: warn(f'{xarr.name} has more than one max location, picking first...') xarr=xarr[0] return float(xarr.values) xda_max = np.abs(xda).max() x,y,mask = _get_coords_and_mask(xda.coords) # get X, Y, Z of max value xda_maxloc = xda.where(xda==xda_max,drop=True) if len(xda_maxloc)==0: xda_maxloc = xda.where(xda==-xda_max,drop=True) xsel = _make_float(xda_maxloc[x]) ysel = _make_float(xda_maxloc[y]) zsel = _make_float(xda_maxloc['Z']) # grab the zlev xda = xda.sel(Z=zsel) # mask? if use_mask: xda = xda.where(mask.sel(Z=zsel)) if ax is not None: xda.plot(ax=ax,**xr_kwargs) ax.set_title(f'max loc (x,y,z) = ({xsel:.2f},{ysel:.2f},{zsel:.2f})') else: xda.plot(**xr_kwargs) plt.title(f'max loc (x,y,z) = ({xsel:.2f},{ysel:.2f},{zsel:.2f})') return zsel def horizontal_map(x,y,fld1,fld2=None, title1=None,title2=None, depth=None,log_data=False, mask1=None,mask2=None, ncolors=None, c_lim=None,c_lim1=None,c_lim2=None, cmap=None,cmap1=None,cmap2=None): """ Make a figure with plots of fld1 and fld2 over x,y next to e/o Parameters ---------- x,y: Grid information, giving lat/lon coordinates fld1/2: 2D field as numpy array or xarray DataArray fld2 optional, otherwise generate single figure Optional Parameters ------------------- title1/2: string for title above figure depth: depth field as an xarray DataArray to be used as plt.contour(depth.XC,depth.YC,depth.Depth) log_data: plot log_10(fld) mask1/2: mask field to with given mask array ncolors: Number of colors for colormap c_lim: two element array with colorbar limits c_lim1/2: different colorbar limits for each plot c_lim is used for both, c_lim1/2 are for left or right plot cmap: string or colormap object default for sequential data is 'YlGnBu_r' default for diverging data is 'BuBG_r' cmap1/2: similar logic for c_lim, c_lim1/2. cmap is global, cmap1/2 are for individual plots Returns ------- fig : matplotlib.figure.Figure object """ # Test for c_lim or c_lim1/2 if c_lim is not None and (c_lim1 is not None or c_lim2 is not None): raise ValueError('Can only provide c_lim or c_lim1/2, not all three') if cmap is not None and (cmap1 is not None or cmap2 is not None): raise ValueError('Can only provide cmap or cmap1/2, not all three') if c_lim is not None: c_lim1 = c_lim c_lim2 = c_lim if cmap is not None: cmap1 = cmap cmap2 = cmap fig = plt.figure(figsize=(15,6)) plt.subplot(1,2,1) _single_horizontal_map(x,y,fld1,title1,depth,log_data,mask1,ncolors,c_lim1,cmap1) if fld2 is not None: plt.subplot(1,2,2) _single_horizontal_map(x,y,fld2,title2,depth,log_data,mask2,ncolors,c_lim2,cmap2) plt.show() return fig def depth_slice(x,z,fld1,fld2=None, title1=None,title2=None, depth=None,log_data=False, mask1=None,mask2=None, ncolors=None, c_lim=None,c_lim1=None,c_lim2=None, cmap=None,cmap1=None,cmap2=None): """ Make a slice through depth with plots of fld1 and fld2 and depth on y axis next to e/o Parameters ---------- x,z: Grid information, x is some generic coordinate, z is depth fld1/2: 2D field as numpy array or xarray DataArray fld2 optional, otherwise generate single figure Optional Parameters ------------------- title1/2: string for title above figure depth: depth field as an xarray DataArray to be used as plt.contour(depth.XC,depth.YC,depth.Depth) log_data: plot log_10(fld) mask1/2: mask field to with given mask array ncolors: Number of colors for colormap c_lim: two element array with colorbar limits c_lim1/2: different colorbar limits for each plot c_lim is used for both, c_lim1/2 are for left or right plot cmap: string or colormap object default for sequential data is 'YlGnBu_r' default for diverging data is 'BuBG_r' cmap1/2: similar logic for c_lim, c_lim1/2. cmap is global, cmap1/2 are for individual plots Returns ------- fig : matplotlib.figure.Figure object """ # Test for c_lim or c_lim1/2 if c_lim is not None and (c_lim1 is not None or c_lim2 is not None): raise ValueError('Can only provide c_lim or c_lim1/2, not all three') if cmap is not None and (cmap1 is not None or cmap2 is not None): raise ValueError('Can only provide cmap or cmap1/2, not all three') if c_lim is not None: c_lim1 = c_lim c_lim2 = c_lim if cmap is not None: cmap1 = cmap cmap2 = cmap fig = plt.figure(figsize=(15,6)) plt.subplot(1,2,1) _single_depth_slice(x,z,fld1,title1,depth,log_data,mask1,ncolors,c_lim1,cmap1) if fld2 is not None: plt.subplot(1,2,2) _single_depth_slice(x,z,fld2,title2,depth,log_data,mask2,ncolors,c_lim2,cmap2) plt.show() return fig def _single_horizontal_map(x,y,fld,titleStr,depth,log_data,mask,ncolors,c_lim,cmap): """ Non-user facing function to distill horizontal data to numpy array for plotting """ if isinstance(fld, np.ndarray): if len(np.shape(fld))==2: fld_values = fld fld_name = '' elif len(np.shape(fld))==3: print('Warning: input fld is 3D, taking fld[0,:,:]') fld_values = fld[0,:,:] fld_name = '' else: raise TypeError('Input field is >3D and I don''t want to guess the 2 dims to grab') else: # Assume xarray DataArray if 'time' in fld.dims: print('Warning: Time dimension present, grabbing first record') fld=fld.isel(time=0) if 'Z' in fld.dims: print('Warning: Z dimension present, grabbing top layer') fld=fld.isel(Z=0) fld_values = fld.values fld_name = fld.name # If desired, mask the field # Note: do this before getting cbar limits if mask is not None: if not isinstance(fld,np.ndarray): #Assume xarray DataArray mask = mask.values mask = np.where(mask==0,np.NAN,1) fld_values = fld_values * mask _nice_plot(x,y,fld_values,titleStr,depth,log_data,mask,ncolors,c_lim,cmap) def _single_depth_slice(x,z,fld,titleStr,depth,log_data,mask,ncolors,c_lim,cmap): """ Non-user facing function to distill depth slice data to numpy array for plotting """ if isinstance(fld, np.ndarray): if len(np.shape(fld))==2: fld_values = fld fld_name = '' elif len(np.shape(fld))==3: print('Warning: input fld is 3D, taking fld[0,:,:]') fld_values = fld[0,:,:] fld_name = '' else: raise TypeError('Input field is >3D and I don''t want to guess the 2 dims to grab') else: # Assume xarray DataArray if 'time' in fld.dims: print('Warning: Time dimension present, grabbing first record') fld=fld.isel(time=0) # Can't do this for other dimensions because who knows what they will be fld_values = fld.values fld_name = fld.name # If desired, mask the field # Note: do this before getting cbar limits if mask is not None: if not isinstance(fld,np.ndarray): #Assume xarray DataArray mask = mask.values mask = np.where(mask==0,np.NAN,1) fld_values = fld_values * mask _nice_plot(x,z,fld_values,titleStr,depth,log_data,mask,ncolors,c_lim,cmap) def _nice_plot(x,y,fld_values,titleStr,depth,log_data,mask,ncolors,c_lim,cmap): """ Generic plotting routine for pcolormesh """ # If desired, take log_10 of data if log_data: fld_values = np.where(fld_values==0,np.NAN,fld_values) fld_values = np.log10(fld_values) # Set colorbar limits fld_max =
np.nanmax(fld_values)
numpy.nanmax
import numpy as np def get_epipole(F): ''' Epipole is the eigenvector associated with smallest eigenvalue of F ''' evalue, evector = np.linalg.eig(F) # normalized evector index = np.argmin(evalue) epipole = evector[:, index] return epipole def get_rotation_axis(d): # d_i to make image plane parallel # intersection line axis = np.array([-d[1], d[0], 0]) return axis def get_angle(epipole, axis): return np.arctan(epipole[2] / (axis[1] * epipole[0] - axis[0] * epipole[1])) def get_plane_rotation_matrix(axis, angle): cos_angle = np.cos(angle) sin_angle = np.sin(angle) dx = axis[0] dx2 = dx ** 2 dy = axis[1] dy2 = dy ** 2 return np.array([[dx2 + (1 - dx2) * cos_angle, dx * dy * (1 - cos_angle), dy * sin_angle], [dx * dy * (1 - cos_angle), dy2 + (1 - dy2) * cos_angle, -dx * sin_angle], [-dy * sin_angle, dx * sin_angle, cos_angle]]) def get_scanline_rotation_matrix(angle): cos =
np.cos(angle)
numpy.cos
"""Auditory Filterbanks and scales for Speech and Audio Analysis. The Gammatone filterbank is a direct translation of <NAME>' Gammatone-like spectrograms package [1], which is partly and a direct translation of Malcolm Slaney's Auditory toolbox [2]. References: [1]: https://labrosa.ee.columbia.edu/matlab/gammatonegram/ [2]: https://engineering.purdue.edu/~malcolm/interval/1998-010/ """ import numpy as np from scipy import signal from .util import fftfreqz, freqz def dft2mel(nfft, sr=8000., nfilts=0, width=1., minfrq=0., maxfrq=4000., sphinx=False, constamp=True): """Map linear discrete frequencies to Mel scale.""" if nfilts == 0: nfilts = np.int(np.ceil(hz2mel(np.array([maxfrq]), sphinx)[0]/2)) weights = np.zeros((nfilts, nfft)) # dft index -> linear frequency in hz dftfrqs = np.arange(nfft/2+1, dtype=np.float)/nfft * sr maxmel, minmel = hz2mel(np.array([maxfrq, minfrq]), sphinx) binfrqs = mel2hz(minmel+np.linspace(0., 1., nfilts+2) * (maxmel-minmel), sphinx) for i in range(nfilts): fs = binfrqs[i:i+3].copy() fs = fs[1] + width*(fs-fs[1]) # adjust bandwidth if needed loslope = (dftfrqs - fs[0])/(fs[1] - fs[0]) hislope = (fs[2] - dftfrqs)/(fs[2] - fs[1]) weights[i, 0:nfft/2+1] = np.maximum(0, np.minimum(loslope, hislope)) if constamp: # Slaney-style mel is scaled to be approx constant E per channel weights = np.diag( 2/(binfrqs[2:nfilts+2]-binfrqs[:nfilts])).dot(weights) weights[:, nfft/2+1:] = 0 # avoid aliasing return weights, binfrqs[1:] def hz2dft(freq, sr, nfft): """Map frequency in Hz to discrete Fourier transform bins. Parameters ---------- freq: array_like Frequency in hz sr: int Sampling rate in hz nfft: int Number of DFT bins in range [0, 2*pi) Returns ------- bins: array_like Frequency bin numbers """ return (freq/sr * nfft).astype('int') def hz2mel(f, sphinx=True): """Convert linear frequency to mel frequency scale.""" if sphinx: return 2595. * np.log10(1+f/700.) # match Slaney's toolbox f0, f_sp, brkfrq = 0., 200./3, 1000. brkpt = (brkfrq - f0) / f_sp logstep = np.exp(np.log(6.4)/27.) z = np.empty_like(f) lower = f < brkfrq # np.less(f,brkfrq) higher = np.logical_not(lower) z[lower] = (f[lower] - f0) / f_sp z[higher] = brkpt + np.log(f[higher]/brkfrq) / np.log(logstep) return z def mel2hz(z, sphinx=True): """Convert Mel frequency to linear frequency scale.""" if sphinx: return 700*(10**(z/2595.)-1) f0, f_sp, brkfrq = 0., 200./3, 1000. brkpt = (brkfrq - f0) / f_sp logstep = np.exp(np.log(6.4)/27.) f = np.empty_like(z) lower = z < brkpt # np.less(z,brkpt) higher = np.logical_not(lower) f[lower] = f0 + z[lower] * f_sp f[higher] = brkfrq * np.exp(np.log(logstep)*(z[higher]-brkpt)) return f # ERB-related Functions starting below # Global Parameters # Change the following three parameters if you wish to use a different # ERB scale. Must change in MakeERBCoeffs too. ERB_EAR_Q = 9.26449 # Glasberg and Moore Parameters ERB_MIN_BW = 24.7 ERB_ORDER = 1 # Process an input waveform with a gammatone filter bank. This function # takes a single sound vector, and returns an array of filter outputs, one # channel per row. # # The fcoefs parameter, which completely specifies the Gammatone filterbank, # should be designed with the MakeERBFilters function. If it is omitted, # the filter coefficients are computed for you assuming a 22050Hz sampling # rate and 64 filters regularly spaced on an ERB scale from fs/2 down to 100Hz. # # <NAME> @ Interval, June 11, 1998. # (c) 1998 Interval Research Corporation # Thanks to <NAME>' for his suggestions and improvements. def erb_fbank(sig, A0, A11, A12, A13, A14, A2, B0, B1, B2, gain, cascade=True): """Filter a signal using ERB filterbanks.""" if cascade: # original implementation. Might be numerically more stable. y1 = signal.lfilter([A0/gain, A11/gain, A2/gain], [B0, B1, B2], sig) y2 = signal.lfilter([A0, A12, A2], [B0, B1, B2], y1) y3 = signal.lfilter([A0, A13, A2], [B0, B1, B2], y2) y = signal.lfilter([A0, A14, A2], [B0, B1, B2], y3) return y else: # merge the difference EQ above into one b = np.convolve(np.convolve([A0, A11, A2], [A0, A12, A2]), np.convolve([A0, A13, A2], [A0, A14, A2])) / gain a = np.convolve(
np.convolve([B0, B1, B2], [B0, B1, B2])
numpy.convolve
# flake8: noqa """ github.com/mikedh/trimesh ---------------------------- Library for importing, exporting and doing simple operations on triangular meshes. """ from . import ray from . import util from . import units from . import poses from . import graph from . import sample from . import repair from . import convex from . import remesh from . import bounds from . import caching from . import inertia from . import nsphere from . import boolean from . import grouping from . import geometry from . import permutate from . import proximity from . import triangles from . import collision from . import curvature from . import smoothing from . import comparison from . import registration from . import decomposition from . import intersections from . import transformations from .visual import create_visual from .exchange.export import export_mesh from .constants import log, log_time, tol from .scene import Scene from .parent import Geometry import copy import numpy as np class Trimesh(Geometry): def __init__(self, vertices=None, faces=None, face_normals=None, vertex_normals=None, face_colors=None, vertex_colors=None, face_attributes=None, vertex_attributes=None, metadata=None, process=True, validate=False, use_embree=True, initial_cache=None, visual=None, **kwargs): """ A Trimesh object contains a triangular 3D mesh. Parameters ------------ vertices : (n, 3) float Array of vertex locations faces : (m, 3) or (m, 4) int Array of triangular or quad faces (triangulated on load) face_normals : (m, 3) float Array of normal vectors corresponding to faces vertex_normals : (n, 3) float Array of normal vectors for vertices metadata : dict Any metadata about the mesh process : bool if True, Nan and Inf values will be removed immediately and vertices will be merged validate : bool If True, degenerate and duplicate faces will be removed immediately, and some functions will alter the mesh to ensure consistent results. use_embree : bool If True try to use pyembree raytracer. If pyembree is not available it will automatically fall back to a much slower rtree/numpy implementation initial_cache : dict A way to pass things to the cache in case expensive things were calculated before creating the mesh object. visual : ColorVisuals or TextureVisuals Assigned to self.visual """ if initial_cache is None: initial_cache = {} # self._data stores information about the mesh which # CANNOT be regenerated. # in the base class all that is stored here is vertex and # face information # any data put into the store is converted to a TrackedArray # which is a subclass of np.ndarray that provides md5 and crc # methods which can be used to detect changes in the array. self._data = caching.DataStore() # self._cache stores information about the mesh which CAN be # regenerated from self._data, but may be slow to calculate. # In order to maintain consistency # the cache is cleared when self._data.crc() changes self._cache = caching.Cache( id_function=self._data.fast_hash, force_immutable=True) self._cache.update(initial_cache) # check for None only to avoid warning messages in subclasses if vertices is not None: # (n, 3) float, set of vertices self.vertices = vertices if faces is not None: # (m, 3) int of triangle faces, references self.vertices self.faces = faces # hold visual information about the mesh (vertex and face colors) if visual is None: self.visual = create_visual( face_colors=face_colors, vertex_colors=vertex_colors, mesh=self) else: self.visual = visual # normals are accessed through setters/properties and are regenerated # if dimensions are inconsistent, but can be set by the constructor # to avoid a substantial number of cross products if face_normals is not None: self.face_normals = face_normals # (n, 3) float of vertex normals, can be created from face normals if vertex_normals is not None: self.vertex_normals = vertex_normals # embree is a much, much faster raytracer written by Intel # if you have pyembree installed you should use it # although both raytracers were designed to have a common API if ray.has_embree and use_embree: self.ray = ray.ray_pyembree.RayMeshIntersector(self) else: # create a ray-mesh query object for the current mesh # initializing is very inexpensive and object is convenient to have. # On first query expensive bookkeeping is done (creation of r-tree), # and is cached for subsequent queries self.ray = ray.ray_triangle.RayMeshIntersector(self) # a quick way to get permuted versions of the current mesh self.permutate = permutate.Permutator(self) # convenience class for nearest point queries self.nearest = proximity.ProximityQuery(self) # store metadata about the mesh in a dictionary self.metadata = dict() # update the mesh metadata with passed metadata if isinstance(metadata, dict): self.metadata.update(metadata) elif metadata is not None: raise ValueError( 'metadata should be a dict or None, got %s' % str(metadata)) # Set the default center of mass and density self._density = 1.0 self._center_mass = None # store per-face and per-vertex attributes which will # be updated when an update_faces call is made self.face_attributes = {} self.vertex_attributes = {} # use update to copy items if face_attributes is not None: self.face_attributes.update(face_attributes) if vertex_attributes is not None: self.vertex_attributes.update(vertex_attributes) # process will remove NaN and Inf values and merge vertices # if validate, will remove degenerate and duplicate faces if process or validate: self.process(validate=validate, **kwargs) # save reference to kwargs self._kwargs = kwargs def process(self, validate=False, **kwargs): """ Do processing to make a mesh useful. Does this by: 1) removing NaN and Inf values 2) merging duplicate vertices If validate: 3) Remove triangles which have one edge of their rectangular 2D oriented bounding box shorter than tol.merge 4) remove duplicated triangles 5) ensure triangles are consistently wound and normals face outwards Parameters ------------ validate : bool If True, remove degenerate and duplicate faces Returns ------------ self: trimesh.Trimesh Current mesh """ # if there are no vertices or faces exit early if self.is_empty: return self # avoid clearing the cache during operations with self._cache: self.remove_infinite_values() self.merge_vertices(**kwargs) # if we're cleaning remove duplicate # and degenerate faces if validate: self.remove_duplicate_faces() self.remove_degenerate_faces() self.fix_normals() # since none of our process operations moved vertices or faces # we can keep face and vertex normals in the cache without recomputing # if faces or vertices have been removed, normals are validated before # being returned so there is no danger of inconsistent dimensions self._cache.clear(exclude=['face_normals', 'vertex_normals']) self.metadata['processed'] = True return self def md5(self): """ An MD5 of the core geometry information for the mesh, faces and vertices. Generated from TrackedArray which subclasses np.ndarray to monitor array for changes and returns a correct lazily evaluated md5 so it only has to recalculate the hash occasionally, rather than on every call. Returns ---------- md5 : string MD5 of everything in the DataStore """ md5 = self._data.md5() return md5 def crc(self): """ A zlib.adler32 checksum for the current mesh data. This is about 5x faster than an MD5, and the checksum is checked every time something is requested from the cache so it gets called a lot. Returns ---------- crc : int Checksum of current mesh data """ return self._data.fast_hash() @property def faces(self): """ The faces of the mesh. This is regarded as core information which cannot be regenerated from cache, and as such is stored in self._data which tracks the array for changes and clears cached values of the mesh if this is altered. Returns ---------- faces : (n, 3) int Representing triangles which reference self.vertices """ return self._data.get('faces', np.empty(shape=(0, 3), dtype=np.int64)) @faces.setter def faces(self, values): """ Set the vertex indexes that make up triangular faces. Parameters -------------- values : (n, 3) int Indexes of self.vertices """ if values is None or len(values) == 0: if 'faces' in self._data: del self._data['faces'] return values =
np.asanyarray(values, dtype=np.int64)
numpy.asanyarray
import cv2 import os import numpy as np def rotate_bound(image, angle): # grab the dimensions of the image and then determine the # center (h, w) = image.shape[:2] (cX, cY) = (w // 2, h // 2) # grab the rotation matrix (applying the negative of the # angle to rotate clockwise), then grab the sine and cosine # (i.e., the rotation components of the matrix) M = cv2.getRotationMatrix2D((cX, cY), -angle, 1.0) cos =
np.abs(M[0, 0])
numpy.abs
# Adapted for numpy/ma/cdms2 by convertcdms.py import MV2 import cdms2 import genutil import unidata import vcs import numpy from vcs import VCS_validation_functions thermo_objects = [] def Es(T, method=None): """Computes saturated pressure in Pa given T in K, using the method: 1: Hyland-Wexler formulation, polynomial coeff (absolute norm) 2: Wexler formulation 3: Hyland-Wexler formulation, polynomial coeff (relative error norm) 4: classic Goff Gratch equation 5: 6.112*numpy.ma.exp(17.67*tempc/(tempc+243.5)) Default is method 1 Note: 1 and 2 use method 3 where T is not : 173.15 < T < 473.15 ref for 1, 2 and 3: <NAME>., Journal of Applied Met., Vol 31, Dec 1992 ( http://ams.allenpress.com/perlserv/?request=get-document&\ doi=10.1175%2F1520-0450(1992)031%3C1507%3APFTSVP%3E2.0.CO%3B2&ct=1 ) """ if method is None: method = 1 if method == 1: # Put in C x = T - 273.15 # Water vapor c0 = 0.611220713E03 c1 = 0.443944344E02 c2 = 0.143195336E01 c3 = 0.263350515E-01 c4 = 0.310636053E-03 c5 = 0.185218710E-05 c6 = 0.103440324E-07 c7 = -0.468258100E-10 c8 = 0.466533033E-13 eswat = c0 + x * (c1 + x * (c2 + x * (c3 + x * (c4 + x * (c5 + x * (c6 + x * (c7 + x * c8))))))) # ice c0 = .611153246E03 c1 = .503261230E02 c2 = .188595709E01 c3 = .422115970E-01 c4 = .620376691E-03 c5 = .616082536E-05 c6 = .405172828E-07 c7 = .161492905E-09 c8 = .297886454E-12 esice = c0 + x * (c1 + x * (c2 + x * (c3 + x * (c4 + x * (c5 + x * (c6 + x * (c7 + x * c8))))))) # Combine es = MV2.where(MV2.less(T, 273.15), esice, eswat) # Overwrite values outside valid range with method 2 mn, mx = genutil.minmax(T) if mn < 173.16 or mx > 473.15: es2 = Es(T, method=2) es = MV2.where(MV2.less(T, 173.16), es2, es) es = MV2.where(MV2.greater(T, 473.15), es2, es) elif method == 2: # over water g0 = -0.29912729E4 g1 = -0.60170128E4 g2 = 0.1887643854E2 g3 = -0.28354721E-1 g4 = 0.17838301E-4 g5 = -0.84150417E-9 g6 = 0.44412543E-12 g7 = 0.2858487E1 # over ice k0 = -0.58653696e4 k1 = 0.2224103300E2 k2 = 0.13749042E-1 k3 = -0.34031775E-4 k4 = 0.26967687E-7 k5 = 0.6918651 esice = (k0 + (k1 + k5 * MV2.log(T) + (k2 + ( k3 + k4 * T) * T) * T) * T) / T # over ice eswat = (g0 + (g1 + (g2 + g7 * MV2.log(T) + (g3 + (g4 + ( g5 + g6 * T) * T) * T) * T) * T) * T) / T ** 2 # over water es = MV2.where(MV2.less(T, 273.15), esice, eswat) es = MV2.exp(es) elif method == 3: # Put in C x = T - 273.15 # Water vapor c0 = 0.611213476E03 c1 = 0.444007856E02 c2 = 0.143064234E01 c3 = 0.264461437E-01 c4 = 0.305930558E-03 c5 = 0.196237241E-05 c6 = 0.892344772E-08 c7 = -0.373208410E-10 c8 = 0.209339997E-13 eswat = c0 + x * (c1 + x * (c2 + x * (c3 + x * (c4 + x * ( c5 + x * (c6 + x * (c7 + x * c8))))))) # ice c0 = .611123516E03 c1 = .503109514E02 c2 = .1888369801E01 c3 = .420547422E-01 c4 = .614396778E-03 c5 = .602780717E-05 c6 = .387940929E-07 c7 = .149436277E-09 c8 = .262655803E-12 esice = c0 + x * (c1 + x * (c2 + x * (c3 + x * (c4 + x * ( c5 + x * (c6 + x * (c7 + x * c8))))))) # Combine es = MV2.where(MV2.less(T, 273.15), esice, eswat) # Overwrite values outside valid range with method 2 mn, mx = genutil.minmax(T) if mn < 173.16 or mx > 473.15: es2 = Es(T, method=2) es = MV2.where(MV2.less(T, 173.16), es2, es) es = MV2.where(MV2.greater(T, 473.15), es2, es) elif method == 4: est = 101324.6 # Pa Ts = 373.16 / T a = -7.90298 b = 5.02808 c = -1.3816E-7 d = 11.344 f = 8.1328E-3 h = -3.49149 maxexp = int(numpy.log10(numpy.finfo(numpy.float).max)) minexp = 1 - a es = a * (Ts - 1.) es = es + b * numpy.ma.log10(Ts) A = d * (1. - Ts) A = numpy.ma.masked_greater(A, maxexp) A = numpy.ma.masked_less(A, minexp) es = es + c * (
numpy.ma.power(10, A)
numpy.ma.power
from __future__ import print_function import copy import os import sys import time import unittest from nose.plugins.skip import SkipTest from nose.tools import assert_raises import numpy from six.moves import xrange import theano from theano import tensor, config from theano.sandbox import rng_mrg from theano.sandbox.rng_mrg import MRG_RandomStreams from theano.sandbox.cuda import cuda_available from theano.tests import unittest_tools as utt from theano.tests.unittest_tools import attr if cuda_available: from theano.sandbox.cuda import float32_shared_constructor # TODO: test gpu # Done in test_consistency_GPU_{serial,parallel} # TODO: test MRG_RandomStreams # Partly done in test_consistency_randomstreams # TODO: test optimizer mrg_random_make_inplace # TODO: make tests work when no flags gived. Now need: # THEANO_FLAGS=device=gpu0,floatX=float32 # Partly done, in test_consistency_GPU_{serial,parallel} mode = config.mode mode_with_gpu = theano.compile.mode.get_default_mode().including('gpu') utt.seed_rng() # Results generated by Java code using L'Ecuyer et al.'s code, with: # main seed: [12345]*6 (default) # 12 streams # 7 substreams for each stream # 5 samples drawn from each substream java_samples = numpy.loadtxt(os.path.join(os.path.split(theano.__file__)[0], 'sandbox', 'samples_MRG31k3p_12_7_5.txt')) def test_deterministic(): seed = utt.fetch_seed() sample_size = (10, 20) test_use_cuda = [False] if cuda_available: test_use_cuda.append(True) for use_cuda in test_use_cuda: # print 'use_cuda =', use_cuda R = MRG_RandomStreams(seed=seed, use_cuda=use_cuda) u = R.uniform(size=sample_size) f = theano.function([], u) fsample1 = f() fsample2 = f() assert not numpy.allclose(fsample1, fsample2) R2 = MRG_RandomStreams(seed=seed, use_cuda=use_cuda) u2 = R2.uniform(size=sample_size) g = theano.function([], u2) gsample1 = g() gsample2 = g() assert numpy.allclose(fsample1, gsample1) assert numpy.allclose(fsample2, gsample2) def test_consistency_randomstreams(): """ Verify that the random numbers generated by MRG_RandomStreams are the same as the reference (Java) implementation by L'Ecuyer et al. """ seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 test_use_cuda = [False] if cuda_available: test_use_cuda.append(True) for use_cuda in test_use_cuda: # print 'use_cuda =', use_cuda samples = [] rng = MRG_RandomStreams(seed=seed, use_cuda=use_cuda) for i in range(n_streams): stream_samples = [] u = rng.uniform(size=(n_substreams,), nstreams=n_substreams) f = theano.function([], u) for j in range(n_samples): s = f() stream_samples.append(s) stream_samples = numpy.array(stream_samples) stream_samples = stream_samples.T.flatten() samples.append(stream_samples) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_cpu_serial(): """ Verify that the random numbers generated by mrg_uniform, serially, are the same as the reference (Java) implementation by L'Ecuyer et al. """ seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_rstate = curr_rstate.copy() for j in range(n_substreams): rstate = theano.shared(numpy.array([stream_rstate.copy()], dtype='int32')) new_rstate, sample = rng_mrg.mrg_uniform.new(rstate, ndim=None, dtype=config.floatX, size=(1,)) # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) rstate.default_update = new_rstate f = theano.function([], sample) for k in range(n_samples): s = f() samples.append(s) # next substream stream_rstate = rng_mrg.ff_2p72(stream_rstate) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_cpu_parallel(): """ Verify that the random numbers generated by mrg_uniform, in parallel, are the same as the reference (Java) implementation by L'Ecuyer et al. """ seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 # 7 samples will be drawn in parallel samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_samples = [] rstate = [curr_rstate.copy()] for j in range(1, n_substreams): rstate.append(rng_mrg.ff_2p72(rstate[-1])) rstate = numpy.asarray(rstate) rstate = theano.shared(rstate) new_rstate, sample = rng_mrg.mrg_uniform.new(rstate, ndim=None, dtype=config.floatX, size=(n_substreams,)) # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) rstate.default_update = new_rstate f = theano.function([], sample) for k in range(n_samples): s = f() stream_samples.append(s) samples.append(numpy.array(stream_samples).T.flatten()) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_GPU_serial(): """ Verify that the random numbers generated by GPU_mrg_uniform, serially, are the same as the reference (Java) implementation by L'Ecuyer et al. """ if not cuda_available: raise SkipTest('Optional package cuda not available') if config.mode == 'FAST_COMPILE': mode = 'FAST_RUN' else: mode = config.mode seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_rstate = curr_rstate.copy() for j in range(n_substreams): substream_rstate = numpy.array(stream_rstate.copy(), dtype='int32') # HACK - we transfer these int32 to the GPU memory as float32 # (reinterpret_cast) tmp_float_buf = numpy.frombuffer(substream_rstate.data, dtype='float32') # Transfer to device rstate = float32_shared_constructor(tmp_float_buf) new_rstate, sample = rng_mrg.GPU_mrg_uniform.new(rstate, ndim=None, dtype='float32', size=(1,)) rstate.default_update = new_rstate # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) # We need the sample back in the main memory cpu_sample = tensor.as_tensor_variable(sample) f = theano.function([], cpu_sample, mode=mode) for k in range(n_samples): s = f() samples.append(s) # next substream stream_rstate = rng_mrg.ff_2p72(stream_rstate) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_GPU_parallel(): """ Verify that the random numbers generated by GPU_mrg_uniform, in parallel, are the same as the reference (Java) implementation by <NAME> al. """ if not cuda_available: raise SkipTest('Optional package cuda not available') if config.mode == 'FAST_COMPILE': mode = 'FAST_RUN' else: mode = config.mode seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 # 7 samples will be drawn in parallel samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_samples = [] rstate = [curr_rstate.copy()] for j in range(1, n_substreams): rstate.append(rng_mrg.ff_2p72(rstate[-1])) rstate = numpy.asarray(rstate).flatten() # HACK - transfer these int32 to the GPU memory as float32 # (reinterpret_cast) tmp_float_buf = numpy.frombuffer(rstate.data, dtype='float32') # Transfer to device rstate = float32_shared_constructor(tmp_float_buf) new_rstate, sample = rng_mrg.GPU_mrg_uniform.new(rstate, ndim=None, dtype='float32', size=(n_substreams,)) rstate.default_update = new_rstate # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) # We need the sample back in the main memory cpu_sample = tensor.as_tensor_variable(sample) f = theano.function([], cpu_sample, mode=mode) for k in range(n_samples): s = f() stream_samples.append(s) samples.append(numpy.array(stream_samples).T.flatten()) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_GPU_nstreams_limit(): """ Verify that a ValueError is raised when n_streams is greater than 2**20 on GPU. This is the value of (NUM_VECTOR_OP_THREADS_PER_BLOCK * NUM_VECTOR_OP_BLOCKS). """ if not cuda_available: raise SkipTest('Optional package cuda not available') seed = 12345 R = MRG_RandomStreams(seed=seed, use_cuda=True) def eval_uniform(size, nstreams): if theano.config.mode == "FAST_COMPILE": mode = "FAST_RUN" else: mode = copy.copy(theano.compile.get_default_mode()) mode.check_py_code = False out = R.uniform(size=size, nstreams=nstreams, dtype='float32') f = theano.function([], out, mode=mode) return f() eval_uniform((10,), 2**20) assert_raises(ValueError, eval_uniform, (10,), 2**20 + 1) def test_consistency_GPUA_serial(): """ Verify that the random numbers generated by GPUA_mrg_uniform, serially, are the same as the reference (Java) implementation by <NAME> al. """ from theano.sandbox.gpuarray.tests.test_basic_ops import \ mode_with_gpu as mode from theano.sandbox.gpuarray.type import gpuarray_shared_constructor seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_rstate = curr_rstate.copy() for j in range(n_substreams): substream_rstate = numpy.array([stream_rstate.copy()], dtype='int32') # Transfer to device rstate = gpuarray_shared_constructor(substream_rstate) new_rstate, sample = rng_mrg.GPUA_mrg_uniform.new(rstate, ndim=None, dtype='float32', size=(1,)) rstate.default_update = new_rstate # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) # We need the sample back in the main memory cpu_sample = tensor.as_tensor_variable(sample) f = theano.function([], cpu_sample, mode=mode) for k in range(n_samples): s = f() samples.append(s) # next substream stream_rstate = rng_mrg.ff_2p72(stream_rstate) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def test_consistency_GPUA_parallel(): """ Verify that the random numbers generated by GPUA_mrg_uniform, in parallel, are the same as the reference (Java) implementation by <NAME> al. """ from theano.sandbox.gpuarray.tests.test_basic_ops import \ mode_with_gpu as mode from theano.sandbox.gpuarray.type import gpuarray_shared_constructor seed = 12345 n_samples = 5 n_streams = 12 n_substreams = 7 # 7 samples will be drawn in parallel samples = [] curr_rstate = numpy.array([seed] * 6, dtype='int32') for i in range(n_streams): stream_samples = [] rstate = [curr_rstate.copy()] for j in range(1, n_substreams): rstate.append(rng_mrg.ff_2p72(rstate[-1])) rstate = numpy.asarray(rstate) rstate = gpuarray_shared_constructor(rstate) new_rstate, sample = rng_mrg.GPUA_mrg_uniform.new(rstate, ndim=None, dtype='float32', size=(n_substreams,)) rstate.default_update = new_rstate # Not really necessary, just mimicking # rng_mrg.MRG_RandomStreams' behavior sample.rstate = rstate sample.update = (rstate, new_rstate) # We need the sample back in the main memory cpu_sample = tensor.as_tensor_variable(sample) f = theano.function([], cpu_sample, mode=mode) for k in range(n_samples): s = f() stream_samples.append(s) samples.append(numpy.array(stream_samples).T.flatten()) # next stream curr_rstate = rng_mrg.ff_2p134(curr_rstate) samples = numpy.array(samples).flatten() assert(numpy.allclose(samples, java_samples)) def basictest(f, steps, sample_size, prefix="", allow_01=False, inputs=None, target_avg=0.5, target_std=None, mean_rtol=0.01, std_tol=0.01): if inputs is None: inputs = [] dt = 0.0 avg_var = 0.0 for i in xrange(steps): t0 = time.time() ival = f(*inputs) assert ival.shape == sample_size dt += time.time() - t0 ival = numpy.asarray(ival) if i == 0: mean = numpy.array(ival, copy=True) avg_var = numpy.mean((ival - target_avg) ** 2) min_ = ival.min() max_ = ival.max() else: alpha = 1.0 / (1 + i) mean = alpha * ival + (1 - alpha) * mean avg_var = (alpha * numpy.mean((ival - target_avg) ** 2) + (1 - alpha) * avg_var) min_ = min(min_, ival.min()) max_ = max(max_, ival.max()) if not allow_01: assert min_ > 0 assert max_ < 1 if hasattr(target_avg, 'shape'): # looks if target_avg is an array diff = numpy.mean(abs(mean - target_avg)) # print prefix, 'mean diff with mean', diff assert numpy.all(diff < mean_rtol * (1 + abs(target_avg))), ( 'bad mean? %s %s' % (mean, target_avg)) else: # if target_avg is a scalar, then we can do the mean of # `mean` to get something more precise mean = numpy.mean(mean) # print prefix, 'mean', mean assert abs(mean - target_avg) < mean_rtol * (1 + abs(target_avg)), ( 'bad mean? %f %f' % (mean, target_avg)) std = numpy.sqrt(avg_var) # print prefix, 'var', avg_var # print prefix, 'std', std if target_std is not None: assert abs(std - target_std) < std_tol * (1 + abs(target_std)), ( 'bad std? %f %f %f' % (std, target_std, std_tol)) # print prefix, 'time', dt # print prefix, 'elements', steps * sample_size[0] * sample_size[1] # print prefix, 'samples/sec', steps * sample_size[0] * sample_size[1] / dt # print prefix, 'min', min_, 'max', max_ def test_uniform(): # TODO: test param low, high # TODO: test size=None # TODO: test ndim!=size.ndim # TODO: test bad seed # TODO: test size=Var, with shape that change from call to call if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or mode == 'Mode' and config.linker in ['py']): sample_size = (10, 100) steps = 50 else: sample_size = (500, 50) steps = int(1e3) x = tensor.matrix() for size, const_size, var_input, input in [ (sample_size, sample_size, [], []), (x.shape, sample_size, [x], [numpy.zeros(sample_size, dtype=config.floatX)]), ((x.shape[0], sample_size[1]), sample_size, [x], [numpy.zeros(sample_size, dtype=config.floatX)]), # test empty size (scalar) ((), (), [], []), ]: # TEST CPU IMPLEMENTATION # The python and C implementation are tested with DebugMode # print '' # print 'ON CPU with size=(%s):' % str(size) x = tensor.matrix() R = MRG_RandomStreams(234, use_cuda=False) # Note: we specify `nstreams` to avoid a warning. # TODO Look for all occurrences of `guess_n_streams` and `30 * 256` # for such situations: it would be better to instead filter the # warning using the warning module. u = R.uniform(size=size, nstreams=rng_mrg.guess_n_streams(size, warn=False)) f = theano.function(var_input, u, mode=mode) assert any([isinstance(node.op, theano.sandbox.rng_mrg.mrg_uniform) for node in f.maker.fgraph.toposort()]) # theano.printing.debugprint(f) cpu_out = f(*input) # print 'CPU: random?[:10], random?[-10:]' # print cpu_out[0, 0:10] # print cpu_out[-1, -10:] # Increase the number of steps if sizes implies only a few samples if numpy.prod(const_size) < 10: steps_ = steps * 100 else: steps_ = steps basictest(f, steps_, const_size, prefix='mrg cpu', inputs=input) if mode != 'FAST_COMPILE' and cuda_available: # print '' # print 'ON GPU with size=(%s):' % str(size) R = MRG_RandomStreams(234, use_cuda=True) u = R.uniform(size=size, dtype='float32', nstreams=rng_mrg.guess_n_streams(size, warn=False)) # well, it's really that this test w GPU doesn't make sense otw assert u.dtype == 'float32' f = theano.function(var_input, theano.Out( theano.sandbox.cuda.basic_ops.gpu_from_host(u), borrow=True), mode=mode_with_gpu) assert any([isinstance(node.op, theano.sandbox.rng_mrg.GPU_mrg_uniform) for node in f.maker.fgraph.toposort()]) # theano.printing.debugprint(f) gpu_out = numpy.asarray(f(*input)) # print 'GPU: random?[:10], random?[-10:]' # print gpu_out[0, 0:10] # print gpu_out[-1, -10:] basictest(f, steps_, const_size, prefix='mrg gpu', inputs=input) numpy.testing.assert_array_almost_equal(cpu_out, gpu_out, decimal=6) # print '' # print 'ON CPU w Numpy with size=(%s):' % str(size) RR = theano.tensor.shared_randomstreams.RandomStreams(234) uu = RR.uniform(size=size) ff = theano.function(var_input, uu, mode=mode) # It's not our problem if numpy generates 0 or 1 basictest(ff, steps_, const_size, prefix='numpy', allow_01=True, inputs=input) @attr('slow') def test_binomial(): # TODO: test size=None, ndim=X # TODO: test size=X, ndim!=X.ndim # TODO: test random seed in legal value(!=0 and other) # TODO: test sample_size not a multiple of guessed #streams # TODO: test size=Var, with shape that change from call to call # we test size in a tuple of int and a tensor.shape. # we test the param p with int. if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or mode == 'Mode' and config.linker in ['py']): sample_size = (10, 50) steps = 50 rtol = 0.02 else: sample_size = (500, 50) steps = int(1e3) rtol = 0.01 x = tensor.matrix() for mean in [0.1, 0.5]: for size, const_size, var_input, input in [ (sample_size, sample_size, [], []), (x.shape, sample_size, [x], [numpy.zeros(sample_size, dtype=config.floatX)]), ((x.shape[0], sample_size[1]), sample_size, [x], [numpy.zeros(sample_size, dtype=config.floatX)]), # test empty size (scalar) ((), (), [], []), ]: yield (t_binomial, mean, size, const_size, var_input, input, steps, rtol) def t_binomial(mean, size, const_size, var_input, input, steps, rtol): R = MRG_RandomStreams(234, use_cuda=False) u = R.binomial(size=size, p=mean) f = theano.function(var_input, u, mode=mode) out = f(*input) # Increase the number of steps if sizes implies only a few samples if numpy.prod(const_size) < 10: steps_ = steps * 100 else: steps_ = steps basictest(f, steps_, const_size, prefix='mrg cpu', inputs=input, allow_01=True, target_avg=mean, mean_rtol=rtol) if mode != 'FAST_COMPILE' and cuda_available: R = MRG_RandomStreams(234, use_cuda=True) u = R.binomial(size=size, p=mean, dtype='float32') # well, it's really that this test w GPU doesn't make sense otw assert u.dtype == 'float32' f = theano.function(var_input, theano.Out( theano.sandbox.cuda.basic_ops.gpu_from_host(u), borrow=True), mode=mode_with_gpu) gpu_out = numpy.asarray(f(*input)) basictest(f, steps_, const_size, prefix='mrg gpu', inputs=input, allow_01=True, target_avg=mean, mean_rtol=rtol) numpy.testing.assert_array_almost_equal(out, gpu_out, decimal=6) RR = theano.tensor.shared_randomstreams.RandomStreams(234) uu = RR.binomial(size=size, p=mean) ff = theano.function(var_input, uu, mode=mode) # It's not our problem if numpy generates 0 or 1 basictest(ff, steps_, const_size, prefix='numpy', allow_01=True, inputs=input, target_avg=mean, mean_rtol=rtol) @attr('slow') def test_normal0(): steps = 50 std = 2. if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or mode == 'Mode' and config.linker in ['py']): sample_size = (25, 30) default_rtol = .02 else: sample_size = (999, 50) default_rtol = .01 sample_size_odd = (sample_size[0], sample_size[1] - 1) x = tensor.matrix() for size, const_size, var_input, input, avg, rtol, std_tol in [ (sample_size, sample_size, [], [], -5., default_rtol, default_rtol), (x.shape, sample_size, [x], [numpy.zeros(sample_size, dtype=config.floatX)], -5., default_rtol, default_rtol), ((x.shape[0], sample_size[1]), sample_size, [x], [numpy.zeros(sample_size, dtype=config.floatX)], -5., default_rtol, default_rtol), # test odd value (sample_size_odd, sample_size_odd, [], [], -5., default_rtol, default_rtol), # test odd value (x.shape, sample_size_odd, [x], [numpy.zeros(sample_size_odd, dtype=config.floatX)], -5., default_rtol, default_rtol), (sample_size, sample_size, [], [], numpy.arange(numpy.prod(sample_size), dtype='float32').reshape(sample_size), 10. * std / numpy.sqrt(steps), default_rtol), # test empty size (scalar) ((), (), [], [], -5., default_rtol, 0.02), # test with few samples at the same time ((1,), (1,), [], [], -5., default_rtol, 0.02), ((2,), (2,), [], [], -5., default_rtol, 0.02), ((3,), (3,), [], [], -5., default_rtol, 0.02), ]: # print '' # print 'ON CPU:' R = MRG_RandomStreams(234, use_cuda=False) # Note: we specify `nstreams` to avoid a warning. n = R.normal(size=size, avg=avg, std=std, nstreams=rng_mrg.guess_n_streams(size, warn=False)) f = theano.function(var_input, n, mode=mode) # theano.printing.debugprint(f) out = f(*input) # print 'random?[:10]\n', out[0, 0:10] # Increase the number of steps if size implies only a few samples if numpy.prod(const_size) < 10: steps_ = steps * 50 else: steps_ = steps basictest(f, steps_, const_size, target_avg=avg, target_std=std, prefix='mrg ', allow_01=True, inputs=input, mean_rtol=rtol, std_tol=std_tol) sys.stdout.flush() if mode != 'FAST_COMPILE' and cuda_available: # print '' # print 'ON GPU:' R = MRG_RandomStreams(234, use_cuda=True) n = R.normal(size=size, avg=avg, std=std, dtype='float32', nstreams=rng_mrg.guess_n_streams(size, warn=False)) # well, it's really that this test w GPU doesn't make sense otw assert n.dtype == 'float32' f = theano.function(var_input, theano.Out( theano.sandbox.cuda.basic_ops.gpu_from_host(n), borrow=True), mode=mode_with_gpu) # theano.printing.debugprint(f) sys.stdout.flush() gpu_out = numpy.asarray(f(*input)) # print 'random?[:10]\n', gpu_out[0, 0:10] # print '----' sys.stdout.flush() basictest(f, steps_, const_size, target_avg=avg, target_std=std, prefix='gpu mrg ', allow_01=True, inputs=input, mean_rtol=rtol, std_tol=std_tol) # Need to allow some rounding error as their is float # computation that are done on the gpu vs cpu assert numpy.allclose(out, gpu_out, rtol=5e-6, atol=5e-6) # print '' # print 'ON CPU w NUMPY:' RR = theano.tensor.shared_randomstreams.RandomStreams(234) nn = RR.normal(size=size, avg=avg, std=std) ff = theano.function(var_input, nn) basictest(ff, steps_, const_size, target_avg=avg, target_std=std, prefix='numpy ', allow_01=True, inputs=input, mean_rtol=rtol) def basic_multinomialtest(f, steps, sample_size, target_pvals, n_samples, prefix="", mean_rtol=0.04): dt = 0.0 avg_pvals = numpy.zeros(target_pvals.shape, dtype=config.floatX) for i in xrange(steps): t0 = time.time() ival = f() assert ival.shape == sample_size assert numpy.all(numpy.sum(ival, axis=1) == n_samples) dt += time.time() - t0 avg_pvals += ival avg_pvals /= (steps * n_samples) assert numpy.mean(abs(avg_pvals - target_pvals)) < mean_rtol print('random?[:10]\n', numpy.asarray(f()[:10])) print(prefix, 'mean', avg_pvals) # < mean_rtol, 'bad mean? %s %s' % (str(avg_pvals), str(target_pvals)) print(numpy.mean(abs(avg_pvals - target_pvals))) print(prefix, 'time', dt) print(prefix, 'elements', steps * numpy.prod(target_pvals.shape)) print(prefix, 'samples/sec', steps * numpy.prod(target_pvals.shape) / dt) def test_multinomial(): steps = 100 mode_ = mode if mode == 'FAST_COMPILE': mode_ = 'FAST_RUN' if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or mode == 'Mode' and config.linker in ['py']): sample_size = (49, 5) else: sample_size = (450, 6) mode_ = theano.compile.mode.get_mode(mode_) # print '' # print 'ON CPU:' pvals = numpy.asarray(numpy.random.uniform(size=sample_size)) pvals = numpy.apply_along_axis(lambda row: row / numpy.sum(row), 1, pvals) R = MRG_RandomStreams(234, use_cuda=False) # Note: we specify `nstreams` to avoid a warning. m = R.multinomial(pvals=pvals, dtype=config.floatX, nstreams=30 * 256) f = theano.function([], m, mode=mode_) # theano.printing.debugprint(f) out = f() basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1, prefix='mrg ') sys.stdout.flush() if mode != 'FAST_COMPILE' and cuda_available: # print '' # print 'ON GPU:' R = MRG_RandomStreams(234, use_cuda=True) pvals = numpy.asarray(pvals, dtype='float32') # We give the number of streams to avoid a warning. n = R.multinomial(pvals=pvals, dtype='float32', nstreams=30 * 256) # well, it's really that this test w GPU doesn't make sense otw assert n.dtype == 'float32' f = theano.function( [], theano.sandbox.cuda.basic_ops.gpu_from_host(n), mode=mode_.including('gpu')) # theano.printing.debugprint(f) gpu_out = f() sys.stdout.flush() basic_multinomialtest(f, steps, sample_size, pvals, n_samples=1, prefix='gpu mrg ') numpy.testing.assert_array_almost_equal(out, gpu_out, decimal=6) def test_multinomial_n_samples(): mode_ = mode if mode == 'FAST_COMPILE': mode_ = 'FAST_RUN' if (mode in ['DEBUG_MODE', 'DebugMode', 'FAST_COMPILE'] or mode == 'Mode' and config.linker in ['py']): sample_size = (49, 5) else: sample_size = (450, 6) mode_ = theano.compile.mode.get_mode(mode_) pvals = numpy.asarray(numpy.random.uniform(size=sample_size)) pvals = numpy.apply_along_axis(lambda row: row / numpy.sum(row), 1, pvals) R = MRG_RandomStreams(234, use_cuda=False) for n_samples, steps in zip([5, 10, 100, 1000], [20, 10, 1, 1]): m = R.multinomial(pvals=pvals, n=n_samples, dtype=config.floatX, nstreams=30 * 256) f = theano.function([], m, mode=mode_) basic_multinomialtest(f, steps, sample_size, pvals, n_samples, prefix='mrg ') sys.stdout.flush() if mode != 'FAST_COMPILE' and cuda_available: R = MRG_RandomStreams(234, use_cuda=True) pvals = numpy.asarray(pvals, dtype='float32') n = R.multinomial(pvals=pvals, n=n_samples, dtype='float32', nstreams=30 * 256) assert n.dtype == 'float32' f = theano.function( [], theano.sandbox.cuda.basic_ops.gpu_from_host(n), mode=mode_.including('gpu')) sys.stdout.flush() basic_multinomialtest(f, steps, sample_size, pvals, n_samples, prefix='gpu mrg ') class T_MRG(unittest.TestCase): def test_bad_size(self): R = MRG_RandomStreams(234, use_cuda=False) for size in [ (0, 100), (-1, 100), (1, 0), ]: self.assertRaises(ValueError, R.uniform, size) self.assertRaises(ValueError, R.binomial, size) self.assertRaises(ValueError, R.multinomial, size, 1, []) self.assertRaises(ValueError, R.normal, size) def test_multiple_rng_aliasing(): """ Test that when we have multiple random number generators, we do not alias the state_updates member. `state_updates` can be useful when attempting to copy the (random) state between two similar theano graphs. The test is meant to detect a previous bug where state_updates was initialized as a class-attribute, instead of the __init__ function. """ rng1 = MRG_RandomStreams(1234) rng2 = MRG_RandomStreams(2392) assert rng1.state_updates is not rng2.state_updates def test_random_state_transfer(): """ Test that random state can be transferred from one theano graph to another. """ class Graph: def __init__(self, seed=123): self.rng = MRG_RandomStreams(seed) self.y = self.rng.uniform(size=(1,)) g1 = Graph(seed=123) f1 = theano.function([], g1.y) g2 = Graph(seed=987) f2 = theano.function([], g2.y) g2.rng.rstate = g1.rng.rstate for (su1, su2) in zip(g1.rng.state_updates, g2.rng.state_updates): su2[0].set_value(su1[0].get_value()) numpy.testing.assert_array_almost_equal(f1(), f2(), decimal=6) def test_gradient_scan(): # Test for a crash when using MRG inside scan and taking the gradient # See https://groups.google.com/d/msg/theano-dev/UbcYyU5m-M8/UO9UgXqnQP0J theano_rng = MRG_RandomStreams(10) w = theano.shared(numpy.ones(1, dtype='float32')) def one_step(x): return x + theano_rng.uniform((1,), dtype='float32') * w x = tensor.vector(dtype='float32') values, updates = theano.scan(one_step, outputs_info=x, n_steps=10) gw = theano.grad(tensor.sum(values[-1]), w) f = theano.function([x], gw) f(numpy.arange(1, dtype='float32')) def test_multMatVect(): A1 = tensor.lmatrix('A1') s1 = tensor.ivector('s1') m1 = tensor.iscalar('m1') A2 = tensor.lmatrix('A2') s2 = tensor.ivector('s2') m2 = tensor.iscalar('m2') g0 = rng_mrg.DotModulo()(A1, s1, m1, A2, s2, m2) f0 = theano.function([A1, s1, m1, A2, s2, m2], g0) i32max = numpy.iinfo(numpy.int32).max A1 = numpy.random.randint(0, i32max, (3, 3)).astype('int64') s1 = numpy.random.randint(0, i32max, 3).astype('int32') m1 = numpy.asarray(numpy.random.randint(i32max), dtype="int32") A2 = numpy.random.randint(0, i32max, (3, 3)).astype('int64') s2 = numpy.random.randint(0, i32max, 3).astype('int32') m2 = numpy.asarray(numpy.random.randint(i32max), dtype="int32") f0.input_storage[0].storage[0] = A1 f0.input_storage[1].storage[0] = s1 f0.input_storage[2].storage[0] = m1 f0.input_storage[3].storage[0] = A2 f0.input_storage[4].storage[0] = s2 f0.input_storage[5].storage[0] = m2 r_a1 = rng_mrg.matVecModM(A1, s1, m1) r_a2 = rng_mrg.matVecModM(A2, s2, m2) f0.fn() r_b = f0.output_storage[0].value assert numpy.allclose(r_a1, r_b[:3]) assert numpy.allclose(r_a2, r_b[3:]) def test_seed_fn(): test_use_cuda = [False] if cuda_available: test_use_cuda.append(True) idx = tensor.ivector() for use_cuda in test_use_cuda: if config.mode == 'FAST_COMPILE' and use_cuda: mode = 'FAST_RUN' else: mode = config.mode for new_seed, same in [(234, True), (None, True), (23, False)]: random = MRG_RandomStreams(234, use_cuda=use_cuda) fn1 = theano.function([], random.uniform((2, 2), dtype='float32'), mode=mode) fn2 = theano.function([], random.uniform((3, 3), nstreams=2, dtype='float32'), mode=mode) fn3 = theano.function([idx], random.uniform(idx, nstreams=3, ndim=1, dtype='float32'), mode=mode) fn1_val0 = fn1() fn1_val1 = fn1() assert not numpy.allclose(fn1_val0, fn1_val1) fn2_val0 = fn2() fn2_val1 = fn2() assert not numpy.allclose(fn2_val0, fn2_val1) fn3_val0 = fn3([4]) fn3_val1 = fn3([4]) assert not numpy.allclose(fn3_val0, fn3_val1) assert fn1_val0.size == 4 assert fn2_val0.size == 9 random.seed(new_seed) fn1_val2 = fn1() fn1_val3 = fn1() fn2_val2 = fn2() fn2_val3 = fn2() fn3_val2 = fn3([4]) fn3_val3 = fn3([4]) assert numpy.allclose(fn1_val0, fn1_val2) == same assert numpy.allclose(fn1_val1, fn1_val3) == same assert numpy.allclose(fn2_val0, fn2_val2) == same assert numpy.allclose(fn2_val1, fn2_val3) == same assert numpy.allclose(fn3_val0, fn3_val2) == same assert numpy.allclose(fn3_val1, fn3_val3) == same if __name__ == "__main__": rng = MRG_RandomStreams(
numpy.random.randint(2147462579)
numpy.random.randint
from .label_model import ClassConditionalLabelModel, LearningConfig, init_random import numpy as np from scipy import sparse import torch from torch import nn class NaiveBayes(ClassConditionalLabelModel): """A generative label model that assumes that all labeling functions are conditionally independent given the true class label, i.e., the naive Bayes assumption. Proposed in: <NAME> and <NAME>. Maximum likelihood estimation of observer error-rates using the EM algorithm. Journal of the Royal Statistical Society C, 28(1):20–28, 1979. Proposed for labeling functions in: <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>. Data programming: Creating large training sets, quickly. In Neural Information Processing Systems, 2016. """ def __init__(self, num_classes, num_lfs, init_acc=.9, acc_prior=0.025, balance_prior=0.025, learn_class_balance=True): """Constructor. Initializes labeling function accuracies using optional argument and all other model parameters uniformly. :param num_classes: number of target classes, i.e., binary classification = 2 :param num_lfs: number of labeling functions to model :param init_acc: initial estimated labeling function accuracy, must be a float in [0,1] :param acc_prior: strength of regularization of estimated labeling function accuracies toward their initial values :param learn_class_balance: whether to estimate the distribution over target classes (True) or assume to be uniform (False) """ super().__init__(num_classes, num_lfs, init_acc, acc_prior) self.class_balance = nn.Parameter( torch.zeros([num_classes]), requires_grad=learn_class_balance) self.balance_prior = balance_prior def forward(self, votes): """Computes log likelihood of labeling function outputs for each example in the batch. For efficiency, this function prefers that votes is an instance of scipy.sparse.coo_matrix. You can avoid a conversion by passing in votes with this class. :param votes: m x n matrix in {0, ..., k}, where m is the batch size, n is the number of labeling functions and k is the number of classes :return: 1-d tensor of length m, where each element is the log-likelihood of the corresponding row in labels """ class_ll = self._get_norm_class_balance() conditional_ll = self._get_labeling_function_likelihoods(votes) joint_ll = conditional_ll + class_ll return torch.logsumexp(joint_ll, dim=1) def estimate_label_model(self, votes, config=None): """Estimates the parameters of the label model based on observed labeling function outputs. :param votes: m x n matrix in {0, ..., k}, where m is the batch size, n is the number of labeling functions and k is the number of classes :param config: optional LearningConfig instance. If None, initialized with default constructor """ if config is None: config = LearningConfig() # Initializes random seed init_random(config.random_seed) # Converts to CSR to standardize input votes = sparse.csr_matrix(votes, dtype=np.int) batches = self._create_minibatches( votes, config.batch_size, shuffle_rows=True) self._do_estimate_label_model(batches, config) def get_label_distribution(self, votes): """Returns the posterior distribution over true labels given labeling function outputs according to the model :param votes: m x n matrix in {0, ..., k}, where m is the batch size, n is the number of labeling functions and k is the number of classes :return: m x k matrix, where each row is the posterior distribution over the true class label for the corresponding example """ # Converts to CSR to standardize input votes = sparse.csr_matrix(votes, dtype=np.int) labels = np.ndarray((votes.shape[0], self.num_classes)) batches = self._create_minibatches(votes, 4096, shuffle_rows=False) offset = 0 for votes, in batches: class_balance = self._get_norm_class_balance() lf_likelihood = self._get_labeling_function_likelihoods(votes) jll = class_balance + lf_likelihood for i in range(votes.shape[0]): p = torch.exp(jll[i, :] - torch.max(jll[i, :])) p = p / p.sum() for j in range(self.num_classes): labels[offset + i, j] = p[j] offset += votes.shape[0] return labels def get_most_probable_labels(self, votes): """Returns the most probable true labels given observed function outputs. :param votes: m x n matrix in {0, ..., k}, where m is the batch size, n is the number of labeling functions and k is the number of classes :return: 1-d Numpy array of most probable labels """ return np.argmax(self.get_label_distribution(votes), axis=1) + 1 def get_class_balance(self): """Returns the model's estimated class balance :return: a NumPy array with one element in [0,1] for each target class, representing the estimated prior probability that an example has that label """ return np.exp(self._get_norm_class_balance().detach().numpy()) def _create_minibatches(self, votes, batch_size, shuffle_rows=False): if shuffle_rows: index = np.arange(np.shape(votes)[0]) np.random.shuffle(index) votes = votes[index, :] # Creates minibatches batches = [(sparse.coo_matrix( votes[i * batch_size: (i + 1) * batch_size, :], copy=True),) for i in range(int(
np.ceil(votes.shape[0] / batch_size)
numpy.ceil
""" Convert label image to colors and other way around SAMPLE run: >> python run_image_convert_label_color.py \ -imgs "data_images/drosophila_ovary_slice/segm/*.png" \ -out data_images/drosophila_ovary_slice/segm_rgb \ -clrs data_images/drosophila_ovary_slice/segm_rgb/dict_label-color.json Copyright (C) 2014-2016 <NAME> <<EMAIL>> """ import os import sys import glob import json import logging import argparse import multiprocessing as mproc from functools import partial import numpy as np sys.path += [os.path.abspath('.'), os.path.abspath('..')] # Add path to root import imsegm.utils.data_io as tl_data import imsegm.utils.experiments as tl_expt import imsegm.annotation as seg_annot PATH_INPUT = os.path.join('data_images', 'drosophila_ovary_slice', 'segm', '*.png') PATH_OUTPUT = os.path.join('data_images', 'drosophila_ovary_slice', 'segm_rgb') NAME_JSON_DICT = 'dictionary_label-color.json' NB_THREADS = max(1, int(mproc.cpu_count() * 0.9)) def parse_arg_params(): """ create simple arg parser with default values (input, results, dataset) :return obj: argparse """ parser = argparse.ArgumentParser() parser.add_argument('-imgs', '--path_images', type=str, required=True, help='path to dir with images', default=PATH_INPUT) parser.add_argument('-out', '--path_out', type=str, required=True, help='path to output dir', default=PATH_OUTPUT) parser.add_argument('-clrs', '--path_colors', type=str, required=False, help='json with colour-label dict', default=None) parser.add_argument('--nb_jobs', type=int, required=False, help='number of jobs in parallel', default=NB_THREADS) args = vars(parser.parse_args()) for n in ['path_images', 'path_out']: p_dir = tl_data.update_path(os.path.dirname(args[n])) assert os.path.isdir(p_dir), 'missing: %s' % args[n] args[n] = os.path.join(p_dir, os.path.basename(args[n])) if args['path_colors'] is not None: args['path_colors'] = tl_data.update_path(args['path_colors']) logging.info(tl_expt.string_dict(args, desc='ARG PARAMETERS')) return args def load_dict_colours(path_json): if path_json is not None and os.path.isfile(path_json): with open(path_json, 'r') as fp: dict_colors = json.load(fp) else: dict_colors = {} # convert to correct type dict_colors = {int(lb): tuple(dict_colors[lb]) for lb in dict_colors} return dict_colors def convert_labels_2_colors(img, dict_colors, path_out): img_labels =
np.unique(img)
numpy.unique
"""Define the Component class.""" from collections import OrderedDict, Counter, defaultdict from collections.abc import Iterable from itertools import product import numpy as np from numpy import ndarray, isscalar, atleast_1d, atleast_2d, promote_types from scipy.sparse import issparse from openmdao.core.system import System, _supported_methods, _DEFAULT_COLORING_META, \ global_meta_names from openmdao.core.constants import _UNDEFINED, INT_DTYPE from openmdao.jacobians.dictionary_jacobian import DictionaryJacobian from openmdao.vectors.vector import _full_slice from openmdao.utils.array_utils import shape_to_len from openmdao.utils.units import valid_units from openmdao.utils.name_maps import rel_key2abs_key, abs_key2rel_key, rel_name2abs_name from openmdao.utils.mpi import MPI from openmdao.utils.general_utils import format_as_float_or_array, ensure_compatible, \ find_matches, simple_warning, make_set, _is_slicer_op import openmdao.utils.coloring as coloring_mod _forbidden_chars = ['.', '*', '?', '!', '[', ']'] _whitespace = set([' ', '\t', '\r', '\n']) def _valid_var_name(name): """ Determine if the proposed name is a valid variable name. Leading and trailing whitespace is illegal, and a specific list of characters are illegal anywhere in the string. Parameters ---------- name : str Proposed name. Returns ------- bool True if the proposed name is a valid variable name, else False. """ global _forbidden_chars, _whitespace if not name: return False for char in _forbidden_chars: if char in name: return False return name[0] not in _whitespace and name[-1] not in _whitespace class Component(System): """ Base Component class; not to be directly instantiated. Attributes ---------- _approx_schemes : OrderedDict A mapping of approximation types to the associated ApproximationScheme. _var_rel2meta : dict Dictionary mapping relative names to metadata. This is only needed while adding inputs and outputs. During setup, these are used to build the dictionaries of metadata. _static_var_rel2meta : dict Static version of above - stores data for variables added outside of setup. _var_rel_names : {'input': [str, ...], 'output': [str, ...]} List of relative names of owned variables existing on current proc. This is only needed while adding inputs and outputs. During setup, these are used to determine the list of absolute names. _static_var_rel_names : dict Static version of above - stores names of variables added outside of setup. _declared_partials : dict Cached storage of user-declared partials. _declared_partial_checks : list Cached storage of user-declared check partial options. _no_check_partials : bool If True, the check_partials function will ignore this component. """ def __init__(self, **kwargs): """ Initialize all attributes. Parameters ---------- **kwargs : dict of keyword arguments available here and in all descendants of this system. """ super().__init__(**kwargs) self._var_rel_names = {'input': [], 'output': []} self._var_rel2meta = {} self._static_var_rel_names = {'input': [], 'output': []} self._static_var_rel2meta = {} self._declared_partials = defaultdict(dict) self._declared_partial_checks = [] self._no_check_partials = False def _declare_options(self): """ Declare options before kwargs are processed in the init method. """ super()._declare_options() self.options.declare('distributed', types=bool, default=False, desc='True if the component has variables that are distributed ' 'across multiple processes.') def setup(self): """ Declare inputs and outputs. Available attributes: name pathname comm options """ pass def _setup_procs(self, pathname, comm, mode, prob_meta): """ Execute first phase of the setup process. Distribute processors, assign pathnames, and call setup on the component. Parameters ---------- pathname : str Global name of the system, including the path. comm : MPI.Comm or <FakeComm> MPI communicator object. mode : str Derivatives calculation mode, 'fwd' for forward, and 'rev' for reverse (adjoint). Default is 'rev'. prob_meta : dict Problem level metadata. """ super()._setup_procs(pathname, comm, mode, prob_meta) orig_comm = comm if self._num_par_fd > 1: if comm.size > 1: comm = self._setup_par_fd_procs(comm) elif not MPI: msg = ("%s: MPI is not active but num_par_fd = %d. No parallel finite difference " "will be performed." % (self.msginfo, self._num_par_fd)) simple_warning(msg) self.comm = comm # Clear out old variable information so that we can call setup on the component. self._var_rel_names = {'input': [], 'output': []} self._var_rel2meta = {} # reset shape if any dynamic shape parameters are set in case this is a resetup # NOTE: this is necessary because we allow variables to be added in __init__. for meta in self._static_var_rel2meta.values(): if 'shape_by_conn' in meta and (meta['shape_by_conn'] or meta['copy_shape'] is not None): meta['shape'] = None if not np.isscalar(meta['value']): if meta['value'].size > 0: meta['value'] = meta['value'].flatten()[0] else: meta['value'] = 1.0 self._var_rel2meta.update(self._static_var_rel2meta) for io in ['input', 'output']: self._var_rel_names[io].extend(self._static_var_rel_names[io]) self.setup() self._set_vector_class() def _set_vector_class(self): if self.options['distributed']: dist_vec_class = self._problem_meta['distributed_vector_class'] if dist_vec_class is not None: self._vector_class = dist_vec_class else: simple_warning("The 'distributed' option is set to True for Component %s, " "but there is no distributed vector implementation (MPI/PETSc) " "available. The default non-distributed vectors will be used." % self.pathname) self._vector_class = self._problem_meta['local_vector_class'] else: self._vector_class = self._problem_meta['local_vector_class'] def _configure_check(self): """ Do any error checking on i/o configuration. """ # check here if declare_coloring was called during setup but declare_partials # wasn't. If declare partials wasn't called, call it with of='*' and wrt='*' so we'll # have something to color. if self._coloring_info['coloring'] is not None: for key, meta in self._declared_partials.items(): if 'method' in meta and meta['method'] is not None: break else: method = self._coloring_info['method'] simple_warning("%s: declare_coloring or use_fixed_coloring was called but no approx" " partials were declared. Declaring all partials as approximated " "using default metadata and method='%s'." % (self.msginfo, method)) self.declare_partials('*', '*', method=method) super()._configure_check() def _setup_var_data(self): """ Compute the list of abs var names, abs/prom name maps, and metadata dictionaries. """ global global_meta_names super()._setup_var_data() allprocs_prom2abs_list = self._var_allprocs_prom2abs_list abs2prom = self._var_allprocs_abs2prom = self._var_abs2prom # Compute the prefix for turning rel/prom names into abs names prefix = self.pathname + '.' if self.pathname else '' iproc = self.comm.rank for io in ['input', 'output']: abs2meta = self._var_abs2meta[io] allprocs_abs2meta = self._var_allprocs_abs2meta[io] is_input = io == 'input' for i, prom_name in enumerate(self._var_rel_names[io]): abs_name = prefix + prom_name abs2meta[abs_name] = metadata = self._var_rel2meta[prom_name] # Compute allprocs_prom2abs_list, abs2prom allprocs_prom2abs_list[io][prom_name] = [abs_name] abs2prom[io][abs_name] = prom_name allprocs_abs2meta[abs_name] = { meta_name: metadata[meta_name] for meta_name in global_meta_names[io] } if is_input and 'src_indices' in metadata: allprocs_abs2meta[abs_name]['has_src_indices'] = \ metadata['src_indices'] is not None # ensure that if src_indices is a slice we reset it to that instead of # the converted array value (in case this is a re-setup), so that we can # re-convert using potentially different sizing information. if metadata['src_slice'] is not None: metadata['src_indices'] = metadata['src_slice'] for prom_name, val in self._var_discrete[io].items(): abs_name = prefix + prom_name # Compute allprocs_prom2abs_list, abs2prom allprocs_prom2abs_list[io][prom_name] = [abs_name] abs2prom[io][abs_name] = prom_name # Compute allprocs_discrete (metadata for discrete vars) self._var_allprocs_discrete[io][abs_name] = v = val.copy() del v['value'] if self._var_discrete['input'] or self._var_discrete['output']: self._discrete_inputs = _DictValues(self._var_discrete['input']) self._discrete_outputs = _DictValues(self._var_discrete['output']) else: self._discrete_inputs = self._discrete_outputs = () def _setup_var_sizes(self): """ Compute the arrays of variable sizes for all variables/procs on this system. """ iproc = self.comm.rank for io in ('input', 'output'): sizes = self._var_sizes['nonlinear'][io] = np.zeros((self.comm.size, len(self._var_rel_names[io])), dtype=INT_DTYPE) for i, (name, metadata) in enumerate(self._var_allprocs_abs2meta[io].items()): sizes[iproc, i] = metadata['size'] if self.comm.size > 1: my_sizes = sizes[iproc, :].copy() self.comm.Allgather(my_sizes, sizes) # all names are relevant for the 'nonlinear' and 'linear' vectors. We # can then use them to compute the size arrays of for all other vectors # based on the nonlinear size array. nl_allprocs_relnames = self._var_allprocs_relevant_names['nonlinear'] nl_relnames = self._var_relevant_names['nonlinear'] for io in ('input', 'output'): nl_allprocs_relnames[io] = list(self._var_allprocs_abs2meta[io]) nl_relnames[io] = list(self._var_abs2meta[io]) self._setup_var_index_maps('nonlinear') self._owned_sizes = self._var_sizes['nonlinear']['output'] if self._use_derivatives: sizes = self._var_sizes nl_sizes = sizes['nonlinear'] nl_abs2idx = self._var_allprocs_abs2idx['nonlinear'] sizes['linear'] = nl_sizes self._var_allprocs_relevant_names['linear'] = nl_allprocs_relnames self._var_relevant_names['linear'] = nl_relnames self._var_allprocs_abs2idx['linear'] = nl_abs2idx # Initialize size arrays for other linear vecs besides 'linear' # (which is the same as 'nonlinear') for vec_name in self._lin_rel_vec_name_list[1:]: # at component level, _var_allprocs_* is the same as var_* since all vars exist in # all procs for a given component, so we don't have to mess with figuring out what # vars are local. relnames = self._var_allprocs_relevant_names[vec_name] sizes[vec_name] = {} for io in ('input', 'output'): sizes[vec_name][io] = sz = np.zeros((self.comm.size, len(relnames[io])), INT_DTYPE) # Variables for this vec_name are a subset of those for nonlinear, so just # take columns of the nonlinear sizes array for idx, abs_name in enumerate(relnames[io]): sz[:, idx] = nl_sizes[io][:, nl_abs2idx[abs_name]] self._setup_var_index_maps(vec_name) def _setup_partials(self): """ Process all partials and approximations that the user declared. """ self._subjacs_info = {} self._jacobian = DictionaryJacobian(system=self) self.setup_partials() # hook for component writers to specify sparsity patterns # check to make sure that if num_par_fd > 1 that this system is actually doing FD. # Unfortunately we have to do this check after system setup has been called because that's # when declare_partials generally happens, so we raise an exception here instead of just # resetting the value of num_par_fd (because the comm has already been split and possibly # used by the system setup). orig_comm = self._full_comm if self._full_comm is not None else self.comm if self._num_par_fd > 1 and orig_comm.size > 1 and not (self._owns_approx_jac or self._approx_schemes): raise RuntimeError("%s: num_par_fd is > 1 but no FD is active." % self.msginfo) for key, dct in self._declared_partials.items(): of, wrt = key self._declare_partials(of, wrt, dct) def setup_partials(self): """ Declare partials. This is meant to be overridden by component classes. All partials should be declared here since this is called after all size/shape information is known for all variables. """ pass def _update_wrt_matches(self, info): """ Determine the list of wrt variables that match the wildcard(s) given in declare_coloring. Parameters ---------- info : dict Coloring metadata dict. """ ofs, allwrt = self._get_partials_varlists() wrt_patterns = info['wrt_patterns'] matches_prom = set() for w in wrt_patterns: matches_prom.update(find_matches(w, allwrt)) # error if nothing matched if not matches_prom: raise ValueError("{}: Invalid 'wrt' variable(s) specified for colored approx partial " "options: {}.".format(self.msginfo, wrt_patterns)) info['wrt_matches_prom'] = matches_prom info['wrt_matches'] = [rel_name2abs_name(self, n) for n in matches_prom] def _update_subjac_sparsity(self, sparsity): """ Update subjac sparsity info based on the given coloring. The sparsity of the partial derivatives in this component will be used when computing the sparsity of the total jacobian for the entire model. Without this, all of this component's partials would be treated as dense, resulting in an overly conservative coloring of the total jacobian. Parameters ---------- sparsity : dict A nested dict of the form dct[of][wrt] = (rows, cols, shape) """ # sparsity uses relative names, so we need to convert to absolute pathname = self.pathname for of, sub in sparsity.items(): of_abs = '.'.join((pathname, of)) if pathname else of for wrt, tup in sub.items(): wrt_abs = '.'.join((pathname, wrt)) if pathname else wrt abs_key = (of_abs, wrt_abs) if abs_key in self._subjacs_info: # add sparsity info to existing partial info self._subjacs_info[abs_key]['sparsity'] = tup def add_input(self, name, val=1.0, shape=None, src_indices=None, flat_src_indices=None, units=None, desc='', tags=None, shape_by_conn=False, copy_shape=None): """ Add an input variable to the component. Parameters ---------- name : str name of the variable in this component's namespace. val : float or list or tuple or ndarray or Iterable The initial value of the variable being added in user-defined units. Default is 1.0. shape : int or tuple or list or None Shape of this variable, only required if src_indices not provided and val is not an array. Default is None. src_indices : int or list of ints or tuple of ints or int ndarray or Iterable or None The global indices of the source variable to transfer data from. A value of None implies this input depends on all entries of source. Default is None. The shapes of the target and src_indices must match, and form of the entries within is determined by the value of 'flat_src_indices'. flat_src_indices : bool If True, each entry of src_indices is assumed to be an index into the flattened source. Otherwise each entry must be a tuple or list of size equal to the number of dimensions of the source. units : str or None Units in which this input variable will be provided to the component during execution. Default is None, which means it is unitless. desc : str description of the variable tags : str or list of strs User defined tags that can be used to filter what gets listed when calling list_inputs and list_outputs. shape_by_conn : bool If True, shape this input to match its connected output. copy_shape : str or None If a str, that str is the name of a variable. Shape this input to match that of the named variable. Returns ------- dict metadata for added variable """ # First, type check all arguments if not isinstance(name, str): raise TypeError('%s: The name argument should be a string.' % self.msginfo) if not _valid_var_name(name): raise NameError("%s: '%s' is not a valid input name." % (self.msginfo, name)) if not isscalar(val) and not isinstance(val, (list, tuple, ndarray, Iterable)): raise TypeError('%s: The val argument should be a float, list, tuple, ndarray or ' 'Iterable' % self.msginfo) if shape is not None and not isinstance(shape, (int, tuple, list, np.integer)): raise TypeError("%s: The shape argument should be an int, tuple, or list but " "a '%s' was given" % (self.msginfo, type(shape))) if src_indices is not None and not isinstance(src_indices, (int, list, tuple, ndarray, Iterable)): raise TypeError('%s: The src_indices argument should be an int, list, ' 'tuple, ndarray or Iterable' % self.msginfo) if units is not None: if not isinstance(units, str): raise TypeError('%s: The units argument should be a str or None.' % self.msginfo) if not valid_units(units): raise ValueError("%s: The units '%s' are invalid." % (self.msginfo, units)) if tags is not None and not isinstance(tags, (str, list)): raise TypeError('The tags argument should be a str or list') if (shape_by_conn or copy_shape): if shape is not None or not isscalar(val): raise ValueError("%s: If shape is to be set dynamically using 'shape_by_conn' or " "'copy_shape', 'shape' and 'val' should be a scalar, " "but shape of '%s' and val of '%s' was given for variable '%s'." % (self.msginfo, shape, val, name)) if src_indices is not None: raise ValueError("%s: Setting of 'src_indices' along with 'shape_by_conn' or " "'copy_shape' for variable '%s' is currently unsupported." % (self.msginfo, name)) src_slice = None if not (shape_by_conn or copy_shape): if src_indices is not None: if _is_slicer_op(src_indices): src_slice = src_indices if flat_src_indices is not None: simple_warning(f"{self.msginfo}: Input '{name}' was added with slice " "src_indices, so flat_src_indices is ignored.") flat_src_indices = True else: src_indices = np.asarray(src_indices, dtype=INT_DTYPE) # value, shape: based on args, making sure they are compatible val, shape, src_indices = ensure_compatible(name, val, shape, src_indices) metadata = { 'value': val, 'shape': shape, 'size': shape_to_len(shape), 'src_indices': src_indices, # these will ultimately be converted to a flat index array 'flat_src_indices': flat_src_indices, 'src_slice': src_slice, # store slice def here, if any. This is never overwritten 'units': units, 'desc': desc, 'distributed': self.options['distributed'], 'tags': make_set(tags), 'shape_by_conn': shape_by_conn, 'copy_shape': copy_shape, } if self._static_mode: var_rel2meta = self._static_var_rel2meta var_rel_names = self._static_var_rel_names else: var_rel2meta = self._var_rel2meta var_rel_names = self._var_rel_names # Disallow dupes if name in var_rel2meta: raise ValueError("{}: Variable name '{}' already exists.".format(self.msginfo, name)) var_rel2meta[name] = metadata var_rel_names['input'].append(name) self._var_added(name) return metadata def add_discrete_input(self, name, val, desc='', tags=None): """ Add a discrete input variable to the component. Parameters ---------- name : str name of the variable in this component's namespace. val : a picklable object The initial value of the variable being added. desc : str description of the variable tags : str or list of strs User defined tags that can be used to filter what gets listed when calling list_inputs and list_outputs. Returns ------- dict metadata for added variable """ # First, type check all arguments if not isinstance(name, str): raise TypeError('%s: The name argument should be a string.' % self.msginfo) if not _valid_var_name(name): raise NameError("%s: '%s' is not a valid input name." % (self.msginfo, name)) if tags is not None and not isinstance(tags, (str, list)): raise TypeError('%s: The tags argument should be a str or list' % self.msginfo) metadata = { 'value': val, 'type': type(val), 'desc': desc, 'tags': make_set(tags), } if metadata['type'] == np.ndarray: metadata.update({'shape': val.shape}) if self._static_mode: var_rel2meta = self._static_var_rel2meta else: var_rel2meta = self._var_rel2meta # Disallow dupes if name in var_rel2meta: raise ValueError("{}: Variable name '{}' already exists.".format(self.msginfo, name)) var_rel2meta[name] = self._var_discrete['input'][name] = metadata self._var_added(name) return metadata def add_output(self, name, val=1.0, shape=None, units=None, res_units=None, desc='', lower=None, upper=None, ref=1.0, ref0=0.0, res_ref=1.0, tags=None, shape_by_conn=False, copy_shape=None): """ Add an output variable to the component. Parameters ---------- name : str name of the variable in this component's namespace. val : float or list or tuple or ndarray The initial value of the variable being added in user-defined units. Default is 1.0. shape : int or tuple or list or None Shape of this variable, only required if val is not an array. Default is None. units : str or None Units in which the output variables will be provided to the component during execution. Default is None, which means it has no units. res_units : str or None Units in which the residuals of this output will be given to the user when requested. Default is None, which means it has no units. desc : str description of the variable. lower : float or list or tuple or ndarray or Iterable or None lower bound(s) in user-defined units. It can be (1) a float, (2) an array_like consistent with the shape arg (if given), or (3) an array_like matching the shape of val, if val is array_like. A value of None means this output has no lower bound. Default is None. upper : float or list or tuple or ndarray or or Iterable None upper bound(s) in user-defined units. It can be (1) a float, (2) an array_like consistent with the shape arg (if given), or (3) an array_like matching the shape of val, if val is array_like. A value of None means this output has no upper bound. Default is None. ref : float or ndarray Scaling parameter. The value in the user-defined units of this output variable when the scaled value is 1. Default is 1. ref0 : float or ndarray Scaling parameter. The value in the user-defined units of this output variable when the scaled value is 0. Default is 0. res_ref : float or ndarray Scaling parameter. The value in the user-defined res_units of this output's residual when the scaled value is 1. Default is 1. tags : str or list of strs or set of strs User defined tags that can be used to filter what gets listed when calling list_inputs and list_outputs. shape_by_conn : bool If True, shape this output to match its connected input(s). copy_shape : str or None If a str, that str is the name of a variable. Shape this output to match that of the named variable. Returns ------- dict metadata for added variable """ # First, type check all arguments if (shape_by_conn or copy_shape) and (shape is not None or not isscalar(val)): raise ValueError("%s: If shape is to be set dynamically using 'shape_by_conn' or " "'copy_shape', 'shape' and 'val' should be scalar, " "but shape of '%s' and val of '%s' was given for variable '%s'." % (self.msginfo, shape, val, name)) if not isinstance(name, str): raise TypeError('%s: The name argument should be a string.' % self.msginfo) if not _valid_var_name(name): raise NameError("%s: '%s' is not a valid output name." % (self.msginfo, name)) if not (copy_shape or shape_by_conn): if not isscalar(val) and not isinstance(val, (list, tuple, ndarray, Iterable)): msg = '%s: The val argument should be a float, list, tuple, ndarray or Iterable' raise TypeError(msg % self.msginfo) if not isscalar(ref) and not isinstance(val, (list, tuple, ndarray, Iterable)): msg = '%s: The ref argument should be a float, list, tuple, ndarray or Iterable' raise TypeError(msg % self.msginfo) if not isscalar(ref0) and not isinstance(val, (list, tuple, ndarray, Iterable)): msg = '%s: The ref0 argument should be a float, list, tuple, ndarray or Iterable' raise TypeError(msg % self.msginfo) if not isscalar(res_ref) and not isinstance(val, (list, tuple, ndarray, Iterable)): msg = '%s: The res_ref argument should be a float, list, tuple, ndarray or Iterable' raise TypeError(msg % self.msginfo) if shape is not None and not isinstance(shape, (int, tuple, list, np.integer)): raise TypeError("%s: The shape argument should be an int, tuple, or list but " "a '%s' was given" % (self.msginfo, type(shape))) if res_units is not None and not isinstance(res_units, str): raise TypeError('%s: The res_units argument should be a str or None' % self.msginfo) if units is not None: if not isinstance(units, str): raise TypeError('%s: The units argument should be a str or None' % self.msginfo) if not valid_units(units): raise ValueError("%s: The units '%s' are invalid" % (self.msginfo, units)) if tags is not None and not isinstance(tags, (str, set, list)): raise TypeError('The tags argument should be a str, set, or list') if not (copy_shape or shape_by_conn): # value, shape: based on args, making sure they are compatible val, shape, _ = ensure_compatible(name, val, shape) if lower is not None: lower = ensure_compatible(name, lower, shape)[0] self._has_bounds = True if upper is not None: upper = ensure_compatible(name, upper, shape)[0] self._has_bounds = True # All refs: check the shape if necessary for item, item_name in zip([ref, ref0, res_ref], ['ref', 'ref0', 'res_ref']): if not isscalar(item): it = atleast_1d(item) if it.shape != shape: raise ValueError("{}: When adding output '{}', expected shape {} but got " "shape {} for argument '{}'.".format(self.msginfo, name, shape, it.shape, item_name)) if isscalar(ref): self._has_output_scaling |= ref != 1.0 else: self._has_output_scaling |= np.any(ref != 1.0) if isscalar(ref0): self._has_output_scaling |= ref0 != 0.0 else: self._has_output_scaling |= np.any(ref0) if isscalar(res_ref): self._has_resid_scaling |= res_ref != 1.0 else: self._has_resid_scaling |= np.any(res_ref != 1.0) metadata = { 'value': val, 'shape': shape, 'size': shape_to_len(shape), 'units': units, 'res_units': res_units, 'desc': desc, 'distributed': self.options['distributed'], 'tags': make_set(tags), 'ref': format_as_float_or_array('ref', ref, flatten=True), 'ref0': format_as_float_or_array('ref0', ref0, flatten=True), 'res_ref': format_as_float_or_array('res_ref', res_ref, flatten=True), 'lower': lower, 'upper': upper, 'shape_by_conn': shape_by_conn, 'copy_shape': copy_shape } # We may not know the pathname yet, so we have to use name for now, instead of abs_name. if self._static_mode: var_rel2meta = self._static_var_rel2meta var_rel_names = self._static_var_rel_names else: var_rel2meta = self._var_rel2meta var_rel_names = self._var_rel_names # Disallow dupes if name in var_rel2meta: raise ValueError("{}: Variable name '{}' already exists.".format(self.msginfo, name)) var_rel2meta[name] = metadata var_rel_names['output'].append(name) self._var_added(name) return metadata def add_discrete_output(self, name, val, desc='', tags=None): """ Add an output variable to the component. Parameters ---------- name : str name of the variable in this component's namespace. val : a picklable object The initial value of the variable being added. desc : str description of the variable. tags : str or list of strs or set of strs User defined tags that can be used to filter what gets listed when calling list_inputs and list_outputs. Returns ------- dict metadata for added variable """ if not isinstance(name, str): raise TypeError('%s: The name argument should be a string.' % self.msginfo) if not _valid_var_name(name): raise NameError("%s: '%s' is not a valid output name." % (self.msginfo, name)) if tags is not None and not isinstance(tags, (str, set, list)): raise TypeError('%s: The tags argument should be a str, set, or list' % self.msginfo) metadata = { 'value': val, 'type': type(val), 'desc': desc, 'tags': make_set(tags) } if metadata['type'] == np.ndarray: metadata.update({'shape': val.shape}) if self._static_mode: var_rel2meta = self._static_var_rel2meta else: var_rel2meta = self._var_rel2meta # Disallow dupes if name in var_rel2meta: raise ValueError("{}: Variable name '{}' already exists.".format(self.msginfo, name)) var_rel2meta[name] = self._var_discrete['output'][name] = metadata self._var_added(name) return metadata def _var_added(self, name): """ Notify config that a variable has been added to this Component. Parameters ---------- name : str Name of the added variable. """ if self._problem_meta is not None and self._problem_meta['config_info'] is not None: self._problem_meta['config_info']._var_added(self.pathname, name) def _update_dist_src_indices(self, abs_in2out, all_abs2meta, all_abs2idx, all_sizes): """ Set default src_indices on distributed components for any inputs where they aren't set. Parameters ---------- abs_in2out : dict Mapping of connected inputs to their source. Names are absolute. all_abs2meta : dict Mapping of absolute names to metadata for all variables in the model. all_abs2idx : dict Dictionary mapping an absolute name to its allprocs variable index. all_sizes : dict Mapping of vec_names and types to sizes of each variable in all procs. Returns ------- set Names of inputs where src_indices were added. """ if not self.options['distributed'] or self.comm.size == 1: return set() iproc = self.comm.rank abs2meta_in = self._var_abs2meta['input'] all_abs2meta_in = all_abs2meta['input'] all_abs2meta_out = all_abs2meta['output'] sizes_in = self._var_sizes['nonlinear']['input'] sizes_out = all_sizes['nonlinear']['output'] added_src_inds = set() for i, iname in enumerate(self._var_allprocs_abs2meta['input']): if iname in abs2meta_in and abs2meta_in[iname]['src_indices'] is None: src = abs_in2out[iname] out_i = all_abs2idx[src] nzs = np.nonzero(sizes_out[:, out_i])[0] if (all_abs2meta_out[src]['global_size'] == all_abs2meta_in[iname]['global_size'] or nzs.size == self.comm.size): # This offset assumes a 'full' distributed output offset = np.sum(sizes_in[:iproc, i]) end = offset + sizes_in[iproc, i] else: # distributed output (may have some zero size entries) if nzs.size == 1: offset = 0 end = sizes_out[nzs[0], out_i] else: # total sizes differ and output is distributed, so can't determine mapping raise RuntimeError(f"{self.msginfo}: Can't determine src_indices " f"automatically for input '{iname}'. They must be " "supplied manually.") simple_warning(f"{self.msginfo}: Component is distributed but input '{iname}' was " "added without src_indices. Setting src_indices to " f"range({offset}, {end}).") abs2meta_in[iname]['src_indices'] = np.arange(offset, end, dtype=INT_DTYPE) all_abs2meta_in[iname]['has_src_indices'] = True added_src_inds.add(iname) return added_src_inds def _approx_partials(self, of, wrt, method='fd', **kwargs): """ Inform the framework that the specified derivatives are to be approximated. Parameters ---------- of : str or list of str The name of the residual(s) that derivatives are being computed for. May also contain a glob pattern. wrt : str or list of str The name of the variables that derivatives are taken with respect to. This can contain the name of any input or output variable. May also contain a glob pattern. method : str The type of approximation that should be used. Valid options include: - 'fd': Finite Difference **kwargs : dict Keyword arguments for controlling the behavior of the approximation. """ pattern_matches = self._find_partial_matches(of, wrt) self._has_approx = True for of_bundle, wrt_bundle in product(*pattern_matches): of_pattern, of_matches = of_bundle wrt_pattern, wrt_matches = wrt_bundle if not of_matches: raise ValueError('{}: No matches were found for of="{}"'.format(self.msginfo, of_pattern)) if not wrt_matches: raise ValueError('{}: No matches were found for wrt="{}"'.format(self.msginfo, wrt_pattern)) info = self._subjacs_info for rel_key in product(of_matches, wrt_matches): abs_key = rel_key2abs_key(self, rel_key) meta = info[abs_key] meta['method'] = method meta.update(kwargs) info[abs_key] = meta def declare_partials(self, of, wrt, dependent=True, rows=None, cols=None, val=None, method='exact', step=None, form=None, step_calc=None): """ Declare information about this component's subjacobians. Parameters ---------- of : str or list of str The name of the residual(s) that derivatives are being computed for. May also contain a glob pattern. wrt : str or list of str The name of the variables that derivatives are taken with respect to. This can contain the name of any input or output variable. May also contain a glob pattern. dependent : bool(True) If False, specifies no dependence between the output(s) and the input(s). This is only necessary in the case of a sparse global jacobian, because if 'dependent=False' is not specified and declare_partials is not called for a given pair, then a dense matrix of zeros will be allocated in the sparse global jacobian for that pair. In the case of a dense global jacobian it doesn't matter because the space for a dense subjac will always be allocated for every pair. rows : ndarray of int or None Row indices for each nonzero entry. For sparse subjacobians only. cols : ndarray of int or None Column indices for each nonzero entry. For sparse subjacobians only. val : float or ndarray of float or scipy.sparse Value of subjacobian. If rows and cols are not None, this will contain the values found at each (row, col) location in the subjac. method : str The type of approximation that should be used. Valid options include: 'fd': Finite Difference, 'cs': Complex Step, 'exact': use the component defined analytic derivatives. Default is 'exact'. step : float Step size for approximation. Defaults to None, in which case the approximation method provides its default value. form : string Form for finite difference, can be 'forward', 'backward', or 'central'. Defaults to None, in which case the approximation method provides its default value. step_calc : string Step type for finite difference, can be 'abs' for absolute', or 'rel' for relative. Defaults to None, in which case the approximation method provides its default value. Returns ------- dict Metadata dict for the specified partial(s). """ try: method_func = _supported_methods[method] except KeyError: msg = '{}: d({})/d({}): method "{}" is not supported, method must be one of {}' raise ValueError(msg.format(self.msginfo, of, wrt, method, sorted(_supported_methods))) if isinstance(of, list): of = tuple(of) if isinstance(wrt, list): wrt = tuple(wrt) meta = self._declared_partials[of, wrt] meta['dependent'] = dependent # If only one of rows/cols is specified if (rows is None) ^ (cols is None): raise ValueError('{}: d({})/d({}): If one of rows/cols is specified, then ' 'both must be specified.'.format(self.msginfo, of, wrt)) if dependent: meta['value'] = val if rows is not None: meta['rows'] = rows meta['cols'] = cols # First, check the length of rows and cols to catch this easy mistake and give a # clear message. if len(cols) != len(rows): raise RuntimeError("{}: d({})/d({}): declare_partials has been called " "with rows and cols, which should be arrays of equal length," " but rows is length {} while cols is length " "{}.".format(self.msginfo, of, wrt, len(rows), len(cols))) # Check for repeated rows/cols indices. idxset = set(zip(rows, cols)) if len(rows) - len(idxset) > 0: dups = [n for n, val in Counter(zip(rows, cols)).items() if val > 1] raise RuntimeError("{}: d({})/d({}): declare_partials has been called " "with rows and cols that specify the following duplicate " "subjacobian entries: {}.".format(self.msginfo, of, wrt, sorted(dups))) if method_func is not None: # we're doing approximations self._has_approx = True meta['method'] = method self._get_approx_scheme(method) default_opts = method_func.DEFAULT_OPTIONS # If rows/cols is specified if rows is not None or cols is not None: raise ValueError("{}: d({})/d({}): Sparse FD specification not supported " "yet.".format(self.msginfo, of, wrt)) else: default_opts = () if step: if 'step' in default_opts: meta['step'] = step else: raise RuntimeError("{}: d({})/d({}): 'step' is not a valid option for " "'{}'".format(self.msginfo, of, wrt, method)) if form: if 'form' in default_opts: meta['form'] = form else: raise RuntimeError("{}: d({})/d({}): 'form' is not a valid option for " "'{}'".format(self.msginfo, of, wrt, method)) if step_calc: if 'step_calc' in default_opts: meta['step_calc'] = step_calc else: raise RuntimeError("{}: d({})/d({}): 'step_calc' is not a valid option " "for '{}'".format(self.msginfo, of, wrt, method)) return meta def declare_coloring(self, wrt=_DEFAULT_COLORING_META['wrt_patterns'], method=_DEFAULT_COLORING_META['method'], form=None, step=None, per_instance=_DEFAULT_COLORING_META['per_instance'], num_full_jacs=_DEFAULT_COLORING_META['num_full_jacs'], tol=_DEFAULT_COLORING_META['tol'], orders=_DEFAULT_COLORING_META['orders'], perturb_size=_DEFAULT_COLORING_META['perturb_size'], min_improve_pct=_DEFAULT_COLORING_META['min_improve_pct'], show_summary=_DEFAULT_COLORING_META['show_summary'], show_sparsity=_DEFAULT_COLORING_META['show_sparsity']): """ Set options for deriv coloring of a set of wrt vars matching the given pattern(s). Parameters ---------- wrt : str or list of str The name or names of the variables that derivatives are taken with respect to. This can contain input names, output names, or glob patterns. method : str Method used to compute derivative: "fd" for finite difference, "cs" for complex step. form : str Finite difference form, can be "forward", "central", or "backward". Leave undeclared to keep unchanged from previous or default value. step : float Step size for finite difference. Leave undeclared to keep unchanged from previous or default value. per_instance : bool If True, a separate coloring will be generated for each instance of a given class. Otherwise, only one coloring for a given class will be generated and all instances of that class will use it. num_full_jacs : int Number of times to repeat partial jacobian computation when computing sparsity. tol : float Tolerance used to determine if an array entry is nonzero during sparsity determination. orders : int Number of orders above and below the tolerance to check during the tolerance sweep. perturb_size : float Size of input/output perturbation during generation of sparsity. min_improve_pct : float If coloring does not improve (decrease) the number of solves more than the given percentage, coloring will not be used. show_summary : bool If True, display summary information after generating coloring. show_sparsity : bool If True, display sparsity with coloring info after generating coloring. """ super().declare_coloring(wrt, method, form, step, per_instance, num_full_jacs, tol, orders, perturb_size, min_improve_pct, show_summary, show_sparsity) # create approx partials for all matches meta = self.declare_partials('*', wrt, method=method, step=step, form=form) meta['coloring'] = True def set_check_partial_options(self, wrt, method='fd', form=None, step=None, step_calc=None, directional=False): """ Set options that will be used for checking partial derivatives. Parameters ---------- wrt : str or list of str The name or names of the variables that derivatives are taken with respect to. This can contain the name of any input or output variable. May also contain a glob pattern. method : str Method for check: "fd" for finite difference, "cs" for complex step. form : str Finite difference form for check, can be "forward", "central", or "backward". Leave undeclared to keep unchanged from previous or default value. step : float Step size for finite difference check. Leave undeclared to keep unchanged from previous or default value. step_calc : str Type of step calculation for check, can be "abs" for absolute (default) or "rel" for relative. Leave undeclared to keep unchanged from previous or default value. directional : bool Set to True to perform a single directional derivative for each vector variable in the pattern named in wrt. """ supported_methods = ('fd', 'cs') if method not in supported_methods: msg = "{}: Method '{}' is not supported, method must be one of {}" raise ValueError(msg.format(self.msginfo, method, supported_methods)) if step and not isinstance(step, (int, float)): msg = "{}: The value of 'step' must be numeric, but '{}' was specified." raise ValueError(msg.format(self.msginfo, step)) supported_step_calc = ('abs', 'rel') if step_calc and step_calc not in supported_step_calc: msg = "{}: The value of 'step_calc' must be one of {}, but '{}' was specified." raise ValueError(msg.format(self.msginfo, supported_step_calc, step_calc)) if not isinstance(wrt, (str, list, tuple)): msg = "{}: The value of 'wrt' must be a string or list of strings, but a type " \ "of '{}' was provided." raise ValueError(msg.format(self.msginfo, type(wrt).__name__)) if not isinstance(directional, bool): msg = "{}: The value of 'directional' must be True or False, but a type " \ "of '{}' was provided." raise ValueError(msg.format(self.msginfo, type(directional).__name__)) wrt_list = [wrt] if isinstance(wrt, str) else wrt self._declared_partial_checks.append((wrt_list, method, form, step, step_calc, directional)) def _get_check_partial_options(self, include_wrt_outputs=True): """ Return dictionary of partial options with pattern matches processed. This is called by check_partials. Parameters ---------- include_wrt_outputs : bool If True, include outputs in the wrt list. Returns ------- dict(wrt : (options)) Dictionary keyed by name with tuples of options (method, form, step, step_calc) """ opts = {} of, wrt = self._get_potential_partials_lists(include_wrt_outputs=include_wrt_outputs) invalid_wrt = [] matrix_free = self.matrix_free if matrix_free: n_directional = 0 for wrt_list, method, form, step, step_calc, directional in self._declared_partial_checks: for pattern in wrt_list: matches = find_matches(pattern, wrt) # if a non-wildcard var name was specified and not found, save for later Exception if len(matches) == 0 and _valid_var_name(pattern): invalid_wrt.append(pattern) for match in matches: if match in opts: opt = opts[match] # New assignments take precedence keynames = ['method', 'form', 'step', 'step_calc', 'directional'] for name, value in zip(keynames, [method, form, step, step_calc, directional]): if value is not None: opt[name] = value else: opts[match] = {'method': method, 'form': form, 'step': step, 'step_calc': step_calc, 'directional': directional} if matrix_free and directional: n_directional += 1 if invalid_wrt: msg = "{}: Invalid 'wrt' variables specified for check_partial options: {}." raise ValueError(msg.format(self.msginfo, invalid_wrt)) if matrix_free: if n_directional > 0 and n_directional < len(wrt): msg = "{}: For matrix free components, directional should be set to True for " + \ "all inputs." raise ValueError(msg.format(self.msginfo)) return opts def _declare_partials(self, of, wrt, dct, quick_declare=False): """ Store subjacobian metadata for later use. Parameters ---------- of : tuple of str The names of the residuals that derivatives are being computed for. May also contain glob patterns. wrt : tuple of str The names of the variables that derivatives are taken with respect to. This can contain the name of any input or output variable. May also contain glob patterns. dct : dict Metadata dict specifying shape, and/or approx properties. quick_declare : bool This is set to True when declaring the jacobian diagonal terms for explicit components. The checks and conversions are all skipped to improve performance for cases with large numbers of explicit components or indepvarcomps. """ if quick_declare: abs_key = rel_key2abs_key(self, (of, wrt)) meta = {} meta['rows'] = np.array(dct['rows'], dtype=INT_DTYPE, copy=False) meta['cols'] = np.array(dct['cols'], dtype=INT_DTYPE, copy=False) meta['shape'] = (len(dct['rows']), len(dct['cols'])) meta['value'] = dct['value'] self._subjacs_info[abs_key] = meta return val = dct['value'] if 'value' in dct else None is_scalar = isscalar(val) dependent = dct['dependent'] if dependent: if 'rows' in dct and dct['rows'] is not None: # sparse list format rows = dct['rows'] cols = dct['cols'] rows = np.array(rows, dtype=INT_DTYPE, copy=False) cols = np.array(cols, dtype=INT_DTYPE, copy=False) if rows.shape != cols.shape: raise ValueError('{}: d({})/d({}): rows and cols must have the same shape,' ' rows: {}, cols: {}'.format(self.msginfo, of, wrt, rows.shape, cols.shape)) if is_scalar: val = np.full(rows.size, val, dtype=float) is_scalar = False elif val is not None: # np.promote_types will choose the smallest dtype that can contain # both arguments val = atleast_1d(val) safe_dtype = promote_types(val.dtype, float) val = val.astype(safe_dtype, copy=False) if rows.shape != val.shape: raise ValueError('{}: d({})/d({}): If rows and cols are specified, val ' 'must be a scalar or have the same shape, val: {}, ' 'rows/cols: {}'.format(self.msginfo, of, wrt, val.shape, rows.shape)) else: val = np.zeros_like(rows, dtype=float) if rows.size > 0: if rows.min() < 0: msg = '{}: d({})/d({}): row indices must be non-negative' raise ValueError(msg.format(self.msginfo, of, wrt)) if cols.min() < 0: msg = '{}: d({})/d({}): col indices must be non-negative' raise ValueError(msg.format(self.msginfo, of, wrt)) rows_max = rows.max() cols_max = cols.max() else: rows_max = cols_max = 0 else: if val is not None and not is_scalar and not issparse(val): val = atleast_2d(val) val = val.astype(promote_types(val.dtype, float), copy=False) rows_max = cols_max = 0 rows = None cols = None pattern_matches = self._find_partial_matches(of, wrt) abs2meta_in = self._var_abs2meta['input'] abs2meta_out = self._var_abs2meta['output'] is_array = isinstance(val, ndarray) patmeta = dict(dct) patmeta_not_none = {k: v for k, v in dct.items() if v is not None} for of_bundle, wrt_bundle in product(*pattern_matches): of_pattern, of_matches = of_bundle wrt_pattern, wrt_matches = wrt_bundle if not of_matches: raise ValueError('{}: No matches were found for of="{}"'.format(self.msginfo, of_pattern)) if not wrt_matches: raise ValueError('{}: No matches were found for wrt="{}"'.format(self.msginfo, wrt_pattern)) for rel_key in product(of_matches, wrt_matches): abs_key = rel_key2abs_key(self, rel_key) if not dependent: if abs_key in self._subjacs_info: del self._subjacs_info[abs_key] continue if abs_key in self._subjacs_info: meta = self._subjacs_info[abs_key] meta.update(patmeta_not_none) else: meta = patmeta.copy() of, wrt = abs_key meta['rows'] = rows meta['cols'] = cols csz = abs2meta_in[wrt]['size'] if wrt in abs2meta_in else abs2meta_out[wrt]['size'] meta['shape'] = shape = (abs2meta_out[of]['size'], csz) if shape[0] == 0 or shape[1] == 0: msg = "{}: '{}' is an array of size 0" if shape[0] == 0: if not abs2meta_out[of]['distributed']: # non-distributed components are not allowed to have zero size inputs raise ValueError(msg.format(self.msginfo, of)) else: # distributed comp are allowed to have zero size inputs on some procs rows_max = -1 if shape[1] == 0: if wrt in abs2meta_in: distrib = abs2meta_in[wrt]['distributed'] else: distrib = abs2meta_out[wrt]['distributed'] if not distrib: # non-distributed components are not allowed to have zero size outputs raise ValueError(msg.format(self.msginfo, wrt)) else: # distributed comp are allowed to have zero size outputs on some procs cols_max = -1 if val is None: # we can only get here if rows is None (we're not sparse list format) meta['value'] =
np.zeros(shape)
numpy.zeros
from heuslertools.tools.measurement import Measurement import xrayutilities as xu import warnings import numpy as np class XRDMeasurement(Measurement): """Object representing xrd measurement. Parameters ---------- file : str path of xrdml file. Attributes ---------- en : str Energy of xrays. wavelength : type wavelength of xrays. resol : float resolution in qz. """ def __init__(self, file): super().__init__(file, "") self.en = 'CuKa1' self.wavelength = xu.wavelength('CuKa1') self.resol = 2e-10 # resolution in qz def _load_data(self): self.xrdml = xu.io.XRDMLFile(self.file) return self.xrdml.scans[0].ddict def append_measurement(self, file): xrdml = xu.io.XRDMLFile(file) data = xrdml.scans[0].ddict for key in data.keys(): self.data[key] =
np.append(self.data[key], data[key])
numpy.append
import numpy as np import os from keras.models import load_model from src.python.dataset import dataset CONSENSUS_SUMMARY_CMD_1 = '{}/mummer3.23/dnadiff -p {}/dnadiff-output {} {} ' \ '2>> {}/err' CONSENSUS_SUMMARY_CMD_2 = 'head -n 24 {}/dnadiff-output.report | tail -n 20' RESULT_CMD_1 = 'mkdir -p {}' RESULT_CMD_2 = 'cp {}/dnadiff-output.report {}' def _convert_predictions_to_genome(predictions): mapping = {0: 'A', 1: 'C', 2: 'G', 3: 'T', 4: '', 5: 'N'} genome = [mapping[prediction] for prediction in predictions] return genome def _write_genome_to_fasta(contigs, fasta_file_path, contig_names): with open(fasta_file_path, 'w') as f: for contig, contig_name in zip(contigs, contig_names): contig = ''.join(contig) f.write('>{} LN:{}\n'.format(contig_name, len(contig))) f.write('{}\n'.format(contig)) def make_consensus(model_path, reference_path, pileup_generator, neighbourhood_size, output_dir, tools_dir, result_file_path): """ Creates consensus which is polished by trained neural network. Pileup generator creates pileups by using it's own pileup strategy. Those pileups are used to create dataset (examples with given neighbourhood size). Given model makes predictions (contigs) for created dataset. Those contigs are concatenated the same way as in .sam file. At last, polished genome is compared with reference. :param model_path: Path to trained model. :type model_path: str :param reference_path: Path to reference. :type reference_path: str :param pileup_generator: Pileup Generator object which creates pileups using it's own strategy. :type pileup_generator: PileupGenerator :param neighbourhood_size: Number of neighbours to use from one size (eg. if you set this parameter to 3, it will take 3 neighbours from both sides so total number of positions in one example will be 7 - counting the middle position). :type neighbourhood_size: int :param output_dir: Path to output directory. There will all outputs be saved. :type output_dir: str :param tools_dir: Path to directory where are used tools are installed. :type tools_dir: str :param result_file_path: Path where will results be copied to. :type result_file_path: str """ # TODO(ajuric): Currently, y is also created while calculating consensus, # due to reuising existing code from training. But, here in inference y # is not used. This needs to be removed to reduce the unnecessary overhead. if os.path.exists(output_dir): raise FileExistsError('Given directory already exists: {}! Provide ' 'non-existing directory.') os.makedirs(output_dir) print('----> Create pileups from assembly. <----') X, y, contig_names = \ pileup_generator.generate_pileups() print('----> Create dataset with neighbourhood from pileups. <----') X, y = dataset.create_dataset_with_neighbourhood( neighbourhood_size, mode='inference', X_list=X, y_list=y) print('----> Load model and make predictions (consensus). <----') model = load_model(model_path) contigs = list() for X, y, contig_name in zip(X, y, contig_names): probabilities = model.predict(X) predictions = np.argmax(probabilities, axis=1) contig = _convert_predictions_to_genome(predictions) contigs.append(contig) consensus_path = os.path.join(output_dir, 'consensus.fasta') _write_genome_to_fasta(contigs, consensus_path, contig_names) print('----> Create consensus summary. <----') os.system(CONSENSUS_SUMMARY_CMD_1.format(tools_dir, output_dir, reference_path, consensus_path, output_dir)) os.system(CONSENSUS_SUMMARY_CMD_2.format(output_dir)) result_directory = os.path.dirname(result_file_path) os.system(RESULT_CMD_1.format(result_directory)) os.system(RESULT_CMD_2.format(output_dir, result_file_path)) # @TODO(ajuric): Refactor this consensus methods. def make_consensus_before_shapeing_tmp(X_path, y_path, model_path, output_dir, tools_dir, reference_path, contig): print('----> Reshape dataset for convolutional network. <----') X, y = dataset.read_dataset_and_reshape_for_conv(X_path, y_path) print('----> Load model and make predictions (consensus). <----') model = load_model(model_path) probabilities = model.predict(X) predictions =
np.argmax(probabilities, axis=1)
numpy.argmax
import numpy as np from ..boundingregion import BoundingBox from ..dimension import Dimension from ..element import Element from ..ndmapping import NdMapping, item_check from ..sheetcoords import Slice from .. import util from .grid import GridInterface from .interface import Interface class ImageInterface(GridInterface): """ Interface for 2 or 3D arrays representing images of raw luminance values, RGB values or HSV values. """ types = (np.ndarray,) datatype = 'image' @classmethod def init(cls, eltype, data, kdims, vdims): if kdims is None: kdims = eltype.kdims if vdims is None: vdims = eltype.vdims kwargs = {} dimensions = [d.name if isinstance(d, Dimension) else d for d in kdims + vdims] if isinstance(data, tuple): data = dict(zip(dimensions, data)) if isinstance(data, dict): xs, ys = np.asarray(data[kdims[0].name]), np.asarray(data[kdims[1].name]) l, r, xdensity, invertx = util.bound_range(xs, None, eltype._time_unit) b, t, ydensity, inverty = util.bound_range(ys, None, eltype._time_unit) kwargs['bounds'] = BoundingBox(points=((l, b), (r, t))) if len(vdims) == 1: data = np.flipud(np.asarray(data[vdims[0].name])) else: data = np.dstack([np.flipud(data[vd.name]) for vd in vdims]) if invertx: data = data[:, ::-1] if inverty: data = data[::-1, :] if not isinstance(data, np.ndarray) or data.ndim not in [2, 3]: raise ValueError('ImageInterface expects a 2D array.') return data, {'kdims':kdims, 'vdims':vdims}, kwargs @classmethod def shape(cls, dataset, gridded=False): if gridded: return dataset.data.shape else: return cls.length(dataset), len(dataset.dimensions()) @classmethod def length(cls, dataset): return np.product(dataset.data.shape) @classmethod def validate(cls, dataset, vdims=True): pass @classmethod def redim(cls, dataset, dimensions): return dataset.data @classmethod def reindex(cls, dataset, kdims=None, vdims=None): data = dataset.data dropped_kdims = [kd for kd in dataset.kdims if kd not in kdims] constant = {} for kd in dropped_kdims: vals = cls.values(dataset, kd.name, expanded=False) if len(vals) == 1: constant[kd.name] = vals[0] if dropped_kdims or constant: return tuple(dataset.columns(kdims+vdims).values()) if vdims is not None and vdims != dataset.vdims and len(dataset.vdims) > 1: inds = [dataset.get_dimension_index(vd)-dataset.ndims for vd in vdims] return data[..., inds] if len(inds) > 1 else data[..., inds[0]] return data @classmethod def coords(cls, dataset, dim, ordered=False, expanded=False): dim = dataset.get_dimension(dim, strict=True) if expanded: return util.expand_grid_coords(dataset, dim) return cls.values(dataset, dim, expanded=False) @classmethod def range(cls, obj, dim): dim_idx = obj.get_dimension_index(dim) if dim_idx in [0, 1] and obj.bounds: l, b, r, t = obj.bounds.lbrt() if dim_idx: (low, high) = (b, t) density = obj.ydensity else: low, high = (l, r) density = obj.xdensity halfd = (1./density)/2. if isinstance(low, util.datetime_types): halfd = np.timedelta64(int(round(halfd)), obj._time_unit) drange = (low+halfd, high-halfd) elif 1 < dim_idx < len(obj.vdims) + 2: dim_idx -= 2 data = np.atleast_3d(obj.data)[:, :, dim_idx] drange = (np.nanmin(data), np.nanmax(data)) else: drange = (None, None) return drange @classmethod def values(cls, dataset, dim, expanded=True, flat=True): """ The set of samples available along a particular dimension. """ dim_idx = dataset.get_dimension_index(dim) if dim_idx in [0, 1]: l, b, r, t = dataset.bounds.lbrt() dim2, dim1 = dataset.data.shape[:2] if isinstance(l, util.datetime_types): xlin = util.date_range(l, r, dim1, dataset._time_unit) else: xstep = float(r - l)/dim1 xlin = np.linspace(l+(xstep/2.), r-(xstep/2.), dim1) if isinstance(b, util.datetime_types): ylin = util.date_range(b, t, dim2, dataset._time_unit) else: ystep = float(t - b)/dim2 ylin = np.linspace(b+(ystep/2.), t-(ystep/2.), dim2) if expanded: values = np.meshgrid(ylin, xlin)[abs(dim_idx-1)] return values.flatten() if flat else values else: return ylin if dim_idx else xlin elif dataset.ndims <= dim_idx < len(dataset.dimensions()): # Raster arrays are stored with different orientation # than expanded column format, reorient before expanding if dataset.data.ndim > 2: data = dataset.data[:, :, dim_idx-dataset.ndims] else: data = dataset.data data = np.flipud(data) return data.T.flatten() if flat else data else: return None @classmethod def select(cls, dataset, selection_mask=None, **selection): """ Slice the underlying numpy array in sheet coordinates. """ selection = {k: slice(*sel) if isinstance(sel, tuple) else sel for k, sel in selection.items()} coords = tuple(selection[kd.name] if kd.name in selection else slice(None) for kd in dataset.kdims) if not any([isinstance(el, slice) for el in coords]): return dataset.data[dataset.sheet2matrixidx(*coords)] # Apply slices xidx, yidx = coords l, b, r, t = dataset.bounds.lbrt() if isinstance(xidx, slice): l = l if xidx.start is None else max(l, xidx.start) r = r if xidx.stop is None else min(r, xidx.stop) if isinstance(yidx, slice): b = b if yidx.start is None else max(b, yidx.start) t = t if yidx.stop is None else min(t, yidx.stop) bounds = BoundingBox(points=((l, b), (r, t))) slc = Slice(bounds, dataset) return slc.submatrix(dataset.data) @classmethod def sample(cls, dataset, samples=[]): """ Sample the Raster along one or both of its dimensions, returning a reduced dimensionality type, which is either a ItemTable, Curve or Scatter. If two dimension samples and a new_xaxis is provided the sample will be the value of the sampled unit indexed by the value in the new_xaxis tuple. """ if len(samples[0]) == 1: select = {dataset.kdims[0].name: [s[0] for s in samples]} return tuple(dataset.select(**select).columns().values()) return [c+(dataset.data[dataset._coord2matrix(c)],) for c in samples] @classmethod def groupby(cls, dataset, dim_names, container_type, group_type, **kwargs): # Get dimensions information dimensions = [dataset.get_dimension(d) for d in dim_names] kdims = [kdim for kdim in dataset.kdims if kdim not in dimensions] # Update the kwargs appropriately for Element group types group_kwargs = {} group_type = dict if group_type == 'raw' else group_type if issubclass(group_type, Element): group_kwargs.update(util.get_param_values(dataset)) group_kwargs['kdims'] = kdims group_kwargs.update(kwargs) if len(dimensions) == 1: didx = dataset.get_dimension_index(dimensions[0]) coords = dataset.dimension_values(dimensions[0], expanded=False) xvals = dataset.dimension_values(abs(didx-1), expanded=False) samples = [(i, slice(None)) if didx else (slice(None), i) for i in range(dataset.data.shape[abs(didx-1)])] data = np.flipud(dataset.data) groups = [(c, group_type((xvals, data[s]), **group_kwargs)) for s, c in zip(samples, coords)] else: data = zip(*[dataset.dimension_values(i) for i in range(len(dataset.dimensions()))]) groups = [(g[:dataset.ndims], group_type([g[dataset.ndims:]], **group_kwargs)) for g in data] if issubclass(container_type, NdMapping): with item_check(False): return container_type(groups, kdims=dimensions) else: return container_type(groups) @classmethod def unpack_scalar(cls, dataset, data): """ Given a dataset object and data in the appropriate format for the interface, return a simple scalar. """ if
np.isscalar(data)
numpy.isscalar
#!/usr/bin/env python import rospy import numpy as np import tf import tf.msg from tf.transformations import quaternion_from_euler, euler_from_quaternion from geometry_msgs.msg import PoseStamped, Quaternion, AccelStamped, TwistStamped, TransformStamped, PointStamped, Point from visualization_msgs.msg import Marker import sensor_msgs.point_cloud2 as pc2 from sensor_msgs.msg import PointCloud2 from auto_messages.msg import from_autobox from std_msgs.msg import ColorRGBA from safe_traffic_weaving.msg import XYThV from utils.math_utils import * class Position: def __init__(self, x=[0, 0, 0, 0, 0, 0]): self.x = x[0] self.y = x[1] self.xd = x[2] self.yd = x[3] self.xdd = x[4] self.ydd = x[5] def to_list(self): return [self.x, self.y, self.xd, self.yd, self.xdd, self.ydd] class Orientation: def __init__(self, w=[0, 0, 0, 1], dtheta = 0, dtheta_prev = 0): self.w0 = w[0] self.w1 = w[1] self.w2 = w[2] self.w3 = w[3] self.dtheta = dtheta self.dtheta_prev = dtheta_prev def to_list(self): return [self.w0, self.w1, self.w2, self.w3] class State: def __init__(self, pos = Position(), orien = Orientation(), frame=None): self.position = pos self.orientation = orien self.frame = frame class x1lidar: def __init__(self, intensity_tol=100): self.intensity_tol = intensity_tol self.tf_broadcaster = tf.TransformBroadcaster() self.tf_listener = tf.TransformListener() rospy.init_node("visualize_lidar", anonymous=True) # rospy.Subscriber("from_veh", fromVehicle, self.egocar_callback) # in world frame self.trackedObject_pose_pub = rospy.Publisher("/tracked_object/pose", PoseStamped, queue_size=10) self.trackedObject_vel_pub = rospy.Publisher("/tracked_object/vel", TwistStamped, queue_size=10) self.trackedObject_accel_pub = rospy.Publisher("/tracked_object/acc", AccelStamped, queue_size=10) self.trackedObject_xythv_pub = rospy.Publisher("/tracked_object/xythv", XYThV, queue_size=10) self.relevant_pc = rospy.Publisher("/tracked_object/pc_viz", Marker, queue_size=10) self.ellipse = rospy.Publisher("/tracked_object/ellipse_viz", Marker, queue_size=10) # in world frame # self.x1_marker_pub = rospy.Publisher("/x1/marker", Marker, queue_size=10) rospy.Subscriber("/x1/pose", PoseStamped, self.x1_position) rospy.Subscriber("/move_base_simple/goal", PoseStamped, self.initialize_trackedObject) # rospy.Subscriber("/M_HDL32/velodyne_points", PointCloud2, self.pc2_callback, queue_size=1, buff_size=2**24) rospy.Subscriber("/M_intensity_filter/output", PointCloud2, self.pc2_callback, queue_size=1, buff_size=2**24) # rospy.Subscriber("/FL_VLP16/velodyne_points", PointCloud2, self.pc2_callback, queue_size=1, buff_size=2**24) rospy.Subscriber("/FL_intensity_filter/output", PointCloud2, self.pc2_callback, queue_size=1, buff_size=2**24) # rospy.Subscriber("/FR_VLP16/velodyne_points", PointCloud2, self.pc2_callback, queue_size=1, buff_size=2**24) rospy.Subscriber("/FR_intensity_filter/output", PointCloud2, self.pc2_callback, queue_size=1, buff_size=2**24) # pc array marker self.pc_marker = Marker() self.pc_marker.ns = "considered_pc" self.pc_marker.type = Marker.POINTS self.pc_marker.scale.x = 0.05 self.pc_marker.scale.y = 0.05 self.pc_marker.frame_locked = True # ellipse array marker self.ellipse_marker = Marker() self.ellipse_marker.header.frame_id = "/world" self.ellipse_marker.ns = "ellipse" self.ellipse_marker.type = Marker.LINE_STRIP self.ellipse_marker.scale.x = 0.01 self.ellipse_marker.frame_locked = True self.ellipse_marker.color.g = 1 self.ellipse_marker.color.a = 1 # in world frame self.trackedObjectState = None self.x1State = None self.initialize_flag = False self.x1_frame_init = False self.dt = None self.prev_time = 0 # to be overwritten self.curr_time = 0.1 # to be overwritten self.lost_count = 0 self.processing = False def pose_twist_accelStamped_pub(self, state, pose_pub, vel_pub, accel_pub, xythv_pub, header_frame_id, timestamp): self.tf_broadcaster.sendTransform((state.position.x, state.position.y, 0), state.orientation.to_list(), timestamp, "tracked_object", header_frame_id) pose_msg = PoseStamped() pose_msg.header.frame_id = header_frame_id pose_msg.header.stamp = timestamp pose_msg.pose.position.x = state.position.x pose_msg.pose.position.y = state.position.y pose_msg.pose.orientation = Quaternion(*state.orientation.to_list()) pose_pub.publish(pose_msg) vel_msg = TwistStamped() vel_msg.header.frame_id = header_frame_id vel_msg.header.stamp = timestamp vel_msg.twist.linear.x = state.position.xd vel_msg.twist.linear.y = state.position.yd vel_msg.twist.angular.z = state.orientation.dtheta vel_pub.publish(vel_msg) accel_msg = AccelStamped() accel_msg.header.frame_id = header_frame_id accel_msg.header.stamp = timestamp accel_msg.accel.linear.x = state.position.xdd accel_msg.accel.linear.y = state.position.ydd accel_pub.publish(accel_msg) xythv_msg = XYThV() xythv_msg.x = state.position.x xythv_msg.y = state.position.y xythv_msg.th = np.arctan2(state.position.yd, state.position.xd) xythv_msg.v = np.hypot(state.position.xd, state.position.yd) xythv_pub.publish(xythv_msg) def x1_position(self, msg): # PoseStamped msg self.x1State = msg def initialize_trackedObject(self, msg): # transform nav_goal message to the world frame msg_time = msg.header.stamp msg_frame = msg.header.frame_id self.prev_time = msg.header.stamp.to_time() try: self.tf_listener.waitForTransform("/world", msg_frame, msg_time, rospy.Duration(.5)) pose_world = self.tf_listener.transformPose("/world", msg) except: rospy.logwarn("Could not transform from vehicle base to World coordinates") # pose_world = self.tf_listener.transformPose('/world', msg) ori = Orientation([pose_world.pose.orientation.x, pose_world.pose.orientation.y, pose_world.pose.orientation.z, pose_world.pose.orientation.w]) th = euler_from_quaternion(ori.to_list()) pos = Position([pose_world.pose.position.x, pose_world.pose.position.y, np.cos(th[2]), np.sin(th[2]), 0, 0]) self.trackedObjectState = State(pos, ori, '/world') # this publishes the transform, and this will enable the viz_vehicle file to plot the tracked_object self.pose_twist_accelStamped_pub(self.trackedObjectState, self.trackedObject_pose_pub, self.trackedObject_vel_pub, self.trackedObject_accel_pub, self.trackedObject_xythv_pub, '/world', msg_time) # flag to say that it has been initialized. self.initialize_flag = True # self.ellipse_marker.header.frame_id = msg_frame # self.ellipse_marker.points = [] # center = np.array([[pos.x], [pos.y]]) # ellipse_points = self.get_ellipse(3) + center # for i in range(ellipse_points.shape[-1]): # self.ellipse_marker.points.append(Point(ellipse_points[0,i], ellipse_points[1,i], 0)) # self.ellipse.publish(self.ellipse_marker) self.initialize_EKF() rospy.loginfo("Initialized the marker!") initial_position = Position((self.x1State.pose.position.x, self.x1State.pose.position.y, 0, 0, 0, 0)) initial_orientation = Orientation((self.x1State.pose.orientation.x, self.x1State.pose.orientation.y, self.x1State.pose.orientation.z, self.x1State.pose.orientation.w)) self.initial_state = State(initial_position, initial_orientation, '/world') # make local frame. The frame where x1 is originally. self.tf_broadcaster.sendTransform((self.x1State.pose.position.x, self.x1State.pose.position.y, 0), initial_orientation.to_list(), self.x1State.header.stamp, '/local', '/world') def get_ellipse(self, sd_tol, var): L = np.linalg.cholesky(var) LHinv = np.linalg.inv(L.T.conj()) th = np.arange(0, 2*np.pi+1, 0.1) y1 = sd_tol * np.cos(th) y2 = sd_tol * np.sin(th) y = np.stack([y1,y2]) return np.dot(LHinv, y) # tracking the other car def pc2_callback(self, msg, min_points = 2, vel_tol = 0.1, alpha = 0.95, sd = 3.0): intensity_max = 500 if self.processing: rospy.logwarn("Callback is busy") return rospy.loginfo("Receiving points from velodyne %s", msg.header.frame_id) msg_time = msg.header.stamp msg_frame = msg.header.frame_id self.pc_marker.header.frame_id = msg_frame self.pc_marker.points = [] self.pc_marker.colors = [] self.ellipse_marker.points = [] self.curr_time = msg_time.to_time() if self.dt: dt = self.curr_time - self.prev_time else: dt = 0.1 if dt < 0: rospy.logwarn("Message is too old") self.processing = False return else: self.dt = dt self.prev_time = msg_time.to_time() if self.initialize_flag: self.processing = True self.tf_broadcaster.sendTransform((self.initial_state.position.x, self.initial_state.position.y, 0.0), self.initial_state.orientation.to_list(), msg_time, '/local', '/world') rospy.loginfo("Got velodyne points, getting x, y, z....") lidar_info = pc2.read_points(msg, skip_nans=True, field_names=("x", "y", "intensity")) x_list, y_list, intensities = [], [], [] # in world frame xy_var = self.var[:2,:2] inv_xy_var = np.linalg.inv(xy_var) pt = PointStamped() pt.header.frame_id = '/world' pt.header.stamp = msg_time pt.point.x = self.trackedObjectState.position.x pt.point.y = self.trackedObjectState.position.y distance = np.hypot(self.trackedObjectState.position.x - self.x1State.pose.position.x, self.trackedObjectState.position.y - self.x1State.pose.position.y) sd_tol = 2*sd if distance > 5 else sd # trackedObjectPoints_velodyne = self.tf_listener.transformPoint("/velodyne", pt) try: self.tf_listener.waitForTransform(msg_frame, "/world", msg_time, rospy.Duration(.05)) trackedObjectPoints_velodyne = self.tf_listener.transformPoint(msg_frame, pt) (trans, rot) = self.tf_listener.lookupTransform('/world', msg_frame, msg_time) th = euler_from_quaternion(rot) R = rot_mat(th[2]) # variance for velodyne points in the velodyne frame but want to compute it in the world frame inv_var_rot = np.matmul(np.matmul(R, inv_xy_var),R.T) except: rospy.logwarn("Could not transform from World to Velodyne coordinates") self.processing = False return center = np.array([[self.trackedObjectState.position.x], [self.trackedObjectState.position.y]]) ellipse_points = self.get_ellipse(sd_tol, inv_xy_var) + center for i in range(ellipse_points.shape[-1]): self.ellipse_marker.points.append(Point(ellipse_points[0,i], ellipse_points[1,i], 0)) self.ellipse.publish(self.ellipse_marker) # trackedObjectPoints_velodyne = self.tf_listener.transformPoint(msg_frame, pt) for p in lidar_info: if p[2] > self.intensity_tol: xy = np.array([[p[0] - trackedObjectPoints_velodyne.point.x], [p[1] - trackedObjectPoints_velodyne.point.y]]) # Mahalanobis distance dist = np.matmul(np.matmul(xy.T, inv_var_rot), xy) # xy[0]**2*inv_var_rot[0,0] + xy[1]**2*inv_var_rot[1,1] + 2*xy[0]*xy[1]*inv_var_rot[1,0] # rospy.logwarn("intensity tolerance met") if dist < sd_tol**2: intensity_frac = max(p[2] / intensity_max, 1) self.pc_marker.colors.append(ColorRGBA(1 - intensity_frac, intensity_frac, 0.0, 1.0)) self.pc_marker.points.append(Point(p[0], p[1], 0)) x_list.append(p[0]) y_list.append(p[1]) self.relevant_pc.publish(self.pc_marker) if len(x_list) < min_points: rospy.logwarn("%s did not receive points", msg.header.frame_id) self.lost_count += 1 if self.lost_count > 3: rospy.logwarn("Robot is lost in %s", msg.header.frame_id) # self.processing = False obs = None else: self.lost_count = 0 obs_velodyne = np.array([np.mean(x_list), np.mean(y_list)]) obs_velodyne_point = PointStamped() obs_velodyne_point.header.frame_id = msg_frame obs_velodyne_point.header.stamp = msg_time obs_velodyne_point.point.x = obs_velodyne[0] obs_velodyne_point.point.y = obs_velodyne[1] # obs_world_point = self.tf_listener.transformPoint("/world", obs_velodyne_point) try: self.tf_listener.waitForTransform("/world", msg_frame, msg_time, rospy.Duration(.05)) obs_world_point = self.tf_listener.transformPoint("/world", obs_velodyne_point) except: rospy.logwarn("Could not transform from Velodyne to World coordinates") self.processing = False return # obs_world_point = self.tf_listener.transformPoint("/world", obs_velodyne_point) obs =
np.array([obs_world_point.point.x, obs_world_point.point.y])
numpy.array
from functools import partial import numpy as np from violajones.HaarLikeFeature import HaarLikeFeature from violajones.HaarLikeFeature import FeatureTypes import progressbar from multiprocessing import Pool LOADING_BAR_LENGTH = 50 # TODO: select optimal threshold for each feature # TODO: attentional cascading def learn(positive_iis, negative_iis, num_classifiers=-1, min_feature_width=1, max_feature_width=-1, min_feature_height=1, max_feature_height=-1): """ Selects a set of classifiers. Iteratively takes the best classifiers based on a weighted error. :param positive_iis: List of positive integral image examples :type positive_iis: list[numpy.ndarray] :param negative_iis: List of negative integral image examples :type negative_iis: list[numpy.ndarray] :param num_classifiers: Number of classifiers to select, -1 will use all classifiers :type num_classifiers: int :return: List of selected features :rtype: list[violajones.HaarLikeFeature.HaarLikeFeature] """ num_pos = len(positive_iis) num_neg = len(negative_iis) num_imgs = num_pos + num_neg img_height, img_width = positive_iis[0].shape # Maximum feature width and height default to image width and height max_feature_height = img_height if max_feature_height == -1 else max_feature_height max_feature_width = img_width if max_feature_width == -1 else max_feature_width # Create initial weights and labels pos_weights = np.ones(num_pos) * 1. / (2 * num_pos) neg_weights = np.ones(num_neg) * 1. / (2 * num_neg) weights =
np.hstack((pos_weights, neg_weights))
numpy.hstack
import numpy as np # pip3 install numpy import scipy # pip3 install scipy import scipy.ndimage as snd import reikna.fft, reikna.cluda # pip3 install pyopencl/pycuda, reikna from PIL import Image, ImageTk, ImageDraw # pip3 install pillow try: import tkinter as tk except: import Tkinter as tk from fractions import Fraction import copy, re, itertools, json, csv import os, sys, subprocess, datetime, time import warnings warnings.filterwarnings('ignore', '.*output shape of zoom.*') # suppress warning from snd.zoom() P2, PIXEL_BORDER = 0,0 # 4,2 3,1 2,1 0,0 X2, Y2 = 9,9 # 10,9 9,8 8,8 1<<9=512 PIXEL = 1 << P2; SIZEX, SIZEY = 1 << (X2-P2), 1 << (Y2-P2) # PIXEL, PIXEL_BORDER = 1,0; SIZEX, SIZEY = 1280//PIXEL, 720//PIXEL # 720p HD # PIXEL, PIXEL_BORDER = 1,0; SIZEX, SIZEY = 1920//PIXEL, 1080//PIXEL # 1080p HD MIDX, MIDY = int(SIZEX / 2), int(SIZEY / 2) DEF_R = max(min(SIZEX, SIZEY) // 4 //5*5, 13) EPSILON = 1e-10 ROUND = 10 FPS_FREQ = 20 STATUS = [] is_windows = (os.name == 'nt') class Board: def __init__(self, size=[0,0]): self.names = ['', '', ''] self.params = {'R':DEF_R, 'T':10, 'b':[1], 'm':0.1, 's':0.01, 'kn':1, 'gn':1} self.cells = np.zeros(size) @classmethod def from_values(cls, names, params, cells): self = cls() self.names = names.copy() if names is not None else None self.params = params.copy() if params is not None else None self.cells = cells.copy() if cells is not None else None return self @classmethod def from_data(cls, data): self = cls() self.names = [data.get('code',''), data.get('name',''), data.get('cname','')] self.params = data.get('params') if self.params: self.params = self.params.copy() self.params['b'] = Board.st2fracs(self.params['b']) self.cells = data.get('cells') if self.cells: if type(self.cells) in [tuple, list]: self.cells = ''.join(self.cells) self.cells = Board.rle2arr(self.cells) return self def to_data(self, is_shorten=True): rle_st = Board.arr2rle(self.cells, is_shorten) params2 = self.params.copy() params2['b'] = Board.fracs2st(params2['b']) data = {'code':self.names[0], 'name':self.names[1], 'cname':self.names[2], 'params':params2, 'cells':rle_st} return data def params2st(self): params2 = self.params.copy() params2['b'] = '[' + Board.fracs2st(params2['b']) + ']' return ','.join(['{}={}'.format(k,str(v)) for (k,v) in params2.items()]) def long_name(self): # return ' | '.join(filter(None, self.names)) return '{0} - {1} {2}'.format(*self.names) @staticmethod def arr2rle(A, is_shorten=True): ''' RLE = Run-length encoding: http://www.conwaylife.com/w/index.php?title=Run_Length_Encoded http://golly.sourceforge.net/Help/formats.html#rle https://www.rosettacode.org/wiki/Run-length_encoding#Python 0=b=. 1=o=A 1-24=A-X 25-48=pA-pX 49-72=qA-qX 241-255=yA-yO ''' V = np.rint(A*255).astype(int).tolist() # [[255 255] [255 0]] code_arr = [ [' .' if v==0 else ' '+chr(ord('A')+v-1) if v<25 else chr(ord('p')+(v-25)//24) + chr(ord('A')+(v-25)%24) for v in row] for row in V] # [[yO yO] [yO .]] if is_shorten: rle_groups = [ [(len(list(g)),c.strip()) for c,g in itertools.groupby(row)] for row in code_arr] # [[(2 yO)] [(1 yO) (1 .)]] for row in rle_groups: if row[-1][1]=='.': row.pop() # [[(2 yO)] [(1 yO)]] st = '$'.join(''.join([(str(n) if n>1 else '')+c for n,c in row]) for row in rle_groups) + '!' # "2 yO $ 1 yO" else: st = '$'.join(''.join(row) for row in code_arr) + '!' # print(sum(sum(r) for r in V)) return st @staticmethod def rle2arr(st): rle_groups = re.findall('(\d*)([p-y]?[.boA-X$])', st.rstrip('!')) # [(2 yO)(1 $)(1 yO)] code_list = sum([[c] * (1 if n=='' else int(n)) for n,c in rle_groups], []) # [yO yO $ yO] code_arr = [l.split(',') for l in ','.join(code_list).split('$')] # [[yO yO] [yO]] V = [ [0 if c in ['.','b'] else 255 if c=='o' else ord(c)-ord('A')+1 if len(c)==1 else (ord(c[0])-ord('p'))*24+(ord(c[1])-ord('A')+25) for c in row if c!='' ] for row in code_arr] # [[255 255] [255]] # lines = st.rstrip('!').split('$') # rle = [re.findall('(\d*)([p-y]?[.boA-X])', row) for row in lines] # code = [ sum([[c] * (1 if n=='' else int(n)) for n,c in row], []) for row in rle] # V = [ [0 if c in ['.','b'] else 255 if c=='o' else ord(c)-ord('A')+1 if len(c)==1 else (ord(c[0])-ord('p'))*24+(ord(c[1])-ord('A')+25) for c in row ] for row in code] maxlen = len(max(V, key=len)) A = np.array([row + [0] * (maxlen - len(row)) for row in V])/255 # [[1 1] [1 0]] # print(sum(sum(r) for r in V)) return A @staticmethod def fracs2st(B): return ','.join([str(f) for f in B]) @staticmethod def st2fracs(st): return [Fraction(st) for st in st.split(',')] def clear(self): self.cells.fill(0) def add(self, part, shift=[0,0]): # assert self.params['R'] == part.params['R'] h1, w1 = self.cells.shape h2, w2 = part.cells.shape h, w = min(h1, h2), min(w1, w2) i1, j1 = (w1 - w)//2 + shift[1], (h1 - h)//2 + shift[0] i2, j2 = (w2 - w)//2, (h2 - h)//2 # self.cells[j:j+h, i:i+w] = part.cells[0:h, 0:w] vmin = np.amin(part.cells) for y in range(h): for x in range(w): if part.cells[j2+y, i2+x] > vmin: self.cells[(j1+y)%h1, (i1+x)%w1] = part.cells[j2+y, i2+x] return self def transform(self, tx, mode='RZSF', is_world=False): if 'R' in mode and tx['rotate'] != 0: self.cells = snd.rotate(self.cells, tx['rotate'], reshape=not is_world, order=0, mode='wrap' if is_world else 'constant') if 'Z' in mode and tx['R'] != self.params['R']: # print('* {} / {}'.format(tx['R'], self.params['R'])) shape_orig = self.cells.shape self.cells = snd.zoom(self.cells, tx['R'] / self.params['R'], order=0) if is_world: self.cells = Board(shape_orig).add(self).cells self.params['R'] = tx['R'] if 'F' in mode and tx['flip'] != -1: if tx['flip'] in [0,1]: self.cells = np.flip(self.cells, axis=tx['flip']) elif tx['flip'] == 2: self.cells[:, :-MIDX-1:-1] = self.cells[:, :MIDX] elif tx['flip'] == 3: self.cells[:, :-MIDX-1:-1] = self.cells[::-1, :MIDX] if 'S' in mode and tx['shift'] != [0, 0]: self.cells = snd.shift(self.cells, tx['shift'], order=0, mode='wrap') # self.cells = np.roll(self.cells, tx['shift'], (1, 0)) return self def add_transformed(self, part, tx): part = copy.deepcopy(part) self.add(part.transform(tx, mode='RZF'), tx['shift']) return self def crop(self): vmin = np.amin(self.cells) coords = np.argwhere(self.cells > vmin) y0, x0 = coords.min(axis=0) y1, x1 = coords.max(axis=0) + 1 self.cells = self.cells[y0:y1, x0:x1] return self class Automaton: kernel_core = { 0: lambda r: (4 * r * (1-r))**4, # polynomial (quad4) 1: lambda r: np.exp( 4 - 1 / (r * (1-r)) ), # exponential / gaussian bump (bump4) 2: lambda r, q=1/4: (r>=q)*(r<=1-q), # step (stpz1/4) 3: lambda r, q=1/4: (r>=q)*(r<=1-q) + (r<q)*0.5 # staircase (life) } field_func = { 0: lambda n, m, s: np.maximum(0, 1 - (n-m)**2 / (9 * s**2) )**4 * 2 - 1, # polynomial (quad4) 1: lambda n, m, s: np.exp( - (n-m)**2 / (2 * s**2) ) * 2 - 1, # exponential / gaussian (gaus) 2: lambda n, m, s: (np.abs(n-m)<=s) * 2 - 1 # step (stpz) } def __init__(self, world): self.world = world self.world_FFT = np.zeros(world.cells.shape) self.potential_FFT = np.zeros(world.cells.shape) self.potential = np.zeros(world.cells.shape) self.field = np.zeros(world.cells.shape) self.field_old = None self.change = np.zeros(world.cells.shape) self.X = None self.Y = None self.D = None self.gen = 0 self.time = 0 self.is_multi_step = False self.is_soft_clip = False self.is_inverted = False self.kn = 1 self.gn = 1 self.is_gpu = True self.has_gpu = True self.compile_gpu(self.world.cells) self.calc_kernel() def kernel_shell(self, r): k = len(self.world.params['b']) kr = k * r bs = np.array([float(f) for f in self.world.params['b']]) b = bs[np.minimum(np.floor(kr).astype(int), k-1)] kfunc = Automaton.kernel_core[(self.world.params.get('kn') or self.kn) - 1] return (r<1) * kfunc(np.minimum(kr % 1, 1)) * b @staticmethod def soft_max(x, m, k): ''' Soft maximum: https://www.johndcook.com/blog/2010/01/13/soft-maximum/ ''' return np.log(np.exp(k*x) + np.exp(k*m)) / k @staticmethod def soft_clip(x, min, max, k): a = np.exp(k*x) b = np.exp(k*min) c = np.exp(-k*max) return np.log( 1/(a+b)+c ) / -k # return Automaton.soft_max(Automaton.soft_max(x, min, k), max, -k) def compile_gpu(self, A): ''' Reikna: http://reikna.publicfields.net/en/latest/api/computations.html ''' self.gpu_api = self.gpu_thr = self.gpu_fft = self.gpu_fftshift = None try: self.gpu_api = reikna.cluda.any_api() self.gpu_thr = self.gpu_api.Thread.create() self.gpu_fft = reikna.fft.FFT(A.astype(np.complex64)).compile(self.gpu_thr) self.gpu_fftshift = reikna.fft.FFTShift(A.astype(np.float32)).compile(self.gpu_thr) except Exception as exc: # if str(exc) == "No supported GPGPU APIs found": self.has_gpu = False self.is_gpu = False print(exc) # raise exc def run_gpu(self, A, cpu_func, gpu_func, dtype, **kwargs): if self.is_gpu and self.gpu_thr and gpu_func: op_dev = self.gpu_thr.to_device(A.astype(dtype)) gpu_func(op_dev, op_dev, **kwargs) return op_dev.get() else: return cpu_func(A) # return np.roll(potential_shifted, (MIDX, MIDY), (1, 0)) def fft(self, A): return self.run_gpu(A, np.fft.fft2, self.gpu_fft, np.complex64) def ifft(self, A): return self.run_gpu(A, np.fft.ifft2, self.gpu_fft, np.complex64, inverse=True) def fftshift(self, A): return self.run_gpu(A, np.fft.fftshift, self.gpu_fftshift, np.float32) def calc_once(self): A = self.world.cells self.world_FFT = self.fft(A) self.potential_FFT = self.kernel_FFT * self.world_FFT self.potential = self.fftshift(np.real(self.ifft(self.potential_FFT))) gfunc = Automaton.field_func[(self.world.params.get('gn') or self.gn) - 1] self.field = gfunc(self.potential, self.world.params['m'], self.world.params['s']) dt = 1 / self.world.params['T'] if self.is_multi_step and self.field_old: D = 1/2 * (3 * self.field - self.field_old) self.field_old = self.field.copy() else: D = self.field if not self.is_soft_clip: A_new = np.clip(A + dt * D, 0, 1) # A_new = A + dt * np.clip(D, -A/dt, (1-A)/dt) else: A_new = Automaton.soft_clip(A + dt * D, 0, 1, 1/dt) # A_new = A + dt * Automaton.soft_clip(D, -A/dt, (1-A)/dt, 1) self.change = (A_new - A) / dt self.world.cells = A_new self.gen += 1 self.time = round(self.time + dt, ROUND) if self.is_gpu: self.gpu_thr.synchronize() def calc_kernel(self): I, J = np.meshgrid(np.arange(SIZEX), np.arange(SIZEY)) self.X = (I - MIDX) / self.world.params['R'] self.Y = (J - MIDY) / self.world.params['R'] self.D = np.sqrt(self.X**2 + self.Y**2) self.kernel = self.kernel_shell(self.D) self.kernel_sum = np.sum(self.kernel) kernel_norm = self.kernel / self.kernel_sum self.kernel_FFT = self.fft(kernel_norm) self.kernel_updated = False def reset(self): self.gen = 0 self.time = 0 self.field_old = None class Analyzer: STAT_NAMES = {'p_m':'Param m', 'p_s':'Param s', 'n':'Gen (#)', 't':'Time (s)', 'm':'Mass (mg)', 'g':'Growth (mg/s)', 'I':'Moment of inertia', 'd':'Mass-growth distance (mm)', 's':'Speed (mm/s)', 'w':'Angular speed (deg/s)', 'm_a':'Mass asymmetry (mg)'} # 'a':'Semi-major axis (mm)', 'b':'Semi-minor axis (mm)', 'e':'Eccentricity', 'c':'Compactness', 'w_th':'Shape angular speed (deg/s)'} STAT_HEADERS = ['p_m', 'p_s', 'n', 't', 'm', 'g', 'I', 'd', 's', 'w', 'm_a'] # , 'a', 'b', 'e', 'c', 'w_th'] SEGMENT_LEN = 200 def __init__(self, automaton): self.automaton = automaton self.world = self.automaton.world # self.aaa = self.world.cells self.reset() def reset(self): self.is_empty = False self.is_full = False self.mass = 0 self.growth = 0 self.inertia = 0 self.m_last_center = None self.m_center = None self.g_center = None self.mg_dist = 0 self.m_shift = 0 self.m_last_angle = None self.m_angle = 0 self.m_rotate = 0 self.mass_asym = 0 # self.shape_major_axis = 0 # self.shape_minor_axis = 0 # self.shape_eccentricity = 0 # self.shape_compactness = 0 # self.shape_last_angle = None # self.shape_angle = 0 # self.shape_rotate = 0 self.series = [] self.last_shift_idx = np.zeros(2) self.total_shift_idx = np.zeros(2) self.is_clip_segment = True def calc_stat(self): R, T = [self.world.params[k] for k in ('R', 'T')] A = self.world.cells G = np.maximum(self.automaton.field, 0) h, w = A.shape X, Y = self.automaton.X, self.automaton.Y m00 = self.mass =
np.sum(A)
numpy.sum
import os, sys import glob import shutil import argparse import time import wave import numpy as np class Input(): def __init__(self, filename, n_input): _, ext = os.path.splitext(filename) if ext == '.wav': if os.path.isfile(filename): self.input = _InputMultiWav(filename, n_input) else: self.input = _InputMonoWav(filename, n_input) elif ext == '.npy': if os.path.isfile(filename): self.input = _InputMultiNpy(filename, n_input) else: self.input = _InputMonoNpy(filename, n_input) else: message = '{} file is not supported.'.format(ext) print(message) sys.exit() self.nframes = self.input.nframes return def close(self): self.input.close() return def readframes(self, n): return self.input.readframes(n) class _InputMultiWav(): def __init__(self, filename, n_input): self.wr = wave.open(filename, 'r') params = self.wr.getparams() self.nchannels = params[0] self.ws = params[1] self.fs = params[2] self.nframes = params[3] if self.nchannels != n_input: print('number of input channels does not match.') print('%s contains %d ch signals. != %d'\ % (filename, self.nchannels, n_input)) sys.exit() self.pointer = 0 return def close(self): self.wr.close() return def readframes(self, n): s = self.pointer e = s + n if e > self.nframes: e = self.nframes N = e - s frames = self.wr.readframes(N) if self.ws == 3: d = np.zeros((N * self.nchannels, 4), dtype=np.uint8) d[:, 1:] = np.frombuffer(frames, dtype=np.uint8).reshape(-1, 3) data = d.view(np.int32)[:, 0] / 2147483648 elif self.ws == 2: data = np.frombuffer(frames, dtype=np.int16) / 32768 elif self.ws == 4: data = np.frombuffer(frames, dtype=np.int32) / 2147483648 data = data.reshape((self.nchannels, -1), order='F') self.pointer += e - s return data class _InputMultiNpy(): def __init__(self, filename, n_input): self.wr =
np.load(filename, 'r')
numpy.load
__author__ = '<NAME>' __email__ = '<EMAIL>' from scipy import stats from sklearn.cross_decomposition import PLSRegression import numpy as np from sklearn.metrics import mean_squared_error import pandas as pd import sys import pdb from sklearn.decomposition import PCA from .Window import Window from .util import utility_module as utility from .util.pls_nipals import vipp class DionesusWindow(Window): """ A window that runs Dionesus as the network inference algorithm. The PLSR function is from sci-kit learn for implementation consistency between window types For more information about Dionesus see: Ciaccio, <NAME>., et al. "The DIONESUS algorithm provides scalable and accurate reconstruction of dynamic phosphoproteomic networks to reveal new drug targets." Integrative Biology (2015). """ def __init__(self, dataframe, window_info, roller_data, td_window, explanatory_dict, response_dict): super(DionesusWindow, self).__init__(dataframe, window_info, roller_data, td_window, explanatory_dict, response_dict) self.num_pcs = None self.beta_coefficients = None self.vip = None self.cv_table = None self.bootstrap_matrix = None self.freq_matrix = None self.edge_stability_auc = None def make_edge_table(self, calc_mse=False): """ :return: Called by: Swing.rank_edges() """ # Build indexing method for all possible edges. Length = number of parents * number of children parent_index = range(self.beta_coefficients.shape[1]) child_index = range(self.beta_coefficients.shape[0]) a, b = np.meshgrid(parent_index, child_index) # Flatten arrays to be used in link list creation df = pd.DataFrame() df['Parent'] = self.beta_coefficients.columns.values[a.flatten()] df['Child'] = self.beta_coefficients.index.values[b.flatten()] df['Importance'] = self.vip.values.flatten() df['Beta'] = self.beta_coefficients.values.flatten() df['P_window'] = self.explanatory_window[a.flatten()] # Calculate the window of the child node, which is equivalent to the current window index child_values = np.array([self.nth_window] * self.beta_coefficients.shape[0]) df['C_window'] = child_values[b.flatten()] if self.permutation_p_values is not None: df["p_value"] = self.permutation_p_values.flatten() # Remove any self edges df = df[~((df['Parent'] == df['Child']) & (df['P_window'] == df['C_window']))] if calc_mse: df['MSE_diff'] = self.edge_mse_diff.flatten() return df def sort_edges(self, method="importance"): if self.results_table is None: raise ValueError("The edge table must be created before getting edges") if method == "p_value": self.results_table.sort(columns=['p_value', 'importance'], ascending=[True, False], inplace=True) elif method == "importance": self.results_table.sort(columns=['importance', 'p_value'], ascending=[False, True], inplace=True) return self.results_table['regulator-target'].values def generate_results_table(self): # generate edges for initial model initial_edges = self.create_linked_list(self.beta_coefficients, 'B') # permutation edges permutation_mean_edges = self.create_linked_list(self.permutation_means, 'p-means') permutation_sd_edges = self.create_linked_list(self.permutation_sd, 'p-sd') stability_edges = self.create_linked_list(self.edge_stability_auc, 'stability') aggregated_edges = initial_edges.merge(permutation_mean_edges, on='regulator-target').merge( permutation_sd_edges, on='regulator-target').merge(stability_edges, on='regulator-target') # sorry, it is a little messy to do the p-value calculations for permutation tests here... # valid_indices = aggregated_edges['p-sd'] != 0 # valid_indices = aggregated_edges['B'] != 0 valid_window = aggregated_edges initial_B = valid_window['B'] sd = valid_window['p-sd'] mean = valid_window['p-means'] valid_window['final-z-scores-perm'] = (initial_B - mean) / sd valid_window['cdf-perm'] = (-1 * abs(valid_window['final-z-scores-perm'])).apply(stats.norm.cdf) # calculate t-tailed pvalue valid_window['p-value-perm'] = (2 * valid_window['cdf-perm']) self.results_table = valid_window return (self.results_table) def rank_results(self, rank_by, ascending=False): rank_column_name = rank_by + "-rank" # rank edges with an actual beta value first until further notice ## valid_indices = self.results_table['B'] != 0 valid_window = self.results_table[valid_indices] valid_window[rank_column_name] = valid_window[rank_by].rank(method="dense", ascending=ascending) edge_n = len(valid_window.index) invalid_indices = self.results_table['B'] == 0 invalid_window = self.results_table[invalid_indices] invalid_window[rank_column_name] = invalid_window[rank_by].rank(method="dense", ascending=ascending) invalid_window[rank_column_name] += edge_n self.results_table = valid_window.append(invalid_window) self.results_table = self.results_table.sort(columns=rank_column_name, axis=0) return (self.results_table) def run_permutation_test(self, n_permutations=1000, crag=False): # initialize permutation results array self.permutation_means = np.empty((self.n_genes, self.n_genes)) self.permutation_sd = np.empty((self.n_genes, self.n_genes)) zeros = np.zeros(self.beta_coefficients.shape) # initialize running calculation result = {'n': zeros.copy(), 'mean': zeros.copy(), 'ss': zeros.copy()} # inner loop: permute the window N number of times for nth_perm in range(0, n_permutations): # if (nth_perm % 200 == 0): # print 'Perm Run: ' +str(nth_perm) # permute data permuted_data = self.permute_data(self.explanatory_data) # fit the data and get coefficients result_tuple = self.get_coeffs(x_data=permuted_data) permuted_coeffs = result_tuple[0] permuted_vip = result_tuple[1] dummy_list = [permuted_coeffs] result = self.update_variance_2D(result, dummy_list) self.permutation_means = result['mean'].copy() self.permutation_sd = np.sqrt(result['variance'].copy()) self.permutation_p_values = self.calc_p_value() def calc_p_value(self, value=None, mean=None, sd=None): if value is None: value = self.beta_coefficients.copy() if mean is None: mean = self.permutation_means.copy() if sd is None: sd = self.permutation_sd.copy() z_scores = (value - mean) / sd cdf = stats.norm.cdf((-1 * abs(z_scores))) p_values = 2 * cdf return p_values def initialize_params(self): """ Optimize the number of PCs to use. :return: """ # calculate the Q2 score using PC=1,2,3,4,5 # pick the PCs that maximizes the Q2 score-PCs tradeoff, using the elbow rule, maximizing the second derivative or maximum curvature. temp = self.remove_stationary_ts self.remove_stationary_ts = False result_tuple = self.get_coeffs(crag=False, calc_mse=False) self.remove_stationary_ts = temp mse_diff = result_tuple[2] model_list = result_tuple[3] model_inputs = result_tuple[4] explained_variances = None size_test = [] for response, explanatory, index in model_inputs: size_test.append(explanatory.shape) min_dim=sorted(size_test,key=lambda x: x[1], reverse=False)[0][1] for response, explanatory, index in model_inputs: pca = PCA() pca.fit(explanatory) if explained_variances is None: explained_variances = pca.explained_variance_ratio_ else: try: explained_variances = np.vstack((explained_variances, pca.explained_variance_ratio_)) except ValueError: try: explained_variances = np.vstack((explained_variances[:,:min_dim], pca.explained_variance_ratio_[:min_dim])) except IndexError: truncated_index = min_dim explained_variances = np.vstack((explained_variances[:truncated_index], pca.explained_variance_ratio_[:truncated_index])) explained_variances_mean = np.mean(explained_variances, axis = 0) test_pcs = [x for x in range(1, len(explained_variances_mean)+1)] elbow_x, elbow_y = utility.elbow_criteria(test_pcs, explained_variances_mean) self.num_pcs = elbow_x def fit_window(self, pcs=3, crag=False, calc_mse=False): """ Set the attributes of the window using expected pipeline procedure and calculate beta values :return: """ if self.num_pcs is not None: pcs = self.num_pcs result_tuple = self.get_coeffs(pcs, crag = crag, calc_mse = calc_mse) self.beta_coefficients = result_tuple[0] self.vip = result_tuple[1] self.edge_mse_diff = result_tuple[2] self.model_list = result_tuple[3] def _fitstack_coeffs(self, n_pcs, coeff_matrix, vip_matrix, model_list, x_matrix, target_y, col_index, crag=False): """ :param n_pcs: :param coeff_matrix: :param vip_matrix: :param model_list: :param x_matrix: :param target_y: :param col_index: :param crag: :return: """ pls = PLSRegression(n_pcs, False) # Fit the model pls.fit(x_matrix, target_y) model_params = {'col_index': col_index, 'response': target_y, 'predictor': x_matrix, 'model': pls} model_list.append(model_params) # artificially add a 0 to where the col_index is to prevent self-edges coeffs = pls.coef_ coeffs = np.reshape(coeffs, (len(coeffs),)) vips = vipp(x_matrix, target_y, pls.x_scores_, pls.x_weights_) vips = np.reshape(vips, (len(vips),)) if coeff_matrix.shape[1] - len(coeffs) == 1: coeffs = np.insert(coeffs, col_index, 0) vips = np.insert(vips, col_index, 0) coeff_matrix =
np.vstack((coeff_matrix, coeffs))
numpy.vstack
def selection_10(): # Library import import numpy import matplotlib import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec # Library version matplotlib_version = matplotlib.__version__ numpy_version = numpy.__version__ # Histo binning xBinning = numpy.linspace(0.0,2000.0,81,endpoint=True) # Creating data sequence: middle of each bin xData = numpy.array([12.5,37.5,62.5,87.5,112.5,137.5,162.5,187.5,212.5,237.5,262.5,287.5,312.5,337.5,362.5,387.5,412.5,437.5,462.5,487.5,512.5,537.5,562.5,587.5,612.5,637.5,662.5,687.5,712.5,737.5,762.5,787.5,812.5,837.5,862.5,887.5,912.5,937.5,962.5,987.5,1012.5,1037.5,1062.5,1087.5,1112.5,1137.5,1162.5,1187.5,1212.5,1237.5,1262.5,1287.5,1312.5,1337.5,1362.5,1387.5,1412.5,1437.5,1462.5,1487.5,1512.5,1537.5,1562.5,1587.5,1612.5,1637.5,1662.5,1687.5,1712.5,1737.5,1762.5,1787.5,1812.5,1837.5,1862.5,1887.5,1912.5,1937.5,1962.5,1987.5]) # Creating weights for histo: y11_PT_0 y11_PT_0_weights = numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating weights for histo: y11_PT_1 y11_PT_1_weights =
numpy.array([0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) # Creating a new Canvas fig = plt.figure(figsize=(12,6),dpi=80)
numpy.array
''' The manager can solve the work plane sketching, 1. Users can create work planes with input sketch 2. When users draw on a selected work plane, the manager creates a thin structure according to input sketch. ''' import numpy as np import trimesh import math from pyntcloud.utils.array import PCA from configs.config_ui import cfg import sketch_3d_ui.geometry.geometry_utils as geometry_utils from sketch_3d_ui.geometry.bill_board import BillBoard from sketch_3d_ui.geometry.work_plane import WorkPlane from sketch_3d_ui.manager.geometry_manager import GeometryManager as GM from sketch_3d_ui.counter import COUNTER from utils.point_cloud_utils import output_point_cloud_ply from PyQt5.QtCore import QSize, Qt, QRect, QPoint from PyQt5.QtGui import QColor, QIcon, QPixmap, QScreen, QPainter, QPen, QImage from PyQt5.QtWidgets import QOpenGLWidget class WorkPlaneSketchManager(GM): def __init__(self): super(WorkPlaneSketchManager, self).__init__() self.line_mode = 'free' self.__candidate_work_plane = None # bill board self.confirm_board = BillBoard() self.candidate_board = BillBoard() self.canvas = QImage(896, 896, QImage.Format_ARGB32) self.canvas.fill(Qt.transparent) self.tmp_canvas = QImage(896, 896, QImage.Format_ARGB32) self.tmp_canvas.fill(Qt.transparent) self.sketching = False self.current_sketch_width = 5 self.current_2d_line = [] def get_candidate_work_plane(self): return self.__candidate_work_plane def init_manager(self): self.init_state() def init_state(self): if GM.current_id == None: self.state = 'UN_SELECTED' else: self.state = 'SELECTED' def update_state(self): if self.state == 'UN_SELECTED': if self.__candidate_work_plane: self.state = 'CONFIRM' else: self.state = 'SELECTED' elif self.state == 'CONFIRM': self.state = 'SELECTED' elif self.state == 'SELECTED': self.state = 'UN_SELECTED' else: pass def solve_mouse_event(self, event): if self.state == 'UN_SELECTED': self.solve_unselected(event) elif self.state == 'CONFIRM': self.solve_confirm(event) elif self.state == 'SELECTED': self.solve_selected(event) def solve_unselected(self, event): if event == 'press': self.create_work_plane_by_near_point_cloud_to_camera() self.start_pos = QPoint(self.mouse_x, self.mouse_y) self.last_pos = QPoint(self.mouse_x, self.mouse_y) self.draw_on_canvas() elif event == 'move': self.draw_on_canvas() elif event == 'release': if len(self.current_2d_line) > 1 and GM.current_id != None: self.add_current_3d_line(boundary=False) self.create_work_plane() self.finish_sketch_create_plane() self.update_state() else: # if only mouse only click once, remove the created work plane GM.work_planes = GM.work_planes[:-1] GM.current_id = None self.clear_canvas() self.current_2d_line = [] else: pass def solve_confirm(self, event): if event == 'press': pass elif event == 'move': pass elif event == 'release': hit = self.check_click_bill_board() if hit: self.update_state() else: pass def solve_selected(self, event): if event == 'press': # on canvas, for visualize self.start_pos = QPoint(self.mouse_x, self.mouse_y) self.last_pos = QPoint(self.mouse_x, self.mouse_y) self.draw_on_canvas() elif event == 'move': # on canvas, for visualize self.draw_on_canvas() elif event == 'release': if len(self.current_2d_line) > 1 and GM.current_id != None: self.add_current_3d_line(boundary=True) self.finish_sketch_current_plane() self.clear_canvas() self.current_2d_line = [] else: pass def create_work_plane_by_near_point_cloud_to_camera(self): # find the 100 nearest point from the camera and fit a work_plane near_point_cloud = GM.base_point_cloud.get_near_points_from_point_cloud(self.current_view_port.camera_pos) work_plane = WorkPlane() work_plane.init_from_point_cloud(near_point_cloud) # set the current work work plane to be the newest work_plane GM.work_planes.append(work_plane) GM.current_id = len(GM.work_planes) - 1 def draw_on_canvas(self): current_pos = QPoint(self.mouse_x, self.mouse_y) if self.line_mode == 'straight': self.canvas = self.tmp_canvas.copy() painter = QPainter(self.canvas) painter.setPen(QPen(QColor(Qt.green), self.current_sketch_width*2, Qt.SolidLine, Qt.RoundCap, Qt.RoundJoin)) # avoid the duplicate input points, which may happen when using the ipad and apple pencil input. if self.line_mode == 'free' and current_pos != self.last_pos: painter.drawLine(self.last_pos, current_pos) self.current_2d_line.append([self.mouse_x, self.mouse_y]) elif self.line_mode == 'straight' and current_pos != self.start_pos: painter.drawLine(self.start_pos, current_pos) self.current_2d_line = [[self.start_pos.x(), self.start_pos.y()], [current_pos.x(), current_pos.y()]] else: pass painter.end() self.last_pos = QPoint(self.mouse_x, self.mouse_y) def clear_canvas(self): self.canvas.fill(Qt.transparent) def check_click_bill_board(self): hit, hit_point, hit_id = self.mouse_ray_and_planes_hit_detection(mouse_x=self.mouse_x, mouse_y=self.mouse_y, planes=[self.confirm_board, self.candidate_board]) if hit: # delete candidate when click confirm if hit_id == 0: self.__candidate_work_plane = None # add candidate when click candidate elif hit_id == 1: GM.work_planes.append(self.__candidate_work_plane) self.__candidate_work_plane = None return hit def add_current_3d_line(self, boundary=False): self.sketching = False line_3d = [] for point_2d in self.current_2d_line: hit, hit_point, _ = \ self.mouse_ray_and_planes_hit_detection(mouse_x=point_2d[0], mouse_y=point_2d[1], planes=[GM.work_planes[GM.current_id]], boundary=boundary) if hit: self.sketching = True line_3d.append(hit_point) GM.work_planes[GM.current_id].lines_3d.append(line_3d) def create_work_plane(self): COUNTER.count_plane_creation += 1 self.create_current_plane() self.create_candidate_plane() # For rule 1: near plane # adjust the work_plane size according to the sketch def create_current_plane(self): GM.work_planes[GM.current_id].update_bounding_rec_2d_from_lines(self.current_2d_line) bounding_rec_3d = [] for point in GM.work_planes[GM.current_id].bounding_rec_2d: hit, hit_point, _ = self.mouse_ray_and_planes_hit_detection(mouse_x=point[0], mouse_y=point[1], planes=[GM.work_planes[GM.current_id]], boundary=False) if hit: bounding_rec_3d.append(hit_point) GM.work_planes[GM.current_id].bounding_rec_3d = bounding_rec_3d # For rule 2: candidate plane # detect if 2 endpoints of the sketch is attached on the point cloud # if true, suggest that work_plane too def create_candidate_plane(self): attach, attach_start_point, attach_end_point = self.check_end_points_attach() if attach: candidate_center = (attach_start_point + attach_end_point) / 2 candidate_vector = attach_end_point - attach_start_point near_point_cloud = self.base_point_cloud.get_near_points_from_point_cloud(candidate_center) self.create_candidate_work_plane(candidate_center, near_point_cloud) self.update_candidate_plane(candidate_center, candidate_vector) self.init_bill_board_list(left_top=GM.work_planes[GM.current_id].bounding_rec_3d[3], bill_boards=['confirm_board', 'candidate_board']) def check_end_points_attach(self): attach = False attach_start_point = None attach_end_point = None start_point_2d = self.current_2d_line[0] end_point_2d = self.current_2d_line[len(self.current_2d_line) - 1] hit_start, hit_start_id = self.mouse_ray_and_point_cloud_hit_detection(mouse_x=start_point_2d[0], mouse_y=start_point_2d[1], point_cloud=self.base_point_cloud.positions) hit_end, hit_end_id = self.mouse_ray_and_point_cloud_hit_detection(mouse_x=end_point_2d[0], mouse_y=end_point_2d[1], point_cloud=self.base_point_cloud.positions) if hit_start and hit_end: attach = True attach_start_point = self.base_point_cloud.positions[hit_start_id[0]] attach_end_point = self.base_point_cloud.positions[hit_end_id[0]] return attach, attach_start_point, attach_end_point def create_candidate_work_plane(self, candidate_center, near_point_cloud): w, v = PCA(near_point_cloud) # if not span a flat plane, max_id = 0 if not (w[0] >= w[2]*2 and w[1] >= w[2]*2 and w[0] <= w[1]*2): view_vector = (self.current_view_port.camera_pos - candidate_center) unit_view_vector = view_vector / np.linalg.norm(view_vector) angles = [] for i in range(3): angle = geometry_utils.compute_angle(unit_view_vector, v[:, i]) angles.append(angle) max_id = np.argmax(angles) candidate_plane_normal = v[:, max_id] self.__candidate_work_plane = WorkPlane() self.__candidate_work_plane.init_from_point_normal(point=candidate_center, normal=candidate_plane_normal) else: self.__candidate_work_plane = WorkPlane() self.__candidate_work_plane.init_from_point_cloud(near_point_cloud) def update_candidate_plane(self, candidate_center, candidate_vector): # user draw line which spans the plane line = GM.work_planes[GM.current_id].lines_3d[0] # check if current normal is face to the camera current_normal = GM.work_planes[GM.current_id].normal veiw_vector = self.current_view_port.camera_pos - GM.work_planes[GM.current_id].get_center() if np.dot(current_normal, veiw_vector) < 0: current_normal = -current_normal # align bounding rectangle to x,y plane z_vector = np.array([0., 0., 1.]) x_vector = np.array([1., 0., 0.]) origin = np.array([0., 0., 0.]) line, rec, r_mat_to_plane, r_mat_to_vector = geometry_utils.align_points_to_plane(line=GM.work_planes[GM.current_id].lines_3d[0], rec=GM.work_planes[GM.current_id].bounding_rec_3d, ori_normal=current_normal, des_normal=z_vector, align_end_points_vector=x_vector, align_end_points_center=origin) # scale points candidate_vector_length = np.sqrt(np.sum(candidate_vector**2)) line_length = np.sqrt(np.sum((line[len(line) - 1] - line[0])**2)) x_factor = candidate_vector_length/line_length line = geometry_utils.scale_points(line, x_factor=x_factor, y_factor=1., z_factor=1.) rec = geometry_utils.scale_points(rec, x_factor=x_factor, y_factor=1., z_factor=1.) line = np.dot(line, np.transpose(np.linalg.inv(r_mat_to_vector))) line = np.dot(line, np.transpose(np.linalg.inv(r_mat_to_plane))) rec = np.dot(rec, np.transpose(np.linalg.inv(r_mat_to_vector))) rec = np.dot(rec, np.transpose(np.linalg.inv(r_mat_to_plane))) candidate_normal = self.__candidate_work_plane.normal veiw_vector = self.current_view_port.camera_pos - self.__candidate_work_plane.point if
np.dot(candidate_normal, veiw_vector)
numpy.dot
# Copyright 2017 Max Planck Society # Distributed under the BSD-3 Software license, # (See accompanying file ./LICENSE.txt or copy at # https://opensource.org/licenses/BSD-3-Clause) """Training AdaGAN on various datasets. Refer to the arXiv paper 'AdaGAN: Boosting Generative Models' Coded by <NAME>, <NAME> """ import os import argparse import logging import tensorflow as tf import numpy as np from datahandler import DataHandler from adagan import AdaGan from metrics import Metrics import utils flags = tf.app.flags flags.DEFINE_float("g_learning_rate", 0.0002, "Learning rate for Generator optimizers [16e-4]") flags.DEFINE_float("d_learning_rate", 0.0001, "Learning rate for Discriminator optimizers [4e-4]") flags.DEFINE_float("learning_rate", 0.003, "Learning rate for other optimizers [8e-4]") flags.DEFINE_float("adam_beta1", 0.5, "Beta1 parameter for Adam optimizer [0.5]") flags.DEFINE_integer("zdim", 50, "Dimensionality of the latent space [100]") flags.DEFINE_float("init_std", 0.01, "Initial variance for weights [0.02]") flags.DEFINE_string("workdir", 'results_cifar10_pot_conv', "Working directory ['results']") flags.DEFINE_bool("unrolled", False, "Use unrolled GAN training [True]") flags.DEFINE_bool("vae", False, "Use VAE instead of GAN") flags.DEFINE_bool("pot", True, "Use POT instead of GAN") flags.DEFINE_float("pot_lambda", 1., "POT regularization") flags.DEFINE_bool("is_bagging", False, "Do we want to use bagging instead of adagan? [False]") FLAGS = flags.FLAGS def main(): opts = {} # Utility opts['random_seed'] = 66 opts['dataset'] = 'cifar10' # gmm, circle_gmm, mnist, mnist3 ... opts['data_dir'] = 'cifar10' opts['trained_model_path'] = None #'models' opts['mnist_trained_model_file'] = None #'mnist_trainSteps_19999_yhat' # 'mnist_trainSteps_20000' opts['work_dir'] = FLAGS.workdir opts['ckpt_dir'] = 'checkpoints' opts["verbose"] = 1 opts['tf_run_batch_size'] = 128 opts["early_stop"] = -1 # set -1 to run normally opts["plot_every"] = 150 opts["save_every_epoch"] = 10 opts['gmm_max_val'] = 15. # Datasets opts['toy_dataset_size'] = 10000 opts['toy_dataset_dim'] = 2 opts['mnist3_dataset_size'] = 2 * 64 # 64 * 2500 opts['mnist3_to_channels'] = False # Hide 3 digits of MNIST to channels opts['input_normalize_sym'] = False # Normalize data to [-1, 1] opts['gmm_modes_num'] = 5 # AdaGAN parameters opts['adagan_steps_total'] = 1 opts['samples_per_component'] = 1000 opts['is_bagging'] = FLAGS.is_bagging opts['beta_heur'] = 'uniform' # uniform, constant opts['weights_heur'] = 'theory_star' # theory_star, theory_dagger, topk opts['beta_constant'] = 0.5 opts['topk_constant'] = 0.5 opts["mixture_c_epoch_num"] = 5 opts["eval_points_num"] = 25600 opts['digit_classification_threshold'] = 0.999 opts['inverse_metric'] = False # Use metric from the Unrolled GAN paper? opts['inverse_num'] = 100 # Number of real points to inverse. opts['objective'] = None # Generative model parameters opts["init_std"] = FLAGS.init_std opts["init_bias"] = 0.0 opts['latent_space_distr'] = 'normal' # uniform, normal opts['latent_space_dim'] = FLAGS.zdim opts["gan_epoch_num"] = 200 opts['convolutions'] = True opts['d_num_filters'] = 512 opts['d_num_layers'] = 4 opts['g_num_filters'] = 1024 opts['g_num_layers'] = 3 opts['e_is_random'] = False opts['e_num_filters'] = 1024 opts['e_num_layers'] = 3 opts['g_arch'] = 'dcgan_mod' opts['g_stride1_deconv'] = False opts['g_3x3_conv'] = 0 opts['e_arch'] = 'dcgan' opts['e_3x3_conv'] = 0 opts['conv_filters_dim'] = 5 # --GAN specific: opts['conditional'] = False opts['unrolled'] = FLAGS.unrolled # Use Unrolled GAN? (only for images) opts['unrolling_steps'] = 5 # Used only if unrolled = True # --VAE specific opts['vae'] = FLAGS.vae opts['vae_sigma'] = 0.01 # --POT specific opts['pot'] = FLAGS.pot opts['pot_pz_std'] = 2. opts['pot_lambda'] = FLAGS.pot_lambda opts['adv_c_loss'] = 'none' opts['vgg_layer'] = 'pool2' opts['adv_c_patches_size'] = 5 opts['adv_c_num_units'] = 32 opts['adv_c_loss_w'] = 0.0 opts['cross_p_w'] = 0.0 opts['diag_p_w'] = 0.0 opts['emb_c_loss_w'] = 0.0 opts['reconstr_w'] = 1.0 opts['z_test'] = 'gan' opts['z_test_corr_w'] = 0.1 opts['z_test_proj_dim'] = 50 # Optimizer parameters opts['optimizer'] = 'adam' # sgd, adam opts["batch_size"] = 100 opts["d_steps"] = 1 opts['d_new_minibatch'] = False opts["g_steps"] = 2 opts['batch_norm'] = True opts['dropout'] = True opts['dropout_keep_prob'] = 0.5 opts['recon_loss'] = 'l2' # "manual" or number (float or int) giving the number of epochs to divide # the learning rate by 10 (converted into an exp decay per epoch). opts['decay_schedule'] = 100 opts['opt_learning_rate'] = FLAGS.learning_rate opts['opt_d_learning_rate'] = FLAGS.d_learning_rate opts['opt_g_learning_rate'] = FLAGS.g_learning_rate opts["opt_beta1"] = FLAGS.adam_beta1 opts['batch_norm_eps'] = 1e-05 opts['batch_norm_decay'] = 0.9 if opts['e_is_random']: assert opts['latent_space_distr'] == 'normal',\ 'Random encoders currently work only with Gaussian Pz' # Data augmentation opts['data_augm'] = False if opts['verbose']: logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(message)s') logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(message)s') utils.create_dir(opts['work_dir']) utils.create_dir(os.path.join(opts['work_dir'], opts['ckpt_dir'])) with utils.o_gfile((opts['work_dir'], 'params.txt'), 'w') as text: text.write('Parameters:\n') for key in opts: text.write('%s : %s\n' % (key, opts[key])) data = DataHandler(opts) assert data.num_points >= opts['batch_size'], 'Training set too small' adagan = AdaGan(opts, data) metrics = Metrics() train_size = data.num_points random_idx = np.random.choice(train_size, 4*320, replace=False) metrics.make_plots(opts, 0, data.data, data.data[random_idx], adagan._data_weights, prefix='dataset_') for step in range(opts["adagan_steps_total"]): logging.info('Running step {} of AdaGAN'.format(step + 1)) adagan.make_step(opts, data) num_fake = opts['eval_points_num'] logging.debug('Sampling fake points') fake_points = adagan.sample_mixture(num_fake) logging.debug('Sampling more fake points') more_fake_points = adagan.sample_mixture(500) logging.debug('Plotting results') if opts['dataset'] == 'gmm': metrics.make_plots(opts, step, data.data[:500], fake_points[0:100], adagan._data_weights[:500]) logging.debug('Evaluating results') (likelihood, C) = metrics.evaluate( opts, step, data.data[:500], fake_points, more_fake_points, prefix='') else: metrics.make_plots(opts, step, data.data, fake_points[:320], adagan._data_weights) if opts['inverse_metric']: logging.debug('Evaluating results') l2 = np.min(adagan._invert_losses[:step + 1], axis=0) logging.debug('MSE=%.5f, STD=%.5f' % (np.mean(l2),
np.std(l2)
numpy.std
import numpy as np from itertools import combinations import dask.array as dsa from ..core import ( histogram, _ensure_correctly_formatted_bins, _ensure_correctly_formatted_range, ) from .fixtures import empty_dask_array import pytest bins_int = 10 bins_str = "auto" bins_arr = np.linspace(-4, 4, 10) range_ = (0, 1) @pytest.mark.parametrize("density", [False, True]) @pytest.mark.parametrize("block_size", [None, 1, 2]) @pytest.mark.parametrize("axis", [1, None]) @pytest.mark.parametrize("bins", [10, np.linspace(-4, 4, 10), "auto"]) @pytest.mark.parametrize("range_", [None, (-4, 4)]) def test_histogram_results_1d(block_size, density, axis, bins, range_): nrows, ncols = 5, 20 # Setting the random seed here prevents np.testing.assert_allclose # from failing beow. We should investigate this further. np.random.seed(2) data = np.random.randn(nrows, ncols) h, bin_edges = histogram( data, bins=bins, range=range_, axis=axis, block_size=block_size, density=density ) expected_shape = ( (nrows, len(bin_edges[0]) - 1) if axis == 1 else (len(bin_edges[0]) - 1,) ) assert h.shape == expected_shape # make sure we get the same thing as numpy.histogram if axis: bins_np = np.histogram_bin_edges( data, bins=bins, range=range_ ) # Use same bins for all slices below expected = np.stack( [ np.histogram(data[i], bins=bins_np, range=range_, density=density)[0] for i in range(nrows) ] ) else: expected = np.histogram(data, bins=bins, range=range_, density=density)[0] norm = nrows if (density and axis) else 1 np.testing.assert_allclose(h, expected / norm) if density: widths = np.diff(bin_edges) integral = np.sum(h * widths) np.testing.assert_allclose(integral, 1.0) @pytest.mark.parametrize("block_size", [None, 1, 2]) def test_histogram_results_1d_weighted(block_size): nrows, ncols = 5, 20 data = np.random.randn(nrows, ncols) bins = np.linspace(-4, 4, 10) h, _ = histogram(data, bins=bins, axis=1, block_size=block_size) weights = 2 * np.ones_like(data) h_w, _ = histogram(data, bins=bins, axis=1, weights=weights, block_size=block_size) np.testing.assert_array_equal(2 * h, h_w) # @pytest.mark.skip(reason="Weight broadcasting on numpy arrays is not yet implemented") @pytest.mark.parametrize("block_size", [None, 1, 2, "auto"]) def test_histogram_results_1d_weighted_broadcasting(block_size): nrows, ncols = 5, 20 data = np.random.randn(nrows, ncols) bins = np.linspace(-4, 4, 10) h, _ = histogram(data, bins=bins, axis=1, block_size=block_size) weights = 2 * np.ones((1, ncols)) h_w, _ = histogram(data, bins=bins, axis=1, weights=weights, block_size=block_size) np.testing.assert_array_equal(2 * h, h_w) @pytest.mark.parametrize("block_size", [None, 1, 2]) def test_histogram_right_edge(block_size): """Test that last bin is both left- and right-edge inclusive as it is for numpy.histogram """ nrows, ncols = 5, 20 data = np.ones((nrows, ncols)) bins = np.array([0, 0.5, 1]) # All data at rightmost edge h, _ = histogram(data, bins=bins, axis=1, block_size=block_size) assert h.shape == (nrows, len(bins) - 1) # make sure we get the same thing as histogram (all data in the last bin) hist, _ = np.histogram(data, bins=bins) np.testing.assert_array_equal(hist, h.sum(axis=0)) # now try with no axis h_na, _ = histogram(data, bins=bins, block_size=block_size) np.testing.assert_array_equal(hist, h_na) def test_histogram_results_2d(): nrows, ncols = 5, 20 data_a = np.random.randn(nrows, ncols) data_b = np.random.randn(nrows, ncols) nbins_a = 9 bins_a = np.linspace(-4, 4, nbins_a + 1) nbins_b = 10 bins_b = np.linspace(-4, 4, nbins_b + 1) h, _ = histogram(data_a, data_b, bins=[bins_a, bins_b]) assert h.shape == (nbins_a, nbins_b) hist, _, _ = np.histogram2d(data_a.ravel(), data_b.ravel(), bins=[bins_a, bins_b]) np.testing.assert_array_equal(hist, h) def test_histogram_results_2d_density(): nrows, ncols = 5, 20 data_a = np.random.randn(nrows, ncols) data_b = np.random.randn(nrows, ncols) nbins_a = 9 bins_a = np.linspace(-4, 4, nbins_a + 1) nbins_b = 10 bins_b = np.linspace(-4, 4, nbins_b + 1) h, _ = histogram(data_a, data_b, bins=[bins_a, bins_b], density=True) assert h.shape == (nbins_a, nbins_b) hist, _, _ = np.histogram2d( data_a.ravel(), data_b.ravel(), bins=[bins_a, bins_b], density=True ) np.testing.assert_allclose(hist, h) # check integral is 1 widths_a = np.diff(bins_a) widths_b = np.diff(bins_b) areas = np.outer(widths_a, widths_b) integral = np.sum(hist * areas) np.testing.assert_allclose(integral, 1.0) def test_histogram_results_3d_density(): nrows, ncols = 5, 20 data_a = np.random.randn(nrows, ncols) data_b = np.random.randn(nrows, ncols) data_c = np.random.randn(nrows, ncols) nbins_a = 9 bins_a = np.linspace(-4, 4, nbins_a + 1) nbins_b = 10 bins_b = np.linspace(-4, 4, nbins_b + 1) nbins_c = 9 bins_c = np.linspace(-4, 4, nbins_c + 1) h, _ = histogram( data_a, data_b, data_c, bins=[bins_a, bins_b, bins_c], density=True ) assert h.shape == (nbins_a, nbins_b, nbins_c) hist, _ = np.histogramdd( (data_a.ravel(), data_b.ravel(), data_c.ravel()), bins=[bins_a, bins_b, bins_c], density=True, ) np.testing.assert_allclose(hist, h) # check integral is 1 widths_a =
np.diff(bins_a)
numpy.diff
"""Abstractions and default converters.""" import abc import copy import dataclasses import enum import itertools from typing import Any, Callable, Collection, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple, Union from absl import logging import attr import numpy as np from vizier import pyvizier # The study identifier for cross-study learning must be stored in # Trial.Metadata and StudyConfig.Metadata with this key. # TODO: Use metadata namespace instead. STUDY_ID_FIELD = 'metalearn_study_id' class NumpyArraySpecType(enum.Enum): """Type information for NumpyArraySpec. CONTINUOUS: Continuous parameter DISCRETE: Discrete/integer/categorical parameter ONEHOT_EMBEDDING: One-hot embedding of DISCRETE. """ CONTINUOUS = 'CONTINUOUS' DISCRETE = 'DISCRETE' ONEHOT_EMBEDDING = 'ONEHOT_EMBEDDING' @classmethod def default_factory(cls, pc: pyvizier.ParameterConfig) -> 'NumpyArraySpecType': """SpecType when encoding discretes as integer indices.""" if pc.type == pyvizier.ParameterType.DOUBLE: return NumpyArraySpecType.CONTINUOUS elif pc.type in (pyvizier.ParameterType.DISCRETE, pyvizier.ParameterType.CATEGORICAL, pyvizier.ParameterType.INTEGER): return NumpyArraySpecType.DISCRETE raise ValueError(f'Unknown type {pc.type}') @classmethod def embedding_factory(cls, pc: pyvizier.ParameterConfig) -> 'NumpyArraySpecType': """SpecType when encoding discretes as onehot embedding.""" if pc.type == pyvizier.ParameterType.DOUBLE: return NumpyArraySpecType.CONTINUOUS elif pc.type in (pyvizier.ParameterType.DISCRETE, pyvizier.ParameterType.CATEGORICAL, pyvizier.ParameterType.INTEGER): return NumpyArraySpecType.ONEHOT_EMBEDDING raise ValueError(f'Unknown type {pc.type}') @attr.define(frozen=True, auto_attribs=True) class NumpyArraySpec: """Encodes what an array represents. This class is similar to `BoundedTensorSpec` in tf agents, except it carries extra information specific to vizier. If `type` is `DOUBLE`, then `dtype` is a floating type, and bounds are floating numbers. num_dimensions is always 1, and num_oovs is zero. If 'type' is `DISCRETE`, then `dtype` is an integer type, and bounds are integers. num_dimensions is always 1. Suppose `bounds=(x,y)`. Then integers x to (y-num_oovs) correspond to valid parameter values. The rest represent out-of-vocabulary values. For example, an integer parameter in range (1,3) can be represented by a DISCRETE NumpyArraySpec with bounds=(1,4) and oov=1. If 'type' is `ONEHOT_EMBEDDING`, then `dtype` is a floating type, and bounds are floating numbers. Suppose num_dimensions is X. Attributes: type: Underlying type of the Vizier parameter corresponding to the array. dtype: Numpy array's type. bounds: Always inclusive in both directions. num_dimensions: Corresponds to shape[-1] of the numpy array. When `type` is `ONEHOT_EMBEDDING`, the first X dimensions correspond to valid parameter values. The other dimensions correspond to out-of-vocabulary values. Otherwise, it is simply 1. name: Parameter name. num_oovs: Number of out-of-vocabulary items, for non-continuous type. scale: Scaling of the values. """ type: NumpyArraySpecType dtype: np.dtype bounds: Union[Tuple[float, float], Tuple[int, int]] num_dimensions: int name: str num_oovs: int scale: Optional[pyvizier.ScaleType] = None def __attrs_post_init__(self): object.__setattr__(self, 'bounds', tuple(np.array(self.bounds, dtype=self.dtype))) @classmethod def from_parameter_config( cls, pc: pyvizier.ParameterConfig, type_factory: Callable[ [pyvizier.ParameterConfig], NumpyArraySpecType] = NumpyArraySpecType.default_factory, floating_dtype: np.dtype = np.float32, int_dtype: np.dtype = np.int32, *, pad_oovs: bool = True) -> 'NumpyArraySpec': """Factory function. Args: pc: type_factory: NumpyArraySpecType has `default_factory` and `embedding_factory`. The difference is in how they handle non-continuous parameters. floating_dtype: Dtype of the floating outputs. int_dtype: Dtype of the integer outputs. pad_oovs: If True, pad the out-of-vocabulary dimensions to onehot embedding. Returns: NumpyArraySpec. """ the_type = type_factory(pc) if the_type == NumpyArraySpecType.CONTINUOUS: return NumpyArraySpec( the_type, floating_dtype, bounds=pc.bounds, num_dimensions=1, scale=pc.scale_type, name=pc.name, num_oovs=0) elif the_type == NumpyArraySpecType.DISCRETE: return NumpyArraySpec( the_type, int_dtype, bounds=(0, len(pc.feasible_values)), num_dimensions=1, name=pc.name, num_oovs=1 if pad_oovs else 0) elif the_type == NumpyArraySpecType.ONEHOT_EMBEDDING: return NumpyArraySpec( the_type, floating_dtype, bounds=(0., 1.), num_dimensions=len(pc.feasible_values) + 1, name=pc.name, num_oovs=1 if pad_oovs else 0) raise ValueError(f'Unknown type {type}') def dict_to_array(array_dict: Dict[str, np.ndarray]) -> np.ndarray: r"""Converts a dict of (..., D_i) arrays to a (..., \sum_i D_i) array.""" return np.concatenate(list(array_dict.values()), axis=-1) class DictOf2DArrays(Mapping[str, np.ndarray]): """Dictionary of string to 2D arrays. All arrays share the first dimension, which is at a high level, the number of objects that this dictionary corresponds to. Attributes: size: Array's shape[0]. """ def __init__(self, d: Dict[str, np.ndarray]): self._d = d shape = None for k, v in self.items(): if shape is None: shape = v.shape if len(shape) != 2: raise ValueError(f'{k} has shape {v.shape} which is not length 2.' 'DictOf2DArrays only supports 2D numpy arrays.') if shape[0] != v.shape[0]: raise ValueError( f'{k} has shape {v.shape} which is not equal to {shape}.') self._size = shape[0] def __getitem__(self, key: str) -> np.ndarray: return self._d[key] def __iter__(self) -> Iterator[str]: return iter(self._d) def __len__(self) -> int: return len(self._d) def __add__(self, other: 'DictOf2DArrays') -> 'DictOf2DArrays': if not isinstance(other, DictOf2DArrays): raise ValueError('You can add DictOf2DArrays only.') if len(self) != len(other): # We don't check the keys because it's too slow. raise ValueError('Two arrays have different length!') return DictOf2DArrays( {k: np.concatenate([self[k], other[k]], axis=0) for k in self}) @property def size(self) -> int: return self._size def asarray(self) -> np.ndarray: return dict_to_array(self._d) def dict_like(self, array: np.ndarray) -> 'DictOf2DArrays': """[Experimental] Converts an array into a dict with the same keys as this. This function acts like an inverse of `asarray()`, i.e. it satisfies `self.dict_like(self.asarray()) == self`. Example: d = DictOf2DArrays({'p1': [[1], [2], [3]], 'p2': [[4], [5], [6]]}) d.dict_like([[1, 2], [3, 4]]) == {'p1': [[1], [3]], 'p2': [[2],[4]]} Args: array: Returns: DictOf2DArrays with the same shape spec as this. """ begin = 0 new_dict = dict() for k, v in self.items(): end = begin + v.shape[1] new_dict[k] = array[:, begin:end].astype(v.dtype) begin = end return DictOf2DArrays(new_dict) class TrialToNumpyDict(abc.ABC): """Parses a sequence of Trials to a dict keyed by parameter and metric names. A typical Keras/JAX pipeline consists of: 1. Load data into arrays. 2. Call Model.build() to initialize a model for the loaded data shape. 3. Call Model.fit() to train the model. 4. Call Model.__call__() to predict with the model. This abstraction allows a shared implementation of steps 1,2 and 3. """ @abc.abstractmethod def to_xy( self, trials: Sequence[pyvizier.Trial] ) -> Tuple[Dict[str, np.ndarray], Dict[str, np.ndarray]]: """Returns (x,y) pair that can be used as input for keras.Model.fit().""" pass @property @abc.abstractmethod def features_shape(self) -> Dict[str, Sequence[Union[int, None]]]: """Returned value can be used as `input_shape` for keras.Model.build().""" pass @property @abc.abstractmethod def output_specs(self) -> Dict[str, NumpyArraySpec]: """Same keys as features_shape, with more details.""" pass @property @abc.abstractmethod def labels_shape(self) -> Dict[str, Any]: pass @property @abc.abstractmethod def metric_information(self) -> Dict[str, pyvizier.MetricInformation]: pass class ModelInputConverter(metaclass=abc.ABCMeta): """Interface for extracting inputs to the model.""" @abc.abstractmethod def convert(self, trials: Sequence[pyvizier.Trial]) -> np.ndarray: """Returns an array of shape (number of trials, feature dimension). Args: trials: Returns: Returns an array of shape (number of trials, feature dimension). Subclasses must use a fixed feature dimension. In particular, it should be a constant function of the input trials. """ pass @property @abc.abstractmethod def output_spec(self) -> NumpyArraySpec: """Provides specification of the output from this converter.""" pass @property @abc.abstractmethod def parameter_config(self): """Original ParameterConfig that this converter acts on.""" pass @abc.abstractmethod def to_parameter_values( self, array: np.ndarray) -> List[Optional[pyvizier.ParameterValue]]: """Convert to parameter values.""" pass @dataclasses.dataclass class _ModelInputArrayBijector: """Transformations on the numpy arrays generated by ModelInputConverter.""" forward_fn: Callable[[np.ndarray], np.ndarray] backward_fn: Callable[[np.ndarray], np.ndarray] output_spec: NumpyArraySpec # Spec after forward_fn is applied. @classmethod def identity(cls, spec) -> '_ModelInputArrayBijector': return cls(lambda x: x, lambda x: x, spec) @classmethod def scaler_from_spec(cls, spec: NumpyArraySpec) -> '_ModelInputArrayBijector': """For continuous specs, linearize and scale it to (0, 1) range.""" low, high = spec.bounds if spec.type != NumpyArraySpecType.CONTINUOUS: return cls.identity(attr.evolve(spec, scale=None)) if low == high: def backward_fn(y): return np.where(np.isfinite(y), np.zeros_like(y) + low, y) return cls(lambda x: np.where(np.isfinite(x), np.zeros_like(x), x), backward_fn, attr.evolve(spec, bounds=(.0, 1.), scale=None)) if spec.scale == pyvizier.ScaleType.LOG: low, high = np.log(low), np.log(high) denom = (high - low) or 1.0 if denom < 1e-6: logging.warning('Unusually small range detected for %s', spec) scale_fn = lambda x, high=high, low=low: (np.log(x) - low) / (high - low) unscale_fn = lambda x, high=high, low=low: np.exp(x * (high - low) + low) else: if not (spec.scale == pyvizier.ScaleType.LINEAR or spec.scale is None): logging.warning('Unknown scale type %s. Applying LINEAR', spec.scale) denom = (high - low) if denom < 1e-6: logging.warning('Unusually small range detected for %s', spec) if denom == 1.0 and low == 0: return cls.identity(attr.evolve(spec, scale=None)) scale_fn = lambda x, high=high, low=low: (x - low) / (high - low) unscale_fn = lambda x, high=high, low=low: x * (high - low) + low return cls(scale_fn, unscale_fn, attr.evolve(spec, bounds=(.0, .1), scale=None)) @classmethod def onehot_embedder_from_spec(cls, spec: NumpyArraySpec, *, dtype=np.float32, pad_oovs: bool = True ) -> '_ModelInputArrayBijector': """Given a discrete spec, one-hot embeds it.""" if spec.type != NumpyArraySpecType.DISCRETE: return cls.identity(spec) num_oovs = 1 if pad_oovs else 0 output_spec = NumpyArraySpec( NumpyArraySpecType.ONEHOT_EMBEDDING, dtype, bounds=(0., 1.), num_dimensions=int(spec.bounds[1] - spec.bounds[0] + num_oovs), name=spec.name, num_oovs=num_oovs, scale=None) def embed_fn(x: np.ndarray, output_spec=output_spec): """x is integer array of [N, 1].""" return np.eye( output_spec.num_dimensions, dtype=output_spec.dtype)[x.flatten()] def unembed_fn(x: np.ndarray, spec=spec, output_spec=output_spec): return np.argmax( x[:, :output_spec.num_dimensions - output_spec.num_oovs], axis=1).astype(spec.dtype) return cls(embed_fn, unembed_fn, output_spec) def _create_default_getter( pconfig: pyvizier.ParameterConfig) -> Callable[[pyvizier.Trial], Any]: """Create a default getter for the given parameter config.""" def getter(trial, pconfig=pconfig): if pconfig.name not in trial.parameters: return None pvalue = trial.parameters[pconfig.name] if pconfig.type == pyvizier.ParameterType.DOUBLE: return pvalue.as_float elif pconfig.type == pyvizier.ParameterType.DISCRETE: return pvalue.as_float elif pconfig.type == pyvizier.ParameterType.INTEGER: return pvalue.as_int else: return pvalue.as_str return getter class DefaultModelInputConverter(ModelInputConverter): """Converts trials into a (None, 1) array corresponding to a parameter. If the parameter_config is continuous, values obtained from `getter()` are directly returned as floating numbers. Otherwise, this converter returns the index of the value obtained from `getter()` within `parameter_config.feasible_points` as int32. """ def __init__(self, parameter_config: pyvizier.ParameterConfig, getter: Optional[Callable[[pyvizier.Trial], Any]] = None, *, float_dtype: np.dtype = np.float32, max_discrete_indices: int = 10, scale: bool = False, onehot_embed: bool = False, converts_to_parameter: bool = True, pad_oovs: bool = True): """Init. Given B trials, convert() always converts to (B, 1) array. The returned array may contain NaNs. Args: parameter_config: getter: See class pydoc. If the getter is not specified, the default getter looks up `parameter_config.name` inside `Trial.parameters`. float_dtype: floating precision to be used. max_discrete_indices: If the parameter config has more than this many number of DISCRETE/INTEGER feasible points, then the parameter config is continuified first. scale: onehot_embed: converts_to_parameter: If False, this converter does not correspodn to an actual parameter in Vizier search space, and `to_parameter_value` always returns None pad_oovs: If True, pad the out-of-vocabulary dimensions to onehot embedding. """ self._converts_to_parameter = converts_to_parameter self._parameter_config = copy.deepcopy(parameter_config) if parameter_config.type in ( pyvizier.ParameterType.INTEGER, pyvizier.ParameterType.DISCRETE ) and parameter_config.num_feasible_values > max_discrete_indices: parameter_config = parameter_config.continuify() # TODO: Make the default getter raise an Error if they encounter an # out-of-vocabulary value but pad_oovs is False. self._getter = getter or _create_default_getter(parameter_config) # Getter spec can only have DISCRETE or CONTINUOUS types. self._getter_spec = NumpyArraySpec.from_parameter_config( parameter_config, NumpyArraySpecType.default_factory, floating_dtype=float_dtype) # Optionally scale and onehot embed. spec = self._getter_spec self.scaler = ( _ModelInputArrayBijector.scaler_from_spec(spec) if scale else _ModelInputArrayBijector.identity(spec)) spec = self.scaler.output_spec self.onehot_encoder = ( _ModelInputArrayBijector.onehot_embedder_from_spec( spec, dtype=float_dtype, pad_oovs=pad_oovs) if onehot_embed else _ModelInputArrayBijector.identity(spec)) spec = self.onehot_encoder.output_spec self._output_spec = spec def convert(self, trials: Sequence[pyvizier.Trial]) -> np.ndarray: """Returns an array of shape [len(trials), output_spec.num_dimensions]. Args: trials: Returns: For each `trial`, if `self.getter(trial)` returns `None`, we _impute_ the value; otherwise, we _extract_ the value. If `self.parameter_config.type` is `DOUBLE`, then * EXTRACT: Directly use the getter's return value as float. * IMPUTE: Return `nan`. Otherwise, * EXTRACT: Returns the integer index of the getter's return value within feasible values. * IMPUTE: Returns `len(feasible_values)`. """ if not trials: return np.zeros([0, self.output_spec.num_dimensions], dtype=self.output_spec.dtype) value_converter = ( self._convert_index if self._getter_spec.type == NumpyArraySpecType.DISCRETE else self._convert_continuous) values = [value_converter(t) for t in trials] array =
np.asarray(values, dtype=self._getter_spec.dtype)
numpy.asarray
""" Module for building the structural model <EMAIL> v. 2017-12-17 """ import numpy as np import numpy.matlib ######################################################################## def masMat(nDof,inpMas,fixDof): """ Returns structural lumped mass matrix. Input: - nDof: number of active DOFs - inpMas: list with the lumped masses - fixDof: list of active DOFs Output: - M_m: structural mass matrix """ M_m = np.matlib.zeros((nDof,nDof)) for masNod in inpMas: nod = masNod[0] dof = np.sum(fixDof[0:nod][:]) j = 1 for act in fixDof[nod][:]: M_m[dof,dof] = masNod[j] dof+=act j+=1 return M_m ######################################################################## def stiMat(nDof,strEle,mesDat,eltPro,fixDof): """ Assemble and returns structural stiffness matrix. ------- Inputs: strEle: for each element [node I, node J, type] mesDat: for each element [length, cos, sin] eltPro: for each elemet type [material properties] - type 0 (beam): [matE,secA,secIy] - type 1 (connection): [secMpl] matE: material elastic modulus secA: element section area secIy: section moment of inertia about its centroid axis secMpl: section plastic moment ------- Output: K_m: structural stiffness matrix """ # initialize # Note: in FE programs, matrices are not stored like below (zeros are not stored); here # this is just for illustration K_m = np.matlib.zeros((nDof,nDof)) # loop over the elements eNum = 0 for elt in strEle: nodI = elt[0] # node numbers nodJ = elt[1] eltTyp = elt[2] # element type secTyp = elt[3] # section type # build element stiffness matrix in local coord. system if eltTyp == 0: # element of type 0 (beam/column) eltL = mesDat[eNum][0] matE = eltPro[secTyp][0] secA = eltPro[secTyp][1] secI = eltPro[secTyp][2] KeLoc_m = beaSti_EB_2D_loc(matE,secA,eltL,secI) elif eltTyp == 1: # rigid rotational spring secMpl = eltPro[eltTyp][0] # d_a1 = np.concatenate(dis_v[I:I+3], dis_v[J:J+3]) # KeLoc_a2 = strMod.rigRotSpr_2D_loc(E,A,Lf,I,My,d_a1) -> To be developed for NL response KeLoc_m = rigRotSprSti(secMpl) # transform to global coordinate system cos = mesDat[eNum][1] sin = mesDat[eNum][2] R_m = glo2loc_2D(cos,sin) KeGlo_m =
np.transpose(R_m)
numpy.transpose
from __future__ import print_function import os import sqlite3 import healpy as hp import numpy as np import pickle as pk from plancklens.helpers import mpi from plancklens import utils class rng_db: """ Class to save and read random number generators states in a sqlite database file. """ def __init__(self, fname, idtype="INTEGER"): if not os.path.exists(fname) and mpi.rank == 0: con = sqlite3.connect(fname, detect_types=sqlite3.PARSE_DECLTYPES, timeout=3600) cur = con.cursor() cur.execute("create table rngdb (id %s PRIMARY KEY, " "type STRING, pos INTEGER, has_gauss INTEGER,cached_gaussian REAL, keys STRING)" % idtype) con.commit() mpi.barrier() self.con = sqlite3.connect(fname, timeout=3600., detect_types=sqlite3.PARSE_DECLTYPES) def add(self, idx, state): try: assert (self.get(idx) is None) keys_string = '_'.join(str(s) for s in state[1]) self.con.execute("INSERT INTO rngdb (id, type, pos, has_gauss, cached_gaussian, keys) VALUES (?,?,?,?,?,?)", (idx, state[0], state[2], state[3], state[4], keys_string)) self.con.commit() except: print("rng_db::rngdb add failed!") def get(self, idx): cur = self.con.cursor() cur.execute("SELECT type, pos, has_gauss, cached_gaussian, keys FROM rngdb WHERE id=?", (idx,)) data = cur.fetchone() cur.close() if data is None: return None else: assert (len(data) == 5) typ, pos, has_gauss, cached_gaussian, keys = data keys = np.array([int(a) for a in keys.split('_')], dtype=np.uint32) return [typ, keys, pos, has_gauss, cached_gaussian] def delete(self, idx): try: if self.get(idx) is None: return self.con.execute("DELETE FROM rngdb WHERE id=?", (idx,)) self.con.commit() except: print("rng_db::rngdb delete %s failed!" % idx) class sim_lib(object): """Generic class for simulations where only rng state is stored. np.random rng states are stored in a sqlite3 database. By default the rng state function is np.random.get_state. The rng_db class is tuned for this state fct, you may need to adapt this. """ def __init__(self, lib_dir, get_state_func=np.random.get_state, nsims_max=None): if not os.path.exists(lib_dir) and mpi.rank == 0: os.makedirs(lib_dir) self.nmax = nsims_max fn_hash = os.path.join(lib_dir, 'sim_hash.pk') if mpi.rank == 0 and not os.path.exists(fn_hash): pk.dump(self.hashdict(), open(fn_hash, 'wb'), protocol=2) mpi.barrier() hsh = pk.load(open(fn_hash, 'rb')) utils.hash_check(hsh, self.hashdict(), ignore=['lib_dir']) self._rng_db = rng_db(os.path.join(lib_dir, 'rngdb.db'), idtype='INTEGER') self._get_rng_state = get_state_func def get_sim(self, idx, **kwargs): """Returns sim number idx and caches random number generator state. """ if self.has_nmax(): assert idx < self.nmax if not self.is_stored(idx): self._rng_db.add(idx, self._get_rng_state()) return self._build_sim_from_rng(self._rng_db.get(idx), **kwargs) def has_nmax(self): return not self.nmax is None def is_stored(self, idx): """Checks whether sim idx is stored or not. Boolean output. """ return not self._rng_db.get(idx) is None def is_full(self): """Checks whether all sims are stored or not. Boolean output. """ if not self.has_nmax(): return False for idx in range(self.nmax): if not self.is_stored(idx): return False return True def is_empty(self): """Checks whether any sims is stored. Boolean output. """ assert self.nmax is not None for idx in range(self.nmax): if self.is_stored(idx): return False return True def hashdict(self): """Override this """ assert 0 def _build_sim_from_rng(self, rng_state): """Override this """ assert 0 class _pix_lib_phas(sim_lib): def __init__(self, lib_dir, shape, **kwargs): self.shape = shape super(_pix_lib_phas, self).__init__(lib_dir, **kwargs) def _build_sim_from_rng(self, rng_state, **kwargs): np.random.set_state(rng_state) return
np.random.standard_normal(self.shape)
numpy.random.standard_normal
from pymatgen.io.vasp.outputs import Chgcar from pymatgen.io.vasp.inputs import Poscar from pymatgen.core.periodic_table import Element from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.core.operations import SymmOp import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from matplotlib.colors import Normalize import numpy as np from scipy.ndimage import gaussian_filter import matplotlib.patheffects as pa import copy as copy from vaspvis.utils import make_supercell, group_layers from ase.data.colors import jmol_colors from sklearn.neighbors import radius_neighbors_graph import os import time class STM: """ This class contains all the methods for generating STM images with VASP """ def __init__( self, folder, ): self.folder = folder self.preloaded_data = os.path.isfile(os.path.join(folder, 'parchg.npy')) self.poscar = Poscar.from_file( os.path.join(folder, 'POSCAR'), check_for_POTCAR=False, read_velocities=False ) self.data, self.a_vals, self.b_vals, self.c_vals = self._load_parchg() [self.bottom_surface, self.bottom_ind, self.top_surface, self.top_ind] = self._get_surface_heights() self.X = None self.Y = None self.Z = None self.x_shift = None self.y_shift = None def _load_parchg(self): if self.preloaded_data: with open(os.path.join(self.folder, 'parchg.npy'), 'rb') as p: data = np.load(p) else: parchg = Chgcar.from_file(os.path.join(self.folder, 'PARCHG')) data = parchg.data['total'] np.save(os.path.join(self.folder, 'parchg.npy'), data) a_vals = np.linspace(0,1,data.shape[0]) b_vals = np.linspace(0,1,data.shape[1]) c_vals = np.linspace(0,1,data.shape[2]) return data, a_vals, b_vals, c_vals def _get_surface_heights(self): bottom_surface = self.poscar.structure.frac_coords[:,-1].min() top_surface = self.poscar.structure.frac_coords[:,-1].max() bottom_ind = np.argmin((self.c_vals - bottom_surface)**2) top_ind = np.argmin((self.c_vals - top_surface)**2) return bottom_surface, bottom_ind, top_surface, top_ind def _interp(self, x, x1, x2, y1, y2): return y1 + (((y2 - y1) / (x2 - x1)) * (x - x1)) def _rotate_structure(self, structure, angle): copy_structure = copy.copy(structure) angle = angle * (np.pi / 180) operation = SymmOp.from_rotation_and_translation( rotation_matrix=np.array([ [np.cos(angle), -np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0,0,1], ]), translation_vec=[0,0,0], ) copy_structure.apply_operation(operation, fractional=False) return copy_structure def _get_constant_current_isosurface(self, current, sigma=6, top=True): slab_middle_ind = int((self.top_ind + self.bottom_ind) / 2) cell_middle_ind = int(self.data.shape[-1] / 2) shift = cell_middle_ind - slab_middle_ind init_shape = self.data.shape[:2] shifted_slab = np.roll( self.data, shift, axis=2, ) c_vals = self.c_vals c_vals_extended = np.hstack([c_vals[:-1] - 1, c_vals, c_vals[1:] + 1]) shifted_cvals = np.roll( c_vals_extended, shift, ) shifted_cvals = shifted_cvals[len(c_vals)-1:(2*len(c_vals))-1] if top: shifted_slab = shifted_slab[:,:,self.top_ind+shift:] shifted_cvals = shifted_cvals[self.top_ind+shift:] else: shifted_slab = shifted_slab[:,:,:self.bottom_ind+shift] shifted_cvals = shifted_cvals[:self.bottom_ind+shift] if top: heights = np.zeros(shifted_slab.shape[:2]) inds = np.zeros(shifted_slab.shape[:2], dtype=bool) for i in range(0, shifted_slab.shape[-1]-1)[::-1]: points = inds < (shifted_slab[:,:,i] > current) x1 = shifted_slab[points, i] x2 = shifted_slab[points, i+1] y1 = shifted_cvals[i] y2 = shifted_cvals[i+1] heights[points] = self._interp( x=current, x1=x1, x2=x2, y1=y1, y2=y2, ) inds[points] = True heights[heights <= self.top_surface] = heights[heights > self.top_surface].min() else: heights = np.zeros(shifted_slab.shape[:2]) inds = np.zeros(shifted_slab.shape[:2], dtype=bool) for i in range(1, shifted_slab.shape[-1]): points = inds < (shifted_slab[:,:,i] > current) x1 = shifted_slab[points, i-1] x2 = shifted_slab[points, i] y1 = shifted_cvals[i-1] y2 = shifted_cvals[i] heights[points] = self._interp( x=current, x1=x1, x2=x2, y1=y1, y2=y2, ) inds[points] = True heights[heights >= self.top_surface] = heights[heights < self.top_surface].min() return heights def _generate_supercell(self, x, y, Z, scaling_matrix=[8,8]): x = np.concatenate([x + i for i in range(scaling_matrix[0])]) y = np.concatenate([y + i for i in range(scaling_matrix[1])]) Z = np.hstack([ np.vstack([Z for _ in range(scaling_matrix[0])]) for _ in range(scaling_matrix[1]) ]) return x, y, Z def _get_intercept(self, midpoint, vector): if vector[0] == 0: intersect = [0, midpoint[1]] else: slope = vector[1] / vector[0] f = ((slope * midpoint[1]) + midpoint[0])/ ((slope**2) + 1) intersect = [f, slope * f] return intersect def _get_ratio(self, a, b): a_norm = np.linalg.norm(a) b_norm = np.linalg.norm(b) ratio_array = np.ones(2) min_ind = np.argmin([a_norm, b_norm]) ratio = np.max([a_norm, b_norm]) / np.min([a_norm, b_norm]) ratio_array[min_ind] = ratio return ratio_array def _get_square(self, a, b): midpoint = 0.5 * (a + b) a_inter = self._get_intercept(midpoint, a) b_inter = self._get_intercept(midpoint, b) a_len = np.linalg.norm(a_inter - midpoint) b_len = np.linalg.norm(b_inter - midpoint) r = np.min([a_len, b_len]) box_length = (2 * r) / np.sqrt(2) return box_length, midpoint def _get_scaling_matrix(self, a, b, scan_size=40): final_box_length = 0 final_midpoint = np.zeros(2) ratio = self._get_ratio(a, b) scaling_matrix =
np.ones(2)
numpy.ones
# Dynamic Neural Field simulation # Copyright (c) 2017 <NAME> ''' Dynamic neural field ==================== This script implements the numerical integration of dynamic neural field of the form: ∂U(x,t) ⌠+∞ τ ------- = -U(x,t) + ⎮ w(|x-y|).f(U(y,t)).dy + I(x,t) + h ∂t ⌡-∞ where U(x,t) is the potential of a neural population at position x and time t W(d) is a neighborhood function from ℝ⁺ → ℝ f(x) is the firing rate of a single neuron from ℝ → ℝ I(x,t) is the input at position x and time t h is the resting potential τ is the temporal decay of the synapse References: http://www.scholarpedia.org/article/Neural_fields ''' import numpy as np import scipy.linalg from scipy.ndimage.filters import convolve def gaussian(n=40, center=(0,0), sigma=0.1): xmin, xmax = -1, +1 ymin, ymax = -1, +1 x0, y0 = center X, Y = np.meshgrid(np.linspace(xmin-x0, xmax-x0, n, endpoint=True), np.linspace(ymin-y0, ymax-y0, n, endpoint=True)) D = X*X+Y*Y return np.exp(-0.5*D/sigma**2) def convolve1d( Z, K ): # return convolve(Z, K, mode='constant') R = np.convolve(Z, K, 'same') i0 = 0 if R.shape[0] > Z.shape[0]: i0 = (R.shape[0]-Z.shape[0])//2 + 1 - Z.shape[0]%2 i1 = i0 + Z.shape[0] return R[i0:i1] def convolve2d(Z, K, USV = None): epsilon = 1e-9 if USV is None: U,S,V = scipy.linalg.svd(K) U,S,V = U.astype(K.dtype), S.astype(K.dtype), V.astype(K.dtype) else: U,S,V = USV n = (S > epsilon).sum() R =
np.zeros(Z.shape)
numpy.zeros
# # Last modified on Thu Jan 31 10:27:11 PST 2002 by lindy # # $Header: /opt/cvs/python/packages/share1.5/mglutil/math/rmsdtest.py,v 1.4.12.1 2016/02/11 23:15:05 annao Exp $ # """Unit test for rmsd.py Requirements for rmsd: A. RMSDCalculator.__init__ 0. should .. B. RMSDCalculator.setRefCoords 0. should .. C. RMSDCalculator.computeRMSD 1. should return known result with known input 2. raise ValueError for input of unlike dimensions 3. for two random sets of points, rmsd(x,y) == rmsd(y,x) 4. raise ValueError if the reference coords have not been set D. """ from mglutil.math import rmsd import unittest, math import numpy from numpy import random as RandomArray class ComputedValues(unittest.TestCase): decimals = 4 # decimal places to round to for float comparison point_list_0 = numpy.zeros((5,3)) point_list_1 = numpy.ones( (5,3)) knowValues = ( (point_list_0, point_list_0, 0.0), (point_list_1, point_list_1, 0.0), (point_list_0, point_list_1, math.sqrt(3.0)), (point_list_1, point_list_0, math.sqrt(3.0))) def test_computeRMSD_KnowValues(self): """1. should return known result with known input""" for ref, input, known in self.knowValues: self.assertEqual(known, rmsd.RMSDCalculator(ref).computeRMSD(input)) def test_computeRMSD_RandomOffset(self): """5. offset point by random value returns offset*sqrt(3)""" min = -10000. max = 10000. num_points = 20 dimension = 3 point_list_1 = RandomArray.uniform(min, max, (num_points, dimension)) delta = point_list_1[0][0] point_list_2 = point_list_1 + delta answer = rmsd.RMSDCalculator(point_list_1).computeRMSD(point_list_2) self.assertEqual( round(answer, self.decimals), round(abs(delta)*math.sqrt(3.0), self.decimals)) def test_computeRMSD_Random(self): """3. for two random sets of points, rmsd(x,y) == rmsd(y,x)""" min = -10000. max = 10000. num_points = 20 dimension = 3 point_list_1 = RandomArray.uniform(min, max, (num_points, dimension)) point_list_2 = RandomArray.uniform(min, max, (num_points, dimension)) self.assertEqual( rmsd.RMSDCalculator(point_list_1).computeRMSD(point_list_2), rmsd.RMSDCalculator(point_list_2).computeRMSD(point_list_1)) class InputValues(unittest.TestCase): point_list_0 =
numpy.zeros((3,3))
numpy.zeros
from __future__ import print_function import gc, os, sys import numpy as np import scipy as sp import numpy.linalg as la import scipy.linalg as sla from numpy.linalg import norm from time import time from copy import deepcopy from warnings import warn from time import time from Florence.FiniteElements.Assembly import Assemble from Florence import Mesh from Florence.PostProcessing import PostProcess from .StructuralDynamicIntegrator import StructuralDynamicIntegrator __all__ = ["NonlinearImplicitStructuralDynamicIntegrator", "LinearImplicitStructuralDynamicIntegrator"] class NonlinearImplicitStructuralDynamicIntegrator(StructuralDynamicIntegrator): """Implicit dynamic solver for nonlinear problems based on Newmark's beta """ def __init__(self): super(NonlinearImplicitStructuralDynamicIntegrator, self).__init__() self.gamma = 0.5 self.beta = 0.25 def Solver(self, function_spaces, formulation, solver, K, M, NeumannForces, NodalForces, Residual, mesh, TotalDisp, Eulerx, Eulerp, material, boundary_condition, fem_solver): # COMPUTE DAMPING MATRIX BASED ON MASS D = 0.0 if fem_solver.include_physical_damping: D = fem_solver.damping_factor*M # GET BOUNDARY CONDITIONS INFROMATION self.GetBoundaryInfo(mesh, formulation, boundary_condition) if formulation.fields == "electro_mechanics": M_mech = M[self.mechanical_dofs,:][:,self.mechanical_dofs] if fem_solver.include_physical_damping: D_mech = D[self.mechanical_dofs,:][:,self.mechanical_dofs] # INITIALISE VELOCITY AND ACCELERATION velocities = np.zeros((mesh.points.shape[0],formulation.ndim)) accelerations = np.zeros((mesh.points.shape[0],formulation.ndim)) # COMPUTE INITIAL ACCELERATION FOR TIME STEP 0 if NeumannForces.ndim == 2 and NeumannForces.shape[1]>1: InitResidual = Residual - NeumannForces[:,0][:,None] else: InitResidual = Residual if formulation.fields == "electro_mechanics": accelerations[:,:] = solver.Solve(M_mech, -InitResidual[self.mechanical_dofs].ravel() ).reshape(mesh.points.shape[0],formulation.ndim) else: accelerations[:,:] = solver.Solve(M, -InitResidual.ravel() ).reshape(mesh.points.shape[0],formulation.ndim) self.NRConvergence = fem_solver.NRConvergence LoadIncrement = fem_solver.number_of_load_increments LoadFactor = fem_solver.total_time/LoadIncrement AppliedDirichletInc = np.zeros(boundary_condition.applied_dirichlet.shape[0],dtype=np.float64) save_counter = 1 nincr_last = float(LoadIncrement-1) if LoadIncrement !=1 else 1 if boundary_condition.compound_dirichlet_bcs: ChangedTotalDisp = np.zeros((mesh.nnode, formulation.nvar)) # TIME LOOP for Increment in range(1,LoadIncrement): t_increment = time() # GET INCREMENTAL DIRICHLET BC if not boundary_condition.has_step_wise_dirichlet_loading: if boundary_condition.applied_dirichlet.ndim == 2: AppliedDirichletInc = boundary_condition.applied_dirichlet[:,Increment] else: if boundary_condition.make_loading == "ramp": AppliedDirichletInc = boundary_condition.applied_dirichlet*(1.*Increment/LoadIncrement) else: AppliedDirichletInc = boundary_condition.applied_dirichlet/nincr_last else: boundary_condition.ApplyStepWiseDirichletFunc(formulation, mesh, increment=Increment) self.GetBoundaryInfo(mesh, formulation, boundary_condition, increment=Increment) AppliedDirichletInc = boundary_condition.applied_dirichlet if self.bc_changed_at_this_step and boundary_condition.compound_dirichlet_bcs: ChangedTotalDisp += np.copy(U) # GET INCREMENTAL NEUMANN DIRICHLET BC if not boundary_condition.has_step_wise_neumann_loading: if NeumannForces.ndim == 2 and NeumannForces.shape[1]>1: NodalForces = NeumannForces[:,Increment][:,None] else: if boundary_condition.make_loading == "ramp": NodalForces = NeumannForces*(1.*Increment/LoadIncrement) else: NodalForces = NeumannForces/nincr_last else: NodalForces = boundary_condition.ApplyStepWiseNeumannFunc(formulation, mesh, material, increment=Increment) NodalForces = NodalForces.ravel()[:,None] # OBRTAIN INCREMENTAL RESIDUAL - CONTRIBUTION FROM BOTH NEUMANN AND DIRICHLET # OLD WAY - RESIDUAL WAS GETTING CARRIED OVER FROM PREV NR STEP BUT AT THIS # POINT IT WAS TINY (AS NR HAD CONVERGED) THAT IT DIDN'T MATTER AND WORKED AS EXPECTED # Residual = -boundary_condition.ApplyDirichletGetReducedMatrices(K,Residual, # AppliedDirichletInc,LoadFactor=1.0,mass=M,only_residual=True) # ACTUAL WAY Residual = -boundary_condition.ApplyDirichletGetReducedMatrices(K,np.zeros_like(Residual), AppliedDirichletInc,LoadFactor=1.0,mass=M,only_residual=True) Residual -= NodalForces # COMPUTE INITIAL ACCELERATION - ONLY NEEDED IN CASES OF PRESTRETCHED CONFIGURATIONS # accelerations[:,:] = solver.Solve(M, Residual.ravel() - \ # K.dot(TotalDisp[:,:,Increment].ravel())).reshape(mesh.points.shape[0],formulation.nvar) # LET NORM OF THE FIRST RESIDUAL BE THE NORM WITH RESPECT TO WHICH WE # HAVE TO CHECK THE CONVERGENCE OF NEWTON RAPHSON. TYPICALLY THIS IS # NORM OF NODAL FORCES if Increment==1: self.NormForces = np.linalg.norm(Residual) # AVOID DIVISION BY ZERO if np.isclose(self.NormForces,0.0): self.NormForces = 1e-14 self.norm_residual = np.linalg.norm(Residual)/self.NormForces Eulerx, Eulerp, K, Residual, velocities, accelerations = self.NewtonRaphson(function_spaces, formulation, solver, Increment, K, D, M, NodalForces, Residual, mesh, Eulerx, Eulerp, material,boundary_condition,AppliedDirichletInc, fem_solver, velocities, accelerations) # UPDATE DISPLACEMENTS FOR THE CURRENT LOAD INCREMENT U = np.zeros((mesh.points.shape[0], formulation.nvar)) U[:,:formulation.ndim] = Eulerx - mesh.points if formulation.fields == "electro_mechanics": U[:,-1] = Eulerp # SAVE RESULTS if Increment % fem_solver.save_frequency == 0 or\ (Increment == LoadIncrement - 1 and save_counter<TotalDisp.shape[2]): TotalDisp[:,:,save_counter] = U if boundary_condition.compound_dirichlet_bcs: TotalDisp[:,:,save_counter] += ChangedTotalDisp save_counter += 1 # COMPUTE DISSIPATION OF ENERGY THROUGH TIME if fem_solver.compute_energy_dissipation: energy_info = self.ComputeEnergyDissipation(function_spaces[0], mesh, material, formulation, fem_solver, Eulerx, U, NodalForces, M, velocities) formulation.energy_dissipation.append(energy_info[0]) formulation.internal_energy.append(energy_info[1]) formulation.kinetic_energy.append(energy_info[2]) formulation.external_energy.append(energy_info[3]) # COMPUTE DISSIPATION OF LINEAR MOMENTUM THROUGH TIME if fem_solver.compute_linear_momentum_dissipation: power_info = self.ComputePowerDissipation(function_spaces[0], mesh, material, formulation, fem_solver, Eulerx, U, NodalForces, M, velocities, accelerations) formulation.power_dissipation.append(power_info[0]) formulation.internal_power.append(power_info[1]) formulation.kinetic_power.append(power_info[2]) formulation.external_power.append(power_info[3]) # LOG IF ASKED FOR self.LogSave(fem_solver, formulation, U[:,:formulation.ndim], Eulerp, Increment) print('\nFinished Load increment', Increment, 'in', time()-t_increment, 'seconds') try: print('Norm of Residual is', np.abs(la.norm(Residual[boundary_condition.columns_in])/self.NormForces), '\n') except RuntimeWarning: print("Invalid value encountered in norm of Newton-Raphson residual") # STORE THE INFORMATION IF NEWTON-RAPHSON FAILS if fem_solver.newton_raphson_failed_to_converge: solver.condA = np.NAN TotalDisp = TotalDisp[:,:,:save_counter-1] fem_solver.number_of_load_increments = save_counter - 1 break # BREAK AT A SPECIFICED LOAD INCREMENT IF ASKED FOR if fem_solver.break_at_increment != -1 and fem_solver.break_at_increment is not None: if fem_solver.break_at_increment == Increment: if fem_solver.break_at_increment < LoadIncrement - 1: print("\nStopping at increment {} as specified\n\n".format(Increment)) TotalDisp = TotalDisp[:,:,:save_counter] fem_solver.number_of_load_increments = save_counter break if fem_solver.save_frequency != 1: if TotalDisp.shape[2] > save_counter: # IN CASE SOLVER BLEW UP TotalDisp = TotalDisp[:,:,:save_counter] fem_solver.number_of_load_increments = TotalDisp.shape[2] else: fem_solver.number_of_load_increments = save_counter return TotalDisp def NewtonRaphson(self, function_spaces, formulation, solver, Increment, K, D, M, NodalForces, Residual, mesh, Eulerx, Eulerp, material, boundary_condition, AppliedDirichletInc, fem_solver, velocities, accelerations): Tolerance = fem_solver.newton_raphson_tolerance LoadIncrement = fem_solver.number_of_load_increments LoadFactor = fem_solver.total_time/fem_solver.number_of_load_increments Iter = 0 self.iterative_norm_history = [] # EulerxPrev = np.copy(Eulerx) # EulerVPrev = np.copy(velocities[:,:,Increment-1]) # EulerAPrev = np.copy(accelerations[:,:,Increment-1]) # PREDICTOR STEP tmpV = (1. - self.gamma/self.beta)*velocities + (1. - self.gamma/2./self.beta)*LoadFactor*accelerations tmpA = (-1./self.beta/LoadFactor)*velocities - (1./2./self.beta)*(1.- 2.*self.beta)*accelerations velocities = tmpV accelerations = tmpA if formulation.fields == "electro_mechanics": M_mech = M[self.mechanical_dofs,:][:,self.mechanical_dofs] InertiaResidual = np.zeros((Residual.shape[0],1)) InertiaResidual[self.mechanical_dofs,0] = M_mech.dot(accelerations.ravel()) if fem_solver.include_physical_damping: D_mech = D[self.mechanical_dofs,:][:,self.mechanical_dofs] InertiaResidual[self.mechanical_dofs,0] += D_mech.dot(velocities.ravel()) else: InertiaResidual = np.zeros((Residual.shape[0],1)) InertiaResidual[:,0] = M.dot(accelerations.ravel()) if fem_solver.include_physical_damping: InertiaResidual[:,0] += D.dot(velocities.ravel()) Residual[boundary_condition.columns_in] += InertiaResidual[boundary_condition.columns_in] # APPLY INCREMENTAL DIRICHLET PER LOAD STEP (THIS IS INCREMENTAL NOT ACCUMULATIVE) IncDirichlet = boundary_condition.UpdateFixDoFs(AppliedDirichletInc, K.shape[0],formulation.nvar) # UPDATE EULERIAN COORDINATE # Eulerx += IncDirichlet[:,:formulation.ndim] Eulerx[:,:] = mesh.points + IncDirichlet[:,:formulation.ndim] Eulerp[:] = IncDirichlet[:,-1] # ENSURES Eulerp IS CONTIGUOUS - NECESSARY FOR LOW-LEVEL DISPATCHER while np.abs(la.norm(Residual[boundary_condition.columns_in])/self.NormForces) > Tolerance or Iter==0: # GET EFFECTIVE STIFFNESS # K += (1./self.beta/LoadFactor**2)*M K += (self.gamma/self.beta/LoadFactor)*D + (1./self.beta/LoadFactor**2)*M # GET THE REDUCED SYSTEM OF EQUATIONS K_b, F_b, _ = boundary_condition.GetReducedMatrices(K,Residual) # SOLVE THE SYSTEM sol = solver.Solve(K_b,-F_b) # GET ITERATIVE SOLUTION dU = boundary_condition.UpdateFreeDoFs(sol,K.shape[0],formulation.nvar) # UPDATE THE EULERIAN COMPONENTS # UPDATE THE GEOMETRY Eulerx += dU[:,:formulation.ndim] # GET ITERATIVE ELECTRIC POTENTIAL Eulerp += dU[:,-1] # UPDATE VELOCITY AND ACCELERATION velocities += self.gamma/self.beta/LoadFactor*dU[:,:formulation.ndim] accelerations += 1./self.beta/LoadFactor**2*dU[:,:formulation.ndim] # OR ALTERNATIVELY # dumA = 1./self.beta/LoadFactor**2*(Eulerx - EulerxPrev) -\ # 1./self.beta/LoadFactor*(EulerVPrev) -\ # 1./2./self.beta*(1. - 2.*self.beta)*(EulerAPrev) # dumV = (1. - self.gamma/self.beta)*(EulerVPrev) +\ # (1. - self.gamma/2./self.beta)*LoadFactor*(EulerAPrev) +\ # self.gamma/self.beta/LoadFactor*(Eulerx - EulerxPrev) # velocities = dumV # accelerations = dumA # RE-ASSEMBLE - COMPUTE STIFFNESS AND INTERNAL TRACTION FORCES K, TractionForces, _, _ = Assemble(fem_solver,function_spaces[0], formulation, mesh, material, Eulerx, Eulerp) # FIND INITIAL RESIDUAL if formulation.fields == "electro_mechanics": InertiaResidual = np.zeros((TractionForces.shape[0],1)) InertiaResidual[self.mechanical_dofs,0] = M_mech.dot(accelerations.ravel()) if fem_solver.include_physical_damping: InertiaResidual[self.mechanical_dofs,0] += D_mech.dot(velocities.ravel()) else: InertiaResidual = np.zeros((TractionForces.shape[0],1)) InertiaResidual[:,0] = M.dot(accelerations.ravel()) if fem_solver.include_physical_damping: InertiaResidual[:,0] += D.dot(velocities.ravel()) # UPDATE RESIDUAL Residual[boundary_condition.columns_in] = TractionForces[boundary_condition.columns_in] \ - NodalForces[boundary_condition.columns_in] + InertiaResidual[boundary_condition.columns_in] # SAVE THE NORM self.abs_norm_residual = la.norm(Residual[boundary_condition.columns_in]) if Iter==0: self.NormForces = la.norm(Residual[boundary_condition.columns_in]) self.norm_residual = np.abs(la.norm(Residual[boundary_condition.columns_in])/self.NormForces) # SAVE THE NORM self.NRConvergence['Increment_'+str(Increment)] = np.append(self.NRConvergence['Increment_'+str(Increment)],\ self.norm_residual) print("Iteration {} for increment {}.".format(Iter, Increment) +\ " Residual (abs) {0:>16.7g}".format(self.abs_norm_residual), "\t Residual (rel) {0:>16.7g}".format(self.norm_residual)) # BREAK BASED ON RELATIVE NORM if np.abs(self.abs_norm_residual) < Tolerance: break # BREAK BASED ON INCREMENTAL SOLUTION - KEEP IT AFTER UPDATE if norm(dU) <= fem_solver.newton_raphson_solution_tolerance: print("Incremental solution within tolerance i.e. norm(dU): {}".format(norm(dU))) break # UPDATE ITERATION NUMBER Iter +=1 if Iter==fem_solver.maximum_iteration_for_newton_raphson and formulation.fields == "electro_mechanics": raise StopIteration("\n\nNewton Raphson did not converge! Maximum number of iterations reached.") if Iter==fem_solver.maximum_iteration_for_newton_raphson: fem_solver.newton_raphson_failed_to_converge = True break if np.isnan(self.norm_residual) or self.norm_residual>1e06: fem_solver.newton_raphson_failed_to_converge = True break # IF BREAK WHEN NEWTON RAPHSON STAGNATES IS ACTIVATED if fem_solver.break_at_stagnation: self.iterative_norm_history.append(self.norm_residual) if Iter >= 5 and self.abs_norm_residual<1e06: if np.mean(self.iterative_norm_history) < 1.: break # USER DEFINED CRITERIA TO BREAK OUT OF NEWTON-RAPHSON if fem_solver.user_defined_break_func != None: if fem_solver.user_defined_break_func(Increment,Iter,self.norm_residual,self.abs_norm_residual, Tolerance): break # USER DEFINED CRITERIA TO STOP NEWTON-RAPHSON AND THE WHOLE ANALYSIS if fem_solver.user_defined_stop_func != None: if fem_solver.user_defined_stop_func(Increment,Iter,self.norm_residual,self.abs_norm_residual, Tolerance): fem_solver.newton_raphson_failed_to_converge = True break return Eulerx, Eulerp, K, Residual, velocities, accelerations #------------------------------------------ LINEAR IMPLICIT SOLVER ----------------------------------------------# #----------------------------------------------------------------------------------------------------------------# #----------------------------------------------------------------------------------------------------------------# class LinearImplicitStructuralDynamicIntegrator(StructuralDynamicIntegrator): """Implicit dynamic solver for linear problems based on Newmark's beta """ def __init__(self,**kwargs): super(LinearImplicitStructuralDynamicIntegrator, self).__init__() self.lump_rhs = False self.gamma = 0.5 self.beta = 0.25 def Solver(self, function_spaces, formulation, solver, K, M, NeumannForces, NodalForces, Residual, mesh, TotalDisp, Eulerx, Eulerp, material, boundary_condition, fem_solver): # CHECK FORMULATION if formulation.fields != "mechanics" and formulation.fields != "electro_mechanics": raise NotImplementedError("Linear implicit solver for {} is not available".format(formulation.fields)) if formulation.fields == "electro_mechanics": warn("Linear implicit solver for electromechanics formulation is not thoroughly checked and may return incorrect results. " "Please use nonlinear explicit dynamic solver instead") # GET BOUNDARY CONDITIONS INFROMATION self.GetBoundaryInfo(mesh, formulation, boundary_condition) LoadIncrement = fem_solver.number_of_load_increments LoadFactor = fem_solver.total_time/LoadIncrement post_process = PostProcess(formulation.ndim,formulation.nvar) post_process.SetAnalysis(analysis_type=fem_solver.analysis_type, analysis_nature=fem_solver.analysis_nature) if NeumannForces.ndim == 2 and NeumannForces.shape[1]==1: tmp = np.zeros((NeumannForces.shape[0],LoadIncrement)) tmp[:,0] = NeumannForces[:,0] NeumannForces = tmp dU = boundary_condition.UpdateFixDoFs(boundary_condition.applied_dirichlet[:,0], mesh.points.shape[0]*formulation.nvar, formulation.nvar) TotalDisp[:,:formulation.nvar,0] = dU # INITIALISE VELOCITY AND ACCELERATION velocities = np.zeros((mesh.points.shape[0]*formulation.ndim)) accelerations = np.zeros((mesh.points.shape[0]*formulation.ndim)) # COMPUTE DAMPING MATRIX BASED ON MASS D = 0.0 if fem_solver.include_physical_damping: D = fem_solver.damping_factor*M if formulation.fields == "electro_mechanics": M_mech = M[self.mechanical_dofs,:][:,self.mechanical_dofs] if fem_solver.include_physical_damping: D_mech = D[self.mechanical_dofs,:][:,self.mechanical_dofs] else: M_mech = M D_mech = D # COMPUTE INITIAL ACCELERATION FOR TIME STEP 0 Residual = np.zeros_like(Residual) InitResidual = Residual + NeumannForces[:,0][:,None] if formulation.fields == "electro_mechanics": accelerations[:] = solver.Solve(M_mech, -InitResidual[self.mechanical_dofs].ravel()) else: accelerations[:] = solver.Solve(M, InitResidual.ravel() ) # COMPUTE AUGMENTED K (INCLUDES INERTIA EFFECT) K += (self.gamma/self.beta/LoadFactor)*D + (1./self.beta/LoadFactor**2)*M # GET REDUCED VARIABLES K_b, F_b, _ = boundary_condition.GetReducedMatrices(K,Residual) if self.lump_rhs: M_mech = M_mech.sum(axis=1).A.ravel() # FOR CSR # M_mech = M_mech.sum(axis=0).ravel() # FOR CSC if self.include_physical_damping: D_mech = D_mech.sum(axis=1).A.ravel() reuse_factorisation = False if formulation.fields == "electro_mechanics" else True for Increment in range(1,LoadIncrement): t_increment=time() # FIXED INCREMENTAL DIRICHLET AppliedDirichletInc = boundary_condition.applied_dirichlet[:,Increment-1] # APPLY NEUMANN BOUNDARY CONDITIONS DeltaF = NeumannForces[:,Increment][:,None] NodalForces = DeltaF # ACCUMULATED FORCE if fem_solver.include_physical_damping: if self.lump_rhs: Residual[self.mechanical_dofs,0] = (1./self.beta/LoadFactor**2)*M_mech*TotalDisp[:,:formulation.ndim,Increment-1].ravel() +\ (1./self.beta/LoadFactor)*M_mech*velocities + (0.5/self.beta - 1.)*M_mech*accelerations +\ (self.gamma/self.beta/LoadFactor)*D_mech*TotalDisp[:,:formulation.ndim,Increment-1].ravel() +\ (self.gamma/self.beta - 1.)*D_mech*velocities -\ LoadFactor*((1-self.gamma)-self.gamma*(0.5/self.beta - 1.))*D_mech*accelerations else: Residual[self.mechanical_dofs,0] = (1./self.beta/LoadFactor**2)*M_mech.dot(TotalDisp[:,:formulation.ndim,Increment-1].ravel()) +\ (1./self.beta/LoadFactor)*M_mech.dot(velocities) + (0.5/self.beta - 1.)*M_mech.dot(accelerations) +\ (self.gamma/self.beta/LoadFactor)*D_mech.dot(TotalDisp[:,:formulation.ndim,Increment-1].ravel()) +\ (self.gamma/self.beta - 1.)*D_mech.dot(velocities) -\ LoadFactor*((1-self.gamma)-self.gamma*(0.5/self.beta - 1.))*D_mech.dot(accelerations) else: if self.lump_rhs: Residual[self.mechanical_dofs,0] = (1./self.beta/LoadFactor**2)*M_mech*TotalDisp[:,:formulation.ndim,Increment-1].ravel() +\ (1./self.beta/LoadFactor)*M_mech*velocities + (0.5/self.beta - 1.)*M_mech*accelerations else: Residual[self.mechanical_dofs,0] = (1./self.beta/LoadFactor**2)*M_mech.dot(TotalDisp[:,:formulation.ndim,Increment-1].ravel()) +\ (1./self.beta/LoadFactor)*M_mech.dot(velocities) + (0.5/self.beta - 1.)*M_mech.dot(accelerations) Residual += DeltaF if formulation.fields == "electro_mechanics": K = Assemble(fem_solver,function_spaces[0], formulation, mesh, material, Eulerx, Eulerp)[0] K += (self.gamma/self.beta/LoadFactor)*D + (1./self.beta/LoadFactor**2)*M # CHECK CONTACT AND ASSEMBLE IF DETECTED if fem_solver.has_contact: Eulerx = mesh.points + TotalDisp[:,:formulation.ndim,Increment-1] TractionForcesContact =
np.zeros_like(Residual)
numpy.zeros_like
import numpy as np import copy from .math_tools import rpy2Mat import time from itertools import permutations class BasicGraspingPrimitive(): def __init__(self, kinematics, params, object): self.kinematics = kinematics self.params = params self.object = object ## viapoints self.viapoints = None self.goal_target = None # Reference variable ## Variable to measure primitive progress and satisfy self.error = 9999. self.error_matrix = np.ones((3,3))*999. self.d_error = 9999. self.error_thrs = 0.003 self.d_error_thrs = 0.0001 self.v_thrs = 0.0001 self.DEBUG = True def start(self, cube_state, des_cube_state, robot_state): self.viapoints = self.get_grasping_viapoints(cube_state , robot_state) def combinatorial_matching(self, fingers_poses, cube_targets): 'Cube targets is provided as a list of candidates. We wanna find optimal candidate + optimal matching by intensive Search' best_desired_poses = cube_targets[0] best_perm = [0,1,2] d_error = 1000000000 perm = permutations([0,1,2]) for cube_target in cube_targets: for idx in perm: er = np.mean((fingers_poses - cube_target[:,idx])**2) if er< d_error: d_error = er best_desired_poses = cube_target best_perm = idx print(best_perm) return best_desired_poses[:,best_perm], best_perm, best_desired_poses def get_grasping_viapoints(self, cube_state , robot_state, center=True): ## Set State ## cube_pose = cube_state[0] robot_xyz = np.stack(robot_state[2]) x_off = 1.4 pos_f_c = np.array([[x_off,0.,0.],[-x_off,0.5,0.],[-x_off,-0.5,0.],[-x_off,0.,0.],[x_off,-0.5,0.],[x_off,0.5,0.], [0.,0.,x_off],[0.,0.5,-x_off],[0.,-0.5,-x_off],[0.,0.,-x_off],[0.,-0.5,x_off],[0,0.5,x_off]]).T pos_f_w = self.object.in_world(cube_state=cube_state, pos_c = pos_f_c, offset_prop = True) pos_f_candidates = [pos_f_w[:,:3], pos_f_w[:,3:6],pos_f_w[:,6:9], pos_f_w[:,9:]] candidates_clean = [] for candidate in pos_f_candidates: check = np.sum(candidate[2,:]<0.) if check<1: candidates_clean.append(candidate) if len(candidates_clean)>0: self.goal_target, _, __ = self.combinatorial_matching(fingers_poses=robot_xyz, cube_targets=pos_f_candidates) #print('fingers poses in world frame: ', goal_target) #time.sleep(60) return [self.goal_target] def is_satisfied(self, cube_state, des_cube_state, robot_state): robot_state_np = np.stack((robot_state[2][0], robot_state[2][1], robot_state[2][2]), 1) current_error_matrix = (self.goal_target - robot_state_np) ** 2 current_error = np.mean(current_error_matrix) self.d_error = np.abs(self.error - current_error) self.error_matrix = current_error_matrix self.error = current_error if self.DEBUG: print('Current Goal is:', self.goal_target) print('Current Robot State in XYZ is:', robot_state[2]) print('current_error is ', current_error) print('cube state is:', cube_state[2]) return False def compute_goal_pose(self, cube_state, des_cube_state, robot_state): self.viapoints = self.get_grasping_viapoints(cube_state , robot_state) target = self.viapoints[0] #target = np.stack(robot_state[2]) #print('Viapoint is:', target) self.goal_target = target #print(target) return target def grasping_gains(self): pass def unit_vector(self, vector): """ Returns the unit vector of the vector. """ return vector / np.linalg.norm(vector) def skew(self, vector): """ this function returns a numpy array with the skew symmetric cross product matrix for vector. the skew symmetric cross product matrix is defined such that np.cross(a, b) = np.dot(skew(a), b) :param vector: An array like vector to create the skew symmetric cross product matrix for :return: A numpy array of the skew symmetric cross product vector """ return np.array([[0, -vector[2], vector[1]], [vector[2], 0, -vector[0]], [-vector[1], vector[0], 0]]) def assign_y(self, edge_arr, p0, p1, p2, direction): asign1, cent1, dist1 = self.assign_y_internal(edge_arr, p0, p1, p2, direction) asign2, cent2, dist2 = self.assign_y_internal(edge_arr, p0, p2, p1, direction) if (dist1 <= dist2): return asign1, cent1 else: # print ("before" + str(asign2)) asign2[1:] = np.flipud(asign2[1:]) # print("after" + str(asign2)) cent2[1:] = np.flipud(cent2[1:]) return asign2, cent2 def assign_y_internal(self, edge_arr, p0, p1, p2, direction): max_dist = 1 add_grasp1 = max_dist - 1 add_grasp2 = max_dist + 1 if (add_grasp1 > 3): add_grasp1 = 0 if (add_grasp1 < 0): add_grasp1 = 3 if (add_grasp2 > 3): add_grasp2 = 0 if (add_grasp2 < 0): add_grasp2 = 3 pot_ret = [[max_dist, add_grasp1, add_grasp2], [add_grasp2, max_dist, add_grasp1], [add_grasp1, add_grasp2, max_dist]] cent = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] config1 = np.sum((edge_arr[:, max_dist] - p0) ** 2 + (edge_arr[:, add_grasp1] - p1) ** 2 + ( edge_arr[:, add_grasp2] - p2) ** 2) config2 = np.sum((edge_arr[:, max_dist] - p1) ** 2 + (edge_arr[:, add_grasp1] - p2) ** 2 + ( edge_arr[:, add_grasp2] - p0) ** 2) config3 = np.sum((edge_arr[:, max_dist] - p2) ** 2 + (edge_arr[:, add_grasp1] - p0) ** 2 + ( edge_arr[:, add_grasp2] - p1) ** 2) dist_arr = [config1, config2, config3] dec = np.argmin([config1, config2, config3]) dist_1 = copy.deepcopy(dist_arr[dec]) pot_ret_1 = copy.deepcopy(pot_ret[dec]) cent_1 = copy.deepcopy(cent[dec]) max_dist = 3 add_grasp1 = max_dist - 1 add_grasp2 = max_dist + 1 if (add_grasp1 > 3): add_grasp1 = 0 if (add_grasp1 < 0): add_grasp1 = 3 if (add_grasp2 > 3): add_grasp2 = 0 if (add_grasp2 < 0): add_grasp2 = 3 pot_ret = [[max_dist, add_grasp1, add_grasp2], [add_grasp2, max_dist, add_grasp1], [add_grasp1, add_grasp2, max_dist]] cent = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] config1 = np.sum((edge_arr[:, max_dist] - p0) ** 2 + (edge_arr[:, add_grasp1] - p1) ** 2 + ( edge_arr[:, add_grasp2] - p2) ** 2) config2 = np.sum((edge_arr[:, max_dist] - p1) ** 2 + (edge_arr[:, add_grasp1] - p2) ** 2 + ( edge_arr[:, add_grasp2] - p0) ** 2) config3 = np.sum((edge_arr[:, max_dist] - p2) ** 2 + (edge_arr[:, add_grasp1] - p0) ** 2 + ( edge_arr[:, add_grasp2] - p1) ** 2) dist_arr = [config1, config2, config3] dec = np.argmin([config1, config2, config3]) dist_2 = copy.deepcopy(dist_arr[dec]) pot_ret_2 = copy.deepcopy(pot_ret[dec]) cent_2 = copy.deepcopy(cent[dec]) moment_dir = np.dot(self.skew(self.unit_vector(edge_arr[:, 0]-edge_arr[:, 2])),self.unit_vector(edge_arr[:, 1]-edge_arr[:, 3])) if (direction==-1 or direction==1): if (np.sign(moment_dir[2])*np.sign(direction)==1): return pot_ret_1, cent_1, dist_1 else: return pot_ret_2, cent_2, dist_2 # if (direction==-1): # return pot_ret_1, cent_1, dist_1 # elif (direction==1): # return pot_ret_2, cent_2, dist_2 if (dist_1 < dist_2): return pot_ret_1, cent_1, dist_1 else: return pot_ret_2, cent_2, dist_2 def assign_x_internal(self, edge_arr, p0, p1, p2, direction): max_dist = 0 add_grasp1 = max_dist-1 add_grasp2 = max_dist+1 if (add_grasp1>3): add_grasp1 = 0 if (add_grasp1<0): add_grasp1 = 3 if (add_grasp2>3): add_grasp2 = 0 if (add_grasp2<0): add_grasp2 = 3 pot_ret = [[max_dist,add_grasp1,add_grasp2],[add_grasp2,max_dist,add_grasp1],[add_grasp1,add_grasp2,max_dist]] cent = [[1,0,0],[0,1,0],[0,0,1]] config1 = np.sum((edge_arr[:,max_dist]-p0)**2+(edge_arr[:,add_grasp1]-p1)**2+(edge_arr[:,add_grasp2]-p2)**2) config2 = np.sum((edge_arr[:,max_dist]-p1)**2+(edge_arr[:,add_grasp1]-p2)**2+(edge_arr[:,add_grasp2]-p0)**2) config3 = np.sum((edge_arr[:,max_dist]-p2)**2+(edge_arr[:,add_grasp1]-p0)**2+(edge_arr[:,add_grasp2]-p1)**2) dist_arr = [config1, config2, config3] dec = np.argmin([config1, config2, config3]) dist_1 = copy.deepcopy(dist_arr[dec]) pot_ret_1 = copy.deepcopy(pot_ret[dec]) cent_1 = copy.deepcopy(cent[dec]) max_dist = 2 add_grasp1 = max_dist-1 add_grasp2 = max_dist+1 if (add_grasp1>3): add_grasp1 = 0 if (add_grasp1<0): add_grasp1 = 3 if (add_grasp2>3): add_grasp2 = 0 if (add_grasp2<0): add_grasp2 = 3 pot_ret = [[max_dist,add_grasp1,add_grasp2],[add_grasp2,max_dist,add_grasp1],[add_grasp1,add_grasp2,max_dist]] cent = [[1,0,0],[0,1,0],[0,0,1]] config1 = np.sum((edge_arr[:,max_dist]-p0)**2+(edge_arr[:,add_grasp1]-p1)**2+(edge_arr[:,add_grasp2]-p2)**2) config2 = np.sum((edge_arr[:,max_dist]-p1)**2+(edge_arr[:,add_grasp1]-p2)**2+(edge_arr[:,add_grasp2]-p0)**2) config3 = np.sum((edge_arr[:,max_dist]-p2)**2+(edge_arr[:,add_grasp1]-p0)**2+(edge_arr[:,add_grasp2]-p1)**2) dist_arr = [config1, config2, config3] dec = np.argmin([config1, config2, config3]) dist_2 = copy.deepcopy(dist_arr[dec]) pot_ret_2 = copy.deepcopy(pot_ret[dec]) cent_2 = copy.deepcopy(cent[dec]) moment_dir = np.dot(self.skew(self.unit_vector(edge_arr[:, 1]-edge_arr[:, 3])),self.unit_vector(edge_arr[:, 0]-edge_arr[:, 2])) if (direction==-1 or direction==1): if (np.sign(moment_dir[2])*np.sign(direction)==1): return pot_ret_1, cent_1, dist_1 else: return pot_ret_2, cent_2, dist_2 # if (direction==1): # return pot_ret_1, cent_1, dist_1 # elif (direction==-1): # return pot_ret_2, cent_2, dist_2 if (dist_1<dist_2): return pot_ret_1, cent_1, dist_1 else: return pot_ret_2, cent_2, dist_2 def assign_x(self, edge_arr, p0, p1, p2, direction): asign1, cent1, dist1 = self.assign_x_internal(edge_arr, p0, p1, p2, direction) asign2, cent2, dist2 = self.assign_x_internal(edge_arr, p0, p2, p1, direction) if (dist1<=dist2): return asign1, cent1 else: asign2[1:] = np.flipud(asign2[1:]) cent2[1:] = np.flipud(cent2[1:]) return asign2, cent2 def assign_target_old(self, edge_arr, target, p0, p1, p2): dist_from_target = (np.sum((edge_arr-target.reshape(3,1))**2,axis=0)) max_dist = np.argmax(dist_from_target) add_grasp1 = max_dist-1 add_grasp2 = max_dist+1 if (add_grasp1>3): add_grasp1 = 0 if (add_grasp1<0): add_grasp1 = 3 if (add_grasp2>3): add_grasp2 = 0 if (add_grasp2<0): add_grasp2 = 3 pot_ret = [[max_dist,add_grasp1,add_grasp2],[add_grasp2,max_dist,add_grasp1],[add_grasp1,add_grasp2,max_dist]] cent = [[1,0,0],[0,1,0],[0,0,1]] config1 =
np.sum((edge_arr[:,max_dist]-p0)**2+(edge_arr[:,add_grasp1]-p1)**2+(edge_arr[:,add_grasp2]-p2)**2)
numpy.sum
import os import time import warnings from contextlib import contextmanager from typing import Any, Dict, Iterator, Optional import numpy as np import pybullet as p import pybullet_data import pybullet_utils.bullet_client as bc import panda_gym.assets class PyBullet: """Convenient class to use PyBullet physics engine. Args: render (bool, optional): Enable rendering. Defaults to False. n_substeps (int, optional): Number of sim substep when step() is called. Defaults to 20. background_color (np.ndarray, optional): The background color as (red, green, blue). Defaults to np.array([223, 54, 45]). """ def __init__( self, render: bool = False, n_substeps: int = 20, background_color: np.ndarray = np.array([223.0, 54.0, 45.0]) ) -> None: self.background_color = background_color.astype(np.float64) / 255 options = "--background_color_red={} \ --background_color_green={} \ --background_color_blue={}".format( *self.background_color ) self.connection_mode = p.GUI if render else p.DIRECT self.physics_client = bc.BulletClient(connection_mode=self.connection_mode, options=options) self.physics_client.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) self.physics_client.configureDebugVisualizer(p.COV_ENABLE_MOUSE_PICKING, 0) self.n_substeps = n_substeps self.timestep = 1.0 / 500 self.physics_client.setTimeStep(self.timestep) self.physics_client.resetSimulation() self.physics_client.setAdditionalSearchPath(pybullet_data.getDataPath()) self.physics_client.setGravity(0, 0, -9.81) self._bodies_idx = {} @property def dt(self): """Timestep.""" return self.timestep * self.n_substeps def step(self) -> None: """Step the simulation.""" for _ in range(self.n_substeps): self.physics_client.stepSimulation() def close(self) -> None: """Close the simulation.""" self.physics_client.disconnect() def render( self, mode: str = "human", width: int = 720, height: int = 480, target_position: np.ndarray =
np.zeros(3)
numpy.zeros
import argparse import json import logging import os import re import sys from asyncio import Future from decimal import Decimal from hashlib import md5, sha1 from io import StringIO from pathlib import Path from typing import ( Any, Callable, Dict, Generator, List, Optional, Set, TYPE_CHECKING, Text, Tuple, Union, ) import aiohttp import numpy as np import rasa.utils.io as io_utils from aiohttp import InvalidURL from rasa.constants import DEFAULT_SANIC_WORKERS, ENV_SANIC_WORKERS # backwards compatibility 1.0.x # noinspection PyUnresolvedReferences from rasa.core.lock_store import LockStore, RedisLockStore from rasa.utils.endpoints import EndpointConfig, read_endpoint_config from sanic import Sanic from sanic.views import CompositionView logger = logging.getLogger(__name__) if TYPE_CHECKING: from random import Random def configure_file_logging(logger_obj: logging.Logger, log_file: Optional[Text]): if not log_file: return formatter = logging.Formatter("%(asctime)s [%(levelname)-5.5s] %(message)s") file_handler = logging.FileHandler(log_file, encoding=io_utils.DEFAULT_ENCODING) file_handler.setLevel(logger_obj.level) file_handler.setFormatter(formatter) logger_obj.addHandler(file_handler) def module_path_from_instance(inst: Any) -> Text: """Return the module path of an instance's class.""" return inst.__module__ + "." + inst.__class__.__name__ def subsample_array( arr: List[Any], max_values: int, can_modify_incoming_array: bool = True, rand: Optional["Random"] = None, ) -> List[Any]: """Shuffles the array and returns `max_values` number of elements.""" import random if not can_modify_incoming_array: arr = arr[:] if rand is not None: rand.shuffle(arr) else: random.shuffle(arr) return arr[:max_values] def is_int(value: Any) -> bool: """Checks if a value is an integer. The type of the value is not important, it might be an int or a float.""" # noinspection PyBroadException try: return value == int(value) except Exception: return False def one_hot(hot_idx: int, length: int, dtype: Optional[Text] = None) -> np.array: if hot_idx >= length: raise ValueError( "Can't create one hot. Index '{}' is out " "of range (length '{}')".format(hot_idx, length) ) r = np.zeros(length, dtype) r[hot_idx] = 1 return r def str_range_list(start: int, end: int) -> List[Text]: return [str(e) for e in range(start, end)] def generate_id(prefix: Text = "", max_chars: Optional[int] = None) -> Text: import uuid gid = uuid.uuid4().hex if max_chars: gid = gid[:max_chars] return f"{prefix}{gid}" def request_input( valid_values: Optional[List[Text]] = None, prompt: Optional[Text] = None, max_suggested: int = 3, ) -> Text: def wrong_input_message(): print( "Invalid answer, only {}{} allowed\n".format( ", ".join(valid_values[:max_suggested]), ",..." if len(valid_values) > max_suggested else "", ) ) while True: try: input_value = input(prompt) if prompt else input() if valid_values is not None and input_value not in valid_values: wrong_input_message() continue except ValueError: wrong_input_message() continue return input_value # noinspection PyPep8Naming class HashableNDArray: """Hashable wrapper for ndarray objects. Instances of ndarray are not hashable, meaning they cannot be added to sets, nor used as keys in dictionaries. This is by design - ndarray objects are mutable, and therefore cannot reliably implement the __hash__() method. The hashable class allows a way around this limitation. It implements the required methods for hashable objects in terms of an encapsulated ndarray object. This can be either a copied instance (which is safer) or the original object (which requires the user to be careful enough not to modify it).""" def __init__(self, wrapped, tight=False) -> None: """Creates a new hashable object encapsulating an ndarray. wrapped The wrapped ndarray. tight Optional. If True, a copy of the input ndaray is created. Defaults to False. """ self.__tight = tight self.__wrapped = np.array(wrapped) if tight else wrapped self.__hash = int(sha1(wrapped.view()).hexdigest(), 16) def __eq__(self, other) -> bool: return
np.all(self.__wrapped == other.__wrapped)
numpy.all
import numpy as np from matplotlib import pyplot as plt from tqdm import tqdm import nn import nn.functional as F n_features = 28 * 28 n_classes = 10 n_epochs = 10 bs = 1000 lr = 1e-3 lengths = (n_features, 512, n_classes) class Model(nn.Module): # TODO Design the classifier. def __init__(self, x, length): self.x = x self.length = length def forward(self, x: np.ndarray) -> np.ndarray: H1 = x.nn.BatchNorm1d(self.length) H2 = nn.Conv2d.forward(H1, in_channels=3, channels=1) H3 = nn.ReLu.forward(H2) H4 = nn.Avgpool.forward(H3) # End of todo def load_mnist(mode='train', n_samples=None): images = './train-images-idx3-ubyte' if mode == 'train' else './t10k-images-idx3-ubyte' labels = './train-labels-idx1-ubyte' if mode == 'train' else './t10k-labels-idx1-ubyte' length = 60000 if mode == 'train' else 10000 X = np.fromfile(open(images), np.uint8)[16:].reshape((length, 28, 28)).astype(np.int32) y = np.fromfile(open(labels), np.uint8)[8:].reshape((length)).astype(np.int32) return (X[:n_samples].reshape(n_samples, -1), y[:n_samples]) if n_samples is not None else (X.reshape(length, -1), y) def vis_demo(model): X, y = load_mnist('test', 20) probs = model.forward(X) preds = np.argmax(probs, axis=1) fig = plt.subplots(nrows=4, ncols=5, sharex='all', sharey='all')[1].flatten() for i in range(20): img = X[i].reshape(28, 28) fig[i].set_title(preds[i]) fig[i].imshow(img, cmap='Greys', interpolation='nearest') fig[0].set_xticks([]) fig[0].set_yticks([]) plt.tight_layout() plt.savefig("vis.png") plt.show() def main(): trainloader = nn.data.DataLoader(load_mnist('train'), batch=bs) testloader = nn.data.DataLoader(load_mnist('test')) model = Model(lengths) optimizer = nn.optim.SGD(model, lr=lr, momentum=0.9) criterion = F.CrossEntropyLoss(n_classes=n_classes) for i in range(n_epochs): bar = tqdm(trainloader, total=6e4 / bs) bar.set_description(f'epoch {i:2}') for X, y in bar: probs = model.forward(X) loss = criterion(probs, y) model.backward(loss.backward()) optimizer.step() preds =
np.argmax(probs, axis=1)
numpy.argmax