prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,0,1,-1,0,0,0,-1,0])
numpy.array
import numpy as np from scipy.optimize import curve_fit import matplotlib.pyplot as plt from load_rider_id_results import df # Plot parameters for Latex output params = {'backend': 'ps', 'axes.labelsize': 10, 'text.fontsize': 10, 'legend.fontsize': 8, 'xtick.labelsize': 8, 'ytick.labelsize': 8, 'text.usetex': True, 'figure.dpi': 200, } plt.rcParams.update(params) # Create a histogram of the speeds fig, ax = plt.subplots(1, 1, squeeze=True) fig.set_size_inches(5, 5) ax.hist(df['speed'], bins=40, range=(0, 10), align='mid') ax.set_xlabel('Speed m/s') ax.set_ylabel('Runs') ax.set_xticks(
np.linspace(0, 10, 21)
numpy.linspace
# -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # Copyright (c) 2014, <NAME>. All rights reserved. # Distributed under the terms of the new BSD License. # ----------------------------------------------------------------------------- import unittest import numpy as np from vispy.gloo import Texture1D, Texture2D, Texture3D, TextureAtlas from vispy.testing import requires_pyopengl, run_tests_if_main, assert_raises # here we test some things that will be true of all Texture types: Texture = Texture2D # ----------------------------------------------------------------- Texture --- class TextureTest(unittest.TestCase): # No data, no dtype : forbidden # --------------------------------- def test_init_none(self): self.assertRaises(ValueError, Texture) # Data only # --------------------------------- def test_init_data(self): data = np.zeros((10, 10, 3), dtype=np.uint8) T = Texture(data=data, interpolation='linear', wrapping='repeat') assert T._shape == (10, 10, 3) assert T._interpolation == ('linear', 'linear') assert T._wrapping == ('repeat', 'repeat') # Setting data and shape # --------------------------------- def test_init_dtype_shape(self): T = Texture((10, 10)) assert T._shape == (10, 10, 1) self.assertRaises(ValueError, Texture, shape=(10, 10), data=np.zeros((10, 10), np.float32)) # Set data with store # --------------------------------- def test_setitem_all(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture(data=data) T[...] = np.ones((10, 10, 1)) glir_cmd = T._glir.clear()[-1] assert glir_cmd[0] == 'DATA' assert np.allclose(glir_cmd[3], np.ones((10, 10, 1))) # Set data without store # --------------------------------- def test_setitem_all_no_store(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture(data=data) T[...] = np.ones((10, 10), np.uint8) assert np.allclose(data, np.zeros((10, 10))) # Set a single data # --------------------------------- def test_setitem_single(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture(data=data) T[0, 0, 0] = 1 glir_cmd = T._glir.clear()[-1] assert glir_cmd[0] == 'DATA' assert np.allclose(glir_cmd[3], np.array([1])) # We apparently support this T[8:3, 3] = 1 # Set some data # --------------------------------- def test_setitem_partial(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture(data=data) T[5:, 5:] = 1 glir_cmd = T._glir.clear()[-1] assert glir_cmd[0] == 'DATA' assert np.allclose(glir_cmd[3], np.ones((5, 5))) # Set non contiguous data # --------------------------------- def test_setitem_wrong(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture(data=data) # with self.assertRaises(ValueError): # T[::2, ::2] = 1 s = slice(None, None, 2) self.assertRaises(IndexError, T.__setitem__, (s, s), 1) self.assertRaises(IndexError, T.__setitem__, (-100, 3), 1) self.assertRaises(TypeError, T.__setitem__, ('foo', 'bar'), 1) # Set properties def test_set_texture_properties(self): T = Texture((10, 10)) # Interpolation T.interpolation = 'nearest' assert T.interpolation == 'nearest' T.interpolation = 'linear' assert T.interpolation == 'linear' T.interpolation = ['linear'] * 2 assert T.interpolation == 'linear' T.interpolation = ['linear', 'nearest'] assert T.interpolation == ('linear', 'nearest') # Wrong interpolation iset = Texture.interpolation.fset self.assertRaises(ValueError, iset, T, ['linear'] * 3) self.assertRaises(ValueError, iset, T, True) self.assertRaises(ValueError, iset, T, []) self.assertRaises(ValueError, iset, T, 'linearios') # Wrapping T.wrapping = 'clamp_to_edge' assert T.wrapping == 'clamp_to_edge' T.wrapping = 'repeat' assert T.wrapping == 'repeat' T.wrapping = 'mirrored_repeat' assert T.wrapping == 'mirrored_repeat' T.wrapping = 'repeat', 'repeat' assert T.wrapping == 'repeat' T.wrapping = 'repeat', 'clamp_to_edge' assert T.wrapping == ('repeat', 'clamp_to_edge') # Wrong wrapping wset = Texture.wrapping.fset self.assertRaises(ValueError, wset, T, ['repeat'] * 3) self.assertRaises(ValueError, wset, T, True) self.assertRaises(ValueError, wset, T, []) self.assertRaises(ValueError, wset, T, 'repeatos') # --------------------------------------------------------------- Texture2D --- class Texture2DTest(unittest.TestCase): # Note: put many tests related to (re)sizing here, because Texture # is not really aware of shape. # Shape extension # --------------------------------- def test_init(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) assert 'Texture2D' in repr(T) assert T._shape == (10, 10, 1) assert T.glsl_type == ('uniform', 'sampler2D') # Width & height # --------------------------------- def test_width_height(self): data = np.zeros((10, 20), dtype=np.uint8) T = Texture2D(data=data) assert T.width == 20 assert T.height == 10 # Resize # --------------------------------- def test_resize(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) T.resize((5, 5)) assert T.shape == (5, 5, 1) glir_cmd = T._glir.clear()[-1] assert glir_cmd[0] == 'SIZE' # Wong arg self.assertRaises(ValueError, T.resize, (5, 5), 4) # Resize with bad shape # --------------------------------- def test_resize_bad_shape(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) # with self.assertRaises(ValueError): # T.resize((5, 5, 5)) self.assertRaises(ValueError, T.resize, (5,)) self.assertRaises(ValueError, T.resize, (5, 5, 5)) self.assertRaises(ValueError, T.resize, (5, 5, 5, 1)) # Resize not resizable # --------------------------------- def test_resize_unresizable(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data, resizable=False) # with self.assertRaises(RuntimeError): # T.resize((5, 5)) self.assertRaises(RuntimeError, T.resize, (5, 5)) # Set oversized data (-> resize) # --------------------------------- def test_set_oversized_data(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) T.set_data(np.ones((20, 20), np.uint8)) assert T.shape == (20, 20, 1) glir_cmds = T._glir.clear() assert glir_cmds[-2][0] == 'SIZE' assert glir_cmds[-1][0] == 'DATA' # Set undersized data # --------------------------------- def test_set_undersized_data(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) T.set_data(np.ones((5, 5), np.uint8)) assert T.shape == (5, 5, 1) glir_cmds = T._glir.clear() assert glir_cmds[-2][0] == 'SIZE' assert glir_cmds[-1][0] == 'DATA' # Set misplaced data # --------------------------------- def test_set_misplaced_data(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) # with self.assertRaises(ValueError): # T.set_data(np.ones((5, 5)), offset=(8, 8)) self.assertRaises(ValueError, T.set_data, np.ones((5, 5)), offset=(8, 8)) # Set misshaped data # --------------------------------- def test_set_misshaped_data_2D(self): data = np.zeros((10, 10), dtype=np.uint8) T = Texture2D(data=data) # with self.assertRaises(ValueError): # T.set_data(np.ones((10, 10))) self.assertRaises(ValueError, T.set_data, np.ones((10,))) self.assertRaises(ValueError, T.set_data,
np.ones((5, 5, 5, 1))
numpy.ones
# PyVot Python Variational Optimal Transportation # Author: <NAME> <<EMAIL>> # Date: April 28th 2020 # Licence: MIT import os import sys import torch import numpy as np import matplotlib from mpl_toolkits import mplot3d matplotlib.use('Agg') import matplotlib.pyplot as plt sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from vot_torch import VWB import imageio
np.random.seed(19)
numpy.random.seed
""" Aggregations. | Copyright 2017-2021, Voxel51, Inc. | `voxel51.com <https://voxel51.com/>`_ | """ import numpy as np import eta.core.utils as etau from fiftyone.core.expressions import ViewField as F import fiftyone.core.media as fom import fiftyone.core.utils as fou class Aggregation(object): """Abstract base class for all aggregations. :class:`Aggregation` instances represent an aggregation or reduction of a :class:`fiftyone.core.collections.SampleCollection` instance. Args: field_name: the name of the field to operate on expr (None): an optional :class:`fiftyone.core.expressions.ViewExpression` or `MongoDB expression <https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-expressions>`_ to apply to the field before aggregating """ def __init__(self, field_name, expr=None): self._field_name = field_name self._expr = expr @property def field_name(self): """The field name being computed on.""" return self._field_name @property def expr(self): """The :class:`fiftyone.core.expressions.ViewExpression` or MongoDB expression that will be applied to the field before aggregating, if any. """ return self._expr def to_mongo(self, sample_collection): """Returns the MongoDB aggregation pipeline for this aggregation. Args: sample_collection: the :class:`fiftyone.core.collections.SampleCollection` to which the aggregation is being applied Returns: a MongoDB aggregation pipeline (list of dicts) """ raise NotImplementedError("subclasses must implement to_mongo()") def parse_result(self, d): """Parses the output of :meth:`to_mongo`. Args: d: the result dict Returns: the aggregation result """ raise NotImplementedError("subclasses must implement parse_result()") def default_result(self): """Returns the default result for this aggregation. Returns: the aggregation result """ raise NotImplementedError("subclasses must implement default_result()") def _parse_field_and_expr( self, sample_collection, auto_unwind=True, allow_missing=False ): return _parse_field_and_expr( sample_collection, self._field_name, self._expr, auto_unwind, allow_missing, ) class AggregationError(Exception): """An error raised during the execution of an :class:`Aggregation`.""" pass class Bounds(Aggregation): """Computes the bounds of a numeric field of a collection. ``None``-valued fields are ignored. This aggregation is typically applied to *numeric* field types (or lists of such types): - :class:`fiftyone.core.fields.IntField` - :class:`fiftyone.core.fields.FloatField` Examples:: import fiftyone as fo from fiftyone import ViewField as F dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="/path/to/image1.png", numeric_field=1.0, numeric_list_field=[1, 2, 3], ), fo.Sample( filepath="/path/to/image2.png", numeric_field=4.0, numeric_list_field=[1, 2], ), fo.Sample( filepath="/path/to/image3.png", numeric_field=None, numeric_list_field=None, ), ] ) # # Compute the bounds of a numeric field # aggregation = fo.Bounds("numeric_field") bounds = dataset.aggregate(aggregation) print(bounds) # (min, max) # # Compute the a bounds of a numeric list field # aggregation = fo.Bounds("numeric_list_field") bounds = dataset.aggregate(aggregation) print(bounds) # (min, max) # # Compute the bounds of a transformation of a numeric field # aggregation = fo.Bounds("numeric_field", expr=2 * (F() + 1)) bounds = dataset.aggregate(aggregation) print(bounds) # (min, max) Args: field_name: the name of the field to operate on expr (None): an optional :class:`fiftyone.core.expressions.ViewExpression` or `MongoDB expression <https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-expressions>`_ to apply to the field before aggregating """ def default_result(self): """Returns the default result for this aggregation. Returns: ``(None, None)`` """ return None, None def parse_result(self, d): """Parses the output of :meth:`to_mongo`. Args: d: the result dict Returns: the ``(min, max)`` bounds """ return d["min"], d["max"] def to_mongo(self, sample_collection): path, pipeline, _ = self._parse_field_and_expr(sample_collection) pipeline.append( { "$group": { "_id": None, "min": {"$min": "$" + path}, "max": {"$max": "$" + path}, } } ) return pipeline class Count(Aggregation): """Counts the number of field values in a collection. ``None``-valued fields are ignored. If no field is provided, the samples themselves are counted. Examples:: import fiftyone as fo dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="/path/to/image1.png", predictions=fo.Detections( detections=[ fo.Detection(label="cat"), fo.Detection(label="dog"), ] ), ), fo.Sample( filepath="/path/to/image2.png", predictions=fo.Detections( detections=[ fo.Detection(label="cat"), fo.Detection(label="rabbit"), fo.Detection(label="squirrel"), ] ), ), fo.Sample( filepath="/path/to/image3.png", predictions=None, ), ] ) # # Count the number of samples in the dataset # aggregation = fo.Count() count = dataset.aggregate(aggregation) print(count) # the count # # Count the number of samples with `predictions` # aggregation = fo.Count("predictions") count = dataset.aggregate(aggregation) print(count) # the count # # Count the number of objects in the `predictions` field # aggregation = fo.Count("predictions.detections") count = dataset.aggregate(aggregation) print(count) # the count # # Count the number of samples with more than 2 predictions # expr = (F("detections").length() > 2).if_else(F("detections"), None) aggregation = fo.Count("predictions", expr=expr) count = dataset.aggregate(aggregation) print(count) # the count Args: field_name (None): the name of the field to operate on. If none is provided, the samples themselves are counted expr (None): an optional :class:`fiftyone.core.expressions.ViewExpression` or `MongoDB expression <https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-expressions>`_ to apply to the field before aggregating """ def __init__(self, field_name=None, expr=None): super().__init__(field_name, expr=expr) def default_result(self): """Returns the default result for this aggregation. Returns: ``0`` """ return 0 def parse_result(self, d): """Parses the output of :meth:`to_mongo`. Args: d: the result dict Returns: the count """ return d["count"] def to_mongo(self, sample_collection): if self._field_name is None: return [{"$count": "count"}] path, pipeline, _ = self._parse_field_and_expr(sample_collection) if sample_collection.media_type != fom.VIDEO or path != "frames": pipeline.append({"$match": {"$expr": {"$gt": ["$" + path, None]}}}) pipeline.append({"$count": "count"}) return pipeline class CountValues(Aggregation): """Counts the occurrences of field values in a collection. This aggregation is typically applied to *countable* field types (or lists of such types): - :class:`fiftyone.core.fields.BooleanField` - :class:`fiftyone.core.fields.IntField` - :class:`fiftyone.core.fields.StringField` Examples:: import fiftyone as fo dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="/path/to/image1.png", tags=["sunny"], predictions=fo.Detections( detections=[ fo.Detection(label="cat"), fo.Detection(label="dog"), ] ), ), fo.Sample( filepath="/path/to/image2.png", tags=["cloudy"], predictions=fo.Detections( detections=[ fo.Detection(label="cat"), fo.Detection(label="rabbit"), ] ), ), fo.Sample( filepath="/path/to/image3.png", predictions=None, ), ] ) # # Compute the tag counts in the dataset # aggregation = fo.CountValues("tags") counts = dataset.aggregate(aggregation) print(counts) # dict mapping values to counts # # Compute the predicted label counts in the dataset # aggregation = fo.CountValues("predictions.detections.label") counts = dataset.aggregate(aggregation) print(counts) # dict mapping values to counts # # Compute the predicted label counts after some normalization # expr = F().map_values({"cat": "pet", "dog": "pet"}).upper() aggregation = fo.CountValues("predictions.detections.label", expr=expr) counts = dataset.aggregate(aggregation) print(counts) # dict mapping values to counts Args: field_name: the name of the field to operate on expr (None): an optional :class:`fiftyone.core.expressions.ViewExpression` or `MongoDB expression <https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-expressions>`_ to apply to the field before aggregating """ def default_result(self): """Returns the default result for this aggregation. Returns: ``{}`` """ return {} def parse_result(self, d): """Parses the output of :meth:`to_mongo`. Args: d: the result dict Returns: a dict mapping values to counts """ return {i["k"]: i["count"] for i in d["result"]} def to_mongo(self, sample_collection): path, pipeline, _ = self._parse_field_and_expr(sample_collection) pipeline += [ {"$group": {"_id": "$" + path, "count": {"$sum": 1}}}, { "$group": { "_id": None, "result": {"$push": {"k": "$_id", "count": "$count"}}, } }, ] return pipeline class Distinct(Aggregation): """Computes the distinct values of a field in a collection. ``None``-valued fields are ignored. This aggregation is typically applied to *countable* field types (or lists of such types): - :class:`fiftyone.core.fields.BooleanField` - :class:`fiftyone.core.fields.IntField` - :class:`fiftyone.core.fields.StringField` Examples:: import fiftyone as fo dataset = fo.Dataset() dataset.add_samples( [ fo.Sample( filepath="/path/to/image1.png", tags=["sunny"], predictions=fo.Detections( detections=[ fo.Detection(label="cat"), fo.Detection(label="dog"), ] ), ), fo.Sample( filepath="/path/to/image2.png", tags=["sunny", "cloudy"], predictions=fo.Detections( detections=[ fo.Detection(label="cat"), fo.Detection(label="rabbit"), ] ), ), fo.Sample( filepath="/path/to/image3.png", predictions=None, ), ] ) # # Get the distinct tags in a dataset # aggregation = fo.Distinct("tags") values = dataset.aggregate(aggregation) print(values) # list of distinct values # # Get the distinct predicted labels in a dataset # aggregation = fo.Distinct("predictions.detections.label") values = dataset.aggregate(aggregation) print(values) # list of distinct values # # Get the distinct predicted labels after some normalization # expr = F().map_values({"cat": "pet", "dog": "pet"}).upper() aggregation = fo.Distinct("predictions.detections.label", expr=expr) values = dataset.aggregate(aggregation) print(values) # list of distinct values Args: field_name: the name of the field to operate on expr (None): an optional :class:`fiftyone.core.expressions.ViewExpression` or `MongoDB expression <https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-expressions>`_ to apply to the field before aggregating """ def default_result(self): """Returns the default result for this aggregation. Returns: ``[]`` """ return [] def parse_result(self, d): """Parses the output of :meth:`to_mongo`. Args: d: the result dict Returns: a sorted list of distinct values """ return sorted(d["values"]) def to_mongo(self, sample_collection): path, pipeline, _ = self._parse_field_and_expr(sample_collection) pipeline += [ {"$match": {"$expr": {"$gt": ["$" + path, None]}}}, {"$group": {"_id": None, "values": {"$addToSet": "$" + path}}}, ] return pipeline class HistogramValues(Aggregation): """Computes a histogram of the field values in a collection. This aggregation is typically applied to *numeric* field types (or lists of such types): - :class:`fiftyone.core.fields.IntField` - :class:`fiftyone.core.fields.FloatField` Examples:: import numpy as np import matplotlib.pyplot as plt import fiftyone as fo samples = [] for idx in range(100): samples.append( fo.Sample( filepath="/path/to/image%d.png" % idx, numeric_field=np.random.randn(), numeric_list_field=list(np.random.randn(10)), ) ) dataset = fo.Dataset() dataset.add_samples(samples) def plot_hist(counts, edges): counts = np.asarray(counts) edges = np.asarray(edges) left_edges = edges[:-1] widths = edges[1:] - edges[:-1] plt.bar(left_edges, counts, width=widths, align="edge") # # Compute a histogram of a numeric field # aggregation = fo.HistogramValues("numeric_field", bins=50) counts, edges, other = dataset.aggregate(aggregation) plot_hist(counts, edges) plt.show(block=False) # # Compute the histogram of a numeric list field # aggregation = fo.HistogramValues("numeric_list_field", bins=50) counts, edges, other = dataset.aggregate(aggregation) plot_hist(counts, edges) plt.show(block=False) # # Compute the histogram of a transformation of a numeric field # aggregation = fo.HistogramValues( "numeric_field", expr=2 * (F() + 1), bins=50 ) counts, edges, other = dataset.aggregate(aggregation) plot_hist(counts, edges) plt.show(block=False) Args: field_name: the name of the field to operate on expr (None): an optional :class:`fiftyone.core.expressions.ViewExpression` or `MongoDB expression <https://docs.mongodb.com/manual/meta/aggregation-quick-reference/#aggregation-expressions>`_ to apply to the field before aggregating bins (None): can be either an integer number of bins to generate or a monotonically increasing sequence specifying the bin edges to use. By default, 10 bins are created. If ``bins`` is an integer and no ``range`` is specified, bin edges are automatically computed from the bounds of the field range (None): a ``(lower, upper)`` tuple specifying a range in which to generate equal-width bins. Only applicable when ``bins`` is an integer or ``None`` auto (False): whether to automatically choose bin edges in an attempt to evenly distribute the counts in each bin. If this option is chosen, ``bins`` will only be used if it is an integer, and the ``range`` parameter is ignored """ def __init__( self, field_name, expr=None, bins=None, range=None, auto=False ): super().__init__(field_name, expr=expr) self._bins = bins self._range = range self._auto = auto self._num_bins = None self._edges = None self._edges_last_used = None self._parse_args() def default_result(self): """Returns the default result for this aggregation. Returns: a tuple of - counts: ``[]`` - edges: ``[]`` - other: ``0`` """ return [], [], 0 def parse_result(self, d): """Parses the output of :meth:`to_mongo`. Args: d: the result dict Returns: a tuple of - counts: a list of counts in each bin - edges: an increasing list of bin edges of length ``len(counts) + 1``. Note that each bin is treated as having an inclusive lower boundary and exclusive upper boundary, ``[lower, upper)``, including the rightmost bin - other: the number of items outside the bins """ if self._auto: return self._parse_result_auto(d) return self._parse_result_edges(d) def to_mongo(self, sample_collection): path, pipeline, _ = self._parse_field_and_expr(sample_collection) if self._auto: pipeline.append( { "$bucketAuto": { "groupBy": "$" + path, "buckets": self._num_bins, "output": {"count": {"$sum": 1}}, } } ) else: if self._edges is not None: edges = self._edges else: edges = self._compute_bin_edges(sample_collection) self._edges_last_used = edges pipeline.append( { "$bucket": { "groupBy": "$" + path, "boundaries": edges, "default": "other", # counts documents outside of bins "output": {"count": {"$sum": 1}}, } } ) pipeline.append({"$group": {"_id": None, "bins": {"$push": "$$ROOT"}}}) return pipeline def _parse_args(self): if self._bins is None: bins = 10 else: bins = self._bins if self._auto: if etau.is_numeric(bins): self._num_bins = bins else: self._num_bins = 10 return if not etau.is_numeric(bins): # User-provided bin edges self._edges = list(bins) return if self._range is not None: # Linearly-spaced bins within `range` self._edges = list( np.linspace(self._range[0], self._range[1], bins + 1) ) else: # Compute bin edges from bounds self._num_bins = bins def _compute_bin_edges(self, sample_collection): bounds = sample_collection.bounds(self._field_name, expr=self._expr) if any(b is None for b in bounds): bounds = (-1, -1) return list( np.linspace(bounds[0], bounds[1] + 1e-6, self._num_bins + 1) ) def _parse_result_edges(self, d): _edges_array = np.array(self._edges_last_used) edges = list(_edges_array) counts = [0] * (len(edges) - 1) other = 0 for di in d["bins"]: left = di["_id"] if left == "other": other = di["count"] else: idx =
np.abs(_edges_array - left)
numpy.abs
#------------------------------------------------------------------------------ # Copyright (C) 1996-2010 Power System Engineering Research Center (PSERC) # Copyright (C) 2007-2010 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #------------------------------------------------------------------------------ """ Defines a DC OPF solver and an AC OPF solver. Based on dcopf_solver.m and mipsopf_solver.m from MATPOWER by <NAME>, developed at Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more information. """ #------------------------------------------------------------------------------ # Imports: #------------------------------------------------------------------------------ import logging from numpy import \ array, pi, polyder, polyval, exp, conj, Inf, ones, r_, zeros, asarray from scipy.sparse import lil_matrix, csr_matrix, hstack, vstack from case import REFERENCE from generator import POLYNOMIAL, PW_LINEAR #from pdipm import pdipm, pdipm_qp from pips import pips, qps_pips #------------------------------------------------------------------------------ # Constants: #------------------------------------------------------------------------------ SFLOW = "Sflow" PFLOW = "Pflow" IFLOW = "Iflow" #------------------------------------------------------------------------------ # Logging: #------------------------------------------------------------------------------ logger = logging.getLogger(__name__) #------------------------------------------------------------------------------ # "_Solver" class: #------------------------------------------------------------------------------ class _Solver(object): """ Defines a base class for many solvers. """ def __init__(self, om): #: Optimal power flow model. self.om = om #: Number of equality constraints. self._nieq = 0 def solve(self): """ Solves optimal power flow and returns a results dict. """ raise NotImplementedError def _unpack_model(self, om): """ Returns data from the OPF model. """ buses = om.case.connected_buses branches = om.case.online_branches gens = om.case.online_generators cp = om.get_cost_params() # Bf = om._Bf # Pfinj = om._Pfinj return buses, branches, gens, cp def _dimension_data(self, buses, branches, generators): """ Returns the problem dimensions. """ ipol = [i for i, g in enumerate(generators) if g.pcost_model == POLYNOMIAL] ipwl = [i for i, g in enumerate(generators) if g.pcost_model == PW_LINEAR] nb = len(buses) nl = len(branches) # Number of general cost vars, w. nw = self.om.cost_N # Number of piece-wise linear costs. if "y" in [v.name for v in self.om.vars]: ny = self.om.get_var_N("y") else: ny = 0 # Total number of control variables of all types. nxyz = self.om.var_N return ipol, ipwl, nb, nl, nw, ny, nxyz def _linear_constraints(self, om): """ Returns the linear problem constraints. """ A, l, u = om.linear_constraints() # l <= A*x <= u # Indexes for equality, greater than (unbounded above), less than # (unbounded below) and doubly-bounded box constraints. # ieq = flatnonzero( abs(u - l) <= EPS ) # igt = flatnonzero( (u >= 1e10) & (l > -1e10) ) # ilt = flatnonzero( (l <= -1e10) & (u < 1e10) ) # ibx = flatnonzero( (abs(u - l) > EPS) & (u < 1e10) & (l > -1e10) ) # Zero-sized sparse matrices not supported. Assume equality # constraints exist. ## AA = A[ieq, :] ## if len(ilt) > 0: ## AA = vstack([AA, A[ilt, :]], "csr") ## if len(igt) > 0: ## AA = vstack([AA, -A[igt, :]], "csr") ## if len(ibx) > 0: ## AA = vstack([AA, A[ibx, :], -A[ibx, :]], "csr") # # if len(ieq) or len(igt) or len(ilt) or len(ibx): # sig_idx = [(1, ieq), (1, ilt), (-1, igt), (1, ibx), (-1, ibx)] # AA = vstack([sig * A[idx, :] for sig, idx in sig_idx if len(idx)]) # else: # AA = None # # bb = r_[u[ieq, :], u[ilt], -l[igt], u[ibx], -l[ibx]] # # self._nieq = ieq.shape[0] # # return AA, bb return A, l, u def _var_bounds(self): """ Returns bounds on the optimisation variables. """ x0 = array([]) xmin = array([]) xmax = array([]) for var in self.om.vars: x0 = r_[x0, var.v0] xmin = r_[xmin, var.vl] xmax = r_[xmax, var.vu] return x0, xmin, xmax def _initial_interior_point(self, buses, generators, xmin, xmax, ny): """ Selects an interior initial point for interior point solver. """ Va = self.om.get_var("Va") va_refs = [b.v_angle * pi / 180.0 for b in buses if b.type == REFERENCE] x0 = (xmin + xmax) / 2.0 x0[Va.i1:Va.iN + 1] = va_refs[0] # Angles set to first reference angle. if ny > 0: yvar = self.om.get_var("y") # Largest y-value in CCV data c = [] for g in generators: if g.pcost_model == PW_LINEAR: for _, y in g.p_cost: c.append(y) x0[yvar.i1:yvar.iN + 1] = max(c) * 1.1 return x0 #------------------------------------------------------------------------------ # "DCOPFSolver" class: #------------------------------------------------------------------------------ class DCOPFSolver(_Solver): """ Defines a solver for DC optimal power flow [3]. Based on dcopf_solver.m from MATPOWER by <NAME>, developed at PSERC Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more info. """ def __init__(self, om, opt=None): """ Initialises a new DCOPFSolver instance. """ super(DCOPFSolver, self).__init__(om) # TODO: Implement user-defined costs. self.N = None self.H = None self.Cw = zeros((0, 0)) self.fparm = zeros((0, 0)) #: Solver options (See pips.py for futher details). self.opt = {} if opt is None else opt def solve(self): """ Solves DC optimal power flow and returns a results dict. """ base_mva = self.om.case.base_mva Bf = self.om._Bf Pfinj = self.om._Pfinj # Unpack the OPF model. bs, ln, gn, cp = self._unpack_model(self.om) # Compute problem dimensions. ipol, ipwl, nb, nl, nw, ny, nxyz = self._dimension_data(bs, ln, gn) # Split the constraints in equality and inequality. AA, ll, uu = self._linear_constraints(self.om) # Piece-wise linear components of the objective function. Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl = self._pwl_costs(ny, nxyz, ipwl) # Quadratic components of the objective function. Npol, Hpol, Cpol, fparm_pol, polycf, npol = \ self._quadratic_costs(gn, ipol, nxyz, base_mva) # Combine pwl, poly and user costs. NN, HHw, CCw, ffparm = \ self._combine_costs(Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl, Npol, Hpol, Cpol, fparm_pol, npol, nw) # Transform quadratic coefficients for w into coefficients for X. HH, CC, C0 = self._transform_coefficients(NN, HHw, CCw, ffparm, polycf, any_pwl, npol, nw) # Bounds on the optimisation variables. _, xmin, xmax = self._var_bounds() # Select an interior initial point for interior point solver. x0 = self._initial_interior_point(bs, gn, xmin, xmax, ny) # Call the quadratic/linear solver. s = self._run_opf(HH, CC, AA, ll, uu, xmin, xmax, x0, self.opt) # Compute the objective function value. Va, Pg = self._update_solution_data(s, HH, CC, C0) # Set case result attributes. self._update_case(bs, ln, gn, base_mva, Bf, Pfinj, Va, Pg, s["lmbda"]) return s def _pwl_costs(self, ny, nxyz, ipwl): """ Returns the piece-wise linear components of the objective function. """ any_pwl = int(ny > 0) if any_pwl: y = self.om.get_var("y") # Sum of y vars. Npwl = csr_matrix((ones(ny), (zeros(ny), array(ipwl) + y.i1))) Hpwl = csr_matrix((1, 1)) Cpwl = array([1]) fparm_pwl = array([[1., 0., 0., 1.]]) else: Npwl = None#zeros((0, nxyz)) Hpwl = None#array([]) Cpwl = array([]) fparm_pwl = zeros((0, 4)) return Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl def _quadratic_costs(self, generators, ipol, nxyz, base_mva): """ Returns the quadratic cost components of the objective function. """ npol = len(ipol) rnpol = range(npol) gpol = [g for g in generators if g.pcost_model == POLYNOMIAL] if [g for g in gpol if len(g.p_cost) > 3]: logger.error("Order of polynomial cost greater than quadratic.") iqdr = [i for i, g in enumerate(generators) if g.pcost_model == POLYNOMIAL and len(g.p_cost) == 3] ilin = [i for i, g in enumerate(generators) if g.pcost_model == POLYNOMIAL and len(g.p_cost) == 2] polycf = zeros((npol, 3)) if npol > 0: if len(iqdr) > 0: polycf[iqdr, :] = array([list(g.p_cost) for g in generators])#[iqdr, :].T if len(ilin) > 0: polycf[ilin, 1:] = array([list(g.p_cost[:2]) for g in generators])#[ilin, :].T # Convert to per-unit. polycf = polycf * array([base_mva**2, base_mva, 1]) Pg = self.om.get_var("Pg") Npol = csr_matrix((ones(npol), (rnpol, Pg.i1 + array(ipol))), (npol, nxyz)) Hpol = csr_matrix((2 * polycf[:, 0], (rnpol, rnpol)), (npol, npol)) Cpol = polycf[:, 1] fparm_pol = (ones(npol) * array([[1], [0], [0], [1]])).T else: Npol = Hpol = None Cpol = array([]) fparm_pol = zeros((0, 4)) return Npol, Hpol, Cpol, fparm_pol, polycf, npol def _combine_costs(self, Npwl, Hpwl, Cpwl, fparm_pwl, any_pwl, Npol, Hpol, Cpol, fparm_pol, npol, nw): """ Combines pwl, polynomial and user-defined costs. """ NN = vstack([n for n in [Npwl, Npol] if n is not None], "csr") if (Hpwl is not None) and (Hpol is not None): Hpwl = hstack([Hpwl, csr_matrix((any_pwl, npol))]) Hpol = hstack([csr_matrix((npol, any_pwl)), Hpol]) # if H is not None: # H = hstack([csr_matrix((nw, any_pwl+npol)), H]) HHw = vstack([h for h in [Hpwl, Hpol] if h is not None], "csr") CCw = r_[Cpwl, Cpol] ffparm = r_[fparm_pwl, fparm_pol] return NN, HHw, CCw, ffparm def _transform_coefficients(self, NN, HHw, CCw, ffparm, polycf, any_pwl, npol, nw): """ Transforms quadratic coefficients for w into coefficients for x. """ nnw = any_pwl + npol + nw M = csr_matrix((ffparm[:, 3], (range(nnw), range(nnw)))) MR = M * ffparm[:, 2] # FIXME: Possibly column 1. HMR = HHw * MR MN = M * NN HH = MN.T * HHw * MN CC = MN.T * (CCw - HMR) # Constant term of cost. C0 = 1./2. * MR.T * HMR + sum(polycf[:, 2]) return HH, CC, C0[0] def _run_opf(self, HH, CC, AA, ll, uu, xmin, xmax, x0, opt): """ Solves the either quadratic or linear program. """ N = self._nieq if HH.nnz > 0: solution = qps_pips(HH, CC, AA, ll, uu, xmin, xmax, x0, opt) else: solution = qps_pips(None, CC, AA, ll, uu, xmin, xmax, x0, opt) return solution def _update_solution_data(self, s, HH, CC, C0): """ Returns the voltage angle and generator set-point vectors. """ x = s["x"] Va_v = self.om.get_var("Va") Pg_v = self.om.get_var("Pg") Va = x[Va_v.i1:Va_v.iN + 1] Pg = x[Pg_v.i1:Pg_v.iN + 1] # f = 0.5 * dot(x.T * HH, x) + dot(CC.T, x) s["f"] = s["f"] + C0 # Put the objective function value in the solution. # solution["f"] = f return Va, Pg def _update_case(self, bs, ln, gn, base_mva, Bf, Pfinj, Va, Pg, lmbda): """ Calculates the result attribute values. """ Pmis = self.om.get_lin_constraint("Pmis") Pf = self.om.get_lin_constraint("Pf") Pt = self.om.get_lin_constraint("Pt") Pg_v = self.om.get_var("Pg") mu_l = lmbda["mu_l"] mu_u = lmbda["mu_u"] lower = lmbda["lower"] upper = lmbda["upper"] for i, bus in enumerate(bs): bus.v_angle = Va[i] * 180.0 / pi bus.p_lmbda = (mu_u[Pmis.i1:Pmis.iN + 1][i] - mu_l[Pmis.i1:Pmis.iN + 1][i]) / base_mva for l, branch in enumerate(ln): branch.p_from = (Bf * Va + Pfinj)[l] * base_mva branch.p_to = -branch.p_from branch.mu_s_from = mu_u[Pf.i1:Pf.iN + 1][l] / base_mva branch.mu_s_to = mu_u[Pt.i1:Pt.iN + 1][l] / base_mva for k, generator in enumerate(gn): generator.p = Pg[k] * base_mva generator.mu_pmin = lower[Pg_v.i1:Pg_v.iN + 1][k] / base_mva generator.mu_pmax = upper[Pg_v.i1:Pg_v.iN + 1][k] / base_mva #------------------------------------------------------------------------------ # "PIPSSolver" class: #------------------------------------------------------------------------------ class PIPSSolver(_Solver): """ Solves AC optimal power flow using a primal-dual interior point method. Based on mipsopf_solver.m from MATPOWER by <NAME>, developed at PSERC Cornell. See U{http://www.pserc.cornell.edu/matpower/} for more info. """ def __init__(self, om, flow_lim=SFLOW, opt=None): """ Initialises a new PIPSSolver instance. """ super(PIPSSolver, self).__init__(om) #: Quantity to limit for branch flow constraints ("S", "P" or "I"). self.flow_lim = flow_lim #: Options for the PIPS. self.opt = {} if opt is None else opt def _ref_bus_angle_constraint(self, buses, Va, xmin, xmax): """ Adds a constraint on the reference bus angles. """ refs = [bus._i for bus in buses if bus.type == REFERENCE] Varefs = array([b.v_angle for b in buses if b.type == REFERENCE]) xmin[Va.i1 - 1 + refs] = Varefs xmax[Va.iN - 1 + refs] = Varefs return xmin, xmax def solve(self): """ Solves AC optimal power flow. """ case = self.om.case self._base_mva = case.base_mva # TODO: Find an explanation for this value. self.opt["cost_mult"] = 1e-4 # Unpack the OPF model. self._bs, self._ln, self._gn, _ = self._unpack_model(self.om) # Compute problem dimensions. self._ipol, _, self._nb, self._nl, _, self._ny, self._nxyz = \ self._dimension_data(self._bs, self._ln, self._gn) # Compute problem dimensions. self._ng = len(self._gn) # gpol = [g for g in gn if g.pcost_model == POLYNOMIAL] # Linear constraints (l <= A*x <= u). A, l, u = self.om.linear_constraints() # AA, bb = self._linear_constraints(self.om) _, xmin, xmax = self._var_bounds() # Select an interior initial point for interior point solver. x0 = self._initial_interior_point(self._bs, self._gn, xmin, xmax, self._ny) # Build admittance matrices. self._Ybus, self._Yf, self._Yt = case.Y # Optimisation variables. self._Pg = self.om.get_var("Pg") self._Qg = self.om.get_var("Qg") self._Va = self.om.get_var("Va") self._Vm = self.om.get_var("Vm") # Adds a constraint on the reference bus angles. # xmin, xmax = self._ref_bus_angle_constraint(bs, Va, xmin, xmax) # Solve using Python Interior Point Solver (PIPS). s = self._solve(x0, A, l, u, xmin, xmax) Vang, Vmag, Pgen, Qgen = self._update_solution_data(s) self._update_case(self._bs, self._ln, self._gn, self._base_mva, self._Yf, self._Yt, Vang, Vmag, Pgen, Qgen, s["lmbda"]) return s def _solve(self, x0, A, l, u, xmin, xmax): """ Solves using Python Interior Point Solver (PIPS). """ s = pips(self._costfcn, x0, A, l, u, xmin, xmax, self._consfcn, self._hessfcn, self.opt) return s def _f(self, x, user_data=None): """ Evaluates the objective function. """ p_gen = x[self._Pg.i1:self._Pg.iN + 1] # Active generation in p.u. q_gen = x[self._Qg.i1:self._Qg.iN + 1] # Reactive generation in p.u. # Polynomial cost of P and Q. xx = r_[p_gen, q_gen] * self._base_mva if len(self._ipol) > 0: f = sum([g.total_cost(xx[i]) for i,g in enumerate(self._gn)]) else: f = 0 # Piecewise linear cost of P and Q. if self._ny: y = self.om.get_var("y") self._ccost = csr_matrix((ones(self._ny), (range(y.i1, y.iN + 1), zeros(self._ny))), shape=(self._nxyz, 1)).T f = f + self._ccost * x else: self._ccost = zeros((1, self._nxyz)) # TODO: Generalised cost term. return f def _df(self, x, user_data=None): """ Evaluates the cost gradient. """ p_gen = x[self._Pg.i1:self._Pg.iN + 1] # Active generation in p.u. q_gen = x[self._Qg.i1:self._Qg.iN + 1] # Reactive generation in p.u. # Polynomial cost of P and Q. xx = r_[p_gen, q_gen] * self._base_mva iPg = range(self._Pg.i1, self._Pg.iN + 1) iQg = range(self._Qg.i1, self._Qg.iN + 1) # Polynomial cost of P and Q. df_dPgQg = zeros((2 * self._ng, 1)) # w.r.t p.u. Pg and Qg # df_dPgQg[ipol] = matrix([g.poly_cost(xx[i], 1) for g in gpol]) # for i, g in enumerate(gn): # der = polyder(list(g.p_cost)) # df_dPgQg[i] = polyval(der, xx[i]) * base_mva for i in self._ipol: p_cost = list(self._gn[i].p_cost) df_dPgQg[i] = \ self._base_mva * polyval(polyder(p_cost), xx[i]) df = zeros((self._nxyz, 1)) df[iPg] = df_dPgQg[:self._ng] df[iQg] = df_dPgQg[self._ng:self._ng + self._ng] # Piecewise linear cost of P and Q. df = df + self._ccost.T # TODO: Generalised cost term. return asarray(df).flatten() def _d2f(self, x): """ Evaluates the cost Hessian. """ d2f_dPg2 = lil_matrix((self._ng, 1)) # w.r.t p.u. Pg d2f_dQg2 = lil_matrix((self._ng, 1)) # w.r.t p.u. Qg] for i in self._ipol: p_cost = list(self._gn[i].p_cost) d2f_dPg2[i, 0] = polyval(polyder(p_cost, 2), self._Pg.v0[i] * self._base_mva) * self._base_mva**2 # for i in ipol: # d2f_dQg2[i] = polyval(polyder(list(gn[i].p_cost), 2), # Qg.v0[i] * base_mva) * base_mva**2 i = r_[range(self._Pg.i1, self._Pg.iN + 1), range(self._Qg.i1, self._Qg.iN + 1)] d2f = csr_matrix((vstack([d2f_dPg2, d2f_dQg2]).toarray().flatten(), (i, i)), shape=(self._nxyz, self._nxyz)) return d2f def _gh(self, x): """ Evaluates the constraint function values. """ Pgen = x[self._Pg.i1:self._Pg.iN + 1] # Active generation in p.u. Qgen = x[self._Qg.i1:self._Qg.iN + 1] # Reactive generation in p.u. for i, gen in enumerate(self._gn): gen.p = Pgen[i] * self._base_mva # active generation in MW gen.q = Qgen[i] * self._base_mva # reactive generation in MVAr # Rebuild the net complex bus power injection vector in p.u. Sbus = self.om.case.getSbus(self._bs) Vang = x[self._Va.i1:self._Va.iN + 1] Vmag = x[self._Vm.i1:self._Vm.iN + 1] V = Vmag * exp(1j * Vang) # Evaluate the power flow equations. mis = V * conj(self._Ybus * V) - Sbus # Equality constraints (power flow). g = r_[mis.real, # active power mismatch for all buses mis.imag] # reactive power mismatch for all buses # Inequality constraints (branch flow limits). # (line constraint is actually on square of limit) flow_max = array([(l.rate_a / self._base_mva)**2 for l in self._ln]) # FIXME: There must be a more elegant method for this. for i, v in enumerate(flow_max): if v == 0.0: flow_max[i] = Inf if self.flow_lim == IFLOW: If = self._Yf * V It = self._Yt * V # Branch current limits. h = r_[(If * conj(If)) - flow_max, (It * conj(It)) - flow_max] else: i_fbus = [e.from_bus._i for e in self._ln] i_tbus = [e.to_bus._i for e in self._ln] # Complex power injected at "from" bus (p.u.). Sf = V[i_fbus] *
conj(self._Yf * V)
numpy.conj
import numpy as np import matplotlib.pyplot as plt import Neurapse from Neurapse.Synapses import * from Neurapse.utils.SpikeTrains import * from Neurapse.Networks import * from Neurapse.utils.CURRENTS import * #usage : DRN_Const problem 2 and 3 def DRN_Const_driver(N, exci_frac, connect_frac): N_exci = int(N*exci_frac) N_inhi = N - N_exci # Constructing the network exci_neuron_id = range(N_exci) inhi_neuron_id = range(N_exci, N) Fanout = [] W = [] Tau = [] w0 = 3000 gamma = 0.77 #for problem 3 gamma = 1# for problem 2 for i in exci_neuron_id: a = [] for z in range(N): if z!=i: a.append(z) tempFL = [] tempWL = [] tempTL = [] for j in range(int(connect_frac*N)): t = np.random.choice(a) tempFL.append(t) tempWL.append(gamma*w0) tempTL.append(
np.random.uniform(1e-3, 20e-3)
numpy.random.uniform
#!/usr/bin/env python """ Perform the Mann-Whitney U test, the Kolmogorov-Smirnov test, and the Student's t-test for the following ensembles: - GPU double precision (reference & control) - CPU double precision - GPU single precision - GPU double precision with additional explicit diffusion Make sure to compile the cpp files for the Mann-Whitney U test and the Kolmogorov-Smirnov test first before running this script (see mannwhitneyu.cpp and kolmogorov_smirnov.cpp). Copyright (c) 2021 ETH Zurich, <NAME> MIT License """ import numpy as np import xarray as xr import pickle import mannwhitneyu as mwu import kolmogorov_smirnov as ks rpert = 'e4' # prefix n_runs = 50 # total number of runs n_sel = 100 # how many times we randomly select runs alpha = 0.05 # significance level nm = 20 # members per ensemble u_crit = 127 # nm = 20 t_crit = 2.024 # nm = 20 replace = False # to bootstrap or not to bootstrap nbins = 100 # Kolmogorov-Smirnov # Some arrays to make life easier tests = ['mwu', 'ks', 't'] comparisons = ['c', 'cpu', 'sp', 'diff'] # Variable variables = ['t_850hPa', 'fi_500hPa', 'u_10m', 't_2m', 'precip', 'asob_t', 'athb_t', 'ps'] path_gpu = '../data/10d_gpu_cpu_sp_diff/gpu_dycore/' path_cpu = '../data/10d_gpu_cpu_sp_diff/cpu_nodycore/' path_gpu_sp = '../data/10d_gpu_cpu_sp_diff/gpu_dycore_sp/' path_gpu_diff = '../data/10d_gpu_cpu_sp_diff/gpu_dycore_diff/' # Final rejection rates rej_rates = {} for comp in comparisons: rej_rates[comp] = {} for vname in variables: rej_rates[comp][vname] = {} runs_r = {} runs_c = {} runs_cpu = {} runs_sp = {} runs_diff = {} # Load data for gpu (reference and control) and cpu for i in range(n_runs): i_str_r = str(i).zfill(4) i_str_c = str(i+n_runs).zfill(4) fname_r = path_gpu + rpert + '_' + i_str_r + '.nc' fname_c = path_gpu + rpert + '_' + i_str_c + '.nc' fname_cpu = path_cpu + rpert + '_' + i_str_r + '.nc' fname_sp = path_gpu_sp + rpert + '_' + i_str_r + '.nc' fname_diff = path_gpu_diff + rpert + '_' + i_str_r + '.nc' runs_r[i] = {} runs_c[i] = {} runs_cpu[i] = {} runs_sp[i] = {} runs_diff[i] = {} runs_r[i]['dset'] = xr.open_dataset(fname_r) runs_c[i]['dset'] = xr.open_dataset(fname_c) runs_cpu[i]['dset'] = xr.open_dataset(fname_cpu) runs_sp[i]['dset'] = xr.open_dataset(fname_sp) runs_diff[i]['dset'] = xr.open_dataset(fname_diff) # Test for each variable for vname in variables: print("----------------------------") print("Working on " + vname + " ...") print("----------------------------") # initialize arrays nt, ny, nx = runs_r[0]['dset'][vname].shape values_r = np.zeros((nt, ny, nx, nm)) values_c = np.zeros((nt, ny, nx, nm)) values_cpu = np.zeros((nt, ny, nx, nm)) values_sp = np.zeros((nt, ny, nx, nm)) values_diff = np.zeros((nt, ny, nx, nm)) # For the results results = {} for test in tests: results[test] = {} for comp in comparisons: results[test][comp] = np.zeros((n_sel, nt)) # Do test multiple times with random selection of ensemble members for s in range(n_sel): if ((s+1) % 10 == 0): print(str(s+1) + " / " + str(n_sel)) # Pick random samples for comparison idxs_r = np.random.choice(np.arange(n_runs), nm, replace=replace) idxs_c = np.random.choice(np.arange(n_runs), nm, replace=replace) idxs_cpu = np.random.choice(np.arange(n_runs), nm, replace=replace) idxs_sp = np.random.choice(np.arange(n_runs), nm, replace=replace) idxs_diff = np.random.choice(np.arange(n_runs), nm, replace=replace) # ============================================================ # Mann-Whitney U test # ============================================================ test = 'mwu' # Put together arrays for i in range(nm): values_r[:,:,:,i] = runs_r[idxs_r[i]]['dset'][vname].values values_c[:,:,:,i] = runs_c[idxs_c[i]]['dset'][vname].values values_cpu[:,:,:,i] = runs_cpu[idxs_cpu[i]]['dset'][vname].values values_sp[:,:,:,i] = runs_sp[idxs_sp[i]]['dset'][vname].values values_diff[:,:,:,i] = runs_diff[idxs_diff[i]]['dset'][vname].values # Call test reject_c = mwu.mwu(values_r, values_c, u_crit) reject_cpu = mwu.mwu(values_r, values_cpu, u_crit) reject_sp = mwu.mwu(values_r, values_sp, u_crit) reject_diff = mwu.mwu(values_r, values_diff, u_crit) results[test]['c'][s] = np.mean(reject_c, axis=(1,2)) results[test]['cpu'][s] =
np.mean(reject_cpu, axis=(1,2))
numpy.mean
from unittest import TestCase import numpy as np from bladex import CustomProfile, NacaProfile, ProfileBase def create_custom_profile(): """ xup_coordinates, yup_coordinates, xdown_coordinates, ydown_coordinates """ xup =
np.linspace(-1.0, 1.0, 5)
numpy.linspace
import json import numpy as np import cv2 from utils.experiments.patches import extract_patches import time import sys import pdb class Shapes(): def name(self): return 'shapes' def __init__(self, opt): self.WIN_SIZE = opt.WIN_SIZE self.IGNORE_LABEL = opt.IGNORE_LABEL self.LABEL_PATH = opt.EXEMPLAR_LABEL_PATH self.INST_PATH = opt.EXEMPLAR_INST_PATH self.IMAGE_PATH = opt.EXEMPLAR_IMAGE_PATH self.TOP_K = opt.TOP_K self.RES_F = opt.RES_F self.SHAPE_THRESH = opt.SHAPE_THRESH self.IS_PARTS = opt.IS_PARTS self.PARTS_WIN = opt.PARTS_WIN self.PARTS_SIZE = opt.PARTS_SIZE self.FIN_SIZE = opt.FIN_SIZE self.PAT_HEIGHT = opt.PAT_HEIGHT self.PAT_WIDTH = opt.PAT_WIDTH self.PAT_NBD = opt.PAT_NBD self.PAT_LOC = self.get_pat_loc() # load annotations -- with open(opt.COCO_ANNOTATIONS_PATH) as f: annotations = json.load(f) label_data = np.zeros((len(annotations), 6)) for i in range(0, len(annotations)): label_data[i, 0] = annotations[i]["id"] label_data[i, 1:4] = annotations[i]["color"] label_data[i, 4] = annotations[i]["isthing"] label_data[i, 5] = label_data[i, 1] + \ label_data[i, 2]*256 + \ label_data[i, 3]*65536 self.label_data = label_data self.label_dict = {} for annotation in annotations: self.label_dict[tuple(annotation["color"]) ] = np.array([annotation["id"]]) def convert_colors_to_labels_old(self, INPUT_MAP): semantic_map = np.int32(INPUT_MAP[:, :, 0]) + \ np.int32(INPUT_MAP[:, :, 1])*256 + \ np.int32(INPUT_MAP[:, :, 2])*65536 label_data = self.label_data #print("Shape", INPUT_MAP.shape) #print np.unique(INPUT_MAP, axis=1) unique_points = np.unique(semantic_map) #print unique_points LABEL_MAP = np.zeros((np.size(INPUT_MAP, 0), np.size(INPUT_MAP, 1))) for i in range(0, len(unique_points)): if(unique_points[i] == self.IGNORE_LABEL): continue ith_loc_id = label_data[:, 5] == unique_points[i] #print ith_loc_id LABEL_MAP[semantic_map == unique_points[i] ] = label_data[ith_loc_id, 0] return LABEL_MAP def convert_colors_to_labels(self, INPUT_MAP): # Get all unique pixels in input unique_pixels = np.unique(INPUT_MAP.reshape(-1, 3), axis=0) # Create a blank matrix with same dimensions LABEL_MAP = np.zeros((INPUT_MAP.shape[:-1])) #pdb.set_trace() for upixel in unique_pixels: label_of_pixel = self.label_dict.get( tuple(upixel), np.array([self.IGNORE_LABEL])) # print("LOP", label_of_pixel) condition = np.all(INPUT_MAP == upixel, 2) LABEL_MAP[condition] = label_of_pixel #pdb.set_trace() return LABEL_MAP def get_query_shapes(self, LABEL_MAP, INST_MAP): instances = INST_MAP[:, :, 0]*10 + \ INST_MAP[:, :, 1]*100 + \ INST_MAP[:, :, 2]*1000 category_list = np.unique(LABEL_MAP) category_list = category_list[category_list != self.IGNORE_LABEL] query_shapes = {} iter_ = 0 #pdb.set_trace() for n in range(0, len(category_list)): # for each semantic label map -- nth_label_map = np.int16(LABEL_MAP) nth_label_map[nth_label_map != category_list[n]] = -1 nth_label_map[nth_label_map == category_list[n]] = 1 nth_label_map[nth_label_map == -1] = 0 # --------------------------------------------------- # check if this category belongs to things or stuff-- is_thing = self.label_data[self.label_data[:, 0] == category_list[n], 4] if(is_thing != 1): [n_r, n_c] = np.nonzero(nth_label_map) y1 = np.amin(n_r) y2 = np.amax(n_r) x1 = np.amin(n_c) x2 = np.amax(n_c) comp_shape = nth_label_map[y1:y2, x1:x2] comp_context = LABEL_MAP[y1:y2, x1:x2] ar = np.size( comp_context, 0)/(float(np.size(comp_context, 1)) + sys.float_info.epsilon) # -- get the comp-list query_shapes[iter_] = {} query_shapes[iter_]['comp_shape'] = comp_shape query_shapes[iter_]['comp_context'] = comp_context query_shapes[iter_]['shape_label'] = category_list[n] query_shapes[iter_]['ar'] = ar query_shapes[iter_]['bbox'] = [y1, x1, y2, x2] query_shapes[iter_]['dim'] = [ np.size(nth_label_map, 0), np.size(nth_label_map, 1)] iter_ = iter_ + 1 else: nth_inst_map = np.empty_like(instances) np.copyto(nth_inst_map, instances) nth_inst_map[nth_inst_map == 0] = -1 nth_inst_map[nth_label_map == 0] = -1 nth_inst_ids = np.unique(nth_inst_map) nth_inst_ids = nth_inst_ids[nth_inst_ids != -1] for m in range(0, len(nth_inst_ids)): mth_inst_map = np.empty_like(nth_inst_map) np.copyto(mth_inst_map, nth_inst_map) mth_inst_map[mth_inst_map != nth_inst_ids[m]] = -1 mth_inst_map[mth_inst_map == nth_inst_ids[m]] = 1 mth_inst_map[mth_inst_map == -1] = 0 # -- [m_r, m_c] = np.nonzero(mth_inst_map) y1 = np.amin(m_r) y2 = np.amax(m_r) x1 = np.amin(m_c) x2 = np.amax(m_c) comp_shape = mth_inst_map[y1:y2, x1:x2] comp_context = LABEL_MAP[y1:y2, x1:x2] ar = np.size( comp_context, 0)/(float(np.size(comp_context, 1)) + sys.float_info.epsilon) # -- comp_list data query_shapes[iter_] = {} query_shapes[iter_]['comp_shape'] = comp_shape query_shapes[iter_]['comp_context'] = comp_context query_shapes[iter_]['shape_label'] = category_list[n] query_shapes[iter_]['ar'] = ar query_shapes[iter_]['bbox'] = [y1, x1, y2, x2] query_shapes[iter_]['dim'] = [ np.size(nth_label_map, 0), np.size(nth_label_map, 1)] iter_ = iter_ + 1 return query_shapes def get_exemplar_shapes(self, EXEMPLAR_MATCHES): exemplar_shapes = {} iter_ = 0 for i in range(0, len(EXEMPLAR_MATCHES)): LABEL_MAP = cv2.imread(self.LABEL_PATH + EXEMPLAR_MATCHES[i][0].decode('UTF-8')) LABEL_MAP = np.int16(LABEL_MAP[:, :, 0]) INST_MAP = np.int32(cv2.imread( self.INST_PATH + EXEMPLAR_MATCHES[i][0].decode('UTF-8'))) EXEMPLAR_IMAGE = cv2.imread(self.IMAGE_PATH + (EXEMPLAR_MATCHES[i][0]).decode('UTF-8').replace('.png', '.jpg')) instances = INST_MAP[:, :, 0]*10 + \ INST_MAP[:, :, 1]*100 + \ INST_MAP[:, :, 2]*1000 category_list = np.unique(LABEL_MAP) category_list = category_list[category_list != self.IGNORE_LABEL] for n in range(0, len(category_list)): # for each semantic label map -- nth_label_map = np.empty_like(LABEL_MAP) np.copyto(nth_label_map, LABEL_MAP) nth_label_map[nth_label_map != category_list[n]] = -1 nth_label_map[nth_label_map == category_list[n]] = 1 nth_label_map[nth_label_map == -1] = 0 # --------------------------------------------------- # check if this category belongs to things or stuff-- is_thing = self.label_data[self.label_data[:, 0] == category_list[n], 4] if(is_thing != 1): [n_r, n_c] = np.nonzero(nth_label_map) y1 = np.amin(n_r) y2 = np.amax(n_r) x1 = np.amin(n_c) x2 = np.amax(n_c) comp_shape = nth_label_map[y1:y2, x1:x2] comp_context = LABEL_MAP[y1:y2, x1:x2] comp_rgb = np.empty_like(EXEMPLAR_IMAGE[y1:y2, x1:x2, :]) np.copyto(comp_rgb, EXEMPLAR_IMAGE[y1:y2, x1:x2, :]) comp_rgb[:, :, 0] = comp_rgb[:, :, 0] * comp_shape comp_rgb[:, :, 1] = comp_rgb[:, :, 1] * comp_shape comp_rgb[:, :, 2] = comp_rgb[:, :, 2] * comp_shape ar = np.size( comp_context, 0)/(float(np.size(comp_context, 1)) + sys.float_info.epsilon) # -- get the comp-list exemplar_shapes[iter_] = {} exemplar_shapes[iter_]['comp_shape'] = comp_shape exemplar_shapes[iter_]['comp_context'] = comp_context exemplar_shapes[iter_]['comp_rgb'] = comp_rgb exemplar_shapes[iter_]['org_rgb'] = EXEMPLAR_IMAGE[y1:y2, x1:x2, :] exemplar_shapes[iter_]['shape_label'] = category_list[n] exemplar_shapes[iter_]['ar'] = ar exemplar_shapes[iter_]['bbox'] = [y1, x1, y2, x2] exemplar_shapes[iter_]['dim'] = [ np.size(nth_label_map, 0), np.size(nth_label_map, 1)] iter_ = iter_ + 1 else: nth_inst_map = np.empty_like(instances) np.copyto(nth_inst_map, instances) nth_inst_map[nth_inst_map == 0] = -1 nth_inst_map[nth_label_map == 0] = -1 nth_inst_ids = np.unique(nth_inst_map) nth_inst_ids = nth_inst_ids[nth_inst_ids != -1] for m in range(0, len(nth_inst_ids)): mth_inst_map = np.empty_like(nth_inst_map) np.copyto(mth_inst_map, nth_inst_map) mth_inst_map[mth_inst_map != nth_inst_ids[m]] = -1 mth_inst_map[mth_inst_map == nth_inst_ids[m]] = 1 mth_inst_map[mth_inst_map == -1] = 0 # -- [m_r, m_c] = np.nonzero(mth_inst_map) y1 = np.amin(m_r) y2 = np.amax(m_r) x1 = np.amin(m_c) x2 = np.amax(m_c) comp_shape = mth_inst_map[y1:y2, x1:x2] comp_context = LABEL_MAP[y1:y2, x1:x2] comp_rgb = np.empty_like( EXEMPLAR_IMAGE[y1:y2, x1:x2, :])
np.copyto(comp_rgb, EXEMPLAR_IMAGE[y1:y2, x1:x2, :])
numpy.copyto
import torch from gcn_lib.dense import DilatedKNN2d from gcn_lib.dense.torch_vertex1d import MLP1dLayer, GraphConv1d, DenseGraphBlock1d, ResGraphBlock1d, PlainGraphBlock1d from torch.nn import Sequential as Seq import numpy as np class DeepGCN(torch.nn.Module): def __init__(self, config, lbl_values, ign_lbls): super(DeepGCN, self).__init__() in_channels = config.in_channels n_classes = config.n_classes channels = config.n_filters block = config.block conv = config.conv k = config.k self.k = k act = config.act norm = config.norm bias = config.bias stochastic = config.stochastic epsilon = config.epsilon dropout = config.dropout self.n_blocks = config.n_blocks c_growth = 0 # self.knn = DilatedKNN2d(k, 1, stochastic, epsilon) self.head = GraphConv1d(in_channels, channels, conv, act, norm, bias, k) if block.lower() == 'res': self.backbone = Seq(*[ResGraphBlock1d(channels, conv, act, norm, bias, k) for _ in range(self.n_blocks - 1)]) elif block.lower() == 'plain': self.backbone = Seq(*[PlainGraphBlock1d(channels, conv, act, norm, bias, k) for _ in range(self.n_blocks - 1)]) elif block.lower() == 'dense': c_growth = channels self.backbone = Seq(*[DenseGraphBlock1d(channels + i * c_growth, c_growth, conv, act, norm, bias, k) for i in range(self.n_blocks - 1)]) else: raise NotImplementedError fusion_dims = int(channels * self.n_blocks + c_growth * ((1 + self.n_blocks - 1) * (self.n_blocks - 1) / 2)) self.fusion_block = MLP1dLayer([fusion_dims, 1024], act, norm, bias) self.prediction = Seq(*[MLP1dLayer([fusion_dims+1024, 512], act, norm, bias), MLP1dLayer([512, 256], act, norm, bias, drop=dropout), MLP1dLayer([256, n_classes], None, None, bias)]) self.model_init() # List of valid labels (those not ignored in loss) self.valid_labels = np.sort([c for c in lbl_values if c not in ign_lbls]) # Choose segmentation loss if len(config.class_w) > 0: class_w = torch.from_numpy(
np.array(config.class_w, dtype=np.float32)
numpy.array
import json import os import sys import tempfile from collections import namedtuple from pathlib import Path import numpy as np import pandas as pd import pytest from morphio.vasculature import Vasculature from numpy import testing as npt from pandas import testing as pdt from vascpy import SectionVasculature from vascpy import conversion as tested np.set_printoptions(threshold=sys.maxsize) from vascpy.exceptions import VasculatureAPIError from vascpy.point_vasculature import PointGraph DATAPATH = Path(__file__).parent / "data" class MockSection: __slots__ = "id", "type", "points", "diameters", "successors", "predecessors" def __init__(self, sid, points, diameters): self.id = sid self.type = 1 self.points = points self.diameters = diameters self.successors = [] self.predecessors = [] def __str__(self): return "< {} ps: {} ss: {} >".format( self.id, [s.id for s in self.predecessors], [s.id for s in self.successors] ) __repr__ = __str__ def test_sections_to_point_connectivity__one_section(): points = np.random.random((5, 3)) diameters = np.random.random(5) section = MockSection(0, points, diameters) r_points, r_diameters, r_edge_properties = tested._sections_to_point_connectivity([section]) npt.assert_allclose(points, r_points) npt.assert_allclose(diameters, r_diameters) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.BEG_NODE], [0, 1, 2, 3]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.END_NODE], [1, 2, 3, 4]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.SECTION_ID], [0, 0, 0, 0]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.SEGMENT_ID], [0, 1, 2, 3]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.EDGE_TYPE], [1, 1, 1, 1]) def test_sections_to_point_connectivity__bifurcation(): points1 = np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]) diameters1 = np.array([0.0, 1.0, 2.0]) points2 = np.array([[2.0, 2.0, 2.0], [3.0, 3.0, 3.0], [4.0, 4.0, 4.0]]) diameters2 = np.array([2.0, 3.0, 4.0]) points3 = np.array([[2.0, 2.0, 2.0], [5.0, 5.0, 5.0], [6.0, 6.0, 6.0]]) diameters3 = np.array([2.0, 5.0, 6.0]) s1 = MockSection(0, points1, diameters1) s2 = MockSection(1, points2, diameters2) s3 = MockSection(2, points3, diameters3) s1.successors = [s2, s3] s2.predecessors = [s1] s3.predecessors = [s1] sections = [s1, s2, s3] r_points, r_diameters, r_edge_properties = tested._sections_to_point_connectivity(sections) npt.assert_allclose( r_points, [ [0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0], [4.0, 4.0, 4.0], [5.0, 5.0, 5.0], [6.0, 6.0, 6.0], ], ) npt.assert_allclose(r_diameters, [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.BEG_NODE], [0, 1, 2, 3, 2, 5]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.END_NODE], [1, 2, 3, 4, 5, 6]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.SECTION_ID], [0, 0, 1, 1, 2, 2]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.SEGMENT_ID], [0, 1, 0, 1, 0, 1]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.EDGE_TYPE], [1, 1, 1, 1, 1, 1]) def test_sections_to_point_connectivity__bifurcation_2(): points1 = np.array([[0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]) diameters1 = np.array([0.0, 1.0, 2.0]) points2 = np.array([[2.0, 2.0, 2.0], [3.0, 3.0, 3.0], [4.0, 4.0, 4.0]]) diameters2 = np.array([2.0, 3.0, 4.0]) points3 = np.array([[2.0, 2.0, 2.0], [5.0, 5.0, 5.0], [6.0, 6.0, 6.0]]) diameters3 = np.array([2.0, 5.0, 6.0]) s1 = MockSection(0, points1, diameters1) s2 = MockSection(1, points2, diameters2) s3 = MockSection(2, points3, diameters3) s1.successors = [s2, s3] s2.predecessors = [s1] s3.predecessors = [s1] sections = [s1, s2, s3] r_points, r_diameters, r_edge_properties = tested._sections_to_point_connectivity(sections) npt.assert_allclose( r_points, [ [0.0, 0.0, 0.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0], [4.0, 4.0, 4.0], [5.0, 5.0, 5.0], [6.0, 6.0, 6.0], ], ) npt.assert_allclose(r_diameters, [0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.BEG_NODE], [0, 1, 2, 3, 2, 5]) npt.assert_equal(r_edge_properties[:, tested.ColsEdges.END_NODE], [1, 2, 3, 4, 5, 6])
npt.assert_equal(r_edge_properties[:, tested.ColsEdges.SECTION_ID], [0, 0, 1, 1, 2, 2])
numpy.testing.assert_equal
# -*- coding: utf-8 -*- """ This file is part of pyCMBS. (c) 2012- <NAME> For COPYING and LICENSE details, please refer to the LICENSE file """ from unittest import TestCase import unittest from nose.tools import assert_raises import numpy as np from pycmbs.data import Data from pycmbs.geostatistic import Geostatistic, Variogram, SphericalVariogram class TestData(unittest.TestCase): def setUp(self): D = Data(None, None) tmp = np.random.random((55, 20)) D.data = np.ma.array(tmp, mask=tmp!=tmp) lon = np.arange(-10.,10.) # -10 ... 9 lat = np.arange(-60., 50., 2.) # -60 ... 48 LON, LAT = np.meshgrid(lon, lat) D.lon = np.ma.array(LON, mask=LON!=LON) D.lat = np.ma.array(LAT, mask=LAT!=LAT) self.x = D def tearDown(self): pass def test_invalid_geometry(self): x = self.x x.data = np.random.random((5,4,3)) with self.assertRaises(ValueError): G = Geostatistic(x) def test_init(self): with self.assertRaises(ValueError): # missing range bins G = Geostatistic(self.x) # 3D is invalid y = self.x.copy() y.data = np.random.random((10,20,30)) with self.assertRaises(ValueError): # missing range bins G = Geostatistic(self.x, lags = np.random.random(10)) y = self.x.copy() # missing 3D y.data = np.random.random((10,20,30)) with self.assertRaises(ValueError): G = Geostatistic(self.x) bins = np.random.random(10) with self.assertRaises(ValueError): G = Geostatistic(self.x, lags=bins) bins = np.arange(10) G = Geostatistic(self.x, lags=bins) def test_plot(self): bins = np.arange(3) / 6. G = Geostatistic(self.x, lags=bins) G.set_center_position(0., 0.) G.plot_semivariogram() def test_percentiles(self): bins = np.arange(10) G = Geostatistic(self.x, lags=bins) G.set_center_position(5., -20.) p = [0.05, 0.1, 0.5] G.plot_percentiles(p, ax=None, logy=False, ref_lags=None) def test_set_center(self): bins = np.arange(10) G = Geostatistic(self.x, lags=bins) G.set_center_position(5., -20.) self.assertEqual(G.lon_center, 5.) self.assertEqual(G.lat_center, -20.) def test_center_pos(self): bins = np.arange(10) G = Geostatistic(self.x, lags=bins) # forgot to set center with self.assertRaises(ValueError): G._get_center_pos() G.set_center_position(-10., -60.) i_lat, i_lon = G._get_center_pos() self.assertEqual(i_lat, 0) self.assertEqual(i_lon, 0) G.set_center_position(9., 48.) i_lat, i_lon = G._get_center_pos() self.assertEqual(i_lat, 54) self.assertEqual(i_lon, 19) G.set_center_position(-10.1, 48.) i_lat, i_lon = G._get_center_pos() self.assertEqual(i_lat, 54) self.assertEqual(i_lon, 0) def test_get_coordinate_at_distance(self): bins = np.arange(10) G = Geostatistic(self.x, lags=bins) with self.assertRaises(ValueError): # missing center lon, lat = G.get_coordinates_at_distance(2.5, dist_threshold=1.) G.set_center_position(5., -20.) lon, lat = G.get_coordinates_at_distance(2.5, dist_threshold=1.) def test_variogram_semivariance(self): V = Variogram() x = np.random.random(100) lon = np.random.random(100)*10.-90. lat = np.random.random(100)*10.-90. h_km = 20. dh_km = 2. # just test if it works; no reference solution yet g = V._semivariance(x, lon, lat,
np.asarray([h_km])
numpy.asarray
import numpy as np def makeGaussGridByOrder(order): nAz = 2*(order + 1) nEl = order + 1 return makeGaussGrid(nAz, nEl + 2) def makeGaussGrid(resolutionAz, resolutionEl): az = np.linspace(0, 360, resolutionAz + 1) el = np.linspace(0, 180, resolutionEl) # remove last element of azimuth list to avoid 0°/360° ambiguity az = np.delete(az, resolutionAz) # remove 0° and 180° from elevation list to avoid multiple north/south poles el = np.delete(el, [0, resolutionEl - 1]) size = az.size * el.size + 2 grid =
np.zeros(size * 2)
numpy.zeros
#!/usr/bin/env python import argparse import json import math import os import shutil import xml.etree.ElementTree as ET import numpy as np import igibson from igibson.scenes.igibson_indoor_scene import SCENE_SOURCE from igibson.utils.assets_utils import ( get_3dfront_scene_path, get_cubicasa_scene_path, get_ig_category_path, get_ig_scene_path, ) from igibson.utils.utils import parse_config """ Script to update all urdfs for file in ../../igibson/ig_dataset/scenes/* python scene_converter.py $(basename $file) """ config = parse_config(os.path.join(igibson.root_path, "test", "test.yaml")) missing_models = set( [ "exercise_equipment", "curtain", "garbage_compressor", "staircase", "closet", "ac_engine", "water_hearter", "clutter", "ceiling_lamp", ] ) def convert_scene(scene_name, scene_source, select_best=False): if scene_source not in SCENE_SOURCE: raise ValueError("Unsupported scene source: {}".format(scene_source)) if scene_source == "IG": scene_dir = get_ig_scene_path(scene_name) elif scene_source == "CUBICASA": scene_dir = get_cubicasa_scene_path(scene_name) else: scene_dir = get_3dfront_scene_path(scene_name) scene_file = os.path.join(scene_dir, "urdf", "{}_orig.urdf".format(scene_name)) scene_tree = ET.parse(scene_file) bbox_dir = os.path.join(scene_dir, "bbox") os.makedirs(bbox_dir, exist_ok=True) with open(os.path.join(scene_dir, "misc", "all_objs.json"), "r") as all_objs_file: all_objs = json.load(all_objs_file) total = 0 categories = [] for c, obj in enumerate(all_objs): obj_category = obj["category"].lower() # print('obj_category:', obj_category) if obj_category in missing_models: print("We don't have yet models of ", obj_category) continue total += 1 link_name = obj_category + "_" + str(c) if obj_category not in categories: categories += [obj_category] edge_x = obj["edge_x"] bbox_x =
np.linalg.norm(edge_x)
numpy.linalg.norm
import pandas as pd import numpy as np import logging import os import geojson import math import itertools import geopandas as gpd from geopy.geocoders import Nominatim from shapely.geometry import Point, Polygon, MultiPolygon, shape import shapely.ops from pyproj import Proj from bs4 import BeautifulSoup import requests from abc import ABC, abstractmethod from .geolocations import * from .visualizations import * logging.basicConfig(level=logging.WARNING) class OpinionNetworkModel(ABC): """ Abstract base class for network model """ def __init__(self, probabilities = [.45,.1,.45], power_law_exponent = 1.5, openness_to_neighbors = 1.5, openness_to_influencers = 1.5, distance_scaling_factor = 1/10, importance_of_weight = 1.6, importance_of_distance = 8.5, include_opinion = True, include_weight = True, left_reach = 0.8, right_reach = 0.8, threshold = -1 ): """Returns initialized OpinionNetworkModel. Inputs: probabilities: (list) probabilities of each mode; these are the values "p_0,p_1,p_2" from [1]. power_law_exponent: (float) exponent of power law, must be > 0; this is "gamma" from [1]. openness_to_neighbors: (float) maximum inter-mode distance that agents can influence; this is "b" from [1]. openness_to_influencers: (float) distance in opinion space that mega-influencers can reach; this is "epsilon" from [1]. distance_scaling_factor: (float) Scale distancy by this amount, must be >0; this is "lambda" from [1]. importance_of_weight: (float) Raise weights to this power, must be > 0; this is "alpha" from [1]. importance_of_distance: (float) Raise adjusted distance to this power, must be > 0; this is "delta" from [1]. include_opinion: (boolean) If True, include distance in opinion space in the probability measure. include_weight: (boolean) If True, include influencer weight in the probability measure. left_reach: (float) this is the proportion of the susceptible population that the left mega-influencers will actually reach, must be between 0 and 1; this is p_L from [1] right_reach: (float) this is the proportion of the susceptible population that the right mega-influencers will actually reach, must be between 0 and 1; this is p_R from [1] threshold: (int) value below which opinions no longer change. Outputs: Fully initialized OpinionNetwork instance. """ self.probabilities = probabilities self.power_law_exponent = power_law_exponent self.openness_to_neighbors = openness_to_neighbors self.openness_to_influencers = openness_to_influencers self.distance_scaling_factor = distance_scaling_factor self.importance_of_weight = importance_of_weight self.importance_of_distance = importance_of_distance self.include_opinion = include_opinion self.include_weight = include_weight self.left_reach = left_reach self.right_reach = right_reach self.threshold = threshold self.agent_df = None self.belief_df = None self.prob_df = None self.adjacency_df = None self.mega_influencer_df = None self.clustering_coefficient = 0 self.mean_degree = 0 def populate_model(self, num_agents = None, geo_df = None, bounding_box = None, show_plot = False): """ Fully initialized but untrained OpinionNetworkModel instance. Input: num_agents: (int) number of agents to plot. geo_df: (dataframe) geographic datatframe including county geometry. bounding_box: (list) list of 4 vertices determining a bounding box where agents are to be added. If no box is given, agents are added to a random triangle. show_plot: (bool) if true then plot is shown. Output: OpinionNetworkModel instance. """ if bounding_box is None: agent_df = self.add_random_agents_to_triangle(num_agents = num_agents, geo_df = geo_df, show_plot = False) else: if geo_df is None: raise ValueError("If a bounding box is specified, then a " "geo_df must also be given.") agent_df = self.add_random_agents_to_triangles(geo_df = geo_df, bounding_box = bounding_box, show_plot = False) logging.info("\n {} agents added.".format(agent_df.shape[0])) belief_df = self.assign_weights_and_beliefs(agent_df) logging.info("\n Weights and beliefs assigned.") prob_df = self.compute_probability_array(belief_df) adjacency_df = self.compute_adjacency(prob_df) logging.info("\n Adjacencies computed.") # Connect mega-influencers mega_influencer_df = self.connect_mega_influencers(belief_df) # Compute network statistics. logging.info("\n Computing network statistics...") cc, md = self.compute_network_stats(adjacency_df) logging.info("\n Clustering Coefficient: {}".format(cc)) logging.info("\n Mean Degree: {}".format(md)) self.agent_df = agent_df self.belief_df = belief_df self.prob_df = prob_df self.adjacency_df = adjacency_df self.mega_influencer_df = mega_influencer_df self.clustering_coefficient = cc self.mean_degree = md if show_plot == True: self.plot_initial_network() return None def plot_initial_network(self): plot_network(self) return None def add_random_agents_to_triangle(self, num_agents, geo_df = None, triangle_object = None, show_plot = False): """ Assign N points on a triangle using Poisson point process. Input: num_agents: (int) number of agents to add to the triangle. If None, then agents are added according to density. geo_df: (dataframe) geographic datatframe including county geometry. triangle_object: (Polygon) bounded triangular region to be populated. show_plot: (bool) if true then plot is shown. Returns: An num_agents x 2 dataframe of point coordinates. """ if triangle_object is None: # If no triangle is given, initialize triangle with area 1 km^2. triangle_object = Polygon([[0,0],[1419,0], [1419/2,1419],[0,0]]) # If density is specified, adjust triangle size. if geo_df is not None: density = geo_df.loc[0,"density"] b = 1419 * (num_agents/density) ** (1/2) triangle_object = Polygon([[0,0],[b,0], [b/2,b],[0,0]]) bnd = list(triangle_object.boundary.coords) gdf = gpd.GeoDataFrame(geometry = [triangle_object]) # Establish initial CRS gdf.crs = "EPSG:3857" # Set CRS to lat/lon gdf = gdf.to_crs(epsg=4326) # Extract coordinates co = list(gdf.loc[0,"geometry"].exterior.coords) lon, lat = zip(*co) pa = Proj( "+proj=aea +lat_1=37.0 +lat_2=41.0 +lat_0=39.0 +lon_0=-106.55") x, y = pa(lon, lat) coord_proj = {"type": "Polygon", "coordinates": [zip(x, y)]} area = shape(coord_proj).area / (10 ** 6) # area in km^2 # Get Vertices V1 = np.array(bnd[0]) V2 = np.array(bnd[1]) V3 = np.array(bnd[2]) # Sample from uniform distribution on [0,1] U = np.random.uniform(0,1,num_agents) V = np.random.uniform(0,1,num_agents) UU = np.where(U + V > 1, 1-U, U) VV = np.where(U + V > 1, 1-V, V) # Shift triangle into origin and and place points. agents = (UU.reshape(len(UU),-1) * (V2 - V1).reshape(-1,2)) + ( VV.reshape(len(VV),-1) * (V3 - V1).reshape(-1,2)) # Shift points back to original position. agents = agents + V1.reshape(-1,2) agent_df = pd.DataFrame(agents, columns = ["x","y"]) if show_plot == True: plot_agents_on_triangle(triangle_object, agent_df) return agent_df def add_random_agents_to_triangles(self, geo_df, bounding_box = None, show_plot = False): """ Plots county with triangular regions. Inputs: geo_df: (dataframe) geographic datatframe including county geometry. bounding_box: (list) list of 4 vertices determining a bounding box where agents are to be added. If no box is given, then the bounding box is taken as the envelope of the county. show_plot: (bool) if true then plot is shown. Returns: Populated triangles in specified county enclosed in the given bounding box where regions are filled with proper density using a Poisson point process. """ tri_dict = make_triangulation(geo_df) tri_df = gpd.GeoDataFrame({"geometry":[Polygon(t) for t in tri_dict["geometry"]["coordinates"]]}) # Establish initial CRS tri_df.crs = "EPSG:3857" # Set CRS to lat/lon. tri_df = tri_df.to_crs(epsg=4326) # Get triangles within bounding box. if bounding_box is None: geo_df.crs = "EPSG:3857" geo_df = geo_df.to_crs(epsg=4326) sq_df = gpd.GeoDataFrame(geo_df["geometry"]) else: sq_df = gpd.GeoDataFrame({"geometry":[Polygon(bounding_box)]}) inset = [i for i in tri_df.index if tri_df.loc[i,"geometry"].within(sq_df.loc[0,"geometry"])] # Load triangle area. agent_df = pd.DataFrame() for i in inset: co = list(tri_df.loc[i,"geometry"].exterior.coords) lon, lat = zip(*co) pa = Proj( "+proj=aea +lat_1=37.0 +lat_2=41.0 +lat_0=39.0 +lon_0=-106.55") x, y = pa(lon, lat) coord_proj = {"type": "Polygon", "coordinates": [zip(x, y)]} area = shape(coord_proj).area / (10 ** 6) # area in km^2 num_agents = int(area * geo_df.loc[0,"density"]) df = pd.DataFrame(columns = ["x","y"]) if num_agents > 0: df = self.add_random_agents_to_triangle(num_agents, geo_df = geo_df, triangle_object = tri_df.loc[i,"geometry"], show_plot = False) agent_df = pd.concat([agent_df,df]) agent_df.reset_index(drop = True, inplace = True) # Plot triangles. if show_plot == True: fig, ax = plt.subplots(figsize = (10,10)) tri_df.loc[inset,:].boundary.plot(ax = ax, alpha=1, linewidth = 3, edgecolor = COLORS["light_blue"]) ax.scatter(agent_df["x"], agent_df["y"], s = 3) ax.set_axis_off() ax.set_aspect(.9) plt.show() return agent_df def assign_weights_and_beliefs(self, agent_df, show_plot = False): """ Assign weights and beliefs (i.e. modes) accoring to probabilities. Inputs: agent_df: (dataframe) xy-coordinates for agents. show_plot: (bool) if true then plot is shown. Returns: Dataframe with xy-coordinates, beliefs, and weights for each point. """ belief_df = agent_df.copy() power_law_exponent = self.power_law_exponent k = -1/(power_law_exponent) modes = [i for i in range(len(self.probabilities))] assert np.sum(np.array(self.probabilities)) == 1, "Probabilities must sum to 1." belief_df["weight"] = np.random.uniform(0,1,belief_df.shape[0]) ** (k) belief_df["belief"] = np.random.choice(modes, belief_df.shape[0], p = self.probabilities) belief_df["decile"] = pd.qcut(belief_df["weight"], q = 100, labels = [ i for i in range(1,101)]) if show_plot == True: plot_agents_with_belief_and_weight(belief_df) return belief_df def compute_probability_array(self, belief_df): """ Return dataframe of probability that row n influences column m. Inputs: belief_df: (dataframe) xy-coordinats, beliefs and weights of agents. Returns: Dataframe with the probability that agent n influces agent m in row n column m. """ n = belief_df.index.shape[0] prob_array = np.ones((n,n)) dist_array = np.zeros((n,n)) for i in range(n): point_i = Point(belief_df.loc[i,"x"],belief_df.loc[i,"y"]) # Get distances from i to each other point. dist_array[i,:] = [point_i.distance(Point(belief_df.loc[j,"x"], belief_df.loc[j,"y"]) ) for j in belief_df.index] # Compute the dimensionless distance metric. diam = dist_array.max().max() lam = (self.distance_scaling_factor * diam) delta = -1 * self.importance_of_distance dist_array = np.where(dist_array == 0,np.nan, dist_array) dist_array = (1 + (dist_array/lam)) ** delta prob_array = prob_array * dist_array # Only allow connections to people close in opinion space. if self.include_opinion == True: op_array =
np.zeros((n,n))
numpy.zeros
import collections.abc import os import numpy as np import pycuda.driver as cuda import pycuda.gpuarray as gpuarray from pycuda.compiler import SourceModule import pyconrad import pyconrad.config from conebeam_projector._utils import divup, ndarray_to_float_tex _SMALL_VALUE = 1e-12 _ = pyconrad.ClassGetter( 'edu.stanford.rsl.conrad.numerics' ) # type: pyconrad.AutoCompleteConrad class CudaProjector: _kernel_backprojection_withvesselmask = None _module_backprojection = None _tex_backprojection = None _kernel_backprojection = None _kernel_backprojection_withvesselmask = None _kernel_backprojection_multiplicative = None _module_forwardprojection = None _kernel_forwardprojection = None _tex_forwardprojection = None def __init__(self): self.is_configured = False self._manually_set_normalizer = None self._init_kernels() self._num_projections = pyconrad.config.get_geometry().getProjectionStackSize() self.start_idx = 0 self.forward_projection_stepsize = 1. self.stop_idx = self._num_projections self._init_config() def _init_config(self): geo = pyconrad.config.get_geometry() self._voxelSize = (geo.getVoxelSpacingX(), geo.getVoxelSpacingY(), geo.getVoxelSpacingZ()) self._volumeSize = (geo.getReconDimensionX(), geo.getReconDimensionY(), geo.getReconDimensionZ()) self._origin = (geo.getOriginX(), geo.getOriginY(), geo.getOriginZ()) self._volshape = pyconrad.config.get_reco_shape() self._volumeEdgeMaxPoint = [] for i in range(3): self._volumeEdgeMaxPoint.append(self._volumeSize[i] - 1. - _SMALL_VALUE) # self._volumeEdgeMaxPoint.append( self._volumeSize[i] - # 0.5 - SMALL_VALUE) self._volumeEdgeMinPoint = [] for i in range(3): self._volumeEdgeMinPoint.append(-1. + _SMALL_VALUE) self._projectionMatrices = pyconrad.config.get_projection_matrices() self._num_projections = geo.getProjectionStackSize() self._width = geo.getDetectorWidth() self._height = geo.getDetectorHeight() self._srcPoint = np.ndarray([3 * self._num_projections], np.float32) self._invARmatrix = np.ndarray( [3 * 3 * self._num_projections], np.float32) for i in range(self._num_projections): self._computeCanonicalProjectionMatrix(i) self._inv_AR_matrix_gpu = gpuarray.to_gpu(self._invARmatrix) self._proj_mats_gpu = gpuarray.to_gpu(self._projectionMatrices) if self._manually_set_normalizer is None: self._normalizer = geo.getSourceToAxisDistance( ) * geo.getSourceToDetectorDistance() * np.pi / self._num_projections else: self._normalizer = self._manually_set_normalizer self.is_configured = True # TODO: property for _manually_set_normalizer def _init_kernels(self): if not self._module_backprojection: with open(os.path.join(os.path.dirname(__file__), 'BackProjectionKernel.cu')) as f: read_data = f.read() self._module_backprojection = SourceModule(read_data, options=['-Wno-deprecated-gpu-targets']) self._tex_backprojection = self._module_backprojection.get_texref( 'tex_sino') self._kernel_backprojection = self._module_backprojection.get_function( "backProjectionKernel") self._kernel_backprojection_withvesselmask = self._module_backprojection.get_function( "backProjectionKernelWithConstrainingVolume") self._kernel_backprojection_multiplicative = self._module_backprojection.get_function( "backprojectMultiplicative") with open(os.path.join(os.path.dirname(__file__), 'ForwardProjectionKernel.cu')) as f: read_data = f.read() self._module_forwardprojection = SourceModule(read_data, options=['-Wno-deprecated-gpu-targets']) self._kernel_forwardprojection = self._module_forwardprojection.get_function("forwardProjectionKernel") self._tex_forwardprojection = self._module_forwardprojection.get_texref('gTex3D') def _getOriginTransform(self): currOrigin = _.SimpleVector.from_list(self._origin) centeredOffset = _.SimpleVector.from_list(self._volumeSize) voxelSpacing = _.SimpleVector.from_list(self._voxelSize) centeredOffset.subtract(1.) centeredOffset.multiplyElementWiseBy([voxelSpacing]) centeredOffset.divideBy(-2.) return _.SimpleOperators.subtract(currOrigin, centeredOffset) def forward_project_cuda_raybased(self, vol, sino_gpu, use_maximum_intensity_projection=False, additive=False, **texture_kwargs): self._check_config() assert sino_gpu.ndim == 3 cu_array = None if isinstance(vol, gpuarray.GPUArray) or (isinstance(vol, np.ndarray) and vol.ndim == 3): cu_array = ndarray_to_float_tex( self._tex_forwardprojection, vol, **texture_kwargs) block = (32, 8, 1) grid = (int(divup(sino_gpu.shape[2], block[0])), int(divup(sino_gpu.shape[1], block[1])), 1) for t in range(sino_gpu.shape[0]): if isinstance(vol, list) or (isinstance(vol, np.ndarray) and vol.ndim == 4): cu_array = ndarray_to_float_tex( self._tex_forwardprojection, vol[t], **texture_kwargs) assert vol[t].dtype == np.float32 elif isinstance(vol, collections.abc.Callable): cu_array = ndarray_to_float_tex( self._tex_forwardprojection, vol(t), **texture_kwargs) assert vol(t).dtype == np.float32 elif isinstance(vol, gpuarray.GPUArray) or (isinstance(vol, np.ndarray) and vol.ndim == 3): assert vol.dtype == np.float32 else: raise TypeError('!') assert sino_gpu.dtype == np.float32 self._kernel_forwardprojection( sino_gpu[t], np.int32(sino_gpu.shape[2]), np.int32(sino_gpu.shape[1]), np.float32(self.forward_projection_stepsize), np.float32(self._voxelSize[0]), np.float32(self._voxelSize[1]), np.float32(self._voxelSize[2]), np.float32(self._volumeEdgeMinPoint[0]), np.float32(self._volumeEdgeMinPoint[1]), np.float32(self._volumeEdgeMinPoint[2]), np.float32(self._volumeEdgeMaxPoint[0]), np.float32(self._volumeEdgeMaxPoint[1]), np.float32(self._volumeEdgeMaxPoint[2]), np.float32(self._srcPoint[3 * t + 0]), np.float32(self._srcPoint[3 * t + 1]), np.float32(self._srcPoint[3 * t + 2]), self._inv_AR_matrix_gpu, np.int32(t), np.int32(use_maximum_intensity_projection), np.int32(additive), grid=grid, block=block ) cu_array.free() def forward_project_cuda_idx(self, vol, sino_gpu, idx, use_maximum_intensity_projection=False, additive=False, **texture_kwargs): # self._check_config() assert idx >= 0 and idx < self._num_projections, "Invalid projection index" assert sino_gpu.ndim == 2 assert sino_gpu.size == sino_gpu.shape[1] * sino_gpu.shape[0] assert sino_gpu.dtype == np.float32 block = (32, 8, 1) grid = (int(divup(sino_gpu.shape[1], block[0])), int(divup(sino_gpu.shape[0], block[1])), 1) if isinstance(vol, list) or (isinstance(vol, np.ndarray) and vol.ndim == 4): ndarray_to_float_tex(self._tex_forwardprojection, vol[idx], **texture_kwargs) elif isinstance(vol, collections.Callable): ndarray_to_float_tex(self._tex_forwardprojection, vol(idx), **texture_kwargs) elif isinstance(vol, gpuarray.GPUArray) or (isinstance(vol, np.ndarray) and vol.ndim == 3): ndarray_to_float_tex(self._tex_forwardprojection, vol, **texture_kwargs) else: raise TypeError('!') self._kernel_forwardprojection( sino_gpu, np.int32(sino_gpu.shape[1]), np.int32(sino_gpu.shape[0]), np.float32(self.forward_projection_stepsize), # step size np.float32(self._voxelSize[0]), np.float32(self._voxelSize[1]), np.float32(self._voxelSize[2]), np.float32(self._volumeEdgeMinPoint[0]), np.float32(self._volumeEdgeMinPoint[1]), np.float32(self._volumeEdgeMinPoint[2]), np.float32(self._volumeEdgeMaxPoint[0]), np.float32(self._volumeEdgeMaxPoint[1]), np.float32(self._volumeEdgeMaxPoint[2]), np.float32(self._srcPoint[3 * idx + 0]), np.float32(self._srcPoint[3 * idx + 1]), np.float32(self._srcPoint[3 * idx + 2]), self._inv_AR_matrix_gpu, np.int32(idx), np.int32(use_maximum_intensity_projection), np.int32(additive), grid=grid, block=block ) def _computeCanonicalProjectionMatrix(self, projIdx): geo = pyconrad.config.get_geometry() proj = geo.getProjectionMatrices()[projIdx] self._invVoxelScale = _.SimpleMatrix(3, 3) self._invVoxelScale.setElementValue(0, 0, 1.0 / self._voxelSize[0]) self._invVoxelScale.setElementValue(1, 1, 1.0 / self._voxelSize[1]) self._invVoxelScale.setElementValue(2, 2, 1.0 / self._voxelSize[2]) invARmatrixMat = proj.getRTKinv() invAR = _.SimpleOperators.multiplyMatrixProd( self._invVoxelScale, invARmatrixMat) counter = 3 * 3 * projIdx for r in range(3): for c in range(3): self._invARmatrix[counter] = invAR.getElement(r, c) counter += 1 originShift = self._getOriginTransform() srcPtW = proj.computeCameraCenter().negated() self._srcPoint[3 * projIdx + 0] = -(-0.5 * (self._volumeSize[0] - 1.0) + originShift.getElement( 0) * self._invVoxelScale.getElement(0, 0) + self._invVoxelScale.getElement(0, 0) * srcPtW.getElement(0)) self._srcPoint[3 * projIdx + 1] = -(-0.5 * (self._volumeSize[1] - 1.0) + originShift.getElement( 1) * self._invVoxelScale.getElement(1, 1) + self._invVoxelScale.getElement(1, 1) * srcPtW.getElement(1)) self._srcPoint[3 * projIdx + 2] = -(-0.5 * (self._volumeSize[2] - 1.0) + originShift.getElement( 2) * self._invVoxelScale.getElement(2, 2) + self._invVoxelScale.getElement(2, 2) * srcPtW.getElement(2)) def backProjectPixelDrivenCudaIdx(self, sino_gpu: gpuarray.GPUArray, vol_gpu: gpuarray.GPUArray, projIdx, constraining_vol=None, multiplicative=False, **texture_kwargs): # self._check_config() assert projIdx >= 0 and projIdx < self._num_projections, "Invalid projection index" assert sino_gpu.ndim == 2 assert vol_gpu.shape == self._volshape assert sino_gpu.dtype == np.float32 assert vol_gpu.dtype == np.float32 if constraining_vol: assert isinstance(constraining_vol, gpuarray.GPUArray) cu_array = ndarray_to_float_tex(self._tex_backprojection, sino_gpu, **texture_kwargs) block = (32, 8, 1) grid = (int(divup(vol_gpu.shape[2], block[0])), int(divup(vol_gpu.shape[1], block[1])), 1) if constraining_vol: if multiplicative: self._kernel_backprojection_multiplicative(vol_gpu.gpudata, self._proj_mats_gpu, constraining_vol, np.int32(projIdx), np.int32( self._volshape[2]), np.int32( self._volshape[1]), np.int32( self._volshape[0]), np.float32( -self._origin[0]), np.float32( -self._origin[1]), np.float32( -self._origin[2]), np.float32( self._voxelSize[0]), np.float32( self._voxelSize[1]), np.float32( self._voxelSize[2]), np.float32( self._normalizer), grid=grid, block=block ) else: self._kernel_backprojection_withvesselmask(vol_gpu.gpudata, self._proj_mats_gpu, constraining_vol, np.int32(projIdx), np.int32( self._volshape[2]), np.int32( self._volshape[1]), np.int32( self._volshape[0]), np.float32( -self._origin[0]), np.float32( -self._origin[1]), np.float32( -self._origin[2]), np.float32( self._voxelSize[0]), np.float32( self._voxelSize[1]), np.float32( self._voxelSize[2]), np.float32( self._normalizer), grid=grid, block=block ) else: self._kernel_backprojection(vol_gpu.gpudata, self._proj_mats_gpu, np.int32(projIdx), np.int32(self._volshape[2]), np.int32(self._volshape[1]), np.int32(self._volshape[0]), np.float32(-self._origin[0]), np.float32(-self._origin[1]), np.float32(-self._origin[2]), np.float32(self._voxelSize[0]), np.float32(self._voxelSize[1]), np.float32(self._voxelSize[2]), np.float32(self._normalizer), grid=grid, block=block ) cu_array.free() def backProjectPixelDrivenCuda(self, sino: np.ndarray, vol=None, multiplicative=False, static_vol_gpu=None, **texture_kwargs): assert sino.dtype == np.float32 # self._check_config() if not vol: vol = np.zeros(self._volshape, np.float32) if isinstance(vol, gpuarray.GPUArray): vol_gpu = vol assert vol_gpu.dtype == np.float32 else: vol_gpu = cuda.mem_alloc(vol.nbytes) if isinstance(vol, np.ndarray) and vol.ndim == 3: cuda.memcpy_htod(vol_gpu, vol) for t in range(self.start_idx, self.stop_idx): if isinstance(vol, list) or vol.ndim == 4: cuda.memcpy_htod(vol_gpu, vol[t]) cu_array = ndarray_to_float_tex(self._tex_backprojection, sino[t], **texture_kwargs) block = (32, 8, 1) grid = (int(divup(self._volshape[2], block[0])), int(divup(self._volshape[1], block[1])), 1) if multiplicative: self._kernel_backprojection_multiplicative(vol_gpu, self._proj_mats_gpu, static_vol_gpu,
np.int32(t)
numpy.int32
import numpy as np import pytest import aesara.tensor as aet from aesara import config, shared from aesara.compile.function import function from aesara.compile.mode import Mode from aesara.graph.basic import Constant from aesara.graph.fg import FunctionGraph from aesara.graph.opt import EquilibriumOptimizer from aesara.graph.optdb import OptimizationQuery from aesara.tensor.elemwise import DimShuffle from aesara.tensor.random.basic import ( dirichlet, multivariate_normal, normal, poisson, uniform, ) from aesara.tensor.random.op import RandomVariable from aesara.tensor.random.opt import ( local_dimshuffle_rv_lift, local_rv_size_lift, local_subtensor_rv_lift, ) from aesara.tensor.subtensor import AdvancedSubtensor, AdvancedSubtensor1, Subtensor from aesara.tensor.type import iscalar, vector no_mode = Mode("py", OptimizationQuery(include=[], exclude=[])) def apply_local_opt_to_rv(opt, op_fn, dist_op, dist_params, size, rng): dist_params_aet = [] for p in dist_params: p_aet = aet.as_tensor(p).type() p_aet.tag.test_value = p dist_params_aet.append(p_aet) size_aet = [] for s in size: s_aet = iscalar() s_aet.tag.test_value = s size_aet.append(s_aet) dist_st = op_fn(dist_op(*dist_params_aet, size=size_aet, rng=rng)) f_inputs = [ p for p in dist_params_aet + size_aet if not isinstance(p, (slice, Constant)) ] mode = Mode("py", EquilibriumOptimizer([opt], max_use_ratio=100)) f_opt = function( f_inputs, dist_st, mode=mode, ) (new_out,) = f_opt.maker.fgraph.outputs return new_out, f_inputs, dist_st, f_opt def test_inplace_optimization(): out = normal(0, 1) out.owner.inputs[0].default_update = out.owner.outputs[0] assert out.owner.op.inplace is False f = function( [], out, mode="FAST_RUN", ) (new_out, new_rng) = f.maker.fgraph.outputs assert new_out.type == out.type assert isinstance(new_out.owner.op, type(out.owner.op)) assert new_out.owner.op.inplace is True assert all( np.array_equal(a.data, b.data) for a, b in zip(new_out.owner.inputs[1:], out.owner.inputs[1:]) ) @config.change_flags(compute_test_value="raise") @pytest.mark.parametrize( "dist_op, dist_params, size", [ ( normal, [ np.array(1.0, dtype=config.floatX), np.array(5.0, dtype=config.floatX), ], [], ), ( normal, [ np.array([0.0, 1.0], dtype=config.floatX), np.array(5.0, dtype=config.floatX), ], [], ), ( normal, [ np.array([0.0, 1.0], dtype=config.floatX), np.array(5.0, dtype=config.floatX), ], [3, 2], ), ( multivariate_normal, [ np.array([[0], [10], [100]], dtype=config.floatX), np.diag(np.array([1e-6], dtype=config.floatX)), ], [2, 3], ), ( dirichlet, [np.array([[100, 1, 1], [1, 100, 1], [1, 1, 100]], dtype=config.floatX)], [2, 3], ), ], ) def test_local_rv_size_lift(dist_op, dist_params, size): rng = shared(np.random.RandomState(1233532), borrow=False) new_out, f_inputs, dist_st, f_opt = apply_local_opt_to_rv( local_rv_size_lift, lambda rv: rv, dist_op, dist_params, size, rng, ) assert aet.get_vector_length(new_out.owner.inputs[1]) == 0 @pytest.mark.parametrize( "ds_order, lifted, dist_op, dist_params, size, rtol", [ ( ("x",), True, normal, ( np.array(-10.0, dtype=np.float64), np.array(1e-6, dtype=np.float64), ), (), 1e-7, ), ( ("x", "x", "x"), True, normal, ( np.array(-10.0, dtype=np.float64), np.array(1e-6, dtype=np.float64), ), (), 1e-7, ), ( (1, 0, 2), True, normal, ( np.arange(2 * 2 * 2).reshape((2, 2, 2)).astype(config.floatX), np.array(1e-6).astype(config.floatX), ), (), 1e-3, ), ( (0, 1, 2), True, normal, (np.array(0).astype(config.floatX), np.array(1e-6).astype(config.floatX)), (2, 1, 2), 1e-3, ), ( (0, 2, 1), True, normal, (np.array(0).astype(config.floatX), np.array(1e-6).astype(config.floatX)), (2, 1, 2), 1e-3, ), ( (1, 0, 2), True, normal, (np.array(0).astype(config.floatX), np.array(1e-6).astype(config.floatX)), (2, 1, 2), 1e-3, ), ( (0, 2, 1), True, normal, ( np.array([[-1, 20], [300, -4000]], dtype=config.floatX), np.array([[1e-6, 2e-6]], dtype=config.floatX), ), (3, 2, 2), 1e-3, ), ( ("x", 0, 2, 1, "x"), True, normal, ( np.array([[-1, 20], [300, -4000]], dtype=config.floatX), np.array([[1e-6, 2e-6]], dtype=config.floatX), ), (3, 2, 2), 1e-3, ), ( ("x", 0, "x", 2, "x", 1, "x"), True, normal, ( np.array([[-1, 20], [300, -4000]], dtype=config.floatX), np.array([[1e-6, 2e-6]], dtype=config.floatX), ), (3, 2, 2), 1e-3, ), ( ("x", 0, 2, 1, "x"), True, normal, ( np.array([[-1, 20], [300, -4000]], dtype=config.floatX), np.array([[1e-6, 2e-6]], dtype=config.floatX), ), (3, 2, 2), 1e-3, ), ( ("x", 1, 0, 2, "x"), False, normal, ( np.array([[-1, 20], [300, -4000]], dtype=config.floatX),
np.array([[1e-6, 2e-6]], dtype=config.floatX)
numpy.array
# # lines.py # # purpose: Reproduce LineCurvature2D.m and LineNormals2D.m # author: <NAME> # e-mail: <EMAIL> # web: http://ocefpaf.tiddlyspot.com/ # created: 17-Jul-2012 # modified: Mon 02 Mar 2015 10:07:06 AM BRT # # obs: # import numpy as np def LineNormals2D(Vertices, Lines): r"""This function calculates the normals, of the line points using the neighbouring points of each contour point, and forward an backward differences on the end points. N = LineNormals2D(V, L) inputs, V : List of points/vertices 2 x M (optional) Lines : A N x 2 list of line pieces, by indices of the vertices (if not set assume Lines=[1 2; 2 3 ; ... ; M-1 M]) outputs, N : The normals of the Vertices 2 x M Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.load('testdata.npz') >>> Lines, Vertices = data['Lines'], data['Vertices'] >>> N = LineNormals2D(Vertices, Lines) >>> fig, ax = plt.subplots(nrows=1, ncols=1) >>> _ = ax.plot(np.c_[Vertices[:, 0], Vertices[:,0 ] + 10 * N[:, 0]].T, ... np.c_[Vertices[:, 1], Vertices[:, 1] + 10 * N[:, 1]].T) Function based on LineNormals2D.m written by D.Kroon University of Twente (August 2011) """ eps = np.spacing(1) if isinstance(Lines, np.ndarray): pass elif not Lines: Lines = np.c_[np.arange(1, Vertices.shape[0]), np.arange(2, Vertices.shape[0] + 1)] else: print("Lines is passed but not recognized.") # Calculate tangent vectors. DT = Vertices[Lines[:, 0] - 1, :] - Vertices[Lines[:, 1] - 1, :] # Make influence of tangent vector 1/Distance (Weighted Central # Differences. Points which are closer give a more accurate estimate of # the normal). LL = np.sqrt(DT[:, 0] ** 2 + DT[:, 1] ** 2) DT[:, 0] = DT[:, 0] / np.maximum(LL ** 2, eps) DT[:, 1] = DT[:, 1] / np.maximum(LL ** 2, eps) D1 = np.zeros_like(Vertices) D2 = np.zeros_like(Vertices) D1[Lines[:, 0] - 1, :] = DT D2[Lines[:, 1] - 1, :] = DT D = D1 + D2 # Normalize the normal. LL = np.sqrt(D[:, 0] ** 2 + D[:, 1] ** 2) N = np.zeros_like(D) N[:, 0] = -D[:, 1] / LL N[:, 1] = D[:, 0] / LL return N def LineCurvature2D(Vertices, Lines=None): r"""This function calculates the curvature of a 2D line. It first fits polygons to the points. Then calculates the analytical curvature from the polygons. k = LineCurvature2D(Vertices,Lines) inputs, Vertices : A M x 2 list of line points. (optional) Lines : A N x 2 list of line pieces, by indices of the vertices (if not set assume Lines=[1 2; 2 3 ; ... ; M-1 M]) outputs, k : M x 1 Curvature values Examples -------- >>> import numpy as np >>> import matplotlib.pyplot as plt >>> data = np.load('testdata.npz', squeeze_me=True) >>> Lines, Vertices = data['Lines'], data['Vertices'] >>> k = LineCurvature2D(Vertices, Lines) >>> N = LineNormals2D(Vertices, Lines) >>> k = k * 100 >>> fig, ax = plt.subplots(nrows=1, ncols=1) >>> _ = ax.plot(np.c_[Vertices[:, 0], Vertices[:, 0] + k * N[:, 0]].T, ... np.c_[Vertices[:, 1], Vertices[:, 1] + k * N[:, 1]].T, 'g') >>> _ = ax.plot(np.c_[Vertices[Lines[:, 0] - 1, 0], ... Vertices[Lines[:, 1] - 1, 0]].T, ... np.c_[Vertices[Lines[:, 0] - 1, 1], ... Vertices[Lines[:, 1] - 1, 1]].T, 'b') >>> _ = ax.plot(Vertices[:, 0], Vertices[:, 1], 'r.') Function based on LineCurvature2D.m written by <NAME> of Twente (August 2011) """ # If no line-indices, assume a x[0] connected with x[1], x[2] with x[3]. if isinstance(Lines, np.ndarray): pass elif not Lines: Lines = np.c_[np.arange(1, Vertices.shape[0]), np.arange(2, Vertices.shape[0] + 1)] else: print("Lines is passed but not recognized.") # Get left and right neighbor of each points. Na = np.zeros(Vertices.shape[0], dtype=np.int) Nb = np.zeros_like(Na) # As int because we use it to index an array... Na[Lines[:, 0] - 1] = Lines[:, 1] Nb[Lines[:, 1] - 1] = Lines[:, 0] # Check for end of line points, without a left or right neighbor. checkNa = Na == 0 checkNb = Nb == 0 Naa, Nbb = Na, Nb Naa[checkNa] = np.where(checkNa)[0] Nbb[checkNb] = np.where(checkNb)[0] # If no left neighbor use two right neighbors, and the same for right. Na[checkNa] = Nbb[Nbb[checkNa]] Nb[checkNb] = Naa[Naa[checkNb]] # ... Also, I remove `1` to get python indexing correctly. Na -= 1 Nb -= 1 # Correct for sampling differences. Ta = -np.sqrt(np.sum((Vertices - Vertices[Na, :]) ** 2, axis=1)) Tb = np.sqrt(np.sum((Vertices - Vertices[Nb, :]) ** 2, axis=1)) # If no left neighbor use two right neighbors, and the same for right. Ta[checkNa] = -Ta[checkNa] Tb[checkNb] = -Tb[checkNb] x = np.c_[Vertices[Na, 0], Vertices[:, 0], Vertices[Nb, 0]] y = np.c_[Vertices[Na, 1], Vertices[:, 1], Vertices[Nb, 1]] M = np.c_[np.ones_like(Tb), -Ta, Ta ** 2, np.ones_like(Tb), np.zeros_like(Tb), np.zeros_like(Tb), np.ones_like(Tb), -Tb, Tb ** 2] invM = inverse3(M) a =
np.zeros_like(x)
numpy.zeros_like
# -*- coding: utf-8 -*- import numpy as np import math # Import from relative path try: from .matrix import NUM_NODES, IDICT, BODY_NAMES from . import construction as cons # Import from absolute path # These codes are for debugging except ImportError: from jos3.matrix import NUM_NODES, IDICT, BODY_NAMES from jos3 import construction as cons _BSAst = np.array([ 0.110, 0.029, 0.175, 0.161, 0.221, 0.096, 0.063, 0.050, 0.096, 0.063, 0.050, 0.209, 0.112, 0.056, 0.209, 0.112, 0.056,]) def conv_coef(posture="standing", va=0.1, ta=28.8, tsk=34.0,): """ Calculate convective heat transfer coefficient (hc) [W/K.m2] Parameters ---------- posture : str, optional Select posture from standing, sitting or lying. The default is "standing". va : float or iter, optional Air velocity [m/s]. If iter is input, its length should be 17. The default is 0.1. ta : float or iter, optional Air temperature [oC]. If iter is input, its length should be 17. The default is 28.8. tsk : float or iter, optional Skin temperature [oC]. If iter is input, its length should be 17. The default is 34.0. Returns ------- hc : numpy.ndarray Convective heat transfer coefficient (hc) [W/K.m2]. """ # Natural convection if posture.lower() == "standing": # Ichihara et al., 1997, https://doi.org/10.3130/aija.62.45_5 hc_natural = np.array([ 4.48, 4.48, 2.97, 2.91, 2.85, 3.61, 3.55, 3.67, 3.61, 3.55, 3.67, 2.80, 2.04, 2.04, 2.80, 2.04, 2.04,]) elif posture.lower() in ["sitting", "sedentary"]: # Ichihara et al., 1997, https://doi.org/10.3130/aija.62.45_5 hc_natural = np.array([ 4.75, 4.75, 3.12, 2.48, 1.84, 3.76, 3.62, 2.06, 3.76, 3.62, 2.06, 2.98, 2.98, 2.62, 2.98, 2.98, 2.62,]) elif posture.lower() in ["lying", "supine"]: # Kurazumi et al., 2008, https://doi.org/10.20718/jjpa.13.1_17 # The values are applied under cold environment. hc_a = np.array([ 1.105, 1.105, 1.211, 1.211, 1.211, 0.913, 2.081, 2.178, 0.913, 2.081, 2.178, 0.945, 0.385, 0.200, 0.945, 0.385, 0.200,]) hc_b = np.array([ 0.345, 0.345, 0.046, 0.046, 0.046, 0.373, 0.850, 0.297, 0.373, 0.850, 0.297, 0.447, 0.580, 0.966, 0.447, 0.580, 0.966,]) hc_natural = hc_a * (abs(ta - tsk) ** hc_b) # Forced convection # Ichihara et al., 1997, https://doi.org/10.3130/aija.62.45_5 hc_a = np.array([ 15.0, 15.0, 11.0, 17.0, 13.0, 17.0, 17.0, 20.0, 17.0, 17.0, 20.0, 14.0, 15.8, 15.1, 14.0, 15.8, 15.1,]) hc_b = np.array([ 0.62, 0.62, 0.67, 0.49, 0.60, 0.59, 0.61, 0.60, 0.59, 0.61, 0.60, 0.61, 0.74, 0.62, 0.61, 0.74, 0.62,]) hc_forced = hc_a * (va ** hc_b) # Select natural or forced hc. # If local va is under 0.2 m/s, the hc valuse is natural. hc = np.where(va<0.2, hc_natural, hc_forced) # hc [W/K.m2)] return hc def rad_coef(posture="standing"): """ Calculate radiative heat transfer coefficient (hr) [W/K.m2] Parameters ---------- posture : str, optional Select posture from standing, sitting or lying. The default is "standing". Returns ------- hc : numpy.ndarray Radiative heat transfer coefficient (hr) [W/K.m2]. """ if posture.lower() == "standing": # Ichihara et al., 1997, https://doi.org/10.3130/aija.62.45_5 hr = np.array([ 4.89, 4.89, 4.32, 4.09, 4.32, 4.55, 4.43, 4.21, 4.55, 4.43, 4.21, 4.77, 5.34, 6.14, 4.77, 5.34, 6.14,]) elif posture.lower() in ["sitting", "sedentary"]: # Ichihara et al., 1997, https://doi.org/10.3130/aija.62.45_5 hr = np.array([ 4.96, 4.96, 3.99, 4.64, 4.21, 4.96, 4.21, 4.74, 4.96, 4.21, 4.74, 4.10, 4.74, 6.36, 4.10, 4.74, 6.36,]) elif posture.lower() in ["lying", "supine"]: # Kurazumi et al., 2008, https://doi.org/10.20718/jjpa.13.1_17 hr = np.array([ 5.475, 5.475, 3.463, 3.463, 3.463, 4.249, 4.835, 4.119, 4.249, 4.835, 4.119, 4.440, 5.547, 6.085, 4.440, 5.547, 6.085,]) return hr def fixed_hc(hc, va): """ Fixes hc values to fit tow-node-model's values. """ mean_hc = np.average(hc, weights=_BSAst) mean_va = np.average(va, weights=_BSAst) mean_hc_whole = max(3, 8.600001*(mean_va**0.53)) _fixed_hc = hc * mean_hc_whole/mean_hc return _fixed_hc def fixed_hr(hr): """ Fixes hr values to fit tow-node-model's values. """ mean_hr = np.average(hr, weights=_BSAst) _fixed_hr = hr * 4.7/mean_hr return _fixed_hr def operative_temp(ta, tr, hc, hr): to = (hc*ta + hr*tr) / (hc + hr) return to def clo_area_factor(clo): fcl = np.where(clo<0.5, clo*0.2+1, clo*0.1+1.05) return fcl def dry_r(hc, hr, clo): """ Calculate total sensible thermal resistance. Parameters ---------- hc : float or array Convective heat transfer coefficient (hc) [W/K.m2]. hr : float or array Radiative heat transfer coefficient (hr) [W/K.m2]. clo : float or array Clothing insulation [clo]. Returns ------- rt : float or array Total sensible thermal resistance between skin and ambient. """ fcl = clo_area_factor(clo) r_a = 1/(hc+hr) r_cl = 0.155*clo r_t = r_a/fcl + r_cl return r_t def wet_r(hc, clo, iclo=0.45, lewis_rate=16.5): """ Calculate total evaporative thermal resistance. Parameters ---------- hc : float or array Convective heat transfer coefficient (hc) [W/K.m2]. clo : float or array Clothing insulation [clo]. iclo : float, or array, optional Clothin vapor permeation efficiency [-]. The default is 0.45. lewis_rate : float, optional Lewis rate [K/kPa]. The default is 16.5. Returns ------- ret : float or array Total evaporative thermal resistance. """ fcl = clo_area_factor(clo) r_cl = 0.155 * clo r_ea = 1 / (lewis_rate * hc) r_ecl = r_cl / (lewis_rate * iclo) r_et = r_ea / fcl + r_ecl return r_et def heat_resistances( ta=np.ones(17)*28.8, tr=np.ones(17)*28.8, va=np.ones(17)*0.1, tsk=np.ones(17)*34, clo=
np.zeros(17)
numpy.zeros
import pickle import cv2 import skimage import numpy as np from shapely.geometry import Polygon from concern.config import Configurable, State def binary_search_smallest_width(poly): if len(poly) < 3: return 0 poly = Polygon(poly) low = 0 high = 65536 while high - low > 0.1: mid = (high + low) / 2 mid_poly = poly.buffer(-mid) if mid_poly.geom_type == 'Polygon' and mid_poly.area > 0.1: low = mid else: high = mid height = (low + high) / 2 if height < 0.1: return 0 else: return height def project_point_to_line(x, u, v, axis=0): n = v - u n = n / (np.linalg.norm(n, axis=axis, keepdims=True) + np.finfo(np.float32).eps) p = u + n * np.sum((x - u) * n, axis=axis, keepdims=True) return p def project_point_to_segment(x, u, v, axis=0): p = project_point_to_line(x, u, v, axis=axis) outer = np.greater_equal(np.sum((u - p) * (v - p), axis=axis, keepdims=True), 0) near_u = np.less_equal(
np.linalg.norm(u - p, axis=axis, keepdims=True)
numpy.linalg.norm
import h5py import pandas as pd import json import cv2 import os, glob from pylab import * import numpy as np import operator from functools import reduce from configparser import ConfigParser, MissingSectionHeaderError, NoOptionError import errno import simba.rw_dfs #def importSLEAPbottomUP(inifile, dataFolder, currIDList): data_folder = r'Z:\DeepLabCut\DLC_extract\Troubleshooting\Sleap_h5\import_folder' configFile = str(r"Z:\DeepLabCut\DLC_extract\Troubleshooting\Sleap_h5\project_folder\project_config.ini") config = ConfigParser() try: config.read(configFile) except MissingSectionHeaderError: print('ERROR: Not a valid project_config file. Please check the project_config.ini path.') projectPath = config.get('General settings', 'project_path') animalIDs = config.get('Multi animal IDs', 'id_list') currIDList = animalIDs.split(",") currIDList = [x.strip(' ') for x in currIDList] filesFound = glob.glob(data_folder + '/*.analysis.h5') videoFolder = os.path.join(projectPath, 'videos') outputDfFolder = os.path.join(projectPath, 'csv', 'input_csv') try: wfileType = config.get('General settings', 'workflow_file_type') except NoOptionError: wfileType = 'csv' animalsNo = len(currIDList) bpNamesCSVPath = os.path.join(projectPath, 'logs', 'measures', 'pose_configs', 'bp_names', 'project_bp_names.csv') poseEstimationSetting = config.get('create ensemble settings', 'pose_estimation_body_parts') print('Converting sleap h5 into dataframes...') csvPaths = [] for filename in filesFound: video_save_name = os.path.basename(filename).replace('analysis.h5', wfileType) savePath = os.path.join(outputDfFolder, video_save_name) bpNames, orderVarList, OrderedBpList, MultiIndexCol, dfHeader, csvFilesFound, xy_heads, bp_cord_names, bpNameList, projBpNameList = [], [], [], [], [], [], [], [], [], [] print('Processing ' + str(os.path.basename(filename)) + '...') hf = h5py.File(filename, 'r') bp_name_list, track_list, = [], [], for bp in hf.get('node_names'): bp_name_list.append(bp.decode('UTF-8')) for track in hf.get('track_names'): track_list.append(track.decode('UTF-8')) track_occupancy = hf.get('track_occupancy') with track_occupancy.astype('int16'): track_occupancy = track_occupancy[:] tracks = hf.get('tracks') with tracks.astype('int16'): tracks = tracks[:] frames = tracks.shape[3] animal_df_list = [] for animals in range(len(track_list)): animal_x_array, animal_y_array = np.transpose(tracks[animals][0]), np.transpose(tracks[animals][1]) animal_p_array = np.zeros(animal_x_array.shape) animal_array =
np.ravel([animal_x_array, animal_y_array, animal_p_array], order="F")
numpy.ravel
import mock import numpy from PIL import Image from types import SimpleNamespace import unittest from machine_common_sense.mcs_action import MCS_Action from machine_common_sense.mcs_goal import MCS_Goal from machine_common_sense.mcs_object import MCS_Object from machine_common_sense.mcs_pose import MCS_Pose from machine_common_sense.mcs_return_status import MCS_Return_Status from machine_common_sense.mcs_step_output import MCS_Step_Output from .mock_mcs_controller_ai2thor import Mock_MCS_Controller_AI2THOR class Test_MCS_Controller_AI2THOR(unittest.TestCase): def setUp(self): self.controller = Mock_MCS_Controller_AI2THOR() self.controller.set_config({ 'metadata': '' }) def create_mock_scene_event(self, mock_scene_event_data): # Wrap the dict in a SimpleNamespace object to permit property access with dotted notation since the actual # variable is a class, not a dict. return SimpleNamespace(**mock_scene_event_data) def create_retrieve_object_list_scene_event(self): return { "events": [self.create_mock_scene_event({ "object_id_to_color": { "testId1": (12, 34, 56), "testId2": (98, 76, 54), "testId3": (101, 102, 103) } })], "metadata": { "objects": [{ "colorsFromMaterials": ["c1"], "direction": { "x": 0, "y": 0, "z": 0 }, "distance": 0, "distanceXZ": 0, "isPickedUp": True, "mass": 1, "objectId": "testId1", "position": { "x": 1, "y": 1, "z": 2 }, "rotation": { "x": 1.0, "y": 2.0, "z": 3.0 }, "salientMaterials": [], "shape": "shape1", "visibleInCamera": True }, { "colorsFromMaterials": ["c2", "c3"], "direction": { "x": 90, "y": -30, "z": 0 }, "distance": 1.5, "distanceXZ": 1.1, "isPickedUp": False, "mass": 12.34, "objectBounds": { "objectBoundsCorners": ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"] }, "objectId": "testId2", "position": { "x": 1, "y": 2, "z": 3 }, "rotation": { "x": 1.0, "y": 2.0, "z": 3.0 }, "salientMaterials": ["Foobar", "Metal", "Plastic"], "shape": "shape2", "visibleInCamera": True }, { "colorsFromMaterials": [], "direction": { "x": -90, "y": 180, "z": 270 }, "distance": 2.5, "distanceXZ": 2, "isPickedUp": False, "mass": 34.56, "objectBounds": { "objectBoundsCorners": ["pA", "pB", "pC", "pD", "pE", "pF", "pG", "pH"] }, "objectId": "testId3", "position": { "x": -3, "y": -2, "z": -1 }, "rotation": { "x": 11.0, "y": 12.0, "z": 13.0 }, "salientMaterials": ["Wood"], "shape": "shape3", "visibleInCamera": False }] } } def create_wrap_output_scene_event(self): image_data = numpy.array([[0]], dtype=numpy.uint8) depth_mask_data = numpy.array([[128]], dtype=numpy.uint8) object_mask_data = numpy.array([[192]], dtype=numpy.uint8) return { "events": [self.create_mock_scene_event({ "depth_frame": depth_mask_data, "frame": image_data, "instance_segmentation_frame": object_mask_data, "object_id_to_color": { "testId": (12, 34, 56), "testWallId": (101, 102, 103) } })], "metadata": { "agent": { "cameraHorizon": 12.34, "position": { "x": 0.12, "y": -0.23, "z": 4.5 }, "rotation": { "x": 1.111, "y": 2.222, "z": 3.333 } }, "cameraPosition": { "y": 0.1234 }, "clippingPlaneFar": 25, "clippingPlaneNear": 0, "fov": 42.5, "lastActionStatus": "SUCCESSFUL", "lastActionSuccess": True, "objects": [{ "colorsFromMaterials": ["c1"], "direction": { "x": 90, "y": -30, "z": 0 }, "distance": 1.5, "distanceXZ": 1.1, "isPickedUp": False, "mass": 12.34, "objectBounds": { "objectBoundsCorners": ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"] }, "objectId": "testId", "position": { "x": 10, "y": 11, "z": 12 }, "rotation": { "x": 1.0, "y": 2.0, "z": 3.0 }, "salientMaterials": ["Wood"], "shape": "shape", "visibleInCamera": True }, { "colorsFromMaterials": [], "direction": { "x": -90, "y": 180, "z": 270 }, "distance": 2.5, "distanceXZ": 2.0, "isPickedUp": False, "mass": 34.56, "objectBounds": { "objectBoundsCorners": ["pA", "pB", "pC", "pD", "pE", "pF", "pG", "pH"] }, "objectId": "testIdHidden", "position": { "x": -3, "y": -2, "z": -1 }, "rotation": { "x": 11.0, "y": 12.0, "z": 13.0 }, "salientMaterials": ["Wood"], "shape": "shapeHidden", "visibleInCamera": False }], "structuralObjects": [{ "colorsFromMaterials": ["c2"], "direction": { "x": 180, "y": -60, "z": 0 }, "distance": 2.5, "distanceXZ": 2.2, "isPickedUp": False, "mass": 56.78, "objectBounds": { "objectBoundsCorners": ["p11", "p12", "p13", "p14", "p15", "p16", "p17", "p18"] }, "objectId": "testWallId", "position": { "x": 20, "y": 21, "z": 22 }, "rotation": { "x": 4.0, "y": 5.0, "z": 6.0 }, "salientMaterials": ["Ceramic"], "shape": "structure", "visibleInCamera": True }, { "colorsFromMaterials": [], "direction": { "x": -180, "y": 60, "z": 90 }, "distance": 3.5, "distanceXZ": 3.3, "isPickedUp": False, "mass": 78.90, "objectBounds": { "objectBoundsCorners": ["pAA", "pBB", "pCC", "pDD", "pEE", "pFF", "pGG", "pHH"] }, "objectId": "testWallIdHidden", "position": { "x": 30, "y": 31, "z": 32 }, "rotation": { "x": 14.0, "y": 15.0, "z": 16.0 }, "salientMaterials": ["Ceramic"], "shape": "structureHidden", "visibleInCamera": False }] } }, image_data, depth_mask_data, object_mask_data def test_end_scene(self): # TODO When this function actually does anything pass def test_start_scene(self): # TODO MCS-15 pass def test_step(self): # TODO MCS-15 pass def test_restrict_goal_output_metadata(self): goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) def test_restrict_goal_output_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) def test_restrict_goal_output_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) def test_restrict_goal_output_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) def test_restrict_goal_output_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) goal = MCS_Goal(metadata={ 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) actual = self.controller.restrict_goal_output_metadata(goal) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) def test_restrict_object_output_metadata(self): test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, { 'r': 1, 'g': 2, 'b': 3 }) self.assertEqual(actual.dimensions, { 'x': 1, 'y': 2, 'z': 3 }) self.assertEqual(actual.distance, 12.34) self.assertEqual(actual.distance_in_steps, 34.56) self.assertEqual(actual.distance_in_world, 56.78) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) self.assertEqual(actual.shape, 'sofa') self.assertEqual(actual.texture_color_list, ['c1', 'c2']) def test_restrict_object_output_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, { 'r': 1, 'g': 2, 'b': 3 }) self.assertEqual(actual.dimensions, { 'x': 1, 'y': 2, 'z': 3 }) self.assertEqual(actual.distance, 12.34) self.assertEqual(actual.distance_in_steps, 34.56) self.assertEqual(actual.distance_in_world, 56.78) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) self.assertEqual(actual.shape, 'sofa') self.assertEqual(actual.texture_color_list, ['c1', 'c2']) def test_restrict_object_output_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, { 'r': 1, 'g': 2, 'b': 3 }) self.assertEqual(actual.dimensions, { 'x': 1, 'y': 2, 'z': 3 }) self.assertEqual(actual.distance, 12.34) self.assertEqual(actual.distance_in_steps, 34.56) self.assertEqual(actual.distance_in_world, 56.78) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) self.assertEqual(actual.shape, 'sofa') self.assertEqual(actual.texture_color_list, ['c1', 'c2']) def test_restrict_object_output_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, None) self.assertEqual(actual.dimensions, None) self.assertEqual(actual.distance, None) self.assertEqual(actual.distance_in_steps, None) self.assertEqual(actual.distance_in_world, None) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) self.assertEqual(actual.shape, None) self.assertEqual(actual.texture_color_list, None) def test_restrict_object_output_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) test_object = MCS_Object( color={ 'r': 1, 'g': 2, 'b': 3 }, dimensions={ 'x': 1, 'y': 2, 'z': 3 }, distance=12.34, distance_in_steps=34.56, distance_in_world=56.78, position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 }, shape='sofa', texture_color_list=['c1', 'c2'] ) actual = self.controller.restrict_object_output_metadata(test_object) self.assertEqual(actual.color, None) self.assertEqual(actual.dimensions, None) self.assertEqual(actual.distance, None) self.assertEqual(actual.distance_in_steps, None) self.assertEqual(actual.distance_in_world, None) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) self.assertEqual(actual.shape, None) self.assertEqual(actual.texture_color_list, None) def test_restrict_step_output_metadata(self): step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, (1, 2)) self.assertEqual(actual.camera_clipping_planes, (3, 4)) self.assertEqual(actual.camera_field_of_view, 5) self.assertEqual(actual.camera_height, 6) self.assertEqual(actual.depth_mask_list, [7]) self.assertEqual(actual.object_mask_list, [8]) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) def test_restrict_step_output_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, (1, 2)) self.assertEqual(actual.camera_clipping_planes, (3, 4)) self.assertEqual(actual.camera_field_of_view, 5) self.assertEqual(actual.camera_height, 6) self.assertEqual(actual.depth_mask_list, [7]) self.assertEqual(actual.object_mask_list, [8]) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) def test_restrict_step_output_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, (1, 2)) self.assertEqual(actual.camera_clipping_planes, (3, 4)) self.assertEqual(actual.camera_field_of_view, 5) self.assertEqual(actual.camera_height, 6) self.assertEqual(actual.depth_mask_list, [7]) self.assertEqual(actual.object_mask_list, [8]) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) def test_restrict_step_output_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, None) self.assertEqual(actual.camera_clipping_planes, None) self.assertEqual(actual.camera_field_of_view, None) self.assertEqual(actual.camera_height, None) self.assertEqual(actual.depth_mask_list, []) self.assertEqual(actual.object_mask_list, []) self.assertEqual(actual.position, { 'x': 4, 'y': 5, 'z': 6 }) self.assertEqual(actual.rotation, { 'x': 7, 'y': 8, 'z': 9 }) def test_restrict_step_output_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) step = MCS_Step_Output( camera_aspect_ratio=(1, 2), camera_clipping_planes=(3, 4), camera_field_of_view=5, camera_height=6, depth_mask_list=[7], object_mask_list=[8], position={ 'x': 4, 'y': 5, 'z': 6 }, rotation={ 'x': 7, 'y': 8, 'z': 9 } ) actual = self.controller.restrict_step_output_metadata(step) self.assertEqual(actual.camera_aspect_ratio, None) self.assertEqual(actual.camera_clipping_planes, None) self.assertEqual(actual.camera_field_of_view, None) self.assertEqual(actual.camera_height, None) self.assertEqual(actual.depth_mask_list, []) self.assertEqual(actual.object_mask_list, []) self.assertEqual(actual.position, None) self.assertEqual(actual.rotation, None) def test_retrieve_action_list(self): self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(), 0), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[]), 0), \ self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[[]]), 0), \ self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[['MoveAhead',\ 'RotateLook,rotation=180']]), 0), ['MoveAhead', 'RotateLook,rotation=180']) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[['MoveAhead',\ 'RotateLook,rotation=180']]), 1), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[['MoveAhead',\ 'RotateLook,rotation=180'], []]), 1), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[[],['MoveAhead',\ 'RotateLook,rotation=180']]), 0), self.controller.ACTION_LIST) self.assertEqual(self.controller.retrieve_action_list(MCS_Goal(action_list=[[],['MoveAhead',\ 'RotateLook,rotation=180']]), 1), ['MoveAhead', 'RotateLook,rotation=180']) def test_retrieve_goal(self): goal_1 = self.controller.retrieve_goal({}) self.assertEqual(goal_1.action_list, None) self.assertEqual(goal_1.info_list, []) self.assertEqual(goal_1.last_step, None) self.assertEqual(goal_1.task_list, []) self.assertEqual(goal_1.type_list, []) self.assertEqual(goal_1.metadata, {}) goal_2 = self.controller.retrieve_goal({ "goal": { } }) self.assertEqual(goal_2.action_list, None) self.assertEqual(goal_2.info_list, []) self.assertEqual(goal_2.last_step, None) self.assertEqual(goal_2.task_list, []) self.assertEqual(goal_2.type_list, []) self.assertEqual(goal_2.metadata, {}) goal_3 = self.controller.retrieve_goal({ "goal": { "action_list": [["action1"], [], ["action2", "action3", "action4"]], "info_list": ["info1", "info2", 12.34], "last_step": 10, "task_list": ["task1", "task2"], "type_list": ["type1", "type2"], "metadata": { "key": "value" } } }) self.assertEqual(goal_3.action_list, [["action1"], [], ["action2", "action3", "action4"]]) self.assertEqual(goal_3.info_list, ["info1", "info2", 12.34]) self.assertEqual(goal_3.last_step, 10) self.assertEqual(goal_3.task_list, ["task1", "task2"]) self.assertEqual(goal_3.type_list, ["type1", "type2"]) self.assertEqual(goal_3.metadata, { "key": "value" }) def test_retrieve_goal_with_config_metadata(self): self.controller.set_config({ 'metadata': 'full' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) self.controller.set_config({ 'metadata': 'no_navigation' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } }) self.controller.set_config({ 'metadata': 'no_vision' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) self.controller.set_config({ 'metadata': 'none' }) actual = self.controller.retrieve_goal({ 'goal': { 'metadata': { 'target': { 'image': [0] }, 'target_1': { 'image': [1] }, 'target_2': { 'image': [2] } } } }) self.assertEqual(actual.metadata, { 'target': { 'image': None }, 'target_1': { 'image': None }, 'target_2': { 'image': None } }) def test_retrieve_head_tilt(self): mock_scene_event_data = { "metadata": { "agent": { "cameraHorizon": 12.34 } } } actual = self.controller.retrieve_head_tilt(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, 12.34) mock_scene_event_data = { "metadata": { "agent": { "cameraHorizon": -56.78 } } } actual = self.controller.retrieve_head_tilt(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, -56.78) def test_retrieve_object_list(self): mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, { "r": 12, "g": 34, "b": 56 }) self.assertEqual(actual[0].dimensions, {}) self.assertEqual(actual[0].direction, { "x": 0, "y": 0, "z": 0 }) self.assertEqual(actual[0].distance, 0) self.assertEqual(actual[0].distance_in_steps, 0) self.assertEqual(actual[0].distance_in_world, 0) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, { "x": 1, "y": 1, "z": 2 }) self.assertEqual(actual[0].rotation, 2.0) self.assertEqual(actual[0].shape, 'shape1') self.assertEqual(actual[0].texture_color_list, ['c1']) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, { "r": 98, "g": 76, "b": 54 }) self.assertEqual(actual[1].dimensions, ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"]) self.assertEqual(actual[1].direction, { "x": 90, "y": -30, "z": 0 }) self.assertEqual(actual[1].distance, 2.2) self.assertEqual(actual[1].distance_in_steps, 2.2) self.assertEqual(actual[1].distance_in_world, 1.5) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, { "x": 1, "y": 2, "z": 3 }) self.assertEqual(actual[1].rotation, 2) self.assertEqual(actual[1].shape, 'shape2') self.assertEqual(actual[1].texture_color_list, ['c2', 'c3']) self.assertEqual(actual[1].visible, True) def test_retrieve_object_list_with_config_metadata_full(self): self.controller.set_config({ 'metadata': 'full' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 3) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, { "r": 12, "g": 34, "b": 56 }) self.assertEqual(actual[0].dimensions, {}) self.assertEqual(actual[0].direction, { "x": 0, "y": 0, "z": 0 }) self.assertEqual(actual[0].distance, 0) self.assertEqual(actual[0].distance_in_steps, 0) self.assertEqual(actual[0].distance_in_world, 0) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, { "x": 1, "y": 1, "z": 2 }) self.assertEqual(actual[0].rotation, 2.0) self.assertEqual(actual[0].shape, 'shape1') self.assertEqual(actual[0].texture_color_list, ['c1']) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, { "r": 98, "g": 76, "b": 54 }) self.assertEqual(actual[1].dimensions, ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"]) self.assertEqual(actual[1].direction, { "x": 90, "y": -30, "z": 0 }) self.assertEqual(actual[1].distance, 2.2) self.assertEqual(actual[1].distance_in_steps, 2.2) self.assertEqual(actual[1].distance_in_world, 1.5) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, { "x": 1, "y": 2, "z": 3 }) self.assertEqual(actual[1].rotation, 2) self.assertEqual(actual[1].shape, 'shape2') self.assertEqual(actual[1].texture_color_list, ['c2', 'c3']) self.assertEqual(actual[1].visible, True) self.assertEqual(actual[2].uuid, "testId3") self.assertEqual(actual[2].color, { "r": 101, "g": 102, "b": 103 }) self.assertEqual(actual[2].dimensions, ["pA", "pB", "pC", "pD", "pE", "pF", "pG", "pH"]) self.assertEqual(actual[2].direction, { "x": -90, "y": 180, "z": 270 }) self.assertEqual(actual[2].distance, 4) self.assertEqual(actual[2].distance_in_steps, 4) self.assertEqual(actual[2].distance_in_world, 2.5) self.assertEqual(actual[2].held, False) self.assertEqual(actual[2].mass, 34.56) self.assertEqual(actual[2].material_list, ["WOOD"]) self.assertEqual(actual[2].position, { "x": -3, "y": -2, "z": -1 }) self.assertEqual(actual[2].rotation, 12) self.assertEqual(actual[2].shape, 'shape3') self.assertEqual(actual[2].texture_color_list, []) self.assertEqual(actual[2].visible, False) def test_retrieve_object_list_with_config_metadata_no_navigation(self): self.controller.set_config({ 'metadata': 'no_navigation' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, { "r": 12, "g": 34, "b": 56 }) self.assertEqual(actual[0].dimensions, {}) self.assertEqual(actual[0].direction, { "x": 0, "y": 0, "z": 0 }) self.assertEqual(actual[0].distance, 0) self.assertEqual(actual[0].distance_in_steps, 0) self.assertEqual(actual[0].distance_in_world, 0) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, None) self.assertEqual(actual[0].rotation, None) self.assertEqual(actual[0].shape, 'shape1') self.assertEqual(actual[0].texture_color_list, ['c1']) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, { "r": 98, "g": 76, "b": 54 }) self.assertEqual(actual[1].dimensions, ["p1", "p2", "p3", "p4", "p5", "p6", "p7", "p8"]) self.assertEqual(actual[1].direction, { "x": 90, "y": -30, "z": 0 }) self.assertEqual(actual[1].distance, 2.2) self.assertEqual(actual[1].distance_in_steps, 2.2) self.assertEqual(actual[1].distance_in_world, 1.5) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, None) self.assertEqual(actual[1].rotation, None) self.assertEqual(actual[1].shape, 'shape2') self.assertEqual(actual[1].texture_color_list, ['c2', 'c3']) self.assertEqual(actual[1].visible, True) def test_retrieve_object_list_with_config_metadata_no_vision(self): self.controller.set_config({ 'metadata': 'no_vision' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, None) self.assertEqual(actual[0].dimensions, None) self.assertEqual(actual[0].direction, None) self.assertEqual(actual[0].distance, None) self.assertEqual(actual[0].distance_in_steps, None) self.assertEqual(actual[0].distance_in_world, None) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, { "x": 1, "y": 1, "z": 2 }) self.assertEqual(actual[0].rotation, 2.0) self.assertEqual(actual[0].shape, None) self.assertEqual(actual[0].texture_color_list, None) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, None) self.assertEqual(actual[1].dimensions, None) self.assertEqual(actual[1].direction, None) self.assertEqual(actual[1].distance, None) self.assertEqual(actual[1].distance_in_steps, None) self.assertEqual(actual[1].distance_in_world, None) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, { "x": 1, "y": 2, "z": 3 }) self.assertEqual(actual[1].rotation, 2) self.assertEqual(actual[1].shape, None) self.assertEqual(actual[1].texture_color_list, None) self.assertEqual(actual[1].visible, True) def test_retrieve_object_list_with_config_metadata_none(self): self.controller.set_config({ 'metadata': 'none' }) mock_scene_event_data = self.create_retrieve_object_list_scene_event() actual = self.controller.retrieve_object_list(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(len(actual), 2) self.assertEqual(actual[0].uuid, "testId1") self.assertEqual(actual[0].color, None) self.assertEqual(actual[0].dimensions, None) self.assertEqual(actual[0].direction, None) self.assertEqual(actual[0].distance, None) self.assertEqual(actual[0].distance_in_steps, None) self.assertEqual(actual[0].distance_in_world, None) self.assertEqual(actual[0].held, True) self.assertEqual(actual[0].mass, 1) self.assertEqual(actual[0].material_list, []) self.assertEqual(actual[0].position, None) self.assertEqual(actual[0].rotation, None) self.assertEqual(actual[0].shape, None) self.assertEqual(actual[0].texture_color_list, None) self.assertEqual(actual[0].visible, True) self.assertEqual(actual[1].uuid, "testId2") self.assertEqual(actual[1].color, None) self.assertEqual(actual[1].dimensions, None) self.assertEqual(actual[1].direction, None) self.assertEqual(actual[1].distance, None) self.assertEqual(actual[1].distance_in_steps, None) self.assertEqual(actual[1].distance_in_world, None) self.assertEqual(actual[1].held, False) self.assertEqual(actual[1].mass, 12.34) self.assertEqual(actual[1].material_list, ["METAL", "PLASTIC"]) self.assertEqual(actual[1].position, None) self.assertEqual(actual[1].rotation, None) self.assertEqual(actual[1].shape, None) self.assertEqual(actual[1].texture_color_list, None) self.assertEqual(actual[1].visible, True) def test_retrieve_pose(self): # TODO MCS-18 pass def test_retrieve_return_status(self): mock_scene_event_data = { "metadata": { "lastActionStatus": "SUCCESSFUL" } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.SUCCESSFUL.name) mock_scene_event_data = { "metadata": { "lastActionStatus": "FAILED" } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.FAILED.name) mock_scene_event_data = { "metadata": { "lastActionStatus": "INVALID_STATUS" } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.UNDEFINED.name) mock_scene_event_data = { "metadata": { "lastActionStatus": None } } actual = self.controller.retrieve_return_status(self.create_mock_scene_event(mock_scene_event_data)) self.assertEqual(actual, MCS_Return_Status.UNDEFINED.name) def test_save_images(self): image_data = numpy.array([[0]], dtype=numpy.uint8) depth_mask_data = numpy.array([[128]], dtype=numpy.uint8) object_mask_data = numpy.array([[192]], dtype=numpy.uint8) mock_scene_event_data = { "events": [self.create_mock_scene_event({ "depth_frame": depth_mask_data, "frame": image_data, "instance_segmentation_frame": object_mask_data })] } image_list, depth_mask_list, object_mask_list = self.controller.save_images(self.create_mock_scene_event( mock_scene_event_data)) self.assertEqual(len(image_list), 1) self.assertEqual(len(depth_mask_list), 1) self.assertEqual(len(object_mask_list), 1) self.assertEqual(numpy.array(image_list[0]), image_data) self.assertEqual(numpy.array(depth_mask_list[0]), depth_mask_data) self.assertEqual(numpy.array(object_mask_list[0]), object_mask_data) def test_save_images_with_multiple_images(self): image_data_1 = numpy.array([[64]], dtype=numpy.uint8) depth_mask_data_1 = numpy.array([[128]], dtype=numpy.uint8) object_mask_data_1 = numpy.array([[192]], dtype=numpy.uint8) image_data_2 = numpy.array([[32]], dtype=numpy.uint8) depth_mask_data_2 = numpy.array([[96]], dtype=numpy.uint8) object_mask_data_2 = numpy.array([[160]], dtype=numpy.uint8) mock_scene_event_data = { "events": [self.create_mock_scene_event({ "depth_frame": depth_mask_data_1, "frame": image_data_1, "instance_segmentation_frame": object_mask_data_1 }), self.create_mock_scene_event({ "depth_frame": depth_mask_data_2, "frame": image_data_2, "instance_segmentation_frame": object_mask_data_2 })] } image_list, depth_mask_list, object_mask_list = self.controller.save_images(self.create_mock_scene_event( mock_scene_event_data)) self.assertEqual(len(image_list), 2) self.assertEqual(len(depth_mask_list), 2) self.assertEqual(len(object_mask_list), 2) self.assertEqual(numpy.array(image_list[0]), image_data_1) self.assertEqual(numpy.array(depth_mask_list[0]), depth_mask_data_1) self.assertEqual(numpy.array(object_mask_list[0]), object_mask_data_1) self.assertEqual(numpy.array(image_list[1]), image_data_2) self.assertEqual(
numpy.array(depth_mask_list[1])
numpy.array
import pandas as pd import numpy as np import pickle from .utils import * def predNextDays(optmod_name, opt_mod, var_name, pred_days): pred = (opt_mod[optmod_name]['mod_data'][var_name])[opt_mod[optmod_name]['i_start'] + opt_mod[optmod_name]['period'] -1 :opt_mod[optmod_name]['i_start'] + opt_mod[optmod_name]['period']+pred_days] print("Mod: %s \t Next days: %s: \t %s" %(optmod_name, var_name, str([int(x) for x in pred]))) print("Mod: %s \t Variation: %s: \t %s" %(optmod_name, var_name, str([int(x) for x in (pred[1:len(pred)] - pred[0:len(pred)-1])]))) class ModelStats: def __init__(self, model, act_data, pred_days = 10): self.model = model self.act_data = act_data self.data = pd.DataFrame(self.calcData()) self.data.set_index("date", inplace=True) def printKpi(self, date, kpi_name, title, num_format = 'd', bperc = False): var_uff = "uff_" + kpi_name var_mod = "mod_" + kpi_name if "uff_" + kpi_name in self.data.columns.tolist(): #print(("%30s: %7" + num_format + " vs %7" + num_format + " (%5" + num_format + " vs %5" + num_format + "), errore: %" + num_format + "") %( print(("%30s: %7s vs %7s (%5s vs %5s), errore: %s") %( title, format_number(self.data[var_uff][np.datetime64(date, 'D')], bperc = bperc), format_number(self.data[var_mod][np.datetime64(date, 'D')], bperc = bperc), format_number(self.data[var_uff][np.datetime64(date, 'D')] - self.data[var_uff][np.datetime64(date, 'D') - np.timedelta64(1, 'D')], bperc = bperc), format_number(self.data[var_mod][np.datetime64(date, 'D')] - self.data[var_mod][np.datetime64(date, 'D') - np.timedelta64(1, 'D')], bperc = bperc), format_number(self.data[var_uff][np.datetime64(date, 'D')] - self.data[var_mod][np.datetime64(date, 'D')], bperc = bperc) )) else: #print(("%30s: %7" + num_format + " (%5" + num_format + ")") %( print(("%30s: %7s (%5s)") %( title, format_number(self.data[var_mod][np.datetime64(date, 'D')], bperc = bperc), format_number(self.data[var_mod][np.datetime64(date, 'D')] - self.data[var_mod][np.datetime64(date, 'D') - np.timedelta64(1, 'D')], bperc = bperc) )) def printKpis(self, date): self.printKpi(date, 'Igc_cum', "Tot Infected") self.printKpi(date, 'Igc', "Currently Infected") self.printKpi(date, 'Igci_t', "Currently in Int. Care") self.printKpi(date, 'Gc_cum', "Tot Recovered") self.printKpi(date, 'M_cum', "Tot Dead") print() self.printKpi(date, 'Igc_cum_pinc', "% Increase, Infected", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Gc_Igc', "% Mortality Rate", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_M_Igc', "% Known Recovery Rate", num_format=".3f", bperc = True) print() self.printKpi(date, 'ratio_Gccum_Igccum', "% Recovered / Tot", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Mcum_Igccum', "% Dead / Tot", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Igci_Igc', "% Intensive Care", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Igcn_Igc', "% Non Intensive Care", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_I_Igc', "% Total Infected / Known Infected", num_format=".3f", bperc = True) self.printKpi(date, 'R0_t', "R0", num_format=".3f") print() print() print("*** 7 days ahead predictions ***") self.printPredict(date, 'Igc_cum', "Tot Infettati", pred_step = 7, bperc = False) print() self.printPredict(date, 'Igc', "Attualmente Infetti", pred_step = 7, bperc = False) print() self.printPredict(date, 'Igci_t', "Attualmente in Intensiva", pred_step = 7, bperc = False) print() self.printPredict(date, 'Gc_cum', "Tot Guariti", pred_step = 7, bperc = False) print() self.printPredict(date, 'M_cum', "Tot Morti", pred_step = 7, bperc = False) def printPredict(self, curr_date, kpi_name, title, pred_step = 7, bperc = False): var_mod = "mod_" + kpi_name data = self.data[var_mod][
np.datetime64(curr_date, 'D')
numpy.datetime64
import ctypes import numpy as np import pytest from psyneulink.core import llvm as pnlvm from llvmlite import ir DIM_X = 1000 DIM_Y = 2000 u = np.random.rand(DIM_X, DIM_Y) v = np.random.rand(DIM_X, DIM_Y) vector = np.random.rand(DIM_X) trans_vector =
np.random.rand(DIM_Y)
numpy.random.rand
import numpy as np import h5py import json sys.path.append('F:\Linux') import illustris_python as il import matplotlib.pyplot as plt def Flatness(MassTensor): #c / a = (M3)**0.5 / (M1)**0.5 return
np.sqrt(MassTensor[0])
numpy.sqrt
import pandas as pd import numpy as np from causality.estimation.parametric import (DifferenceInDifferences, PropensityScoreMatching, InverseProbabilityWeightedLS) from tests.unit import TestAPI class TestDID(TestAPI): def setUp(self): SIZE = 2000 assignment =
np.random.binomial(1,0.5, size=SIZE)
numpy.random.binomial
""" Filename: visualization.py Purpose: Set of go-to plotting functions Author: <NAME> Date created: 28.11.2018 Possible problems: 1. """ import os import numpy as np from tractor.galaxy import ExpGalaxy from tractor import EllipseE from tractor.galaxy import ExpGalaxy import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.colors import LogNorm, SymLogNorm from matplotlib.patches import Ellipse from matplotlib.patches import Rectangle from skimage.segmentation import find_boundaries from astropy.visualization import hist from scipy import stats import config as conf import matplotlib.cm as cm import random from time import time from astropy.io import fits import logging logger = logging.getLogger('farmer.visualization') # Random discrete color generator colors = cm.rainbow(np.linspace(0, 1, 1000)) cidx = np.arange(0, 1000) random.shuffle(cidx) colors = colors[cidx] def plot_background(brick, idx, band=''): fig, ax = plt.subplots(figsize=(20,20)) vmin, vmax = brick.background_images[idx].min(), brick.background_images[idx].max() vmin = -vmax img = ax.imshow(brick.background_images[idx], cmap='RdGy', norm=SymLogNorm(linthresh=0.03)) # plt.colorbar(img, ax=ax) out_path = os.path.join(conf.PLOT_DIR, f'B{brick.brick_id}_{band}_background.pdf') ax.axis('off') ax.margins(0,0) fig.savefig(out_path, dpi = 300, overwrite=True, pad_inches=0.0) plt.close() logger.info(f'Saving figure: {out_path}') def plot_mask(brick, idx, band=''): fig, ax = plt.subplots(figsize=(20,20)) img = ax.imshow(brick.masks[idx]) out_path = os.path.join(conf.PLOT_DIR, f'B{brick.brick_id}_{band}_mask.pdf') ax.axis('off') ax.margins(0,0) fig.savefig(out_path, dpi = 300, overwrite=True, pad_inches=0.0) plt.close() logger.info(f'Saving figure: {out_path}') def plot_brick(brick, idx, band=''): fig, ax = plt.subplots(figsize=(20,20)) backlevel, noisesigma = brick.backgrounds[idx] vmin, vmax = np.max([backlevel + noisesigma, 1E-5]), brick.images[idx].max() # vmin, vmax = brick.images[idx].min(), brick.images[idx].max() if vmin > vmax: logger.warning(f'{band} brick not plotted!') return vmin = -vmax norm = SymLogNorm(linthresh=0.03) img = ax.imshow(brick.images[idx], cmap='RdGy', origin='lower', norm=norm) # plt.colorbar(img, ax=ax) out_path = os.path.join(conf.PLOT_DIR, f'B{brick.brick_id}_{band}_brick.pdf') ax.axis('off') ax.margins(0,0) fig.savefig(out_path, dpi = 300, overwrite=True, pad_inches=0.0) plt.close() logger.info(f'Saving figure: {out_path}') def plot_blob(myblob, myfblob): fig, ax = plt.subplots(ncols=4, nrows=1+myfblob.n_bands, figsize=(5 + 5*myfblob.n_bands, 10), sharex=True, sharey=True) back = myblob.backgrounds[0] mean, rms = back[0], back[1] noise = np.random.normal(mean, rms, size=myfblob.dims) tr = myblob.solution_tractor norm = LogNorm(np.max([mean + rms, 1E-5]), myblob.images.max(), clip='True') img_opt = dict(cmap='Greys', norm=norm) # img_opt = dict(cmap='RdGy', vmin=-5*rms, vmax=5*rms) mmask = myblob.masks[0].copy() mmask[mmask==1] = np.nan ax[0, 0].imshow(myblob.images[0], **img_opt) ax[0, 0].imshow(mmask, alpha=0.5, cmap='Greys') ax[0, 1].imshow(myblob.solution_model_images[0] + noise, **img_opt) ax[0, 2].imshow(myblob.images[0] - myblob.solution_model_images[0], cmap='RdGy', vmin=-5*rms, vmax=5*rms) ax[0, 3].imshow(myblob.solution_chi_images[0], cmap='RdGy', vmin = -7, vmax = 7) ax[0, 0].set_ylabel(f'Detection ({myblob.bands[0]})') ax[0, 0].set_title('Data') ax[0, 1].set_title('Model') ax[0, 2].set_title('Data - Model') ax[0, 3].set_title('$\chi$-map') band = myblob.bands[0] for j, src in enumerate(myblob.solution_catalog): try: mtype = src.name except: mtype = 'PointSource' flux = src.getBrightness().getFlux(band) chisq = myblob.solved_chisq[j] topt = dict(color=colors[j], transform = ax[0, 3].transAxes) ystart = 0.99 - j * 0.4 ax[0, 3].text(1.05, ystart - 0.1, f'{j}) {mtype}', **topt) ax[0, 3].text(1.05, ystart - 0.2, f' F({band}) = {flux:4.4f}', **topt) ax[0, 3].text(1.05, ystart - 0.3, f' $\chi^{2}$ = {chisq:4.4f}', **topt) objects = myblob.bcatalog[j] e = Ellipse(xy=(objects['x'], objects['y']), width=6*objects['a'], height=6*objects['b'], angle=objects['theta'] * 180. / np.pi) e.set_facecolor('none') e.set_edgecolor('red') ax[0, 0].add_artist(e) try: for i in np.arange(myfblob.n_bands): back = myfblob.backgrounds[i] mean, rms = back[0], back[1] noise = np.random.normal(mean, rms, size=myfblob.dims) tr = myfblob.solution_tractor # norm = LogNorm(np.max([mean + rms, 1E-5]), myblob.images.max(), clip='True') # img_opt = dict(cmap='Greys', norm=norm) img_opt = dict(cmap='RdGy', vmin=-5*rms, vmax=5*rms) ax[i+1, 0].imshow(myfblob.images[i], **img_opt) ax[i+1, 1].imshow(myfblob.solution_model_images[i] + noise, **img_opt) ax[i+1, 2].imshow(myfblob.images[i] - myfblob.solution_model_images[i], cmap='RdGy', vmin=-5*rms, vmax=5*rms) ax[i+1, 3].imshow(myfblob.solution_chi_images[i], cmap='RdGy', vmin = -7, vmax = 7) ax[i+1, 0].set_ylabel(myfblob.bands[i]) band = myfblob.bands[i] for j, src in enumerate(myfblob.solution_catalog): try: mtype = src.name except: mtype = 'PointSource' flux = src.getBrightness().getFlux(band) chisq = myfblob.solution_chisq[j, i] Nres = myfblob.n_residual_sources[i] topt = dict(color=colors[j], transform = ax[i+1, 3].transAxes) ystart = 0.99 - j * 0.4 ax[i+1, 3].text(1.05, ystart - 0.1, f'{j}) {mtype}', **topt) ax[i+1, 3].text(1.05, ystart - 0.2, f' F({band}) = {flux:4.4f}', **topt) ax[i+1, 3].text(1.05, ystart - 0.3, f' $\chi^{2}$ = {chisq:4.4f}', **topt) if Nres > 0: ax[i+1, 3].text(1.05, ystart - 0.4, f'{Nres} residual sources found!', **topt) res_x = myfblob.residual_catalog[i]['x'] res_y = myfblob.residual_catalog[i]['y'] for x, y in zip(res_x, res_y): ax[i+1, 3].scatter(x, y, marker='+', color='r') for s, src in enumerate(myfblob.solution_catalog): x, y = src.pos color = colors[s] for i in np.arange(1 + myfblob.n_bands): for j in np.arange(4): ax[i,j].plot([x, x], [y - 10, y - 5], c=color) ax[i,j].plot([x - 10, x - 5], [y, y], c=color) except: logger.warning('Could not plot multiwavelength diagnostic figures') [[ax[i,j].set(xlim=(0,myfblob.dims[1]), ylim=(0,myfblob.dims[0])) for i in np.arange(myfblob.n_bands+1)] for j in np.arange(4)] #fig.suptitle(f'Solution for {blob_id}') fig.subplots_adjust(wspace=0.01, hspace=0, right=0.8) if myblob._is_itemblob: sid = myblob.bcatalog['source_id'][0] fig.savefig(os.path.join(conf.PLOT_DIR, f'{myblob.brick_id}_B{myblob.blob_id}_S{sid}.pdf')) else: fig.savefig(os.path.join(conf.PLOT_DIR, f'{myblob.brick_id}_B{myblob.blob_id}.pdf')) plt.close() def plot_srcprofile(blob, src, sid, bands=None): if bands is None: band = conf.MODELING_NICKNAME nickname = conf.MODELING_NICKNAME bidx = [0,] bands = [band,] outpath = os.path.join(conf.PLOT_DIR, f'T{blob.brick_id}_B{blob.blob_id}_S{sid}_{conf.MODELING_NICKNAME}_srcprofile.pdf') elif (len(bands) == 1) & (bands[0] == conf.MODELING_NICKNAME): band = conf.MODELING_NICKNAME nickname = conf.MODELING_NICKNAME bidx = [0,] bands = [band,] outpath = os.path.join(conf.PLOT_DIR, f'T{blob.brick_id}_B{blob.blob_id}_S{sid}_{conf.MODELING_NICKNAME}_srcprofile.pdf') else: bidx = [blob._band2idx(b, bands=blob.bands) for b in bands] if bands[0].startswith(conf.MODELING_NICKNAME): nickname = conf.MODELING_NICKNAME else: nickname = conf.MULTIBAND_NICKNAME if len(bands) > 1: outpath = os.path.join(conf.PLOT_DIR, f'T{blob.brick_id}_B{blob.blob_id}_S{sid}_{nickname}_srcprofile.pdf') else: outpath = os.path.join(conf.PLOT_DIR, f'T{blob.brick_id}_B{blob.blob_id}_S{sid}_{bands[0]}_srcprofile.pdf') import matplotlib.backends.backend_pdf pdf = matplotlib.backends.backend_pdf.PdfPages(outpath) for idx, band in zip(bidx, bands): if band == conf.MODELING_NICKNAME: zpt = conf.MODELING_ZPT rband = conf.MODELING_NICKNAME elif band.startswith(conf.MODELING_NICKNAME): band_name = band[len(conf.MODELING_NICKNAME)+1:] # zpt = conf.MULTIBAND_ZPT[blob._band2idx(band_name)] if band_name == conf.MODELING_NICKNAME: zpt = conf.MODELING_ZPT rband = band else: zpt = conf.MULTIBAND_ZPT[blob._band2idx(band_name)] rband = conf.MODELING_NICKNAME + '_' + band_name else: zpt = conf.MULTIBAND_ZPT[blob._band2idx(band)] rband = conf.MODELING_NICKNAME + '_' + band # information bid = blob.blob_id bsrc = blob.bcatalog[blob.bcatalog['source_id'] == sid] ra, dec = bsrc['RA'][0], bsrc['DEC'][0] if nickname == conf.MODELING_NICKNAME: xp0, yp0 = bsrc['x_orig'][0] - blob.subvector[1], bsrc['y_orig'][0] - blob.subvector[0] else: xp0, yp0 = bsrc['x_orig'][0] - blob.subvector[1] - blob.mosaic_origin[1] + conf.BRICK_BUFFER, bsrc['y_orig'][0] - blob.subvector[0] - blob.mosaic_origin[0] + conf.BRICK_BUFFER xp, yp = src.pos[0], src.pos[1] xps, yps = xp, yp flux, flux_err = bsrc[f'FLUX_{band}'][0], bsrc[f'FLUXERR_{band}'][0] mag, mag_err = bsrc[f'MAG_{band}'][0], bsrc[f'MAGERR_{band}'][0] n_blob = bsrc['N_BLOB'][0] chi2 = bsrc[f'CHISQ_{band}'][0] snr = bsrc[f'SNR_{band}'][0] is_resolved = False if src.name not in ('PointSource', 'SimpleGalaxy'): is_resolved = True col = np.array(bsrc.colnames)[np.array([tcoln.startswith('REFF') for tcoln in bsrc.colnames])][0] rband = col[len('REFF_'):] reff, reff_err = np.exp(bsrc[f'REFF_{rband}'][0])*conf.PIXEL_SCALE, np.exp(bsrc[f'REFF_{rband}'][0])*bsrc[f'REFF_ERR_{rband}'][0]*2.303*conf.PIXEL_SCALE ab, ab_err = bsrc[f'AB_{rband}'][0], bsrc[f'AB_ERR_{rband}'][0] if ab == -99.0: ab = -99 ab_err = -99 theta, theta_err = bsrc[f'THETA_{rband}'][0], bsrc[f'THETA_ERR_{rband}'][0] if 'Sersic' in src.name: nre, nre_err = bsrc[f'N_{rband}'][0], bsrc[f'N_ERR_{rband}'][0] # images img = blob.images[idx] wgt = blob.weights[idx] err = 1. / np.sqrt(wgt) mask = blob.masks[idx] seg = blob.segmap.copy() seg[blob.segmap != sid] = 0 mod = blob.solution_model_images[idx] chi = blob.solution_tractor.getChiImage(idx) chi[blob.segmap != sid] = 0 res = img - mod rms = np.median(blob.background_rms_images[idx]) xpix, ypix =
np.nonzero(seg)
numpy.nonzero
""" FluctuatingBackground.py Author: <NAME> Affiliation: UCLA Created on: Mon Oct 10 14:29:54 PDT 2016 Description: """ import numpy as np from math import factorial from ..physics import Cosmology from ..util import ParameterFile from ..util.Stats import bin_c2e from scipy.special import erfinv from scipy.optimize import fsolve from scipy.interpolate import interp1d from scipy.integrate import quad, simps from ..physics.Hydrogen import Hydrogen from ..physics.HaloModel import HaloModel from ..util.Math import LinearNDInterpolator from ..populations.Composite import CompositePopulation from ..physics.CrossSections import PhotoIonizationCrossSection from ..physics.Constants import g_per_msun, cm_per_mpc, dnu, s_per_yr, c, \ s_per_myr, erg_per_ev, k_B, m_p, dnu, g_per_msun root2 = np.sqrt(2.) four_pi = 4. * np.pi class Fluctuations(object): # pragma: no cover def __init__(self, grid=None, **kwargs): """ Initialize a FluctuatingBackground object. Creates an object capable of modeling fields that fluctuate spatially. """ self._kwargs = kwargs.copy() self.pf = ParameterFile(**kwargs) # Some useful physics modules if grid is not None: self.grid = grid self.cosm = grid.cosm else: self.grid = None self.cosm = Cosmology() self._done = {} @property def zeta(self): if not hasattr(self, '_zeta'): raise AttributeError('Must set zeta by hand!') return self._zeta @zeta.setter def zeta(self, value): self._zeta = value @property def zeta_X(self): if not hasattr(self, '_zeta_X'): raise AttributeError('Must set zeta_X by hand!') return self._zeta_X @zeta_X.setter def zeta_X(self, value): self._zeta_X = value @property def hydr(self): if not hasattr(self, '_hydr'): if self.grid is None: self._hydr = Hydrogen(**self.pf) else: self._hydr = self.grid.hydr return self._hydr @property def xset(self): if not hasattr(self, '_xset'): xset_pars = \ { 'xset_window': 'tophat-real', 'xset_barrier': 'constant', 'xset_pdf': 'gaussian', } xset = ares.physics.ExcursionSet(**xset_pars) xset.tab_M = pop.halos.tab_M xset.tab_sigma = pop.halos.tab_sigma xset.tab_ps = pop.halos.tab_ps_lin xset.tab_z = pop.halos.tab_z xset.tab_k = pop.halos.tab_k_lin xset.tab_growth = pop.halos.tab_growth self._xset = xset return self._xset def _overlap_region(self, dr, R1, R2): """ Volume of intersection between two spheres of radii R1 < R2. """ Vo = np.pi * (R2 + R1 - dr)**2 \ * (dr**2 + 2. * dr * R1 - 3. * R1**2 \ + 2. * dr * R2 + 6. * R1 * R2 - 3. * R2**2) / 12. / dr if type(Vo) == np.ndarray: # Small-scale vs. large Scale SS = dr <= R2 - R1 LS = dr >= R1 + R2 Vo[LS == 1] = 0.0 if type(R1) == np.ndarray: Vo[SS == 1] = 4. * np.pi * R1[SS == 1]**3 / 3. else: Vo[SS == 1] = 4. * np.pi * R1**3 / 3. return Vo def IV(self, dr, R1, R2): """ Just a vectorized version of the overlap calculation. """ return self._overlap_region(dr, R1, R2) def intersectional_volumes(self, dr, R1, R2, R3): IV = self.IV V11 = IV(dr, R1, R1) zeros = np.zeros_like(V11) if np.all(R2 == 0): return V11, zeros, zeros, zeros, zeros, zeros V12 = IV(dr, R1, R2) V22 = IV(dr, R2, R2) if np.all(R3 == 0): return V11, V12, V22, zeros, zeros, zeros V13 = IV(dr, R1, R3) V23 = IV(dr, R2, R3) V33 = IV(dr, R3, R3) return V11, V12, V22, V13, V23, V33 def overlap_volumes(self, dr, R1, R2): """ Overlap volumes, i.e., volumes in which a source affects two points in different ways. For example, V11 is the volume in which a source ionizes both points (at separation `dr`), V12 is the volume in which a source ionizes one point and heats the other, and so on. In this order: V11, V12, V13, V22, V23, V33 """ IV = self.IV V1 = 4. * np.pi * R1**3 / 3. if self.pf['ps_temp_model'] == 1: V2 = 4. * np.pi * (R2**3 - R1**3) / 3. else: V2 = 4. * np.pi * R2**3 / 3. Vt = 4. * np.pi * R2**3 / 3. V11 = IV(dr, R1, R1) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: V12 = V1 else: V12 = 2 * IV(dr, R1, R2) - IV(dr, R1, R1) V22 = IV(dr, R2, R2) if self.pf['ps_temp_model'] == 1: V22 += -2. * IV(dr, R1, R2) + IV(dr, R1, R1) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 1: V1n = V1 - IV(dr, R1, R2) elif self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: V1n = V1 else: V1n = V1 - V11 V2n = V2 - IV(dr, R2, R2) if self.pf['ps_temp_model'] == 1: V2n += IV(dr, R1, R2) # 'anything' to one point, 'nothing' to other. # Without temperature fluctuations, same as V1n if self.pf['ps_include_temp']: Van = Vt - IV(dr, R2, R2) else: Van = V1n return V11, V12, V22, V1n, V2n, Van def exclusion_volumes(self, dr, R1, R2, R3): """ Volume in which a single source only affects one """ pass @property def heating_ongoing(self): if not hasattr(self, '_heating_ongoing'): self._heating_ongoing = True return self._heating_ongoing @heating_ongoing.setter def heating_ongoing(self, value): self._heating_ongoing = value def BubbleShellFillingFactor(self, z, R_s=None): """ """ # Hard exit. if not self.pf['ps_include_temp']: return 0.0 Qi = self.MeanIonizedFraction(z) if self.pf['ps_temp_model'] == 1: R_i, M_b, dndm_b = self.BubbleSizeDistribution(z) if Qi == 1: return 0.0 if type(R_s) is np.ndarray: nz = R_i > 0 const_rsize = np.allclose(np.diff(R_s[nz==1] / R_i[nz==1]), 0.0) if const_rsize: fvol = (R_s[0] / R_i[0])**3 - 1. Qh = Qi * fvol else: V = 4. * np.pi * (R_s**3 - R_i**3) / 3. Mmin = self.Mmin(z) * self.zeta Qh = self.get_prob(z, M_b, dndm_b, Mmin, V, exp=False, ep=0.0, Mmax=None) #raise NotImplemented("No support for absolute scaling of hot bubbles yet.") if (Qh > (1. - Qi) * 1.): #or Qh > 0.5: #or Qi > 0.5: self.heating_ongoing = 0 Qh = np.minimum(Qh, 1. - Qi) return Qh else: # This will get called if temperature fluctuations are off return 0.0 elif self.pf['ps_temp_model'] == 2: Mmin = self.Mmin(z) * self.zeta_X R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=False) V = 4. * np.pi * R_i**3 / 3. Qh = self.get_prob(z, M_b, dndm_b, Mmin, V, exp=False, ep=0.0, Mmax=None) #Qh = self.BubbleFillingFactor(z, ion=False) #print('Qh', Qh) return np.minimum(Qh, 1. - Qi) else: raise NotImplemented('Uncrecognized option for BSD.') #return min(Qh, 1.), min(Qc, 1.) @property def bsd_model(self): return self.pf['bubble_size_dist'].lower() def MeanIonizedFraction(self, z, ion=True): Mmin = self.Mmin(z) logM = np.log10(Mmin) if ion: if not self.pf['ps_include_ion']: return 0.0 zeta = self.zeta return np.minimum(1.0, zeta * self.halos.fcoll_2d(z, logM)) else: if not self.pf['ps_include_temp']: return 0.0 zeta = self.zeta_X # Assume that each heated region contains the same volume # of fully-ionized material. Qi = self.MeanIonizedFraction(z, ion=True) Qh = zeta * self.halos.fcoll_2d(z, logM) - Qi return np.minimum(1.0 - Qi, Qh) def delta_shell(self, z): """ Relative density != relative over-density. """ if not self.pf['ps_include_temp']: return 0.0 if self.pf['ps_temp_model'] == 2: return self.delta_bubble_vol_weighted(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) rdens = self.pf["bubble_shell_rdens_zone_0"] return rdens * (1. + delta_i_bar) - 1. def BulkDensity(self, z, R_s): Qi = self.MeanIonizedFraction(z) #Qh = self.BubbleShellFillingFactor(z, R_s) Qh = self.MeanIonizedFraction(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) delta_h_bar = self.delta_shell(z) if self.pf['ps_igm_model'] == 2: delta_hal_bar = self.mean_halo_overdensity(z) Qhal = self.Qhal(z, Mmax=self.Mmin(z)) else: Qhal = 0.0 delta_hal_bar = 0.0 return -(delta_i_bar * Qi + delta_h_bar * Qh + delta_hal_bar * Qhal) \ / (1. - Qi - Qh - Qhal) def BubbleFillingFactor(self, z, ion=True, rescale=True): """ Fraction of volume filled by bubbles. This is never actually used, but for reference, the mean ionized fraction would be 1 - exp(-this). What we actually do is re-normalize the bubble size distribution to guarantee Q = zeta * fcoll. See MeanIonizedFraction and BubbleSizeDistribution for more details. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if self.bsd_model is None: R_i = self.pf['bubble_size'] V_i = 4. * np.pi * R_i**3 / 3. ni = self.BubbleDensity(z) Qi = 1. - np.exp(-ni * V_i) elif self.bsd_model in ['fzh04', 'hmf']: # Smallest bubble is one around smallest halo. # Don't actually need its mass, just need index to correctly # truncate integral. Mmin = self.Mmin(z) * zeta # M_b should just be self.m? No. R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion, rescale=rescale) V_i = 4. * np.pi * R_i**3 / 3. iM = np.argmin(np.abs(Mmin - M_b)) Qi = np.trapz(dndm_b[iM:] * M_b[iM:] * V_i[iM:], x=np.log(M_b[iM:])) # This means reionization is over. if self.bsd_model == 'fzh04': if self._B0(z, zeta) <= 0: return 1. else: raise NotImplemented('Uncrecognized option for BSD.') return min(Qi, 1.) # Grab heated phase to enforce BC #Rs = self.BubbleShellRadius(z, R_i) #Vsh = 4. * np.pi * (Rs - R_i)**3 / 3. #Qh = np.trapz(dndm * Vsh * M_b, x=np.log(M_b)) #if lya and self.pf['bubble_pod_size_func'] in [None, 'const', 'linear']: # Rc = self.BubblePodRadius(z, R_i, zeta, zeta_lya) # Vc = 4. * np.pi * (Rc - R_i)**3 / 3. # # if self.pf['powspec_rescale_Qlya']: # # This isn't actually correct since we care about fluxes # # not number of photons, but fine for now. # Qc = min(zeta_lya * self.halos.fcoll_2d(z, np.log10(self.Mmin(z))), 1) # else: # Qc = np.trapz(dndlnm[iM:] * Vc[iM:], x=np.log(M_b[iM:])) # # return min(Qc, 1.) # #elif lya and self.pf['bubble_pod_size_func'] == 'fzh04': # return self.BubbleFillingFactor(z, zeta_lya, None, lya=False) #else: @property def tab_Mmin(self): if not hasattr(self, '_tab_Mmin'): raise AttributeError('Must set Mmin by hand (right now)') return self._tab_Mmin @tab_Mmin.setter def tab_Mmin(self, value): if type(value) is not np.ndarray: value = np.ones_like(self.halos.tab_z) * value else: assert value.size == self.halos.tab_z.size self._tab_Mmin = value def Mmin(self, z): return np.interp(z, self.halos.tab_z, self.tab_Mmin) def mean_halo_bias(self, z): bias = self.halos.Bias(z) M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) dndm_h = self.halos.tab_dndm[iz_h] return 1.0 #return simps(M_h * dndm_h * bias, x=np.log(M_h)) \ # / simps(M_h * dndm_h, x=np.log(M_h)) def tab_bubble_bias(self, zeta): if not hasattr(self, '_tab_bubble_bias'): func = lambda z: self._fzh04_eq22(z, zeta) self._tab_bubble_bias = np.array(map(func, self.halos.tab_z_ps)) return self._tab_bubble_bias def _fzh04_eq22(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma S = s**2 #return 1. + ((self.LinearBarrier(z, zeta, zeta) / S - (1. / self._B0(z, zeta))) \ # / self._growth_factor(z)) return 1. + (self._B0(z, zeta)**2 / S / self._B(z, zeta, zeta)) def bubble_bias(self, z, ion=True): """ Eq. 9.24 in Loeb & Furlanetto (2013) or Eq. 22 in FZH04. """ return self._fzh04_eq22(z, ion) #iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) # #x, y = self.halos.tab_z_ps, self.tab_bubble_bias(zeta)[iz] # # # #m = (y[-1] - y[-2]) / (x[-1] - x[-2]) # #return m * z + y[-1] #iz = np.argmin(np.abs(z - self.halos.tab_z)) #s = self.sigma #S = s**2 # ##return 1. + ((self.LinearBarrier(z, zeta, zeta) / S - (1. / self._B0(z, zeta))) \ ## / self._growth_factor(z)) # #fzh04 = 1. + (self._B0(z, zeta)**2 / S / self._B(z, zeta, zeta)) # #return fzh04 def mean_bubble_bias(self, z, ion=True): """ """ R, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion) #if ('h' in term) or ('c' in term) and self.pf['powspec_temp_method'] == 'shell': # R_s, Rc = self.BubbleShellRadius(z, R_i) # R = R_s #else: if ion: zeta = self.zeta else: zeta = self.zeta_X V = 4. * np.pi * R**3 / 3. Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(Mmin - self.m)) bHII = self.bubble_bias(z, ion) #tmp = dndm[iM:] #print(z, len(tmp[np.isnan(tmp)]), len(bHII[np.isnan(bHII)])) #imax = int(min(np.argwhere(np.isnan(R_i)))) if ion and self.pf['ps_include_ion']: Qi = self.MeanIonizedFraction(z) elif ion and not self.pf['ps_include_ion']: raise NotImplemented('help') elif (not ion) and self.pf['ps_include_temp']: Qi = self.MeanIonizedFraction(z, ion=False) elif ion and self.pf['ps_include_temp']: Qi = self.MeanIonizedFraction(z, ion=False) else: raise NotImplemented('help') return np.trapz(dndm_b[iM:] * V[iM:] * bHII[iM:] * M_b[iM:], x=np.log(M_b[iM:])) / Qi #def delta_bubble_mass_weighted(self, z, zeta): # if self._B0(z, zeta) <= 0: # return 0. # # R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, zeta) # V_i = 4. * np.pi * R_i**3 / 3. # # Mmin = self.Mmin(z) * zeta # iM = np.argmin(np.abs(Mmin - self.m)) # B = self._B(z, zeta) # rho0 = self.cosm.mean_density0 # # dm_ddel = rho0 * V_i # # return simps(B[iM:] * dndm_b[iM:] * M_b[iM:], x=np.log(M_b[iM:])) def delta_bubble_vol_weighted(self, z, ion=True): if not self.pf['ps_include_ion']: return 0.0 if not self.pf['ps_include_xcorr_ion_rho']: return 0.0 if ion: zeta = self.zeta else: zeta = self.zeta_X if self._B0(z, zeta) <= 0: return 0. R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, ion=ion) V_i = 4. * np.pi * R_i**3 / 3. Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(Mmin - self.m)) B = self._B(z, ion=ion) return np.trapz(B[iM:] * dndm_b[iM:] * V_i[iM:] * M_b[iM:], x=np.log(M_b[iM:])) #def mean_bubble_overdensity(self, z, zeta): # if self._B0(z, zeta) <= 0: # return 0. # # R_i, M_b, dndm_b = self.BubbleSizeDistribution(z, zeta) # V_i = 4. * np.pi * R_i**3 / 3. # # Mmin = self.Mmin(z) * zeta # iM = np.argmin(np.abs(Mmin - self.m)) # B = self._B(z, zeta) # rho0 = self.cosm.mean_density0 # # dm_ddel = rho0 * V_i # # return simps(B[iM:] * dndm_b[iM:] * M_b[iM:], x=np.log(M_b[iM:])) def mean_halo_abundance(self, z, Mmin=False): M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) if Mmin: iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) else: iM_h = 0 dndm_h = self.halos.tab_dndm[iz_h] return np.trapz(M_h * dndm_h, x=np.log(M_h)) def spline_cf_mm(self, z): if not hasattr(self, '_spline_cf_mm_'): self._spline_cf_mm_ = {} if z not in self._spline_cf_mm_: iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) self._spline_cf_mm_[z] = interp1d(np.log(self.halos.tab_R), self.halos.tab_cf_mm[iz], kind='cubic', bounds_error=False, fill_value=0.0) return self._spline_cf_mm_[z] def excess_probability(self, z, R, ion=True): """ This is the excess probability that a point is ionized given that we already know another point (at distance r) is ionized. """ # Function of bubble mass (bubble size) bHII = self.bubble_bias(z, ion) bbar = self.mean_bubble_bias(z, ion) if R < self.halos.tab_R.min(): print("R too small") if R > self.halos.tab_R.max(): print("R too big") xi_dd = self.spline_cf_mm(z)(np.log(R)) #if term == 'ii': return bHII * bbar * xi_dd #elif term == 'id': # return bHII * bbar * xi_dd #else: # raise NotImplemented('help!') def _K(self, zeta): return erfinv(1. - (1. / zeta)) def _growth_factor(self, z): return np.interp(z, self.halos.tab_z, self.halos.tab_growth, left=np.inf, right=np.inf) def _delta_c(self, z): return self.cosm.delta_c0 / self._growth_factor(z) def _B0(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma # Variance on scale of smallest collapsed object sigma_min = self.sigma_min(z) return self._delta_c(z) - root2 * self._K(zeta) * sigma_min def _B1(self, z, ion=True): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma #* self.halos.growth_factor[iz] sigma_min = self.sigma_min(z) return self._K(zeta) / np.sqrt(2. * sigma_min**2) def _B(self, z, ion=True, zeta_min=None): return self.LinearBarrier(z, ion, zeta_min=zeta_min) def LinearBarrier(self, z, ion=True, zeta_min=None): if ion: zeta = self.zeta else: zeta = self.zeta_X iz = np.argmin(np.abs(z - self.halos.tab_z)) s = self.sigma #/ self.halos.growth_factor[iz] if zeta_min is None: zeta_min = zeta return self._B0(z, ion) + self._B1(z, ion) * s**2 def Barrier(self, z, ion=True, zeta_min=None): """ Full barrier. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if zeta_min is None: zeta_min = zeta #iz = np.argmin(np.abs(z - self.halos.tab_z)) #D = self.halos.growth_factor[iz] sigma_min = self.sigma_min(z) #Mmin = self.Mmin(z) #sigma_min = np.interp(Mmin, self.halos.M, self.halos.sigma_0) delta = self._delta_c(z) return delta - np.sqrt(2.) * self._K(zeta) \ * np.sqrt(sigma_min**2 - self.sigma**2) #return self.cosm.delta_c0 - np.sqrt(2.) * self._K(zeta) \ # * np.sqrt(sigma_min**2 - s**2) def sigma_min(self, z): Mmin = self.Mmin(z) return np.interp(Mmin, self.halos.tab_M, self.halos.tab_sigma) #def BubblePodSizeDistribution(self, z, zeta): # if self.pf['powspec_lya_method'] == 1: # # Need to modify zeta and critical threshold # Rc, Mc, dndm = self.BubbleSizeDistribution(z, zeta) # return Rc, Mc, dndm # else: # raise NotImplemented('help please') @property def m(self): """ Mass array used for bubbles. """ if not hasattr(self, '_m'): self._m = 10**np.arange(5, 18.1, 0.1) return self._m @property def sigma(self): if not hasattr(self, '_sigma'): self._sigma = np.interp(self.m, self.halos.tab_M, self.halos.tab_sigma) # Crude but chill it's temporary bigm = self.m > self.halos.tab_M.max() if np.any(bigm): print("WARNING: Extrapolating sigma to higher masses.") slope = np.diff(np.log10(self.halos.tab_sigma[-2:])) \ / np.diff(np.log10(self.halos.tab_M[-2:])) self._sigma[bigm == 1] = self.halos.tab_sigma[-1] \ * (self.m[bigm == 1] / self.halos.tab_M.max())**slope return self._sigma @property def dlns_dlnm(self): if not hasattr(self, '_dlns_dlnm'): self._dlns_dlnm = np.interp(self.m, self.halos.tab_M, self.halos.tab_dlnsdlnm) bigm = self.m > self.halos.tab_M.max() if np.any(bigm): print("WARNING: Extrapolating dlns_dlnm to higher masses.") slope = np.diff(np.log10(np.abs(self.halos.tab_dlnsdlnm[-2:]))) \ / np.diff(np.log10(self.halos.tab_M[-2:])) self._dlns_dlnm[bigm == 1] = self.halos.tab_dlnsdlnm[-1] \ * (self.m[bigm == 1] / self.halos.tab_M.max())**slope return self._dlns_dlnm def BubbleSizeDistribution(self, z, ion=True, rescale=True): """ Compute the ionized bubble size distribution. Parameters ---------- z: int, float Redshift of interest. zeta : int, float, np.ndarray Ionizing efficiency. Returns ------- Tuple containing (in order) the bubble radii, masses, and the differential bubble size distribution. Each is an array of length self.halos.tab_M, i.e., with elements corresponding to the masses used to compute the variance of the density field. """ if ion: zeta = self.zeta else: zeta = self.zeta_X if ion and not self.pf['ps_include_ion']: R_i = M_b = dndm = np.zeros_like(self.m) return R_i, M_b, dndm if (not ion) and not self.pf['ps_include_temp']: R_i = M_b = dndm = np.zeros_like(self.m) return R_i, M_b, dndm reionization_over = False # Comoving matter density rho0_m = self.cosm.mean_density0 rho0_b = rho0_m * self.cosm.fbaryon # Mean (over-)density of bubble material delta_B = self._B(z, ion) if self.bsd_model is None: if self.pf['bubble_density'] is not None: R_i = self.pf['bubble_size'] M_b = (4. * np.pi * Rb**3 / 3.) * rho0_m dndm = self.pf['bubble_density'] else: raise NotImplementedError('help') elif self.bsd_model == 'hmf': M_b = self.halos.tab_M * zeta # Assumes bubble material is at cosmic mean density R_i = (3. * M_b / rho0_b / 4. / np.pi)**(1./3.) iz = np.argmin(np.abs(z - self.halos.tab_z)) dndm = self.halos.tab_dndm[iz].copy() elif self.bsd_model == 'fzh04': # Just use array of halo mass as array of ionized region masses. # Arbitrary at this point, just need an array of masses. # Plus, this way, the sigma's from the HMF are OK. M_b = self.m # Radius of ionized regions as function of delta (mass) R_i = (3. * M_b / rho0_m / (1. + delta_B) / 4. / np.pi)**(1./3.) V_i = four_pi * R_i**3 / 3. # This is Eq. 9.38 from Steve's book. # The factors of 2, S, and M_b are from using dlns instead of # dS (where S=s^2) dndm = rho0_m * self.pcross(z, ion) * 2 * np.abs(self.dlns_dlnm) \ * self.sigma**2 / M_b**2 # Reionization is over! # Only use barrier condition if we haven't asked to rescale # or supplied Q ourselves. if self._B0(z, ion) <= 0: reionization_over = True dndm = np.zeros_like(dndm) #elif Q is not None: # if Q == 1: # reionization_over = True # dndm = np.zeros_like(dndm) else: raise NotImplementedError('Unrecognized option: %s' % self.pf['bubble_size_dist']) # This is a trick to guarantee that the integral over the bubble # size distribution yields the mean ionized fraction. if (not reionization_over) and rescale: Mmin = self.Mmin(z) * zeta iM = np.argmin(np.abs(M_b - Mmin)) Qi = np.trapz(dndm[iM:] * V_i[iM:] * M_b[iM:], x=np.log(M_b[iM:])) xibar = self.MeanIonizedFraction(z, ion=ion) dndm *= -np.log(1. - xibar) / Qi return R_i, M_b, dndm def pcross(self, z, ion=True): """ Up-crossing probability. """ if ion: zeta = self.zeta else: zeta = self.zeta_X S = self.sigma**2 Mmin = self.Mmin(z) #* zeta # doesn't matter for zeta=const if type(zeta) == np.ndarray: raise NotImplemented('this is wrong.') zeta_min = np.interp(Mmin, self.m, zeta) else: zeta_min = zeta zeros = np.zeros_like(self.sigma) B0 = self._B0(z, ion) B1 = self._B1(z, ion) Bl = self.LinearBarrier(z, ion=ion, zeta_min=zeta_min) p = (B0 / np.sqrt(2. * np.pi * S**3)) * np.exp(-0.5 * Bl**2 / S) #p = (B0 / np.sqrt(2. * np.pi * S**3)) \ # * np.exp(-0.5 * B0**2 / S) * np.exp(-B0 * B1) * np.exp(-0.5 * B1**2 / S) return p#np.maximum(p, zeros) @property def halos(self): if not hasattr(self, '_halos'): self._halos = HaloModel(**self.pf) return self._halos @property def Emin_X(self): if not hasattr(self, '_Emin_X'): xrpop = None for i, pop in enumerate(self.pops): if not pop.is_src_heat_fl: continue if xrpop is not None: raise AttributeError('help! can only handle 1 X-ray pop right now') xrpop = pop self._Emin_X = pop.src.Emin return self._Emin_X def get_Nion(self, z, R_i): return 4. * np.pi * (R_i * cm_per_mpc / (1. + z))**3 \ * self.cosm.nH(z) / 3. def _cache_jp(self, z, term): if not hasattr(self, '_cache_jp_'): self._cache_jp_ = {} if z not in self._cache_jp_: self._cache_jp_[z] = {} if term not in self._cache_jp_[z]: return None else: #print("Loaded P_{} at z={} from cache.".format(term, z)) return self._cache_jp_[z][term] def _cache_cf(self, z, term): if not hasattr(self, '_cache_cf_'): self._cache_cf_ = {} if z not in self._cache_cf_: self._cache_cf_[z] = {} if term not in self._cache_cf_[z]: return None else: #print("Loaded cf_{} at z={} from cache.".format(term, z)) return self._cache_cf_[z][term] def _cache_ps(self, z, term): if not hasattr(self, '_cache_ps_'): self._cache_ps_ = {} if z not in self._cache_ps_: self._cache_ps_[z] = {} if term not in self._cache_ps_[z]: return None else: return self._cache_ps_[z][term] @property def is_Rs_const(self): if not hasattr(self, '_is_Rs_const'): self._is_Rs_const = True return self._is_Rs_const @is_Rs_const.setter def is_Rs_const(self, value): self._is_Rs_const = value def _cache_Vo(self, z): if not hasattr(self, '_cache_Vo_'): self._cache_Vo_ = {} if z in self._cache_Vo_: return self._cache_Vo_[z] #if self.is_Rs_const and len(self._cache_Vo_.keys()) > 0: # return self._cache_Vo_[self._cache_Vo_.keys()[0]] return None def _cache_IV(self, z): if not hasattr(self, '_cache_IV_'): self._cache_IV_ = {} if z in self._cache_IV_: return self._cache_IV_[z] #if self.is_Rs_const and len(self._cache_IV_.keys()) > 0: # return self._cache_IV_[self._cache_IV_.keys()[0]] return None def _cache_p(self, z, term): if not hasattr(self, '_cache_p_'): self._cache_p_ = {} if z not in self._cache_p_: self._cache_p_[z] = {} if term not in self._cache_p_[z]: return None else: return self._cache_p_[z][term] def mean_halo_overdensity(self, z): # Mean density of halos (mass is arbitrary) rho_h = self.halos.MeanDensity(1e8, z) * cm_per_mpc**3 / g_per_msun return rho_h / self.cosm.mean_density0 - 1. def Qhal(self, z, Mmin=None, Mmax=None): """ This may not be quite right, since we just integrate over the mass range we have.... """ M_h = self.halos.tab_M iz_h = np.argmin(np.abs(z - self.halos.tab_z)) dndm_h = self.halos.tab_dndm[iz_h] # Volume of halos (within virial radii) Rvir = self.halos.VirialRadius(M_h, z) / 1e3 # Convert to Mpc Vvir = 4. * np.pi * Rvir**3 / 3. if Mmin is not None: imin = np.argmin(np.abs(M_h - Mmin)) else: imin = 0 if Mmax is not None: imax = np.argmin(np.abs(M_h - Mmax)) else: imax = None integ = dndm_h * Vvir * M_h Q_hal = 1. - np.exp(-np.trapz(integ[imin:imax], x=np.log(M_h[imin:imax]))) return Q_hal #return self.get_prob(z, M_h, dndm_h, Mmin, Vvir, exp=False, ep=0.0, # Mmax=Mmax) def ExpectationValue1pt(self, z, term='i', R_s=None, R3=None, Th=500.0, Ts=None, Tk=None, Ja=None): """ Compute the probability that a point is something. These are the one point terms in brackets, e.g., <x>, <x delta>, etc. Note that use of the asterisk is to imply that both quatities are in the same set of brackets. Maybe a better way to handle this notationally... """ ## # Check cache for match ## cached_result = self._cache_p(z, term) if cached_result is not None: return cached_result Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) if self.pf['ps_igm_model'] == 2: Qhal = self.Qhal(z, Mmax=self.Mmin(z)) del_hal = self.mean_halo_overdensity(z) else: Qhal = 0.0 del_hal = 0.0 Qb = 1. - Qi - Qh - Qhal Tcmb = self.cosm.TCMB(z) del_i = self.delta_bubble_vol_weighted(z) del_h = self.delta_shell(z) del_b = self.BulkDensity(z, R_s) ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) if Ts is not None: cb = Tcmb / Ts else: cb = 0.0 ## # Otherwise, get to it. ## if term == 'b': val = 1. - Qi - Qh - Qhal elif term == 'i': val = Qi elif term == 'n': val = 1. - Qi elif term == 'h': assert R_s is not None val = Qh elif term in ['m', 'd']: val = 0.0 elif term in ['n*d', 'i*d']: # <xd> = <(1-x_i)d> = <d> - <x_i d> = - <x_i d> if self.pf['ps_include_xcorr_ion_rho']: if term == 'i*d': val = Qi * del_i else: val = -Qi * del_i else: val = 0.0 elif term == 'pc': # <psi * c> = <x (1 + d) c> # = <(1 - i) (1 + d) c> = <(1 + d) c> - <i (1 + d) c> # ... # = <c> + <cd> avg_c = Qh * ch + Qb * cb if self.pf['ps_include_xcorr_hot_rho']: val = avg_c \ + Qh * ch * del_h \ + Qb * cb * del_b else: val = avg_c elif term in ['ppc', 'ppcc']: avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) if term == 'ppc': val = avg_psi**2 * avg_c else: val = avg_psi**2 * avg_c**2 #cc = Qh**2 * ch**2 \ # + 2 * Qh * Qb * ch * cb \ # + Qb**2 * cb**2 #ccd = Qh**2 * ch**2 * delta_h_bar \ # + Qh * Qb * ch * cb * delta_h_bar \ # + Qh * Qb * ch * cb * delta_b_bar \ # + Qb**2 * cb**2 * delta_b_bar elif term == 'c*d': if self.pf['ps_include_xcorr_hot_rho']: val = Qh * ch * del_h + Qb * cb * del_b else: val = 0.0 elif term.strip() == 'i*h': val = 0.0 elif term.strip() == 'n*h': # <xh> = <h> - <x_i h> = <h> val = Qh elif term.strip() == 'i*c': val = 0.0 elif term == 'c': val = ch * Qh + cb * Qb elif term.strip() == 'n*c': # <xc> = <c> - <x_i c> val = ch * Qh elif term == 'psi': # <psi> = <x (1 + d)> = <x> + <xd> = 1 - <x_i> + <d> - <x_i d> # = 1 - <x_i> - <x_i d> #avg_xd = self.ExpectationValue1pt(z, zeta, term='n*d', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_x = self.ExpectationValue1pt(z, zeta, term='n', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #val = avg_x + avg_xd avg_id = self.ExpectationValue1pt(z, term='i*d', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_i = self.ExpectationValue1pt(z, term='i', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = 1. - avg_i - avg_id elif term == 'phi': # <phi> = <psi * (1 - c)> = <psi> - <psi * c> # <psi * c> = <x * c> + <x * c * d> # = <c> - <x_i c> + <cd> - <x_i c * d> avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi_c = self.ExpectationValue1pt(z, term='pc', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = avg_psi - avg_psi_c # <phi> = <psi * (1 + c)> = <psi> + <psi * c> # # <psi * c> = <x * c> + <x * c * d> # = <c> - <x_i c> + <cd> - <x_i c * d> #avg_xcd = self.ExpectationValue1pt(z, zeta, term='n*d*c', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ## Equivalent to <c> in binary field model. #ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) #ci = self.BubbleContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) #avg_c = self.ExpectationValue1pt(z, zeta, term='c', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_cd = self.ExpectationValue1pt(z, zeta, term='c*d', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_id = self.ExpectationValue1pt(z, zeta, term='i*d', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #avg_psi = self.ExpectationValue1pt(z, zeta, term='psi', # R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #avg_psi_c = avg_c - ci * Qi + avg_cd - avg_id * ci # ## Tagged on these last two terms if c=1 (ionized regions) #val = avg_psi + avg_psi_c elif term == '21': # dTb = T0 * (1 + d21) = T0 * xHI * (1 + d) = T0 * psi # so d21 = psi - 1 if self.pf['ps_include_temp']: avg_phi = self.ExpectationValue1pt(z, term='phi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = avg_phi - 1. else: avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) val = avg_psi - 1. elif term == 'o': # <omega>^2 = <psi * c>^2 - 2 <psi> <psi * c> avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi_c = self.ExpectationValue1pt(z, term='pc', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # <omega>^2 = <psi c>^2 - 2 <psi c> <psi> val = np.sqrt(avg_psi_c**2 - 2. * avg_psi_c * avg_psi) elif term == 'oo': avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi_c = self.ExpectationValue1pt(z, term='pc', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # <omega>^2 = <psi c>^2 - 2 <psi c> <psi> val = avg_psi_c**2 - 2. * avg_psi_c * avg_psi else: raise ValueError('Don\' know how to handle <{}>'.format(term)) self._cache_p_[z][term] = val return val @property def _getting_basics(self): if not hasattr(self, '_getting_basics_'): self._getting_basics_ = False return self._getting_basics_ def get_basics(self, z, R, R_s, Th, Ts, Tk, Ja): self._getting_basics_ = True basics = {} for term in ['ii', 'ih', 'ib', 'hh', 'hb', 'bb']: cache = self._cache_jp(z, term) if self.pf['ps_include_temp'] and self.pf['ps_temp_model'] == 2: Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) if term == 'ih': P = Qi * Qh * np.ones_like(R) P1 = P2 = np.zeros_like(R) basics[term] = P, P1, P2 continue elif term == 'ib': P = Qi * (1. - Qi - Qh) * np.ones_like(R) P1 = P2 = np.zeros_like(R) basics[term] = P, P1, P2 continue elif term == 'hb': P = Qh * (1. - Qi - Qh) * np.ones_like(R) P1 = P2 = np.zeros_like(R) basics[term] = P, P1, P2 continue #elif term == 'bb': # P = (1. - Qi - Qh)**2 * np.ones_like(R) # P1 = P2 = np.zeros_like(R) # basics[term] = P, P1, P2 # continue if cache is None and term != 'bb': P, P1, P2 = self.ExpectationValue2pt(z, R=R, term=term, R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) elif cache is None and term == 'bb': P = 1. - (basics['ii'][0] + 2 * basics['ib'][0] + 2 * basics['ih'][0] + basics['hh'][0] + 2 * basics['hb'][0]) P1 = P2 = np.zeros_like(P) self._cache_jp_[z][term] = R, P, np.zeros_like(P), np.zeros_like(P) else: P, P1, P2 = cache[1:] basics[term] = P, P1, P2 self._getting_basics_ = False return basics def ExpectationValue2pt(self, z, R, term='ii', R_s=None, R3=None, Th=500.0, Ts=None, Tk=None, Ja=None, k=None): """ Essentially a wrapper around JointProbability that scales terms like <cc'>, <xc'>, etc., from their component probabilities <hh'>, <ih'>, etc. Parameters ---------- z : int, float zeta : int, float Ionization efficiency R : np.ndarray Array of scales to consider. term : str Returns ------- Tuple: total, one-source, two-source contributions to joint probability. """ ## # Check cache for match ## #cached_result = self._cache_jp(z, term) # #if cached_result is not None: # _R, _jp, _jp1, _jp2 = cached_result # # if _R.size == R.size: # if np.allclose(_R, R): # return cached_result[1:] # # print("interpolating jp_{}".format(ii)) # return np.interp(R, _R, _jp), np.interp(R, _R, _jp1), np.interp(R, _R, _jp2) # Remember, we scaled the BSD so that these two things are equal # by construction. xibar = Q = Qi = self.MeanIonizedFraction(z) # Call this early so that heating_ongoing is set before anything # else can happen. #Qh = self.BubbleShellFillingFactor(z, R_s=R_s) Qh = self.MeanIonizedFraction(z, ion=False) delta_i_bar = self.delta_bubble_vol_weighted(z) delta_h_bar = self.delta_shell(z) delta_b_bar = self.BulkDensity(z, R_s) Tcmb = self.cosm.TCMB(z) ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) if Ts is None: cb = 0.0 else: cb = Tcmb / Ts Rones = np.ones_like(R) Rzeros = np.zeros_like(R) # If reionization is over, don't waste our time! if xibar == 1: return np.ones(R.size), Rzeros, Rzeros iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) iz_hmf = np.argmin(np.abs(z - self.halos.tab_z)) # Grab the matter power spectrum if R.size == self.halos.tab_R.size: if np.allclose(R, self.halos.tab_R): xi_dd = self.halos.tab_cf_mm[iz] else: xi_dd = self.spline_cf_mm(z)(np.log(R)) else: xi_dd = self.spline_cf_mm(z)(np.log(R)) # Some stuff we need R_i, M_b, dndm_b = self.BubbleSizeDistribution(z) V_i = 4. * np.pi * R_i**3 / 3. if self.pf['ps_include_temp']: if self.pf['ps_temp_model'] == 1: V_h = 4. * np.pi * (R_s**3 - R_i**3) / 3. V_ioh = 4. * np.pi * R_s**3 / 3. dndm_s = dndm_b M_s = M_b zeta_X = 0.0 elif self.pf['ps_temp_model'] == 2: zeta_X = self.zeta_X R_s, M_s, dndm_s = self.BubbleSizeDistribution(z, ion=False) V_h = 4. * np.pi * R_s**3 / 3. V_ioh = 4. * np.pi * R_s**3 / 3. else: raise NotImplemented('help') else: zeta_X = 0 if R_s is None: R_s = np.zeros_like(R_i) V_h = np.zeros_like(R_i) V_ioh = V_i zeta_X = 0.0 if R3 is None: R3 = np.zeros_like(R_i) ## # Before we begin: anything we're turning off? ## if not self.pf['ps_include_ion']: if term == 'ii': self._cache_jp_[z][term] = R, Qi**2 * Rones, Rzeros, Rzeros return Qi**2 * Rones, Rzeros, Rzeros elif term in ['id']: self._cache_jp_[z][term] = R, Rzeros, Rzeros, Rzeros return Rzeros, Rzeros, Rzeros elif term == 'idd': ev2pt = Qi * xi_dd self._cache_jp_[z][term] = R, ev2pt, Rzeros, Rzeros return ev2pt, Rzeros, Rzeros # elif term == 'iidd': ev2pt = Qi**2 * xi_dd self._cache_jp_[z][term] = R, ev2pt, Rzeros, Rzeros return ev2pt, Rzeros, Rzeros #elif 'i' in term: # #self._cache_jp_[z][term] = R, Rzeros, Rzeros, Rzeros # return Rzeros, Rzeros, Rzeros # also iid, iidd if not self.pf['ps_include_temp']: if ('c' in term) or ('h' in term): return Rzeros, Rzeros, Rzeros ## # Handy ## if not self._getting_basics: basics = self.get_basics(z, R, R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) if term in basics: return basics[term] _P_ii, _P_ii_1, _P_ii_2 = basics['ii'] _P_hh, _P_hh_1, _P_hh_2 = basics['hh'] _P_bb, _P_bb_1, _P_bb_2 = basics['bb'] _P_ih, _P_ih_1, _P_ih_2 = basics['ih'] _P_ib, _P_ib_1, _P_ib_2 = basics['ib'] _P_hb, _P_hb_1, _P_hb_2 = basics['hb'] ## # Check for derived quantities like psi, phi ## if term == 'psi': # <psi psi'> = <x (1 + d) x' (1 + d')> = <xx'(1+d)(1+d')> # = <xx'(1 + d + d' + dd')> # = <xx'> + 2<xx'd> + <xx'dd'> #xx, xx1, xx2 = self.ExpectationValue2pt(z, zeta, R=R, term='nn', # R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #xxd, xxd1, xxd2 = self.ExpectationValue2pt(z, zeta, R=R, term='nnd', # R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #xxdd, xxdd1, xxdd2 = self.ExpectationValue2pt(z, zeta, R=R, # term='xxdd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # #ev2pt = xx + 2. * xxd + xxdd # ev2pt_1 = Rzeros ev2pt_2 = Rzeros # All in terms of ionized fraction perturbation. dd, dd1, dd2 = self.ExpectationValue2pt(z, R=R, term='dd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ii, ii1, ii2 = self.ExpectationValue2pt(z, R=R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) di, di1, di2 = self.ExpectationValue2pt(z, R=R, term='id', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) iidd, on, tw = self.ExpectationValue2pt(z, R=R, term='iidd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) idd, on, tw = self.ExpectationValue2pt(z, R=R, term='idd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) iid, on, tw = self.ExpectationValue2pt(z, R=R, term='iid', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_id_1 = self.ExpectationValue1pt(z, term='i*d', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev2pt = dd + ii - 2. * di + iidd - 2. * (idd - iid) \ + 1. - 2 * Qi - 2 * ev_id_1 #self._cache_jp_[z][term] = R, ev2pt, ev2pt_1, ev2pt_2 return ev2pt, ev2pt_1, ev2pt_2 elif term == 'phi': ev_psi, ev_psi1, ev_psi2 = self.ExpectationValue2pt(z, R, term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_oo, ev_oo1, ev_oo2 = self.ExpectationValue2pt(z, R, term='oo', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) return ev_psi + ev_oo, ev_psi1 + ev_oo1, ev_psi2 + ev_oo2 elif term == '21': # dTb = T0 * (1 + d21) = T0 * psi # d21 = psi - 1 # <d21 d21'> = <(psi - 1)(psi' - 1)> # = <psi psi'> - 2 <psi> + 1 if self.pf['ps_include_temp']: # New formalism # <phi phi'> = <psi psi'> + 2 <psi psi' c> + <psi psi' c c'> ev_phi, ev_phi1, ev_phi2 = self.ExpectationValue2pt(z, R, term='phi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_phi = self.ExpectationValue1pt(z, term='phi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev21 = ev_phi + 1. - 2. * avg_phi else: ev_psi, ev_psi1, ev_psi2 = self.ExpectationValue2pt(z, R, term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev21 = ev_psi + 1. - 2. * avg_psi #raise NotImplemented('still working!') #Phi, junk1, junk2 = self.ExpectationValue2pt(z, zeta, R, term='Phi', # R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja, k=k) # #ev_psi, ev_psi1, ev_psi2 = self.ExpectationValue2pt(z, zeta, R, # term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #ev2pt = ev_psi + Phi # #self._cache_jp_[z][term] = R, ev2pt, Rzeros, Rzeros return ev21, Rzeros, Rzeros elif term == 'oo': # New formalism # <phi phi'> = <psi psi'> - 2 <psi psi' c> + <psi psi' c c'> # = <psi psi'> + <o o'> ppc, _p1, _p2 = self.ExpectationValue2pt(z, R=R, term='ppc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ppcc, _p1, _p2 = self.ExpectationValue2pt(z, R=R, term='ppcc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev2pt = ppcc - 2 * ppc return ev2pt, Rzeros, Rzeros #elif term == 'bb': # ev_ii, one, two = self.ExpectationValue2pt(z, zeta, R, # term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ev_ib, one, two = self.ExpectationValue2pt(z, zeta, R, # term='ib', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # # if self.pf['ps_include_temp']: # ev_ih, one, two = self.ExpectationValue2pt(z, zeta, R, # term='ih', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ev_hh, one, two = self.ExpectationValue2pt(z, zeta, R, # term='hh', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # ev_hb, one, two = self.ExpectationValue2pt(z, zeta, R, # term='hb', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) # else: # ev_ih = ev_hh = ev_hb = 0.0 # # #return (1. - Qi - Qh)**2 * Rones, Rzeros, Rzeros # # ev_bb = 1. - (ev_ii + 2 * ev_ib + 2 * ev_ih + ev_hh + 2 * ev_hb) # # self._cache_jp_[z][term] = R, ev_bb, Rzeros, Rzeros # # return ev_bb, Rzeros, Rzeros # <psi psi' c> = <cdd'> - 2 <cdi'> - 2 <ci'dd> elif term == 'ppc': avg_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_cd = self.ExpectationValue1pt(z, term='c*d', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ci, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='ic', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cdd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cdd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cdip, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cdip', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cddip, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cddip', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cdpip, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cdpip', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ppc = avg_c + cd - ci - cdpip + avg_cd + cdd - cdip - cddip return ppc, Rzeros, Rzeros elif term == 'ppcc': ccdd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='ccdd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cc, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='cc', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ccd, _j1, _j2 = self.ExpectationValue2pt(z, R=R, term='ccd', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) return cc + 2 * ccd + ccdd, Rzeros, Rzeros elif term in ['mm', 'dd']: # Equivalent to correlation function since <d> = 0 return self.spline_cf_mm(z)(np.log(R)), np.zeros_like(R), np.zeros_like(R) #elif term == 'dd': # dd = _P_ii * delta_i_bar**2 \ # + _P_hh * delta_h_bar**2 \ # + _P_bb * delta_b_bar**2 \ # + 2 * _P_ih * delta_i_bar * delta_h_bar \ # + 2 * _P_ib * delta_i_bar * delta_b_bar \ # + 2 * _P_hb * delta_h_bar * delta_b_bar # # return dd, Rzeros, Rzeros ## # For 3-zone IGM, can compute everything from permutations of # i, h, and b. ## if self.pf['ps_igm_model'] == 1 and not self._getting_basics: return self.ThreeZoneModel(z, R=R, term=term, R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ## # On to things we must be more careful with. ## # Minimum bubble size Mmin = self.Mmin(z) * self.zeta iM = np.argmin(np.abs(M_b - Mmin)) # Only need overlap volumes once per redshift all_OV_z = self._cache_Vo(z) if all_OV_z is None: all_OV_z = np.zeros((len(R), 6, len(R_i))) for i, sep in enumerate(R): all_OV_z[i,:,:] = \ np.array(self.overlap_volumes(sep, R_i, R_s)) self._cache_Vo_[z] = all_OV_z.copy() #print("Generated z={} overlap_volumes".format(z)) #else: # print("Read in z={} overlap_volumes".format(z)) all_IV_z = self._cache_IV(z) if all_IV_z is None: all_IV_z = np.zeros((len(R), 6, len(R_i))) for i, sep in enumerate(R): all_IV_z[i,:,:] = \ np.array(self.intersectional_volumes(sep, R_i, R_s, R3)) self._cache_IV_[z] = all_IV_z.copy() Mmin_b = self.Mmin(z) * self.zeta Mmin_h = self.Mmin(z) Mmin_s = self.Mmin(z) * zeta_X if term in ['hh', 'ih', 'ib', 'hb'] and self.pf['ps_temp_model'] == 1 \ and self.pf['ps_include_temp']: Qh_int = self.get_prob(z, M_s, dndm_s, Mmin, V_h, exp=False, ep=0.0, Mmax=None) f_h = -np.log(1. - Qh) / Qh_int else: f_h = 1. #dR = np.diff(10**bin_c2e(np.log(R)))#np.concatenate((np.diff(R), [np.diff(R)[-1]])) #dR = 10**np.arange(np.log(R).min(), np.log(R).max() + 2 * dlogR, dlogR) # Loop over scales P1 = np.zeros(R.size) P2 = np.zeros(R.size) PT = np.zeros(R.size) for i, sep in enumerate(R): ## # Note: each element of this loop we're constructing an array # over bubble mass, which we then integrate over to get a total # probability. The shape of every quantity should be `self.m`. ## # Yields: V11, V12, V22, V1n, V2n, Van # Remember: these radii arrays depend on redshift (through delta_B) all_V = all_OV_z[i] all_IV = all_IV_z[i] # For two-halo terms, need bias of sources. if self.pf['ps_include_bias']: # Should modify for temp_model==2 if self.pf['ps_include_temp']: if self.pf['ps_temp_model'] == 2 and 'h' in term: _ion = False else: _ion = True else: _ion = True ep = self.excess_probability(z, sep, ion=_ion) else: ep = np.zeros_like(self.m) ## # For each zone, figure out volume of region where a # single source can ionize/heat/couple both points, as well # as the region where a single source is not enough (Vss_ne) ## if term == 'ii': Vo = all_V[0] # Subtract off more volume if heating is ON. #if self.pf['ps_include_temp']: # #Vne1 = Vne2 = V_i - self.IV(sep, R_i, R_s) # Vne1 = Vne2 = V_i - all_IV[1] #else: # You might think: hey! If temperature fluctuations are on, # we need to make sure the second point isn't *heated* by # the first point. This gets into issues of overlap. By not # introducing this correction (commented out above), we're # saying "yes, the second point can still lie in the heated # region of the first (ionized) point, but that point itself # may actually be ionized, since the way we construct regions # doesn't know that a heated region may actually live in the # ionized region of another bubble." That is, a heated point # can be ionized but an ionized pt can't later be designated # a hot point. Vne1 = Vne2 = V_i - Vo _P1 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vo, True) _P2_1 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True) _P2_2 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vne2, True, ep) _P2 = (1. - _P1) * _P2_1 * _P2_2 if self.pf['ps_volfix'] and Qi > 0.5: P1[i] = _P1 P2[i] = (1. - P1[i]) * _P2_1**2 else: P1[i] = _P1 P2[i] = _P2 # Probability that one point is ionized, other in "bulk IGM" elif term == 'ib': Vo_iN = all_V[3] # region in which a source ionized one point # and does nothing to the other. # Probability that a single source does something to # each point. If no temp fluctuations, same as _Pis P1_iN = self.get_prob(z, M_b, dndm_b, Mmin_b, all_V[3], True) # "probability of an ionized pt 2 given ionized pt 1" Pigi = self.get_prob(z, M_b, dndm_b, Mmin_b, V_i-all_V[0], True, ep) if self.pf['ps_include_temp']: if self.pf['ps_temp_model'] == 1: Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) # "probability of a heated pt 2 given ionized pt 1" Phgi = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) P2[i] = P1_iN * (1. - Pigi - Phgi) else: P2[i] = Qi * (1. - Qi - Qh) else: P2[i] = P1_iN * (1. - Pigi) elif term == 'hb': #if self.pf['ps_temp_model'] == 2: # print('Ignoring hb term for now...') # continue #else: # pass if self.pf['ps_temp_model'] == 2: P1_hN = self.get_prob(z, M_s, dndm_s, Mmin_s, all_V[4], True) # Given that the first point is heated, what is the probability # that the second pt is heated or ionized by a different source? # We want the complement of that. # Volume in which I heat but don't ionize (or heat) the other pt, # i.e., same as the two-source term for <hh'> #Vne2 = Vh - self.IV(sep, R_i, R_s) Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) # Volume in which single source ioniz V2ii = V_i - all_V[0] Phgh = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) Pigh = self.get_prob(z, M_b, dndm_b, Mmin_b, V2ii, True, ep) #P1[i] = P1_hN #ih2 = _P_ih_2[i] #hh2 = _P_hh_2[i] P2[i] = P1_hN * (1. - Phgh - Pigh) else: # Probability that single source can heat one pt but # does nothing to the other. P1_hN = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, all_V[4], True) # Given that the first point is heated, what is the probability # that the second pt is heated or ionized by a different source? # We want the complement of that. # Volume in which I heat but don't ionize (or heat) the other pt, # i.e., same as the two-source term for <hh'> #Vne2 = Vh - self.IV(sep, R_i, R_s) Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) # Volume in which single source ioniz V2ii = V_i - all_V[0] Phgh = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) Pigh = self.get_prob(z, M_b, dndm_b, Mmin_b, V2ii, True, ep) #P1[i] = P1_hN #ih2 = _P_ih_2[i] #hh2 = _P_hh_2[i] P2[i] = P1_hN * (1. - Phgh - Pigh) elif term == 'hh': # Excursion set approach for temperature. if self.pf['ps_temp_model'] == 2: Vo = all_V[2] Vne1 = Vne2 = V_h - Vo _P1 = self.get_prob(z, M_s, dndm_s, Mmin_s, Vo, True) _P2_1 = self.get_prob(z, M_s, dndm_s, Mmin_s, Vne1, True) _P2_2 = self.get_prob(z, M_s, dndm_s, Mmin_s, Vne2, True, ep) #_P2_1 -= Qi #_P2_1 -= Qi _P2 = (1. - _P1) * _P2_1 * _P2_2 #if self.pf['ps_volfix'] and Qi > 0.5: # P1[i] = _P1 # P2[i] = (1. - P1[i]) * _P2_1**2 # #else: P1[i] = _P1 P2[i] = _P2 else: #Vii = all_V[0] #_integrand1 = dndm * Vii # #_exp_int1 = np.exp(-simps(_integrand1[iM:] * M_b[iM:], # x=np.log(M_b[iM:]))) #_P1_ii = (1. - _exp_int1) # Region in which two points are heated by the same source Vo = all_V[2] # Subtract off region of the intersection HH volume # in which source 1 would do *anything* to point 2. #Vss_ne_1 = Vh - (Vo - self.IV(sep, R_i, R_s) + all_V[0]) #Vne1 = Vne2 = Vh - Vo # For ionization, this is just Vi - Vo #Vne1 = V2 - all_IV[2] - (V1 - all_IV[1]) Vne1 = V_ioh - all_IV[2] - (V_i - all_IV[1]) #Vne1 = V2 - self.IV(sep, R_s, R_s) - (V1 - self.IV(sep, R_i, R_s)) Vne2 = Vne1 # Shouldn't max(Vo) = Vh? #_P1, _P2 = self.get_prob(z, zeta, Vo, Vne1, Vne2, corr, term) _P1 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vo, True) _P2_1 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne1, True) _P2_2 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) # kludge! to account for Qh = 1 - Qi at late times. # Integrals above will always get over-estimated for hot # regions. #_P2_1 = min(Qh, _P2_1) #_P2_2 = min(Qh, _P2_2) _P2 = (1. - _P1) * _P2_1 * _P2_2 # The BSD is normalized so that its integral will recover # zeta * fcoll. # Start chugging along on two-bubble term if np.any(Vne1 < 1e-12): N = sum(Vne1 < 1e-12) print('z={}, R={}: Vss_ne_1 (hh) < 0 {} / {} times'.format(z, sep, N, len(R_s))) #print(Vne1[Vne1 < 1e-12]) print(np.all(V_ioh > V_i), np.all(V_ioh > all_IV[2]), all_IV[2][-1], all_IV[1][-1]) # Must correct for the fact that Qi+Qh<=1 if self.heating_ongoing: P1[i] = _P1 P2[i] = _P2 else: P1[i] = _P1 * (1. - Qh - Qi) P2[i] = Qh**2 elif term == 'ih': if self.pf['ps_temp_model'] == 2: continue if not self.pf['ps_include_xcorr_ion_hot']: P1[i] = 0.0 P2[i] = Qh * Qi continue #Vo_sh_r1, Vo_sh_r2, Vo_sh_r3 = \ # self.overlap_region_shell(sep, R_i, R_s) #Vo = 2. * Vo_sh_r2 - Vo_sh_r3 Vo = all_V[1] #V1 = 4. * np.pi * R_i**3 / 3. #V2 = 4. * np.pi * R_s**3 / 3. #Vh = 4. * np.pi * (R_s**3 - R_i**3) / 3. # Volume in which I ionize but don't heat (or ionize) the other pt. Vne1 = V_i - all_IV[1] # Volume in which I heat but don't ionize (or heat) the other pt, # i.e., same as the two-source term for <hh'> #Vne2 = Vh - self.IV(sep, R_i, R_s) Vne2 = V_ioh - all_IV[2] - (V_i - all_IV[1]) #Vne2 = V2 - self.IV(sep, R_s, R_s) - (V1 - self.IV(sep, R_i, R_s)) if np.any(Vne2 < 0): N = sum(Vne2 < 0) print('R={}: Vss_ne_2 (ih) < 0 {} / {} times'.format(sep, N, len(R_s))) #_P1, _P2 = self.get_prob(z, zeta, Vo, Vne1, Vne2, corr, term) _P1 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vo, True) _P2_1 = self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True) _P2_2 = self.get_prob(z, M_b, dndm_b * f_h, Mmin_b, Vne2, True, ep) # Kludge! #_P2_1 = min(_P2_2, Qi) #_P2_2 = min(_P2_2, Qh) _P2 = (1. - _P1) * _P2_1 * _P2_2 # #P2[i] = min(_P2, Qh * Qi) if self.heating_ongoing: P1[i] = _P1 P2[i] = _P2 else: P1[i] = _P1 * (1. - Qh - Qi) P2[i] = Qh * Qi ## # Density stuff from here down ## if term.count('d') == 0: continue if not (self.pf['ps_include_xcorr_ion_rho'] \ or self.pf['ps_include_xcorr_hot_rho']): # These terms will remain zero #if term.count('d') > 0: continue ## # First, grab a bunch of stuff we'll need. ## # Ionization auto-correlations #Pii, Pii_1, Pii_2 = \ # self.ExpectationValue2pt(z, zeta, R, term='ii', # R_s=R_s, R3=R3, Th=Th, Ts=Ts) Vo = all_V[0] Vne1 = V_i - Vo Vo_hh = all_V[2] # These are functions of mass Vsh_sph = 4. * np.pi * R_s**3 / 3. Vsh = 4. * np.pi * (R_s**3 - R_i**3) / 3. # Mean bubble density #B = self._B(z, zeta) #rho0 = self.cosm.mean_density0 #delta = M_b / V_i / rho0 - 1. M_h = self.halos.tab_M iM_h = np.argmin(np.abs(self.Mmin(z) - M_h)) dndm_h = self.halos.tab_dndm[iz_hmf] fcoll_h = self.halos.tab_fcoll[iz_hmf,iM_h] # Luminous halos, i.e., Mh > Mmin Q_lhal = self.Qhal(z, Mmin=Mmin) # Dark halos, i.e., those outside bubbles Q_dhal = self.Qhal(z, Mmax=Mmin) # All halos Q_hal = self.Qhal(z) # Since integration must be perfect Q_dhal = Q_hal - Q_lhal R_hal = self.halos.VirialRadius(M_h, z) / 1e3 # Convert to Mpc V_hal = four_pi * R_hal**3 / 3. # Bias of bubbles and halos ## db = self._B(z, ion=True) bh = self.halos.Bias(z) bb = self.bubble_bias(z, ion=True) xi_dd_r = xi_dd[i]#self.spline_cf_mm(z)(np.log(sep)) bh_bar = self.mean_halo_bias(z) bb_bar = self.mean_bubble_bias(z, ion=True) ep_bh = bh * bb_bar * xi_dd_r exc = bh_bar * bb_bar * xi_dd_r # Mean density of halos (mass is arbitrary) delta_hal_bar = self.mean_halo_overdensity(z) nhal_avg = self.mean_halo_abundance(z) # <d> = 0 = <d_i> * Qi + <d_hal> * Q_hal + <d_nohal> * Q_nh # Problem is Q_hal and Q_i are not mutually exclusive. # Actually: they are inclusive! At least above Mmin. delta_nothal_bar = -delta_hal_bar * Q_hal / (1. - Q_hal) avg_c = self.ExpectationValue1pt(z, term='c', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) #dnh = -dh_avg * fcoll_h / (1. - fcoll_h) #_P1_ii = self.get_prob(z, M_b, dndm_b, Mmin_b, Vo, True) #delta_i_bar = self.mean_bubble_overdensity(z, zeta) if term == 'id': ## # Analog of one source or one bubble term is P_in, i.e., # probability that points are in the same bubble. # The "two bubble term" is instead P_out, i.e., the # probability that points are *not* in the same bubble. # In the latter case, the density can be anything, while # in the former it will be the mean bubble density. ## # Actually think about halos # <x_i d'> = \int d' f(d; x_i=1) f(x_i=1) f(d'; d) dd' # Crux is f(d'; d): could be 3-d integral in general. # Loop over bubble density. #ixd_inner = np.zeros(self.m.size) #for k, d1 in enumerate(db): # # # Excess probability of halo with mass mh # # given bubble nearby # exc = 0.0#bh * bb[k] * xi_dd_r # # #Ph = np.minimum(Ph, 1.) # # # <d> = fcoll_V * dh + Qi * di + rest # #Pn = 1. - Ph # #if sep < R_i[k]: # # dn = d1 # #else: # #dn = delta_n_bar # # # How to guarantee that <x_i d'> -> 0 on L.S.? # # Is the key formalizing whether we're at the # # center of the bubble or not? # integ = dndm_h * V_h * (1. + exc) # # # Don't truncate at Mmin! Don't need star-forming # # galaxy, just need mass. # ixd_inner[k] = np.trapz(integ * M_h, x=np.log(M_h)) #_integrand = dndm_h * (M_h / rho_bar) * bh #fcorr = 1. - np.trapz(_integrand * M_h, x=np.log(M_h)) # Just halos *outside* bubbles hal = np.trapz(dndm_h[:iM_h] * V_hal[:iM_h] * (1. + ep_bh[:iM_h]) * M_h[:iM_h], x=np.log(M_h[:iM_h])) bub = np.trapz(dndm_b[iM:] * V_i[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P_ihal = (1. - np.exp(-bub)) * (1. - np.exp(-hal)) #P2[i] = P_ihal * delta_hal_bar + _P_ib[i] * delta_b_bar P1[i] = _P_ii_1[i] * delta_i_bar P2[i] = _P_ii_2[i] * delta_i_bar + _P_ib[i] * delta_b_bar \ + P_ihal * delta_hal_bar #P2[i] = Phal * dh_avg + np.exp(-hal) * dnih_avg #P2[i] += np.exp(-hal) * dnih_avg * Qi #P2[i] += _P_in[i] * delta_n_bar elif term in ['cd', 'cdip']: continue elif term == 'idd': hal = np.trapz(dndm_h[:iM_h] * V_hal[:iM_h] * (1. + ep_bh[:iM_h]) * M_h[:iM_h], x=np.log(M_h[:iM_h])) bub = np.trapz(dndm_b[iM:] * V_i[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P_ihal = (1. - np.exp(-bub)) * (1. - np.exp(-hal)) #P2[i] = P_ihal * delta_hal_bar + _P_ib[i] * delta_b_bar P1[i] = _P_ii_1[i] * delta_i_bar**2 P2[i] = _P_ii_2[i] * delta_i_bar**2 \ + _P_ib[i] * delta_b_bar * delta_i_bar\ + P_ihal * delta_hal_bar * delta_i_bar #exc = bh_bar * bb_bar * xi_dd_r # #hal = np.trapz(dndm_h * V_hal * (1. + exc) * M_h, # x=np.log(M_h)) #bub = np.trapz(dndm_b[iM:] * V_i[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # #P2[i] = ((1. - np.exp(-hal)) * delta_hal_bar # + np.exp(-hal) * delta_nothal_bar) \ # * (1. - np.exp(-bub)) * delta_i_bar #_P1 = _P_ii_1[i] * delta_i_bar**2 # ##_P2 = _P_ii_2[i] * delta_i_bar**2 \ ## + Qi * (1. - _P_ii_1[i]) * delta_i_bar * delta_n_bar \ ## - Qi**2 * delta_i_bar**2 ## #P1[i] = _P1 # ##P2[i] = Qi * xi_dd[i] # There's gonna be a bias here ##P2[i] = _P_ii_2[i] * delta_i_bar**2 - Qi**2 * delta_i_bar**2 # ##continue # #idd_ii = np.zeros(self.m.size) #idd_in = np.zeros(self.m.size) # ## Convert from dm to dd ##dmdd = np.diff(self.m) / np.diff(db) ##dmdd = np.concatenate(([0], dmdd)) # ## Should be able to speed this up # #for k, d1 in enumerate(db): # # # exc = bb[k] * bb * xi_dd_r # # grand = db[k] * dndm_b[k] * V_i[k] \ # * db * dndm_b * V_i \ # * (1. + exc) # # idd_ii[k] = np.trapz(grand[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # # #exc_in = bb[k] * bh * xi_dd_r # # # #grand_in = db[k] * dndm_b[k] * V_i[k] #\ # # #* dh * dndm_h * Vvir \ # # #* (1. + exc_in) # # # #idd_in[k] = np.trapz(grand_in[iM_h:] * M_h[iM_h:], # # x=np.log(M_h[iM_h:])) # ##idd_in = np.trapz(db[iM:] * dndm_b[iM:] * V_i[iM:] * delta_n_bar * self.m[iM:], ## x=np.log(self.m[iM:])) # # #P2[i] = _P_ii_2[i] \ # * np.trapz(idd_ii[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # ## Another term for <x_i x'> possibility. Doesn't really ## fall into the one bubble two bubble language, so just ## sticking it in P2. ## Assumes neutral phase is at cosmic mean neutral density ## Could generalize... #P2[i] += _P_ib[i] * delta_i_bar * delta_b_bar # ## We're neglecting overdensities by just using the ## mean neutral density # #continue elif term == 'iid': # This is like the 'id' term except the second point # has to be ionized. P2[i] = _P_ii[i] * delta_i_bar elif term == 'iidd': P2[i] = _P_ii[i] * delta_i_bar**2 continue # Might have to actually do a double integral here. iidd_2 = np.zeros(self.m.size) # Convert from dm to dd #dmdd = np.diff(self.m) / np.diff(db) #dmdd = np.concatenate(([0], dmdd)) # Should be able to speed this up for k, d1 in enumerate(db): exc = bb[k] * bb * xi_dd_r grand = db[k] * dndm_b[k] * V_i[k] \ * db * dndm_b * V_i \ * (1. + exc) iidd_2[k] = np.trapz(grand[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P2[i] = _P_ii_2[i] \ * np.trapz(iidd_2[iM:] * self.m[iM:], x=np.log(self.m[iM:])) #elif term == 'cd': # # if self.pf['ps_include_xcorr_hot_rho'] == 0: # break # elif self.pf['ps_include_xcorr_hot_rho'] == 1: # hal = np.trapz(dndm_h * V_hal * (1. + exc) * M_h, # x=np.log(M_h)) # hot = np.trapz(dndm_b[iM:] * V_h[iM:] * self.m[iM:], # x=np.log(self.m[iM:])) # P2[i] = ((1. - np.exp(-hal)) * dh_avg + np.exp(-hal) * dnih_avg) \ # * (1. - np.exp(-hot)) * avg_c # elif self.pf['ps_include_xcorr_hot_rho'] == 2: # P2[i] = _P_hh[i] * delta_h_bar + _P_hb[i] * delta_b_bar # else: # raise NotImplemented('help') # #elif term == 'ccd': # # # _P1 = _P_hh_1[i] * delta_i_bar # #B = self._B(z, zeta) # #_P1 = delta_i_bar \ # # * self.get_prob(z, M_b, dndm_b, Mmin_b, Vo, True) \ # # # _P2 = _P_hh_2[i] * delta_i_bar # # #_P2 = (1. - _P_ii_1[i]) * delta_i_bar \ # # * self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True) \ # # * self.get_prob(z, M_b, dndm_b, Mmin_b, Vne1, True, ep) # # #* self.get_prob(z, M_h, dndm_h, Mmi\n_h, Vvir, False, ep_bb) # # P1[i] = _P1 # P2[i] = _P2 # elif term == 'cdd': raise NotImplemented('help') hal = np.trapz(dndm_h * V_hal * (1. + exc) * M_h, x=np.log(M_h)) hot = np.trapz(dndm_b[iM:] * Vsh[iM:] * self.m[iM:], x=np.log(self.m[iM:])) hoi = np.trapz(dndm_b[iM:] * Vsh_sph[iM:] * self.m[iM:], x=np.log(self.m[iM:])) # 'hot or ionized' # One point in shell, other point in halo # One point ionized, other point in halo # Q. Halos exist only in ionized regions? elif term == 'ccdd': raise NotImplemented('help') # Add in bulk IGM correction. # Add routines for calculating 'ib' and 'hb'? P2[i] = _P_hh[i] * delta_h_bar**2 \ + _P_bb[i] * delta_h_bar**2 \ + _P_hb[i] * delta_h_bar * delta_b_bar continue # Might have to actually do a double integral here. iidd_2 = np.zeros(self.m.size) # Convert from dm to dd #dmdd = np.diff(self.m) / np.diff(db) #dmdd = np.concatenate(([0], dmdd)) # Should be able to speed this up for k, d1 in enumerate(db): exc = bb[k] * bb * xi_dd_r grand = db[k] * dndm_b[k] * V_i[k] \ * db * dndm_b * V_i \ * (1. + exc) iidd_2[k] = np.trapz(grand[iM:] * self.m[iM:], x=np.log(self.m[iM:])) P2[i] = _P_ii_2[i] \ * np.trapz(iidd_2[iM:] * self.m[iM:], x=np.log(self.m[iM:])) else: raise NotImplementedError('No method found for term=\'{}\''.format(term)) ## # SUM UP ## PT = P1 + P2 if term in ['ii', 'hh', 'ih', 'ib', 'hb', 'bb']: if term not in self._cache_jp_[z]: self._cache_jp_[z][term] = R, PT, P1, P2 return PT, P1, P2 def ThreeZoneModel(self, z, R, term='ii', R_s=None, R3=None, Th=500.0, Ts=None, Tk=None, Ja=None, k=None): """ Model in which IGM partitioned into three phases: ionized, hot, bulk. .. note :: If ps_include_temp==False, this is just a two-zone model since there is no heated phase in this limit. """ if not self._getting_basics: basics = self.get_basics(z, R, R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) if term in basics: return basics[term] _P_ii, _P_ii_1, _P_ii_2 = basics['ii'] _P_hh, _P_hh_1, _P_hh_2 = basics['hh'] _P_bb, _P_bb_1, _P_bb_2 = basics['bb'] _P_ih, _P_ih_1, _P_ih_2 = basics['ih'] _P_ib, _P_ib_1, _P_ib_2 = basics['ib'] _P_hb, _P_hb_1, _P_hb_2 = basics['hb'] Rones = np.zeros_like(R) Rzeros = np.zeros_like(R) delta_i_bar = self.delta_bubble_vol_weighted(z, ion=True) delta_h_bar = self.delta_shell(z) delta_b_bar = self.BulkDensity(z, R_s) Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) Tcmb = self.cosm.TCMB(z) ci = 0.0 ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) if Ts is None: cb = 0.0 else: cb = Tcmb / Ts ## # On to derived quantities ## if term == 'cc': result = Rzeros.copy() if self.pf['ps_include_temp']: result += _P_hh * ch**2 + 2 * _P_hb * ch * cb + _P_bb * cb**2 if self.pf['ps_include_lya']: xa = self.hydr.RadiativeCouplingCoefficient(z, Ja, Tk) if xa < self.pf['ps_lya_cut']: ev_aa, ev_aa1, ev_aa2 = \ self.ExpectationValue2pt(z, R, term='aa', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, k=k, Ja=Ja) Tcmb = self.cosm.TCMB(z) result += ev_aa / (1. + xa)**2 return result, Rzeros, Rzeros elif term == 'ic': if not self.pf['ps_include_xcorr_ion_hot']: return (Qi**2 * ci + Qh * Qi * ch) * Rones, Rzeros, Rzeros ev = _P_ih * ch + _P_ib * cb return ev, Rzeros, Rzeros elif term == 'icc': ch = self.TempToContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) ci = self.BubbleContrast(z, Th=Th, Tk=Tk, Ts=Ts, Ja=Ja) ev_ii, ev_ii1, ev_ii2 = self.ExpectationValue2pt(z, R=R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) ev_ih, ev_ih1, ev_ih2 = self.ExpectationValue2pt(z, R=R, term='ih', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) return ev_ii * ci**2 + ev_ih * ch * ci, Rzeros, Rzeros elif term == 'iidd': if self.pf['ps_use_wick']: ev_ii, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='ii') ev_dd, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='dd') ev_id, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='id') #if self.pf['ps_include_ion']: avg_id = self.ExpectationValue1pt(z, term='i*d') idt, id1, id2 = \ self.ExpectationValue2pt(z, R, term='id') return ev_ii * ev_dd + ev_id**2 + avg_id**2, Rzeros, Rzeros else: return _P_ii * delta_i_bar**2, Rzeros, Rzeros elif term == 'id': P = _P_ii * delta_i_bar \ + _P_ih * delta_h_bar \ + _P_ib * delta_b_bar return P, Rzeros, Rzeros elif term == 'iid': return _P_ii * delta_i_bar, Rzeros, Rzeros elif term == 'idd': P = _P_ii * delta_i_bar**2 \ + _P_ih * delta_i_bar * delta_h_bar \ + _P_ib * delta_i_bar * delta_b_bar return P, Rzeros, Rzeros elif term == 'cd': if not self.pf['ps_include_xcorr_hot_rho']: return Rzeros, Rzeros, Rzeros ev = _P_ih * ch * delta_i_bar \ + _P_ib * cb * delta_i_bar \ + _P_hh * ch * delta_h_bar \ + _P_hb * ch * delta_b_bar \ + _P_hb * cb * delta_h_bar \ + _P_bb * cb * delta_b_bar return ev, Rzeros, Rzeros elif term == 'ccdd' and self.pf['ps_use_wick']: ev_cc, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='cc') ev_dd, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='dd') ev_cd, one_pt, two_pt = self.ExpectationValue2pt(z, R, term='cd') #if self.pf['ps_include_ion']: avg_cd = self.ExpectationValue1pt(z, term='c*d') cdt, cd1, cd2 = \ self.ExpectationValue2pt(z, R, term='cd') return ev_cc * ev_dd + ev_cd**2 + avg_cd**2, Rzeros, Rzeros elif term == 'aa': aa = self.CorrelationFunction(z, R, term='aa', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja, k=k) return aa, Rzeros, Rzeros ## # BUNCHA TEMPERATURE-DENSITY STUFF BELOW ## elif term == 'ccd': ev = _P_hh * ch**2 * delta_h_bar \ + _P_hb * ch * cb * delta_h_bar \ + _P_hb * ch * cb * delta_b_bar \ + _P_bb * cb**2 * delta_b_bar return ev, Rzeros, Rzeros elif term == 'cdd': ev = _P_ih * ch * delta_i_bar * delta_h_bar \ + _P_ib * cb * delta_i_bar * delta_b_bar \ + _P_hh * ch * delta_h_bar**2 \ + _P_hb * ch * delta_h_bar * delta_b_bar \ + _P_hb * cb * delta_h_bar * delta_b_bar \ + _P_bb * cb * delta_b_bar**2 return ev, Rzeros, Rzeros # <c d x_i'> elif term == 'cdip': ev = _P_ih * delta_h_bar * ch + _P_ib * delta_b_bar * cb return ev, Rzeros, Rzeros # <c d d' x_i'> elif term == 'cddip': ev = _P_ih * delta_i_bar * delta_h_bar * ch \ + _P_ib * delta_i_bar * delta_b_bar * cb return ev, Rzeros, Rzeros elif term == 'cdpip': ev = _P_ih * delta_i_bar * ch \ + _P_ib * delta_i_bar * cb return ev, Rzeros, Rzeros # Wick's theorem approach above elif term == 'ccdd': ev = _P_hh * delta_h_bar**2 * ch**2 \ + 2 * _P_hb * delta_h_bar * ch * delta_b_bar * cb \ + _P_bb * delta_b_bar**2 * cb**2 return ev, Rzeros, Rzeros else: raise NotImplementedError('No model for term={} in ThreeZoneModel.'.format(term)) def get_prob(self, z, M, dndm, Mmin, V, exp=True, ep=0.0, Mmax=None): """ Basically do an integral over some distribution function. """ # Set lower integration limit iM = np.argmin(np.abs(M - Mmin)) if Mmax is not None: iM2 = np.argmin(np.abs(M - Mmax)) + 1 else: iM2 = None # One-source term integrand = dndm * V * (1. + ep) integr = np.trapz(integrand[iM:iM2] * M[iM:iM2], x=np.log(M[iM:iM2])) # Exponentiate? if exp: exp_int = np.exp(-integr) P = 1. - exp_int else: P = integr return P def CorrelationFunction(self, z, R=None, term='ii', R_s=None, R3=0.0, Th=500., Tc=1., Ts=None, k=None, Tk=None, Ja=None): """ Compute the correlation function of some general term. """ Qi = self.MeanIonizedFraction(z) Qh = self.MeanIonizedFraction(z, ion=False) if R is None: use_R_tab = True R = self.halos.tab_R else: use_R_tab = False if Qi == 1: return np.zeros_like(R) Tcmb = self.cosm.TCMB(z) Tgas = self.cosm.Tgas(z) ## # Check cache for match ## cached_result = self._cache_cf(z, term) if cached_result is not None: _R, _cf = cached_result if _R.size == R.size: if np.allclose(_R, R): return _cf return np.interp(R, _R, _cf) ## # 21-cm correlation function ## if term in ['21', 'phi', 'psi']: #if term in ['21', 'phi']: # ev_2pt, ev_2pt_1, ev_2pt_2 = \ # self.ExpectationValue2pt(z, zeta, R=R, term='phi', # R_s=R_s, R3=R3, Th=Th, Ts=Ts) # avg_phi = self.ExpectationValue1pt(z, zeta, term='phi', # R_s=R_s, Th=Th, Ts=Ts) # # cf_21 = ev_2pt - avg_phi**2 # #else: ev_2pt, ev_2pt_1, ev_2pt_2 = \ self.ExpectationValue2pt(z, R=R, term='psi', R_s=R_s, R3=R3, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) avg_psi = self.ExpectationValue1pt(z, term='psi', R_s=R_s, Th=Th, Ts=Ts, Tk=Tk, Ja=Ja) cf_psi = ev_2pt - avg_psi**2 ## # Temperature fluctuations ## include_temp = self.pf['ps_include_temp'] include_lya = self.pf['ps_include_lya'] if (include_temp or include_lya) and term in ['phi', '21']: ev_oo, o1, o2 = self.ExpectationValue2pt(z, R=R, term='oo', R_s=R_s, Ts=Ts, Tk=Tk, Th=Th, Ja=Ja, k=k) avg_oo = self.ExpectationValue1pt(z, term='oo', R_s=R_s, Ts=Ts, Tk=Tk, Th=Th, Ja=Ja, R3=R3) cf_omega = ev_oo - avg_oo cf_21 = cf_psi + cf_omega # i.e., cf_phi else: cf_21 = cf_psi if term == '21': cf = cf_21 elif term == 'phi': cf = cf_21 elif term == 'psi': cf = cf_psi elif term == 'nn': cf = -self.CorrelationFunction(z, R, term='ii', R_s=R_s, R3=R3, Th=Th, Ts=Ts) return cf elif term == 'nc': cf = -self.CorrelationFunction(z, R, term='ic', R_s=R_s, R3=R3, Th=Th, Ts=Ts) return cf elif term == 'nd': cf = -self.CorrelationFunction(z, R, term='id', R_s=R_s, R3=R3, Th=Th, Ts=Ts) return cf ## # Matter correlation function -- we have this tabulated already. ## elif term in ['dd', 'mm']: if not self.pf['ps_include_density']: cf = np.zeros_like(R) self._cache_cf_[z][term] = R, cf return cf iz = np.argmin(np.abs(z - self.halos.tab_z_ps)) if use_R_tab: cf = self.halos.tab_cf_mm[iz] else: cf = np.interp(np.log(R), np.log(self.halos.tab_R), self.halos.tab_cf_mm[iz]) ## # Ionization correlation function ## elif term == 'ii': if not self.pf['ps_include_ion']: cf =
np.zeros_like(R)
numpy.zeros_like
#!/usr/bin/env python # -*- coding: utf-8 -*- """ More or less a python port of Stewart method from R SpatialPositon package (https://github.com/Groupe-ElementR/SpatialPosition/). @author: mthh """ import numpy as np from matplotlib.pyplot import contourf from shapely import speedups from shapely.ops import unary_union, transform from shapely.geometry import Polygon, MultiPolygon from geopandas import GeoDataFrame try: from jenkspy import jenks_breaks except: jenks_breaks = None from .helpers_classif import get_opt_nb_class, maximal_breaks, head_tail_breaks if speedups.available and not speedups.enabled: speedups.enable() def quick_idw(input_geojson_points, variable_name, power, nb_class, nb_pts=10000, resolution=None, disc_func=None, mask=None, user_defined_breaks=None, variable_name2=None, output='GeoJSON', **kwargs): """ Function acting as a one-shot wrapper around SmoothIdw object. Read a file of point values and optionnaly a mask file, return the smoothed representation as GeoJSON or GeoDataFrame. Parameters ---------- input_geojson_points : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). power : int or float The power of the function. nb_class : int, optionnal The number of class, if unset will most likely be 8. (default: None) nb_pts: int, optionnal The number of points to use for the underlying grid. (default: 10000) resolution : int, optionnal The resolution to use (in meters), if not set a default resolution will be used in order to make a grid containing around 10000 pts (default: None). disc_func: str, optionnal The name of the classification function to be used to decide on which break values to use to create the contour layer. (default: None) mask : str, optionnal Path to the file (Polygons only) to use as clipping mask, can also be a GeoDataFrame (default: None). user_defined_breaks : list or tuple, optionnal A list of ordered break to use to construct the contours (overrides `nb_class` and `disc_func` values if any, default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) output : string, optionnal The type of output expected (not case-sensitive) in {"GeoJSON", "GeoDataFrame"} (default: "GeoJSON"). Returns ------- smoothed_result : bytes or GeoDataFrame, The result, dumped as GeoJSON (utf-8 encoded) or as a GeoDataFrame. Examples -------- Basic usage, output to raw geojson (bytes): >>> result = quick_idw("some_file.geojson", "some_variable", power=2) More options, returning a GeoDataFrame: >>> smooth_gdf = quick_stewart("some_file.geojson", "some_variable", nb_class=8, disc_func="percentiles", output="GeoDataFrame") """ return SmoothIdw(input_geojson_points, variable_name, power, nb_pts, resolution, variable_name2, mask, **kwargs ).render(nb_class=nb_class, disc_func=disc_func, user_defined_breaks=user_defined_breaks, output=output) def quick_stewart(input_geojson_points, variable_name, span, beta=2, typefct='exponential',nb_class=None, nb_pts=10000, resolution=None, mask=None, user_defined_breaks=None, variable_name2=None, output="GeoJSON", **kwargs): """ Function acting as a one-shot wrapper around SmoothStewart object. Read a file of point values and optionnaly a mask file, return the smoothed representation as GeoJSON or GeoDataFrame. Parameters ---------- input_geojson_points : str Path to file to use as input (Points/Polygons) or GeoDataFrame object, must contains a relevant numerical field. variable_name : str The name of the variable to use (numerical field only). span : int The span (meters). beta : float The beta! typefct : str, optionnal The type of function in {"exponential", "pareto"} (default: "exponential"). nb_class : int, optionnal The number of class, if unset will most likely be 8 (default: None) nb_pts: int, optionnal The number of points to use for the underlying grid. (default: 10000) resolution : int, optionnal The resolution to use (in meters), if not set a default resolution will be used in order to make a grid containing around 10000 pts (default: None). mask : str, optionnal Path to the file (Polygons only) to use as clipping mask, can also be a GeoDataFrame (default: None). user_defined_breaks : list or tuple, optionnal A list of ordered break to use to construct the contours (override `nb_class` value if any, default: None). variable_name2 : str, optionnal The name of the 2nd variable to use (numerical field only); values computed from this variable will be will be used as to divide values computed from the first variable (default: None) output : string, optionnal The type of output expected (not case-sensitive) in {"GeoJSON", "GeoDataFrame"} (default: "GeoJSON"). Returns ------- smoothed_result : bytes or GeoDataFrame, The result, dumped as GeoJSON (utf-8 encoded) or as a GeoDataFrame. Examples -------- Basic usage, output to raw geojson (bytes): >>> result = quick_stewart("some_file.geojson", "some_variable", span=12500, beta=3, typefct="exponential") More options, returning a GeoDataFrame: >>> smooth_gdf = quick_stewart("some_file.geojson", "some_variable", span=12500, beta=3, typefct="pareto", output="GeoDataFrame") """ return SmoothStewart( input_geojson_points, variable_name, span, beta, typefct, nb_pts, resolution, variable_name2, mask, **kwargs ).render( nb_class=nb_class, user_defined_breaks=user_defined_breaks, output=output) def make_regular_points_with_no_res(bounds, nb_points=10000): """ Return a regular grid of points within `bounds` with the specified number of points (or a close approximate value). Parameters ---------- bounds : 4-floats tuple The bbox of the grid, as xmin, ymin, xmax, ymax. nb_points : int, optionnal The desired number of points (default: 10000) Returns ------- points : numpy.array An array of coordinates shape : 2-floats tuple The number of points on each dimension (width, height) """ minlon, minlat, maxlon, maxlat = bounds minlon, minlat, maxlon, maxlat = bounds offset_lon = (maxlon - minlon) / 8 offset_lat = (maxlat - minlat) / 8 minlon -= offset_lon maxlon += offset_lon minlat -= offset_lat maxlat += offset_lat nb_x = int(nb_points**0.5) nb_y = int(nb_points**0.5) return ( np.linspace(minlon, maxlon, nb_x), np.linspace(minlat, maxlat, nb_y), (nb_y, nb_x) ) def make_regular_points(bounds, resolution, longlat=True): """ Return a regular grid of points within `bounds` with the specified resolution. Parameters ---------- bounds : 4-floats tuple The bbox of the grid, as xmin, ymin, xmax, ymax. resolution : int The resolution to use, in the same unit as `bounds` Returns ------- points : numpy.array An array of coordinates shape : 2-floats tuple The number of points on each dimension (width, height) """ # xmin, ymin, xmax, ymax = bounds minlon, minlat, maxlon, maxlat = bounds offset_lon = (maxlon - minlon) / 8 offset_lat = (maxlat - minlat) / 8 minlon -= offset_lon maxlon += offset_lon minlat -= offset_lat maxlat += offset_lat if longlat: height = hav_dist( np.array([(maxlon + minlon) / 2, minlat]), np.array([(maxlon + minlon) / 2, maxlat]) ) width = hav_dist( np.array([minlon, (maxlat + minlat) / 2]), np.array([maxlon, (maxlat + minlat) / 2]) ) else: height = np.linalg.norm( np.array([(maxlon + minlon) / 2, minlat]) - np.array([(maxlon + minlon) / 2, maxlat])) width = np.linalg.norm( np.array([minlon, (maxlat + minlat) / 2]) - np.array([maxlon, (maxlat + minlat) / 2])) nb_x = int(round(width / resolution)) nb_y = int(round(height / resolution)) if nb_y * 0.6 > nb_x: nb_x = int(nb_x + nb_x / 3) elif nb_x * 0.6 > nb_y: nb_y = int(nb_y + nb_y / 3) return ( np.linspace(minlon, maxlon, nb_x), np.linspace(minlat, maxlat, nb_y), (nb_y, nb_x) ) def _compute_centroids(geometries): res = [] for geom in geometries: if hasattr(geom, '__len__'): ix_biggest = np.argmax([g.area for g in geom]) res.append(geom[ix_biggest].centroid) else: res.append(geom.centroid) return res def make_dist_mat(xy1, xy2, longlat=True): """ Return a distance matrix between two set of coordinates. Use geometric distance (default) or haversine distance (if longlat=True). Parameters ---------- xy1 : numpy.array The first set of coordinates as [(x, y), (x, y), (x, y)]. xy2 : numpy.array The second set of coordinates as [(x, y), (x, y), (x, y)]. longlat : boolean, optionnal Whether the coordinates are in geographic (longitude/latitude) format or not (default: False) Returns ------- mat_dist : numpy.array The distance matrix between xy1 and xy2 """ if longlat: return hav_dist(xy1[:, None], xy2) else: d0 = np.subtract.outer(xy1[:, 0], xy2[:, 0]) d1 = np.subtract.outer(xy1[:, 1], xy2[:, 1]) return np.hypot(d0, d1) def hav_dist(locs1, locs2): """ Return a distance matrix between two set of coordinates. Use geometric distance (default) or haversine distance (if longlat=True). Parameters ---------- locs1 : numpy.array The first set of coordinates as [(long, lat), (long, lat)]. locs2 : numpy.array The second set of coordinates as [(long, lat), (long, lat)]. Returns ------- mat_dist : numpy.array The distance matrix between locs1 and locs2 """ # locs1 = np.radians(locs1) # locs2 = np.radians(locs2) cos_lat1 = np.cos(locs1[..., 0]) cos_lat2 = np.cos(locs2[..., 0]) cos_lat_d = np.cos(locs1[..., 0] - locs2[..., 0]) cos_lon_d =
np.cos(locs1[..., 1] - locs2[..., 1])
numpy.cos
import os import random import pickle import numpy as np import cv2 import torch import torch.utils.data as data import torchvision.transforms as transforms from PIL import Image from torch.utils.data import DataLoader import librosa import time import copy import python_speech_features #import utils EIGVECS = np.load('../basics/S.npy') MS = np.load('../basics/mean_shape.npy') class LRW_1D_lstm_landmark_pca(data.Dataset): def __init__(self, dataset_dir, train='train'): self.train = train self.num_frames = 16 self.lmark_root_path = '../dataset/landmark1d' self.pca = torch.FloatTensor(np.load('../basics/U_lrw1.npy')[:,:6] ) self.mean = torch.FloatTensor(np.load('../basics/mean_lrw1.npy')) if self.train=='train': _file = open(os.path.join(dataset_dir, "lmark_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "lmark_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "img_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() def __getitem__(self, index): if self.train=='train': lmark_path = os.path.join(self.lmark_root_path , self.train_data[index][0] , self.train_data[index][1],self.train_data[index][2], self.train_data[index][2] + '.npy') mfcc_path = os.path.join('../dataset/mfcc/', self.train_data[index][0], self.train_data[index][1], self.train_data[index][2] + '.npy') lmark = np.load(lmark_path) * 5.0 lmark = torch.FloatTensor(lmark) lmark = lmark - self.mean.expand_as(lmark) lmark = torch.mm(lmark,self.pca) mfcc = np.load(mfcc_path) r = random.choice( [x for x in range(3,8)]) example_landmark =lmark[r,:] example_mfcc = mfcc[(r -3) * 4 : (r + 4) * 4, 1 :] mfccs = [] for ind in range(1,17): t_mfcc =mfcc[(r + ind - 3)*4: (r + ind + 4)*4, 1:] t_mfcc = torch.FloatTensor(t_mfcc) mfccs.append(t_mfcc) mfccs = torch.stack(mfccs, dim = 0) landmark =lmark[r+1 : r + 17,:] example_mfcc = torch.FloatTensor(example_mfcc) return example_landmark, example_mfcc, landmark, mfccs if self.train=='test': lmark_path = os.path.join(self.lmark_root_path , self.test_data[index][0] , self.test_data[index][1],self.test_data[index][2], self.test_data[index][2] + '.npy') mfcc_path = os.path.join('../dataset/mfcc/', self.test_data[index][0], self.test_data[index][1], self.test_data[index][2] + '.npy') lmark = np.load(lmark_path) * 5.0 lmark = torch.FloatTensor(lmark) lmark = lmark - self.mean.expand_as(lmark) lmark = torch.mm(lmark,self.pca) mfcc = np.load(mfcc_path) r = random.choice( [x for x in range(3,8)]) example_landmark =lmark[r,:] example_mfcc = mfcc[(r -3) * 4 : (r + 4) * 4, 1 :] mfccs = [] for ind in range(1,17): t_mfcc =mfcc[(r + ind - 3)*4: (r + ind + 4)*4, 1:] t_mfcc = torch.FloatTensor(t_mfcc) mfccs.append(t_mfcc) mfccs = torch.stack(mfccs, dim = 0) landmark =lmark[r+1 : r + 17,:] example_mfcc = torch.FloatTensor(example_mfcc) return example_landmark, example_mfcc, landmark, mfccs def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: pas class LRW_1D_single_landmark_pca(data.Dataset): def __init__(self, dataset_dir, train='train'): self.train = train self.num_frames = 16 self.lmark_root_path = '../dataset/landmark1d' self.audio_root_path = '../dataset/audio' self.pca = torch.FloatTensor(np.load('../basics/U_lrw1.npy')[:,:6] ) self.mean = torch.FloatTensor(np.load('../basics/mean_lrw1.npy')) if self.train=='train': _file = open(os.path.join(dataset_dir, "lmark_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "lmark_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "img_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': lmark_path = os.path.join(self.lmark_root_path , self.train_data[index][0] , self.train_data[index][1],self.train_data[index][2], self.train_data[index][2] + '.npy') mfcc_path = os.path.join('../dataset/mfcc/', self.train_data[index][0], self.train_data[index][1], self.train_data[index][2] + '.npy') lmark = np.load(lmark_path) lmark = torch.FloatTensor(lmark) * 5.0 lmark = lmark - self.mean.expand_as(lmark) lmark = torch.mm(lmark,self.pca) mfcc = np.load(mfcc_path) r = random.choice( [x for x in range(3,25)]) example_landmark =lmark[r,:] example_mfcc = mfcc[(r -3) * 4 : (r + 4) * 4, 1 :] while True: current_frame_id = random.choice( [x for x in range(3,25)]) if current_frame_id != r: break t_mfcc =mfcc[( current_frame_id - 3)*4: (current_frame_id + 4)*4, 1:] t_mfcc = torch.FloatTensor(t_mfcc) landmark =lmark[current_frame_id , :] example_landmark = torch.FloatTensor(example_landmark) example_mfcc = torch.FloatTensor(example_mfcc) landmark = torch.FloatTensor(landmark) landmark = landmark return example_landmark, example_mfcc, landmark, t_mfcc if self.train=='test': mfcc_path = os.path.join('../dataset/mfcc/', self.test_data[index][0], self.test_data[index][1], self.test_data[index][2] + '.npy') lmark_path = os.path.join(self.lmark_root_path , self.test_data[index][0] , self.test_data[index][1],self.test_data[index][2], self.test_data[index][2] + '.npy') lmark = np.load(lmark_path) mfcc = np.load(mfcc_path) example_landmark =lmark[3,:] example_mfcc = mfcc[0 : 7 * 4, 1 :] r =3 ind = self.test_data[index][3] t_mfcc =mfcc[(r + ind - 3)*4: (r + ind + 4)*4, 1:] t_mfcc = torch.FloatTensor(t_mfcc) landmark =lmark[r+ ind,:] # example_audio = torch.FloatTensor(example_audio) example_mfcc = torch.FloatTensor(example_mfcc) # audio = torch.FloatTensor(audio) # mfccs = torch.FloatTensor(mfccs) landmark = torch.FloatTensor(landmark) # landmark = self.transform(landmark) landmark = landmark * 5.0 example_landmark = torch.FloatTensor(example_landmark).view(1,-1) example_landmark = example_landmark - self.mean.expand_as(example_landmark) example_landmark = torch.mm(example_landmark,self.pca) return example_landmark[0], example_mfcc, landmark, t_mfcc def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: pass class LRWdataset1D_single_gt(data.Dataset): def __init__(self, dataset_dir, output_shape=[128, 128], train='train'): self.train = train self.dataset_dir = dataset_dir self.output_shape = tuple(output_shape) if not len(output_shape) in [2, 3]: raise ValueError("[*] output_shape must be [H,W] or [C,H,W]") if self.train=='train': _file = open(os.path.join(dataset_dir, "new_img_full_gt_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "new_img_full_gt_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "new_img_full_gt_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': #load righ img image_path = '../dataset/regions/' + self.train_data[index][0] landmark_path = '../dataset/landmark1d/' + self.train_data[index][0][:-8] + '.npy' landmark = np.load(landmark_path) * 5.0 right_landmark = landmark[self.train_data[index][1] - 1] right_landmark = torch.FloatTensor(right_landmark.reshape(-1)) im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) r = random.choice( [x for x in range(1,30)]) example_path = image_path[:-8] + '_%03d.jpg'%r example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark elif self.train =='test': # try: #load righ img image_path = '../dataset/regions/' + self.test_data[index][0] landmark_path = '../dataset/landmark1d/' + self.test_data[index][0][:-8] + '.npy' landmark = np.load(landmark_path) * 5.0 right_landmark = landmark[self.test_data[index][1] - 1] right_landmark = torch.FloatTensor(right_landmark.reshape(-1)) im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) example_path = '../image/musk1_region.jpg' example_landmark = np.load('../image/musk1.npy') example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) * 5.0 example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark class LRWdataset1D_lstm_gt(data.Dataset): def __init__(self, dataset_dir, output_shape=[128, 128], train='train'): self.train = train self.dataset_dir = dataset_dir self.output_shape = tuple(output_shape) if not len(output_shape) in [2, 3]: raise ValueError("[*] output_shape must be [H,W] or [C,H,W]") if self.train=='train': _file = open(os.path.join(dataset_dir, "new_16_full_gt_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "new_16_full_gt_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "new_16_full_gt_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': #load righ img image_path = '../dataset/regions/' + self.train_data[index][0] landmark_path = '../dataset/landmark1d/' + self.train_data[index][0][:-8] + '.npy' current_frame_id =self.train_data[index][1] right_img = torch.FloatTensor(16,3,self.output_shape[0],self.output_shape[1]) for jj in range(16): this_frame = current_frame_id + jj image_path = '../dataset/regions/' + self.train_data[index][0][:-7] + '%03d.jpg'%this_frame im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img[jj,:,:,:] = torch.FloatTensor(im) landmark = np.load(landmark_path) * 5.0 right_landmark = landmark[self.train_data[index][1] - 1 : self.train_data[index][1] + 15 ] right_landmark = torch.FloatTensor(right_landmark.reshape(16,136)) r = random.choice( [x for x in range(1,30)]) example_path = image_path[:-8] + '_%03d.jpg'%r example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) # print (right_landmark.size()) return example_img, example_landmark, right_img,right_landmark elif self.train =='test': #load righ img image_path = '../dataset/regions/' + self.test_data[index][0] landmark_path = '../dataset/landmark1d/' + self.test_data[index][0][:-8] + '.npy' current_frame_id =self.test_data[index][1] right_img = torch.FloatTensor(16,3,self.output_shape[0],self.output_shape[1]) for jj in range(16): this_frame = current_frame_id + jj image_path = '../dataset/regions/' + self.test_data[index][0][:-7] + '%03d.jpg'%this_frame im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img[jj,:,:,:] = torch.FloatTensor(im) landmark = np.load(landmark_path) * 5.0 right_landmark = landmark[self.test_data[index][1] - 1 : self.test_data[index][1] + 15 ] right_landmark = torch.FloatTensor(right_landmark.reshape(16,136)) r = random.choice( [x for x in range(1,30)]) r = current_frame_id example_path = image_path[:-8] + '_%03d.jpg'%r example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) # print (right_landmark.size()) return example_img, example_landmark, right_img,right_landmark def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: return len(self.demo_data) class LRWdataset1D_single(data.Dataset): def __init__(self, dataset_dir, output_shape=[128, 128], train='train'): self.train = train self.dataset_dir = dataset_dir self.output_shape = tuple(output_shape) if not len(output_shape) in [2, 3]: raise ValueError("[*] output_shape must be [H,W] or [C,H,W]") if self.train=='train': _file = open(os.path.join(dataset_dir, "new_img_small_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "new_img_small_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "img_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': while True: # try: #load righ img image_path = self.train_data[index][0] landmark_path = self.train_data[index][1] landmark = np.load(landmark_path) right_landmark = landmark[self.train_data[index][2]] tp = ( np.dot(right_landmark.reshape(1,6), EIGVECS))[0,:].reshape(68,3) tp = tp[:,:-1].reshape(-1) right_landmark = torch.FloatTensor(tp) im = cv2.imread(image_path) if im is None: raise IOError im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) r = random.choice( [x for x in range(1,30)]) example_path = image_path[:-8] + '_%03d.jpg'%r example_landmark = landmark[r] tp = ( np.dot(example_landmark.reshape(1,6), EIGVECS))[0,:].reshape(68,3) tp = tp[:,:-1].reshape(-1) example_landmark = torch.FloatTensor(tp) example_img = cv2.imread(example_path) if example_img is None: raise IOError example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark elif self.train =='test': while True: image_path = self.test_data[index][0] landmark_path = self.test_data[index][1] landmark = np.load(landmark_path) right_landmark = landmark[self.test_data[index][2]] right_landmark = torch.FloatTensor((MS + np.dot(right_landmark.reshape(1,6), EIGVECS)).reshape(-1)) print (right_landmark.shape) im = cv2.imread(image_path) if im is None: raise IOError im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) r = random.choice( [x for x in range(1,30)]) #load example image example_path = image_path[:-8] + '_%03d.jpg'%r example_landmark = landmark[self.train_data[r][2]] example_landmark = torch.FloatTensor((MS + np.dot(example_landmark.reshape(1,6), EIGVECS)).reshape(-1)) example_img = cv2.imread(example_path) if example_img is None: raise IOError example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark elif self.train =='demo': landmarks = np.load('/home/lchen63/obama_fake.npy') landmarks =np.reshape(landmarks, (landmarks.shape[0], 136)) while True: # try: image_path = self.demo_data[index][0] im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) example_path = '/mnt/disk1/dat/lchen63/lrw/demo/musk1_region.jpg' example_landmark = landmarks[0] example_lip = cv2.imread(example_path) example_lip = cv2.cvtColor(example_lip, cv2.COLOR_BGR2RGB) example_lip = cv2.resize(example_lip, self.output_shape) example_lip = self.transform(example_lip) right_landmark = torch.FloatTensor(landmarks[index-1]) wrong_landmark = right_landmark return example_lip, example_landmark, right_img,right_landmark, wrong_landmark def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: return len(self.demo_data) #############################################################grid class GRIDdataset1D_single_gt(data.Dataset): def __init__(self, dataset_dir, output_shape=[128, 128], train='train'): self.train = train self.dataset_dir = dataset_dir self.output_shape = tuple(output_shape) if not len(output_shape) in [2, 3]: raise ValueError("[*] output_shape must be [H,W] or [C,H,W]") if self.train=='train': _file = open(os.path.join(dataset_dir, "lmark_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "lmark_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "new_img_full_gt_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': #load righ img image_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.train_data[index][0], self.train_data[index][0], '%05d.jpg'%(self.train_data[index][1] + 1)) landmark_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.train_data[index][0], self.train_data[index][0] + '_norm_lmarks.npy') landmark = np.load(landmark_path) right_landmark = landmark[self.train_data[index][1]] right_landmark = torch.FloatTensor(right_landmark.reshape(-1)) im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) r = random.choice( [x for x in range(1, 76)]) example_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.train_data[index][0], self.train_data[index][0], '%05d.jpg'%(r)) example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark elif self.train =='test': # try: #load righ img image_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.test_data[index][0], self.test_data[index][0], '%05d.jpg'%(self.test_data[index][1] + 1)) landmark_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.test_data[index][0], self.test_data[index][0] + '_norm_lmarks.npy') landmark = np.load(landmark_path) right_landmark = landmark[self.test_data[index][1]] right_landmark = torch.FloatTensor(right_landmark.reshape(-1)) im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) r = random.choice( [x for x in range(1, 76)]) example_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.test_data[index][0], self.test_data[index][0], '%05d.jpg'%(r)) example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark elif self.train =='demo': # try: #load righ img image_path = '/mnt/ssd0/dat/lchen63/lrw/demo/regions/' + self.demo_data[index][0] landmark_path = '/mnt/ssd0/dat/lchen63/lrw/demo/landmark1d/' + self.demo_data[index][1].replace('obama_', 'obama_ge_') right_landmark = np.load(landmark_path) right_landmark = torch.FloatTensor(right_landmark.reshape(-1)) # print ('=========================') # print ('real path: ' + image_path) im = cv2.imread(image_path) if im is None: print (image_path) raise IOError im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img = torch.FloatTensor(im) example_path = '../image/musk1_region.jpg' example_landmark = np.load('../image/musk1.npy') # tp = ( np.dot(example_landmark.reshape(1,6), EIGVECS))[0,:].reshape(68,3) # tp = tp[:,:-1].reshape(-1) example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) # print (right_landmark.size()) return example_img, example_landmark, right_img,right_landmark def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: return len(self.demo_data) class GRIDdataset1D_lstm_gt(data.Dataset): def __init__(self, dataset_dir, output_shape=[128, 128], train='train'): self.train = train self.dataset_dir = dataset_dir self.output_shape = tuple(output_shape) if not len(output_shape) in [2, 3]: raise ValueError("[*] output_shape must be [H,W] or [C,H,W]") if self.train=='train': _file = open(os.path.join(dataset_dir, "lmark_16_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "lmark_16_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "new_16_full_gt_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ]) def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': #load righ img image_path_root = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.train_data[index][0], self.train_data[index][0]) landmark_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.train_data[index][0], self.train_data[index][0] + '_norm_lmarks.npy') current_frame_id =self.train_data[index][1] right_img = torch.FloatTensor(16,3,self.output_shape[0],self.output_shape[1]) for jj in range(16): this_frame = current_frame_id + jj image_path = os.path.join(image_path_root, '%05d.jpg'%this_frame) im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img[jj,:,:,:] = torch.FloatTensor(im) landmark = np.load(landmark_path) right_landmark = landmark[self.train_data[index][1] - 1 : self.train_data[index][1] + 15 ] right_landmark = torch.FloatTensor(right_landmark.reshape(16,136)) r = random.choice( [x for x in range(1,76)]) example_path = os.path.join(image_path_root, '%05d.jpg'%r) example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark elif self.train =='test': image_path_root = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.test_data[index][0], self.test_data[index][0]) landmark_path = os.path.join('/mnt/ssd0/dat/lchen63/grid/data' , self.test_data[index][0], self.test_data[index][0] + '_norm_lmarks.npy') current_frame_id =self.test_data[index][1] right_img = torch.FloatTensor(16,3,self.output_shape[0],self.output_shape[1]) for jj in range(16): this_frame = current_frame_id + jj image_path = os.path.join(image_path_root, '%05d.jpg'%this_frame) im = cv2.imread(image_path) im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) im = cv2.resize(im, self.output_shape) im = self.transform(im) right_img[jj,:,:,:] = torch.FloatTensor(im) landmark = np.load(landmark_path) right_landmark = landmark[self.test_data[index][1] - 1 : self.test_data[index][1] + 15 ] right_landmark = torch.FloatTensor(right_landmark.reshape(16,136)) r = random.choice( [x for x in range(1,76)]) example_path = os.path.join(image_path_root, '%05d.jpg'%r) example_landmark = landmark[r - 1] example_landmark = torch.FloatTensor(example_landmark.reshape(-1)) example_img = cv2.imread(example_path) example_img = cv2.cvtColor(example_img, cv2.COLOR_BGR2RGB) example_img = cv2.resize(example_img, self.output_shape) example_img = self.transform(example_img) return example_img, example_landmark, right_img,right_landmark def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: return len(self.demo_data) class GRID_1D_lstm_landmark_pca(data.Dataset): def __init__(self, dataset_dir, train='train'): self.train = train self.num_frames = 16 self.root_path = '/mnt/ssd0/dat/lchen63/grid/data' self.pca = torch.FloatTensor(np.load('../basics/U_grid.npy')[:,:6] ) self.mean = torch.FloatTensor(np.load('../basics/mean_grid.npy')) if self.train=='train': _file = open(os.path.join(dataset_dir, "lmark_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "lmark_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "img_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': try: lmark_path = os.path.join(self.root_path , self.train_data[index][0] , self.train_data[index][0] + '_norm_lmarks.npy') mfcc_path = os.path.join(self.root_path, self.train_data[index][0], self.train_data[index][0] +'_mfcc.npy') lmark = np.load(lmark_path) * 5.0 lmark = torch.FloatTensor(lmark) lmark = lmark - self.mean.expand_as(lmark) lmark = torch.mm(lmark,self.pca) mfcc = np.load(mfcc_path) r = random.choice( [x for x in range(6,50)]) example_landmark =lmark[r,:] example_mfcc = mfcc[(r -3) * 4 : (r + 4) * 4, 1 :] mfccs = [] for ind in range(1,17): t_mfcc =mfcc[(r + ind - 3)*4: (r + ind + 4)*4, 1:] t_mfcc = torch.FloatTensor(t_mfcc) mfccs.append(t_mfcc) mfccs = torch.stack(mfccs, dim = 0) landmark =lmark[r+1 : r + 17,:] example_mfcc = torch.FloatTensor(example_mfcc) return example_landmark, example_mfcc, landmark, mfccs except: self.__getitem__(index + 1) if self.train=='test': lmark_path = os.path.join(self.root_path , self.test_data[index][0] , self.test_data[index][0] + '_norm_lmarks.npy') mfcc_path = os.path.join(self.root_path, self.test_data[index][0], self.test_data[index][0] +'_mfcc.npy') lmark = np.load(lmark_path) * 5.0 lmark = torch.FloatTensor(lmark) lmark = lmark - self.mean.expand_as(lmark) lmark = torch.mm(lmark,self.pca) mfcc = np.load(mfcc_path) r = random.choice( [x for x in range(3,70)]) example_landmark =lmark[r,:] example_mfcc = mfcc[(r -3) * 4 : (r + 4) * 4, 1 :] mfccs = [] for ind in range(1,17): t_mfcc =mfcc[(r + ind - 3)*4: (r + ind + 4)*4, 1:] t_mfcc = torch.FloatTensor(t_mfcc) mfccs.append(t_mfcc) mfccs = torch.stack(mfccs, dim = 0) landmark =lmark[r+1 : r + 17,:] example_mfcc = torch.FloatTensor(example_mfcc) return example_landmark, example_mfcc, landmark, mfccs def __len__(self): if self.train=='train': return len(self.train_data) elif self.train=='test': return len(self.test_data) else: pass class GRID_1D_single_landmark_pca(data.Dataset): def __init__(self, dataset_dir, train='train'): self.train = train self.num_frames = 16 self.root_path = '/mnt/ssd0/dat/lchen63/grid/data' self.pca = torch.FloatTensor(np.load('../basics/U_grid.npy')[:,:6] ) self.mean = torch.FloatTensor(np.load('../basics/mean_grid.npy')) if self.train=='train': _file = open(os.path.join(dataset_dir, "lmark_train.pkl"), "rb") self.train_data = pickle.load(_file) _file.close() elif self.train =='test': _file = open(os.path.join(dataset_dir, "lmark_test.pkl"), "rb") self.test_data = pickle.load(_file) _file.close() elif self.train =='demo' : _file = open(os.path.join(dataset_dir, "img_demo.pkl"), "rb") self.demo_data = pickle.load(_file) _file.close() def __getitem__(self, index): # In training phase, it return real_image, wrong_image, text if self.train=='train': # try: lmark_path = os.path.join(self.root_path , self.train_data[index][0] , self.train_data[index][0] + '_norm_lmarks.npy') mfcc_path = os.path.join(self.root_path, self.train_data[index][0], self.train_data[index][0] +'_mfcc.npy') ind = self.train_data[index][1] lmark =
np.load(lmark_path)
numpy.load
"""Authors: <NAME>, <NAME>, and <NAME>.""" from typing import Iterable, Tuple, Optional import numpy as np import psutil from abc import abstractmethod from itertools import product from hdmf.data_utils import AbstractDataChunkIterator, DataChunk class GenericDataChunkIterator(AbstractDataChunkIterator): """DataChunkIterator that lets the user specify chunk and buffer shapes.""" def _set_chunk_shape(self, chunk_mb): """ Select chunk size less than the threshold of chunk_mb, keeping the dimensional ratios of the original data. Parameters ---------- chunk_mb : float H5 reccomends setting this to around 1 MB for optimal performance. """ n_dims = len(self.maxshape) itemsize = self.dtype.itemsize chunk_bytes = chunk_mb * 1e6 v = np.floor(
np.array(self.maxshape)
numpy.array
from sklearn import preprocessing import numpy as np from .preprocessing import Preprocessor import os import pickle import pandas as pd def get_X_y(df, target): X = np.array(df.loc[:, df.columns != target]) y = np.array(df.loc[:, df.columns == target]) return X, y def sample_df_dataset(df_train_name, df_valid_name, df_test_name, run_seed=1234, max_num_row=10000): # always same samples here np.random.seed(1234) df_train = pd.read_csv(df_train_name) df_train = df_train.sample(n=min(max_num_row, df_train.shape[0]), random_state=1234)
np.random.seed(run_seed)
numpy.random.seed
# Copyright (c) 2018 <NAME> # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) import numpy as np from phylanx import Phylanx @Phylanx def test_arange_float(): arange_float =
np.arange(3, dtype='float')
numpy.arange
import numpy as np from collections import defaultdict from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union def _voc_ap( rec, prec, use_07_metric=False, ): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_ap_score( p_bboxes: List[np.ndarray], p_scores: List[np.ndarray], p_classes: List[np.ndarray], gt_bboxes: List[np.ndarray], gt_classes: List[np.ndarray], class_id: int = None, threshold: float = 0.5, ): """ Args: p_bboxes: a list of predict bboxes p_scores: a list of predict score for bbox p_classes: a list of predict class id for bbox gt_bboxes: a list of ground truth bboxes gt_classes: a list of true class id for each true bbox class_id: the class id to compute ap score threshold: the threshold to ap score """ if class_id is not None: gt_bboxes = [gt_bbox[gt_class == class_id] for gt_class, gt_bbox in zip(gt_classes, gt_bboxes)] p_bboxes = [p_bbox[p_class == class_id] for p_class, p_bbox in zip(p_classes, p_bboxes)] p_scores = [p_score[p_class == class_id] for p_class, p_score in zip(p_classes, p_scores)] p_indexes = [np.array([i] * len(p_bboxes[i])) for i in range(len(p_bboxes))] p_bboxes, p_scores, p_indexes = ( np.concatenate(p_bboxes), np.concatenate(p_scores), np.concatenate(p_indexes), ) p_sort_indexes =
np.argsort(-p_scores)
numpy.argsort
import sys import numpy as np import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import StratifiedShuffleSplit def example1(Ntr, d, seed=1991): np.random.seed(seed) N = 2 * Ntr # view 1: uniform in sphere # class 0 in radius [0,2], class 1 in radius [3,4] r1 = 2 * np.random.rand(N) theta1 = np.pi * np.random.rand(N) phi1 = 2 * np.pi * np.random.rand(N) r2 = 3 + np.random.rand(N) theta2 = np.pi * np.random.rand(N) phi2 = 2 * np.pi * np.random.rand(N) X1 = np.vstack((r1 * np.sin(theta1) * np.cos(phi1), r1 *
np.sin(theta1)
numpy.sin
from elasticsearch import Elasticsearch from elasticsearch_dsl import Search import numpy as np ##Connect with elasticsearch client es = Elasticsearch(['localhost'],port=9200) ##Some initial variables label_fields = ["title"] fields = ["title","cast","country","description"] weight_fields =["title^2","cast^1","country^1","description^3"] label_id =[] Similarity_score=[] Similarity_id = [] Similarity_title = [] Similarity_name =[] tmp_precision =0 tmp_recall =0 tmp_f_measure =0 w_tmp_precision =0 w_tmp_recall =0 w_tmp_f_measure =0 Ag_precision = [] Ag_recall = [] Ag_f_measure = [] W_Ag_precision = [] W_Ag_recall = [] W_Ag_f_measure =[] ##Give label_query to return our label_id through this function def label(index,label_query,label_fields): label_id=[] s = Search(using=es, index=index) results = s.query("simple_query_string", query=label_query, fields=label_fields, auto_generate_synonyms_phrase_query=True).execute() for hit in results: label_id.append(hit.meta.id) # print('This is label_id:', label_id) return label_id ##Use different models to search and match the query and return the score, id and name def Similarity_module(index,query,fields): Similarity_score=[] Similarity_id =[] Similarity_title = [] s = Search(using=es, index=index) results = s.query("simple_query_string", query=query, fields=fields, auto_generate_synonyms_phrase_query=True).execute() for hit in results: Similarity_score.append(hit.meta.score) Similarity_id.append(hit.meta.id) Similarity_title.append(hit.title) # print('This is Similarity_score:', Similarity_score) # print('This is Similarity_id:', Similarity_id) Similarity_score = score_normalized(Similarity_score) return Similarity_score,Similarity_id,Similarity_title ##Use different models to search and match the query and return the score, id and name, ##Added each term in the field, giving different weights. def Similarity_module_weight(index,query,weight_fields): Similarity_score=[] Similarity_id =[] Similarity_title = [] s = Search(using=es, index=index) results = s.query("simple_query_string", query=query, fields=weight_fields, auto_generate_synonyms_phrase_query=True).execute() for hit in results: Similarity_score.append(hit.meta.score) Similarity_id.append(hit.meta.id) Similarity_title.append(hit.title) # print('This is Similarity_score:', Similarity_score) # print('This is Similarity_id:', Similarity_id) Similarity_score=score_normalized(Similarity_score) return Similarity_score,Similarity_id,Similarity_title ##Calculate model accuracy, recall rate and Harmonic Mean def cal_rec_pre(label_id,search_id): tmp = [val for val in label_id if val in search_id] precision = len(tmp) / len(label_id) recall = len(tmp) / len(search_id) f_measure = (2*precision*recall)/(precision+recall) return precision,recall,f_measure ##Normalize the returned document score (min-max) def score_normalized(Similarity_score): normalize_score = [] min_score = min(Similarity_score) max_score = max(Similarity_score) while True: try: for i in range(len(Similarity_score)): if len(Similarity_score) == 1: normalize_score.append(Similarity_score[0] / Similarity_score[0]) else: normalize_score.append((Similarity_score[i] - min_score) / (max_score - min_score)) return normalize_score except: break ## Calculation of diversity between models def Kendall_rank_correlation(model1,model2,query,fields): model1_score,model1_id,_=Similarity_module(model1,query,fields) model2_score, model2_id,_ = Similarity_module(model2, query, fields) Same_results = [val for val in model1_id if val in model2_id] N = len(model1_id) C = len(Same_results) D = N - 2 * C tau = (C - D) / (N * (N+1) / 2) return tau ##Ranking combination, you can combine multiple models and return the new document score, id and name def rank_combination(query,index,fields): score = [] id = [] name = [] rank = [] for i in range(len(index)): _, Similarity_id, Similarity_name = Similarity_module(index[i], query, fields) rank += [1,2,3,4,5,6,7,8,9,10] id += Similarity_id name += Similarity_name # print(id) id_unique = sorted(set(id), key=id.index) rank_unique = [] name_unique = sorted(set(name), key=name.index) sum_rank = 0 for j in range (len(id_unique)): location = [i for i, a in enumerate(id) if a == id_unique[j]] for k in range(len(location)): sum_rank = sum_rank + rank[location[k]] avg_rank = sum_rank/len(location) rank_unique.append(float(avg_rank)) sum_rank = 0 rank_unique = np.array(rank_unique, dtype=np.float32) id_unique = np.array(id_unique, dtype=np.int32) name_unique = np.array(name_unique) rank_unique = rank_unique[np.argsort(rank_unique)] id_unique = id_unique[
np.argsort(rank_unique)
numpy.argsort
import json import os import time import numpy as np import matplotlib.pyplot as plt import logging import re from datetime import datetime from qcodes.instrument.base import Instrument from qcodes.utils import validators from qcodes.instrument.parameter import ManualParameter import zhinst.ziPython as zi log = logging.getLogger(__name__) ########################################################################## # Module level functions ########################################################################## def gen_waveform_name(ch, cw): """ Return a standard waveform name based on channel and codeword number. Note the use of 1-based indexing of the channels. To clarify, the 'ch' argument to this function is 0-based, but the naming of the actual waveforms as well as the signal outputs of the instruments are 1-based. The function will map 'logical' channel 0 to physical channel 1, and so on. """ return 'wave_ch{}_cw{:03}'.format(ch+1, cw) def gen_partner_waveform_name(ch, cw): """ Return a standard waveform name for the partner waveform of a dual-channel waveform. The physical channel indexing is 1-based where as the logical channel indexing (i.e. the argument to this function) is 0-based. To clarify, the 'ch' argument to this function is 0-based, but the naming of the actual waveforms as well as the signal outputs of the instruments are 1-based. The function will map 'logical' channel 0 to physical channel 1, and so on. """ return gen_waveform_name(2*(ch//2) + ((ch + 1) % 2), cw) def merge_waveforms(chan0=None, chan1=None, marker=None): """ Merges waveforms for channel 0, channel 1 and marker bits into a single numpy array suitable for being written to the instrument. Channel 1 and marker data is optional. Use named arguments to combine, e.g. channel 0 and marker data. """ chan0_uint = None chan1_uint = None marker_uint = None # The 'array_format' variable is used internally in this function in order to # control the order and number of uint16 words that we put together for each # sample of the final array. The variable is essentially interpreted as a bit # mask where each bit indicates which channels/marker values to include in # the final array. Bit 0 for chan0 data, 1 for chan1 data and 2 for marker data. array_format = 0 if chan0 is not None: chan0_uint = np.array((np.power(2, 15)-1)*chan0, dtype=np.uint16) array_format += 1 if chan1 is not None: chan1_uint = np.array((np.power(2, 15)-1)*chan1, dtype=np.uint16) array_format += 2 if marker is not None: marker_uint = np.array(marker, dtype=np.uint16) array_format += 4 if array_format == 1: return chan0_uint elif array_format == 2: return chan1_uint elif array_format == 3: return np.vstack((chan0_uint, chan1_uint)).reshape((-2,), order='F') elif array_format == 4: return marker_uint elif array_format == 5: return np.vstack((chan0_uint, marker_uint)).reshape((-2,), order='F') elif array_format == 6: return np.vstack((chan1_uint, marker_uint)).reshape((-2,), order='F') elif array_format == 7: return np.vstack((chan0_uint, chan1_uint, marker_uint)).reshape((-2,), order='F') else: return [] def plot_timing_diagram(data, bits, line_length=30): """ Takes list of 32-bit integer values as read from the 'raw/dios/0/data' device nodes and creates a timing diagram of the result. The timing diagram can be used for verifying that e.g. the strobe signal (A.K.A the toggle signal) is periodic. """ def _plot_lines(ax, pos, *args, **kwargs): if ax == 'x': for p in pos: plt.axvline(p, *args, **kwargs) else: for p in pos: plt.axhline(p, *args, **kwargs) def _plot_timing_diagram(data, bits): plt.figure(figsize=(20, 0.5*len(bits))) t = np.arange(len(data)) _plot_lines('y', 2*np.arange(len(bits)), color='.5', linewidth=2) _plot_lines('x', t[0:-1:2], color='.5', linewidth=0.5) for n, i in enumerate(reversed(bits)): line = [((x >> i) & 1) for x in data] plt.step(t, np.array(line) + 2*n, 'r', linewidth=2, where='post') plt.text(-0.5, 2*n, str(i)) plt.xlim([t[0], t[-1]]) plt.ylim([0, 2*len(bits)+1]) plt.gca().axis('off') plt.show() while len(data) > 0: if len(data) > line_length: d = data[0:line_length] data = data[line_length:] else: d = data data = [] _plot_timing_diagram(d, bits) def plot_codeword_diagram(ts, cws, range=None): """ Takes a list of timestamps (X) and codewords (Y) and produces a simple 'stem' plot of the two. The plot is useful for visually checking that the codewords are detected at regular intervals. Can also be used for visual verification of standard codeword patterns such as the staircase used for calibration. """ plt.figure(figsize=(20, 10)) plt.stem((np.array(ts)-ts[0])*10.0/3, np.array(cws)) if range is not None: plt.xlim(range[0], range[1]) xticks = np.arange(range[0], range[1], step=20) while len(xticks) > 20: xticks = xticks[::2] plt.xticks(xticks) plt.xlabel('Time (ns)') plt.ylabel('Codeword (#)') plt.grid() plt.show() def _gen_set_cmd(dev_set_func, node_path: str): """ Generates a set function based on the dev_set_type method (e.g., seti) and the node_path (e.g., '/dev8003/sigouts/1/mode' """ def set_cmd(val): return dev_set_func(node_path, val) return set_cmd def _gen_get_cmd(dev_get_func, node_path: str): """ Generates a get function based on the dev_set_type method (e.g., geti) and the node_path (e.g., '/dev8003/sigouts/1/mode' """ def get_cmd(): return dev_get_func(node_path) return get_cmd ########################################################################## # Exceptions ########################################################################## class ziDAQError(Exception): """Exception raised when no DAQ has been connected.""" pass class ziModuleError(Exception): """Exception raised when a module generates an error.""" pass class ziValueError(Exception): """Exception raised when a wrong or empty value is returned.""" pass class ziCompilationError(Exception): """Exception raised when an AWG program fails to compile.""" pass class ziDeviceError(Exception): """Exception raised when a class is used with the wrong device type.""" pass class ziOptionsError(Exception): """Exception raised when a device does not have the right options installed.""" pass class ziVersionError(Exception): """Exception raised when a device does not have the right firmware versions.""" pass class ziReadyError(Exception): """Exception raised when a device was started which is not ready.""" pass class ziRuntimeError(Exception): """Exception raised when a device detects an error at runtime.""" pass class ziConfigurationError(Exception): """Exception raised when a wrong configuration is detected.""" pass ########################################################################## # Mock classes ########################################################################## class MockDAQServer(): """ This class implements a mock version of the DAQ object used for communicating with the instruments. It contains dummy declarations of the most important methods implemented by the server and used by the instrument drivers. Important: The Mock server creates some default 'nodes' (basically just entries in a 'dict') based on the device name that is used when connecting to a device. These nodes differ depending on the instrument type, which is determined by the number in the device name: dev2XXX are UHFQA instruments, dev8XXX are HDAWG8 instruments, dev10XXX are PQSC instruments. """ def __init__(self, server, port, apilevel, verbose=False): self.server = server self.port = port self.apilevel = apilevel self.device = None self.interface = None self.nodes = {'/zi/devices/connected': {'type': 'String', 'value': ''}} self.devtype = None self.poll_nodes = [] self.verbose = verbose def awgModule(self): return MockAwgModule(self) def setDebugLevel(self, debuglevel: int): print('Setting debug level to {}'.format(debuglevel)) def connectDevice(self, device, interface): if self.device is not None: raise ziDAQError( 'Trying to connect to a device that is already connected!') if self.interface is not None and self.interface != interface: raise ziDAQError( 'Trying to change interface on an already connected device!') self.device = device self.interface = interface if self.device.lower().startswith('dev2'): self.devtype = 'UHFQA' elif self.device.lower().startswith('dev8'): self.devtype = 'HDAWG8' elif self.device.lower().startswith('dev10'): self.devtype = 'PQSC' # Add paths filename = os.path.join(os.path.dirname(os.path.abspath( __file__)), 'zi_parameter_files', 'node_doc_{}.json'.format(self.devtype)) if not os.path.isfile(filename): raise ziRuntimeError( 'No parameter file available for devices of type ' + self.devtype) # NB: defined in parent class self._load_parameter_file(filename=filename) # Update connected status self.nodes['/zi/devices/connected']['value'] = self.device # Set the LabOne revision self.nodes['/zi/about/revision'] = {'type': 'Integer', 'value': 200802104} self.nodes[f'/{self.device}/features/devtype'] = {'type': 'String', 'value': self.devtype} self.nodes[f'/{self.device}/system/fwrevision'] = {'type': 'Integer', 'value': 99999} self.nodes[f'/{self.device}/system/fpgarevision'] = {'type': 'Integer', 'value': 99999} self.nodes[f'/{self.device}/system/slaverevision'] = {'type': 'Integer', 'value': 99999} if self.devtype == 'UHFQA': self.nodes[f'/{self.device}/features/options'] = {'type': 'String', 'value': 'QA\nAWG'} for i in range(16): self.nodes[f'/{self.device}/awgs/0/waveform/waves/{i}'] = {'type': 'ZIVectorData', 'value': np.array([])} for i in range(10): self.nodes[f'/{self.device}/qas/0/integration/weights/{i}/real'] = {'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/qas/0/integration/weights/{i}/imag'] = {'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/qas/0/result/data/{i}/wave'] = {'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/raw/dios/0/delay'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/dios/0/extclk'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/dios/0/drive'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/dios/0/mode'] = {'type': 'Integer', 'value': 0} elif self.devtype == 'HDAWG8': self.nodes[f'/{self.device}/features/options'] = {'type': 'String', 'value': 'PC\nME'} self.nodes[f'/{self.device}/raw/error/json/errors'] = { 'type': 'String', 'value': '{"sequence_nr" : 0, "new_errors" : 0, "first_timestamp" : 0, "timestamp" : 0, "timestamp_utc" : "2019-08-07 17 : 33 : 55", "messages" : []}'} for i in range(32): self.nodes['/' + self.device + '/raw/dios/0/delays/' + str(i) + '/value'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/raw/error/blinkseverity'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/raw/error/blinkforever'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/dios/0/extclk'] = {'type': 'Integer', 'value': 0} for awg_nr in range(4): for i in range(2048): self.nodes[f'/{self.device}/awgs/{awg_nr}/waveform/waves/{i}'] = { 'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/awgs/{awg_nr}/waveform/waves/{i}'] = { 'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/awgs/{awg_nr}/waveform/waves/{i}'] = { 'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/awgs/{awg_nr}/waveform/waves/{i}'] = { 'type': 'ZIVectorData', 'value': np.array([])} for sigout_nr in range(8): self.nodes[f'/{self.device}/sigouts/{sigout_nr}/precompensation/fir/coefficients'] = { 'type': 'ZIVectorData', 'value': np.array([])} self.nodes[f'/{self.device}/dios/0/mode'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/dios/0/extclk'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/dios/0/drive'] = {'type': 'Integer', 'value': 0} for dio_nr in range(32): self.nodes[f'/{self.device}/raw/dios/0/delays/{dio_nr}/value'] = {'type': 'Integer', 'value': 0} self.nodes[f'/{self.device}/raw/error/clear'] = { 'type': 'Integer', 'value': 0} elif self.devtype == 'PQSC': self.nodes[f'/{self.device}/raw/error/json/errors'] = { 'type': 'String', 'value': '{"sequence_nr" : 0, "new_errors" : 0, "first_timestamp" : 0, "timestamp" : 0, "timestamp_utc" : "2019-08-07 17 : 33 : 55", "messages" : []}'} self.nodes[f'/{self.device}/raw/error/clear'] = { 'type': 'Integer', 'value': 0} def listNodesJSON(self, path): pass def getString(self, path): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if self.nodes[path]['type'] != 'String': raise ziRuntimeError( "Trying to node '" + path + "' as string, but the type is '" + self.nodes[path]['type'] + "'!") return self.nodes[path]['value'] def getInt(self, path): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if self.verbose: print('getInt', path, int(self.nodes[path]['value'])) return int(self.nodes[path]['value']) def getDouble(self, path): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if self.verbose: print('getDouble', path, float(self.nodes[path]['value'])) return float(self.nodes[path]['value']) def setInt(self, path, value): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if self.verbose: print('setInt', path, value) self.nodes[path]['value'] = value def setDouble(self, path, value): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if self.verbose: print('setDouble', path, value) self.nodes[path]['value'] = value def setVector(self, path, value): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if self.nodes[path]['type'] != 'ZIVectorData': raise ziRuntimeError("Unable to set node '" + path + "' of type " + self.nodes[path]['type'] + " using setVector!") self.nodes[path]['value'] = value def setComplex(self, path, value): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if not self.nodes[path]['type'].startswith('Complex'): raise ziRuntimeError("Unable to set node '" + path + "' of type " + self.nodes[path]['type'] + " using setComplex!") if self.verbose: print('setComplex', path, value) self.nodes[path]['value'] = value def getComplex(self, path): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") if not self.nodes[path]['type'].startswith('Complex'): raise ziRuntimeError("Unable to get node '" + path + "' of type " + self.nodes[path]['type'] + " using getComplex!") if self.verbose: print('getComplex', path, self.nodes[path]['value']) return self.nodes[path]['value'] def get(self, path, flat, flags): if path not in self.nodes: raise ziRuntimeError("Unknown node '" + path + "' used with mocked server and device!") return {path: [{'vector': self.nodes[path]['value']}]} def getAsEvent(self, path): self.poll_nodes.append(path) def poll(self, poll_time, timeout, flags, flat): poll_data = {} for path in self.poll_nodes: if self.verbose: print('poll', path) m = re.match(r'/(\w+)/qas/0/result/data/(\d+)/wave', path) if m: poll_data[path] = [{'vector': np.random.rand( self.getInt('/' + m.group(1) + '/qas/0/result/length'))}] continue m = re.match(r'/(\w+)/qas/0/monitor/inputs/(\d+)/wave', path) if m: poll_data[path] = [{'vector': np.random.rand( self.getInt('/' + m.group(1) + '/qas/0/monitor/length'))}] continue m = re.match(r'/(\w+)/awgs/(\d+)/ready', path) if m: poll_data[path] = {'value': [1]} continue poll_data[path] = {'value': [0]} return poll_data def subscribe(self, path): if self.verbose: print('subscribe', path) self.poll_nodes.append(path) def unsubscribe(self, path): if self.verbose: print('unsubscribe', path) if path in self.poll_nodes: self.poll_nodes.remove(path) def sync(self): """The sync method does not need to do anything as there are no device delays to deal with when using the mock server. """ pass def _load_parameter_file(self, filename: str): """ Takes in a node_doc JSON file auto generates paths based on the contents of this file. """ with open(filename) as fo: f = fo.read() node_pars = json.loads(f) for par in node_pars.values(): node = par['Node'].split('/') # The parfile is valid for all devices of a certain type # so the device name has to be split out. parpath = '/' + self.device + '/' + '/'.join(node) if par['Type'].startswith('Integer'): self.nodes[parpath.lower()] = {'type': par['Type'], 'value': 0} elif par['Type'].startswith('Double'): self.nodes[parpath.lower()] = { 'type': par['Type'], 'value': 0.0} elif par['Type'].startswith('Complex'): self.nodes[parpath.lower()] = { 'type': par['Type'], 'value': 0 + 0j} elif par['Type'].startswith('String'): self.nodes[parpath.lower()] = { 'type': par['Type'], 'value': ''} class MockAwgModule(): """ This class implements a mock version of the awgModule object used for compiling and uploading AWG programs. It doesn't actually compile anything, but only maintains a counter of how often the compilation method has been executed. For the future, the class could be updated to allow the user to select whether the next compilation should be successful or not in order to enable more flexibility in the unit tests of the actual drivers. """ def __init__(self, daq): self._daq = daq self._device = None self._index = None self._sourcestring = None self._compilation_count = {} if not os.path.isdir('awg/waves'): os.makedirs('awg/waves') def get_compilation_count(self, index): if index not in self._compilation_count: raise ziModuleError( 'Trying to access compilation count of invalid index ' + str(index) + '!') return self._compilation_count[index] def set(self, path, value): if path == 'awgModule/device': self._device = value elif path == 'awgModule/index': self._index = value if self._index not in self._compilation_count: self._compilation_count[self._index] = 0 elif path == 'awgModule/compiler/sourcestring': # The compiled program is stored in _sourcestring self._sourcestring = value if self._index not in self._compilation_count: raise ziModuleError( 'Trying to compile AWG program, but no AWG index has been configured!') if self._device is None: raise ziModuleError( 'Trying to compile AWG program, but no AWG device has been configured!') self._compilation_count[self._index] += 1 self._daq.setInt('/' + self._device + '/' + 'awgs/' + str(self._index) + '/ready', 1) def get(self, path): if path == 'awgModule/device': value = [self._device] elif path == 'awgModule/index': value[self._index] elif path == 'awgModule/compiler/statusstring': value = ['File successfully uploaded'] else: value = [''] for elem in reversed(path.split('/')[1:]): rv = {elem: value} value = rv return rv def execute(self): pass ########################################################################## # Class ########################################################################## class ZI_base_instrument(Instrument): """ This is a base class for Zurich Instruments instrument drivers. It includes functionality that is common to all instruments. It maintains a list of available nodes as JSON files in the 'zi_parameter_files' subfolder. The parameter files should be regenerated when newer versions of the firmware are installed on the instrument. The base class also manages waveforms for the instruments. The waveforms are kept in a table, which is kept synchronized with CSV files in the awg/waves folder belonging to LabOne. The base class will select whether to compile and configure an instrument based on changes to the waveforms and to the requested AWG program. Basically, if a waveform changes length or if the AWG program changes, then the program will be compiled and uploaded the next time the user executes the 'start' method. If a waveform has changed, but the length is the same, then the waveform will simply be updated on the instrument using a a fast waveform upload technique. Again, this is triggered when the 'start' method is called. """ ########################################################################## # Constructor ########################################################################## def __init__(self, name: str, device: str, interface: str= '1GbE', server: str= 'localhost', port: int= 8004, apilevel: int= 5, num_codewords: int= 0, awg_module: bool=True, logfile: str = None, **kw) -> None: """ Input arguments: name: (str) name of the instrument as seen by the user device (str) the name of the device e.g., "dev8008" interface (str) the name of the interface to use ('1GbE' or 'USB') server (str) the host where the ziDataServer is running port (int) the port to connect to for the ziDataServer (don't change) apilevel (int) the API version level to use (don't change unless you know what you're doing) awg_module (bool) create an awgModule num_codewords (int) the number of codeword-based waveforms to prepare logfile (str) file name where all commands should be logged """ t0 = time.time() super().__init__(name=name, **kw) # Decide which server to use based on name if server == 'emulator': log.info('Connecting to mock DAQ server') self.daq = MockDAQServer(server, port, apilevel) else: log.info('Connecting to DAQ server') self.daq = zi.ziDAQServer(server, port, apilevel) if not self.daq: raise(ziDAQError()) self.daq.setDebugLevel(0) # Handle absolute path self.use_setVector = "setVector" in dir(self.daq) # Connect a device if not self._is_device_connected(device): log.info(f'Connecting to device {device}') self.daq.connectDevice(device, interface) self.devname = device self.devtype = self.gets('features/devtype') # We're now connected, so do some sanity checking self._check_devtype() self._check_versions() self._check_options() # Default waveform length used when initializing waveforms to zero self._default_waveform_length = 32 # add qcodes parameters based on JSON parameter file # FIXME: we might want to skip/remove/(add to _params_to_skip_update) entries like AWGS/*/ELF/DATA, # AWGS/*/SEQUENCER/ASSEMBLY, AWGS/*/DIO/DATA filename = os.path.join(os.path.dirname(os.path.abspath( __file__)), 'zi_parameter_files', 'node_doc_{}.json'.format(self.devtype)) if not os.path.isfile(filename): log.info(f"{self.devname}: Parameter file not found, creating '{filename}''") self._create_parameter_file(filename=filename) try: # NB: defined in parent class log.info(f'{self.devname}: Loading parameter file') self._load_parameter_file(filename=filename) except FileNotFoundError: # Should never happen as we just created the file above log.error(f"{self.devname}: parameter file for data parameters {filename} not found") raise # Create modules if awg_module: self._awgModule = self.daq.awgModule() self._awgModule.set('awgModule/device', device) self._awgModule.execute() # Will hold information about all configured waveforms self._awg_waveforms = {} # Asserted when AWG needs to be reconfigured self._awg_needs_configuration = [False]*(self._num_channels()//2) self._awg_program = [None]*(self._num_channels()//2) # Create waveform parameters self._num_codewords = 0 # CH: this Delft function should not be needed for us, and removing it # should save time in the init script. Please let me know if you # experience any issues with the init of HDAWG/UHF. # self._add_codeword_waveform_parameters(num_codewords) else: self._awgModule = None # Create other neat parameters self._add_extra_parameters() # A list of all subscribed paths self._subscribed_paths = [] self._awg_source_strings = {} # Structure for storing errors self._errors = None # Structure for storing errors that should be demoted to warnings self._errors_to_ignore = [] # Make initial error check self.check_errors() # Optionally setup log file if logfile is not None: self._logfile = open(logfile, 'w') else: self._logfile = None # Show some info serial = self.get('features_serial') options = self.get('features_options') fw_revision = self.get('system_fwrevision') fpga_revision = self.get('system_fpgarevision') log.info('{}: serial={}, options={}, fw_revision={}, fpga_revision={}' .format(self.devname, serial, options.replace('\n', '|'), fw_revision, fpga_revision)) self.connect_message(begin_time=t0) ########################################################################## # Private methods: Abstract Base Class methods ########################################################################## def _check_devtype(self): """ Checks that the driver is used with the correct device-type. """ raise NotImplementedError('Virtual method with no implementation!') def _check_options(self): """ Checks that the correct options are installed on the instrument. """ raise NotImplementedError('Virtual method with no implementation!') def _check_versions(self): """ Checks that sufficient versions of the firmware are available. """ raise NotImplementedError('Virtual method with no implementation!') def _check_awg_nr(self, awg_nr): """ Checks that the given AWG index is valid for the device. """ raise NotImplementedError('Virtual method with no implementation!') def _update_num_channels(self): raise NotImplementedError('Virtual method with no implementation!') def _update_awg_waveforms(self): raise NotImplementedError('Virtual method with no implementation!') def _num_channels(self): raise NotImplementedError('Virtual method with no implementation!') def _add_extra_parameters(self) -> None: """ Adds extra useful parameters to the instrument. """ log.info(f'{self.devname}: Adding extra parameters') self.add_parameter( 'timeout', unit='s', initial_value=30, parameter_class=ManualParameter, vals=validators.Ints()) ########################################################################## # Private methods ########################################################################## def _add_codeword_waveform_parameters(self, num_codewords) -> None: """ Adds parameters that are used for uploading codewords. It also contains initial values for each codeword to ensure that the "upload_codeword_program" works. """ docst = ('Specifies a waveform for a specific codeword. ' + 'The waveforms must be uploaded using ' + '"upload_codeword_program". The channel number corresponds' + ' to the channel as indicated on the device (1 is lowest).') self._params_to_skip_update = [] log.info(f'{self.devname}: Adding codeword waveform parameters') for ch in range(self._num_channels()): for cw in range(max(num_codewords, self._num_codewords)): # NB: parameter naming identical to QWG wf_name = gen_waveform_name(ch, cw) if cw >= self._num_codewords and wf_name not in self.parameters: # Add parameter self.add_parameter( wf_name, label='Waveform channel {} codeword {:03}'.format( ch+1, cw), vals=validators.Arrays(), # min_value, max_value = unknown set_cmd=self._gen_write_waveform(ch, cw), get_cmd=self._gen_read_waveform(ch, cw), docstring=docst) self._params_to_skip_update.append(wf_name) # Make sure the waveform data is up-to-date self._gen_read_waveform(ch, cw)() elif cw >= num_codewords: # Delete parameter as it's no longer needed if wf_name in self.parameters: self.parameters.pop(wf_name) self._awg_waveforms.pop(wf_name) # Update the number of codewords self._num_codewords = num_codewords def _load_parameter_file(self, filename: str): """ Takes in a node_doc JSON file auto generates parameters based on the contents of this file. """ with open(filename) as fo: f = fo.read() node_pars = json.loads(f) for par in node_pars.values(): node = par['Node'].split('/') # The parfile is valid for all devices of a certain type # so the device name has to be split out. parname = '_'.join(node).lower() parpath = '/' + self.devname + '/' + '/'.join(node) # This block provides the mapping between the ZI node and QCoDes # parameter. par_kw = {} par_kw['name'] = parname if par['Unit'] != 'None': par_kw['unit'] = par['Unit'] else: par_kw['unit'] = 'arb. unit' par_kw['docstring'] = par['Description'] if "Options" in par.keys(): # options can be done better, this is not sorted par_kw['docstring'] += '\nOptions:\n' + str(par['Options']) # Creates type dependent get/set methods if par['Type'] == 'Integer (64 bit)': par_kw['set_cmd'] = _gen_set_cmd(self.seti, parpath) par_kw['get_cmd'] = _gen_get_cmd(self.geti, parpath) # min/max not implemented yet for ZI auto docstrings #352 par_kw['vals'] = validators.Ints() elif par['Type'] == 'Integer (enumerated)': par_kw['set_cmd'] = _gen_set_cmd(self.seti, parpath) par_kw['get_cmd'] = _gen_get_cmd(self.geti, parpath) par_kw['vals'] = validators.Ints(min_value=0, max_value=len(par["Options"])) elif par['Type'] == 'Double': par_kw['set_cmd'] = _gen_set_cmd(self.setd, parpath) par_kw['get_cmd'] = _gen_get_cmd(self.getd, parpath) # min/max not implemented yet for ZI auto docstrings #352 par_kw['vals'] = validators.Numbers() elif par['Type'] == 'Complex Double': par_kw['set_cmd'] = _gen_set_cmd(self.setc, parpath) par_kw['get_cmd'] = _gen_get_cmd(self.getc, parpath) # min/max not implemented yet for ZI auto docstrings #352 par_kw['vals'] = validators.Anything() elif par['Type'] == 'ZIVectorData': par_kw['set_cmd'] = _gen_set_cmd(self.setv, parpath) par_kw['get_cmd'] = _gen_get_cmd(self.getv, parpath) # min/max not implemented yet for ZI auto docstrings #352 par_kw['vals'] = validators.Arrays() elif par['Type'] == 'String': par_kw['set_cmd'] = _gen_set_cmd(self.sets, parpath) par_kw['get_cmd'] = _gen_get_cmd(self.gets, parpath) par_kw['vals'] = validators.Strings() elif par['Type'] == 'CoreString': par_kw['get_cmd'] = _gen_get_cmd(self.getd, parpath) par_kw['set_cmd'] = None # Not implemented par_kw['vals'] = validators.Strings() elif par['Type'] == 'ZICntSample': par_kw['get_cmd'] = None # Not implemented par_kw['set_cmd'] = None # Not implemented par_kw['vals'] = None # Not implemented elif par['Type'] == 'ZITriggerSample': par_kw['get_cmd'] = None # Not implemented par_kw['set_cmd'] = None # Not implemented par_kw['vals'] = None # Not implemented elif par['Type'] == 'ZIDIOSample': par_kw['get_cmd'] = None # Not implemented par_kw['set_cmd'] = None # Not implemented par_kw['vals'] = None # Not implemented elif par['Type'] == 'ZIAuxInSample': par_kw['get_cmd'] = None # Not implemented par_kw['set_cmd'] = None # Not implemented par_kw['vals'] = None # Not implemented elif par['Type'] == 'ZIScopeWave': par_kw['get_cmd'] = None # Not implemented par_kw['set_cmd'] = None # Not implemented par_kw['vals'] = None # Not implemented else: raise NotImplementedError( "Parameter '{}' of type '{}' not supported".format( parname, par['Type'])) # If not readable/writable the methods are removed after the type # dependent loop to keep this more readable. if 'Read' not in par['Properties']: par_kw['get_cmd'] = None if 'Write' not in par['Properties']: par_kw['set_cmd'] = None self.add_parameter(**par_kw) def _create_parameter_file(self, filename: str): """ This generates a json file Containing the node_docs as extracted from the ZI instrument API. Replaces the use of the s_node_pars and d_node_pars files. """ # Get all interesting nodes nodes = json.loads(self.daq.listNodesJSON('/' + self.devname)) modified_nodes = {} # Do some name mangling for name, node in nodes.items(): name = name.replace('/' + self.devname.upper() + '/', '') node['Node'] = name modified_nodes[name] = node # Dump the nodes with open(filename, "w") as json_file: json.dump(modified_nodes, json_file, indent=4, sort_keys=True) def _is_device_connected(self, device): """ Return true if the given device is already connected to the server. """ if device.lower() in [x.lower() for x in self.daq.getString('/zi/devices/connected').split(',')]: return True else: return False def _get_full_path(self, paths): """ Concatenates the device name with one or more paths to create a fully qualified path for use in the server. """ if type(paths) is list: for p, n in enumerate(paths): if p[0] != '/': paths[n] = ('/' + self.devname + '/' + p).lower() else: paths[n] = paths[n].lower() else: if paths[0] != '/': paths = ('/' + self.devname + '/' + paths).lower() else: paths = paths.lower() return paths def _get_awg_directory(self): """ Returns the AWG directory where waveforms should be stored. """ return os.path.join(self._awgModule.get('awgModule/directory')['directory'][0], 'awg') def _initialize_waveform_to_zeros(self): """ Generates all zeros waveforms for all codewords. """ t0 = time.time() wf = np.zeros(self._default_waveform_length) waveform_params = [value for key, value in self.parameters.items() if 'wave_ch' in key.lower()] for par in waveform_params: par(wf) t1 = time.time() log.debug( 'Set all waveforms to zeros in {:.1f} ms'.format(1.0e3*(t1-t0))) def _gen_write_waveform(self, ch, cw): def write_func(waveform): log.debug(f"{self.devname}: Writing waveform (len {len(waveform)}) to ch{ch} cw{cw}") # Determine which AWG this waveform belongs to awg_nr = ch//2 # Name of this waveform wf_name = gen_waveform_name(ch, cw) # Check that we're allowed to modify this waveform if self._awg_waveforms[wf_name]['readonly']: raise ziConfigurationError( 'Trying to modify read-only waveform on ' 'codeword {}, channel {}'.format(cw, ch)) # The length of HDAWG waveforms should be a multiple of 8 samples. if (len(waveform) % 8) != 0: log.debug(f"{self.devname}: waveform is not a multiple of 8 samples, appending zeros.") extra_zeros = 8-(len(waveform) % 8) waveform = np.concatenate([waveform, np.zeros(extra_zeros)]) # If the length has changed, we need to recompile the AWG program if len(waveform) != len(self._awg_waveforms[wf_name]['waveform']): log.debug(f"{self.devname}: Length of waveform has changed. Flagging awg as requiring recompilation.") self._awg_needs_configuration[awg_nr] = True # Update the associated CSV file log.debug(f"{self.devname}: Updating csv waveform {wf_name}, for ch{ch}, cw{cw}") self._write_csv_waveform(ch=ch, cw=cw, wf_name=wf_name, waveform=waveform) # And the entry in our table and mark it for update self._awg_waveforms[wf_name]['waveform'] = waveform log.debug(f"{self.devname}: Marking waveform as dirty.") self._awg_waveforms[wf_name]['dirty'] = True return write_func def _write_csv_waveform(self, ch: int, cw: int, wf_name: str, waveform) -> None: filename = os.path.join( self._get_awg_directory(), 'waves', self.devname + '_' + wf_name + '.csv') np.savetxt(filename, waveform, delimiter=",") def _gen_read_waveform(self, ch, cw): def read_func(): # AWG awg_nr = ch//2 # Name of this waveform wf_name = gen_waveform_name(ch, cw) log.debug(f"{self.devname}: Reading waveform {wf_name} for ch{ch} cw{cw}") # Check if the waveform data is in our dictionary if wf_name not in self._awg_waveforms: log.debug(f"{self.devname}: Waveform not in self._awg_waveforms: reading from csv file.") # Initialize elements self._awg_waveforms[wf_name] = { 'waveform': None, 'dirty': False, 'readonly': False} # Make sure everything gets recompiled log.debug(f"{self.devname}: Flagging awg as requiring recompilation.") self._awg_needs_configuration[awg_nr] = True # It isn't, so try to read the data from CSV waveform = self._read_csv_waveform(ch, cw, wf_name) # Check whether we got something if waveform is None: log.debug(f"{self.devname}: Waveform CSV does not exist, initializing to zeros.") # Nope, initialize to zeros waveform = np.zeros(32) self._awg_waveforms[wf_name]['waveform'] = waveform # write the CSV file self._write_csv_waveform(ch, cw, wf_name, waveform) else: # Got data, update dictionary self._awg_waveforms[wf_name]['waveform'] = waveform # Get the waveform data from our dictionary, which must now # have the data return self._awg_waveforms[wf_name]['waveform'] return read_func def _read_csv_waveform(self, ch: int, cw: int, wf_name: str): filename = os.path.join( self._get_awg_directory(), 'waves', self.devname + '_' + wf_name + '.csv') try: log.debug(f"{self.devname}: reading waveform from csv '{filename}'") return np.genfromtxt(filename, delimiter=',') except OSError as e: # if the waveform does not exist yet dont raise exception log.warning(e) return None def _length_match_waveforms(self, awg_nr): """ Adjust the length of a codeword waveform such that each individual waveform of the pair has the same length """ log.info('Length matching waveforms for dynamic waveform upload.') wf_table = self._get_waveform_table(awg_nr) matching_updated = False iter_id = 0 # We iterate over the waveform table while(matching_updated or iter_id == 0): iter_id += 1 if iter_id > 10: raise StopIteration log.info('Length matching iteration {}.'.format(iter_id)) matching_updated = False for wf_name, other_wf_name in wf_table: len_wf = len(self._awg_waveforms[wf_name]['waveform']) len_other_wf = len(self._awg_waveforms[other_wf_name]['waveform']) # First one is shorter if len_wf < len_other_wf: log.info(f"{self.devname}: Modifying {wf_name} for length matching.") # Temporarily unset the readonly flag to be allowed to append zeros readonly = self._awg_waveforms[wf_name]['readonly'] self._awg_waveforms[wf_name]['readonly'] = False self.set(wf_name, np.concatenate( (self._awg_waveforms[wf_name]['waveform'], np.zeros(len_other_wf-len_wf)))) self._awg_waveforms[wf_name]['dirty'] = True self._awg_waveforms[wf_name]['readonly'] = readonly matching_updated = True elif len_other_wf < len_wf: log.info(f"{self.devname}: Modifying {other_wf_name} for length matching.") readonly = self._awg_waveforms[other_wf_name]['readonly'] self._awg_waveforms[other_wf_name]['readonly'] = False self.set(other_wf_name, np.concatenate( (self._awg_waveforms[other_wf_name]['waveform'], np.zeros(len_wf-len_other_wf)))) self._awg_waveforms[other_wf_name]['dirty'] = True self._awg_waveforms[other_wf_name]['readonly'] = readonly matching_updated = True def _clear_dirty_waveforms(self, awg_nr): """ Adjust the length of a codeword waveform such that each individual waveform of the pair has the same length """ log.info(f"{self.devname}: Clearing dirty waveform tag for AWG {awg_nr}") for cw in range(self._num_codewords): wf_name = gen_waveform_name(2*awg_nr+0, cw) self._awg_waveforms[wf_name]['dirty'] = False other_wf_name = gen_waveform_name(2*awg_nr+1, cw) self._awg_waveforms[other_wf_name]['dirty'] = False def _clear_readonly_waveforms(self, awg_nr): """ Clear the read-only flag of all configured waveforms. Typically used when switching configurations (i.e. programs). """ for cw in range(self._num_codewords): wf_name = gen_waveform_name(2*awg_nr+0, cw) self._awg_waveforms[wf_name]['readonly'] = False other_wf_name = gen_waveform_name(2*awg_nr+1, cw) self._awg_waveforms[other_wf_name]['readonly'] = False def _set_readonly_waveform(self, ch: int, cw: int): """ Mark a waveform as being read-only. Typically used to limit which waveforms the user is allowed to change based on the overall configuration of the instrument and the type of AWG program being executed. """ # Sanity check if cw >= self._num_codewords: raise ziConfigurationError( 'Codeword {} is out of range of the configured number of codewords ({})!'.format(cw, self._num_codewords)) if ch >= self._num_channels(): raise ziConfigurationError( 'Channel {} is out of range of the configured number of channels ({})!'.format(ch, self._num_channels())) # Name of this waveform wf_name = gen_waveform_name(ch, cw) # Check if the waveform data is in our dictionary if wf_name not in self._awg_waveforms: raise ziConfigurationError( 'Trying to mark waveform {} as read-only, but the waveform has not been configured yet!'.format(wf_name)) self._awg_waveforms[wf_name]['readonly'] = True def _upload_updated_waveforms(self, awg_nr): """ Loop through all configured waveforms and use dynamic waveform uploading to update changed waveforms on the instrument as needed. """ # Fixme. the _get_waveform_table should also be implemented for the UFH log.info(f"{self.devname}: Using dynamic waveform update for AWG {awg_nr}.") wf_table = self._get_waveform_table(awg_nr) for dio_cw, (wf_name, other_wf_name) in enumerate(wf_table): if self._awg_waveforms[wf_name]['dirty'] or self._awg_waveforms[other_wf_name]['dirty']: # Combine the waveforms and upload wf_data = merge_waveforms(self._awg_waveforms[wf_name]['waveform'], self._awg_waveforms[other_wf_name]['waveform']) # Write the new waveform self.setv( 'awgs/{}/waveform/waves/{}'.format(awg_nr, dio_cw), wf_data) def _codeword_table_preamble(self, awg_nr): """ Defines a snippet of code to use in the beginning of an AWG program in order to define the waveforms. The generated code depends on the instrument type. For the HDAWG instruments, we use the setDIOWaveform function. For the UHF-QA we simply define the raw waveforms. """ raise NotImplementedError('Virtual method with no implementation!') def _configure_awg_from_variable(self, awg_nr): """ Configures an AWG with the program stored in the object in the self._awg_program[awg_nr] member. """ log.info(f"{self.devname}: Configuring AWG {awg_nr} with predefined codeword program") if self._awg_program[awg_nr] is not None: full_program = \ '// Start of automatically generated codeword table\n' + \ self._codeword_table_preamble(awg_nr) + \ '// End of automatically generated codeword table\n' + \ self._awg_program[awg_nr] self.configure_awg_from_string(awg_nr, full_program) else: logging.info(f"{self.devname}: No program configured for awg_nr {awg_nr}.") def _write_cmd_to_logfile(self, cmd): if self._logfile is not None: now = datetime.now() now_str = now.strftime("%d/%m/%Y %H:%M:%S") self._logfile.write(f'#{now_str}\n') self._logfile.write(f'{self.name}.{cmd}\n') def _flush_logfile(self): if self._logfile is not None: self._logfile.flush() ########################################################################## # Public methods: node helpers ########################################################################## def setd(self, path, value) -> None: self._write_cmd_to_logfile(f'daq.setDouble("{path}", {value})') self.daq.setDouble(self._get_full_path(path), value) def getd(self, path): return self.daq.getDouble(self._get_full_path(path)) def seti(self, path, value) -> None: self._write_cmd_to_logfile(f'daq.setDouble("{path}", {value})') self.daq.setInt(self._get_full_path(path), value) def geti(self, path): return self.daq.getInt(self._get_full_path(path)) def sets(self, path, value) -> None: self._write_cmd_to_logfile(f'daq.setString("{path}", {value})') self.daq.setString(self._get_full_path(path), value) def gets(self, path): return self.daq.getString(self._get_full_path(path)) def setc(self, path, value) -> None: self._write_cmd_to_logfile(f'daq.setComplex("{path}", {value})') self.daq.setComplex(self._get_full_path(path), value) def getc(self, path): return self.daq.getComplex(self._get_full_path(path)) def setv(self, path, value) -> None: # Handle absolute path if self.use_setVector: self._write_cmd_to_logfile(f'daq.setVector("{path}", np.array({np.array2string(value, separator=",")}))') self.daq.setVector(self._get_full_path(path), value) else: self._write_cmd_to_logfile(f'daq.vectorWrite("{path}", np.array({np.array2string(value, separator=",")}))') self.daq.vectorWrite(self._get_full_path(path), value) def getv(self, path): path = self._get_full_path(path) value = self.daq.get(path, True, 0) if path not in value: raise ziValueError('No value returned for path ' + path) else: return value[path][0]['vector'] def getdeep(self, path, timeout=5.0): path = self._get_full_path(path) self.daq.getAsEvent(path) while timeout > 0.0: value = self.daq.poll(0.01, 500, 4, True) if path in value: return value[path] else: timeout -= 0.01 return None def subs(self, path:str) -> None: full_path = self._get_full_path(path) if full_path not in self._subscribed_paths: self._subscribed_paths.append(full_path) self.daq.subscribe(full_path) def unsubs(self, path:str=None) -> None: if path is None: for path in self._subscribed_paths: self.daq.unsubscribe(path) self._subscribed_paths.clear() else: full_path = self._get_full_path(path) if full_path in self._subscribed_paths: del self._subscribed_paths[self._subscribed_paths.index(full_path)] self.daq.unsubscribe(full_path) def poll(self, poll_time=0.1): # The timeout of 1ms (second argument) is smaller than in the Delft # driver version (500ms) to allow fast spectroscopy. return self.daq.poll(poll_time, 1, 4, True) def sync(self) -> None: self.daq.sync() ########################################################################## # Public methods ########################################################################## def start(self, **kw): """ Start the sequencer :param kw: currently ignored, added for compatibilty with other instruments that accept kwargs in start(). """ log.info(f"{self.devname}: Starting '{self.name}'") self.check_errors() # Loop through each AWG and check whether to reconfigure it for awg_nr in range(self._num_channels()//2): self._length_match_waveforms(awg_nr) # If the reconfiguration flag is set, upload new program if self._awg_needs_configuration[awg_nr]: log.debug(f"{self.devname}: Detected awg configuration tag for AWG {awg_nr}.") self._configure_awg_from_variable(awg_nr) self._awg_needs_configuration[awg_nr] = False self._clear_dirty_waveforms(awg_nr) else: log.debug(f"{self.devname}: Did not detect awg configuration tag for AWG {awg_nr}.") # Loop through all waveforms and update accordingly self._upload_updated_waveforms(awg_nr) self._clear_dirty_waveforms(awg_nr) # Start all AWG's for awg_nr in range(self._num_channels()//2): # Skip AWG's without programs if self._awg_program[awg_nr] is None: # to configure all awgs use "upload_codeword_program" or specify # another program logging.info(f"{self.devname}: Not starting awg_nr {awg_nr}.") continue # Check that the AWG is ready if not self.get('awgs_{}_ready'.format(awg_nr)): raise ziReadyError( 'Tried to start AWG {} that is not ready!'.format(awg_nr)) # Enable it self.set('awgs_{}_enable'.format(awg_nr), 1) log.info(f"{self.devname}: Started '{self.name}'") def stop(self): log.info('Stopping {}'.format(self.name)) # Stop all AWG's for awg_nr in range(self._num_channels()//2): self.set('awgs_{}_enable'.format(awg_nr), 0) self.check_errors() # FIXME: temporary solution for issue def FIXMEclose(self) -> None: try: # Disconnect application server self.daq.disconnect() except AttributeError: pass super().close() def check_errors(self, errors_to_ignore=None) -> None: raise NotImplementedError('Virtual method with no implementation!') def clear_errors(self) -> None: raise NotImplementedError('Virtual method with no implementation!') def demote_error(self, code: str): """ Demote a ZIRuntime error to a warning. Arguments code (str) The error code of the exception to ignore. The error code gets logged as an error before the exception is raised. The code is a string like "DIOCWCASE". """ self._errors_to_ignore.append(code) def reset_waveforms_zeros(self): """ Sets all waveforms to an array of 48 zeros. """ t0 = time.time() wf =
np.zeros(48)
numpy.zeros
import numpy as np from numpy import ma from pyindi import * from scipy import ndimage, sqrt, stats, misc, signal pi = PyINDI(verbose=False) # define 2D gaussian for fitting PSFs def gaussian_x(x, mu, sig): shape_gaussian = np.exp(-np.power(x - mu, 2.) / (2 * np.power(sig, 2.))) return shape_gaussian def find_airy_psf(image): if True: #imageThis = numpy.copy(image) ''' if (PSFside == 'left'): imageThis[:,1024:-1] = 0 elif (PSFside == 'right'): imageThis[:,0:1024] = 0 ''' image[np.isnan(image)] = np.nanmedian(image) # if there are NaNs, replace them with the median image value imageG = ndimage.gaussian_filter(image, 6) # further remove effect of bad pixels (somewhat redundant?) loc = np.argwhere(imageG==imageG.max()) cx = loc[0,1] cy = loc[0,0] #plt.imshow(imageG, origin="lower") # #plt.scatter([cx,cx],[cy,cy], c='r', s=50) #plt.colorbar() #plt.show() #print [cy, cx] # check return [cy, cx] def find_grism_psf(image, sig, length_y): if True: # generate the Gaussian to correlate with the image mu_x_center = 0.5*image.shape[1] # initially center the probe shape for correlation x_probe_gaussian = gaussian_x(np.arange(image.shape[1]), mu_x_center, sig) # generate a top hat for correlating it to a grism-ed PSF in y y_abcissa = np.arange(image.shape[0]) y_probe_tophat = np.zeros(image.shape[0]) y_probe_tophat[np.logical_and(y_abcissa > 0.5*image.shape[0]-0.5*length_y, y_abcissa <= 0.5*image.shape[0]+0.5*length_y)] = 1 # dampen edge effects repl_val = np.median(image) image[0:4,:] = repl_val image[-5:-1,:] = repl_val image[:,0:4] = repl_val image[:,-5:-1] = repl_val # correlate real PSF and probe shape in x corr_x = signal.correlate(np.sum(image,axis=0), x_probe_gaussian, mode='same') # correlate real PSF and probe shape in y # (first, we have to integrate along x and subtract the background shape) profile_y = np.subtract(np.sum(image,axis=1), image.shape[1]*np.median(image,axis=1)) corr_y = signal.correlate(profile_y, y_probe_tophat, mode='same') # find centers of psfs psf_center_x = np.argmax(corr_x) psf_center_y = np.argmax(corr_y) return [psf_center_y, psf_center_x] class fft_img: # take FFT of a 2D image def __init__(self, image): self.image = image def fft(self, padding=int(0), pad_mode='constant', mask_thresh=1e-10, mask=True): padI = np.pad(self.image, padding, pad_mode) # arguments: image, pad size, pad mode, threshold for masking, mask flag padI = np.fft.fftshift(padI) PhaseExtract = np.fft.fft2(padI) PhaseExtract = np.fft.fftshift(PhaseExtract) AmpPE = np.absolute(PhaseExtract) ArgPE = np.multiply(np.angle(PhaseExtract),180./np.pi) if mask: # mask out low-power regions AmpPE_masked =
ma.masked_where(AmpPE < mask_thresh, AmpPE, copy=False)
numpy.ma.masked_where
#%% import random import matplotlib.pyplot as plt import tensorflow as tf import tensorflow.keras as keras from itertools import product import pandas as pd import numpy as np import pickle from math import log2, ceil import sys sys.path.append("../../src/") from lifelong_dnn import LifeLongDNN from joblib import Parallel, delayed import tensorflow as tf import warnings warnings.filterwarnings(action='once') #%% ############################ ### Main hyperparameters ### ############################ ntrees = 50 hybrid_comp_trees = 25 estimation_set = 0.63 validation_set= 1-estimation_set num_points_per_task = 5000 num_points_per_forest = 500 reps = 30 task_10_sample = 10*np.array([10, 50, 100, 200, 350, 500]) #%% def sort_data(data_x, data_y, num_points_per_task, total_task=10, shift=1): x = data_x.copy() y = data_y.copy() idx = [np.where(data_y == u)[0] for u in np.unique(data_y)] train_x_across_task = [] train_y_across_task = [] test_x_across_task = [] test_y_across_task = [] batch_per_task=5000//num_points_per_task sample_per_class = num_points_per_task//total_task test_data_slot=100//batch_per_task for task in range(total_task): for batch in range(batch_per_task): for class_no in range(task*10,(task+1)*10,1): indx = np.roll(idx[class_no],(shift-1)*100) if batch==0 and class_no==task*10: train_x = x[indx[batch*sample_per_class:(batch+1)*sample_per_class],:] train_y = y[indx[batch*sample_per_class:(batch+1)*sample_per_class]] test_x = x[indx[batch*test_data_slot+500:(batch+1)*test_data_slot+500],:] test_y = y[indx[batch*test_data_slot+500:(batch+1)*test_data_slot+500]] else: train_x = np.concatenate((train_x, x[indx[batch*sample_per_class:(batch+1)*sample_per_class],:]), axis=0) train_y = np.concatenate((train_y, y[indx[batch*sample_per_class:(batch+1)*sample_per_class]]), axis=0) test_x = np.concatenate((test_x, x[indx[batch*test_data_slot+500:(batch+1)*test_data_slot+500],:]), axis=0) test_y = np.concatenate((test_y, y[indx[batch*test_data_slot+500:(batch+1)*test_data_slot+500]]), axis=0) train_x_across_task.append(train_x) train_y_across_task.append(train_y) test_x_across_task.append(test_x) test_y_across_task.append(test_y) return train_x_across_task, train_y_across_task, test_x_across_task, test_y_across_task # %% def voter_predict_proba(voter, nodes_across_trees): def worker(tree_idx): #get the node_ids_to_posterior_map for this tree node_ids_to_posterior_map = voter.tree_idx_to_node_ids_to_posterior_map[tree_idx] #get the nodes of X nodes = nodes_across_trees[tree_idx] posteriors = [] node_ids = node_ids_to_posterior_map.keys() #loop over nodes of X for node in nodes: #if we've seen this node before, simply get the posterior if node in node_ids: posteriors.append(node_ids_to_posterior_map[node]) #if we haven't seen this node before, simply use the uniform posterior else: posteriors.append(np.ones((len(np.unique(voter.classes_)))) / len(voter.classes_)) return posteriors if voter.parallel: return Parallel(n_jobs=-1)( delayed(worker)(tree_idx) for tree_idx in range(voter.n_estimators) ) else: return [worker(tree_idx) for tree_idx in range(voter.n_estimators)] #%% def estimate_posteriors(l2f, X, representation = 0, decider = 0): l2f.check_task_idx_(decider) if representation == "all": representation = range(l2f.n_tasks) elif isinstance(representation, int): representation = np.array([representation]) def worker(transformer_task_idx): transformer = l2f.transformers_across_tasks[transformer_task_idx] voter = l2f.voters_across_tasks_matrix[decider][transformer_task_idx] return voter_predict_proba(voter,transformer(X)) '''if l2f.parallel: posteriors_across_tasks = np.array( Parallel(n_jobs=-1)( delayed(worker)(transformer_task_idx) for transformer_task_idx in representation ) ) else:''' posteriors_across_tasks = np.array([worker(transformer_task_idx) for transformer_task_idx in representation]) return posteriors_across_tasks # %% (X_train, y_train), (X_test, y_test) = keras.datasets.cifar100.load_data() data_x = np.concatenate([X_train, X_test]) data_x = data_x.reshape((data_x.shape[0], data_x.shape[1] * data_x.shape[2] * data_x.shape[3])) data_y = np.concatenate([y_train, y_test]) data_y = data_y[:, 0] train_x_across_task, train_y_across_task, test_x_across_task, test_y_across_task = sort_data( data_x,data_y,num_points_per_task ) # %% hybrid = np.zeros(reps,dtype=float) building = np.zeros(reps,dtype=float) recruiting= np.zeros(reps,dtype=float) uf = np.zeros(reps,dtype=float) mean_accuracy_dict = {'hybrid':[],'building':[],'recruiting':[],'UF':[]} std_accuracy_dict = {'hybrid':[],'building':[],'recruiting':[],'UF':[]} for ns in task_10_sample: estimation_sample_no = ceil(estimation_set*ns) validation_sample_no = ns - estimation_sample_no for rep in range(reps): print("doing {} samples for {} th rep".format(ns,rep)) ## estimation l2f = LifeLongDNN(model = "uf", parallel = True) for task in range(9): indx = np.random.choice(num_points_per_task, num_points_per_forest, replace=False) l2f.new_forest( train_x_across_task[task][indx], train_y_across_task[task][indx], max_depth=ceil(log2(num_points_per_forest)), n_estimators=ntrees ) task_10_train_indx =
np.random.choice(num_points_per_task, ns, replace=False)
numpy.random.choice
# Advent of Code 2018, Day 13 # (c) blu3r4y from collections import defaultdict from enum import IntEnum from itertools import tee import networkx as nx import numpy as np def part1(graph: nx.Graph, carts): return solve(graph, carts) def part2(graph: nx.Graph, carts): return solve(graph, carts, True) def solve(graph: nx.Graph, carts, delete_on_crash=False): # save the turning strategy with the cart location (x, y) as its key turns = defaultdict(lambda: TurnStrategy.Left) while True: # iterate over cart positions for pos in sorted(carts.keys()): # a previous crash could might removed this cart already if pos not in carts: continue # neigbors, which also exist in the graph options = list(filter(lambda tup: graph.has_edge(pos, tup[1]), carts[pos].next_neighbors(pos))) new_facing, new_pos = options[0] # intersection? (use turn-rule and set next turn) if len(options) > 1: new_facing, new_pos = options[turns[pos]] turns[pos] = turns.pop(pos).next_turn() if new_pos in carts: # crash detected if delete_on_crash: del carts[pos] del carts[new_pos] else: # (part 1) first crash position return ','.join(map(str, reversed(new_pos))) else: # cart moved (change position key) carts[new_pos] = new_facing turns[new_pos] = turns[pos] del carts[pos] # (part 2) position of single cart left if delete_on_crash and len(carts) == 1: return ','.join(map(str, reversed(next(iter(carts.keys()))))) class TurnStrategy(IntEnum): Left = 0 Straight = 1 Right = 2 def next_turn(self): # Left -> Straight -> Right -> Left -> ... return TurnStrategy((self + 1) % 3) class Direction(IntEnum): Up = 0 Down = 1 Left = 2 Right = 3 @staticmethod def from_char(ch): if ch == '^': return Direction.Up elif ch == 'v': return Direction.Down elif ch == '<': return Direction.Left elif ch == '>': return Direction.Right def as_offset(self): # offset within the matrix if you go in this direction if self == Direction.Up: return np.array((-1, 0)) elif self == Direction.Down: return
np.array((1, 0))
numpy.array
#!/usr/bin/env python # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import argparse import numpy as np from PIL import Image import sys from functools import partial import os import tritongrpcclient import tritongrpcclient.model_config_pb2 as mc import tritonhttpclient from tritonclientutils.utils import triton_to_np_dtype from tritonclientutils.utils import InferenceServerException if sys.version_info >= (3, 0): import queue else: import Queue as queue class UserData: def __init__(self): self._completed_requests = queue.Queue() # Callback function used for async_stream_infer() def completion_callback(user_data, result, error): # passing error raise and handling out user_data._completed_requests.put((result, error)) FLAGS = None def parse_model_grpc(model_metadata, model_config): """ Check the configuration of a model to make sure it meets the requirements for an image classification network (as expected by this client) """ if len(model_metadata.inputs) != 1: raise Exception("expecting 1 input, got {}".format( len(model_metadata.inputs))) if len(model_metadata.outputs) != 1: raise Exception("expecting 1 output, got {}".format( len(model_metadata.outputs))) if len(model_config.input) != 1: raise Exception( "expecting 1 input in model configuration, got {}".format( len(model_config.input))) input_metadata = model_metadata.inputs[0] input_config = model_config.input[0] output_metadata = model_metadata.outputs[0] if output_metadata.datatype != "FP32": raise Exception("expecting output datatype to be FP32, model '" + model_metadata.name + "' output type is " + output_metadata.datatype) # Output is expected to be a vector. But allow any number of # dimensions as long as all but 1 is size 1 (e.g. { 10 }, { 1, 10 # }, { 10, 1, 1 } are all ok). non_one_cnt = 0 for dim in output_metadata.shape: if dim > 1: non_one_cnt += 1 if non_one_cnt > 1: raise Exception("expecting model output to be a vector") # Model input must have 3 dims, either CHW or HWC if len(input_metadata.shape) != 3: raise Exception( "expecting input to have 3 dimensions, model '{}' input has {}". format(model_name, len(input_metadata.shape))) if ((input_config.format != mc.ModelInput.FORMAT_NCHW) and (input_config.format != mc.ModelInput.FORMAT_NHWC)): raise Exception("unexpected input format " + mc.ModelInput.Format.Name(input_config.format) + ", expecting " + mc.ModelInput.Format.Name(mc.ModelInput.FORMAT_NCHW) + " or " + mc.ModelInput.Format.Name(mc.ModelInput.FORMAT_NHWC)) if input_config.format == mc.ModelInput.FORMAT_NHWC: h = input_metadata.shape[0] w = input_metadata.shape[1] c = input_metadata.shape[2] else: c = input_metadata.shape[0] h = input_metadata.shape[1] w = input_metadata.shape[2] return (model_config.max_batch_size, input_metadata.name, output_metadata.name, c, h, w, input_config.format, input_metadata.datatype) def parse_model_http(model_metadata, model_config): """ Check the configuration of a model to make sure it meets the requirements for an image classification network (as expected by this client) """ if len(model_metadata['inputs']) != 1: raise Exception("expecting 1 input, got {}".format( len(model_metadata['inputs']))) if len(model_metadata['outputs']) != 1: raise Exception("expecting 1 output, got {}".format( len(model_metadata['outputs']))) if len(model_config['input']) != 1: raise Exception( "expecting 1 input in model configuration, got {}".format( len(model_config['input']))) input_metadata = model_metadata['inputs'][0] input_config = model_config['input'][0] output_metadata = model_metadata['outputs'][0] if output_metadata['datatype'] != "FP32": raise Exception("expecting output datatype to be FP32, model '" + model_metadata['name'] + "' output type is " + output_metadata['datatype']) # Output is expected to be a vector. But allow any number of # dimensions as long as all but 1 is size 1 (e.g. { 10 }, { 1, 10 # }, { 10, 1, 1 } are all ok). non_one_cnt = 0 for dim in output_metadata['shape']: if dim > 1: non_one_cnt += 1 if non_one_cnt > 1: raise Exception("expecting model output to be a vector") # Model input must have 3 dims, either CHW or HWC if len(input_metadata['shape']) != 3: raise Exception( "expecting input to have 3 dimensions, model '{}' input has {}". format(model_metadata.name, len(input_metadata['shape']))) if ((input_config['format'] != "FORMAT_NCHW") and (input_config['format'] != "FORMAT_NHWC")): raise Exception("unexpected input format " + input_config['format'] + ", expecting FORMAT_NCHW or FORMAT_NHWC") if input_config['format'] == "FORMAT_NHWC": h = input_metadata['shape'][0] w = input_metadata['shape'][1] c = input_metadata['shape'][2] else: c = input_metadata['shape'][0] h = input_metadata['shape'][1] w = input_metadata['shape'][2] max_batch_size = 0 if 'max_batch_size' in model_config: max_batch_size = model_config['max_batch_size'] return (max_batch_size, input_metadata['name'], output_metadata['name'], c, h, w, input_config['format'], input_metadata['datatype']) def preprocess(img, format, dtype, c, h, w, scaling, protocol): """ Pre-process an image to meet the size, type and format requirements specified by the parameters. """ # np.set_printoptions(threshold='nan') if c == 1: sample_img = img.convert('L') else: sample_img = img.convert('RGB') resized_img = sample_img.resize((w, h), Image.BILINEAR) resized = np.array(resized_img) if resized.ndim == 2: resized = resized[:, :, np.newaxis] npdtype = triton_to_np_dtype(dtype) typed = resized.astype(npdtype) if scaling == 'INCEPTION': scaled = (typed / 128) - 1 elif scaling == 'VGG': if c == 1: scaled = typed - np.asarray((128,), dtype=npdtype) else: scaled = typed -
np.asarray((123, 117, 104), dtype=npdtype)
numpy.asarray
import numpy as np import matplotlib #print ("Matplotlib Version :",matplotlib.__version__) import pylab as pl import time, sys, os import decimal import glob from subprocess import call from IPython.display import Image from matplotlib.pyplot import figure, imshow, axis from matplotlib.image import imread #from sympy import * #from mpmath import quad from scipy.integrate import quad import random import string vol_frac = 0.5 radius_cyl = np.sqrt(vol_frac/np.pi) rho = 1000 mu = 0.001 L = 2*radius_cyl def Reynolds( V_mean, L, rho=1000, mu=0.001): Re_actual = rho*V_mean*L/mu return Re_actual def majorAxis(alpha): return np.sqrt((0.5/np.pi)/alpha) def createFolder(directory): try: if not os.path.exists(directory): os.makedirs(directory) except OSError: print ('Error: Creating directory. ' + directory) def plot_fourier_curve(shape): # input( coeffs ): the fourier coefficients of dimension 2,2*M+1, where M is the maximum degree. # output plot: Plots the shape coeffs = shape["coeffs"] name =shape["name"] x_coeffs = coeffs[0,:] y_coeffs = coeffs[1,:] M = (np.shape(coeffs)[1] -1 ) // 2 start_t = 0.0 t = np.linspace(start_t,start_t+2.0*np.pi,num=100,endpoint=True) #print((t)) x = np.zeros(np.shape(t)) y = np.zeros(np.shape(t)) x += 0.5*x_coeffs[0] ; y += 0.5*y_coeffs[0] for mi in range(1,M+1): x += x_coeffs[2*mi-1]*np.cos(mi*t) + x_coeffs[2*mi]*np.sin(mi*t) y += y_coeffs[2*mi-1]*np.cos(mi*t) + y_coeffs[2*mi]*np.sin(mi*t) pl.plot(x,y,'k-') head = "shape "+name curve = np.column_stack((x,y)) np.savetxt(name,curve,delimiter=" ")#,header=head) pl.axis('equal') pl.title('Shape from Fourier Coeffs.') pl.show() coords = {"x":x, "y":y} return coords def minkowski_fourier_curve(coeffs): # input( shape ): contains the key "coeffs" -the fourier coefficients of dimension 2,2*M+1, where M is the maximum degree. # and the key "name" for shape name. # output (W) : Dictionary containing the four 2D minkowski tensors W020, W120, W220, W102 and the area # and perimeter of the curve/shape. #coeffs = shape["coeffs"] t=symbols("t") # parameter of the curve x_coeffs = coeffs[0,:] y_coeffs = coeffs[1,:] # m =0 , zeroth degree terms, also gives the centroid of the shape. expr_X = "0.5*"+str(coeffs[0,0]) expr_Y = "0.5*"+str(coeffs[1,0]) M = (np.shape(coeffs)[1] -1)//2 # X and Y coodinates as parametric representation using fourier series. for mi in range(1,M+1): expr_X += "+" + str(x_coeffs[2*mi-1]) + "*cos("+str(mi)+"*t) + " +str(x_coeffs[2*mi])+"*sin("+str(mi)+"*t)" expr_Y += "+" + str(y_coeffs[2*mi-1]) + "*cos("+str(mi)+"*t) + " +str(y_coeffs[2*mi])+"*sin("+str(mi)+"*t)" # derivative terms required for normal and curvature computation sym_x = sympify(expr_X) sym_y = sympify(expr_Y) # dx/dt sym_dx = diff(sym_x,t) # d^2x/dt^2 sym_ddx = diff(sym_dx,t) # dA = ydx infinitesimal area sym_ydx = sym_y*sym_dx sym_dy = diff(sym_y,t) sym_ddy = diff(sym_dy,t) # ds = sqrt(x'^2 + y'^2) , the infinitesimal arc-length sym_ds = sqrt(sym_dx**2 + sym_dy**2) # position vector r sym_r = [sym_x, sym_y] # unit normal vector n sym_norm_mag = sqrt(sym_dx**2 + sym_dy**2) sym_norm = [sym_dx/sym_norm_mag, sym_dy/sym_norm_mag] #print("Computed derivatives") # Area = \int ydx area = Integral(sym_ydx,(t,0,2*pi)).evalf(5) perimeter = Integral(sym_ds,(t,0,2*pi)).evalf(5) kappa = (sym_dx*sym_ddy - sym_dy*sym_ddx)/(sym_dx**2 + sym_dy**2)**(3/2) #print("Computing integrals ...") #Initialize the minkowski tensors W020 = np.zeros((2,2)) W120 = np.zeros((2,2)) W220 = np.zeros((2,2)) W102 = np.zeros((2,2)) x = symbols('x') #tensor computation for ia in range(2): for ib in range(2): # W020[ia,ib] = Integral(sym_r[ia]*sym_r[ib]*sym_ydx, (t,0,2*pi)).evalf(5) # print("Computing W120 ...") # W120[ia,ib] = 0.5* Integral(sym_r[ia]*sym_r[ib]*sym_ds, (t,0,2*pi)).evalf(5) # W220[ia,ib] = 0.5* Integral(kappa*sym_r[ia]*sym_r[ib]*sym_ds, (t,0,2*pi)).evalf(5) # print("Computing W102 ...") # W102[ia,ib] = 0.5* Integral(sym_norm[ia] * sym_norm[ib]*sym_ds,(t,0,2*pi)).evalf(5) f = lambdify(t,sym_r[ia]*sym_r[ib]*sym_ydx) W020[ia,ib],err = quad( f, 0,2*np.pi) #print(W020[ia,ib]) #print("Computing W120 ...") f = lambdify(t,sym_r[ia]*sym_r[ib]*sym_ds) W120[ia,ib],err = quad(f, 0,2*np.pi) W120[ia,ib] = 0.5* W120[ia,ib] f = lambdify(t,kappa*sym_r[ia]*sym_r[ib]*sym_ds) W220[ia,ib],err = quad(f, 0,2*np.pi) W220[ia,ib] = 0.5*W220[ia,ib] #print("Computing W102 ...") f = lambdify(t,sym_norm[ia] * sym_norm[ib]*sym_ds) W102[ia,ib], err = quad(f, 0,2*np.pi) W102[ia,ib] = 0.5* W102[ia,ib] #dictionary with computed quantities W={"W020":W020, "W120":W120, "W220":W220, "W102":W102, "area":area, "perimeter":perimeter } return W # def simulate_flow(): # DIR = './shapes/coords' # createFolder('./simulations') # start_t = time.time() # name_list = [] # num = 0 # #n_angles =20 # n_shapes = len(os.listdir(DIR)) # for name in os.listdir(DIR): # if os.path.isfile(os.path.join(DIR,name)): # update_progress(num/n_shapes,start_t,time.time()) # num += 1 # thisfolder ='./simulations/'+name # createFolder(thisfolder) # #print("Shape No. "+str(num)+" : "+name) # #for angle in range(n_angles): # #theta = random.uniform(0.0,np.pi) # # thisfolder ='./simulations/'+name+'/theta_'+str(round(theta,3)) # # createFolder(thisfolder) # call(["cp","vorticity.gfs",thisfolder+'/.']) # call(["cp","xprofile",thisfolder+'/.']) # f=open(thisfolder+"/shape.gts","w") # call(["shapes",os.path.join(DIR,name)],stdout=f) #+" > "+thisfolder+"/shape.gts"]) # os.chdir(thisfolder) # call(["gerris2D","vorticity.gfs"]) # #xp = (np.loadtxt('xprof', delimiter=" ")) # #pl.plot(xp[:,6],xp[:,2],label=r'$\theta =$') #thets # #Vel_mean[i,1] = np.mean(xp[:,6]) # #Vel_mean[i,0] = theta # #Image("velocity.png") # os.chdir('../../') # #name_list.append(name) # n_simulations = n_shapes def simulate_flow(dp=0.000001,DIR='./shapes_low0/coords'): # DIR = './shapes_low0/coords' # dp_0 = 0.000001 # p_ratio = round(dp_0/dp,2) dp_string = '{:.0e}'.format(decimal.Decimal(str(dp))) folder_name ='./simulations_dP_'+dp_string input_file ='vorticity_'+dp_string+'.gfs' with open('vorticity.gfs','r') as fin: # # with is like your try .. finally block in this case input_string = fin.readlines() for index, line in enumerate(input_string): if line.strip().startswith('Source {} U'): input_string[index] = 'Source {} U '+str(dp) with open(input_file, 'w') as file: file.writelines( input_string ) createFolder(folder_name) start_t = time.time() name_list = [] num = 0 #n_angles =20 n_shapes = len(os.listdir(DIR)) for name in os.listdir(DIR): if os.path.isfile(os.path.join(DIR,name)): update_progress(num/n_shapes,start_t,time.time()) num += 1 thisfolder =folder_name + '/' + name createFolder(thisfolder) #print("Shape No. "+str(num)+" : "+name) #for angle in range(n_angles): #theta = random.uniform(0.0,np.pi) # thisfolder ='./simulations/'+name+'/theta_'+str(round(theta,3)) # createFolder(thisfolder) call(["cp", input_file ,thisfolder+'/.']) call(["cp","xprofile",thisfolder+'/.']) f=open(thisfolder+"/shape.gts","w") call(["shapes",os.path.join(DIR,name)],stdout=f) #+" > "+thisfolder+"/shape.gts"]) os.chdir(thisfolder) call(["gerris2D",input_file]) #xp = (np.loadtxt('xprof', delimiter=" ")) #pl.plot(xp[:,6],xp[:,2],label=r'$\theta =$') #thets #Vel_mean[i,1] = np.mean(xp[:,6]) #Vel_mean[i,0] = theta #Image("velocity.png") os.chdir('../../') #name_list.append(name) n_simulations = n_shapes def fourier2Cart(coeffs,t): #x_coeffs = coeffs[0,:] #y_coeffs = coeffs[1,:] #M = (np.shape(coeffs)[1] -1 ) // 2 #x = np.zeros(np.shape(t)) #y = np.zeros(np.shape(t)) #x += 0.5*x_coeffs[0] ; y += 0.5*y_coeffs[0] #for mi in range(1,M+1): # x += x_coeffs[2*mi-1]*np.cos(mi*t) + x_coeffs[2*mi]*np.sin(mi*t) # y += y_coeffs[2*mi-1]*np.cos(mi*t) + y_coeffs[2*mi]*np.sin(mi*t) #t.reshape(len(t)) #t=t[:,np.newaxis].T tt = np.row_stack((t,t)) #print(np.shape(tt)) coords = np.zeros(np.shape(tt)) coords += 0.5*coeffs[:,0,np.newaxis] M = (np.shape(coeffs)[1] -1 ) // 2 for mi in range(1,M+1): coords += coeffs[:,2*mi-1,np.newaxis]*np.cos( mi*tt) + coeffs[:,2*mi,np.newaxis]*np.sin(mi*tt) #coords = np.row_stack((x,y)) return coords def generateShape(res=200,M=4): t = np.linspace(0, 2.0*np.pi, num=res, endpoint=True) dt = t[1]-t[0] coeffs = np.zeros((2,2*M+1)) bad_shape = True n_attempts = 0 while bad_shape == True: alpha = np.random.uniform(1.0,2.0) a = majorAxis(alpha) b = alpha*a #a = 1 #b = 1 #print("the major and minor axes are:"+str(a)+","+str(b)) coeffs[0,1] = a # create an ellipse as starting point coeffs[1,2] = b # create an ellipse as starting point coeffs[:,3::] = coeffs[:,3::] + 0.25*a*(np.random.rand(2,2*M-2) -0.5)#-0.5 coords = fourier2Cart(coeffs,t) #pl.plot(coords[0,:],coords[1,:],'-') dx = np.gradient(coords,axis=1) ddx = np.gradient(dx, axis=1) num = dx[0,:] * ddx[1,:] - ddx[0,:] * dx[1,:] denom = dx[0,:] * dx[0,:] + dx[1,:] * dx[1,:] denom = np.sqrt(denom) denom = denom * denom * denom curvature = num / denom sharp_edge = False outside_domain = False if (np.amax(np.absolute(curvature)) > 20): sharp_edge = True coords_prime = np.gradient(coords,dt,axis=1) integrand = coords_prime[1,:] * coords[0,:] area = np.trapz(integrand, x=t) scale = np.sqrt(0.5 / np.absolute(area)) coeffs = scale * coeffs coords = fourier2Cart(coeffs,t) if(np.any(np.abs(coords) >= 0.5)): outside_domain = True bad_shape = sharp_edge or outside_domain n_attempts +=1 #if(bad_shape): # print( "This shape is bad:"+str(sharp_edge)+str(outside_domain)) #x_coeffs_prime = x_coeffs[1:] #y_coeffs_prime = y_coeffs[1:] coords_prime = np.gradient(coords,dt,axis=1) integrand = coords[1,:] * coords_prime[0,:] area = np.trapz(integrand, x=t) # x = np.append(x, x[0]) # y = np.append(y, y[0]) length = np.sum( np.sqrt(np.ediff1d(coords[0,:]) * np.ediff1d(coords[0,:]) + np.ediff1d(coords[1,:]) * np.ediff1d(coords[1,:])) ) print('x-coefficients: ' + str(coeffs[0,:])) print('y-coefficients: ' + str(coeffs[1,:])) print('enclosed area: ' + str(np.absolute(area))) print('curve length: ' + str(length)) shape={"coeffs":coeffs, "coords":coords} pl.plot(coords[0,:],coords[1,:],'-') return shape def check_self_intersection(coords): result = False for i in range(2,np.shape(coords)[1]-1): p = coords[:,i] dp = coords[:,i+1] - p for j in range(0,i-2): if (result==False): q = coords[:,j] dq = coords[:,j+1] - q dpdq = np.cross(dp,dq) t = np.cross(q-p,dq)/dpdq u = np.cross(q-p,dp)/dpdq if(dpdq != 0): if(0<= t <= 1): if(0<= u <= 1): result = True return result def check_domain_intersection(coords): result = np.any(np.abs(coords)>= 0.5) return result def generate_Npoint_shape(N=10,M=4, res=100): #random.seed(1516) bad_shape =True while bad_shape == True: pos_r = np.random.uniform(0,0.5,(N)) #pos_thet = np.random.uniform(0,2*np.pi,(1,N)) pos_thet =np.linspace(0,2*np.pi,num=N,endpoint=False) posx = pos_r*np.cos(pos_thet) posy = pos_r*np.sin(pos_thet) pos =
np.row_stack((posx,posy))
numpy.row_stack
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Aqueous Helgeson Equation of State with Bromley activity model This file implements an aqueous equation of state (EOS) named the Helgeson EOS with Bromley activity model. It is specifically the version of the that EOS that is described in Jager et. al. (2003), which is linked in the readme.md file. The file consists of a single class, 'HegBromEos' that will take as arguments a list of components and a pressure and a temperature. Pressure and temperature can be modified after an instance of HegBromEos is created; however, the number of components and actual component list cannot. The method 'calc' is the main calculation of the class, which uses other methods to determine the partial fugacity of each component given mole fractions, pressure, and temperature. Functions ---------- pure_water_vol_intgrt : Calculates integrated change in the volume of pure water from P_0 to P at fixed T. pure_water_vol : Calculates volume of pure water at P and T. dielectric_const : Calculates dielectric constant of pure water at P and T. molality : Calculates molality of each solute in the aqueous phase. solute_vol_integrated: Calculates volume of each component as a solute. """ import numpy as np # Constants for EOS R = 8.3144621 # Gas constant in J/mol-K T_0 = 298.15 # Reference temperature in K P_0 = 1 # Reference pressure in bar # Constants for solute model theta = 228.0 psi = 2600 s10 = 243.9576 s11 = -0.7520846 s12 = 6.60648e-4 s20 = 0.039037 s21 = -2.12309e-4 s22 = 3.18021e-7 s30 = -1.0126e-5 s31 = 6.04961e-8 s32 = -9.3334e-11 # Constants produced by symbolic integration for h_ast funum_compstion f1 = 73786976294838206464 f2 = 8151985141053725 f3 = 3249460376862603 f4 = 9444732965739290427392 f5 = 4722366482869645213696 f6 = 1043454098054876800 # Constants for pure water gw_pure = -237129 hw_pure = -285830 cp_a0 = R * 8.712 cp_a1 = R * 1e-2 * 0.125 cp_a2 = R * 1e-5 * -0.018 cp_a3 = 0 a10 = 31.1251 a11 = -1.14154e-1 a12 = 3.10034e-4 a13 = -2.48318e-7 a20 = -2.46176e-2 a21 = 2.15663e-4 a22 = -6.48160e-7 a23 = 6.47521e-10 a30 = 8.69425e-6 a31 = -7.96939e-8 a32 = 2.45391e-10 a33 = -2.51773e-13 a40 = -6.03348e-10 a41 = 5.57791e-12 a42 = -1.72577e-14 a43 = 1.77978e-17 """The above global variables may be used throughout the calculation.""" def pure_water_vol_intgrt(T, P): """Volume of pure water integrate wrt pressure. Parameters ---------- T : float Temperature in Kelvin. P : float Pressure in bar. Returns ---------- v_w : float Volume of water integrated in cm^3 - bar. """ v_w = ((a10 * P + a20 * P ** 2 / 2 + a30 * P ** 3 / 3 + a40 * P ** 4 / 4) + (a11 * P + a21 * P ** 2 / 2 + a31 * P ** 3 / 3 + a41 * P ** 4 / 4) * T + (a12 * P + a22 * P ** 2 / 2 + a32 * P ** 3 / 3 + a42 * P ** 4 / 4) * T ** 2 + (a13 * P + a23 * P ** 2 / 2 + a33 * P ** 3 / 3 + a43 * P ** 4 / 4) * T ** 3) return v_w def pure_water_vol(T, P): """Volume of pure water. Parameters ---------- T : float Temperature in Kelvin. P : float Pressure in bar. Returns ---------- v_w : float Volume of water in cm^3. """ v_w = ((a10 + a20 * P + a30 * P ** 2 + a40 * P ** 3) + (a11 + a21 * P + a31 * P ** 2 + a41 * P ** 3) * T + (a12 + a22 * P + a32 * P ** 2 + a42 * P ** 3) * T ** 2 + (a13 + a23 * P + a33 * P ** 2 + a43 * P ** 3) * T ** 3) return v_w def dielectric_const(T, P): """Dielectric constant of pure water. Parameters ---------- T : float Temperature in Kelvin. P : float Pressure in bar. Returns ---------- eps : float Dielectric constant of water (no units) . """ eps = ((s10 + s20 * P + s30 * P ** 2) + (s11 + s21 * P + s31 * P ** 2) * T + (s12 + s22 * P + s32 * P ** 2) * T ** 2) return eps def molality(xc, xw): """Calculates molality of each solute in the aqueous phase. Parameters ---------- xc : float Mole fraction of component. xw : float Mole fraction water. Returns ---------- float Molality of component in mol[component] / kg[water]. """ return xc / (xw * 0.018015) def solute_vol_integrated(comp, T, P): """Volume of solute integrated wrt pressure. Parameters ---------- comp : object Instance of Component class for each component T : float Temperature at initialization in Kelvin. P : float Pressure at initialization in bar. Returns ---------- v_ast_P : float Volume of solute integrated wrt pressure in cm^3 - bar """ omega = comp.AqHB['omega_born'] v1 = comp.AqHB['v']['v1'] v2 = comp.AqHB['v']['v2'] v3 = comp.AqHB['v']['v3'] v4 = comp.AqHB['v']['v4'] tau = ((5.0 / 6.0) * T - theta) / (1.0 + np.exp((T - 273.15) / 5.0)) v_ast_P = ( (v1 * P + v2 * np.log(psi + P) + (v3 * P + v4 * np.log(psi + P)) * (1.0 / (T - theta - tau)) + omega / dielectric_const(T, P)) / (R * T) ) return v_ast_P class HegBromEos(object): """The main class for this EOS that perform various calculations. Methods ---------- make_constant_mats : Performs calculations that only depend on pressure and temperature. fugacity : Calculates fugacity of each component in the aqueous phase. calc: Main calculation for aqueous phase EOS. """ def __init__(self, comps, T, P): """Aqueous EOS object for fugacity calculations. Parameters ---------- comps : list List of components as 'Component' objects created with 'component_properties.py'. T : float Temperature at initialization in Kelvin. P : float Pressure at initialization in bar. Attributes ---------- water_ind : int Index of for water component in all lists. comps : list List of 'Component' classes passed into 'HegBromEos'. comp_names : list List of components names. num_comps : int Number of components. T : float Temperature at initialization in Kelvin. P : float Pressure at initialization in bar. g_io_vec : numpy array Pre-allocated array for gibbs energy of each component in ideal gas state. molality_vec : numpy array Pre-allocated array for molality of each component. activity_vec : numpy array Pre-allocated array for activity of each component in Bromley activity model. gamma_p1_vec : numpy array Pre-allocated array for gamma_{p1} variable of each component in Bromley activity model. mu_ik_RT_vec : numpy array Pre-allocated array chemical potential of each component. """ try: self.water_ind = [ii for ii, x in enumerate(comps) if x.compname == 'h2o'][0] except ValueError: raise RuntimeError( """Aqueous EOS requires water to be present! \nPlease provide water in your component list.""") self.comps = comps self.comp_names = [x.compname for x in comps] self.num_comps = len(comps) self.T = T self.P = P self.g_io_vec = np.zeros(self.num_comps) self.molality_vec = np.zeros(self.num_comps) self.activity_vec = np.zeros(self.num_comps) self.gamma_p1_vec = np.zeros(self.num_comps) self.mu_ik_rt_cons =
np.zeros(self.num_comps)
numpy.zeros
import numpy as np class LabFrame: def __init__(self, velocity): self.update(velocity) def update(self, velocity): self.velocity = velocity self.gamma = 1 / np.sqrt(1 -
np.linalg.norm(velocity)
numpy.linalg.norm
"""Filter design. """ from __future__ import division, print_function, absolute_import import warnings import numpy from numpy import (atleast_1d, poly, polyval, roots, real, asarray, allclose, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array) from numpy import mintypecode import numpy as np from scipy import special, optimize from scipy.special import comb from scipy.misc import factorial from numpy.polynomial.polynomial import polyval as npp_polyval import math __all__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize', 'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 'BadCoefficients', 'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay'] class BadCoefficients(UserWarning): """Warning about badly conditioned filter coefficients""" pass abs = absolute def findfreqs(num, den, N): """ Find array of frequencies for computing the response of an analog filter. Parameters ---------- num, den : array_like, 1-D The polynomial coefficients of the numerator and denominator of the transfer function of the filter or LTI system. The coefficients are ordered from highest to lowest degree. N : int The length of the array to be computed. Returns ------- w : (N,) ndarray A 1-D array of frequencies, logarithmically spaced. Examples -------- Find a set of nine frequencies that span the "interesting part" of the frequency response for the filter with the transfer function H(s) = s / (s^2 + 8s + 25) >>> from scipy import signal >>> signal.findfreqs([1, 0], [1, 8, 25], N=9) array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02]) """ ep = atleast_1d(roots(den)) + 0j tz = atleast_1d(roots(num)) + 0j if len(ep) == 0: ep = atleast_1d(-1000) + 0j ez = r_['-1', numpy.compress(ep.imag >= 0, ep, axis=-1), numpy.compress((abs(tz) < 1e5) & (tz.imag >= 0), tz, axis=-1)] integ = abs(ez) < 1e-10 hfreq = numpy.around(numpy.log10(numpy.max(3 * abs(ez.real + integ) + 1.5 * ez.imag)) + 0.5) lfreq = numpy.around(numpy.log10(0.1 * numpy.min(abs(real(ez + integ)) + 2 * ez.imag)) - 0.5) w = logspace(lfreq, hfreq, N) return w def freqs(b, a, worN=None, plot=None): """ Compute frequency response of analog filter. Given the M-order numerator `b` and N-order denominator `a` of an analog filter, compute its frequency response:: b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M] H(w) = ---------------------------------------------- a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N] Parameters ---------- b : array_like Numerator of a linear filter. a : array_like Denominator of a linear filter. worN : {None, int, array_like}, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g. rad/s) given in `worN`. plot : callable, optional A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqs`. Returns ------- w : ndarray The angular frequencies at which `h` was computed. h : ndarray The frequency response. See Also -------- freqz : Compute the frequency response of a digital filter. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. Examples -------- >>> from scipy.signal import freqs, iirfilter >>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1') >>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000)) >>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response [dB]') >>> plt.grid() >>> plt.show() """ if worN is None: w = findfreqs(b, a, 200) elif isinstance(worN, int): N = worN w = findfreqs(b, a, N) else: w = worN w = atleast_1d(w) s = 1j * w h = polyval(b, s) / polyval(a, s) if plot is not None: plot(w, h) return w, h def freqz(b, a=1, worN=None, whole=False, plot=None): """ Compute the frequency response of a digital filter. Given the M-order numerator `b` and N-order denominator `a` of a digital filter, compute its frequency response:: jw -jw -jwM jw B(e ) b[0] + b[1]e + .... + b[M]e H(e ) = ---- = ----------------------------------- jw -jw -jwN A(e ) a[0] + a[1]e + .... + a[N]e Parameters ---------- b : array_like numerator of a linear filter a : array_like denominator of a linear filter worN : {None, int, array_like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If an array_like, compute the response at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. plot : callable A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqz`. Returns ------- w : ndarray The normalized frequencies at which `h` was computed, in radians/sample. h : ndarray The frequency response. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. Examples -------- >>> from scipy import signal >>> b = signal.firwin(80, 0.5, window=('kaiser', 8)) >>> w, h = signal.freqz(b) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.title('Digital filter frequency response') >>> ax1 = fig.add_subplot(111) >>> plt.plot(w, 20 * np.log10(abs(h)), 'b') >>> plt.ylabel('Amplitude [dB]', color='b') >>> plt.xlabel('Frequency [rad/sample]') >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(h)) >>> plt.plot(w, angles, 'g') >>> plt.ylabel('Angle (radians)', color='g') >>> plt.grid() >>> plt.axis('tight') >>> plt.show() """ b, a = map(atleast_1d, (b, a)) if whole: lastpoint = 2 * pi else: lastpoint = pi if worN is None: N = 512 w = numpy.linspace(0, lastpoint, N, endpoint=False) elif isinstance(worN, int): N = worN w = numpy.linspace(0, lastpoint, N, endpoint=False) else: w = worN w = atleast_1d(w) zm1 = exp(-1j * w) h = polyval(b[::-1], zm1) / polyval(a[::-1], zm1) if plot is not None: plot(w, h) return w, h def group_delay(system, w=None, whole=False): r"""Compute the group delay of a digital filter. The group delay measures by how many samples amplitude envelopes of various spectral components of a signal are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:: d jw D(w) = - -- arg H(e) dw Parameters ---------- system : tuple of array_like (b, a) Numerator and denominator coefficients of a filter transfer function. w : {None, int, array-like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If array, compute the delay at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to ``2*pi`` radians/sample. Returns ------- w : ndarray The normalized frequencies at which the group delay was computed, in radians/sample. gd : ndarray The group delay. Notes ----- The similar function in MATLAB is called `grpdelay`. If the transfer function :math:`H(z)` has zeros or poles on the unit circle, the group delay at corresponding frequencies is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies. For the details of numerical computation of the group delay refer to [1]_. .. versionadded: 0.16.0 See Also -------- freqz : Frequency response of a digital filter References ---------- .. [1] <NAME>, "Understanding Digital Signal Processing, 3rd edition", p. 830. Examples -------- >>> from scipy import signal >>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1') >>> w, gd = signal.group_delay((b, a)) >>> import matplotlib.pyplot as plt >>> plt.title('Digital filter group delay') >>> plt.plot(w, gd) >>> plt.ylabel('Group delay [samples]') >>> plt.xlabel('Frequency [rad/sample]') >>> plt.show() """ if w is None: w = 512 if isinstance(w, int): if whole: w = np.linspace(0, 2 * pi, w, endpoint=False) else: w = np.linspace(0, pi, w, endpoint=False) w = np.atleast_1d(w) b, a = map(np.atleast_1d, system) c = np.convolve(b, a[::-1]) cr = c * np.arange(c.size) z = np.exp(-1j * w) num = np.polyval(cr[::-1], z) den = np.polyval(c[::-1], z) singular = np.absolute(den) < 10 * EPSILON if np.any(singular): warnings.warn( "The group delay is singular at frequencies [{0}], setting to 0". format(", ".join("{0:.3f}".format(ws) for ws in w[singular])) ) gd = np.zeros_like(w) gd[~singular] = np.real(num[~singular] / den[~singular]) - a.size + 1 return w, gd def _cplxreal(z, tol=None): """ Split into complex and real parts, combining conjugate pairs. The 1D input vector `z` is split up into its complex (`zc`) and real (`zr`) elements. Every complex element must be part of a complex-conjugate pair, which are combined into a single number (with positive imaginary part) in the output. Two complex numbers are considered a conjugate pair if their real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. Parameters ---------- z : array_like Vector of complex numbers to be sorted and split tol : float, optional Relative tolerance for testing realness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- zc : ndarray Complex elements of `z`, with each pair represented by a single value having positive imaginary part, sorted first by real part, and then by magnitude of imaginary part. The pairs are averaged when combined to reduce error. zr : ndarray Real elements of `z` (those having imaginary part less than `tol` times their magnitude), sorted by value. Raises ------ ValueError If there are any complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxpair Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> zc, zr = _cplxreal(a) >>> print zc [ 1.+1.j 2.+1.j 2.+1.j 2.+2.j] >>> print zr [ 1. 3. 4.] """ z = atleast_1d(z) if z.size == 0: return z, z elif z.ndim != 1: raise ValueError('_cplxreal only accepts 1D input') if tol is None: # Get tolerance from dtype of input tol = 100 * np.finfo((1.0 * z).dtype).eps # Sort by real part, magnitude of imaginary part (speed up further sorting) z = z[np.lexsort((abs(z.imag), z.real))] # Split reals from conjugate pairs real_indices = abs(z.imag) <= tol * abs(z) zr = z[real_indices].real if len(zr) == len(z): # Input is entirely real return array([]), zr # Split positive and negative halves of conjugates z = z[~real_indices] zp = z[z.imag > 0] zn = z[z.imag < 0] if len(zp) != len(zn): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Find runs of (approximately) the same real part same_real = np.diff(zp.real) <= tol * abs(zp[:-1]) diffs = numpy.diff(concatenate(([0], same_real, [0]))) run_starts = numpy.where(diffs > 0)[0] run_stops = numpy.where(diffs < 0)[0] # Sort each run by their imaginary parts for i in range(len(run_starts)): start = run_starts[i] stop = run_stops[i] + 1 for chunk in (zp[start:stop], zn[start:stop]): chunk[...] = chunk[np.lexsort([abs(chunk.imag)])] # Check that negatives match positives if any(abs(zp - zn.conj()) > tol * abs(zn)): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Average out numerical inaccuracy in real vs imag parts of pairs zc = (zp + zn.conj()) / 2 return zc, zr def _cplxpair(z, tol=None): """ Sort into pairs of complex conjugates. Complex conjugates in `z` are sorted by increasing real part. In each pair, the number with negative imaginary part appears first. If pairs have identical real parts, they are sorted by increasing imaginary magnitude. Two complex numbers are considered a conjugate pair if their real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. The pairs are forced to be exact complex conjugates by averaging the positive and negative values. Purely real numbers are also sorted, but placed after the complex conjugate pairs. A number is considered real if its imaginary part is smaller than `tol` times the magnitude of the number. Parameters ---------- z : array_like 1-dimensional input array to be sorted. tol : float, optional Relative tolerance for testing realness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- y : ndarray Complex conjugate pairs followed by real numbers. Raises ------ ValueError If there are any complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxreal Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> z = _cplxpair(a) >>> print(z) [ 1.-1.j 1.+1.j 2.-1.j 2.+1.j 2.-1.j 2.+1.j 2.-2.j 2.+2.j 1.+0.j 3.+0.j 4.+0.j] """ z = atleast_1d(z) if z.size == 0 or np.isrealobj(z): return np.sort(z) if z.ndim != 1: raise ValueError('z must be 1-dimensional') zc, zr = _cplxreal(z, tol) # Interleave complex values and their conjugates, with negative imaginary # parts first in each pair zc = np.dstack((zc.conj(), zc)).flatten() z = np.append(zc, zr) return z def tf2zpk(b, a): r"""Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Notes ----- If some values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. The `b` and `a` arrays are interpreted as coefficients for positive, descending powers of the transfer function variable. So the inputs :math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]` can represent an analog filter of the form: .. math:: H(s) = \frac {b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M} {a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N} or a discrete-time filter of the form: .. math:: H(z) = \frac {b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M} {a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N} This "positive powers" form is found more commonly in controls engineering. If `M` and `N` are equal (which is true for all filters generated by the bilinear transform), then this happens to be equivalent to the "negative powers" discrete-time form preferred in DSP: .. math:: H(z) = \frac {b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}} {a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}} Although this is true for common filters, remember that this is not true in the general case. If `M` and `N` are not equal, the discrete-time transfer function coefficients must first be converted to the "positive powers" form before finding the poles and zeros. """ b, a = normalize(b, a) b = (b + 0.0) / a[0] a = (a + 0.0) / a[0] k = b[0] b /= b[0] z = roots(b) p = roots(a) return z, p, k def zpk2tf(z, p, k): """ Return polynomial transfer function representation from zeros and poles Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. """ z = atleast_1d(z) k = atleast_1d(k) if len(z.shape) > 1: temp = poly(z[0]) b = zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char) if len(k) == 1: k = [k[0]] * z.shape[0] for i in range(z.shape[0]): b[i] = k[i] * poly(z[i]) else: b = k * poly(z) a = atleast_1d(poly(p)) # Use real output if possible. Copied from numpy.poly, since # we can't depend on a specific version of numpy. if issubclass(b.dtype.type, numpy.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = numpy.asarray(z, complex) pos_roots = numpy.compress(roots.imag > 0, roots) neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) if len(pos_roots) == len(neg_roots): if numpy.all(numpy.sort_complex(neg_roots) == numpy.sort_complex(pos_roots)): b = b.real.copy() if issubclass(a.dtype.type, numpy.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = numpy.asarray(p, complex) pos_roots = numpy.compress(roots.imag > 0, roots) neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) if len(pos_roots) == len(neg_roots): if numpy.all(numpy.sort_complex(neg_roots) == numpy.sort_complex(pos_roots)): a = a.real.copy() return b, a def tf2sos(b, a, pairing='nearest'): """ Return second-order sections from transfer function representation Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See `zpk2sos`. Returns ------- sos : ndarray Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- zpk2sos, sosfilt Notes ----- It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numerical precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted to SOS by first converting to ZPK format, then converting ZPK to SOS. .. versionadded:: 0.16.0 """ return zpk2sos(*tf2zpk(b, a), pairing=pairing) def sos2tf(sos): """ Return a single transfer function from a series of second-order sections Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. Notes ----- .. versionadded:: 0.16.0 """ sos = np.asarray(sos) b = [1.] a = [1.] n_sections = sos.shape[0] for section in range(n_sections): b = np.polymul(b, sos[section, :3]) a = np.polymul(a, sos[section, 3:]) return b, a def sos2zpk(sos): """ Return zeros, poles, and gain of a series of second-order sections Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Notes ----- .. versionadded:: 0.16.0 """ sos = np.asarray(sos) n_sections = sos.shape[0] z = np.empty(n_sections*2, np.complex128) p = np.empty(n_sections*2, np.complex128) k = 1. for section in range(n_sections): zpk = tf2zpk(sos[section, :3], sos[section, 3:]) z[2*section:2*(section+1)] = zpk[0] p[2*section:2*(section+1)] = zpk[1] k *= zpk[2] return z, p, k def _nearest_real_complex_idx(fro, to, which): """Get the next closest real or complex element based on distance""" assert which in ('real', 'complex') order = np.argsort(np.abs(fro - to)) mask = np.isreal(fro[order]) if which == 'complex': mask = ~mask return order[np.where(mask)[0][0]] def zpk2sos(z, p, k, pairing='nearest'): """ Return second-order sections from zeros, poles, and gain of a system Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See Notes below. Returns ------- sos : ndarray Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- sosfilt Notes ----- The algorithm used to convert ZPK to SOS format is designed to minimize errors due to numerical precision issues. The pairing algorithm attempts to minimize the peak gain of each biquadratic section. This is done by pairing poles with the nearest zeros, starting with the poles closest to the unit circle. *Algorithms* The current algorithms are designed specifically for use with digital filters. (The output coefficents are not correct for analog filters.) The steps in the ``pairing='nearest'`` and ``pairing='keep_odd'`` algorithms are mostly shared. The ``nearest`` algorithm attempts to minimize the peak gain, while ``'keep_odd'`` minimizes peak gain under the constraint that odd-order systems should retain one section as first order. The algorithm steps and are as follows: As a pre-processing step, add poles or zeros to the origin as necessary to obtain the same number of poles and zeros for pairing. If ``pairing == 'nearest'`` and there are an odd number of poles, add an additional pole and a zero at the origin. The following steps are then iterated over until no more poles or zeros remain: 1. Take the (next remaining) pole (complex or real) closest to the unit circle to begin a new filter section. 2. If the pole is real and there are no other remaining real poles [#]_, add the closest real zero to the section and leave it as a first order section. Note that after this step we are guaranteed to be left with an even number of real poles, complex poles, real zeros, and complex zeros for subsequent pairing iterations. 3. Else: 1. If the pole is complex and the zero is the only remaining real zero*, then pair the pole with the *next* closest zero (guaranteed to be complex). This is necessary to ensure that there will be a real zero remaining to eventually create a first-order section (thus keeping the odd order). 2. Else pair the pole with the closest remaining zero (complex or real). 3. Proceed to complete the second-order section by adding another pole and zero to the current pole and zero in the section: 1. If the current pole and zero are both complex, add their conjugates. 2. Else if the pole is complex and the zero is real, add the conjugate pole and the next closest real zero. 3. Else if the pole is real and the zero is complex, add the conjugate zero and the real pole closest to those zeros. 4. Else (we must have a real pole and real zero) add the next real pole closest to the unit circle, and then add the real zero closest to that pole. .. [#] This conditional can only be met for specific odd-order inputs with the ``pairing == 'keep_odd'`` method. .. versionadded:: 0.16.0 Examples -------- Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-band corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation in the stop-band should be at least 90 dB. In the following call to `signal.ellip`, we could use ``output='sos'``, but for this example, we'll use ``output='zpk'``, and then convert to SOS format with `zpk2sos`: >>> from scipy import signal >>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk') Now convert to SOS format. >>> sos = signal.zpk2sos(z, p, k) The coefficients of the numerators of the sections: >>> sos[:, :3] array([[ 0.0014154 , 0.00248707, 0.0014154 ], [ 1. , 0.72965193, 1. ], [ 1. , 0.17594966, 1. ]]) The symmetry in the coefficients occurs because all the zeros are on the unit circle. The coefficients of the denominators of the sections: >>> sos[:, 3:] array([[ 1. , -1.32543251, 0.46989499], [ 1. , -1.26117915, 0.6262586 ], [ 1. , -1.25707217, 0.86199667]]) The next example shows the effect of the `pairing` option. We have a system with three poles and three zeros, so the SOS array will have shape (2, 6). The means there is, in effect, an extra pole and an extra zero at the origin in the SOS representation. >>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j]) >>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j]) With ``pairing='nearest'`` (the default), we obtain >>> signal.zpk2sos(z1, p1, 1) array([[ 1. , 1. , 0.5 , 1. , -0.75, 0. ], [ 1. , 1. , 0. , 1. , -1.6 , 0.65]]) The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned to different sections. With ``pairing='keep_odd'``, we obtain: >>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd') array([[ 1. , 1. , 0. , 1. , -0.75, 0. ], [ 1. , 1. , 0.5 , 1. , -1.6 , 0.65]]) The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section. """ # TODO in the near future: # 1. Add SOS capability to `filtfilt`, `freqz`, etc. somehow (#3259). # 2. Make `decimate` use `sosfilt` instead of `lfilter`. # 3. Make sosfilt automatically simplify sections to first order # when possible. Note this might make `sosfiltfilt` a bit harder (ICs). # 4. Further optimizations of the section ordering / pole-zero pairing. # See the wiki for other potential issues. valid_pairings = ['nearest', 'keep_odd'] if pairing not in valid_pairings: raise ValueError('pairing must be one of %s, not %s' % (valid_pairings, pairing)) if len(z) == len(p) == 0: return array([[k, 0., 0., 1., 0., 0.]]) # ensure we have the same number of poles and zeros, and make copies p = np.concatenate((p, np.zeros(max(len(z) - len(p), 0)))) z = np.concatenate((z, np.zeros(max(len(p) - len(z), 0)))) n_sections = (max(len(p), len(z)) + 1) // 2 sos = zeros((n_sections, 6)) if len(p) % 2 == 1 and pairing == 'nearest': p = np.concatenate((p, [0.])) z = np.concatenate((z, [0.])) assert len(p) == len(z) # Ensure we have complex conjugate pairs # (note that _cplxreal only gives us one element of each complex pair): z = np.concatenate(_cplxreal(z)) p = np.concatenate(_cplxreal(p)) p_sos = np.zeros((n_sections, 2), np.complex128) z_sos = np.zeros_like(p_sos) for si in range(n_sections): # Select the next "worst" pole p1_idx = np.argmin(np.abs(1 - np.abs(p))) p1 = p[p1_idx] p = np.delete(p, p1_idx) # Pair that pole with a zero if np.isreal(p1) and np.isreal(p).sum() == 0: # Special case to set a first-order section z1_idx = _nearest_real_complex_idx(z, p1, 'real') z1 = z[z1_idx] z = np.delete(z, z1_idx) p2 = z2 = 0 else: if not np.isreal(p1) and np.isreal(z).sum() == 1: # Special case to ensure we choose a complex zero to pair # with so later (setting up a first-order section) z1_idx = _nearest_real_complex_idx(z, p1, 'complex') assert not np.isreal(z[z1_idx]) else: # Pair the pole with the closest zero (real or complex) z1_idx = np.argmin(np.abs(p1 - z)) z1 = z[z1_idx] z = np.delete(z, z1_idx) # Now that we have p1 and z1, figure out what p2 and z2 need to be if not np.isreal(p1): if not np.isreal(z1): # complex pole, complex zero p2 = p1.conj() z2 = z1.conj() else: # complex pole, real zero p2 = p1.conj() z2_idx = _nearest_real_complex_idx(z, p1, 'real') z2 = z[z2_idx] assert np.isreal(z2) z = np.delete(z, z2_idx) else: if not np.isreal(z1): # real pole, complex zero z2 = z1.conj() p2_idx = _nearest_real_complex_idx(p, z1, 'real') p2 = p[p2_idx] assert np.isreal(p2) else: # real pole, real zero # pick the next "worst" pole to use idx = np.where(np.isreal(p))[0] assert len(idx) > 0 p2_idx = idx[np.argmin(np.abs(np.abs(p[idx]) - 1))] p2 = p[p2_idx] # find a real zero to match the added pole assert np.isreal(p2) z2_idx = _nearest_real_complex_idx(z, p2, 'real') z2 = z[z2_idx] assert np.isreal(z2) z = np.delete(z, z2_idx) p = np.delete(p, p2_idx) p_sos[si] = [p1, p2] z_sos[si] = [z1, z2] assert len(p) == len(z) == 0 # we've consumed all poles and zeros del p, z # Construct the system, reversing order so the "worst" are last p_sos = np.reshape(p_sos[::-1], (n_sections, 2)) z_sos = np.reshape(z_sos[::-1], (n_sections, 2)) gains = np.ones(n_sections) gains[0] = k for si in range(n_sections): x = zpk2tf(z_sos[si], p_sos[si], gains[si]) sos[si] = np.concatenate(x) return sos def _align_nums(nums): """ Given an array of numerator coefficient arrays [[a_1, a_2,..., a_n],..., [b_1, b_2,..., b_m]], this function pads shorter numerator arrays with zero's so that all numerators have the same length. Such alignment is necessary for functions like 'tf2ss', which needs the alignment when dealing with SIMO transfer functions. """ try: # The statement can throw a ValueError if one # of the numerators is a single digit and another # is array-like e.g. if nums = [5, [1, 2, 3]] nums = asarray(nums) if not np.issubdtype(nums.dtype, np.number): raise ValueError("dtype of numerator is non-numeric") return nums except ValueError: nums = list(nums) maxwidth = len(max(nums, key=lambda num: atleast_1d(num).size)) for index, num in enumerate(nums): num = atleast_1d(num).tolist() nums[index] = [0] * (maxwidth - len(num)) + num return atleast_1d(nums) def normalize(b, a): """Normalize polynomial representation of a transfer function. If values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. """ b = _align_nums(b) b, a = map(atleast_1d, (b, a)) if len(a.shape) != 1: raise ValueError("Denominator polynomial must be rank-1 array.") if len(b.shape) > 2: raise ValueError("Numerator polynomial must be rank-1 or" " rank-2 array.") if len(b.shape) == 1: b = asarray([b], b.dtype.char) while a[0] == 0.0 and len(a) > 1: a = a[1:] outb = b * (1.0) / a[0] outa = a * (1.0) / a[0] if allclose(0, outb[:, 0], atol=1e-14): warnings.warn("Badly conditioned filter coefficients (numerator): the " "results may be meaningless", BadCoefficients) while allclose(0, outb[:, 0], atol=1e-14) and (outb.shape[-1] > 1): outb = outb[:, 1:] if outb.shape[0] == 1: outb = outb[0] return outb, outa def lp2lp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a different frequency. Return an analog low-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) M = max((d, n)) pwo = pow(wo, numpy.arange(M - 1, -1, -1)) start1 = max((n - d, 0)) start2 = max((d - n, 0)) b = b * pwo[start1] / pwo[start2:] a = a * pwo[start1] / pwo[start1:] return normalize(b, a) def lp2hp(b, a, wo=1.0): """ Transform a lowpass filter prototype to a highpass filter. Return an analog high-pass filter with cutoff frequency `wo` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) try: wo = float(wo) except TypeError: wo = float(wo[0]) d = len(a) n = len(b) if wo != 1: pwo = pow(wo, numpy.arange(max((d, n)))) else: pwo = numpy.ones(max((d, n)), b.dtype.char) if d >= n: outa = a[::-1] * pwo outb = resize(b, (d,)) outb[n:] = 0.0 outb[:n] = b[::-1] * pwo[:n] else: outb = b[::-1] * pwo outa = resize(a, (n,)) outa[d:] = 0.0 outa[:d] = a[::-1] * pwo[:d] return normalize(outb, outa) def lp2bp(b, a, wo=1.0, bw=1.0): """ Transform a lowpass filter prototype to a bandpass filter. Return an analog band-pass filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) ma = max([N, D]) Np = N + ma Dp = D + ma bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * b[N - i] * (wosq) ** (i - k) / bw ** i bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, i + 1): if ma - i + 2 * k == j: val += comb(i, k) * a[D - i] * (wosq) ** (i - k) / bw ** i aprime[Dp - j] = val return normalize(bprime, aprime) def lp2bs(b, a, wo=1.0, bw=1.0): """ Transform a lowpass filter prototype to a bandstop filter. Return an analog band-stop filter with center frequency `wo` and bandwidth `bw` from an analog low-pass filter prototype with unity cutoff frequency, in transfer function ('ba') representation. """ a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = mintypecode((a, b)) M = max([N, D]) Np = M + M Dp = M + M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) wosq = wo * wo for j in range(Np + 1): val = 0.0 for i in range(0, N + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * b[N - i] * (wosq) ** (M - i - k) * bw ** i) bprime[Np - j] = val for j in range(Dp + 1): val = 0.0 for i in range(0, D + 1): for k in range(0, M - i + 1): if i + 2 * k == j: val += (comb(M - i, k) * a[D - i] * (wosq) ** (M - i - k) * bw ** i) aprime[Dp - j] = val return normalize(bprime, aprime) def bilinear(b, a, fs=1.0): """Return a digital filter from an analog one using a bilinear transform. The bilinear transform substitutes ``(z-1) / (z+1)`` for ``s``. """ fs = float(fs) a, b = map(atleast_1d, (a, b)) D = len(a) - 1 N = len(b) - 1 artype = float M = max([N, D]) Np = M Dp = M bprime = numpy.zeros(Np + 1, artype) aprime = numpy.zeros(Dp + 1, artype) for j in range(Np + 1): val = 0.0 for i in range(N + 1): for k in range(i + 1): for l in range(M - i + 1): if k + l == j: val += (comb(i, k) * comb(M - i, l) * b[N - i] * pow(2 * fs, i) * (-1) ** k) bprime[j] = real(val) for j in range(Dp + 1): val = 0.0 for i in range(D + 1): for k in range(i + 1): for l in range(M - i + 1): if k + l == j: val += (comb(i, k) * comb(M - i, l) * a[D - i] * pow(2 * fs, i) * (-1) ** k) aprime[j] = real(val) return normalize(bprime, aprime) def iirdesign(wp, ws, gpass, gstop, analog=False, ftype='ellip', output='ba'): """Complete IIR digital and analog filter design. Given passband and stopband frequencies and gains, construct an analog or digital IIR filter of minimum order for a given basic type. Return the output in numerator, denominator ('ba'), pole-zero ('zpk') or second order sections ('sos') form. Parameters ---------- wp, ws : float Passband and stopband edge frequencies. For digital filters, these are normalized from 0 to 1, where 1 is the Nyquist frequency, pi radians/sample. (`wp` and `ws` are thus in half-cycles / sample.) For example: - Lowpass: wp = 0.2, ws = 0.3 - Highpass: wp = 0.3, ws = 0.2 - Bandpass: wp = [0.2, 0.5], ws = [0.1, 0.6] - Bandstop: wp = [0.1, 0.6], ws = [0.2, 0.5] For analog filters, `wp` and `ws` are angular frequencies (e.g. rad/s). gpass : float The maximum loss in the passband (dB). gstop : float The minimum attenuation in the stopband (dB). analog : bool, optional When True, return an analog filter, otherwise a digital filter is returned. ftype : str, optional The type of IIR filter to design: - Butterworth : 'butter' - Chebyshev I : 'cheby1' - Chebyshev II : 'cheby2' - Cauer/elliptic: 'ellip' - Bessel/Thomson: 'bessel' output : {'ba', 'zpk', 'sos'}, optional Type of output: numerator/denominator ('ba'), pole-zero ('zpk'), or second-order sections ('sos'). Default is 'ba'. Returns ------- b, a : ndarray, ndarray Numerator (`b`) and denominator (`a`) polynomials of the IIR filter. Only returned if ``output='ba'``. z, p, k : ndarray, ndarray, float Zeros, poles, and system gain of the IIR filter transfer function. Only returned if ``output='zpk'``. sos : ndarray Second-order sections representation of the IIR filter. Only returned if ``output=='sos'``. See Also -------- butter : Filter design using order and critical points cheby1, cheby2, ellip, bessel buttord : Find order and critical points from passband and stopband spec cheb1ord, cheb2ord, ellipord iirfilter : General filter design using order and critical frequencies Notes ----- The ``'sos'`` output parameter was added in 0.16.0. """ try: ordfunc = filter_dict[ftype][1] except KeyError: raise ValueError("Invalid IIR filter type: %s" % ftype) except IndexError: raise ValueError(("%s does not have order selection. Use " "iirfilter function.") % ftype) wp = atleast_1d(wp) ws =
atleast_1d(ws)
numpy.atleast_1d
""" Copyright (c) 2010-2018 CNRS / Centre de Recherche Astrophysique de Lyon Copyright (c) 2015-2019 <NAME> <<EMAIL>> Copyright (c) 2015-2016 <NAME> <<EMAIL>> Copyright (c) 2016 <NAME> <<EMAIL>> All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import logging import numpy as np import warnings from astropy import units as u from astropy.io import fits from datetime import datetime from numpy import ma from .coords import WCS, WaveCoord, determine_refframe from .objs import UnitMaskedArray, UnitArray, is_int from ..tools import (MpdafUnitsWarning, fix_unit_read, is_valid_fits_file, copy_header, read_slice_from_fits) __all__ = ('DataArray', ) class LazyData: def __init__(self, label): self.label = label def read_data(self, obj): obj_dict = obj.__dict__ data, mask = read_slice_from_fits( obj.filename, ext=obj._data_ext, mask_ext=obj._dq_ext, dtype=obj.dtype, convert_float64=obj._convert_float64) if mask is None: mask = ~(np.isfinite(data)) obj_dict['_data'] = data obj_dict['_mask'] = mask obj._loaded_data = True return mask if self.label == '_mask' else data def __get__(self, obj, owner=None): try: return obj.__dict__[self.label] except KeyError: if obj.filename is None: return if self.label in ('_data', '_mask'): val = self.read_data(obj) if self.label == '_var': if obj._var_ext is None: return None # Make sure that data is read because the mask may be needed if not obj._loaded_data: self.read_data(obj) val, _ = read_slice_from_fits( obj.filename, ext=obj._var_ext, dtype=obj._var_dtype, convert_float64=obj._convert_float64) obj.__dict__[self.label] = val return val def __set__(self, obj, val): label = self.label if label == '_data': obj._loaded_data = True elif (val is not None and val is not np.ma.nomask and obj.shape is not None and not np.array_equal(val.shape, obj.shape)): raise ValueError("Can't set %s with a different shape" % label) obj.__dict__[label] = val class DataArray: """Parent class for `~mpdaf.obj.Cube`, `~mpdaf.obj.Image` and `~mpdaf.obj.Spectrum`. Its primary purpose is to store pixel values and, optionally, also variances in masked Numpy arrays. For Cube objects these are 3D arrays indexed in the order ``[wavelength, image_y, image_x]``. For Image objects they are 2D arrays indexed in the order ``[image_y, image_x]``. For Spectrum objects they are 1D arrays. Image arrays hold flat 2D map-projections of the sky. The X and Y axes of the image arrays are orthogonal on the sky at the tangent point of the projection. When the rotation angle of the projection on the sky is zero, the Y axis of the image arrays is along the declination axis, and the X axis is perpendicular to this, with the positive X axis pointing east. Given a DataArray object ``obj``, the data and variance arrays are accessible via the properties ``obj.data`` and ``obj.var``. These two masked arrays share a single array of boolean masking elements, which is also accessible as a simple boolean array via the ``obj.mask property``. The shared mask can be modified through any of the three properties:: obj.data[20:22] = numpy.ma.masked Is equivalent to:: obj.var[20:22] = numpy.ma.masked And is also equivalent to:: obj.mask[20:22] = True All three of the above statements mask pixels 20 and 21 of the data and variance arrays, without changing their values. Similarly, if one performs an operation on either ``obj.data`` or ``obj.var`` that modifies the mask, this is reflected in the shared mask of all three properties. For example, the following statement multiplies elements 20 and 21 of the data by 2.0, while changing the shared mask of these pixels to True. In this way the data and the variances of these pixels are consistently masked:: obj.data[20:22] *= numpy.ma.array([2.0,2.0], mask=[True,True]) The data and variance arrays can be completely replaced by assigning new arrays to the ``obj.data`` and ``obj.var`` properties, but these must have the same shape as before (ie. obj.shape). New arrays that are assigned to ``obj.data`` or ``obj.var`` can be simple numpy arrays, or a numpy masked arrays. When a normal numpy array is assigned to ``obj.data``, the ``obj.mask`` array is also assigned a mask array, whose elements are True wherever NaN or Inf values are found in the data array. An exception to this rule is if the mask has previously been disabled by assigning ``numpy.ma.nomask`` to ``obj.mask``. In this case a mask array is not constructed. When a numpy masked array is assigned to ``obj.data``, then its mask is also assigned, unchanged, to ``obj.mask``. Assigning a normal numpy array to the ``obj.var`` attribute, has no effect on the contents of ``obj.mask``. On the other hand, when a numpy masked array is assigned to ``obj.var`` the ``obj.mask`` array becomes the union of its current value and the mask of the provided array. The ability to record variances for each element is optional. When no variances are stored, ``obj.var`` has the value None. To discard an unwanted variance array, None can be subsequently assigned to ``obj.var``. For cubes and spectra, the wavelengths of the spectral pixels are specified in the ``.wave`` member. For cubes and images, the world-coordinates of the image pixels are specified in the ``.wcs`` member. When a DataArray object is constructed from a FITS file, the name of the file and the file's primary header are recorded. If the data are read from a FITS extension, the header of this extension is also recorded. Alternatively, the primary header and data header can be passed to the DataArray constructor. Where FITS headers are neither provided, nor available in a provided FITS file, generic headers are substituted. Methods are provided for masking and unmasking pixels, and performing basic arithmetic operations on pixels. Operations that are specific to cubes or spectra or images are provided elsewhere by derived classes. Parameters ---------- filename : str FITS file name, default to None. hdulist : `astropy.fits.HDUList` HDUList object, can be used instead of ``filename`` to avoid opening the FITS file multiple times. data : array_like Data array, passed to `numpy.ma.MaskedArray`. mask : bool or numpy.ma.nomask or numpy.ndarray Mask used for the creation of the ``.data`` MaskedArray. If mask is False (default value), a mask array of the same size of the data array is created. To avoid creating an array, it is possible to use numpy.ma.nomask, but in this case several methods will break if they use the mask. var : array_like Variance array, passed to `numpy.ma.MaskedArray`. ext : int or tuple of int or str or tuple of str Number/name of the data extension, or numbers/names of the data, variance, and optionally mask extensions. unit : `astropy.units.Unit` Physical units of the data values, default to u.dimensionless_unscaled. copy : bool If True (default), then the data and variance arrays are copied. Passed to `numpy.ma.MaskedArray`. dtype : numpy.dtype Type of the data. Passed to `numpy.ma.MaskedArray`. primary_header : `astropy.io.fits.Header` FITS primary header instance. data_header : `astropy.io.fits.Header` FITS data header instance. fits_kwargs : dict Additional arguments that can be passed to `astropy.io.fits.open`. convert_float64 : bool By default input arrays or FITS data are converted to float64, in order to increase precision to the detriment of memory usage. Attributes ---------- filename : str FITS filename. primary_header : `astropy.io.fits.Header` FITS primary header instance. data_header : `astropy.io.fits.Header` FITS data header instance. wcs : `mpdaf.obj.WCS` World coordinates. wave : `mpdaf.obj.WaveCoord` Wavelength coordinates ndim : int Number of dimensions. shape : sequence Lengths of the data axes (python notation (nz,ny,nx)). data : numpy.ma.MaskedArray Masked array containing the cube of pixel values. var : numpy.ma.MaskedArray Masked array containing the variance. mask : numpy.ndarray Array containing the mask. unit : `astropy.units.Unit` Physical units of the data values. dtype : numpy.dtype Type of the data (int, float, ...). """ _ndim_required = None _has_wcs = False _has_wave = False _data = LazyData('_data') _mask = LazyData('_mask') _var = LazyData('_var') def __init__(self, filename=None, hdulist=None, data=None, mask=False, var=None, ext=None, unit=u.dimensionless_unscaled, copy=True, dtype=None, primary_header=None, data_header=None, convert_float64=True, **kwargs): self._logger = logging.getLogger(__name__) self._loaded_data = False self._data_ext = None self._var_ext = None self._dq_ext = None self._convert_float64 = convert_float64 self.filename = filename self.wcs = None self.wave = None self._dtype = dtype self._var_dtype = np.float64 if convert_float64 else None self.unit = u.Unit(unit) self.data_header = data_header or fits.Header() self.primary_header = primary_header or fits.Header() if (filename is not None or hdulist is not None) and data is None: # Read the data from a FITS file if not hdulist and not is_valid_fits_file(filename): raise IOError('Invalid file: %s' % filename) if hdulist is None: fits_kwargs = kwargs.pop('fits_kwargs', {}) hdulist = fits.open(filename, **fits_kwargs) close_hdu = True else: if filename is None: self.filename = hdulist.filename() close_hdu = False # Find the hdu of the data. This is either the primary HDU (if the # number of extension is 1) or a DATA or SCI extension. Also see if # there is an extension that contains variances. This is either # a STAT extension, or the second of a tuple of extensions passed # via the ext[] parameter. if len(hdulist) == 1: self._data_ext = 0 elif ext is None: if 'DATA' in hdulist: self._data_ext = 'DATA' elif 'SCI' in hdulist: self._data_ext = 'SCI' else: raise IOError('No DATA or SCI extension found.\n' 'Please use the `ext` parameter to specify ' 'which extension must be loaded.') if 'STAT' in hdulist: self._var_ext = 'STAT' if 'DQ' in hdulist: self._dq_ext = 'DQ' elif isinstance(ext, (list, tuple, np.ndarray)): if len(ext) == 2: self._data_ext, self._var_ext = ext elif len(ext) == 3: self._data_ext, self._var_ext, self._dq_ext = ext elif isinstance(ext, (int, str)): self._data_ext = ext self.primary_header = hdulist[0].header self.data_header = hdr = hdulist[self._data_ext].header if (self._ndim_required is not None and self._ndim_required != self.data_header['NAXIS']): raise ValueError('{} class cannot manage data with {} axes' .format(self.__class__.__name__, self.data_header['NAXIS'])) try: self.unit = u.Unit(fix_unit_read(hdr['BUNIT'])) except KeyError: warnings.warn('No physical unit in the FITS header: missing ' 'BUNIT keyword.', MpdafUnitsWarning) except Exception as e: warnings.warn('Error parsing the BUNIT: ' + str(e), MpdafUnitsWarning) if 'FSCALE' in hdr: self.unit *= u.Unit(hdr['FSCALE']) self._compute_wcs_from_header() if close_hdu: hdulist.close() else: if mask is ma.nomask: self._mask = mask # Use a specified numpy data array? if data is not None: # Force data to be in double instead of float if (self._dtype is None and data.dtype.type == np.float32 and convert_float64): self._dtype = np.float64 if isinstance(data, ma.MaskedArray): self._data = np.array(data.data, dtype=self.dtype, copy=copy) if data.mask is ma.nomask: self._mask = data.mask else: self._mask = np.array(data.mask, dtype=bool, copy=copy) else: self._data = np.array(data, dtype=self.dtype, copy=copy) if mask is None or mask is False: self._mask = ~(np.isfinite(data)) elif mask is True: self._mask = np.ones(shape=data.shape, dtype=bool) elif mask is not ma.nomask: self._mask = np.array(mask, dtype=bool, copy=copy) # Use a specified variance array? if var is not None: if isinstance(var, ma.MaskedArray): self._var = np.array(var.data, dtype=self._var_dtype, copy=copy) self._mask |= var.mask else: self._var = np.array(var, dtype=self._var_dtype, copy=copy) # Where WCS and/or wavelength objects are specified as optional # parameters, install them. self.set_wcs(wcs=kwargs.pop('wcs', None), wave=kwargs.pop('wave', None)) def __getstate__(self): state = self.__dict__.copy() # remove un-pickable objects state['_logger'] = None state['wcs'] = None state['wave'] = None if '_spflims' in state and state['_spflims'] is not None: state['_spflims'] = None # Image.plot stores the matplotlib axes on the object, but it is not # pickable. Delete it! if '_ax' in state: del state['_ax'] # Try to determine if the object has some wcs/wave information but not # available in the FITS header. In this case we add the wcs info in the # data header. if ((self._has_wcs and self.wcs is not None) or (self._has_wave and self.wave is not None)): hdu = self.get_data_hdu(convert_float32=False) state['data_header'] = hdu.header return state def __setstate__(self, state): # set attributes on the object, making sure that _data, _mask and _var # are set last as these are descriptors and need the other attributes. # Also these attributes may bot exists yet if the data is not loaded. for slot, value in state.items(): if slot not in ('_data', '_mask', '_var'): setattr(self, slot, value) for slot in ('_data', '_mask', '_var'): if slot in state: setattr(self, slot, state[slot]) self._logger = logging.getLogger(__name__) # Recreate the wcs/wave objects from the fits headers self._compute_wcs_from_header() # and to get the naxis1/naxis2 right self.set_wcs(wcs=self.wcs, wave=self.wave) def _compute_wcs_from_header(self): frame, equinox = determine_refframe(self.primary_header) hdr = self.data_header # Is this a derived class like Cube/Image that require WCS information? if self._has_wcs: try: self.wcs = WCS(hdr, frame=frame, equinox=equinox) except fits.VerifyError as e: # Workaround for # https://github.com/astropy/astropy/issues/887 self._logger.warning(e) if 'IRAF-B/P' in hdr: hdr.remove('IRAF-B/P') self.wcs = WCS(hdr, frame=frame, equinox=equinox) # Get the wavelength coordinates. wave_ext = 1 if self._ndim_required == 1 else 3 crpix = 'CRPIX{}'.format(wave_ext) crval = 'CRVAL{}'.format(wave_ext) if self._has_wave and crpix in hdr and crval in hdr: self.wave = WaveCoord(hdr) @classmethod def new_from_obj(cls, obj, data=None, var=None, copy=False, unit=None): """Create a new object from another one, copying its attributes. Parameters ---------- obj : `mpdaf.obj.DataArray` The object to use as the template for the new object. This should be an object based on DataArray, such as an Image, Cube or Spectrum. data : array-like, optional An optional data array, or None to indicate that ``obj.data`` should be used. The default is None. var : array-like, optional An optional variance array, or None to indicate that ``obj.var`` should be used, or False to indicate that the new object should not have any variances. The default is None. copy : bool Copy the data and variance arrays if True (default False). """ data = obj.data if data is None else data if var is None: var = obj._var elif var is False: var = None if unit is None: unit = obj.unit kwargs = dict(filename=obj.filename, data=data, unit=unit, var=var, ext=(obj._data_ext, obj._var_ext, obj._dq_ext), copy=copy, data_header=obj.data_header.copy(), primary_header=obj.primary_header.copy()) if cls._has_wcs: kwargs['wcs'] = obj.wcs if cls._has_wave: kwargs['wave'] = obj.wave return cls(**kwargs) @property def ndim(self): """ The number of dimensions in the data and variance arrays : int """ if self._loaded_data: return self._data.ndim try: return self.data_header['NAXIS'] except KeyError: return None @property def shape(self): """The lengths of each of the data axes.""" if self._loaded_data: return self._data.shape try: return tuple(self.data_header['NAXIS%d' % i] for i in range(self.ndim, 0, -1)) except (KeyError, TypeError): return None @property def dtype(self): """The type of the data.""" if self._loaded_data: return self._data.dtype else: return self._dtype @property def data(self): """Return data as a `numpy.ma.MaskedArray`. The DataArray constructor postpones reading data from FITS files until they are first used. Read the data array here if not already read. Changes can be made to individual elements of the data property. When simple numeric values or Numpy array elements are assigned to elements of the data property, the values of these elements are updated and become unmasked. When masked Numpy values or masked-array elements are assigned to elements of the data property, then these change both the values of the data property and the shared mask of the data and var properties. Completely new arrays can also be assigned to the data property, provided that they have the same shape as before. """ res = ma.MaskedArray(self._data, mask=self._mask, copy=False) res._sharedmask = False return res @data.setter def data(self, value): # Handle this case specifically for .data, since it is already done for # ._var and ._mask, but ._data can be used to change the shape if self.shape is not None and \ not np.array_equal(value.shape, self.shape): raise ValueError('try to set data with an array with a different ' 'shape') if isinstance(value, ma.MaskedArray): self._data = value.data self._mask = value.mask else: self._data = value self._mask = ~(np.isfinite(value)) @property def var(self): """Return variance as a `numpy.ma.MaskedArray`. If variances have been provided for each data pixel, then this property can be used to record those variances. Normally this is a masked array which shares the mask of the data property. However if no variances have been provided, then this property is None. Variances are typically provided along with the data values in the originating FITS file. Alternatively a variance array can be assigned to this property after the data have been read. Note that any function that modifies the contents of the data array may need to update the array of variances accordingly. For example, after scaling pixel values by a constant factor c, the variances should be scaled by c**2. When masked-array values are assigned to elements of the var property, the mask of the new values is assigned to the shared mask of the data and variance properties. Completely new arrays can also be assigned to the var property. When a masked array is assigned to the var property, its mask is combined with the existing shared mask, rather than replacing it. """ if self._var is None: return None else: res = ma.MaskedArray(self._var, mask=self._mask, copy=False) res._sharedmask = False return res @var.setter def var(self, value): if value is not None: if isinstance(value, ma.MaskedArray): self._var = value.data self._mask |= value.mask else: self._var = np.asarray(value) else: self._var_ext = None self._var = value @property def mask(self): """The shared masking array of the data and variance arrays. This is a bool array which has the same shape as the data and variance arrays. Setting an element of this array to True, flags the corresponding pixels of the data and variance arrays, so that they don't take part in subsequent calculations. Reverting this element to False, unmasks the pixel again. This array can be modified either directly by assignments to elements of this property or by modifying the masks of the .data and .var arrays. An entirely new mask array can also be assigned to this property, provided that it has the same shape as the data array. """ return self._mask @mask.setter def mask(self, value): # By default, if mask=False create a mask array with False values. # numpy.ma does it but with a np.resize/np.concatenate which cause a # huge memory peak, so a workaround is to create the mask here. # Also we force the creation of a mask array because currently many # method in MPDAF expect that the mask is an array and will not work # with np.ma.nomask. But nomask can still be used explicitly for # specific cases. if value is ma.nomask: self._mask = value else: self._mask = np.asarray(value, dtype=bool) def copy(self): """Return a copy of the object.""" return self.__class__.new_from_obj(self, copy=True) def clone(self, data_init=None, var_init=None): """Return a shallow copy with the same header and coordinates. Optionally fill the cloned array using values returned by provided functions. Parameters ---------- data_init : callable, optional An optional function to use to create the data array (it takes the shape as parameter). For example ``np.zeros`` or ``np.empty`` can be used. It defaults to None, which results in the data attribute being None. var_init : callable, optional An optional function to use to create the variance array, with the same specifics as data_init. This default to None, which results in the var attribute being assigned None. """ # Create a new data_header with correct NAXIS keywords because an # object without data relies on this to get the shape hdr = copy_header(self.data_header, self.get_wcs_header(), exclude=('CD*', 'PC*', 'CDELT*', 'CRPIX*', 'CRVAL*', 'CSYER*', 'CTYPE*', 'CUNIT*', 'NAXIS*', 'RADESYS', 'LATPOLE', 'LONPOLE'), unit=self.unit) hdr['NAXIS'] = self.ndim for i in range(1, self.ndim + 1): hdr['NAXIS%d' % i] = self.shape[-i] return self.__class__( unit=self.unit, dtype=None, copy=False, data=None if data_init is None else data_init(self.shape, dtype=self.dtype), var=None if var_init is None else var_init(self.shape, dtype=self.dtype), wcs=None if self.wcs is None else self.wcs, wave=None if self.wave is None else self.wave, data_header=hdr, primary_header=self.primary_header.copy() ) def __repr__(self): fmt = """<{}(shape={}, unit='{}', dtype='{}')>""" return fmt.format(self.__class__.__name__, self.shape, self.unit.to_string(), self.dtype) def info(self): """Print information.""" log = self._logger.info shape_str = (' x '.join(str(x) for x in self.shape) if self.shape is not None else 'no shape') log('%s %s (%s)', shape_str, self.__class__.__name__, self.filename or 'no name') data = ('no data' if self._data is None and self._data_ext is None else '.data({})'.format(shape_str)) noise = ('no noise' if self._var is None and self._var_ext is None else '.var({})'.format(shape_str)) unit = str(self.unit) or 'no unit' log('%s (%s), %s', data, unit, noise) if self._has_wcs: if self.wcs is None: log('no world coordinates for spatial direction') else: self.wcs.info() if self._has_wave: if self.wave is None: log('no world coordinates for spectral direction') else: self.wave.info() def __le__(self, item): """Mask data elements whose values are greater than a given value (<=). Parameters ---------- item : float minimum value. Returns ------- `~mpdaf.obj.DataArray` """ result = self.copy() result.data = np.ma.masked_greater(self.data, item) return result def __lt__(self, item): """Mask data elements whose values are greater than or equal to a given value (<). Parameters ---------- item : float minimum value. Returns ------- `~mpdaf.obj.DataArray` """ result = self.copy() result.data =
np.ma.masked_greater_equal(self.data, item)
numpy.ma.masked_greater_equal
""" The :mod:`ezaero.vlm.steady` module includes a Vortex Lattice Method implementation for lifting surfaces. References ---------- .. [1] <NAME>., *Low-Speed Aerodynamics*, 2nd ed, Cambridge University Press, 2001: Chapter 12 """ import numpy as np class WingParams: """ Container for the geometric parameters of the analyzed wing. Attributes ---------- cr : float Chord at root of the wing. ct : float Chord at tip of the wing. bp : float Wingspan of the planform. theta : float Sweep angle of the 1/4 chord line, expressed in radians. delta : float Dihedral angle, expressed in radians. """ def __init__(self, cr, ct, bp, theta, delta): self.cr = cr self.ct = ct self.bp = bp self.theta = theta self.delta = delta class MeshParams: """ Container for the wing mesh parameters. Attributes ---------- m : int Number of chordwise panels. n : int Number of spanwise panels. """ def __init__(self, m, n): self.m = m self.n = n class FlightConditions: """ Container for the flight conditions. Attributes ---------- ui : float Free-stream flow velocity. alpha : float Angle of attack of the wing, expressed in radians. rho : float Free-stream flow density. """ def __init__(self, ui, alpha, rho): self.ui = ui self.alpha = alpha self.rho = rho def get_quarter_chord_x(y, cr, theta): # slope of the quarter chord line p = np.tan(theta) return cr / 4 + p * abs(y) def get_chord_at_section(y, cr, ct, bp): c = cr + (ct - cr) * abs(2 * y / bp) return c def build_panel(wing, mesh, i, j): """ Construct a wing panel indexed by its chord and spanwise indices. Parameters ---------- wing : WingParams Wing geometry specification. mesh : MeshParams Mesh geometry specification. i : int Panel chordwise index. j : int Panel spanwise index. Returns ------- panel : np.ndarray, shape (4, 3) Array containing the (x,y,z) coordinates of the (`i`, `j`)-th panel's vertices (sorted A-B-D-C). pc : np.ndarray, shape (3, ) (x,y,z) coordinates of the (`i`, `j`)-th panel's collocation point. """ dy = wing.bp / mesh.n y_A = - wing.bp / 2 + j * dy y_B = y_A + dy y_C, y_D = y_A, y_B y_pc = y_A + dy / 2 # chord law evaluation c_AC = get_chord_at_section(y_A, cr=wing.cr, ct=wing.ct, bp=wing.bp) c_BD = get_chord_at_section(y_B, cr=wing.cr, ct=wing.ct, bp=wing.bp) c_pc = get_chord_at_section(y_pc, cr=wing.cr, ct=wing.ct, bp=wing.bp) # division of the chord in m equal panels dx_AC = c_AC / mesh.m dx_BD = c_BD / mesh.m dx_pc = c_pc / mesh.m # r,s,q are the X coordinates of the quarter chord line at spanwise # locations: y_A, y_B and y_pc respectively r = get_quarter_chord_x(y_A, cr=wing.cr, theta=wing.theta) s = get_quarter_chord_x(y_B, cr=wing.cr, theta=wing.theta) q = get_quarter_chord_x(y_pc, cr=wing.cr, theta=wing.theta) x_A = (r - c_AC / 4) + i * dx_AC x_B = (s - c_BD / 4) + i * dx_BD x_C = x_A + dx_AC x_D = x_B + dx_BD x_pc = (q - c_pc / 4) + (i + 3 / 4) * dx_pc x = np.array([x_A, x_B, x_D, x_C]) y = np.array([y_A, y_B, y_D, y_C]) z = np.tan(wing.delta) * np.abs(y) panel = np.stack((x, y, z), axis=-1) z_pc = np.tan(wing.delta) * np.abs(y_pc) pc = np.array([x_pc, y_pc, z_pc]) return panel, pc def build_wing_panels(wing, mesh): """ Construct wing panels and collocation points given the definition of the geometry of the wing and mesh. Parameters ---------- wing : WingParams Wing geometry specification. mesh : MeshParams Mesh geometry specification. Returns ------- wing_panels : np.ndarray, shape (m, n, 4, 3) Array containing the (x,y,z) coordinates of all wing panel vertices. cpoints : np.ndarray, shape (m, n, 3) Array containing the (x,y,z) coordinates of all collocation points. """ m, n = mesh.m, mesh.n wing_panels = np.empty((m, n, 4, 3)) cpoints =
np.empty((m, n, 3))
numpy.empty
''' Author: <NAME> Functions for perfect phylogeny and incomplete phylogeny algorithms ''' import numpy as np import copy import string import subprocess from mgraph import MGraph def get_duplicates(items): ''' returns the indices of all duplicates in a list @param items a 1D list ''' locs = [] for i in range(len(items)): loc_tmp = [i] item = items[i] start_at = i+1 while True: try: loc = items.index(item,start_at+1) except ValueError: break else: loc_tmp.append(loc) start_at = loc if len(loc_tmp)>1: locs.append(loc_tmp) return(locs) def remove_duplicates(m_prime, c_prime): ''' remove any duplicate columns and merge associated features @param m_prime M' matrix @param c_prime features list corresponding to columns of M' ''' m_prime_tmp = map(lambda x: '.'.join(map(str,x)),np.rot90(m_prime)[::-1]) dups = get_duplicates(m_prime_tmp) n_dup = len(dups) to_del = [] if n_dup > 0: for idx,dup in enumerate(dups): to_del.extend(dup[1:]) c_prime[dup[0]] = '_'.join(c_prime[dup]) m_prime = np.delete(m_prime,to_del,axis=1) c_prime = np.delete(c_prime,to_del) return(m_prime, c_prime) def remove_zero_entry_cols(m3,c3): ''' remove any columns that have no 0 entries @param m3 the M matrix @param c3 column features corresponding to the M matrix ''' mi = np.empty(0,dtype='int') ncol = len(m3[0]) idxs_to_delete = [i for i in range(ncol) if not np.any(m3[:,i]==0)] m3 = np.delete(m3,idxs_to_delete,axis=1) c3 = np.delete(c3,idxs_to_delete) return(m3,c3) def get_m_prime(m,c): ''' Construct M' matrix Obtain binary encoding for each feature, sort by binary value, then rotate and reverse the resulting matrix @param nshared nxm matrix of samples (cols) and @param svrot is true, the matrix is of form rows = svs, cols = samples ''' m_prime, c_prime = remove_zero_entry_cols(m,c) m_prime, c_prime = remove_duplicates(m_prime, c_prime) m_prime = np.rot90(m_prime) # count binary score of columns binary_strings = [] for col in m_prime: col = np.array([ci if ci>0 else 0 for ci in col]) col_string = '0b'+''.join(map(str,col)) binary_strings.append(int(col_string,2)) # sort by binary score order = np.argsort(binary_strings)[::-1] m_prime = m_prime[order] m_prime = np.rot90(m_prime)[::-1] #rotate again c_order = (len(c_prime) - 1) - order #translate order of rotated matrix to order of columns c_prime = c_prime[c_order] return(m_prime,c_prime) def get_k1_matrix(m_prime,features): ''' Generate k1 from m' matrix Allows for checking of perfect phylogeny @param mp the m prime matrix @param nodes corresponding to the matrix ''' ncol = len(m_prime[0]) k = np.empty( [0,ncol], dtype='|S15' ) for m in m_prime: row_feats = features[m!=0] #features in the row mrow = np.zeros(ncol,dtype='|S15') mrow.fill('0') for idx,feature in enumerate(row_feats): mrow[idx] = feature n_feat = len(row_feats) if n_feat < ncol: mrow[n_feat]='#' k = np.append(k,[mrow],axis=0) return(k) def perfect_phylogeny_exists(k1,features): ''' Determine whether perfect phylogeny exists from a k1 matrix @param k1 the k1 matrix (output from get_k1_matrix) @param features the column features ''' locations = [] for feature in features: present_at = set([]) for k_i in k1: [ present_at.add(loc_list) for loc_list in list(np.where(k_i==feature)[0]) ] locations.append(present_at) loc_test = np.array([len(loc_list)>1 for loc_list in locations]) if np.any(loc_test): print('No phylogeny found!') return(False) else: print('Success! Found phylogeny!\nK1 matrix:') print(k1) return(True) def get_k(k,q,m_graph): ''' return the first K vector with E[K] >= 1 @param k holds the connection vector, initialise with set() @param q chain of connected vertices @param m_graph graph object containing matrix connections ''' if not q: return(k) else: q1 = q.pop() k.add(q1) pairs = m_graph.get_pairs_containing(q1) pairs = set([node for pair in pairs for node in pair]) #flatten set of elements for node in pairs: if node not in k: q.add(node) return(get_k(k,q,m_graph)) def solve_incomplete_phylogeny(m,s,c): ''' implement Pe'er incomplete phylogeny algorithm @param m M matrix @param s samples/species (rows) @param c features (columns) ''' m3, c3 = get_m_prime(m,c) m_graph = MGraph() m_graph.build_graph(m3,s,c3) m_pairs = m_graph.get_edge_pairs() q = set(m_pairs[0]) #pick the first elements as k k = get_k(set(),q,m_graph) t = [set(s)] #initialise a tree while len(m_pairs) > 1: while len(k) < 3: # for n in k: m_graph.delNode(n) m_pairs = m_graph.get_edge_pairs() if len(m_pairs) > 1: q = set(m_pairs[0]) k = get_k(set(),q,m_graph) else: break s_prime = set(s).intersection(k) s_indexes = np.array([np.where(s_i==s)[0][0] for s_i in s_prime]) m_tmp = m3.copy()[s_indexes] print('k:') print(k) print("S':") print(s_prime) u = [] c_in_k = set(c).intersection(k) for c_i in c_in_k: c_index = np.where(c_i==c3)[0] m_col = m_tmp[:,c_index:c_index+1] if np.all(m_col!=0): cm = np.where(c_i==c3)[0] u.append(c_i) if not u: break else: print('u:') print(u) t.append(s_prime) for n in u: m_graph.delNode(n) m_pairs = m_graph.get_edge_pairs() k = get_k(set(),set(m_pairs[0]),m_graph) print('Tree:') print(t) m_new = m3.copy() c_indexes = [np.where(c3==x)[0][0] for x in u] for s_set in t[1:]: s_prime = set(s).intersection(s_set) s_indexes = np.array([np.where(s_i==s)[0][0] for s_i in s_prime]) m_tmp = m3.copy()[s_indexes] for c_i in c3: c_idx = np.where(c_i==c3)[0] m_col = m_tmp[:,c_index:c_index+1] if np.all(m_col!=0) and np.any(m_col==-1): cm =
np.where(c_i==c3)
numpy.where
""" The utilities module is a collection of classes and functions used across the eolearn package, such as checking whether two objects are deeply equal, padding of an image, etc. """ import logging from collections import OrderedDict import numpy as np from .constants import FeatureType LOGGER = logging.getLogger(__name__) class FeatureParser: """ Takes a collection of features structured in a various ways and parses them into one way. It can parse features straight away or it can parse them only if they exist in a given `EOPatch`. If input format is not recognized or feature don't exist in a given `EOPatch` it raises an error. The class is a generator therefore parsed features can be obtained by iterating over an instance of the class. An `EOPatch` is given as a parameter of the generator. General guidelines: - Almost all `EOTask`s have take as a parameter some information about features. The purpose of this class is to unite and generalize parsing of such parameter over entire eo-learn package - The idea for this class is that it should support more or less any logical way how to describe a collection of features. - Parameter `...` is used as a contextual clue. In the supported formats it is used to describe the most obvious way how to specify certain parts of feature collection. - Supports formats defined with lists, tuples, sets and dictionaries. Supported input formats: - `...` - Anything that exists in a given `EOPatch` - A feature type describing all features of that type. E.g. `FeatureType.DATA` or `FeatureType.BBOX` - A single feature as a tuple. E.g. (FeatureType.DATA, 'BANDS') - A single feature as a tuple with new name. E.g. (FeatureType.DATA, 'BANDS', 'NEW_BANDS') - A list of features (new names or not). E.g. [(FeatureType.DATA, 'BANDS'), (FeatureType.MASK, 'CLOUD_MASK', 'NEW_CLOUD_MASK')] - A dictionary with feature types as keys and lists, sets, single feature or `...` of feature names as values. E.g. { FeatureType.DATA: ['S2-BANDS', 'L8-BANDS'], FeatureType.MASK: {'IS_VALID', 'IS_DATA'}, FeatureType.MASK_TIMELESS: 'LULC', FeatureType.TIMESTAMP: ... } - A dictionary with feature types as keys and dictionaries, where feature names are mapped into new names, as values. E.g. { FeatureType.DATA: { 'S2-BANDS': 'INTERPOLATED_S2_BANDS', 'L8-BANDS': 'INTERPOLATED_L8_BANDS', 'NDVI': ... }, } Note: Therese are most general input formats, but even more are supported or might be supported in the future. Outputs of the generator: - tuples in form of (feature type, feature name) if parameter `new_names=False` - tuples in form of (feature type, feature name, new feature name) if parameter `new_names=True` """ def __init__(self, features, new_names=False, rename_function=None, default_feature_type=None, allowed_feature_types=None): """ :param features: A collection of features in one of the supported formats :type features: object :param new_names: If `False` the generator will only return tuples with in form of (feature type, feature name). If `True` it will return tuples (feature type, feature name, new feature name) which can be used for renaming features or creating new features out of old ones. :type new_names: bool :param rename_function: A function which transforms feature name into a new feature name, default is identity function. This parameter is only applied if `new_names` is set to `True`. :type rename_function: function or None :param default_feature_type: If feature type of any given feature is not set, this will be used. By default this is set to `None`. In this case if feature type of any feature is not given the following will happen: - if iterated over `EOPatch` - It will try to find a feature with matching name in EOPatch. If such features exist, it will return any of them. Otherwise it will raise an error. - if iterated without `EOPatch` - It will return `...` instead of a feature type. :type default_feature_type: FeatureType or None :param allowed_feature_types: Makes sure that only features of these feature types will be returned, otherwise an error is raised :type: set(FeatureType) or None :raises: ValueError """ self.feature_collection = self._parse_features(features, new_names) self.new_names = new_names self.rename_function = rename_function self.default_feature_type = default_feature_type self.allowed_feature_types = FeatureType if allowed_feature_types is None else set(allowed_feature_types) if rename_function is None: self.rename_function = self._identity_rename_function # <- didn't use lambda function - it can't be pickled if allowed_feature_types is not None: self._check_feature_types() def __call__(self, eopatch=None): return self._get_features(eopatch) def __iter__(self): return self._get_features() @staticmethod def _parse_features(features, new_names): """Takes a collection of features structured in a various ways and parses them into one way. If input format is not recognized it raises an error. :return: A collection of features :rtype: collections.OrderedDict(FeatureType: collections.OrderedDict(str: str or Ellipsis) or Ellipsis) :raises: ValueError """ if isinstance(features, dict): return FeatureParser._parse_dict(features, new_names) if isinstance(features, list): return FeatureParser._parse_list(features, new_names) if isinstance(features, tuple): return FeatureParser._parse_tuple(features, new_names) if features is ...: return OrderedDict([(feature_type, ...) for feature_type in FeatureType]) if isinstance(features, FeatureType): return OrderedDict([(features, ...)]) if isinstance(features, str): return OrderedDict([(None, OrderedDict([(features, ...)]))]) raise ValueError('Unknown format of input features: {}'.format(features)) @staticmethod def _parse_dict(features, new_names): """Helping function of `_parse_features` that parses a list.""" feature_collection = OrderedDict() for feature_type, feature_names in features.items(): try: feature_type = FeatureType(feature_type) except ValueError: ValueError('Failed to parse {}, keys of the dictionary have to be instances ' 'of {}'.format(features, FeatureType.__name__)) feature_collection[feature_type] = feature_collection.get(feature_type, OrderedDict()) if feature_names is ...: feature_collection[feature_type] = ... if feature_type.has_dict() and feature_collection[feature_type] is not ...: feature_collection[feature_type].update(FeatureParser._parse_feature_names(feature_names, new_names)) return feature_collection @staticmethod def _parse_list(features, new_names): """Helping function of `_parse_features` that parses a list.""" feature_collection = OrderedDict() for feature in features: if isinstance(feature, FeatureType): feature_collection[feature] = ... elif isinstance(feature, (tuple, list)): for feature_type, feature_dict in FeatureParser._parse_tuple(feature, new_names).items(): feature_collection[feature_type] = feature_collection.get(feature_type, OrderedDict()) if feature_dict is ...: feature_collection[feature_type] = ... if feature_collection[feature_type] is not ...: feature_collection[feature_type].update(feature_dict) else: raise ValueError('Failed to parse {}, expected a tuple'.format(feature)) return feature_collection @staticmethod def _parse_tuple(features, new_names): """Helping function of `_parse_features` that parses a tuple.""" name_idx = 1 try: feature_type = FeatureType(features[0]) except ValueError: feature_type = None name_idx = 0 if feature_type and not feature_type.has_dict(): return OrderedDict([(feature_type, ...)]) return OrderedDict([(feature_type, FeatureParser._parse_names_tuple(features[name_idx:], new_names))]) @staticmethod def _parse_feature_names(feature_names, new_names): """Helping function of `_parse_features` that parses a collection of feature names.""" if isinstance(feature_names, set): return FeatureParser._parse_names_set(feature_names) if isinstance(feature_names, dict): return FeatureParser._parse_names_dict(feature_names) if isinstance(feature_names, (tuple, list)): return FeatureParser._parse_names_tuple(feature_names, new_names) raise ValueError('Failed to parse {}, expected dictionary, set or tuple'.format(feature_names)) @staticmethod def _parse_names_set(feature_names): """Helping function of `_parse_feature_names` that parses a set of feature names.""" feature_collection = OrderedDict() for feature_name in feature_names: if isinstance(feature_name, str): feature_collection[feature_name] = ... else: raise ValueError('Failed to parse {}, expected string'.format(feature_name)) return feature_collection @staticmethod def _parse_names_dict(feature_names): """Helping function of `_parse_feature_names` that parses a dictionary of feature names.""" feature_collection = OrderedDict() for feature_name, new_feature_name in feature_names.items(): if isinstance(feature_name, str) and (isinstance(new_feature_name, str) or new_feature_name is ...): feature_collection[feature_name] = new_feature_name else: if not isinstance(feature_name, str): raise ValueError('Failed to parse {}, expected string'.format(feature_name)) raise ValueError('Failed to parse {}, expected string or Ellipsis'.format(new_feature_name)) return feature_collection @staticmethod def _parse_names_tuple(feature_names, new_names): """Helping function of `_parse_feature_names` that parses a tuple or a list of feature names.""" for feature in feature_names: if not isinstance(feature, str) and feature is not ...: raise ValueError('Failed to parse {}, expected a string'.format(feature)) if feature_names[0] is ...: return ... if new_names: if len(feature_names) == 1: return OrderedDict([(feature_names[0], ...)]) if len(feature_names) == 2: return OrderedDict([(feature_names[0], feature_names[1])]) raise ValueError("Failed to parse {}, it should contain at most two strings".format(feature_names)) if ... in feature_names: return ... return OrderedDict([(feature_name, ...) for feature_name in feature_names]) def _check_feature_types(self): """ Checks that feature types are a subset of allowed feature types. (`None` is handled :raises: ValueError """ if self.default_feature_type is not None and self.default_feature_type not in self.allowed_feature_types: raise ValueError('Default feature type parameter must be one of the allowed feature types') for feature_type in self.feature_collection: if feature_type is not None and feature_type not in self.allowed_feature_types: raise ValueError('Feature type has to be one of {}, but {} found'.format(self.allowed_feature_types, feature_type)) def _get_features(self, eopatch=None): """A generator of parsed features. :param eopatch: A given EOPatch :type eopatch: EOPatch or None :return: One by one feature :rtype: tuple(FeatureType, str) or tuple(FeatureType, str, str) """ for feature_type, feature_dict in self.feature_collection.items(): if feature_type is None and self.default_feature_type is not None: feature_type = self.default_feature_type if feature_type is None: for feature_name, new_feature_name in feature_dict.items(): if eopatch is None: yield self._return_feature(..., feature_name, new_feature_name) else: found_feature_type = self._find_feature_type(feature_name, eopatch) if found_feature_type: yield self._return_feature(found_feature_type, feature_name, new_feature_name) else: raise ValueError("Feature with name '{}' does not exist among features of allowed feature" " types in given EOPatch. Allowed feature types are " "{}".format(feature_name, self.allowed_feature_types)) elif feature_dict is ...: if not feature_type.has_dict() or eopatch is None: yield self._return_feature(feature_type, ...) else: for feature_name in eopatch[feature_type]: yield self._return_feature(feature_type, feature_name) else: for feature_name, new_feature_name in feature_dict.items(): if eopatch is not None and feature_name not in eopatch[feature_type]: raise ValueError('Feature {} of type {} was not found in EOPatch'.format(feature_name, feature_type)) yield self._return_feature(feature_type, feature_name, new_feature_name) def _find_feature_type(self, feature_name, eopatch): """ Iterates over allowed feature types of given EOPatch and tries to find a feature type for which there exists a feature with given name :return: A feature type or `None` if such feature type does not exist :rtype: FeatureType or None """ for feature_type in self.allowed_feature_types: if feature_type.has_dict() and feature_name in eopatch[feature_type]: return feature_type return None def _return_feature(self, feature_type, feature_name, new_feature_name=...): """ Helping function of `get_features` """ if self.new_names: return feature_type, feature_name, (self.rename_function(feature_name) if new_feature_name is ... else new_feature_name) return feature_type, feature_name @staticmethod def _identity_rename_function(name): return name def get_common_timestamps(source, target): """Return indices of timestamps from source that are also found in target. :param source: timestamps from source :type source: list of datetime objects :param target: timestamps from target :type target: list of datetime objects :return: indices of timestamps from source that are also found in target :rtype: list of ints """ remove_from_source = set(source).difference(target) remove_from_source_idxs = [source.index(rm_date) for rm_date in remove_from_source] return [idx for idx, _ in enumerate(source) if idx not in remove_from_source_idxs] def deep_eq(fst_obj, snd_obj): """Compares whether fst_obj and snd_obj are deeply equal. In case when both fst_obj and snd_obj are of type np.ndarray or either np.memmap, they are compared using np.array_equal(fst_obj, snd_obj). Otherwise, when they are lists or tuples, they are compared for length and then deep_eq is applied component-wise. When they are dict, they are compared for key set equality, and then deep_eq is applied value-wise. For all other data types that are not list, tuple, dict, or np.ndarray, the method falls back to the __eq__ method. Because np.ndarray is not a hashable object, it is impossible to form a set of numpy arrays, hence deep_eq works correctly. :param fst_obj: First object compared :param snd_obj: Second object compared :return: `True` if objects are deeply equal, `False` otherwise """ # pylint: disable=too-many-return-statements if isinstance(fst_obj, (np.ndarray, np.memmap)): if not isinstance(snd_obj, (np.ndarray, np.memmap)): return False if fst_obj.dtype != snd_obj.dtype: return False fst_nan_mask = np.isnan(fst_obj) snd_nan_mask = np.isnan(snd_obj) return np.array_equal(fst_obj[~fst_nan_mask], snd_obj[~snd_nan_mask]) and \ np.array_equal(fst_nan_mask, snd_nan_mask) if not isinstance(fst_obj, type(snd_obj)): return False if isinstance(fst_obj, np.ndarray): if fst_obj.dtype != snd_obj.dtype: return False fst_nan_mask = np.isnan(fst_obj) snd_nan_mask = np.isnan(snd_obj) return np.array_equal(fst_obj[~fst_nan_mask], snd_obj[~snd_nan_mask]) and \
np.array_equal(fst_nan_mask, snd_nan_mask)
numpy.array_equal
import numpy as np from envs.FiniteMDP import FiniteMDP class WideNarrow(FiniteMDP): def __init__(self, n=1, w=6, gamma=0.999, horizon=1000): # WideNarrow parameters self.N, self.W = n, w self.mu_l, self.sig_l = 0., 1. self.mu_h, self.sig_h = 0.5, 1. self.mu_n, self.sig_n = 0, 1 P, R = self.get_dynamics_and_rewards_distributions() p, r = self.get_mean_P_and_R() mu = np.zeros(self.N * 2 + 1) mu[0] = 1. super(WideNarrow, self).__init__(p, r, mu, gamma, horizon) def get_dynamics_and_rewards_distributions(self): ''' Implementation of the corresponding method from TabularEnvironment ''' # Dict for transitions, P_probs[(s, a)] = [(s1, ...), (p1, ...)] P_probs = {} for n in range(self.N): for a in range(self.W): # Wide part transitions P_probs[(2 * n, a)] = [(2 * n + 1,), (1.00,)] P_probs[(2 * n + 1, 0)] = [(2 * n + 2,), (1.00,)] # Last state transitions to first state P_probs[(2 * self.N, 0)] = [(0,), (1.00,)] self.P_probs = P_probs def P(s, a): # Next states and transition probabilities s_, p = P_probs[(s, a)] # Sample s_ according to the transition probabilities s_ = np.random.choice(s_, p=p) return s_ def R(s, a, s_): # Booleans for current and next state even_s, odd_s_ = s % 2 == 0, s_ % 2 == 1 # Zero reward for transition from last to first state if s == 2 * self.N and s_ == 0: return 0. # High reward for correct action from odd state elif even_s and odd_s_ and (a == 0): return self.mu_h + self.sig_h * np.random.normal() # Low reward for incorrect action from odd state elif even_s and odd_s_: return self.mu_l + self.sig_l * np.random.normal() # Reward from even state else: return self.mu_n + self.sig_n * np.random.normal() return P, R def get_name(self): return 'WideNarrow-N-{}_W-{}'.format(self.N, self.W) def get_mean_P_and_R(self): P = np.zeros((2 * self.N + 1, self.W, 2 * self.N + 1)) R =
np.zeros((2 * self.N + 1, self.W, 2 * self.N + 1))
numpy.zeros
""" Showcases *CIE 1994* chromatic adaptation model computations. """ import numpy as np import colour from colour.utilities import message_box message_box('"CIE 1994" Chromatic Adaptation Model Computations') XYZ_1 = np.array([0.2800, 0.2126, 0.0527]) xy_o1 =
np.array([0.4476, 0.4074])
numpy.array
import pytest import unittest.mock as mock import open_cp.sepp_base as sepp_base import open_cp.data import open_cp.predictors import numpy as np import datetime class OurModel(sepp_base.ModelBase): def background(self, points): assert len(points.shape) == 2 assert points.shape[0] == 3 return points[0] * np.exp(-(points[1]**2 + points[2]**2)) def trigger(self, pt, dpts): assert pt.shape == (3,) assert len(dpts.shape) == 2 assert dpts.shape[0] == 3 w = np.sum(np.abs(pt)) return dpts[0] * np.exp(-(dpts[1]**2 + dpts[2]**2) / w) def slow_p_matrix(model, points): assert points.shape[0] == 3 d = points.shape[1] p = np.zeros((d,d)) for i in range(d): pt = points[:,i] p[i,i] = model.background(pt[:,None]) for j in range(i): dp = pt - points[:,j] if dp[0] <= 0: p[j,i] = 0 else: p[j,i] = model.trigger(pt, dp[:,None]) for i in range(d): p[:,i] /= np.sum(p[:,i]) return p def test_p_matrix(): model = OurModel() for _ in range(10): points = np.random.random((3,20)) points[0].sort() expected = slow_p_matrix(model, points) got = sepp_base.p_matrix(model, points) np.testing.assert_allclose(got, expected) class OurModel1(OurModel): def trigger(self, pt, dpts): super().trigger(pt, dpts) w = np.sum(np.abs(pt)) return (1 + dpts[0]) * np.exp(-(dpts[1]**2 + dpts[2]**2) / w) def test_p_matrix_with_time_repeats(): model = OurModel1() for _ in range(10): points = np.random.random((3,20)) points[0].sort() points[0][1] = points[0][0] points[0][15] = points[0][14] expected = slow_p_matrix(model, points) got = sepp_base.p_matrix(model, points) np.testing.assert_allclose(got, expected) @pytest.fixture def p_matrix_mock(): with mock.patch("open_cp.sepp_base.p_matrix") as m: m.return_value = [[1, 0.5, 0.1, 0.2], [0, 0.5, 0.6, 0.4], [0, 0, 0.3, 0.3], [0, 0, 0, 0.1]] yield m @pytest.fixture def model(): return OurModel() @pytest.fixture def points(): return np.asarray([ [0,1,2,3], [1,4,7,9], [8,6,4,2] ]) @pytest.fixture def optimiser(p_matrix_mock, model, points): yield sepp_base.Optimiser(model, points) def test_Optimiser_p_diag(optimiser): assert optimiser.p.shape == (4,4) np.testing.assert_allclose(optimiser.p_diag, [1, 0.5, 0.3, 0.1]) assert optimiser.p_diag_sum == pytest.approx(1.9) def test_Optimiser_p_upper_tri_sum(optimiser): assert optimiser.p_upper_tri_sum == pytest.approx(0.5 + 0.7 + 0.9) def test_Optimiser_upper_tri_col(optimiser): optimiser.upper_tri_col(0) == np.asarray([]) optimiser.upper_tri_col(1) == np.asarray([0.5]) optimiser.upper_tri_col(2) == np.asarray([0.1, 0.6]) optimiser.upper_tri_col(3) == np.asarray([0.2, 0.4, 0.3]) optimiser.diff_col_times(0) == np.asarray([]) optimiser.diff_col_times(1) == np.asarray([1]) optimiser.diff_col_times(2) == np.asarray([2,1]) optimiser.diff_col_times(3) == np.asarray([3,2,1]) optimiser.diff_col_points(0) == np.asarray([]) optimiser.diff_col_points(1) == np.asarray([[3], [-2]]) optimiser.diff_col_points(1) == np.asarray([[6,3], [4,2]]) optimiser.diff_col_points(1) == np.asarray([[8,5,2], [6,4,2]]) def test_Optimiser(optimiser): assert optimiser.num_points == 4 def test_Trainer_constructs(): tr = sepp_base.Trainer() assert tr.time_unit / np.timedelta64(1, "h") == pytest.approx(24) tr.time_unit = datetime.timedelta(seconds = 6 * 60) assert tr.time_unit / np.timedelta64(1, "m") == pytest.approx(6) class OurTrainer(sepp_base.Trainer): def __init__(self): super().__init__() self._testing_fixed = mock.Mock() self._testing_im = mock.Mock() self._opt_class_mock = mock.Mock() def make_fixed(self, times): self._make_fixed_times = times return self._testing_fixed def initial_model(self, fixed, data): self._initial_model_params = (fixed, data) return self._testing_im @property def _optimiser(self): return self._opt_class_mock @pytest.fixture def trainer(): sepp = OurTrainer() t = [np.datetime64("2017-05-01T00:00"), np.datetime64("2017-05-02T00:00"), np.datetime64("2017-05-04T00:00"), np.datetime64("2017-05-10T23:45")] x = [1,2,3,4] y = [5,6,7,8] sepp.data = open_cp.data.TimedPoints.from_coords(t, x, y) return sepp def test_Trainer_make_data(trainer): sepp = trainer fixed, data = sepp.make_data() assert fixed is sepp._testing_fixed offset = 15 / 60 / 24 np.testing.assert_allclose(sepp._make_fixed_times, [10, 9, 7, offset]) np.testing.assert_allclose(data[0], [0, 1, 3, 10 - offset]) np.testing.assert_allclose(data[1], [1,2,3,4]) np.testing.assert_allclose(data[2], [5,6,7,8]) fixed, data = sepp.make_data(predict_time = datetime.datetime(2017,5,10,23,45)) assert fixed is sepp._testing_fixed np.testing.assert_allclose(sepp._make_fixed_times, [10 - offset, 9 - offset, 7 - offset, 0]) np.testing.assert_allclose(data[0], [0, 1, 3, 10 - offset]) np.testing.assert_allclose(data[1], [1,2,3,4]) np.testing.assert_allclose(data[2], [5,6,7,8]) def test_Trainer_make_initial_model(trainer): fixed, data = trainer.make_data() im = trainer.initial_model(fixed, data) assert im is trainer._testing_im assert trainer._initial_model_params[0] is fixed assert trainer._initial_model_params[1] is data offset = 15 / 60 / 24 np.testing.assert_allclose(trainer._make_fixed_times, [10, 9, 7, offset]) def test_Trainer_optimise(trainer): model = trainer.train() opt = trainer._opt_class_mock.return_value assert model == opt.iterate.return_value assert len(trainer._opt_class_mock.call_args_list) == 1 call = trainer._opt_class_mock.call_args_list[0] assert call[0][0] is trainer._testing_im def test_Trainer_optimise_predict_time(trainer): model = trainer.train(predict_time = datetime.datetime(2017,5,10,23,45)) opt = trainer._opt_class_mock.return_value assert model == opt.iterate.return_value offset = 15 / 60 / 24 np.testing.assert_allclose(trainer._make_fixed_times, [10 - offset, 9 - offset, 7 - offset, 0]) assert len(trainer._opt_class_mock.call_args_list) == 1 call = trainer._opt_class_mock.call_args_list[0] assert call[0][0] is trainer._testing_im def test_Trainer_optimise2(trainer): model = trainer.train(iterations=2) opt = trainer._opt_class_mock.return_value assert model == opt.iterate.return_value assert len(trainer._opt_class_mock.call_args_list) == 2 call = trainer._opt_class_mock.call_args_list[0] assert call[0][0] is trainer._testing_im call = trainer._opt_class_mock.call_args_list[1] assert call[0][0] is model def test_PredictorBase(): class Model(): def background(self, points): return points[0] def trigger(self, pt, dp): return pt[0] * (dp[1] + dp[2])**2 pts = [[0,1,2,3], [4,7,2,3], [4,5,6,1]] model = Model() pred = sepp_base.PredictorBase(model, pts) assert pred.model is model np.testing.assert_allclose(pred.points, pts) assert pred.point_predict(1, [2,3]) == pytest.approx(10) assert pred.point_predict(0.5, [2,3]) == pytest.approx(5) assert pred.point_predict(1, [4,4]) == pytest.approx(1) assert pred.point_predict(1, [4,5]) == pytest.approx(2) np.testing.assert_allclose(pred.point_predict(1, [[2,4,4], [3,4,5]]), [10,1,2]) assert pred.point_predict(2, [2,3]) == pytest.approx(2 + 18 + 2*49) expected = sum(t*10 for t in np.linspace(0,1,20)) assert pred.range_predict(0, 1, [2,3]) == pytest.approx(expected / 20) assert pred.background_predict(1, [2,3]) == pytest.approx(1) assert pred.background_predict(2, [4,7]) == pytest.approx(2) def test_Predictor(trainer): mask = np.asarray([[False, True, False], [False]*3]) grid = open_cp.data.MaskedGrid(xsize=10, ysize=15, xoffset=2, yoffset=3, mask=mask) model = OurModel() pred = sepp_base.Predictor(grid, model) pred.data = trainer.data gp = pred.predict(np.datetime64("2017-05-04T00:00")) np.testing.assert_allclose(gp.intensity_matrix.mask, mask) assert (gp.xsize, gp.ysize) == (grid.xsize, grid.ysize) gp = pred.predict(np.datetime64("2017-05-04T00:00"), end_time=np.datetime64("2017-05-05T00:00")) np.testing.assert_allclose(gp.intensity_matrix.mask, mask) assert (gp.xsize, gp.ysize) == (grid.xsize, grid.ysize) gp = pred.background_predict(np.datetime64("2017-05-04T00:00")) np.testing.assert_allclose(gp.intensity_matrix.mask, mask) assert (gp.xsize, gp.ysize) == (grid.xsize, grid.ysize) def test_clamp_p(): p = [[1, 0, 0, 0], [0.6, 0.4, 0, 0], [0.99, 0.01, 0, 0], [0.2, 0.05, 0.7, 0.05]] p = np.asarray(p).T pc = np.asarray(p) pp = sepp_base.clamp_p(p, 99) np.testing.assert_allclose(p, pc) # Don't mutate p np.testing.assert_allclose(pp[:,0], [1,0,0,0]) np.testing.assert_allclose(pp[:,1], [0.6,0.4,0,0]) np.testing.assert_allclose(pp[:,2], [0.99,0,0,0]) np.testing.assert_allclose(pp[:,3], [0.2,0.05,0.7,0.05]) pp = sepp_base.clamp_p(p, 49) np.testing.assert_allclose(pp[:,0], [1,0,0,0]) np.testing.assert_allclose(pp[:,1], [0.6,0,0,0]) np.testing.assert_allclose(pp[:,2], [0.99,0,0,0]) np.testing.assert_allclose(pp[:,3], [0,0,0.7,0]) def test_Optimiser_sample(): model = sepp_base.ModelBase() model.background = lambda pts : [1]*pts.shape[-1] model.trigger = lambda tp, pts : [1]*pts.shape[-1] opt = sepp_base.Optimiser(model, np.random.random((3,4))) p = [[1,0,0,0], [0,1,0,0], [1,0,0,0], [0,0,1,0]] opt._p =
np.asarray(p)
numpy.asarray
import cv2 import numpy as np import random import glob from src.utils import im2single, getWH, hsv_transform from src.label import Label from src.projection_utils import perspective_transform, find_T_matrix, getRectPts # # Use UseBG if you want to pad distorted images with bakcground data # UseBG = True bgimages = [] dim0 = 208 BGDataset = 'bgimages\\' # directory with background images using to pad images in data augmentation # # Creates list with BG images # if UseBG: imglist = glob.glob(BGDataset + '*.jpg') for im in imglist: img = cv2.imread(im) factor = max(1, dim0/min(img.shape[0:2])) img = cv2.resize(img, (0,0), fx = factor, fy = factor).astype('float32')/255 bgimages.append(img) def random_crop(img, width, height): # # generates random crop of img with desired size # or_height = img.shape[0] or_width = img.shape[1] top = int(np.random.rand(1)*(or_height - height)) bottom = int(np.random.rand(1)*(or_width - width)) crop = img[top:(top+height), bottom:(bottom+width),:] return crop def GetCentroid(pts): # # Gets centroids of a quadrilateral # return np.mean(pts, 1); def ShrinkQuadrilateral(pts, alpha=0.75): # # Shribks quadtrilateral by a factor alpha # centroid = GetCentroid(pts) temp = centroid + alpha * (pts.T - centroid) return temp.T def LinePolygonEdges(pts): # # Finds the line equations of the polygon edges (given the verices in clockwise order) # lines = [] for i in range(4): x1 = np.hstack((pts[:, i], 1)) x2 = np.hstack((pts[:, (i + 1) % 4], 1)) lines.append(np.cross(x1, x2)) return lines def insidePolygon(pt, lines): # # Checks is a point pt is inisde quadrilateral given by pts. Must be all negative?? # pth = np.hstack((pt, 1)) allsigns = [] output = True # # Scans all edges # for i in range(len(lines)): sig = np.dot(pth, lines[i]) allsigns.append(sig) if sig < 0: output = False break return output def labels2output_map(labelist, lpptslist, dim, stride, alfa=0.75): # # Generates outpmut map with binary (classification) labels and quadrilateral corners (regression) # label is the bounding box of the quadrilateral, and its locations are given in a list of plates # lpptslist # dim0 = 208 # used to define the range of LP scales in the training procedure # # Aveage LP side in output layer (with spatial dimension outsize) # side = ((float(dim0) + 40.) / 2.) / stride # 7.75 when dim = 208 and stride = 16 outsize = int(dim / stride) # # Prepares GT map with 9 channels # Y = np.zeros((outsize, outsize, 2 * 4 + 1), dtype='float32') MN = np.array([outsize, outsize]) WH = np.array([dim, dim], dtype=float) # # Scans all annotated LPs in the image # for i in range(0, len(labelist)): # # Gets corners and labels (labels igored at the moment) # lppts = lpptslist[i] label = labelist[i] # # Gets location of bounding box of LP resized to output resolution # tlx, tly = np.floor(np.maximum(label.tl(), 0.) * MN).astype(int).tolist() brx, bry = np.ceil(np.minimum(label.br(), 1.) * MN).astype(int).tolist() # # Finds location of quadrilateral in the output resolution # p_WH = lppts * WH.reshape((2, 1)) p_MN = p_WH / stride # # Finds line equations of shrunk quadrilaterals # pts2 = (ShrinkQuadrilateral(lppts, alfa).T * MN).T; lines = LinePolygonEdges(pts2); # # Scans LP bounding box and triggers a classification label if point is inside # shrunk LP # for x in range(tlx, brx): for y in range(tly, bry): mn = np.array([float(x) + .5, float(y) + .5]) # # Tests if current point is inside shrunk LP # if insidePolygon(mn, lines): # # Translates LP points to the cell center # p_MN_center_mn = p_MN - mn.reshape((2, 1)) # # Re-scales according to avergate LP side # p_side = p_MN_center_mn / side # # Defines classification label and re-scaled LP locations to be regressed # Y[y, x, 0] = 1. Y[y, x, 1:] = p_side.T.flatten() # # Always set a true label at centroid if not fake LP (first test) # if (max(lppts[0,]) - min(lppts[0,]) > .01 and max(lppts[1,]) - min(lppts[1,]) > .01): cc = np.array(np.round(GetCentroid(lppts) * MN - 0.5), np.int8) # # Centroid of LP in output resolution (round to smallest integer ) # cc = np.array(np.round(GetCentroid(p_MN) - 0.5), np.int8) # # Ensures that it is in a valid location of the output map # x = max(0, min(cc[0], outsize - 1)) y = max(0, min(cc[1], outsize - 1)) mn = np.array([float(x) + .5, float(y) + .5]) p_MN_center_mn = p_MN - mn.reshape((2, 1)) # # Defines classification label and re-scaled LP locations to be regressed # p_side = p_MN_center_mn / side Y[y, x, 0] = 1. Y[y, x, 1:] = p_side.T.flatten() return Y def pts2ptsh(pts): # # Gets homogeneous coordinates # return np.matrix(np.concatenate((pts, np.ones((1, pts.shape[1]))), 0)) def project(I, T, pts, dim): # # Projects image I and points pts according to matrix T # ptsh = np.matrix(np.concatenate((pts, np.ones((1, 4))), 0)) ptsh = np.matmul(T, ptsh) ptsh = ptsh / ptsh[2] ptsret = ptsh[:2] ptsret = ptsret / dim Iroi = cv2.warpPerspective(I, T, (dim, dim), borderValue=.0, flags = cv2.INTER_CUBIC) return Iroi, ptsret def project_all(I, T, ptslist, dim, bgimages = bgimages): # # Warps image I to desired dimensions using matrix T. if bgimage is not empty, # completes with background # Also projects LP coordinates given in ptslist to keep coherence # # outptslist = [] # # Scans annotated LPs and warps them # for pts in ptslist: ptsh = np.matrix(np.concatenate((pts, np.ones((1, 4))), 0)) ptsh = np.matmul(T, ptsh) ptsh = ptsh / ptsh[2] ptsret = ptsh[:2] ptsret = ptsret / dim outptslist.append(np.array(ptsret)) # # Warps input image (possibly padding with BG images) # Iroi = cv2.warpPerspective(I, T, (dim, dim), borderValue=(.5,.5,.5), flags=cv2.INTER_CUBIC) if len(bgimages) > 0: bgimage = bgimages[int(np.random.rand()*len(bgimages))] bgimage = random_crop(bgimage, dim, dim) bw = np.ones(I.shape) bw = cv2.warpPerspective(bw, T, (dim, dim), borderValue= (0, 0, 0), flags=cv2.INTER_LINEAR) Iroi[bw == 0] = bgimage[bw == 0] return Iroi, outptslist def randomblur(img): # # Applies random blur to image # maxblur = np.min(img.shape)/10 sig = abs(np.random.normal(0, .1))*maxblur ksize = 2*int(0.5 + 2*sig) + 1 out = cv2.GaussianBlur(img, (ksize, ksize), sig) return out def flip_image_and_ptslist(I, ptslist): # # Applies random flip to image and labels # I = cv2.flip(I, 1) for i in range(len(ptslist)): pts = ptslist[i] pts[0] = 1. - pts[0] idx = [1, 0, 3, 2] pts = pts[..., idx] ptslist[i] = pts return I, ptslist def flip_image_and_pts(I, pts): I = cv2.flip(I, 1) pts[0] = 1. - pts[0] idx = [1, 0, 3, 2] pts = pts[..., idx] return I, pts def augment_sample(I, shapelist, dim, maxangle = 2 * np.array([65.,65.,55.]), maxsum = 140): # # Main augmentation function. Generates an augmented version # of input image I and the corresponding LP corners given in shapelist # # # Input is image I, list of shape elements (shape), and input dim # # # Gets first LP corners and label # pts = shapelist[0].pts vtype = shapelist[0].text ptslist = [] # # List of ROI corners # for entry in shapelist: ptslist.append(entry.pts) # # maximum 3D rotation angles # angles = (np.random.rand(3) - 0.5) * maxangle if sum(np.abs(angles)) > maxsum: angles = (angles/angles.sum())*(maxangle/maxangle.sum()) # # Normalizes intensities to [0,1] # I = im2single(I) # # Possible negative of the image # if np.random.uniform(0,1) < 0.05: I = 1 - I; # # Possible blur # if np.random.rand() < 0.15: I = randomblur(I) # # Gets image dimensions # iwh = getWH(I.shape) # # Checks is annotation is a real or fake plate # if (pts[0][1] - pts[0][0] > .002): ## if not fake plate for i in range(len(ptslist)): # # LP region from relative to absolute coordinates # ptslist[i] = ptslist[i] * iwh.reshape((2, 1)) # # Target aspect ratio of the LP (bike or car) # if vtype == 'bike': whratio = random.uniform(1.25, 2.5) else: whratio = random.uniform(2.5, 4.5) # # Width of LP in training image # dim0 = 208 # augments data w.r.t. a fixed resolution # # Defines range of LP widths w.r.t to baseline resolution dim0 = 208 # wsiz = random.uniform(dim0*0.2, dim0*1.0) # # Defines height based on width and aspect ratio # hsiz = wsiz/whratio # # Defines horizontal and vertical offsets # dx = random.uniform(0.,dim - wsiz) dy = random.uniform(0.,dim - hsiz) # # Warps annotated plate to a rectified rectangle - frontal view # pph = getRectPts(dx, dy, dx+wsiz, dy+hsiz) pts = pts*iwh.reshape((2,1)) T = find_T_matrix(pts2ptsh(pts), pph) # # Finds 3D rotation matrix based on angles # H = perspective_transform((dim,dim), angles=angles) # # Applies 3D rotation to rectification transform # H =
np.matmul(H,T)
numpy.matmul
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. # -*- coding: utf-8 -*- #=============================================================================== # author: <NAME> (DFKI GmbH, FB: Agenten und Simulierte Realität) # last update: 3.1.2014 #orbiting camera based on http://www.glprogramming.com/red/chapter03.html #Horizontal Movement implementation based on #http://www.youtube.com/watch?v=RInkwoCgIps #http://www.youtube.com/watch?v=H20stuPG-To #=============================================================================== import numpy as np import numpy.linalg as la import math import transformations as trans from ..graphics import utils UP = np.array([0,1,0]) FORWARD = np.array([0,0,-1]) class BoundigBox(object): def __init__(self): self.min_v = np.zeros(3) self.max_v = np.zeros(3) self.min_v[:] = np.inf self.max_v[:] = -np.inf def update(self, p): for d in range(3): if p[d] < self.min_v [d]: self.min_v[d] = p[d] elif p[d] > self.max_v[d]: self.max_v[d] = p[d] def inside(self, p): inside = True for d in range(3): if p[d] < self.min_v[d]: inside = False break elif p[d] > self.max_v[d]: inside = False break return inside class Camera(object): def __init__(self): self.viewMatrix = np.eye(4) self.projectionMatrix = np.eye(4) self.orthographMatrix = np.eye(4) self.aspect = 0 self.near = 0 self.far = 0 self.fov = 0 def get_transform(self): """ Copied from ThinMatrix shadow tutorial src: https://www.youtube.com/watch?v=o6zDfDkOFIc https://www.dropbox.com/sh/g9vnfiubdglojuh/AACpq1KDpdmB8ZInYxhsKj2Ma/shadows """ yaw = math.radians(self.yaw) pitch = math.radians(self.pitch) rot_y = trans.quaternion_about_axis(-yaw, np.array([0, 1, 0])) rot_y = trans.quaternion_matrix(rot_y) rot_x = trans.quaternion_about_axis(-pitch, np.array([1, 0, 0])) rot_x = trans.quaternion_matrix(rot_x) transform = np.dot(rot_y, rot_x) transform[3, :3] = -self.get_world_position() return transform def get_frustrum_vertices(self): """ src:https://github.com/pyth/sgltk P_Camera class """ ndc = [[-1,-1,-1, 1], [1, -1, -1, 1], [1, 1, -1, 1], [-1, 1, -1, 1], [-1, -1, 1, 1], [1, -1, 1, 1], [1, 1, 1, 1], [-1, 1, 1, 1]] p_m = self.get_projection_matrix().T v_m = self.get_view_matrix().T rm = np.dot(p_m, v_m) m = np.linalg.inv(rm) ret = np.zeros((8,3)) for idx in range(8): v = np.dot(m, ndc[idx]) ret[idx] = v[:3]/ v[3] return ret def get_frustrum_bounding_box(self): v = self.get_frustrum_vertices() v_m = self.get_view_matrix().T _p = np.zeros(4) bb = BoundigBox() for p in v: _p[0] = p[0] _p[1] = p[1] _p[2] = p[2] _p[3] = 1 _p = np.dot(v_m, _p) bb.update(_p[:3]) return bb class OrbitingCamera(Camera): """ orbiting camera based on http://www.glprogramming.com/red/chapter03.html """ def __init__(self): super().__init__() self.position = np.array([0.0,-10.0,0.0]) self.zoom = -5.0 self.view_dir = np.array([0.0,0.0,-1.0,1.0]) self.rotation_matrix =
np.eye(4)
numpy.eye
''' 25 2D-Gaussian Simulation Compare different Sampling methods and DRE methods 1. DRE method 1.1. By NN DR models: MLP Loss functions: uLISF, DSKL, BARR, SP (ours) lambda for SP is selected by maximizing average denstity ratio on validation set 1.2. GAN property 2. Data Generation: (1). Target Distribution p_r: A mixture of 25 2-D Gaussian 25 means which are combinations of any two points in [-2, -1, 0, 1, 2] Each Gaussian has a covariance matrix sigma*diag(2), sigma=0.05 (2). Proposal Distribution p_g: GAN NTRAIN = 50000, NVALID=50000, NTEST=10000 3. Sampling from GAN by None/RS/MH/SIR 4. Evaluation on a held-out test set Prop. of good samples (within 4 sd) and Prop. of recovered modes ''' wd = './Simulation' import os os.chdir(wd) import timeit import torch import torchvision import torchvision.transforms as transforms import numpy as np import torch.nn as nn import torch.backends.cudnn as cudnn from torch.nn import functional as F import random import matplotlib.pyplot as plt import matplotlib as mpl from torch import autograd from torchvision.utils import save_image from tqdm import tqdm import gc from itertools import groupby import argparse from sklearn.linear_model import LogisticRegression import multiprocessing from scipy.stats import multivariate_normal from scipy.stats import ks_2samp import pickle import csv from sklearn.model_selection import GridSearchCV from sklearn import mixture from utils import * from models import * from Train_DRE import train_DRE_GAN from Train_GAN import * ####################################################################################### ''' Settings ''' ####################################################################################### parser = argparse.ArgumentParser(description='Simulation') '''Overall Settings''' parser.add_argument('--NSIM', type=int, default=1, help = "How many times does this experiment need to be repeated?") parser.add_argument('--DIM', type=int, default=2, help = "Dimension of the Euclidean space of our interest") parser.add_argument('--n_comp_tar', type=int, default=25, help = "Number of mixture components in the target distribution") parser.add_argument('--DRE', type=str, default='DRE_SP', choices=['None', 'GT', 'DRE_uLSIF', 'DRE_DSKL', 'DRE_BARR', 'DRE_SP', 'disc', 'disc_MHcal', 'disc_KeepTrain'], #GT is ground truth help='Density ratio estimation method; None means randomly sample from the proposal distribution or the trained GAN') parser.add_argument('--Sampling', type=str, default='RS', help='Sampling method; Candidiate: None, RS, MH, SIR') #RS: rejection sampling, MH: Metropolis-Hastings; SIR: Sampling-Importance Resampling parser.add_argument('--seed', type=int, default=2019, metavar='S', help='random seed (default: 2019)') parser.add_argument('--show_reference', action='store_true', default=False, help='Assign 1 as density ratios to all samples and compute errors') parser.add_argument('--show_visualization', action='store_true', default=False, help='Plot fake samples in 2D coordinate') ''' Data Generation ''' parser.add_argument('--NTRAIN', type=int, default=50000) parser.add_argument('--NTEST', type=int, default=10000) ''' GAN settings ''' parser.add_argument('--epoch_gan', type=int, default=50) #default 50 parser.add_argument('--lr_gan', type=float, default=1e-3, help='learning rate') parser.add_argument('--dim_gan', type=int, default=2, help='Latent dimension of GAN') parser.add_argument('--batch_size_gan', type=int, default=512, metavar='N', help='input batch size for training GAN') parser.add_argument('--resumeTrain_gan', type=int, default=0) parser.add_argument('--compute_disc_err', action='store_true', default=False, help='Compute the distance between the discriminator and its optimality') '''DRE Settings''' parser.add_argument('--DR_Net', type=str, default='MLP5', choices=['MLP3', 'MLP5', 'MLP7', 'MLP9', 'CNN5'], help='DR Model') # DR models parser.add_argument('--epoch_DRE', type=int, default=200) parser.add_argument('--base_lr_DRE', type=float, default=1e-5, help='learning rate') parser.add_argument('--decay_lr_DRE', action='store_true', default=False, help='decay learning rate') parser.add_argument('--lr_decay_epochs_DRE', type=int, default=400) parser.add_argument('--batch_size_DRE', type=int, default=512, metavar='N', help='input batch size for training DRE') parser.add_argument('--lambda_DRE', type=float, default=0.0, #BARR: lambda=10 help='penalty in DRE') parser.add_argument('--weightdecay_DRE', type=float, default=0.0, help='weight decay in DRE') parser.add_argument('--resumeTrain_DRE', type=int, default=0) parser.add_argument('--DR_final_ActFn', type=str, default='ReLU', help='Final layer of the Density-ratio model; Candidiate: Softplus or ReLU') parser.add_argument('--TrainPreNetDRE', action='store_true', default=False, help='Pre-trained MLP for DRE in Feature Space') parser.add_argument('--DRE_save_at_epoch', nargs='+', type=int) parser.add_argument('--epoch_KeepTrain', type=int, default=20) parser.add_argument('--compute_dre_err', action='store_true', default=False, help='Compare the DRE method with the ground truth') ''' Mixture Gaussian (for density estimation) Settings ''' parser.add_argument('--gmm_nfake', type=int, default=100000) # parser.add_argument('--gmm_ncomp', type=int, default=0) #gmm_ncomp is non-positive, then we do ncomp selection parser.add_argument('--gmm_ncomp_nsim', nargs='+', type=int) #A list of ncomp for NSIM rounds. If gmm_ncomp is None, then we do ncomp selection parser.add_argument('--gmm_ncomp_grid', nargs='+', type=int) parser.add_argument('--gmm_ncomp_grid_lb', type=int, default=1) parser.add_argument('--gmm_ncomp_grid_ub', type=int, default=100) parser.add_argument('--gmm_ncomp_grid_step', type=int, default=1) args = parser.parse_args() #-------------------------------- # system assert torch.cuda.is_available() NGPU = torch.cuda.device_count() device = torch.device("cuda" if NGPU>0 else "cpu") cores= multiprocessing.cpu_count() #-------------------------------- # Extra Data Generation Settings n_comp_tar = args.n_comp_tar n_features = args.DIM mean_grid_tar = [-2, -1, 0, 1, 2] sigma_tar = 0.05 n_classes = n_comp_tar quality_threshold = sigma_tar*4 #good samples are within 4 standard deviation #-------------------------------- # GAN Settings epoch_GAN = args.epoch_gan lr_GAN = args.lr_gan batch_size_GAN = args.batch_size_gan dim_GAN = args.dim_gan plot_in_train = True gan_Adam_beta1 = 0.5 gan_Adam_beta2 = 0.999 #-------------------------------- # Extra DRE Settings DRE_Adam_beta1 = 0.5 DRE_Adam_beta2 = 0.999 comp_ratio_bs = 1000 #batch size for computing density ratios base_lr_PreNetDRE = 1e-1 epoch_PreNetDRE = 100 DRE_save_at_epoch = args.DRE_save_at_epoch # save checkpoints at these epochs # DRE_save_at_epoch = [20, 50, 100, 150, 200, 300, 400, 500, 800] epoch_KeepTrain = args.epoch_KeepTrain #keep training for DRS ckp_epoch_KeepTrain = [i for i in range(100) if i%5==0] #-------------------------------- # Mixture Gaussian Setting gmm_nfake = args.gmm_nfake # gmm_ncomp = args.gmm_ncomp gmm_ncomp_nsim = args.gmm_ncomp_nsim # if gmm_ncomp_nsim is not None: # assert len(gmm_ncomp_nsim) == args.NSIM if args.gmm_ncomp_grid is not None: gmm_ncomp_grid = args.gmm_ncomp_grid else: gmm_ncomp_grid = np.arange(args.gmm_ncomp_grid_lb, args.gmm_ncomp_grid_ub+args.gmm_ncomp_grid_step, args.gmm_ncomp_grid_step) #-------------------------------- # Extra Sampling Settings NFAKE = args.NTEST samp_batch_size = 10000 MH_K = 100 MH_mute = True #do not print sampling progress #------------------------------- # seeds random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True
np.random.seed(args.seed)
numpy.random.seed
import numpy as np class SECS: """Spherical Elementary Current System (SECS). The algorithm is implemented directly in spherical coordinates from the equations of the 1999 Amm & Viljanen paper [1]_. Parameters ---------- sec_df_loc : ndarray (nsec x 3 [lat, lon, r]) The latitude, longiutde, and radius of the divergence free (df) SEC locations. sec_cf_loc : ndarray (nsec x 3 [lat, lon, r]) The latitude, longiutde, and radius of the curl free (cf) SEC locations. References ---------- .. [1] <NAME>., and <NAME>. "Ionospheric disturbance magnetic field continuation from the ground to the ionosphere using spherical elementary current systems." Earth, Planets and Space 51.6 (1999): 431-440. doi:10.1186/BF03352247 """ def __init__(self, sec_df_loc=None, sec_cf_loc=None): if sec_df_loc is None and sec_cf_loc is None: raise ValueError("Must initialize the object with SEC locations") self.sec_df_loc = sec_df_loc self.sec_cf_loc = sec_cf_loc if self.sec_df_loc is not None: self.sec_df_loc = np.asarray(sec_df_loc) if self.sec_df_loc.shape[-1] != 3: raise ValueError("SEC DF locations must have 3 columns (lat, lon, r)") if self.sec_df_loc.ndim == 1: # Add an empty dimension if only one SEC location is passed in self.sec_df_loc = self.sec_df_loc[np.newaxis, ...] if self.sec_cf_loc is not None: self.sec_cf_loc = np.asarray(sec_cf_loc) if self.sec_cf_loc.shape[-1] != 3: raise ValueError("SEC CF locations must have 3 columns (lat, lon, r)") if self.sec_cf_loc.ndim == 1: # Add an empty dimension if only one SEC location is passed in self.sec_cf_loc = self.sec_cf_loc[np.newaxis, ...] # Storage of the scaling factors self.sec_amps = None self.sec_amps_var = None @property def has_df(self): """Whether this system has any divergence free currents.""" return self.sec_df_loc is not None @property def has_cf(self): """Whether this system has any curl free currents.""" return self.sec_cf_loc is not None @property def nsec(self): """The number of elementary currents in this system.""" nsec = 0 if self.has_df: nsec += len(self.sec_df_loc) if self.has_cf: nsec += len(self.sec_cf_loc) return nsec def fit(self, obs_loc, obs_B, obs_std=None, epsilon=0.05): """Fits the SECS to the given observations. Given a number of observation locations and measurements, this function fits the SEC system to them. It uses singular value decomposition (SVD) to fit the SEC amplitudes with the `epsilon` parameter used to regularize the solution. Parameters ---------- obs_locs : ndarray (nobs x 3 [lat, lon, r]) Contains latitude, longitude, and radius of the observation locations (place where the measurements are made) obs_B: ndarray (ntimes x nobs x 3 [Bx, By, Bz]) An array containing the measured/observed B-fields. obs_std : ndarray (ntimes x nobs x 3 [varX, varY, varZ]), optional Standard error of vector components at each observation location. This can be used to weight different observations more/less heavily. An infinite value eliminates the observation from the fit. Default: ones(nobs x 3) equal weights epsilon : float Value used to regularize/smooth the SECS amplitudes. Multiplied by the largest singular value obtained from SVD. Default: 0.05 """ if obs_loc.shape[-1] != 3: raise ValueError("Observation locations must have 3 columns (lat, lon, r)") if obs_B.ndim == 2: # Just a single snapshot given, so expand the dimensionality obs_B = obs_B[np.newaxis, ...] # Assume unit standard error of all measurements if obs_std is None: obs_std = np.ones(obs_B.shape) ntimes = len(obs_B) # Calculate the transfer functions T_obs = self._calc_T(obs_loc) # Store the fit sec_amps in the object self.sec_amps = np.empty((ntimes, self.nsec)) self.sec_amps_var = np.empty((ntimes, self.nsec)) # Calculate the singular value decomposition (SVD) # NOTE: T_obs has shape (nobs, 3, nsec), we reshape it # to (nobs*3, nsec); obs_std has shape (ntimes, nobs, 3), # we reshape it to (ntimes, nobs*3), then loop over ntimes # to solve using (potentially) time-dependent observation # standard errors to weight the observations for i in range(ntimes): # Only (re-)calculate SVD when necessary if i == 0 or not np.all(obs_std[i] == obs_std[i-1]): # Weight T_obs with obs_std svd_in = (T_obs.reshape(-1, self.nsec) / obs_std[i].ravel()[:, np.newaxis]) # Find singular value decompostion U, S, Vh = np.linalg.svd(svd_in, full_matrices=False) # Eliminate singular values less than epsilon by setting their # reciprocal to zero (setting S to infinity firsts avoids # divide-by-zero warings) S[S < epsilon * S.max()] = np.inf W = 1./S # Update VWU if obs_std changed VWU = Vh.T @ (np.diag(W) @ U.T) # Solve for SEC amplitudes and error variances # shape: ntimes x nsec self.sec_amps[i, :] = (VWU @ (obs_B[i] / obs_std[i]).reshape(-1).T).T # Maybe we want the variance of the predictions sometime later...? # shape: ntimes x nsec valid = np.isfinite(obs_std[i].reshape(-1)) self.sec_amps_var[i, :] = np.sum( (VWU[:,valid] * obs_std[i].reshape(-1)[valid])**2, axis=1) return self def fit_unit_currents(self): """Sets all SECs to a unit current amplitude.""" self.sec_amps = np.ones((1, self.nsec)) return self def predict(self, pred_loc, J=False): """Calculate the predicted magnetic field or currents. After a set of observations has been fit to this system we can predict the magnetic fields or currents at any other location. This function uses those fit amplitudes to predict at the requested locations. Parameters ---------- pred_loc: ndarray (npred x 3 [lat, lon, r]) An array containing the locations where the predictions are desired. J: boolean Whether to predict currents (J=True) or magnetic fields (J=False) Default: False (magnetic field prediction) Returns ------- ndarray (ntimes x npred x 3 [lat, lon, r]) The predicted values calculated from the current amplitudes that were fit to this system. """ if pred_loc.shape[-1] != 3: raise ValueError("Prediction locations must have 3 columns (lat, lon, r)") if self.sec_amps is None: raise ValueError("There are no currents associated with the SECs," + "you need to call .fit() first to fit to some observations.") # T_pred shape=(npred x 3 x nsec) # sec_amps shape=(nsec x ntimes) if J: # Predicting currents T_pred = self._calc_J(pred_loc) else: # Predicting magnetic fields T_pred = self._calc_T(pred_loc) # NOTE: dot product is slow on multi-dimensional arrays (i.e. > 2 dimensions) # Therefore this is implemented as tensordot, and the arguments are # arranged to eliminate needs of transposing things later. # The dot product is done over the SEC locations, so the final output # is of shape: (ntimes x npred x 3) return np.squeeze(np.tensordot(self.sec_amps, T_pred, (1, 2))) def predict_B(self, pred_loc): """Calculate the predicted magnetic fields. After a set of observations has been fit to this system we can predict the magnetic fields or currents at any other location. This function uses those fit amplitudes to predict at the requested locations. Parameters ---------- pred_loc: ndarray (npred x 3 [lat, lon, r]) An array containing the locations where the predictions are desired. Returns ------- ndarray (ntimes x npred x 3 [lat, lon, r]) The predicted values calculated from the current amplitudes that were fit to this system. """ return self.predict(pred_loc) def predict_J(self, pred_loc): """Calculate the predicted currents. After a set of observations has been fit to this system we can predict the magnetic fields or currents at any other location. This function uses those fit amplitudes to predict at the requested locations. Parameters ---------- pred_loc: ndarray (npred x 3 [lat, lon, r]) An array containing the locations where the predictions are desired. Returns ------- ndarray (ntimes x npred x 3 [lat, lon, r]) The predicted values calculated from the current amplitudes that were fit to this system. """ return self.predict(pred_loc, J=True) def _calc_T(self, obs_loc): """Calculates the T transfer matrix. The magnetic field transfer matrix to go from SEC locations to observation locations. It assumes unit current amplitudes that will then be scaled with the proper amplitudes later. """ if self.has_df: T = T_df(obs_loc=obs_loc, sec_loc=self.sec_df_loc) if self.has_cf: T1 = T_cf(obs_loc=obs_loc, sec_loc=self.sec_cf_loc) # df is already present in T if self.has_df: T = np.concatenate([T, T1], axis=2) else: T = T1 return T def _calc_J(self, obs_loc): """Calculates the J transfer matrix. The current transfer matrix to go from SEC locations to observation locations. It assumes unit current amplitudes that will then be scaled with the proper amplitudes later. """ if self.has_df: J = J_df(obs_loc=obs_loc, sec_loc=self.sec_df_loc) if self.has_cf: J1 = J_cf(obs_loc=obs_loc, sec_loc=self.sec_cf_loc) # df is already present in T if self.has_df: J = np.concatenate([J, J1], axis=2) else: J = J1 return J def T_df(obs_loc, sec_loc): """Calculates the divergence free magnetic field transfer function. The transfer function goes from SEC location to observation location and assumes unit current SECs at the given locations. Parameters ---------- obs_loc : ndarray (nobs, 3 [lat, lon, r]) The locations of the observation points. sec_loc : ndarray (nsec, 3 [lat, lon, r]) The locations of the SEC points. Returns ------- ndarray (nobs, 3, nsec) The T transfer matrix. """ nobs = len(obs_loc) nsec = len(sec_loc) obs_r = obs_loc[:, 2][:, np.newaxis] sec_r = sec_loc[:, 2][np.newaxis, :] theta = calc_angular_distance(obs_loc[:, :2], sec_loc[:, :2]) alpha = calc_bearing(obs_loc[:, :2], sec_loc[:, :2]) # magnetic permeability mu0 = 4*np.pi*1e-7 # simplify calculations by storing this ratio x = obs_r/sec_r sin_theta = np.sin(theta) cos_theta = np.cos(theta) factor = 1./np.sqrt(1 - 2*x*cos_theta + x**2) # Amm & Viljanen: Equation 9 Br = mu0/(4*np.pi*obs_r) * (factor - 1) # Amm & Viljanen: Equation 10 (transformed to try and eliminate trig operations and # divide by zeros) Btheta = -mu0/(4*np.pi*obs_r) * (factor*(x - cos_theta) + cos_theta) # If sin(theta) == 0: Btheta = 0 # There is a possible 0/0 in the expansion when sec_loc == obs_loc Btheta = np.divide(Btheta, sin_theta, out=np.zeros_like(sin_theta), where=sin_theta != 0) # When observation points radii are outside of the sec locations under_locs = sec_r < obs_r # NOTE: If any SECs are below observations the math will be done on all points. # This could be updated to only work on the locations where this condition # occurs, but would make the code messier, with minimal performance gain # except for very large matrices. if np.any(under_locs): # Flipped from previous case x = sec_r/obs_r # Amm & Viljanen: Equation A.7 Br2 = mu0*x/(4*np.pi*obs_r) * (1./np.sqrt(1 - 2*x*cos_theta + x**2) - 1) # Amm & Viljanen: Equation A.8 Btheta2 = - mu0 / (4*np.pi*obs_r) * ((obs_r-sec_r*cos_theta) / np.sqrt(obs_r**2 - 2*obs_r*sec_r*cos_theta + sec_r**2) - 1) Btheta2 = np.divide(Btheta2, sin_theta, out=np.zeros_like(sin_theta), where=sin_theta != 0) # Update only the locations where secs are under observations Btheta[under_locs] = Btheta2[under_locs] Br[under_locs] = Br2[under_locs] # Transform back to Bx, By, Bz at each local point T = np.empty((nobs, 3, nsec)) # alpha == angle (from cartesian x-axis (By), going towards y-axis (Bx)) T[:, 0, :] = -Btheta*np.sin(alpha) T[:, 1, :] = -Btheta*np.cos(alpha) T[:, 2, :] = -Br return T def T_cf(obs_loc, sec_loc): """Calculates the curl free magnetic field transfer function. The transfer function goes from SEC location to observation location and assumes unit current SECs at the given locations. Parameters ---------- obs_loc : ndarray (nobs, 3 [lat, lon, r]) The locations of the observation points. sec_loc : ndarray (nsec, 3 [lat, lon, r]) The locations of the SEC points. Returns ------- ndarray (nobs, 3, nsec) The T transfer matrix. """ raise NotImplementedError("Curl Free Magnetic Field Transfers are not implemented yet.") def J_df(obs_loc, sec_loc): """Calculates the divergence free current density transfer function. The transfer function goes from SEC location to observation location and assumes unit current SECs at the given locations. Parameters ---------- obs_loc : ndarray (nobs, 3 [lat, lon, r]) The locations of the observation points. sec_loc : ndarray (nsec, 3 [lat, lon, r]) The locations of the SEC points. Returns ------- ndarray (nobs, 3, nsec) The J transfer matrix. """ nobs = len(obs_loc) nsec = len(sec_loc) obs_r = obs_loc[:, 2][:, np.newaxis] sec_r = sec_loc[:, 2][np.newaxis, :] # Input to the distance calculations is degrees, output is in radians theta = calc_angular_distance(obs_loc[:, :2], sec_loc[:, :2]) alpha = calc_bearing(obs_loc[:, :2], sec_loc[:, :2]) # Amm & Viljanen: Equation 6 tan_theta2 = np.tan(theta/2.) J_phi = 1./(4*np.pi*sec_r) J_phi = np.divide(J_phi, tan_theta2, out=np.ones_like(tan_theta2)*np.inf, where=tan_theta2 != 0.) # Only valid on the SEC shell J_phi[sec_r != obs_r] = 0. # Transform back to Bx, By, Bz at each local point J =
np.empty((nobs, 3, nsec))
numpy.empty
import cv2 import matplotlib.pyplot as plt import matplotlib.image as mpimg import numpy as np from dataclasses import dataclass, field from typing import List from camera_distortion import load_camera_precalculated_coefficients, correct_camera_distortion from threshold import get_binary_image from perspective import warp_image from utility import get_input_path, get_output_folder_path def transform_image(image, show_process=False): camera_matrix, distortion_coeff = load_camera_precalculated_coefficients() undistort_image = correct_camera_distortion(image, camera_matrix, distortion_coeff) binary_image = get_binary_image(undistort_image) binary_warped, M = warp_image(binary_image) if show_process: fig, ax = plt.subplots(3) ax[0].imshow(undistort_image) ax[1].imshow(binary_image, cmap="gray") ax[2].imshow(binary_warped, cmap="gray") plt.show() return M, binary_warped @dataclass class LanePolynominal: current_fit: List[float] = None last_best_fit: List[float] = None previous_fits: List[List[float]] = field(default_factory=list) detected: bool = False def fit_polynominal(self, lanex, laney, side): try: self.current_fit = np.polyfit(laney, lanex, 2) self.previous_fits.append(self.current_fit) self.detected = True self.last_best_fit = np.mean(self.previous_fits[-4:], axis=0) except Exception: if len(self.previous_fits) == 1: self.previous_fits = [] self.detected = False return self.last_best_fit class LaneDetector: LEFT_LANE = "left" RIGHT_LANE = "right" def __init__(self): self.left_lane = LanePolynominal() self.right_lane = LanePolynominal() # Set Hyperparamaters self.nwindows = 30 # Set the width of the windows +/- margin self.margin = 100 # Set minimum number of pixels found to recenter window self.minpix = 50 # Set height of windows - based on nwindows above and image shape def _get_lane_centers(self, binary_warped, draw_windows=False): histogram = np.sum(binary_warped[binary_warped.shape[0] // 2 :, :], axis=0) if draw_windows: plt.figure() plt.plot(histogram) # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint = np.int(histogram.shape[0] // 2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint return leftx_base, rightx_base def get_lanes(self, binary_warped, draw=False): # left_fit = self.left_fits[-1] if self.left_fits is not [] and self.left_fits[-1] != None else None # right_fit = self.right_fits[-1] if self.right_fits is not [] and self.right_fits[-1] != None else None if self.left_lane.detected is True and self.right_lane.detected is True: left_fitx, right_fitx, ploty = self._search_around_prior_poly(binary_warped, draw) self.window_height = np.int(binary_warped.shape[0] // self.nwindows) self.left_lane_tracker = True self.right_lane_tracker = True windows_img = np.dstack((binary_warped, binary_warped, binary_warped)) width, height = height, width = binary_warped.shape[:2] # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated later for each window in nwindows leftx_base, rightx_base = self._get_lane_centers(binary_warped) # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] leftx_current = leftx_base rightx_current = rightx_base counter = 0 for window in range(self.nwindows): if self.left_lane_tracker: good_left_inds, leftx_current = self._sliding_window( window, leftx_current, nonzerox, nonzeroy, height, width, "left", windows_img, counter, draw_windows=draw, ) left_lane_inds.append(good_left_inds) if self.right_lane_tracker: good_right_inds, rightx_current = self._sliding_window( window, rightx_current, nonzerox, nonzeroy, height, width, "right", windows_img, counter, draw_windows=draw, ) right_lane_inds.append(good_right_inds) if self.left_lane_tracker and self.right_lane_tracker: counter += 1 if not self.left_lane_tracker and not self.right_lane_tracker: break left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] if draw: fig = plt.figure() fig.suptitle("Windows") plt.imshow(windows_img) left_fitx, right_fitx, ploty = self._get_polynominals(binary_warped, leftx, lefty, rightx, righty) out_img = np.dstack((binary_warped, binary_warped, binary_warped)) out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] return left_fitx, right_fitx, ploty, out_img def _sliding_window( self, window, lanex_current, nonzerox, nonzeroy, height, width, side, out_img, counter, draw_windows=False ): win_y_low = height - (window + 1) * self.window_height win_y_high = height - window * self.window_height win_xlane_low = lanex_current - self.margin win_xlane_high = lanex_current + self.margin if draw_windows: cv2.rectangle(out_img, (win_xlane_low, win_y_low), (win_xlane_high, win_y_high), (0, 255, 0), 2) good_lane_inds = ( (nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xlane_low) & (nonzerox < win_xlane_high) ).nonzero()[0] if (win_xlane_high > width or win_xlane_low < 0) and counter >= 5: if side == self.LEFT_LANE: self.left_lane_tracker = False elif side == self.RIGHT_LANE: self.right_lane_tracker = False ### f you found > minpix pixels, recenter next window ### ### (`right` or `leftx_current`) on their mean position ### if len(good_lane_inds) > self.minpix: lanex_current = np.int(np.mean(nonzerox[good_lane_inds])) return good_lane_inds, lanex_current def _search_around_prior_poly(self, binary_warped, draw_windows=False): # Take last polynominals left_fit = self.left_lane.previous_fits[-1] right_fit = self.right_lane.previous_fits[-1] # Grab activated pixels nonzero = binary_warped.nonzero() nonzeroy =
np.array(nonzero[0])
numpy.array
# -*- coding: utf-8 -*- """ Created on Tues at some point in time @author: bokorn with some code pulled from https://github.com/yuxng/PoseCNN/blob/master/lib/datasets/lov.py """ import os import cv2 import torch import numpy as np import scipy.io as sio import time import sys from se3_distributions.datasets.image_dataset import PoseImageDataset from se3_distributions.datasets.ycb_data_processing import preprocessPoseCNNMetaData from se3_distributions.utils import SingularArray import se3_distributions.utils.transformations as tf_trans from se3_distributions.utils.pose_processing import viewpoint2Pose from se3_distributions.utils.image_preprocessing import cropAndPad from transforms3d.quaternions import quat2mat, mat2quat def ycbRenderTransform(q): trans_quat = q.copy() trans_quat = tf_trans.quaternion_multiply(trans_quat, tf_trans.quaternion_about_axis(-np.pi/2, [1,0,0])) return viewpoint2Pose(trans_quat) def setYCBCamera(renderer, width=640, height=480): fx = 1066.778 fy = 1067.487 px = 312.9869 py = 241.3109 renderer.setCameraMatrix(fx, fy, px, py, width, height) def getYCBSymmeties(obj): if(obj == 13): return [[0,0,1]], [[np.inf]] elif(obj == 16): return [[0.9789,-0.2045,0.], [0.,0.,1.]], [[0.,np.pi], [0.,np.pi/2,np.pi,3*np.pi/2]] elif(obj == 19): return [[-0.14142136, 0.98994949,0]], [[0.,np.pi]] elif(obj == 20): return [[0.9931506 , 0.11684125,0]], [[0.,np.pi]] elif(obj == 21): return [[0.,0.,1.]], [[0.,np.pi]] else: return [],[] class YCBDataset(PoseImageDataset): def __init__(self, data_dir, image_set, obj = None, use_syn_data = False, use_posecnn_masks = False, *args, **kwargs): super(YCBDataset, self).__init__(*args, **kwargs) self.use_syn_data = use_syn_data self.data_dir = data_dir #self.classes = ('__background__', '002_master_chef_can', '003_cracker_box', '004_sugar_box', '005_tomato_soup_can', '006_mustard_bottle', \ # '007_tuna_fish_can', '008_pudding_box', '009_gelatin_box', '010_potted_meat_can', '011_banana', '019_pitcher_base', \ # '021_bleach_cleanser', '024_bowl', '025_mug', '035_power_drill', '036_wood_block', '037_scissors', '040_large_marker', \ # '051_large_clamp', '052_extra_large_clamp', '061_foam_brick') self.classes = ['__background__'] with open(os.path.join(self.data_dir, 'image_sets', 'classes.txt')) as f: self.classes.extend([x.rstrip('\n') for x in f.readlines()]) self.num_classes = len(self.classes) self.model_filenames = {} for j in range(1, self.num_classes): self.model_filenames[j] = os.path.join(self.data_dir, 'models', self.classes[j], 'textured.obj') self.symmetry = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1]) self.image_set = image_set self.append_rendered = False self.use_posecnn_masks = use_posecnn_masks #self.data_filenames = self.loadImageSet() if(obj is not None): self.setObject(obj) #self.points, self.points_all = self.load_object_points() def getSymmetry(self): return getYCBSymmeties(self.obj) def loadObjectPoints(self): points = [[] for _ in xrange(len(self.classes))] num = np.inf for i in xrange(1, len(self.classes)): point_file = os.path.join(self.data_dir, 'models', self.classes[i], 'points.xyz') #print point_file assert os.path.exists(point_file), 'Path does not exist: {}'.format(point_file) points[i] =
np.loadtxt(point_file)
numpy.loadtxt
#============================================================================== # WELCOME #============================================================================== # Welcome to RainyDay, a framework for coupling remote sensing precipitation # fields with Stochastic Storm Transposition for assessment of rainfall-driven hazards. # Copyright (C) 2017 <NAME> (<EMAIL>) # #Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.# #============================================================================== # THIS DOCUMENT CONTAINS VARIOUS FUNCTIONS NEEDED TO RUN RainyDay #============================================================================== import os import sys import numpy as np import scipy as sp import glob import math from datetime import datetime, date, time, timedelta import time from copy import deepcopy from mpl_toolkits.basemap import Basemap, addcyclic from matplotlib.patches import Polygon from scipy import stats from netCDF4 import Dataset, num2date, date2num #import gdal import rasterio import pandas as pd from numba import prange,jit import shapely import geopandas as gp from scipy.stats import norm from scipy.stats import lognorm # plotting stuff, really only needed for diagnostic plots import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import LogNorm import subprocess try: os.environ.pop('PYTHONIOENCODING') except KeyError: pass import warnings warnings.filterwarnings("ignore") from numba.types import int32,int64,float32,uint32 import linecache GEOG="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" # ============================================================================= # Smoother that is compatible with nan values. Adapted from https://stackoverflow.com/questions/18697532/gaussian-filtering-a-image-with-nan-in-python # ============================================================================= def mysmoother(inarray,sigma=[3,3]): if len(sigma)!=len(inarray.shape): sys.exit("there seems to be a mismatch between the sigma dimension and the dimension of the array you are trying to smooth") V=inarray.copy() V[np.isnan(inarray)]=0. VV=sp.ndimage.gaussian_filter(V,sigma=sigma) W=0.*inarray.copy()+1. W[np.isnan(inarray)]=0. WW=sp.ndimage.gaussian_filter(W,sigma=sigma) outarray=VV/WW outarray[np.isnan(inarray)]=np.nan return outarray def my_kde_bandwidth(obj, fac=1): # this 1.5 choice is completely subjective :( #We use Scott's Rule, multiplied by a constant factor return np.power(obj.n, -1./(obj.d+4)) * fac def convert_3D_2D(geometry): ''' Takes a GeoSeries of 3D Multi/Polygons (has_z) and returns a list of 2D Multi/Polygons ''' new_geo = [] for p in geometry: if p.has_z: if p.geom_type == 'Polygon': lines = [xy[:2] for xy in list(p.exterior.coords)] new_p = shapely.geometry.Polygon(lines) new_geo.append(new_p) elif p.geom_type == 'MultiPolygon': new_multi_p = [] for ap in p: lines = [xy[:2] for xy in list(ap.exterior.coords)] new_p = shapely.geometry.Polygon(lines) new_multi_p.append(new_p) new_geo.append(shapely.geometry.MultiPolygon(new_multi_p)) return new_geo #============================================================================== # LOOP TO DO SPATIAL SEARCHING FOR MAXIMUM RAINFALL LOCATION AT EACH TIME STEP # THIS IS THE CORE OF THE STORM CATALOG CREATION TECHNIQUE #============================================================================== #def catalogweave(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum): # rainsum[:]=0. # code= """ # #include <stdio.h> # int i,j,x,y; # for (x=0;x<xlen;x++) { # for (y=0;y<ylen;y++) { # for (j=0;j<maskheight;j++) { # for (i=0;i<maskwidth;i++) { # rainsum(y,x)=rainsum(y,x)+temparray(y+j,x+i)*trimmask(j,i); # } # } # } # } # """ # vars=['temparray','trimmask','xlen','ylen','maskheight','maskwidth','rainsum'] # sp.weave.inline(code,vars,type_converters=converters.blitz,compiler='gcc') # rmax=np.nanmax(rainsum) # wheremax=np.where(rainsum==rmax) # return rmax, wheremax[0][0], wheremax[1][0] # def catalogAlt(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum,domainmask): rainsum[:]=0. for i in range(0,(ylen)*(xlen)): y=i//xlen x=i-y*xlen #print x, rainsum[y,x]=np.nansum(np.multiply(temparray[(y):(y+maskheight),(x):(x+maskwidth)],trimmask)) #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(rainsum==rmax) return rmax, wheremax[0][0], wheremax[1][0] def catalogAlt_irregular(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum,domainmask): rainsum[:]=0. for i in range(0,(ylen)*(xlen)): y=i//xlen x=i-y*xlen #print x,y if np.any(np.equal(domainmask[y+maskheight/2,x:x+maskwidth],1.)) and np.any(np.equal(domainmask[y:y+maskheight,x+maskwidth/2],1.)): rainsum[y,x]=np.nansum(np.multiply(temparray[(y):(y+maskheight),(x):(x+maskwidth)],trimmask)) else: rainsum[y,x]=0. #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(rainsum==rmax) return rmax, wheremax[0][0], wheremax[1][0] @jit(nopython=True,fastmath=True) def catalogNumba_irregular(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum,domainmask): rainsum[:]=0. halfheight=int32(np.ceil(maskheight/2)) halfwidth=int32(np.ceil(maskwidth/2)) for i in range(0,ylen*xlen): y=i//xlen x=i-y*xlen #print x,y if np.any(np.equal(domainmask[y+halfheight,x:x+maskwidth],1.)) and np.any(np.equal(domainmask[y:y+maskheight,x+halfwidth],1.)): rainsum[y,x]=np.nansum(np.multiply(temparray[y:(y+maskheight),x:(x+maskwidth)],trimmask)) else: rainsum[y,x]=0. #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(np.equal(rainsum,rmax)) return rmax, wheremax[0][0], wheremax[1][0] @jit(nopython=True) def catalogNumba(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum): rainsum[:]=0. for i in range(0,(ylen)*(xlen)): y=i//xlen x=i-y*xlen #print x,y rainsum[y,x]=np.nansum(np.multiply(temparray[(y):(y+maskheight),(x):(x+maskwidth)],trimmask)) #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(np.equal(rainsum,rmax)) return rmax, wheremax[0][0], wheremax[1][0] @jit(nopython=True) def DistributionBuilder(intenserain,tempmax,xlen,ylen,checksep): for y in np.arange(0,ylen): for x in np.arange(0,xlen): if np.any(checksep[:,y,x]): #fixind=np.where(checksep[:,y,x]==True) for i in np.arange(0,checksep.shape[0]): if checksep[i,y,x]==True: fixind=i break if tempmax[y,x]>intenserain[fixind,y,x]: intenserain[fixind,y,x]=tempmax[y,x] checksep[:,y,x]=False checksep[fixind,y,x]=True else: checksep[fixind,y,x]=False elif tempmax[y,x]>np.min(intenserain[:,y,x]): fixind=np.argmin(intenserain[:,y,x]) intenserain[fixind,y,x]=tempmax[y,x] checksep[fixind,y,x]=True return intenserain,checksep # slightly faster numpy-based version of above def DistributionBuilderFast(intenserain,tempmax,xlen,ylen,checksep): minrain=np.min(intenserain,axis=0) if np.any(checksep): flatsep=np.any(checksep,axis=0) minsep=np.argmax(checksep[:,flatsep],axis=0) islarger=np.greater(tempmax[flatsep],intenserain[minsep,flatsep]) if np.any(islarger): intenserain[minsep,flatsep][islarger]=tempmax[flatsep][islarger] checksep[:]=False checksep[minsep,flatsep]=True else: checksep[minsep,flatsep]=False elif np.any(np.greater(tempmax,minrain)): #else: fixind=np.greater(tempmax,minrain) minrainind=np.argmin(intenserain,axis=0) intenserain[minrainind[fixind],fixind]=tempmax[fixind] checksep[minrainind[fixind],fixind]=True return intenserain,checksep #def SSTalt(passrain,sstx,ssty,trimmask,maskheight,maskwidth,intense_data=False): # rainsum=np.zeros((len(sstx)),dtype='float32') # nreals=len(rainsum) # # for i in range(0,nreals): # rainsum[i]=np.nansum(np.multiply(passrain[(ssty[i]) : (ssty[i]+maskheight) , (sstx[i]) : (sstx[i]+maskwidth)],trimmask)) # return rainsum @jit(fastmath=True) def SSTalt(passrain,sstx,ssty,trimmask,maskheight,maskwidth,intensemean=None,intensestd=None,intensecorr=None,homemean=None,homestd=None,durcheck=False): maxmultiplier=1.5 rainsum=np.zeros((len(sstx)),dtype='float32') whichstep=np.zeros((len(sstx)),dtype='int32') nreals=len(rainsum) nsteps=passrain.shape[0] multiout=np.empty_like(rainsum) if (intensemean is not None) and (homemean is not None): domean=True else: domean=False if (intensestd is not None) and (intensecorr is not None) and (homestd is not None): #rquant=np.random.random_integers(5,high=95,size=nreals)/100. rquant=np.random.random_sample(size=nreals) doall=True else: doall=False rquant=np.nan if durcheck==False: exprain=np.expand_dims(passrain,0) else: exprain=passrain for k in range(0,nreals): y=int(ssty[k]) x=int(sstx[k]) if np.all(np.less(exprain[:,y:y+maskheight,x:x+maskwidth],0.5)): rainsum[k]=0. multiout[k]=-999. else: if domean: #sys.exit('need to fix short duration part') muR=homemean-intensemean[y,x] if doall: stdR=np.sqrt(np.power(homestd,2)+np.power(intensestd[y,x],2)-2.*intensecorr[y,x]*homestd*intensestd[y,x]) # multiplier=sp.stats.lognorm.ppf(rquant[k],stdR,loc=0,scale=np.exp(muR)) #multiplier=10. #while multiplier>maxmultiplier: # who knows what the right number is to use here... inverrf=sp.special.erfinv(2.*rquant-1.) multiplier=np.exp(muR+np.sqrt(2.*np.power(stdR,2))*inverrf[k]) #multiplier=np.random.lognormal(muR,stdR) if multiplier>maxmultiplier: multiplier=1. else: multiplier=np.exp(muR) if multiplier>maxmultiplier: multiplier=1. else: multiplier=1. # print("still going!") if multiplier>maxmultiplier: sys.exit("Something seems to be going horribly wrong in the multiplier scheme!") else: multiout[k]=multiplier if durcheck==True: storesum=0. storestep=0 for kk in range(0,nsteps): #tempsum=numba_multimask_calc(passrain[kk,:],rsum,train,trimmask,ssty[k],maskheight,sstx[k],maskwidth)*multiplier tempsum=numba_multimask_calc(passrain[kk,:],trimmask,y,x,maskheight,maskwidth)*multiplier if tempsum>storesum: storesum=tempsum storestep=kk rainsum[k]=storesum whichstep[k]=storestep else: rainsum[k]=numba_multimask_calc(passrain,trimmask,y,x,maskheight,maskwidth)*multiplier if domean: return rainsum,multiout,whichstep else: return rainsum,whichstep #@jit(nopython=True,fastmath=True,parallel=True) @jit(nopython=True,fastmath=True) def numba_multimask_calc(passrain,trimmask,ssty,sstx,maskheight,maskwidth): train=np.multiply(passrain[ssty : ssty+maskheight , sstx : sstx+maskwidth],trimmask) rainsum=np.sum(train) return rainsum @jit(fastmath=True) def SSTalt_singlecell(passrain,sstx,ssty,trimmask,maskheight,maskwidth,intensemean=None,intensestd=None,intensecorr=None,homemean=None,homestd=None,durcheck=False): rainsum=np.zeros((len(sstx)),dtype='float32') whichstep=np.zeros((len(sstx)),dtype='int32') nreals=len(rainsum) nsteps=passrain.shape[0] multiout=np.empty_like(rainsum) # do we do deterministic or dimensionless rescaling? if (intensemean is not None) and (homemean is not None): domean=True else: domean=False # do we do stochastic rescaling? if (intensestd is not None) and (intensecorr is not None) and (homestd is not None): rquant=np.random.random_sample(size=nreals) inverrf=sp.special.erfinv(2.*rquant-1.) doall=True else: doall=False #rquant=np.nan if durcheck==False: passrain=np.expand_dims(passrain,0) # deterministic or dimensionless: if domean and doall==False: rain,multi,step=killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=durcheck,intensemean=intensemean,homemean=homemean,multiout=multiout) return rain,multi,step # stochastic: elif doall: rain,multi,step=killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=durcheck,intensemean=intensemean,intensestd=intensestd,intensecorr=intensecorr,homemean=homemean,homestd=homestd,multiout=multiout,inverrf=inverrf) return rain,multi,step # no rescaling: else: rain,_,step=killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=durcheck,multiout=multiout) return rain,step #@jit(nopython=True,fastmath=True,parallel=True) @jit(nopython=True,fastmath=True) def killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=False,intensemean=None,homemean=None,homestd=None,multiout=None,rquant=None,intensestd=None,intensecorr=None,inverrf=None): maxmultiplier=1.5 # who knows what the right number is to use here... for k in prange(nreals): y=int(ssty[k]) x=int(sstx[k]) # deterministic or dimensionless: if (intensemean is not None) and (homemean is not None) and (homestd is None): if np.less(homemean,0.001) or np.less(intensemean[y,x],0.001): multiplier=1. # or maybe this should be zero else: multiplier=np.exp(homemean-intensemean[y,x]) if multiplier>maxmultiplier: multiplier=1. # or maybe this should be zero # stochastic: elif (intensemean is not None) and (homemean is not None) and (homestd is not None): if np.less(homemean,0.001) or np.less(intensemean[y,x],0.001): multiplier=1. # or maybe this should be zero else: muR=homemean-intensemean[y,x] stdR=np.sqrt(np.power(homestd,2)+np.power(intensestd[y,x],2)-2*intensecorr[y,x]*homestd*intensestd[y,x]) multiplier=np.exp(muR+np.sqrt(2.*np.power(stdR,2))*inverrf[k]) if multiplier>maxmultiplier: multiplier=1. # or maybe this should be zero # no rescaling: else: multiplier=1. if durcheck==False: rainsum[k]=np.nansum(passrain[:,y, x]) else: storesum=0. storestep=0 for kk in range(nsteps): tempsum=passrain[kk,y,x] if tempsum>storesum: storesum=tempsum storestep=kk rainsum[k]=storesum*multiplier multiout[k]=multiplier whichstep[k]=storestep return rainsum,multiout,whichstep #@jit(nopython=True,fastmath=True,parallel=True) #def killerloop(passrain,rainsum,nreals,ssty,sstx,maskheight,maskwidth,trimmask,nsteps,durcheck): # for k in prange(nreals): # spanx=int64(sstx[k]+maskwidth) # spany=int64(ssty[k]+maskheight) # if np.all(np.less(passrain[:,ssty[k]:spany,sstx[k]:spanx],0.5)): # rainsum[k]=0. # else: # if durcheck==False: # rainsum[k]=np.nansum(np.multiply(passrain[ssty[k] : spany , sstx[k] : spanx],trimmask)) # else: # storesum=float32(0.) # for kk in range(nsteps): # tempsum=np.nansum(np.multiply(passrain[kk,ssty[k]:spany,sstx[k]:spanx],trimmask)) # if tempsum>storesum: # storesum=tempsum # rainsum[k]=storesum # return rainsum #whichstep[k]=storestep #return rainsum,whichstep # this function below never worked for some unknown Numba problem-error messages indicated that it wasn't my fault!!! Some problem in tempsum #@jit(nopython=True,fastmath=True,parallel=True) #def killerloop(passrain,rainsum,nreals,ssty,sstx,maskheight,maskwidth,masktile,nsteps,durcheck): # for k in prange(nreals): # spanx=sstx[k]+maskwidth # spany=ssty[k]+maskheight # if np.all(np.less(passrain[:,ssty[k]:spany,sstx[k]:spanx],0.5)): # rainsum[k]=0. # else: # if durcheck==False: # #tempstep=np.multiply(passrain[:,ssty[k] : spany , sstx[k] : spanx],trimmask) # #xnum=int64(sstx[k]) # #ynum=int64(ssty[k]) # #rainsum[k]=np.nansum(passrain[:,ssty[k], sstx[k]]) # rainsum[k]=np.nansum(np.multiply(passrain[:,ssty[k] : spany , sstx[k] : spanx],masktile)) # else: # storesum=float32(0.) # for kk in range(nsteps): # #tempsum=0. # #tempsum=np.multiply(passrain[kk,ssty[k]:spany,sstx[k]:spanx],masktile[0,:,:]) # tempsum=np.nansum(np.multiply(passrain[kk,ssty[k]:spany,sstx[k]:spanx],masktile[0,:,:])) # return rainsum #============================================================================== # THIS VARIANT IS SIMPLER AND UNLIKE SSTWRITE, IT ACTUALLY WORKS RELIABLY! #============================================================================== #def SSTwriteAlt(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth): # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # #ctr=0 # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # for j in unqwhere: # #ctr=ctr+1 # #print ctr # outrain[j,:]=np.multiply(catrain[unqstm[i],:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],trimmask) # return outrain #============================================================================== # THIS VARIANT IS SAME AS ABOVE, BUT HAS A MORE INTERESTING RAINFALL PREPENDING PROCEDURE #============================================================================== #def SSTwriteAltPreCat(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime): # catyears=ptime.astype('datetime64[Y]').astype(int)+1970 # ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]+precat.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # unqmonth=ptime[unqstm[i]] # pretimeind=np.where(np.logical_and(ptime>unqmonth-2,ptime<unqmonth+2))[0] # for j in unqwhere: # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),catrain[unqstm[i],:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # outrain[j,:]=np.multiply(temprain,trimmask) # return outrain # #============================================================================== # SAME AS ABOVE, BUT HANDLES STORM ROTATION #============================================================================== #def SSTwriteAltPreCatRotation(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime,delarray,rlzanglebin,rainprop): ##def SSTwriteAltPreCatRotation(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime,delarray,rlzanglebin): # catyears=ptime.astype('datetime64[Y]').astype(int)+1970 # ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]+precat.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # unqstm is the storm number # # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # unqmonth=ptime[unqstm[i]] # pretimeind=np.where(np.logical_and(ptime>unqmonth-2,ptime<unqmonth+2))[0] # for j in unqwhere: # inrain=catrain[unqstm[i],:].copy() # # xctr=rlzx[j]+maskwidth/2. # yctr=rlzy[j]+maskheight/2. # xlinsp=np.linspace(-xctr,rainprop.subdimensions[1]-xctr,rainprop.subdimensions[1]) # ylinsp=np.linspace(-yctr,rainprop.subdimensions[0]-yctr,rainprop.subdimensions[0]) # # ingridx,ingridy=np.meshgrid(xlinsp,ylinsp) # ingridx=ingridx.flatten() # ingridy=ingridy.flatten() # outgrid=np.column_stack((ingridx,ingridy)) # # for k in range(0,inrain.shape[0]): # interp=sp.interpolate.LinearNDInterpolator(delarray[unqstm[i]][rlzanglebin[j]-1],inrain[k,:].flatten(),fill_value=0.) # inrain[k,:]=np.reshape(interp(outgrid),rainprop.subdimensions) # #inrain[k,:]=temprain # # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # # outrain[j,:]=np.multiply(temprain,trimmask) # return outrain @jit(fastmath=True) def SSTspin_write_v2(catrain,rlzx,rlzy,rlzstm,trimmask,maskheight,maskwidth,precat,ptime,rainprop,rlzanglebin=None,delarray=None,spin=False,flexspin=True,samptype='uniform',cumkernel=None,rotation=False,domaintype='rectangular'): catyears=ptime.astype('datetime64[Y]').astype(int)+1970 ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 nyrs=np.int(rlzx.shape[0]) raindur=np.int(catrain.shape[1]+precat.shape[1]) outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # unqstm is the storm number for i in range(0,len(unqstm)): unqwhere=np.where(unqstm[i]==rlzstm)[0] unqmonth=ptime[unqstm[i]] pretimeind=np.where(np.logical_and(ptime>unqmonth-1,ptime<unqmonth+1))[0] # flexspin allows you to use spinup rainfall from anywhere in transposition domain, rather than just storm locations, but it doesn't seem to be very useful based on initial testing if spin==True and flexspin==True: if samptype=='kernel' or domaintype=='irregular': rndloc=np.random.random_sample(len(unqwhere)) shiftprex,shiftprey=numbakernel(rndloc,cumkernel) else: shiftprex=np.random.random_integers(0,np.int(rainprop.subdimensions[1])-maskwidth-1,len(unqwhere)) shiftprey=np.random.random_integers(0,np.int(rainprop.subdimensions[0])-maskheight-1,len(unqwhere)) ctr=0 for j in unqwhere: inrain=catrain[unqstm[i],:].copy() # this doesn't rotate the prepended rainfall if rotation==True: xctr=rlzx[j]+maskwidth/2. yctr=rlzy[j]+maskheight/2. xlinsp=np.linspace(-xctr,rainprop.subdimensions[1]-xctr,rainprop.subdimensions[1]) ylinsp=np.linspace(-yctr,rainprop.subdimensions[0]-yctr,rainprop.subdimensions[0]) ingridx,ingridy=np.meshgrid(xlinsp,ylinsp) ingridx=ingridx.flatten() ingridy=ingridy.flatten() outgrid=np.column_stack((ingridx,ingridy)) for k in range(0,inrain.shape[0]): interp=sp.interpolate.LinearNDInterpolator(delarray[unqstm[i]][rlzanglebin[j]-1],inrain[k,:].flatten(),fill_value=0.) inrain[k,:]=np.reshape(interp(outgrid),rainprop.subdimensions) if spin==True and flexspin==True: temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(shiftprey[ctr]) : (shiftprey[ctr]+maskheight) , (shiftprex[ctr]) : (shiftprex[ctr]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) elif spin==True and flexspin==False: temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) elif spin==False: temprain=inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)] else: sys.exit("what else is there?") ctr=ctr+1 outrain[j,:]=np.multiply(temprain,trimmask) return outrain ##============================================================================== ## SAME AS ABOVE, BUT A BIT MORE DYNAMIC IN TERMS OF SPINUP ##============================================================================== #def SSTspin_write_v2(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime,rainprop,rlzanglebin=None,delarray=None,spin=False,flexspin=True,samptype='uniform',cumkernel=None,rotation=False,domaintype='rectangular',intense_data=False): # catyears=ptime.astype('datetime64[Y]').astype(int)+1970 # ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]+precat.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # unqstm is the storm number # # if intense_data!=False: # sys.exit("Scenario writing for intensity-based resampling not tested!") # intquant=intense_data[0] # fullmu=intense_data[1] # fullstd=intense_data[2] # muorig=intense_data[3] # stdorig=intense_data[4] # # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # unqmonth=ptime[unqstm[i]] # pretimeind=np.where(np.logical_and(ptime>unqmonth-1,ptime<unqmonth+1))[0] # # if transpotype=='intensity': # origmu=np.multiply(murain[caty[i]:caty[i]+maskheight,catx[i]:catx[i]+maskwidth],trimmask) # origstd=np.multiply(stdrain[caty[i]:caty[i]+maskheight,catx[i]:catx[i]+maskwidth],trimmask) # #intense_dat=[intquant[],murain,stdrain,origmu,origstd] # # # flexspin allows you to use spinup rainfall from anywhere in transposition domain, rather than just storm locations, but it doesn't seem to be very useful based on initial testing # if spin==True and flexspin==True: # if samptype=='kernel' or domaintype=='irregular': # rndloc=np.random.random_sample(len(unqwhere)) # shiftprex,shiftprey=numbakernel(rndloc,cumkernel) # else: # shiftprex=np.random.random_integers(0,np.int(rainprop.subdimensions[1])-maskwidth-1,len(unqwhere)) # shiftprey=np.random.random_integers(0,np.int(rainprop.subdimensions[0])-maskheight-1,len(unqwhere)) # # ctr=0 # for j in unqwhere: # inrain=catrain[unqstm[i],:].copy() # # if intense_data!=False: # transmu=np.multiply(fullmu[(rlzy[i]) : (rlzy[i]+maskheight) , (rlzx[i]) : (rlzx[i]+maskwidth)],trimmask) # transtd=np.multiply(fullstd[(rlzy[i]) : (rlzy[i]+maskheight) , (rlzx[i]) : (rlzx[i]+maskwidth)],trimmask) # mu_multi=transmu/muorig # std_multi=np.abs(transtd-stdorig)/stdorig # multipliermask=norm.ppf(intquant[i],loc=mu_multi,scale=std_multi) # multipliermask[multipliermask<0.]=0. # multipliermask[np.isnan(multipliermask)]=0. # # # this doesn't rotate the prepended rainfall # if rotation==True: # xctr=rlzx[j]+maskwidth/2. # yctr=rlzy[j]+maskheight/2. # xlinsp=np.linspace(-xctr,rainprop.subdimensions[1]-xctr,rainprop.subdimensions[1]) # ylinsp=np.linspace(-yctr,rainprop.subdimensions[0]-yctr,rainprop.subdimensions[0]) # # ingridx,ingridy=np.meshgrid(xlinsp,ylinsp) # ingridx=ingridx.flatten() # ingridy=ingridy.flatten() # outgrid=np.column_stack((ingridx,ingridy)) # # for k in range(0,inrain.shape[0]): # interp=sp.interpolate.LinearNDInterpolator(delarray[unqstm[i]][rlzanglebin[j]-1],inrain[k,:].flatten(),fill_value=0.) # inrain[k,:]=np.reshape(interp(outgrid),rainprop.subdimensions) # # if spin==True and flexspin==True: # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(shiftprey[ctr]) : (shiftprey[ctr]+maskheight) , (shiftprex[ctr]) : (shiftprex[ctr]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # elif spin==True and flexspin==False: # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # elif spin==False: # temprain=inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)] # else: # sys.exit("what else is there?") # ctr=ctr+1 # if intense_data!=False: # outrain[j,:]=np.multiply(temprain,multipliermask) # else: # outrain[j,:]=np.multiply(temprain,trimmask) # return outrain #============================================================================== # LOOP FOR KERNEL BASED STORM TRANSPOSITION # THIS FINDS THE TRANSPOSITION LOCATION FOR EACH REALIZATION IF YOU ARE USING THE KERNEL-BASED RESAMPLER # IF I CONFIGURE THE SCRIPT SO THE USER CAN PROVIDE A CUSTOM RESAMPLING SCHEME, THIS WOULD PROBABLY WORK FOR THAT AS WELL #============================================================================== #def weavekernel(rndloc,cumkernel): # nlocs=len(rndloc) # nrows=cumkernel.shape[0] # ncols=cumkernel.shape[1] # tempx=np.empty((len(rndloc)),dtype="int32") # tempy=np.empty((len(rndloc)),dtype="int32") # code= """ # #include <stdio.h> # int i,x,y,brklp; # double prevprob; # for (i=0;i<nlocs;i++) { # prevprob=0.0; # brklp=0; # for (y=0; y<nrows; y++) { # for (x=0; x<ncols; x++) { # if ( (rndloc(i)<=cumkernel(y,x)) && (rndloc(i)>prevprob) ) { # tempx(i)=x; # tempy(i)=y; # prevprob=cumkernel(y,x); # brklp=1; # break; # } # } # if (brklp==1) { # break; # } # } # } # """ # vars=['rndloc','cumkernel','nlocs','nrows','ncols','tempx','tempy'] # sp.weave.inline(code,vars,type_converters=converters.blitz,compiler='gcc') # return tempx,tempy def pykernel(rndloc,cumkernel): nlocs=len(rndloc) ncols=cumkernel.shape[1] tempx=np.empty((len(rndloc)),dtype="int32") tempy=np.empty((len(rndloc)),dtype="int32") flatkern=np.append(0.,cumkernel.flatten()) for i in range(0,nlocs): x=rndloc[i]-flatkern x[np.less(x,0.)]=1000. whereind = np.argmin(x) y=whereind//ncols x=whereind-y*ncols tempx[i]=x tempy[i]=y return tempx,tempy @jit def numbakernel(rndloc,cumkernel,tempx,tempy,ncols): nlocs=len(rndloc) #ncols=xdim flatkern=np.append(0.,cumkernel.flatten()) #x=np.zeros_like(rndloc,dtype='float64') for i in np.arange(0,nlocs): x=rndloc[i]-flatkern x[np.less(x,0.)]=10. whereind=np.argmin(x) y=whereind//ncols x=whereind-y*ncols tempx[i]=x tempy[i]=y return tempx,tempy @jit def numbakernel_fast(rndloc,cumkernel,tempx,tempy,ncols): nlocs=int32(len(rndloc)) ncols=int32(cumkernel.shape[1]) flatkern=np.append(0.,cumkernel.flatten()) return kernelloop(nlocs,rndloc,flatkern,ncols,tempx,tempy) #@jit(nopython=True,fastmath=True,parallel=True) @jit(nopython=True,fastmath=True) def kernelloop(nlocs,rndloc,flatkern,ncols,tempx,tempy): for i in prange(nlocs): diff=rndloc[i]-flatkern diff[np.less(diff,0.)]=10. whereind=np.argmin(diff) y=whereind//ncols x=whereind-y*ncols tempx[i]=x tempy[i]=y return tempx,tempy #============================================================================== # FIND THE BOUNDARY INDICIES AND COORDINATES FOR THE USER-DEFINED SUBAREA # NOTE THAT subind ARE THE MATRIX INDICIES OF THE SUBBOX, STARTING FROM UPPER LEFT CORNER OF DOMAIN AS (0,0) # NOTE THAT subcoord ARE THE COORDINATES OF THE OUTSIDE BORDER OF THE SUBBOX # THEREFORE THE DISTANCE FROM THE WESTERN (SOUTHERN) BOUNDARY TO THE EASTERN (NORTHERN) BOUNDARY IS NCOLS (NROWS) +1 TIMES THE EAST-WEST (NORTH-SOUTH) RESOLUTION #============================================================================== def findsubbox(inarea,rainprop): outind=np.empty([4],dtype='int') outextent=np.empty([4]) outdim=np.empty([2]) inbox=deepcopy(inarea) rangex=np.arange(rainprop.bndbox[0],rainprop.bndbox[1]-rainprop.spatialres[0]/1000,rainprop.spatialres[0]) rangey=np.arange(rainprop.bndbox[3],rainprop.bndbox[2]+rainprop.spatialres[1]/1000,-rainprop.spatialres[1]) if rangex.shape[0]<rainprop.dimensions[1]: rangex=np.append(rangex,rangex[-1]) if rangey.shape[0]<rainprop.dimensions[0]: rangey=np.append(rangey,rangey[-1]) if rangex.shape[0]>rainprop.dimensions[1]: rangex=rangex[0:-1] if rangey.shape[0]>rainprop.dimensions[0]: rangey=rangey[0:-1] outextent=inbox # "SNAP" output extent to grid outind[0]=np.abs(rangex-outextent[0]).argmin() outind[1]=np.abs(rangex-outextent[1]).argmin()-1 outind[2]=np.abs(rangey-outextent[2]).argmin()-1 outind[3]=np.abs(rangey-outextent[3]).argmin() outextent[0]=rangex[outind[0]] outextent[1]=rangex[outind[1]+1] outextent[2]=rangey[outind[2]+1] outextent[3]=rangey[outind[3]] outdim[1]=np.shape(np.arange(outind[0],outind[1]+1))[0] outdim[0]=np.shape(np.arange(outind[3],outind[2]+1))[0] outdim=np.array(outdim,dtype='int32') return outextent,outind,outdim #============================================================================== # THIS RETURNS A LOGICAL GRID THAT CAN THEN BE APPLIED TO THE GLOBAL GRID TO EXTRACT # A USEER-DEFINED SUBGRID # THIS HELPS TO KEEP ARRAY SIZES SMALL #============================================================================== def creategrids(rainprop): globrangex=np.arange(0,rainprop.dimensions[1],1) globrangey=np.arange(0,rainprop.dimensions[0],1) subrangex=np.arange(rainprop.subind[0],rainprop.subind[1]+1,1) subrangey=np.arange(rainprop.subind[3],rainprop.subind[2]+1,1) subindx=np.logical_and(globrangex>=subrangex[0],globrangex<=subrangex[-1]) subindy=np.logical_and(globrangey>=subrangey[0],globrangey<=subrangey[-1]) gx,gy=np.meshgrid(subindx,subindy) outgrid=np.logical_and(gx==True,gy==True) return outgrid,subindx,subindy #============================================================================== # FUNCTION TO CREATE A MASK ACCORDING TO A USER-DEFINED POLYGON SHAPEFILE AND PROJECTION # THIS USES GDAL COMMANDS FROM THE OS TO RASTERIZE #============================================================================== def rastermaskGDAL(shpname,shpproj,rainprop,masktype,fullpath,gdalpath=False): bndbox=np.array(rainprop.subind) bndcoords=np.array(rainprop.subextent) if rainprop.projection==GEOG: xdim=np.shape(np.linspace(bndcoords[0],bndcoords[1],rainprop.subind[1]-rainprop.subind[0]+1))[0] ydim=np.shape(np.linspace(bndcoords[2],bndcoords[3],rainprop.subind[2]-rainprop.subind[3]+1))[0] else: sys.exit("unrecognized projection!") rastertemplate=np.zeros((ydim,xdim),dtype='float32') if masktype=='simple': print('creating simple mask (0s and 1s)') #os.system('gdal_rasterize -at -burn 1.0 -te '+str(rainprop.subextent[0])+' '+str(rainprop.subextent[2])+' '+str(rainprop.subextent[1])+' '+str(rainprop.subextent[3])+' -tr '+str(rainprop.spatialres[0])+' '+str(rainprop.spatialres[1])+' -ts '+str(np.int(rainprop.subdimensions[1]))+' '+str(np.int(rainprop.subdimensions[0]))+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff'); if gdalpath!=False: rasterizecmd=gdalpath+'/gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0])+' '+"%.9f"%(rainprop.spatialres[1])+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1]))+' '+"%.9f"%(np.int(rainprop.subdimensions[0]))+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' else: rasterizecmd='gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0])+' '+"%.9f"%(rainprop.spatialres[1])+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1]))+' '+"%.9f"%(np.int(rainprop.subdimensions[0]))+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' os.system(rasterizecmd) ds=rasterio.open(fullpath+'/temp.tiff') rastertemplate=ds.read(1) os.system('rm '+fullpath+'/temp.tiff') elif masktype=="fraction": print('creating fractional mask (range from 0.0-1.0)') #os.system('gdal_rasterize -at -burn 1.0 -te '+str(rainprop.subextent[0])+' '+str(rainprop.subextent[2])+' '+str(rainprop.subextent[1])+' '+str(rainprop.subextent[3])+' -tr '+str(rainprop.spatialres[0]/10.)+' '+str(rainprop.spatialres[1]/10.)+' -ts '+str(np.int(rainprop.subdimensions[1])*10)+' '+str(np.int(rainprop.subdimensions[0])*10)+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff'); #os.system('gdalwarp -r average -te '+str(rainprop.subextent[0])+' '+str(rainprop.subextent[2])+' '+str(rainprop.subextent[1])+' '+str(rainprop.subextent[3])+' -ts '+str(np.int(rainprop.subdimensions[1]))+' '+str(np.int(rainprop.subdimensions[0]))+' -overwrite '+fullpath+'/temp.tiff '+fullpath+'/tempAGG.tiff'); if gdalpath!=False: rasterizecmd=gdalpath+'/gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0]/10.)+' '+"%.9f"%(rainprop.spatialres[1]/10.)+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1])*10)+' '+"%.9f"%(np.int(rainprop.subdimensions[0])*10)+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' else: rasterizecmd='gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0]/10.)+' '+"%.9f"%(rainprop.spatialres[1]/10.)+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1])*10)+' '+"%.9f"%(
np.int(rainprop.subdimensions[0])
numpy.int
""" Collection of math utility functions used by > 1 modules. """ from typing import Tuple import numpy as np def euler_coord_to_homogeneous_coord(Xe: np.array) -> np.array: """Convert Euler coordinates to homogeneous coordinates.""" no_points =
np.shape(Xe)
numpy.shape
import random import math from functools import partial import json import pysndfx import librosa import numpy as np import torch from ops.audio import ( read_audio, compute_stft, trim_audio, mix_audio_and_labels, shuffle_audio, cutout ) SAMPLE_RATE = 44100 class Augmentation: """A base class for data augmentation transforms""" pass class MapLabels: def __init__(self, class_map, drop_raw=True): self.class_map = class_map def __call__(self, dataset, **inputs): labels = np.zeros(len(self.class_map), dtype=np.float32) for c in inputs["raw_labels"]: labels[self.class_map[c]] = 1.0 transformed = dict(inputs) transformed["labels"] = labels transformed.pop("raw_labels") return transformed class MixUp(Augmentation): def __init__(self, p): self.p = p def __call__(self, dataset, **inputs): transformed = dict(inputs) if
np.random.uniform()
numpy.random.uniform
# -*- coding: utf-8 -*- """ Copyright Netherlands eScience Center Function : Forecast Lorenz 84 model - Train BayesConvLSTM model Author : <NAME> First Built : 2020.03.09 Last Update : 2020.04.12 Library : Pytorth, Numpy, NetCDF4, os, iris, cartopy, dlacs, matplotlib Description : This notebook serves to predict the Lorenz 84 model using deep learning. The Bayesian Convolutional Long Short Time Memory neural network is used to deal with this spatial-temporal sequence problem. We use Pytorch as the deep learning framework. Return Values : pkl model and figures """ import sys import warnings import numbers import logging import time as tttt # for data loading import os from netCDF4 import Dataset # for pre-processing and machine learning import numpy as np import sklearn #import scipy import torch import torch.nn.functional #sys.path.append(os.path.join('C:','Users','nosta','ML4Climate','Scripts','DLACs')) #sys.path.append("C:\\Users\\nosta\\ML4Climate\\Scripts\\DLACs") sys.path.append("../") import dlacs import dlacs.BayesConvLSTM import dlacs.preprocess import dlacs.function # for visualization import dlacs.visual import matplotlib # Generate images without having a window appear matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.pyplot import cm import iris # also helps with regriding import cartopy import cartopy.crs as ccrs # ignore all the DeprecationWarnings by pytorch if not sys.warnoptions: warnings.simplefilter("ignore") # constants constant = {'g' : 9.80616, # gravititional acceleration [m / s2] 'R' : 6371009, # radius of the earth [m] 'cp': 1004.64, # heat capacity of air [J/(Kg*K)] 'Lv': 2500000, # Latent heat of vaporization [J/Kg] 'R_dry' : 286.9, # gas constant of dry air [J/(kg*K)] 'R_vap' : 461.5, # gas constant for water vapour [J/(kg*K)] 'rho' : 1026, # sea water density [kg/m3] } # calculate the time for the code execution start_time = tttt.time() ################################################################################# ######### datapath ######## ################################################################################# # ** Reanalysis ** # **ERA-Interim** 1979 - 2016 (ECMWF) # **ORAS4** 1958 - 2014 (ECMWF) # please specify data path datapath = '/projects/0/blueactn/dataBayes' output_path = '/home/lwc16308/BayesArctic/DLACs/models/' ################################################################################# ######### main ######## ################################################################################# # set up logging files logging.basicConfig(filename = os.path.join(output_path,'logFile_Lorenz84_train.log'), filemode = 'w+', level = logging.DEBUG, format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') logging.getLogger('matplotlib.font_manager').disabled = True if __name__=="__main__": print ('*********************** get the key to the datasets *************************') ################################################################################# ########### configure Lorenz 84 model ########### ################################################################################# logging.info("Configure Lorenz 84 model") # Lorenz paramters and initial conditions x_init = 1.0 # strength of the symmetric globally encircling westerly current y_init = 1.0 # strength of the cosine phases of a chain of superposedwaves (large scale eddies) z_init = 1.0 # strength of the sine phases of a chain of superposedwaves (large scale eddies) F = 8.0 # thermal forcing term G = 1.0 # thermal forcing term a = 0.25 # stiffness factor for westerly wind x b = 4.0 # advection strength of the waves by the westerly current # assuming the damping time for the waves is 5 days (Lorens 1984) dt = 0.0333 # 1/30 unit of time unit (5 days) num_steps = 1500 # cut-off point of initialization period cut_off = 300 logging.info("#####################################") logging.info("Summary of Lorenz 84 model") logging.info("x = 1.0 y = 1.0 z = 1.0") logging.info("F = 8.0 G = 1.0 a = 0.25 b = 4.0") logging.info("unit time step 0.0333 (~5days)") logging.info("series length 1500 steps") logging.info("cut-off length 300 steps") logging.info("#####################################") ################################################################################# ########### Lorens 84 model ########### ################################################################################# def lorenz84(x, y, z, a = 0.25, b = 4.0, F = 8.0, G = 1.0): """ Solver of Lorens-84 model. param x, y, z: location in a 3D space param a, b, F, G: constants and forcing """ dx = - y**2 - z**2 - a * x + a * F dy = x * y - b * x * z - y + G dz = b * x * y + x * z - z return dx, dy, dz ################################################################################# ########### Launch Lorenz 84 model ########### ################################################################################# logging.info("Launch Lorenz 84 model") # Need one more for the initial values x =
np.empty(num_steps)
numpy.empty
"""Test the features of the lightkurve.prf.tpfmodels module.""" import os import pytest from astropy.io import fits import numpy as np from numpy.testing import assert_allclose from scipy.stats import mode from lightkurve.prf import FixedValuePrior, GaussianPrior, UniformPrior from lightkurve.prf import StarPrior, BackgroundPrior, FocusPrior, MotionPrior from lightkurve.prf import TPFModel, PRFPhotometry from lightkurve.prf import SimpleKeplerPRF, KeplerPRF from .. import TESTDATA def test_fixedvalueprior(): fvp = FixedValuePrior(1.5) assert fvp.mean == 1.5 assert fvp(1.5) == 0 def test_starprior(): """Tests the StarPrior class.""" col, row, flux = 1, 2, 3 sp = StarPrior( col=GaussianPrior(mean=col, var=0.1), row=GaussianPrior(mean=row, var=0.1), flux=GaussianPrior(mean=flux, var=0.1), ) assert sp.col.mean == col assert sp.row.mean == row assert sp.flux.mean == flux assert sp.evaluate(col, row, flux) == 0 # The object should be callable assert sp(col, row, flux + 0.1) == sp.evaluate(col, row, flux + 0.1) # A point further away from the mean should have a larger negative log likelihood assert sp.evaluate(col, row, flux) < sp.evaluate(col, row, flux + 0.1) # Object should have a nice __repr__ assert "StarPrior" in str(sp) def test_backgroundprior(): """Tests the BackgroundPrior class.""" flux = 2.0 bp = BackgroundPrior(flux=flux) assert bp.flux.mean == flux assert bp(flux) == 0.0 assert not np.isfinite(bp(flux + 0.1)) def test_tpf_model_simple(): prf = SimpleKeplerPRF(channel=16, shape=[10, 10], column=15, row=15) model = TPFModel(prfmodel=prf) assert model.prfmodel.channel == 16 def test_tpf_model(): col, row, flux, bgflux = 1, 2, 3, 4 shape = (7, 8) model = TPFModel( star_priors=[ StarPrior( col=GaussianPrior(mean=col, var=2 ** 2), row=GaussianPrior(mean=row, var=2 ** 2), flux=UniformPrior(lb=flux - 0.5, ub=flux + 0.5), targetid="TESTSTAR", ) ], background_prior=BackgroundPrior(flux=GaussianPrior(mean=bgflux, var=bgflux)), focus_prior=FocusPrior( scale_col=GaussianPrior(mean=1, var=0.0001), scale_row=GaussianPrior(mean=1, var=0.0001), rotation_angle=UniformPrior(lb=-3.1415, ub=3.1415), ), motion_prior=MotionPrior( shift_col=GaussianPrior(mean=0.0, var=0.01), shift_row=GaussianPrior(mean=0.0, var=0.01), ), prfmodel=KeplerPRF(channel=40, shape=shape, column=30, row=20), fit_background=True, fit_focus=False, fit_motion=False, ) # Sanity checks assert model.star_priors[0].col.mean == col assert model.star_priors[0].targetid == "TESTSTAR" # Test initial guesses params = model.get_initial_guesses() assert params.stars[0].col == col assert params.stars[0].row == row assert params.stars[0].flux == flux assert params.background.flux == bgflux assert len(params.to_array()) == 4 # The model has 4 free parameters assert_allclose([col, row, flux, bgflux], params.to_array(), rtol=1e-5) # Predict should return an image assert model.predict().shape == shape # Test __repr__ assert "TESTSTAR" in str(model) # Tagging the test below as `remote_data` because AppVeyor hangs on this test; # at present we don't understand why. @pytest.mark.remote_data def test_tpf_model_fitting(): # Is the PRF photometry result consistent with simple aperture photometry? tpf_fn = os.path.join(TESTDATA, "ktwo201907706-c01-first-cadence.fits.gz") tpf = fits.open(tpf_fn) col, row = 173, 526 fluxsum = np.sum(tpf[1].data) bkg = mode(tpf[1].data, None)[0] prfmodel = KeplerPRF( channel=tpf[0].header["CHANNEL"], column=col, row=row, shape=tpf[1].data.shape ) star_priors = [ StarPrior( col=UniformPrior(lb=prfmodel.col_coord[0], ub=prfmodel.col_coord[-1]), row=UniformPrior(lb=prfmodel.row_coord[0], ub=prfmodel.row_coord[-1]), flux=UniformPrior(lb=0.5 * fluxsum, ub=1.5 * fluxsum), ) ] background_prior = BackgroundPrior(flux=UniformPrior(lb=0.5 * bkg, ub=1.5 * bkg)) model = TPFModel( star_priors=star_priors, background_prior=background_prior, prfmodel=prfmodel ) # Does fitting run without errors? result = model.fit(tpf[1].data) # Can we change model parameters? assert result.motion.fitted == False model.fit_motion = True result = model.fit(tpf[1].data) assert result.motion.fitted == True # Does fitting via the PRFPhotometry class run without errors? phot = PRFPhotometry(model) phot.run([tpf[1].data]) def test_empty_model(): """Can we fit the background flux in a model without stars?""" shape = (4, 3) bgflux = 1.23 background_prior = BackgroundPrior(flux=UniformPrior(lb=0, ub=10)) model = TPFModel(background_prior=background_prior, fit_background=True) background = bgflux * np.ones(shape=shape) results = model.fit(background) assert np.isclose(results.background.flux, bgflux, rtol=1e-2) def test_model_with_one_star(): """Can we fit the background flux in a model with one star?""" channel = 42 shape = (10, 12) starflux, col, row = 1000.0, 60.0, 70.0 bgflux = 10.0 scale_col, scale_row, rotation_angle = 1.2, 1.3, 0.2 prf = KeplerPRF(channel=channel, shape=shape, column=col, row=row) star_prior = StarPrior( col=GaussianPrior(col + 6, 0.01), row=GaussianPrior(row + 6, 0.01), flux=UniformPrior(lb=0.5 * starflux, ub=1.5 * starflux), ) background_prior = BackgroundPrior(flux=UniformPrior(lb=0, ub=100)) focus_prior = FocusPrior( scale_col=UniformPrior(lb=0.5, ub=1.5), scale_row=UniformPrior(lb=0.5, ub=1.5), rotation_angle=UniformPrior(lb=0.0, ub=0.5), ) model = TPFModel( star_priors=[star_prior], background_prior=background_prior, focus_prior=focus_prior, prfmodel=prf, fit_background=True, fit_focus=True, ) # Generate and fit fake data fake_data = bgflux + prf( col + 6, row + 6, starflux, scale_col=scale_col, scale_row=scale_row, rotation_angle=rotation_angle, ) results = model.fit(fake_data, tol=1e-12, options={"maxiter": 100}) # Do the results match the input? assert np.isclose(results.stars[0].col, col + 6) assert np.isclose(results.stars[0].row, row + 6) assert
np.isclose(results.stars[0].flux, starflux)
numpy.isclose
#!/usr/bin/env python """Tests of the geometry package.""" from math import sqrt from numpy import ( all, allclose, arange, array, insert, isclose, mean, ones, sum, take, ) from numpy.linalg import inv, norm from numpy.random import choice, dirichlet from numpy.testing import assert_allclose from cogent3.maths.geometry import ( aitchison_distance, alr, alr_inv, center_of_mass, center_of_mass_one_array, center_of_mass_two_array, clr, clr_inv, distance, multiplicative_replacement, sphere_points, ) from cogent3.util.unit_test import TestCase, main __author__ = "<NAME>" __copyright__ = "Copyright 2007-2020, The Cogent Project" __credits__ = ["<NAME>", "<NAME>", "<NAME>"] __license__ = "BSD-3" __version__ = "2020.6.30a" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" class CenterOfMassTests(TestCase): """Tests for the center of mass functions""" def setUp(self): """setUp for all CenterOfMass tests""" self.simple =
array([[1, 1, 1], [3, 1, 1], [2, 3, 2]])
numpy.array
# -*- coding: utf-8 -*- """ Muse LSL Example Auxiliary Tools These functions perform the lower-level operations involved in buffering, epoching, and transforming EEG data into frequency bands @author: Cassani """ import numpy as np from scipy.signal import butter, lfilter, lfilter_zi NOTCH_B, NOTCH_A = butter(4, np.array([55, 65]) / (256 / 2), btype='bandstop') def sigmoid(x): """ Returns the sigmoid of a value """ return(1 / (1 + np.exp(x))) def compute_band_powers(eegdata, fs): """Extract the features (band powers) from the EEG. Args: eegdata (numpy.ndarray): array of dimension [number of samples, number of channels] fs (float): sampling frequency of eegdata Returns: (numpy.ndarray): feature matrix of shape [number of feature points, number of different features] """ # 1. Compute the PSD winSampleLength, nbCh = eegdata.shape # Apply Hamming window w = np.hamming(winSampleLength) dataWinCentered = eegdata - np.mean(eegdata, axis=0) # Remove offset dataWinCenteredHam = (dataWinCentered.T * w).T NFFT = nextpow2(winSampleLength) Y = np.fft.fft(dataWinCenteredHam, n=NFFT, axis=0) / winSampleLength PSD = 2 * np.abs(Y[0:int(NFFT / 2), :]) f = fs / 2 * np.linspace(0, 1, int(NFFT / 2)) # SPECTRAL FEATURES # Average of band powers # Delta <4 ind_delta, =
np.where(f < 4)
numpy.where
import pickle import numpy as np from TrainingFunctions.LoadDataStream import load_data_stream separate_train_test_file = False image_data = False drift_labels_known = True min_drift_distance = 300 path_A = "Generated_Streams/Drift_Labels/" dataset_A = "RandomNumpyRandomNormalUniform_50DR_100Dims_1MinDimBroken_300MinL_2000MaxL_2021-08-06_10.53.pickle" path_B = "Generated_Streams/Drift_And_Classifier_Labels/" dataset_B = "RandomRandomRBF_50DR_100Dims_50Centroids_1MinDriftCentroids_300MinL_2000MaxL_2021-08-06_10.57.pickle" # Load data stream A proxy_evaluation_A = False data_stream_A = load_data_stream(dataset=dataset_A, path=path_A, separate_train_test_file=separate_train_test_file, image_data=image_data, drift_labels_known=drift_labels_known, proxy_evaluation=proxy_evaluation_A) # Load data stream B proxy_evaluation_B = True data_stream_B = load_data_stream(dataset=dataset_B, path=path_B, separate_train_test_file=separate_train_test_file, image_data=image_data, drift_labels_known=drift_labels_known, proxy_evaluation=proxy_evaluation_B) # Separate drift labels and data stream if drift_labels_known: data_stream_A, drift_labels_A = data_stream_A[:, :-1], data_stream_A[:, -1] drift_points_A = list(
np.where(drift_labels_A)
numpy.where
#import the necessary packages from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.datasets import make_blobs import matplotlib.pyplot as plt import numpy as np def sigmoid_activation(x): return 1.0/(1 + np.exp(-x)) def predict(X, W): preds = X.dot(W) #Since we're still doing a binary classifier, use step function preds[preds <=0.5] = 0 preds[preds >0.5] = 1 return preds #Generator to get data from the X and Y elements def next_batch(X, y, batchSize): for i in range(0, X.shape[0], batchSize): yield(X[i:i + batchSize], y[i:i+batchSize]) #Generate 2 cllass classification problem with 1000 data points where each data point is a 2D feature vector. (X, y) = make_blobs(n_samples=1000, n_features=2, centers=2, cluster_std=1.5, random_state=1) y = y.reshape((y.shape[0], 1)) #Bias trick by adding a column of 1's in front of the X array X = np.c_[np.ones(X.shape[0]), X] #Split data into train test (trainX, testX, trainY, testY) = train_test_split( X, y, test_size = 0.5, random_state=42) print("[INFO] training...") #Initialize our weight matrix and list of losses for future examination W = np.random.randn(X.shape[1], 1) losses = [] epochs = 100 batch_size = 32 alpha = 0.001 #learn for epoch in range(epochs): epochLoss = [] for(batchX, batchY) in next_batch(trainX, trainY, batch_size): #perform SGD for the batch preds = sigmoid_activation(batchX.dot(W)) #the error errors = preds - batchY epochLoss.append(np.sum(errors**2)) #the gradient descent step gradient = batchX.T.dot(errors) W = W - (alpha * gradient) #Calculate the loss over all the batches in an epoch. loss = np.average(epochLoss) losses.append(loss) #print every 5 epochs if epoch ==0 or (epoch+1)%5==0: print("[INFO] epoch = {}, loss = {:.7f}".format(int(epoch+1), loss)) #evaluate our model print("[INFO] evaluating...") preds = predict(testX, W) print(classification_report(testY, preds)) #plot the testing classification data plt.style.use("ggplot") plt.figure() plt.title("Data") plt.scatter(testX[:, 1], testX[:, 2], marker = "o",c = testY[:,0], s = 30) #Plot the loss over time plt.style.use("ggplot") plt.figure() plt.plot(
np.arange(0, epochs)
numpy.arange
# -*- coding: utf-8 -*- from micropsi_core.nodenet.node import Node, Gate, Slot from micropsi_core.nodenet.theano_engine.theano_link import TheanoLink from micropsi_core.nodenet.theano_engine.theano_stepoperators import * from micropsi_core.nodenet.theano_engine.theano_definitions import * import numpy as np class TheanoNode(Node): """ theano node proxy class """ def __init__(self, nodenet, partition, parent_uid, uid, type, parameters={}, **_): self._numerictype = type self._id = node_from_id(uid) self._uid = uid self._parent_id = nodespace_from_id(parent_uid) self._nodenet = nodenet self._partition = partition self._state = {} self.__gatecache = {} self.__slotcache = {} self.parameters = None strtype = get_string_node_type(type, nodenet.native_modules) Node.__init__(self, strtype, nodenet.get_nodetype(strtype)) if strtype in nodenet.native_modules or strtype == "Comment": self.slot_activation_snapshot = {} self._state = {} if parameters is not None: self.parameters = parameters.copy() else: self.parameters = {} @property def uid(self): return self._uid @property def pid(self): return self._partition.pid @property def index(self): return self._id @index.setter def index(self, index): raise NotImplementedError("index can not be set in theano_engine") @property def position(self): return self._nodenet.positions.get(self.uid, [10, 10, 0]) @position.setter def position(self, position): if position is None and self.uid in self._nodenet.positions: del self._nodenet.positions[self.uid] else: position = list(position) position = (position + [0] * 3)[:3] self._nodenet.positions[self.uid] = position self._partition.node_changed(self.uid) @property def name(self): return self._nodenet.names.get(self.uid, self.uid) @name.setter def name(self, name): if name is None or name == "" or name == self.uid: if self.uid in self._nodenet.names: del self._nodenet.names[self.uid] else: self._nodenet.names[self.uid] = name @property def parent_nodespace(self): return nodespace_to_id(self._parent_id, self._partition.pid) @property def activation(self): return float(self._partition.a.get_value(borrow=True)[self._partition.allocated_node_offsets[self._id] + GEN]) @property def activations(self): return {"default": self.activation} @activation.setter def activation(self, activation): a_array = self._partition.a.get_value(borrow=True) a_array[self._partition.allocated_node_offsets[self._id] + GEN] = activation self._partition.a.set_value(a_array, borrow=True) def get_gate(self, type): if type not in self.__gatecache: self.__gatecache[type] = TheanoGate(type, self, self._nodenet, self._partition) return self.__gatecache[type] def set_gatefunction_name(self, gate_type, gatefunction_name): self._nodenet.set_node_gatefunction_name(self.uid, gate_type, gatefunction_name) def get_gatefunction_name(self, gate_type): g_function_selector = self._partition.g_function_selector.get_value(borrow=True) return get_string_gatefunction_type(g_function_selector[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type(gate_type, self.nodetype)]) def get_gatefunction_names(self): result = {} g_function_selector = self._partition.g_function_selector.get_value(borrow=True) for numericalgate in range(0, get_gates_per_type(self._numerictype, self._nodenet.native_modules)): result[get_string_gate_type(numericalgate, self.nodetype)] = \ get_string_gatefunction_type(g_function_selector[self._partition.allocated_node_offsets[self._id] + numericalgate]) return result def set_gate_parameter(self, gate_type, parameter, value): self._nodenet.set_node_gate_parameter(self.uid, gate_type, parameter, value) def get_gate_parameters(self): return self.clone_non_default_gate_parameters() def clone_non_default_gate_parameters(self, gate_type=None): g_threshold_array = self._partition.g_threshold.get_value(borrow=True) g_amplification_array = self._partition.g_amplification.get_value(borrow=True) g_min_array = self._partition.g_min.get_value(borrow=True) g_max_array = self._partition.g_max.get_value(borrow=True) g_theta = self._partition.g_theta.get_value(borrow=True) gatemap = {} gate_types = self.nodetype.gate_defaults.keys() if gate_type is not None: if gate_type in gate_types: gate_types = [gate_type] else: return None for gate_type in gate_types: numericalgate = get_numerical_gate_type(gate_type, self.nodetype) gate_parameters = {} threshold = g_threshold_array[self._partition.allocated_node_offsets[self._id] + numericalgate].item() if 'threshold' not in self.nodetype.gate_defaults[gate_type] or threshold != self.nodetype.gate_defaults[gate_type]['threshold']: gate_parameters['threshold'] = threshold amplification = g_amplification_array[self._partition.allocated_node_offsets[self._id] + numericalgate].item() if 'amplification' not in self.nodetype.gate_defaults[gate_type] or amplification != self.nodetype.gate_defaults[gate_type]['amplification']: gate_parameters['amplification'] = amplification minimum = g_min_array[self._partition.allocated_node_offsets[self._id] + numericalgate].item() if 'minimum' not in self.nodetype.gate_defaults[gate_type] or minimum != self.nodetype.gate_defaults[gate_type]['minimum']: gate_parameters['minimum'] = minimum maximum = g_max_array[self._partition.allocated_node_offsets[self._id] + numericalgate].item() if 'maximum' not in self.nodetype.gate_defaults[gate_type] or maximum != self.nodetype.gate_defaults[gate_type]['maximum']: gate_parameters['maximum'] = maximum theta = g_theta[self._partition.allocated_node_offsets[self._id] + numericalgate].item() if 'theta' not in self.nodetype.gate_defaults[gate_type] or theta != self.nodetype.gate_defaults[gate_type]['theta']: gate_parameters['theta'] = theta if not len(gate_parameters) == 0: gatemap[gate_type] = gate_parameters return gatemap def take_slot_activation_snapshot(self): a_array = self._partition.a.get_value(borrow=True) self.slot_activation_snapshot.clear() for slottype in self.nodetype.slottypes: self.slot_activation_snapshot[slottype] = \ a_array[self._partition.allocated_node_offsets[self._id] + get_numerical_slot_type(slottype, self.nodetype)] def get_slot(self, type): if type not in self.__slotcache: self.__slotcache[type] = TheanoSlot(type, self, self._nodenet, self._partition) return self.__slotcache[type] def unlink_completely(self): self._partition.unlink_node_completely(self._id) if self.uid in self._nodenet.proxycache: del self._nodenet.proxycache[self.uid] def unlink(self, gate_name=None, target_node_uid=None, slot_name=None): for gate_name_candidate in self.nodetype.gatetypes: if gate_name is None or gate_name == gate_name_candidate: for link_candidate in self.get_gate(gate_name_candidate).get_links(): if target_node_uid is None or target_node_uid == link_candidate.target_node.uid: if slot_name is None or slot_name == link_candidate.target_slot.type: self._nodenet.delete_link(self.uid, gate_name_candidate, link_candidate.target_node.uid, link_candidate.target_slot.type) def get_associated_node_uids(self): numeric_ids_in_same_partition = self._partition.get_associated_node_ids(self._id) ids = [node_to_id(id, self._partition.pid) for id in numeric_ids_in_same_partition] # find this node in links coming in from other partitions to this node's partition for partition_from_spid, inlinks in self._partition.inlinks.items(): for numeric_slot in range(0, get_slots_per_type(self._numerictype, self._nodenet.native_modules)): element = self._partition.allocated_node_offsets[self._id] + numeric_slot from_elements = inlinks[0].get_value(borrow=True) to_elements = inlinks[1].get_value(borrow=True) weights = inlinks[2].get_value(borrow=True) if element in to_elements: from_partition = self._nodenet.partitions[partition_from_spid] element_index = np.where(to_elements == element)[0][0] slotrow = weights[element_index] links_indices = np.nonzero(slotrow)[0] for link_index in links_indices: source_id = from_partition.allocated_elements_to_nodes[from_elements[link_index]] ids.append(node_to_id(source_id, from_partition.pid)) # find this node in links going out to other partitions for partition_to_spid, to_partition in self._nodenet.partitions.items(): if self._partition.spid in to_partition.inlinks: for numeric_gate in range(0, get_gates_per_type(self._numerictype, self._nodenet.native_modules)): element = self._partition.allocated_node_offsets[self._id] + numeric_gate inlinks = to_partition.inlinks[self._partition.spid] from_elements = inlinks[0].get_value(borrow=True) to_elements = inlinks[1].get_value(borrow=True) weights = inlinks[2].get_value(borrow=True) if element in from_elements: element_index = np.where(from_elements == element)[0][0] gatecolumn = weights[:, element_index] links_indices = np.nonzero(gatecolumn)[0] for link_index in links_indices: target_id = to_partition.allocated_elements_to_nodes[to_elements[link_index]] ids.append(node_to_id(target_id, to_partition.pid)) return ids def get_parameter(self, parameter): if self.type in self._nodenet.native_modules: return self.parameters.get(parameter, self.nodetype.parameter_defaults.get(parameter, None)) else: return self.clone_parameters().get(parameter, None) def set_parameter(self, parameter, value): if value == '' or value is None: if parameter in self.nodetype.parameter_defaults: value = self.nodetype.parameter_defaults[parameter] else: value = None if self.type == "Sensor" and parameter == "datasource": if value is not None and value != "": datasources = self._nodenet.get_datasources() sensor_element = self._partition.allocated_node_offsets[self._id] + GEN old_datasource_index = np.where(self._partition.sensor_indices == sensor_element)[0] self._partition.sensor_indices[old_datasource_index] = 0 if value not in datasources: self.logger.warning("Datasource %s not known, will not be assigned." % value) return datasource_index = datasources.index(value) if self._partition.sensor_indices[datasource_index] != sensor_element and \ self._partition.sensor_indices[datasource_index] > 0: other_sensor_element = self._partition.sensor_indices[datasource_index] other_sensor_id = node_to_id(self._partition.allocated_elements_to_nodes[other_sensor_element], self._partition.pid) self.logger.warning("Datasource %s had already been assigned to sensor %s, which will now be unassigned." % (value, other_sensor_id)) self._nodenet.sensormap[value] = self.uid self._partition.sensor_indices[datasource_index] = sensor_element elif self.type == "Actor" and parameter == "datatarget": if value is not None and value != "": datatargets = self._nodenet.get_datatargets() actuator_element = self._partition.allocated_node_offsets[self._id] + GEN old_datatarget_index = np.where(self._partition.actuator_indices == actuator_element)[0] self._partition.actuator_indices[old_datatarget_index] = 0 if value not in datatargets: self.logger.warning("Datatarget %s not known, will not be assigned." % value) return datatarget_index = datatargets.index(value) if self._partition.actuator_indices[datatarget_index] != actuator_element and \ self._partition.actuator_indices[datatarget_index] > 0: other_actuator_element = self._partition.actuator_indices[datatarget_index] other_actuator_id = node_to_id(self._partition.allocated_elements_to_nodes[other_actuator_element], self._partition.pid) self.logger.warning("Datatarget %s had already been assigned to actuator %s, which will now be unassigned." % (value, other_actuator_id)) self._nodenet.actuatormap[value] = self.uid self._partition.actuator_indices[datatarget_index] = actuator_element elif self.type == "Activator" and parameter == "type": if value != "sampling": self._nodenet.set_nodespace_gatetype_activator(self.parent_nodespace, value, self.uid) else: self._nodenet.set_nodespace_sampling_activator(self.parent_nodespace, self.uid) elif self.type == "Pipe" and parameter == "expectation": g_expect_array = self._partition.g_expect.get_value(borrow=True) g_expect_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("gen")] = float(value) g_expect_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("sur")] = float(value) g_expect_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("por")] = float(value) self._partition.g_expect.set_value(g_expect_array, borrow=True) elif self.type == "Pipe" and parameter == "wait": g_wait_array = self._partition.g_wait.get_value(borrow=True) g_wait_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("sur")] = int(value) g_wait_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("por")] = int(value) self._partition.g_wait.set_value(g_wait_array, borrow=True) elif self.type == "Comment" and parameter == "comment": self.parameters[parameter] = value elif self.type in self._nodenet.native_modules: self.parameters[parameter] = value def clear_parameter(self, parameter): if self.type in self._nodenet.native_modules and parameter in self.parameters: del self.parameters[parameter] def clone_parameters(self): parameters = {} if self.type == "Sensor": sensor_element = self._partition.allocated_node_offsets[self._id] + GEN datasource_index = np.where(self._partition.sensor_indices == sensor_element)[0] if len(datasource_index) == 0: parameters['datasource'] = None else: parameters['datasource'] = self._nodenet.get_datasources()[datasource_index[0]] elif self.type == "Actor": actuator_element = self._partition.allocated_node_offsets[self._id] + GEN datatarget_index = np.where(self._partition.actuator_indices == actuator_element)[0] if len(datatarget_index) == 0: parameters['datatarget'] = None else: parameters['datatarget'] = self._nodenet.get_datatargets()[datatarget_index[0]] elif self.type == "Activator": activator_type = None if self._id in self._partition.allocated_nodespaces_por_activators: activator_type = "por" elif self._id in self._partition.allocated_nodespaces_ret_activators: activator_type = "ret" elif self._id in self._partition.allocated_nodespaces_sub_activators: activator_type = "sub" elif self._id in self._partition.allocated_nodespaces_sur_activators: activator_type = "sur" elif self._id in self._partition.allocated_nodespaces_cat_activators: activator_type = "cat" elif self._id in self._partition.allocated_nodespaces_exp_activators: activator_type = "exp" elif self._id in self._partition.allocated_nodespaces_sampling_activators: activator_type = "sampling" parameters['type'] = activator_type elif self.type == "Pipe": g_expect_array = self._partition.g_expect.get_value(borrow=True) value = g_expect_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("sur")].item() parameters['expectation'] = value g_wait_array = self._partition.g_wait.get_value(borrow=True) parameters['wait'] = g_wait_array[self._partition.allocated_node_offsets[self._id] + get_numerical_gate_type("sur")].item() elif self.type == "Comment": parameters['comment'] = self.parameters['comment'] elif self.type in self._nodenet.native_modules: # handle the defined ones, the ones with defaults and value ranges for parameter in self.nodetype.parameters: value = None if parameter in self.parameters: value = self.parameters[parameter] elif parameter in self.nodetype.parameter_defaults: value = self.nodetype.parameter_defaults[parameter] parameters[parameter] = value # see if something else has been set and return, if so for parameter in self.parameters: if parameter not in parameters: parameters[parameter] = self.parameters[parameter] return parameters def get_state(self, state): return self._state.get(state) def set_state(self, state, value): if isinstance(value, np.floating): value = float(value) self._state[state] = value def clone_state(self): if self._numerictype > MAX_STD_NODETYPE: return self._state.copy() else: return None def clone_sheaves(self): return {"default": dict(uid="default", name="default", activation=self.activation)} # todo: implement sheaves def node_function(self): try: self.nodetype.nodefunction(netapi=self._nodenet.netapi, node=self, sheaf="default", **self.clone_parameters()) except Exception: self._nodenet.is_active = False if self.nodetype is not None and self.nodetype.nodefunction is None: self.logger.warn("No nodefunction found for nodetype %s. Node function definition is: %s" % (self.nodetype.name, self.nodetype.nodefunction_definition)) else: raise class TheanoGate(Gate): """ theano gate proxy clas """ @property def type(self): return self.__type @property def node(self): return self.__node @property def empty(self): w_matrix = self.__partition.w.get_value(borrow=True) gatecolumn = w_matrix[:, self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype] return len(np.nonzero(gatecolumn)[0]) == 0 @property def activation(self): return float(self.__partition.a.get_value(borrow=True)[self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype]) @activation.setter def activation(self, value): a_array = self.__partition.a.get_value(borrow=True) a_array[self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype] = value self.__partition.a.set_value(a_array, borrow=True) @property def activations(self): return {'default': self.activation} # todo: implement sheaves def __init__(self, type, node, nodenet, partition): self.__type = type self.__node = node self.__nodenet = nodenet self.__partition = partition self.__numerictype = get_numerical_gate_type(type, node.nodetype) self.__linkcache = None def get_links(self): if self.__linkcache is None: self.__linkcache = [] w_matrix = self.__partition.w.get_value(borrow=True) gatecolumn = w_matrix[:, self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype] links_indices = np.nonzero(gatecolumn)[0] for index in links_indices: target_id = self.__partition.allocated_elements_to_nodes[index] target_type = self.__partition.allocated_nodes[target_id] target_nodetype = self.__nodenet.get_nodetype(get_string_node_type(target_type, self.__nodenet.native_modules)) target_slot_numerical = index - self.__partition.allocated_node_offsets[target_id] target_slot_type = get_string_slot_type(target_slot_numerical, target_nodetype) link = TheanoLink(self.__nodenet, self.__node.uid, self.__type, node_to_id(target_id, self.__partition.pid), target_slot_type) self.__linkcache.append(link) element = self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype # does any of the inlinks in any partition orginate from me? for partition_to_spid, to_partition in self.__nodenet.partitions.items(): if self.__partition.spid in to_partition.inlinks: inlinks = to_partition.inlinks[self.__partition.spid] from_elements = inlinks[0].get_value(borrow=True) to_elements = inlinks[1].get_value(borrow=True) weights = inlinks[2].get_value(borrow=True) if element in from_elements: element_index = np.where(from_elements == element)[0][0] gatecolumn = weights[:, element_index] links_indices = np.nonzero(gatecolumn)[0] for link_index in links_indices: target_id = to_partition.allocated_elements_to_nodes[to_elements[link_index]] target_type = to_partition.allocated_nodes[target_id] target_slot_numerical = to_elements[link_index] - to_partition.allocated_node_offsets[target_id] target_nodetype = self.__nodenet.get_nodetype(get_string_node_type(target_type, self.__nodenet.native_modules)) target_slot_type = get_string_slot_type(target_slot_numerical, target_nodetype) link = TheanoLink(self.__nodenet, self.__node.uid, self.__type, node_to_id(target_id, to_partition.pid), target_slot_type) self.__linkcache.append(link) return self.__linkcache def invalidate_caches(self): self.__linkcache = None def get_parameter(self, parameter_name): gate_parameters = self.__node.nodetype.gate_defaults[self.type] gate_parameters.update(self.__node.clone_non_default_gate_parameters(self.type)) return gate_parameters[parameter_name] def clone_sheaves(self): return {"default": dict(uid="default", name="default", activation=self.activation)} # todo: implement sheaves def gate_function(self, input_activation, sheaf="default"): # in the theano implementation, this will only be called for native module gates, and simply write # the value back to the activation vector for the theano math to take over self.activation = input_activation def open_sheaf(self, input_activation, sheaf="default"): pass # todo: implement sheaves class TheanoSlot(Slot): """ theano slot proxy class """ @property def type(self): return self.__type @property def node(self): return self.__node @property def empty(self): w_matrix = self.__partition.w.get_value(borrow=True) slotrow = w_matrix[self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype] if self.__partition.sparse: return len(np.nonzero(slotrow)[1]) == 0 else: return len(np.nonzero(slotrow)[0]) == 0 @property def activation(self): return self.__node.slot_activation_snapshot[self.__type] @property def activations(self): return { "default": self.activation } def __init__(self, type, node, nodenet, partition): self.__type = type self.__node = node self.__nodenet = nodenet self.__partition = partition self.__numerictype = get_numerical_slot_type(type, node.nodetype) self.__linkcache = None def get_activation(self, sheaf="default"): return self.activation def get_links(self): if self.__linkcache is None: self.__linkcache = [] w_matrix = self.__partition.w.get_value(borrow=True) slotrow = w_matrix[self.__partition.allocated_node_offsets[node_from_id(self.__node.uid)] + self.__numerictype] if self.__partition.sparse: links_indices = np.nonzero(slotrow)[1] else: links_indices =
np.nonzero(slotrow)
numpy.nonzero
""" This module is an implementation of a variety of tools for rotations in 3D space. """ from __future__ import print_function, absolute_import # Compatibility with python 2 and 3 import sys, numpy, types, pickle, time, math import logging logger = logging.getLogger(__name__) from .log import log_and_raise_error,log_warning,log_info,log_debug import condor.utils.linalg # CANONICAL ROTATION MATRICES # Rotation matrix around x-axis - observing the right hand rule R_x = lambda t: numpy.array([[1., 0., 0.], [0., numpy.cos(t), -numpy.sin(t)], [0., numpy.sin(t), numpy.cos(t)]]) # Rotation matrix around y-axis - observing the right hand rule R_y = lambda t: numpy.array([[numpy.cos(t), 0., numpy.sin(t)], [0., 1., 0.], [-numpy.sin(t), 0., numpy.cos(t)]]) # Rotation matrix around z-axis - observing the right hand rule R_z = lambda t: numpy.array([[numpy.cos(t), -numpy.sin(t), 0.], [numpy.sin(t), numpy.cos(t), 0.], [0., 0., 1.]]) # Rotation of a given vector by a given angle with respect to one of the three principal axes rot_x = lambda v,t: R_x(t).dot(v) rot_y = lambda v,t: R_y(t).dot(v) rot_z = lambda v,t: R_z(t).dot(v) # CANONICAL QUATERNIONS # Quaternion from angle and rotation unit vector coordinates (right-hand rule) quat = lambda theta,ux,uy,uz: numpy.array([numpy.cos(theta/2.), numpy.sin(theta/2.)*ux, numpy.sin(theta/2.)*uy, numpy.sin(theta/2.)*uz]) # Quaternions for roations with respect to the x-, y- or z-axis quat_x = lambda theta: quat(theta,1.,0.,0.) quat_y = lambda theta: quat(theta,0.,1.,0.) quat_z = lambda theta: quat(theta,0.,0.,1.) class Rotation: r""" Class for a rotation in 3D space **Arguments:** :values (array): Array of values that define the rotation. For random rotations set values=``None`` and for example formalism=``'random'``. (default ``None``) :formalism: Formalism that defines how the argument values is interpreted. If ``None`` no rotation. (default ``None``) *Rotation formalism can be one of the following:* ======================== =========================================================================================================================== =============================================================================== ``formalism`` Variables ``values`` ======================== =========================================================================================================================== =============================================================================== ``'quaternion'`` :math:`q = w + ix + jy + kz` :math:`[w,x,y,z]` ``'rotation_matrix'`` :math:`R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}` :math:`[[R_{11},R_{12},R_{13}],[R_{21},R_{22},R_{23}],[R_{31},R_{32},R_{33}]]` ``'euler_angles_zxz'`` :math:`e_1^{(z)}`, :math:`e_2^{(x)}`, :math:`e_3^{(z)}` :math:`[e_1^{(y)},e_2^{(z)},e_3^{(y)}]` ``'euler_angles_xyx'`` :math:`e_1^{(x)}`, :math:`e_2^{(y)}`, :math:`e_3^{(x)}` :math:`[e_1^{(x)},e_2^{(y)},e_3^{(x)}]` ``'euler_angles_xyz'`` :math:`e_1^{(x)}`, :math:`e_2^{(y)}`, :math:`e_3^{(z)}` :math:`[e_1^{(x)},e_2^{(y)},e_3^{(z)}]` ``'euler_angles_yzx'`` :math:`e_1^{(y)}`, :math:`e_2^{(z)}`, :math:`e_3^{(x)}` :math:`[e_1^{(y)},e_2^{(z)},e_3^{(x)}]` ``'euler_angles_zxy'`` :math:`e_1^{(z)}`, :math:`e_2^{(x)}`, :math:`e_3^{(y)}` :math:`[e_1^{(z)},e_2^{(x)},e_3^{(y)}]` ``'euler_angles_zyx'`` :math:`e_1^{(z)}`, :math:`e_2^{(y)}`, :math:`e_3^{(x)}` :math:`[e_1^{(z)},e_2^{(y)},e_3^{(x)}]` ``'euler_angles_yxz'`` :math:`e_1^{(y)}`, :math:`e_2^{(x)}`, :math:`e_3^{(z)}` :math:`[e_1^{(y)},e_2^{(x)},e_3^{(z)}]` ``'euler_angles_xzy'`` :math:`e_1^{(x)}`, :math:`e_2^{(z)}`, :math:`e_3^{(y)}` :math:`[e_1^{(x)},e_2^{(z)},e_3^{(y)}]` ``'random'`` *fully random rotation* ``None`` ``'random_x'`` *random rotation around* :math:`x` *axis* ``None`` ``'random_y'`` *random rotation around* :math:`y` *axis* ``None`` ``'random_z'`` *random rotation around* :math:`z` *axis* ``None`` ======================== =========================================================================================================================== =============================================================================== """ def __init__(self, values=None, formalism=None): self.rotation_matrix = None if values is None and formalism is None: # No rotation (rotation matrix = identity matrix) self.rotation_matrix =
numpy.ones(shape=(3,3))
numpy.ones
""" Created on 2020 @author: <NAME> """ ############################################################################### # # November 2020, Paris # # This file contains the main functions concerning the angular tansformations, # sky projections and spherical trigonomtry. # # Documentation is provided on Vitral, 2021. # If you have any further questions please email <EMAIL> # ############################################################################### import numpy as np # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # ------------------------------------------------------------------------------ "Global variables" # ------------------------------------------------------------------------------ # Right ascention of the north galactic pole, in radians a_NGP = 192.85947789 * (np.pi / 180) # Declination of the north galactic pole, in radians d_NGP = 27.12825241 * (np.pi / 180) # Longitude of the north celestial pole, in radians l_NCP = 122.93192526 * (np.pi / 180) # Vertical waves in the solar neighbourhood in Gaia DR2 # Bennett & Bovy, 2019, MNRAS # --> Sun Z position (kpc), in galactocentric coordinates z_sun = 0.0208 # Sun Y position (kpc), in galactocentric coordinates, by definition. y_sun = 0 # A geometric distance measurement to the Galactic center black hole # with 0.3% uncertainty # Gracity Collaboration, 2019, A&A # --> Sun distance from the Galactic center, in kpc. d_sun = 8.178 # Sun X position (kpc), in galactocentric coordinates x_sun = np.sqrt(d_sun * d_sun - z_sun * z_sun) # On the Solar Velocity # <NAME> and <NAME>, 2018, RNAAS # --> Sun X velocity (km/s), in galactocentric coordinates vx_sun = -12.9 # --> Sun Y velocity (km/s), in galactocentric coordinates vy_sun = 245.6 # --> Sun Z velocity (km/s), in galactocentric coordinates vz_sun = 7.78 # Multuplying factor to pass from kpc to km kpc_to_km = 3.086 * 10 ** 16 # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # ------------------------------------------------------------------------------ "Angles handling" # ------------------------------------------------------------------------------ def sky_distance_deg(RA, Dec, RA0, Dec0): """ Computes the sky distance (in degrees) between two sets of sky coordinates, given also in degrees. Parameters ---------- RA : array_like, float Right ascension (in degrees) of object 1. Dec : array_like (same shape as RA), float Declination (in degrees) of object 1. RA0 : array_like (same shape as RA), float Right ascension (in degrees) of object 2. Dec0 : array_like (same shape as RA), float Declination (in degrees) of object 2. Returns ------- R : array_like, float Sky distance (in degrees) between object 1 and object 2. """ RA = RA * np.pi / 180 Dec = Dec * np.pi / 180 RA0 = RA0 * np.pi / 180 Dec0 = Dec0 * np.pi / 180 R = (180 / np.pi) * np.arccos( np.sin(Dec) * np.sin(Dec0) + np.cos(Dec) * np.cos(Dec0) * np.cos((RA - RA0)) ) return np.asarray(R) def get_circle_sph_trig(r, a0, d0, nbins=500): """ Generates a circle in spherical coordinates. Parameters ---------- r : float Distance from the center, in degrees. a0 : float Right ascention from origin, in degrees. d0 : float Declination from origin in, in degrees. nbins : int, optional Number of circle points. The default is 500. Returns ------- ra : array_like Right ascention in degrees. dec : array_like Declination in degrees. """ # Converts angles to radians r = r * np.pi / 180 a0 = a0 * np.pi / 180 d0 = d0 * np.pi / 180 phi = np.linspace(0, 2 * np.pi, nbins) a = np.zeros(nbins) d = np.zeros(nbins) for i in range(0, nbins): a[i], d[i] = polar_to_sky(r, phi[i], a0, d0) return a, d def polar_to_sky(r, phi, a0, d0): """ Transforms spherical polar coordinates (r,phi) into sky coordinates, in degrees (RA,Dec). Parameters ---------- r : array_like Radial distance from center. phi : array_like Angle between increasing declination and the projected radius (pointing towards the source). a0 : float Right ascention from origin in radians. d0 : float Declination from origin in radians. Returns ------- ra : array_like Right ascention in degrees. dec : array_like Declination in degrees. """ d = np.arcsin(np.cos(r) * np.sin(d0) + np.cos(d0) * np.cos(phi) * np.sin(r)) if phi < np.pi: if (np.cos(r) - np.sin(d) * np.sin(d0)) / (np.cos(d) * np.cos(d0)) > 0: a = a0 + np.arccos(np.sqrt(1 - (np.sin(phi) * np.sin(r) / np.cos(d)) ** 2)) else: a = a0 + np.arccos(-np.sqrt(1 - (np.sin(phi) * np.sin(r) / np.cos(d)) ** 2)) if phi >= np.pi: if (np.cos(r) - np.sin(d) * np.sin(d0)) / (np.cos(d) * np.cos(d0)) > 0: a = a0 - np.arccos(np.sqrt(1 - (np.sin(phi) * np.sin(r) / np.cos(d)) ** 2)) else: a = a0 - np.arccos(-np.sqrt(1 - (np.sin(phi) * np.sin(r) / np.cos(d)) ** 2)) ra = a * 180 / np.pi dec = d * 180 / np.pi return ra, dec def sky_to_polar(a, d, a0, d0): """ Transforms sky coordinates, in degrees (RA,Dec), into spherical polar coordinates (r,phi). Parameters ---------- a : array_like Right ascention in degrees. d : array_like Declination in degrees. a0 : float Right ascention from origin. d0 : float Declination from origin. Returns ------- r : array_like Radial distance from center. p : array_like Angle between increasing declination and the projected radius (pointing towards the source), in radians. """ r = sky_distance_deg(a, d, a0, d0) * np.pi / 180 a = a * np.pi / 180 d = d * np.pi / 180 sp = np.cos(d) * np.sin(a - (a0 * np.pi / 180)) / np.sin(r) p = np.zeros(len(sp)) spp = np.where(sp > 0) spm = np.where(sp <= 0) dp = np.where(d > (d0 * np.pi / 180)) dm = np.where(d <= (d0 * np.pi / 180)) p[np.intersect1d(spp, dp)] = np.arcsin(sp[np.intersect1d(spp, dp)]) p[np.intersect1d(spp, dm)] = np.pi - np.arcsin(sp[np.intersect1d(spp, dm)]) p[np.intersect1d(spm, dp)] = 2 * np.pi + np.arcsin(sp[np.intersect1d(spm, dp)]) p[np.intersect1d(spm, dm)] = np.pi - np.arcsin(sp[np.intersect1d(spm, dm)]) return r, p def angular_sep_vector(v0, v): """ Returns separation angle in radians between two 3D arrays. Parameters ---------- v0 : 3D array Vector 1. v : 3D array Vector 2. Returns ------- R : array_like Separation between vector 1 and vector 2 in radians. """ try: v0.shape except NameError: print("You did not give a valid input.") return v = v / np.linalg.norm(v) B = np.arcsin(v[2]) cosA = v[0] / np.cos(B) sinA = v[1] / np.cos(B) A = np.arctan2(sinA, cosA) v0 = v0 / np.linalg.norm(v0) B0 = np.arcsin(v0[2]) cosA0 = v0[0] / np.cos(B0) sinA0 = v0[1] / np.cos(B0) A0 = np.arctan2(sinA0, cosA0) cosR = np.sin(B0) * np.sin(B) + np.cos(B0) * np.cos(B) * np.cos(A - A0) R = np.arccos(cosR) return R def rodrigues_formula(k, v, theta, debug=False): """ Returns the rotation of v of an angle theta with respect to the vector k Applies the Rodrigues formula from: https://en.wikipedia.org/wiki/Rodrigues%27_rotation_formula Parameters ---------- k : array_like Vector with respect to which v will be rotated. v : array_like Vector to be rotated. theta : float Angle to rotate v. debug : boolean, optional True if the reader wants to print debug diagnistics. The default is False. Returns ------- v_rot : array_like Rotated vector. """ try: v.shape except NameError: print("You did not give a valid input for the Rodrigues formula.") return if len(np.shape(v)) == 1 and len(v) == 3: v_rot = ( v * np.cos(theta) + np.cross(k, v) * np.sin(theta) + k * np.dot(k, v) * (1 - np.cos(theta)) ) elif len(np.shape(v)) == 2 and np.shape(v)[0] == 3: v_rot = np.zeros((np.shape(v)[1], 3)) for i in range(0, len(v_rot)): v0 = np.asarray([v[0][i], v[1][i], v[2][i]]) v_rot[i] = ( v0 * np.cos(theta) + np.cross(k, v0) * np.sin(theta) + k * np.dot(v0, k) * (1 - np.cos(theta)) ) if debug is True and i < 10: print("v0 :", v0) print("v_rot:", v_rot[i]) else: print("You did not give a valid input for the Rodrigues formula.") return return v_rot def sky_coord_rotate(v_i, v0_i, v0_f, theta=0, debug=False): """ Gets new angles (RA,Dec) in degrees of a rotated vector. Parameters ---------- v_i : array_like Vectors to be rotated. v0_i : array_like Vector pointing to the initial centroid position. v0_f : array_like Vector pointing to the final centroid position. theta : float, optional Angle to rotate (for no translation), in radians. The default is 0. debug : boolean, optional True if the reader wants to print debug diagnistics. The default is False. Returns ------- array_like, array_like Arrays containing the new rotated (RA,Dec) positions. """ if (v0_i == v0_f).all(): if debug is True: print("Pure rotation") k = v0_i / np.linalg.norm(v0_i) else: if debug is True: print("Translation in spherical geometry") k = np.cross(v0_i, v0_f) / np.linalg.norm(np.cross(v0_i, v0_f)) theta = angular_sep_vector(v0_i, v0_f) if debug is True: print("Vector k:", k) print("Angle of separation [degrees]:", theta * 180 / np.pi) v_f = rodrigues_formula(k, v_i, theta) try: v_f.shape except NameError: print("You did not give a valid input for the Rodrigues formula.") return if len(np.shape(v_f)) == 1 and len(v_f) == 3: v_f = v_f / np.linalg.norm(v_f) B = np.arcsin(v_f[2]) cosA = v_f[0] / np.cos(B) sinA = v_f[1] / np.cos(B) A = np.arctan2(sinA, cosA) elif len(np.shape(v_f)) == 2: A = np.zeros(len(v_f)) B = np.zeros(len(v_f)) for i in range(0, len(v_f)): v_f[i] = v_f[i] / np.linalg.norm(v_f[i]) B[i] = np.arcsin(v_f[i][2]) cosA = v_f[i][0] / np.cos(B[i]) sinA = v_f[i][1] / np.cos(B[i]) A[i] = np.arctan2(sinA, cosA) if debug is True and i < 10: print("A, B [degrees]:", A[i] * (180 / np.pi), B[i] * (180 / np.pi)) else: print("You did not give a valid input for the Rodrigues formula.") return return A * (180 / np.pi), B * (180 / np.pi) def sky_vector(a, d, a0, d0, af, df): """ Transforms sky coordinates in vectors to be used by sky_coord_rotate. Parameters ---------- a : float, array_like Original set of RA in degrees. d : float, array_like Original set of Dec in degrees. a0 : float Original centroid RA in degrees. d0 : float Original centroid Dec in degrees. af : float Final centroid RA in degrees. df : float Final centroid Dec in degrees. Returns ------- v_i : array_like Vectors to be rotated. v0_i : array_like Vector pointing to the initial centroid position. v0_f : array_like Vector pointing to the final centroid position. """ a = a * (np.pi / 180) d = d * (np.pi / 180) a0 = a0 * (np.pi / 180) d0 = d0 * (np.pi / 180) af = af * (np.pi / 180) df = df * (np.pi / 180) v_i = np.asarray([np.cos(a) * np.cos(d), np.sin(a) * np.cos(d), np.sin(d)]) v0_i = np.asarray([np.cos(a0) * np.cos(d0), np.sin(a0) * np.cos(d0), np.sin(d0)]) v0_f = np.asarray([np.cos(af) * np.cos(df), np.sin(af) * np.cos(df), np.sin(df)]) return v_i, v0_i, v0_f # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # ------------------------------------------------------------------------------ "Axis rotation" # ------------------------------------------------------------------------------ def transrot_source(a, d, a0, d0, af, df): """ Translades and then rotates a source in spherical coordinates, so the original directions remain the same. Parameters ---------- a : float, array_like Original set of RA in degrees. d : float, array_like Original set of Dec in degrees. a0 : float Original centroid RA in degrees. d0 : float Original centroid Dec in degrees. af : float Final centroid RA in degrees. df : float Final centroid Dec in degrees. Returns ------- a : array_like Right ascention in degrees. d : array_like Declination in degrees. """ v_i, v0_i, v0_f = sky_vector(a, d, a0, d0, af, df) a, d = sky_coord_rotate(v_i, v0_i, v0_f) rmax = np.nanmax(sky_distance_deg(a, d, af, df)) * (np.pi / 180) narr = np.asarray([0, 0.1, 0.25, 0.5]) * rmax vt = np.asarray( [ np.cos(a0 + narr) * np.cos([d0, d0, d0, d0]), np.sin(a0 + narr) * np.cos([d0, d0, d0, d0]), np.sin([d0, d0, d0, d0]), ] ) at, dt = sky_coord_rotate(vt, v0_i, v0_f) r0, p0 = sky_to_polar(a0 + narr, d0 * np.ones(len(narr)), a0, d0) rf, pf = sky_to_polar(at, dt, af, df) phi = np.nanmean(pf - p0) v_i, v0_i, v0_f = sky_vector(a, d, af, df, af, df) a, d = sky_coord_rotate(v_i, v0_i, v0_f, theta=phi) return a, d def rotate_axis(x, y, theta, mu_x=0, mu_y=0): """ Rotates and translates the two main cartesian axis. Parameters ---------- x : float or array_like Data in x-direction. y : float or array_like Data in y-direction. theta : float Rotation angle in radians. mu_x : float, optional Center of new x axis in the old frame. The default is 0. mu_y : float, optional Center of new y axis in the old frame. The default is 0. Returns ------- x_new : float or array_like Data in new x-direction. y_new : float or array_like Data in new y-direction. """ x_new = (x - mu_x) * np.cos(theta) + (y - mu_y) * np.sin(theta) y_new = -(x - mu_x) * np.sin(theta) + (y - mu_y) * np.cos(theta) return x_new, y_new def get_ellipse(a, b, theta, nbins): """ Provides an array describing a rotated ellipse. Parameters ---------- a : float Ellipse semi-major axis. b : float Ellipse semi-minor axis. theta : float Rotation angle in radians. nbins : int Number of points in the final array. Returns ------- ellipse_rot : array_like Rotated ellipse array. """ t = np.linspace(0, 2 * np.pi, nbins) ellipse = np.array([a * np.cos(t), b * np.sin(t)]) m_rot = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) ellipse_rot = np.zeros((2, ellipse.shape[1])) for i in range(ellipse.shape[1]): ellipse_rot[:, i] = np.dot(m_rot, ellipse[:, i]) return ellipse_rot # %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # ------------------------------------------------------------------------------ "Transform coordinates" # ------------------------------------------------------------------------------ def cart_to_sph(x, y, z, vx, vy, vz): """ Transforms 6D cartesian coordinates to spherical coordinates. Parameters ---------- x : array_like, float x-axis. y : array_like, float y-axis. z : array_like, float z-axis. vx : array_like, float x-axis velocity. vy : array_like, float y-axis velocity. vz : array_like, float z-axis velocity. Returns ------- r : array_like, float r-axis. phi : array_like, float phi-angle. theta : array_like, float theta-angle. vr : array_like, float r-axis velocity. vphi : array_like, float phi-angle velocity. vtheta : array_like, float theta-angle velocity. """ r = np.sqrt(x * x + y * y + z * z) phi = np.arctan2(y, x) theta = np.arccos(z / r) vr = (vx * x + vy * y + vz * z) / r vphi = (vy * x - vx * y) / np.sqrt(x * x + y * y) vtheta = -(vz * (x * x + y * y) - z * (vx * x + vy * y)) / ( np.sqrt(x * x + y * y) * r ) return r, phi, theta, vr, vphi, vtheta def sph_to_cart(r, phi, theta, vr, vphi, vtheta): """ Transforms 6D spherical coordinates to cartesian coordinates. Parameters ---------- r : array_like, float r-axis. phi : array_like, float phi-angle. theta : array_like, float theta-angle. vr : array_like, float r-axis velocity. vphi : array_like, float phi-angle velocity. vtheta : array_like, float theta-angle velocity. Returns ------- x : array_like, float x-axis. y : array_like, float y-axis. z : array_like, float z-axis. vx : array_like, float x-axis velocity. vy : array_like, float y-axis velocity. vz : array_like, float z-axis velocity. """ x = r * np.sin(theta) * np.cos(phi) y = r * np.sin(theta) * np.sin(phi) z = r * np.cos(theta) vx = ( vr * np.sin(theta) * np.cos(phi) + vtheta * np.cos(theta) * np.cos(phi) - vphi * np.sin(phi) ) vy = ( vr * np.sin(theta) * np.sin(phi) + vtheta * np.cos(theta) * np.sin(phi) + vphi * np.cos(phi) ) vz = vr * np.cos(theta) - vtheta * np.sin(theta) return x, y, z, vx, vy, vz def radec_to_lb(a, d, dadt=None, dddt=None): """ Transforms celestial coordinates into galactic coordinates. Parameters ---------- a : array_like, float Right ascention in degrees. d : array_like, float Declination in degrees. dadt : array_like, float, optional Right ascention velocity (PMRA), in mas/yr. The default is None dddt : array_like, float, optional Declination velocity (PMDec), in mas/yr. The default is None Returns ------- lon : array_like, float Galactic longitude, in degrees. b : array_like, float Galactic latitude, in degrees. dldt : array_like, float, optional Galactic longitude velocity, in mas/yr dbdt : array_like, float, optional Galactic latitude velocity, in mas/yr. The default is None """ a = a * (np.pi / 180) d = d * (np.pi / 180) sind = np.sin(d) cosd = np.cos(d) sind_NGP = np.sin(d_NGP) cosd_NGP = np.cos(d_NGP) cosda = np.cos(a - a_NGP) sinda = np.sin(a - a_NGP) sinb = sind_NGP * sind + cosd_NGP * cosd * cosda cosb_sindl = cosd * sinda cosb_cosdl = cosd_NGP * sind - sind_NGP * cosd * cosda b = np.arcsin(sinb) cosb = np.cos(b) sindl = cosb_sindl / cosb cosdl = cosb_cosdl / cosb if np.isscalar(sindl): lon = l_NCP -
np.arctan2(sindl, cosdl)
numpy.arctan2
''' Dataset for training Written by Whalechen ''' import math import os import random import numpy as np from torch.utils.data import Dataset import nibabel from scipy import ndimage class BrainS18Dataset(Dataset): def __init__(self, root_dir, img_list, sets): with open(img_list, 'r') as f: self.img_list = [line.strip() for line in f] print("Processing {} datas".format(len(self.img_list))) self.root_dir = root_dir self.input_D = sets.input_D self.input_H = sets.input_H self.input_W = sets.input_W print('input D:', self.input_D) print('input H:', self.input_H) print('input W:', self.input_W) self.phase = sets.phase def __nii2tensorarray__(self, data): [z, y, x] = data.shape new_data = np.reshape(data, [1, z, y, x]) new_data = new_data.astype("float32") return new_data def __len__(self): return len(self.img_list) def __getitem__(self, idx): if self.phase == "train": # read image and labels ith_info = self.img_list[idx].split(" ") img_name = os.path.join(self.root_dir, ith_info[0]) label_name = os.path.join(self.root_dir, ith_info[1]) assert os.path.isfile(img_name) assert os.path.isfile(label_name) img = nibabel.load(img_name) # We have transposed the data from WHD format to DHW assert img is not None mask = nibabel.load(label_name) assert mask is not None # data processing img_array, mask_array = self.__training_data_process__(img, mask) # 2 tensor array img_array = self.__nii2tensorarray__(img_array) mask_array = self.__nii2tensorarray__(mask_array) assert img_array.shape == mask_array.shape, "img shape:{} is not equal to mask shape:{}".format(img_array.shape, mask_array.shape) return img_array, mask_array elif self.phase == "test": # read image ith_info = self.img_list[idx].split(" ") img_name = os.path.join(self.root_dir, ith_info[0]) print(img_name) assert os.path.isfile(img_name) img = nibabel.load(img_name) assert img is not None # data processing img_array = self.__testing_data_process__(img) # 2 tensor array img_array = self.__nii2tensorarray__(img_array) return img_array def __drop_invalid_range__(self, volume, label=None): """ Cut off the invalid area """ zero_value = volume[0, 0, 0] non_zeros_idx = np.where(volume != zero_value) [max_z, max_h, max_w] = np.max(np.array(non_zeros_idx), axis=1) [min_z, min_h, min_w] = np.min(np.array(non_zeros_idx), axis=1) if label is not None: return volume[min_z:max_z, min_h:max_h, min_w:max_w], label[min_z:max_z, min_h:max_h, min_w:max_w] else: return volume[min_z:max_z, min_h:max_h, min_w:max_w] def __random_center_crop__(self, data, label): from random import random """ Random crop """ target_indexs = np.where(label>0) [img_d, img_h, img_w] = data.shape [max_D, max_H, max_W] = np.max(np.array(target_indexs), axis=1) [min_D, min_H, min_W] = np.min(np.array(target_indexs), axis=1) [target_depth, target_height, target_width] = np.array([max_D, max_H, max_W]) - np.array([min_D, min_H, min_W]) Z_min = int((min_D - target_depth*1.0/2) * random()) Y_min = int((min_H - target_height*1.0/2) * random()) X_min = int((min_W - target_width*1.0/2) * random()) Z_max = int(img_d - ((img_d - (max_D + target_depth*1.0/2)) * random())) Y_max = int(img_h - ((img_h - (max_H + target_height*1.0/2)) * random())) X_max = int(img_w - ((img_w - (max_W + target_width*1.0/2)) * random())) Z_min = np.max([0, Z_min]) Y_min = np.max([0, Y_min]) X_min = np.max([0, X_min]) Z_max = np.min([img_d, Z_max]) Y_max = np.min([img_h, Y_max]) X_max =
np.min([img_w, X_max])
numpy.min
from __future__ import division, absolute_import, print_function import warnings import numpy as np from numpy.testing import ( run_module_suite, TestCase, assert_, assert_equal, assert_almost_equal, assert_no_warnings, assert_raises, assert_array_equal, suppress_warnings ) # Test data _ndat = np.array([[0.6244, np.nan, 0.2692, 0.0116, np.nan, 0.1170], [0.5351, -0.9403, np.nan, 0.2100, 0.4759, 0.2833], [np.nan, np.nan, np.nan, 0.1042, np.nan, -0.5954], [0.1610, np.nan, np.nan, 0.1859, 0.3146, np.nan]]) # Rows of _ndat with nans removed _rdat = [np.array([0.6244, 0.2692, 0.0116, 0.1170]), np.array([0.5351, -0.9403, 0.2100, 0.4759, 0.2833]), np.array([0.1042, -0.5954]), np.array([0.1610, 0.1859, 0.3146])] # Rows of _ndat with nans converted to ones _ndat_ones = np.array([[0.6244, 1.0, 0.2692, 0.0116, 1.0, 0.1170], [0.5351, -0.9403, 1.0, 0.2100, 0.4759, 0.2833], [1.0, 1.0, 1.0, 0.1042, 1.0, -0.5954], [0.1610, 1.0, 1.0, 0.1859, 0.3146, 1.0]]) # Rows of _ndat with nans converted to zeros _ndat_zeros = np.array([[0.6244, 0.0, 0.2692, 0.0116, 0.0, 0.1170], [0.5351, -0.9403, 0.0, 0.2100, 0.4759, 0.2833], [0.0, 0.0, 0.0, 0.1042, 0.0, -0.5954], [0.1610, 0.0, 0.0, 0.1859, 0.3146, 0.0]]) class TestNanFunctions_MinMax(TestCase): nanfuncs = [np.nanmin, np.nanmax] stdfuncs = [np.min, np.max] def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): for axis in [None, 0, 1]: tgt = rf(mat, axis=axis, keepdims=True) res = nf(mat, axis=axis, keepdims=True) assert_(res.ndim == tgt.ndim) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.zeros(3) tgt = rf(mat, axis=1) res = nf(mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_dtype_from_input(self): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: mat = np.eye(3, dtype=c) tgt = rf(mat, axis=1).dtype.type res = nf(mat, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, axis=None).dtype.type res = nf(mat, axis=None).dtype.type assert_(res is tgt) def test_result_values(self): for nf, rf in zip(self.nanfuncs, self.stdfuncs): tgt = [rf(d) for d in _rdat] res = nf(_ndat, axis=1) assert_almost_equal(res, tgt) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(mat, axis=axis)).all()) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) # Check scalars with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(np.nan))) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) def test_masked(self): mat = np.ma.fix_invalid(_ndat) msk = mat._mask.copy() for f in [np.nanmin]: res = f(mat, axis=1) tgt = f(_ndat, axis=1) assert_equal(res, tgt) assert_equal(mat._mask, msk) assert_(not np.isinf(mat).any()) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) # check that rows of nan are dealt with for subclasses (#4628) mat[1] = np.nan for f in self.nanfuncs: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(not np.any(np.isnan(res))) assert_(len(w) == 0) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(np.isnan(res[1, 0]) and not np.isnan(res[0, 0]) and not np.isnan(res[2, 0])) assert_(len(w) == 1, 'no warning raised') assert_(issubclass(w[0].category, RuntimeWarning)) with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(mat) assert_(np.isscalar(res)) assert_(res != np.nan) assert_(len(w) == 0) class TestNanFunctions_ArgminArgmax(TestCase): nanfuncs = [np.nanargmin, np.nanargmax] def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_result_values(self): for f, fcmp in zip(self.nanfuncs, [np.greater, np.less]): for row in _ndat: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in") ind = f(row) val = row[ind] # comparing with NaN is tricky as the result # is always false except for NaN != NaN assert_(not np.isnan(val)) assert_(not fcmp(val, row).any()) assert_(not np.equal(val, row[:ind]).any()) def test_allnans(self): mat = np.array([np.nan]*9).reshape(3, 3) for f in self.nanfuncs: for axis in [None, 0, 1]: assert_raises(ValueError, f, mat, axis=axis) assert_raises(ValueError, f, np.nan) def test_empty(self): mat = np.zeros((0, 3)) for f in self.nanfuncs: for axis in [0, None]: assert_raises(ValueError, f, mat, axis=axis) for axis in [1]: res = f(mat, axis=axis) assert_equal(res, np.zeros(0)) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) class TestNanFunctions_IntTypes(TestCase): int_types = (np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64) mat = np.array([127, 39, 93, 87, 46]) def integer_arrays(self): for dtype in self.int_types: yield self.mat.astype(dtype) def test_nanmin(self): tgt = np.min(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmin(mat), tgt) def test_nanmax(self): tgt = np.max(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmax(mat), tgt) def test_nanargmin(self): tgt = np.argmin(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanargmin(mat), tgt) def test_nanargmax(self): tgt = np.argmax(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanargmax(mat), tgt) def test_nansum(self): tgt = np.sum(self.mat) for mat in self.integer_arrays(): assert_equal(np.nansum(mat), tgt) def test_nanprod(self): tgt = np.prod(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanprod(mat), tgt) def test_nancumsum(self): tgt = np.cumsum(self.mat) for mat in self.integer_arrays(): assert_equal(np.nancumsum(mat), tgt) def test_nancumprod(self): tgt = np.cumprod(self.mat) for mat in self.integer_arrays(): assert_equal(np.nancumprod(mat), tgt) def test_nanmean(self): tgt = np.mean(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanmean(mat), tgt) def test_nanvar(self): tgt = np.var(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat), tgt) tgt = np.var(mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanvar(mat, ddof=1), tgt) def test_nanstd(self): tgt = np.std(self.mat) for mat in self.integer_arrays(): assert_equal(np.nanstd(mat), tgt) tgt = np.std(self.mat, ddof=1) for mat in self.integer_arrays(): assert_equal(np.nanstd(mat, ddof=1), tgt) class SharedNanFunctionsTestsMixin(object): def test_mutation(self): # Check that passed array is not modified. ndat = _ndat.copy() for f in self.nanfuncs: f(ndat) assert_equal(ndat, _ndat) def test_keepdims(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): for axis in [None, 0, 1]: tgt = rf(mat, axis=axis, keepdims=True) res = nf(mat, axis=axis, keepdims=True) assert_(res.ndim == tgt.ndim) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.zeros(3) tgt = rf(mat, axis=1) res = nf(mat, axis=1, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) def test_dtype_from_dtype(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=np.dtype(c), axis=1).dtype.type res = nf(mat, dtype=np.dtype(c), axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=np.dtype(c), axis=None).dtype.type res = nf(mat, dtype=np.dtype(c), axis=None).dtype.type assert_(res is tgt) def test_dtype_from_char(self): mat = np.eye(3) codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: with suppress_warnings() as sup: if nf in {np.nanstd, np.nanvar} and c in 'FDG': # Giving the warning is a small bug, see gh-8000 sup.filter(np.ComplexWarning) tgt = rf(mat, dtype=c, axis=1).dtype.type res = nf(mat, dtype=c, axis=1).dtype.type assert_(res is tgt) # scalar case tgt = rf(mat, dtype=c, axis=None).dtype.type res = nf(mat, dtype=c, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_input(self): codes = 'efdgFDG' for nf, rf in zip(self.nanfuncs, self.stdfuncs): for c in codes: mat = np.eye(3, dtype=c) tgt = rf(mat, axis=1).dtype.type res = nf(mat, axis=1).dtype.type assert_(res is tgt, "res %s, tgt %s" % (res, tgt)) # scalar case tgt = rf(mat, axis=None).dtype.type res = nf(mat, axis=None).dtype.type assert_(res is tgt) def test_result_values(self): for nf, rf in zip(self.nanfuncs, self.stdfuncs): tgt = [rf(d) for d in _rdat] res = nf(_ndat, axis=1) assert_almost_equal(res, tgt) def test_scalar(self): for f in self.nanfuncs: assert_(f(0.) == 0.) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: res = f(mat, axis=0) assert_(isinstance(res, np.matrix)) assert_(res.shape == (1, 3)) res = f(mat, axis=1) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 1)) res = f(mat) assert_(np.isscalar(res)) class TestNanFunctions_SumProd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nansum, np.nanprod] stdfuncs = [np.sum, np.prod] def test_allnans(self): # Check for FutureWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = np.nansum([np.nan]*3, axis=None) assert_(res == 0, 'result is not 0') assert_(len(w) == 0, 'warning raised') # Check scalar res = np.nansum(np.nan) assert_(res == 0, 'result is not 0') assert_(len(w) == 0, 'warning raised') # Check there is no warning for not all-nan np.nansum([0]*3, axis=None) assert_(len(w) == 0, 'unwanted warning raised') def test_empty(self): for f, tgt_value in zip([np.nansum, np.nanprod], [0, 1]): mat = np.zeros((0, 3)) tgt = [tgt_value]*3 res = f(mat, axis=0) assert_equal(res, tgt) tgt = [] res = f(mat, axis=1) assert_equal(res, tgt) tgt = tgt_value res = f(mat, axis=None) assert_equal(res, tgt) class TestNanFunctions_CumSumProd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nancumsum, np.nancumprod] stdfuncs = [np.cumsum, np.cumprod] def test_allnans(self): for f, tgt_value in zip(self.nanfuncs, [0, 1]): # Unlike other nan-functions, sum/prod/cumsum/cumprod don't warn on all nan input with assert_no_warnings(): res = f([np.nan]*3, axis=None) tgt = tgt_value*np.ones((3)) assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((3))' % (tgt_value)) # Check scalar res = f(np.nan) tgt = tgt_value*np.ones((1)) assert_(np.array_equal(res, tgt), 'result is not %s * np.ones((1))' % (tgt_value)) # Check there is no warning for not all-nan f([0]*3, axis=None) def test_empty(self): for f, tgt_value in zip(self.nanfuncs, [0, 1]): mat = np.zeros((0, 3)) tgt = tgt_value*np.ones((0, 3)) res = f(mat, axis=0) assert_equal(res, tgt) tgt = mat res = f(mat, axis=1) assert_equal(res, tgt) tgt = np.zeros((0)) res = f(mat, axis=None) assert_equal(res, tgt) def test_keepdims(self): for f, g in zip(self.nanfuncs, self.stdfuncs): mat = np.eye(3) for axis in [None, 0, 1]: tgt = f(mat, axis=axis, out=None) res = g(mat, axis=axis, out=None) assert_(res.ndim == tgt.ndim) for f in self.nanfuncs: d = np.ones((3, 5, 7, 11)) # Randomly set some elements to NaN: rs = np.random.RandomState(0) d[rs.rand(*d.shape) < 0.5] = np.nan res = f(d, axis=None) assert_equal(res.shape, (1155,)) for axis in np.arange(4): res = f(d, axis=axis) assert_equal(res.shape, (3, 5, 7, 11)) def test_matrices(self): # Check that it works and that type and # shape are preserved mat = np.matrix(np.eye(3)) for f in self.nanfuncs: for axis in np.arange(2): res = f(mat, axis=axis) assert_(isinstance(res, np.matrix)) assert_(res.shape == (3, 3)) res = f(mat) assert_(res.shape == (1, 3*3)) def test_result_values(self): for axis in (-2, -1, 0, 1, None): tgt = np.cumprod(_ndat_ones, axis=axis) res = np.nancumprod(_ndat, axis=axis) assert_almost_equal(res, tgt) tgt = np.cumsum(_ndat_zeros,axis=axis) res = np.nancumsum(_ndat, axis=axis) assert_almost_equal(res, tgt) def test_out(self): mat = np.eye(3) for nf, rf in zip(self.nanfuncs, self.stdfuncs): resout = np.eye(3) for axis in (-2, -1, 0, 1): tgt = rf(mat, axis=axis) res = nf(mat, axis=axis, out=resout) assert_almost_equal(res, resout) assert_almost_equal(res, tgt) class TestNanFunctions_MeanVarStd(TestCase, SharedNanFunctionsTestsMixin): nanfuncs = [np.nanmean, np.nanvar, np.nanstd] stdfuncs = [np.mean, np.var, np.std] def test_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: assert_raises(TypeError, f, _ndat, axis=1, dtype=dtype) def test_out_dtype_error(self): for f in self.nanfuncs: for dtype in [np.bool_, np.int_, np.object_]: out = np.empty(_ndat.shape[0], dtype=dtype) assert_raises(TypeError, f, _ndat, axis=1, out=out) def test_ddof(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in [0, 1]: tgt = [rf(d, ddof=ddof) for d in _rdat] res = nf(_ndat, axis=1, ddof=ddof) assert_almost_equal(res, tgt) def test_ddof_too_big(self): nanfuncs = [np.nanvar, np.nanstd] stdfuncs = [np.var, np.std] dsize = [len(d) for d in _rdat] for nf, rf in zip(nanfuncs, stdfuncs): for ddof in range(5): with suppress_warnings() as sup: sup.record(RuntimeWarning) sup.filter(np.ComplexWarning) tgt = [ddof >= d for d in dsize] res = nf(_ndat, axis=1, ddof=ddof) assert_equal(
np.isnan(res)
numpy.isnan
from builtins import * import random import sys import os import math from abc import ABCMeta, abstractmethod from collections import defaultdict, Counter from functools import partial import numpy as np import matplotlib import matplotlib.pyplot as plt from .base_tabular_learner import Agent, StationaryAgent import importlib import maci.utils as utils from copy import deepcopy class BaseQAgent(Agent): def __init__(self, name, id_, action_num, env, alpha_decay_steps=10000., alpha=0.01, gamma=0.95, episilon=0.1, verbose=True, **kwargs): super().__init__(name, id_, action_num, env, **kwargs) self.episilon = episilon self.alpha_decay_steps = alpha_decay_steps self.gamma = gamma self.alpha = alpha self.epoch = 0 self.Q = None self.pi = defaultdict(partial(np.random.dirichlet, [1.0] * self.action_num)) self.record = defaultdict(list) self.verbose = verbose self.pi_history = [deepcopy(self.pi)] def done(self, env): if self.verbose: utils.pv('self.full_name(game)') utils.pv('self.Q') utils.pv('self.pi') numplots = env.numplots if env.numplots >= 0 else len(self.record) for s, record in sorted( self.record.items(), key=lambda x: -len(x[1]))[:numplots]: self.plot_record(s, record, env) self.record.clear() # learning rate decay def step_decay(self): # drop = 0.5 # epochs_drop = 10000 # decay_alpha = self.alpha * math.pow(drop, math.floor((1 + self.epoch) / epochs_drop)) # return 1 / (1 / self.alpha + self.epoch * 1e-4) return self.alpha_decay_steps / (self.alpha_decay_steps + self.epoch) # return decay_alpha # def alpha(self, t): # return self.alpha_decay_steps / (self.alpha_decay_steps + t) def act(self, s, exploration, game): if exploration and random.random() < self.episilon: return random.randint(0, self.action_num - 1) else: if self.verbose: for s in self.Q.keys(): print('{}--------------'.format(self.id_)) print('Q of agent {}: state {}: {}'.format(self.id_, s, str(self.Q[s]))) # print('QAof agent {}: state {}: {}'.format(self.id_, s, str(self.Q_A[s]))) # self.Q_A print('pi of agent {}: state {}: {}'.format(self.id_, s, self.pi[s])) # print('pi of opponent agent {}: state{}: {}'.format(self.id_, s, self.opponent_best_pi[s])) print('{}--------------'.format(self.id_)) # print() return StationaryAgent.sample(self.pi[s]) @abstractmethod def update(self, s, a, o, r, s2, env, done=False): pass @abstractmethod def update_policy(self, s, a, env): pass def plot_record(self, s, record, env): os.makedirs('policy/', exist_ok=True) fig = plt.figure(figsize=(18, 10)) n = self.action_num for a in range(n): plt.subplot(n, 1, a + 1) plt.tight_layout() plt.gca().set_ylim([-0.05, 1.05]) plt.gca().set_xlim([1.0, env.t + 1.0]) plt.title('player: {}: state: {}, action: {}'.format(self.full_name(env), s, a)) plt.xlabel('step') plt.ylabel('pi[a]') plt.grid() x, y = list(zip(*((t, pi[a]) for t, pi in record))) x, y = list(x) + [env.t + 1.0], list(y) + [y[-1]] plt.plot(x, y, 'r-') fig.savefig('policy/{}_{}.pdf'.format(self.full_name(env), s)) plt.close(fig) def record_policy(self, s, env): pass # if env.numplots != 0: # if s in self.record: # self.record[s].append((env.t - 0.01, self.record[s][-1][1])) # self.record[s].append((env.t, np.copy(self.pi[s]))) class QAgent(BaseQAgent): def __init__(self, id_, action_num, env, **kwargs): super().__init__('q', id_, action_num, env, **kwargs) self.Q = defaultdict(partial(np.random.rand, self.action_num)) self.R = defaultdict(partial(np.zeros, self.action_num)) self.count_R = defaultdict(partial(np.zeros, self.action_num)) def done(self, env): self.R.clear() self.count_R.clear() super().done(env) def update(self, s, a, o, r, s2, env, done=False): self.count_R[s][a] += 1.0 self.R[s][a] += (r - self.R[s][a]) / self.count_R[s][a] Q = self.Q[s] V = self.val(s2) decay_alpha = self.step_decay() if done: Q[a] = Q[a] + decay_alpha * (r - Q[a]) else: Q[a] = Q[a] + decay_alpha * (r + self.gamma * V - Q[a]) if self.verbose: print(self.epoch) self.update_policy(s, a, env) self.record_policy(s, env) self.epoch += 1 def val(self, s): return np.max(self.Q[s]) def update_policy(self, s, a, env): Q = self.Q[s] self.pi[s] = (Q == np.max(Q)).astype(np.double) class PGAAPPAgent(QAgent): def __init__(self, id_, action_num, env, eta=0.01, **kwargs): super().__init__(id_, action_num, env, **kwargs) self.name = 'pha-app' self.eta = eta self.pi_history = [deepcopy(self.pi)] def update_policy(self, s, a, game): V = np.dot(self.pi[s], self.Q[s]) delta_hat_A = np.zeros(self.action_num) delta_A = np.zeros(self.action_num) for ai in range(self.action_num): if self.pi[s][ai] == 1: delta_hat_A[ai]= self.Q[s][ai] - V else: delta_hat_A[ai] = (self.Q[s][ai] - V) / (1 - self.pi[s][ai]) delta_A[ai] = delta_hat_A[ai] - self.gamma * abs(delta_hat_A[ai]) *self.pi[s][ai] self.pi[s] += self.eta * delta_A StationaryAgent.normalize(self.pi[s]) self.pi_history.append(deepcopy(self.pi)) class GIGAWoLFAgent(QAgent): def __init__(self, id_, action_num, env, eta=0.01, **kwargs): super().__init__(id_, action_num, env, **kwargs) self.name = 'giga-wolf' self.eta = eta self.pi_history = [deepcopy(self.pi)] def update_policy(self, s, a, game): V = np.dot(self.pi[s], self.Q[s]) delta_hat_A = np.zeros(self.action_num) delta_A = np.zeros(self.action_num) for ai in range(self.action_num): if self.pi[s][ai] == 1: delta_hat_A[ai]= self.Q[s][ai] - V else: delta_hat_A[ai] = (self.Q[s][ai] - V) / (1 - self.pi[s][ai]) delta_A[ai] = delta_hat_A[ai] - self.gamma * abs(delta_hat_A[ai]) *self.pi[s][ai] self.pi[s] += self.eta * delta_A StationaryAgent.normalize(self.pi[s]) self.pi_history.append(deepcopy(self.pi)) class EMAQAgent(QAgent): def __init__(self, id_, action_num, env, delta1=0.001, delta2=0.002, **kwargs): super().__init__(id_, action_num, env, **kwargs) self.name = 'emaq' self.delta1 = delta1 self.delta2 = delta2 self.pi_history = [deepcopy(self.pi)] def update_policy(self, s, a, game): if a == np.argmax(self.Q[s]): delta = self.delta1 vi = np.zeros(self.action_num) vi[a] = 1. else: delta = self.delta2 vi = np.zeros(self.action_num) vi[a] = 0. self.pi[s] = (1 - delta) * self.pi[s] + delta * vi StationaryAgent.normalize(self.pi[s]) self.pi_history.append(deepcopy(self.pi)) class OMQAgent(QAgent): def __init__(self, id_, action_num, env, **kwargs): super().__init__(id_, action_num, env, **kwargs) self.name = 'omq' self.count_SO = defaultdict(partial(np.zeros, self.action_num)) self.opponent_pi = defaultdict(partial(np.random.dirichlet, [1.0] * self.action_num)) self.pi_history = [deepcopy(self.pi)] self.opponent_pi_history = [deepcopy(self.opponent_pi)] self.Q = defaultdict(partial(np.random.rand, *(self.action_num, self.action_num))) self.R = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) self.count_R = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) def update(self, s, a, o, r, s2, env, done=False): self.count_SO[s][o] += 1. self.opponent_pi[s] = self.count_SO[s] / np.sum(self.count_SO[s]) self.count_R[s][a][o] += 1.0 self.R[s][a][o] += (r - self.R[s][a][o]) / self.count_R[s][a][o] Q = self.Q[s] V = self.val(s2) decay_alpha = self.step_decay() if done: Q[a][o] = Q[a][o] + decay_alpha * (r - Q[a]) else: Q[a][o] = Q[a][o] + decay_alpha * (r + self.gamma * V - Q[a][o]) if self.verbose: print(self.epoch) self.update_policy(s, a, env) self.record_policy(s, env) self.epoch += 1 def val(self, s): return np.max(np.dot(self.Q[s], self.opponent_pi[s])) def update_policy(self, s, a, game): # print('Qs {}'.format(self.Q[s])) # print('OPI {}'.format(self.opponent_best_pi[s])) # print('pis: ' + str(np.dot(self.Q[s], self.opponent_best_pi[s]))) self.pi[s] = utils.softmax(np.dot(self.Q[s], self.opponent_pi[s])) # print('pis: ' + str(np.sum(np.dot(self.Q[s], self.opponent_best_pi[s])))) self.pi_history.append(deepcopy(self.pi)) self.opponent_pi_history.append(deepcopy(self.opponent_pi)) if self.verbose: print('opponent pi of {}: {}'.format(self.id_, self.opponent_pi[s])) class RRQAgent(QAgent): def __init__(self, id_, action_num, env, phi_type='count', a_policy='softmax', **kwargs): super().__init__(id_, action_num, env, **kwargs) self.name = 'RR2Q' self.phi_type = phi_type self.a_policy = a_policy self.count_AOS = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) self.count_OS = defaultdict(partial(np.zeros, (self.action_num, ))) self.opponent_best_pi = defaultdict(partial(np.random.dirichlet, [1.0] * self.action_num)) self.pi_history = [deepcopy(self.pi)] self.opponent_best_pi_history = [deepcopy(self.opponent_best_pi)] self.Q = defaultdict(partial(np.random.rand, *(self.action_num, self.action_num))) self.Q_A = defaultdict(partial(np.random.rand, self.action_num)) self.R = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) self.count_R = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) def update(self, s, a, o, r, s2, env, done=False, tau=0.5): self.count_AOS[s][a][o] += 1.0 self.count_OS[s][o] += 1. decay_alpha = self.step_decay() if self.phi_type == 'count': count_sum = np.reshape(np.repeat(np.sum(self.count_AOS[s], 1), self.action_num), (self.action_num, self.action_num)) self.opponent_best_pi[s] = self.count_AOS[s] / (count_sum + 0.1) self.opponent_best_pi[s] = self.opponent_best_pi[s] / (np.sum(self.opponent_best_pi[s]) + 0.1) elif self.phi_type == 'norm-exp': self.Q_A_reshaped = np.reshape(np.repeat(self.Q_A[s], self.action_num), (self.action_num, self.action_num)) self.opponent_best_pi[s] = np.log(np.exp((self.Q[s] - self.Q_A_reshaped))) self.opponent_best_pi[s] = self.opponent_best_pi[s] / np.reshape( np.repeat(np.sum(self.opponent_best_pi[s], 1), self.action_num), (self.action_num, self.action_num)) self.count_R[s][a][o] += 1.0 self.R[s][a][o] += (r - self.R[s][a][o]) / self.count_R[s][a][o] Q = self.Q[s] V = self.val(s2) if done: Q[a][o] = Q[a][o] + decay_alpha * (r - Q[a][o]) self.Q_A[s][a] = self.Q_A[s][a] + decay_alpha * (r - self.Q_A[s][a]) else: Q[a][o] = Q[a][o] + decay_alpha * (r + self.gamma * V - Q[a][o]) self.Q_A[s][a] = self.Q_A[s][a] + decay_alpha * (r + self.gamma * V - self.Q_A[s][a]) if self.verbose: print(self.epoch) self.update_policy(s, a, env) self.record_policy(s, env) self.epoch += 1 def val(self, s): return np.max(np.sum(np.multiply(self.Q[s], self.opponent_best_pi[s]), 1)) def update_policy(self, s, a, game): if self.a_policy == 'softmax': self.pi[s] = utils.softmax(np.sum(np.multiply(self.Q[s], self.opponent_best_pi[s]), 1)) else: Q = np.sum(np.multiply(self.Q[s], self.opponent_best_pi[s]), 1) self.pi[s] = (Q == np.max(Q)).astype(np.double) self.pi_history.append(deepcopy(self.pi)) self.opponent_best_pi_history.append(deepcopy(self.opponent_best_pi)) if self.verbose: print('opponent pi of {}: {}'.format(self.id_, self.opponent_best_pi)) class GRRQAgent(QAgent): def __init__(self, id_, action_num, env, k=0, phi_type='count', a_policy='softmax', **kwargs): super().__init__(id_, action_num, env, **kwargs) self.name = 'GRRQ' self.k = k self.phi_type = phi_type self.a_policy = a_policy self.count_AOS = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) self.opponent_best_pi = defaultdict(partial(np.random.dirichlet, [1.0] * self.action_num)) self.pi_history = [deepcopy(self.pi)] self.opponent_best_pi_history = [deepcopy(self.opponent_best_pi)] self.Q = defaultdict(partial(np.random.rand, *(self.action_num, self.action_num))) self.Q_A = defaultdict(partial(np.random.rand, self.action_num)) self.R = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) self.count_R = defaultdict(partial(np.zeros, (self.action_num, self.action_num))) def update(self, s, a, o, r, s2, env, done=False): self.count_AOS[s][a][o] += 1.0 decay_alpha = self.step_decay() if self.phi_type == 'count': count_sum = np.reshape(np.repeat(np.sum(self.count_AOS[s], 1), self.action_num), (self.action_num, self.action_num)) self.opponent_best_pi[s] = self.count_AOS[s] / (count_sum + 0.1) elif self.phi_type == 'norm-exp': self.Q_A_reshaped = np.reshape(np.repeat(self.Q_A[s], self.action_num), (self.action_num, self.action_num)) self.opponent_best_pi[s] = np.log(np.exp(self.Q[s] - self.Q_A_reshaped)) self.opponent_best_pi[s] = self.opponent_best_pi[s] / np.reshape( np.repeat(np.sum(self.opponent_best_pi[s], 1), self.action_num), (self.action_num, self.action_num)) self.count_R[s][a][o] += 1.0 self.R[s][a][o] += (r - self.R[s][a][o]) / self.count_R[s][a][o] Q = self.Q[s] V = self.val(s2) if done: Q[a][o] = Q[a][o] + decay_alpha * (r - Q[a][o]) self.Q_A[s][a] = self.Q_A[s][a] + decay_alpha * (r - self.Q_A[s][a]) else: Q[a][o] = Q[a][o] + decay_alpha * (r + self.gamma * V - Q[a][o]) self.Q_A[s][a] = self.Q_A[s][a] + decay_alpha * (r + self.gamma * V - self.Q_A[s][a]) print(self.epoch) self.update_policy(s, a, env) self.record_policy(s, env) self.epoch += 1 def val(self, s): return np.max(np.sum(np.multiply(self.Q[s], self.opponent_best_pi[s]), 1)) def update_policy(self, s, a, game): if self.a_policy == 'softmax': self.pi[s] = utils.softmax(np.sum(np.multiply(self.Q[s], self.opponent_best_pi[s]), 1)) else: Q = np.sum(np.multiply(self.Q[s], self.opponent_best_pi[s]), 1) self.pi[s] = (Q == np.max(Q)).astype(np.double) self.pi_history.append(deepcopy(self.pi)) self.opponent_best_pi_history.append(deepcopy(self.opponent_best_pi)) print('opponent pi of {}: {}'.format(self.id_, self.opponent_best_pi)) class MinimaxQAgent(BaseQAgent): def __init__(self, id_, action_num, env, opp_action_num): super().__init__('minimax', id_, action_num, env) self.solvers = [] self.opp_action_num = opp_action_num self.pi_history = [deepcopy(self.pi)] self.Q = defaultdict(partial(np.random.rand, self.action_num, self.opp_action_num)) def done(self, env): self.solvers.clear() super().done(env) def val(self, s): Q = self.Q[s] pi = self.pi[s] return min(np.dot(pi, Q[:, o]) for o in range(self.opp_action_num)) def update(self, s, a, o, r, s2, env): Q = self.Q[s] V = self.val(s2) decay_alpha = self.step_decay() Q[a, o] = Q[a, o] + decay_alpha * (r + self.gamma * V - Q[a, o]) self.update_policy(s, a, env) self.record_policy(s, env) def update_policy(self, s, a, env): self.initialize_solvers() for solver, lib in self.solvers: try: self.pi[s] = self.lp_solve(self.Q[s], solver, lib) StationaryAgent.normalize(self.pi[s]) self.pi_history.append(deepcopy(self.pi)) except Exception as e: print('optimization using {} failed: {}'.format(solver, e)) continue else: break def initialize_solvers(self): if not self.solvers: for lib in ['gurobipy', 'scipy.optimize', 'pulp']: try: self.solvers.append((lib, importlib.import_module(lib))) except: pass def lp_solve(self, Q, solver, lib): ret = None if solver == 'scipy.optimize': c = np.append(np.zeros(self.action_num), -1.0) A_ub = np.c_[-Q.T, np.ones(self.opp_action_num)] b_ub = np.zeros(self.opp_action_num) A_eq = np.array([np.append(np.ones(self.action_num), 0.0)]) b_eq = np.array([1.0]) bounds = [(0.0, 1.0) for _ in range(self.action_num)] + [(-np.inf, np.inf)] res = lib.linprog( c=c, A_ub=A_ub, b_ub=b_ub, A_eq=A_eq, b_eq=b_eq, bounds=bounds) ret = res.x[:-1] elif solver == 'gurobipy': m = lib.Model('LP') m.setParam('OutputFlag', 0) m.setParam('LogFile', '') m.setParam('LogToConsole', 0) v = m.addVar(name='v') pi = {} for a in range(self.action_num): pi[a] = m.addVar(lb=0.0, ub=1.0, name='pi_{}'.format(a)) m.update() m.setObjective(v, sense=lib.GRB.MAXIMIZE) for o in range(self.opp_action_num): m.addConstr( lib.quicksum(pi[a] * Q[a, o] for a in range(self.action_num)) >= v, name='c_o{}'.format(o)) m.addConstr(lib.quicksum(pi[a] for a in range(self.action_num)) == 1, name='c_pi') m.optimize() ret = np.array([pi[a].X for a in range(self.action_num)]) elif solver == 'pulp': v = lib.LpVariable('v') pi = lib.LpVariable.dicts('pi', list(range(self.action_num)), 0, 1) prob = lib.LpProblem('LP', lib.LpMaximize) prob += v for o in range(self.opp_action_num): prob += lib.lpSum(pi[a] * Q[a, o] for a in range(self.action_num)) >= v prob += lib.lpSum(pi[a] for a in range(self.action_num)) == 1 prob.solve(lib.GLPK_CMD(msg=0)) ret = np.array([lib.value(pi[a]) for a in range(self.action_num)]) if not (ret >= 0.0).all(): raise Exception('{} - negative probability error: {}'.format(solver, ret)) return ret class MetaControlAgent(Agent): def __init__(self, id_, action_num, env, opp_action_num): super().__init__('metacontrol', id_, action_num, env) self.agents = [QAgent(id_, action_num, env), MinimaxQAgent(id_, action_num, env, opp_action_num)] self.n = np.zeros(len(self.agents)) self.controller = None def act(self, s, exploration, env): print([self.val(i, s) for i in range(len(self.agents))]) self.controller = np.argmax([self.val(i, s) for i in range(len(self.agents))]) return self.agents[self.controller].act(s, exploration, env) def done(self, env): for agent in self.agents: agent.done(env) def val(self, i, s): return self.agents[i].val(s) def update(self, s, a, o, r, s2, env): for agent in self.agents: agent.update(s, a, o, r, s2, env) self.n[self.controller] += 1 print('id: {}, n: {} ({}%)'.format(self.id_, self.n, 100.0 * self.n /
np.sum(self.n)
numpy.sum
import numpy as np from models import Policy, ValueFunction def one_step_actor_critic(mdp, value_function_alpha, policy_alpha, iterations, episodes, max_actions, final_performance_episodes): #print("One Step actor critic with mdp: " + mdp.name) actions_vs_episodes_all = np.zeros((iterations, episodes)) for i in range(iterations): policy = Policy(policy_alpha, mdp.state_features_length, mdp.actions_length) value_function = ValueFunction(value_function_alpha, mdp.state_features_length) #print("Iteration: " + str(i)) actions_vs_episodes = [] for episode in range(episodes): state = mdp.get_start_state() state_features = mdp.get_state_features(state) #print(state_features) state_value = value_function.evaluate_state(state_features) actions = 0 while not mdp.episode_over(state): actions += 1 if actions == max_actions: break # draw action from policy action, action_probabilities = policy.get_action(state_features, True) # execute action a, observe r and s' next_state = mdp.get_next_state(state, action) reward = mdp.get_reward(next_state) # get state features from state next_state_features = mdp.get_state_features(next_state) # compute TD error next_state_value = value_function.evaluate_state(next_state_features) target = reward + mdp.discount * next_state_value td_error = target - state_value # update actor & critic policy.update_parameters(td_error, state_features) value_function.update_parameters(td_error, state_features) # s = s' state = next_state state_features = next_state_features state_value = next_state_value actions_vs_episodes.append(actions) actions_vs_episodes_all[i] = np.array(actions_vs_episodes) return collect_statistics(actions_vs_episodes_all, final_performance_episodes) # ppo works by running the environment for some steps and then computing stochastic gradient descent on the collected s,a,r,s' examples # I use a value function for the baseline just like in actor-critic def proximal_policy_optimization(mdp, value_function_alpha, policy_alpha, clip, iterations, episodes, max_actions, rollout_episodes, epochs, final_performance_episodes): #print("Proximal Policy Optimization with mdp: " + mdp.name) actions_vs_episodes_all = np.zeros((iterations, episodes)) for i in range(iterations): #print("Iteration: " + str(i)) policy = Policy(policy_alpha, mdp.state_features_length, mdp.actions_length, clip) value_function = ValueFunction(value_function_alpha, mdp.state_features_length) actions_vs_episodes = [] episode = 0 while episode < episodes: current_rollout_episodes = min(episodes - episode, rollout_episodes) # run the environment state_features, actions, action_probabilities, targets, advantages, episode_lengths = ppo_rollout(mdp, policy, value_function, current_rollout_episodes, max_actions) episode += rollout_episodes actions_vs_episodes += episode_lengths # SGD on policy and value function for j in range(epochs): policy.ppo_gradient_step(state_features, action_probabilities, actions, advantages) state_values = value_function.evaluate_state(state_features) errors = targets - state_values value_function.update_parameters(errors, state_features) # going to take average over all ppo iterations actions_vs_episodes_all[i] = np.array(actions_vs_episodes) return collect_statistics(actions_vs_episodes_all, final_performance_episodes) def ppo_rollout(mdp, policy, value_function, rollout_episodes, max_actions): state_features = [] actions = [] action_probabilities = [] rewards = [] last_state_features = [] episode_lengths = [] # collect rollout_episodes trajectories for ep in range(rollout_episodes): state = mdp.get_start_state() state_feature = mdp.get_state_features(state) actions_taken = 0 while not mdp.episode_over(state): if actions_taken == max_actions: break # draw action from policy action, action_probability = policy.get_action(state_feature, False) # execute action a, observe r and s' next_state = mdp.get_next_state(state, action) reward = mdp.get_reward(next_state) # record for stachastic gradient descent later state_features.append(state_feature[0]) actions.append(action) action_probabilities.append(action_probability) rewards.append(reward) # s = s' state = next_state state_feature = mdp.get_state_features(state) actions_taken += 1 last_state_features.append(state_feature) # v(s') for the last example in this episode batch (need for Advantage function) episode_lengths.append(actions_taken) state_features = np.array(state_features) actions = np.array(actions) action_probabilities = np.array(action_probabilities) rewards = np.array(rewards) # make sure state_values and next_state_values line up ep_begin = 0 state_values = np.squeeze(value_function.evaluate_state(state_features)) last_state_values = np.reshape(np.squeeze(value_function.evaluate_state(last_state_features)), (-1)) next_state_values = np.zeros(state_values.shape) # this makes sure the state_value array and next_next_value arrays are lined up so that the td errors can easily be computed for i in range(rollout_episodes): l = episode_lengths[i] next_state_values[ep_begin: ep_begin+l-1] = state_values[ep_begin+1:ep_begin+l] next_state_values[ep_begin+l-1] = last_state_values[i] ep_begin += l targets = rewards + mdp.discount * next_state_values # super easy td error calculation advantages = targets - state_values return (state_features, actions, action_probabilities, targets, advantages, episode_lengths) # basic statistics for my plots def collect_statistics(actions_vs_episodes_all, final_performance_episodes): actions_taken_average = np.mean(actions_vs_episodes_all, 0) actions_taken_std = np.std(actions_vs_episodes_all, 0) final_performance_mean = np.mean(actions_taken_average[-final_performance_episodes:]) final_performance_std =
np.mean(actions_taken_std[-final_performance_episodes:])
numpy.mean
from __future__ import print_function import os import argparse import torch import torch.backends.cudnn as cudnn import numpy as np import time import model from data import DatasetLoader import cv2 import torchvision.models as models import numpy as np from scipy.optimize import leastsq import random import torch.nn.functional as F import math from glob import glob import matplotlib.pyplot as plt from sklearn.metrics import mean_absolute_error # 平方绝对误差 os.environ["CUDA_VISIBLE_DEVICES"] = "0" def check_keys(model, pretrained_state_dict): ckpt_keys = set(pretrained_state_dict.keys()) model_keys = set(model.state_dict().keys()) used_pretrained_keys = model_keys & ckpt_keys unused_pretrained_keys = ckpt_keys - model_keys missing_keys = model_keys - ckpt_keys print('Missing keys:{}'.format(len(missing_keys))) print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) print('Used keys:{}'.format(len(used_pretrained_keys))) assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' return True def remove_prefix(state_dict, prefix): ''' Old style model is stored with all names of parameters sharing common prefix 'module.' ''' print('remove prefix \'{}\''.format(prefix)) f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x return {f(key): value for key, value in state_dict.items()} def load_model(model, pretrained_path, load_to_cpu): print('Loading pretrained model from {}'.format(pretrained_path)) if load_to_cpu: pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) else: device = torch.cuda.current_device() pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) if "state_dict" in pretrained_dict.keys(): pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') else: pretrained_dict = remove_prefix(pretrained_dict, 'module.') check_keys(model, pretrained_dict) model.load_state_dict(pretrained_dict, strict=False) return model def test_move(net,save_path,img_list,save_image=False,size=256): if not os.path.exists(save_path): os.makedirs(save_path) points1 = np.float32([[75,55], [340,55], [33,435], [400,433]]) points2 = np.float32([[0,0], [360,0], [0,420], [360,420]]) M = cv2.getPerspectiveTransform(points1, points2) ###eval count=0 distance_homo_sum=0 distance_orb_sum=0 distance_sift_sum=0 pass_homo_total=0 pass_orb_total=0 pass_sift_total=0 for image_path in img_list: count=count+1 img1 = cv2.imread(image_path)[:,:,0]#BGR img1=cv2.resize(img1,(size+32,size+32)) rho=12 # rand_num=random.randint(0, 12) # #random move # if rand_num<=2:#0 1 2 # randmovex=0 # randmovey=0 # elif rand_num<=4:#3 4 5 # randmovex=random.randint(-rho, rho) # randmovey=0 # elif rand_num<=6:#6 7 8 # randmovex=0 # randmovey=random.randint(-rho, rho) # else:#9 10 11 # randmovex=random.randint(-rho, rho) # randmovey=random.randint(-rho, rho) randmovex=random.randint(-rho, rho) randmovey=random.randint(-rho, rho) #H_groundtruth H_groundtruth = np.array([[1,0,randmovex],[0,1,randmovey],[0,0,1]]).astype(np.float64) H_inverse =np.array([[1,0,-randmovex],[0,1,-randmovey],[0,0,1]]).astype(np.float64) imout1=img1[16:16 + size, 16:16 + size] imgOut = cv2.warpPerspective(img1, H_inverse, (img1.shape[1],img1.shape[0]),flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP) imout2=imgOut[16:16 + size, 16:16 + size] target=np.array([randmovex,randmovey]) im_zero=np.zeros((size,size)) training_image = np.dstack((imout1, imout2,im_zero)) img = training_image.transpose(2, 0, 1)#(3,300,300) img= torch.from_numpy(img).unsqueeze(0) img=img.float() img = img.cuda() #fast homography estimate network start_time1 = time.time() out = net(img)/100 #from img2 2 img1 movexf=float(out[0][0]) moveyf=float(out[0][1]) movex=round(movexf) movey=round(moveyf) H_predict=np.array([[1,0,movex],[0,1,movey],[0,0,1]]).astype(np.float64) pass_1=time.time()-start_time1 pass_homo_total+=pass_1 #orb start_time2 = time.time() H_orb=img_orb(imout1,imout2) pass_2=time.time()-start_time2 pass_orb_total+=pass_2 #distance_homo distance_homo=mean_absolute_error(H_predict,H_groundtruth) distance_homo_sum=distance_homo_sum+distance_homo #distance_orb distance_orb=mean_absolute_error(H_orb,H_groundtruth) distance_orb_sum=distance_orb_sum+distance_orb print("distances(homo,orb): ",distance_homo,distance_orb) # save image if save_image: name = os.path.join(save_path,image_path.split("/")[-1]) name=name[:-4] imgOut2_homo = cv2.warpPerspective(imout2, H_predict, (imout1.shape[1],imout1.shape[0]),flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP) err_img_homo=cv2.absdiff(imout1,imgOut2_homo) imgOut2_orb = cv2.warpPerspective(imout2, H_orb, (imout1.shape[1],imout1.shape[0]),flags=cv2.INTER_CUBIC + cv2.WARP_INVERSE_MAP) err_img_orb=cv2.absdiff(imout1,imgOut2_orb) err_imgs=np.hstack([err_img_homo,err_img_orb]) cv2.imwrite(name+"-errs.jpg",err_imgs) err_homo=float(distance_homo_sum)/float(count) err_orb=float(distance_orb_sum)/float(count) fps_homo=count/pass_homo_total fps_orb=count/pass_orb_total print("homo/orb(err|fps): ",err_homo,fps_homo,err_orb,fps_orb) return err_homo def img_orb(img1,img2): # find the keypoints and descriptors with ORB orb = cv2.ORB_create() kp1, des1 = orb.detectAndCompute(img1,None) kp2, des2 = orb.detectAndCompute(img2,None) # create BFMatcher object bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True) # Match descriptors. matches = bf.match(des1,des2) # Sort them in the order of their distance. matches = sorted(matches, key = lambda x:x.distance) # Draw first 20 matches. # img3 = cv2.drawMatches(img1,kp1,img2,kp2,matches[:20],None, flags=2) goodMatch = matches[:20] if len(goodMatch) > 4: ptsA= np.float32([kp1[m.queryIdx].pt for m in goodMatch]).reshape(-1, 1, 2) ptsB = np.float32([kp2[m.trainIdx].pt for m in goodMatch]).reshape(-1, 1, 2) ransacReprojThreshold = 4 H, status =cv2.findHomography(ptsA,ptsB,cv2.RANSAC,ransacReprojThreshold) else: H=np.array([[1,0,0],[0,1,0],[0,0,1]]).astype(np.float64) return H def img_anto_4temp(img1,img2): #1 img2_patch1=img2[16:16 + 97, 16:16 + 97]#64,64 img1_1=img1[0:0 + 127, 0:0 + 127] res = cv2.matchTemplate(img1_1,img2_patch1,cv2.TM_CCOEFF) #寻找最值 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) loc_x1=max_loc[0]-16 loc_y1=max_loc[1]-16 c10=np.array([[64],[64],[1]]) c1=np.array([[64+loc_x1],[64+loc_y1],[1]]) #2 img2_patch1=img2[16+127:16+97+127, 16:16 + 97]#191,64 img1_1=img1[0+ 127:0 + 127+ 127, 0:0 + 127] res = cv2.matchTemplate(img1_1,img2_patch1,cv2.TM_CCOEFF) #寻找最值 min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res) loc_x1=max_loc[0]-16 loc_y1=max_loc[1]-16 c20=np.array([[191],[64],[1]]) c2=
np.array([[191+loc_x1],[64+loc_y1],[1]])
numpy.array
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard import paddle.compat as cpt import unittest import numpy as np from op_test import OpTest class TestFillAnyLikeOp(OpTest): def setUp(self): self.op_type = "fill_any_like" self.dtype = np.int32 self.value = 0.0 self.init() self.inputs = {'X': np.random.random((219, 232)).astype(self.dtype)} self.attrs = {'value': self.value} self.outputs = {'Out': self.value * np.ones_like(self.inputs["X"])} def init(self): pass def test_check_output(self): self.check_output() class TestFillAnyLikeOpFloat32(TestFillAnyLikeOp): def init(self): self.dtype = np.float32 self.value = 0.0 class TestFillAnyLikeOpValue1(TestFillAnyLikeOp): def init(self): self.value = 1.0 class TestFillAnyLikeOpValue2(TestFillAnyLikeOp): def init(self): self.value = 1e-10 class TestFillAnyLikeOpValue3(TestFillAnyLikeOp): def init(self): self.value = 1e-100 class TestFillAnyLikeOpType(TestFillAnyLikeOp): def setUp(self): self.op_type = "fill_any_like" self.dtype = np.int32 self.value = 0.0 self.init() self.inputs = {'X': np.random.random((219, 232)).astype(self.dtype)} self.attrs = { 'value': self.value, 'dtype': int(core.VarDesc.VarType.FP32) } self.outputs = { 'Out': self.value * np.ones_like(self.inputs["X"]).astype(np.float32) } class TestFillAnyLikeOpOverflow(TestFillAnyLikeOp): def init(self): self.value = 1e100 def test_check_output(self): exception = None try: self.check_output(check_dygraph=False) except core.EnforceNotMet as ex: exception = ex self.assertIsNotNone(exception) class TestFillAnyLikeOpFloat16(TestFillAnyLikeOp): def init(self): self.dtype = np.float16 class TestFillAnyLikeOp_attr_out(unittest.TestCase): """ Test fill_any_like op(whose API is full_like) for attr out. """ def test_attr_tensor_API(self): startup_program = fluid.Program() train_program = fluid.Program() with fluid.program_guard(train_program, startup_program): fill_value = 2.0 input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.full_like(input, fill_value) place = fluid.CPUPlace() if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) exe = fluid.Executor(place) exe.run(startup_program) img = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(train_program, feed={'input': img}, fetch_list=[output]) out_np = np.array(res[0]) self.assertTrue( not (out_np - np.full_like(img, fill_value)).any(), msg="full_like output is wrong, out = " + str(out_np)) class TestFillAnyLikeOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): #for ci coverage input_data = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.full_like(input_data, 2.0) def test_input_dtype(): paddle.full_like self.assertRaises( ValueError, paddle.full_like, input=input_data, fill_value=2, dtype='uint4') self.assertRaises( TypeError, paddle.full_like, input=input_data, fill_value=2, dtype='int16') class ApiOnesLikeTest(unittest.TestCase): def test_out(self): with fluid.program_guard(fluid.Program()): data = fluid.data(shape=[10], dtype="float64", name="data") ones = paddle.ones_like(data, device="cpu") place = fluid.CPUPlace() exe = fluid.Executor(place) result, = exe.run(feed={"data": np.random.rand(10)}, fetch_list=[ones]) expected_result =
np.ones(10, dtype="float64")
numpy.ones
import numpy as np import sys, os import cv2 import transformations import features import traceback from PIL import Image # Saving and loading cv2 points def pickle_cv2(arr): index = [] for point in arr: temp = (point.pt, point.size, point.angle, point.response, point.octave, point.class_id) index.append(temp) return np.array(index) def unpickle_cv2(arr): index = [] for point in arr: temp = cv2.KeyPoint(x=point[0][0], y=point[0][1], _size=point[1], _angle=point[2], _response=point[3], _octave=point[4], _class_id=point[5]) index.append(temp) return np.array(index) # Functions for testing elementwise correctness def compare_array(arr1, arr2): return np.allclose(arr1, arr2, rtol=1e-3, atol=1e-5) def compare_cv2_points(pnt1, pnt2): if not np.isclose(pnt1.pt[0], pnt2.pt[0], rtol=1e-3, atol=1e-5): return False if not np.isclose(pnt1.pt[1], pnt2.pt[1], rtol=1e-3, atol=1e-5): return False if not np.isclose(pnt1.angle, pnt2.angle, rtol=1e-3, atol=1e-5): return False if not np.isclose(pnt1.response, pnt2.response, rtol=1e-3, atol=1e-5): return False return True # Testing function def try_this(todo, run, truth, compare, *args, **kargs): ''' Run a function, test the output with compare, and print and error if it doesn't work @arg todo (int or str): The Todo number @arg run (func): The function to run @arg truth (any): The correct output of the function @arg compare (func->bool): Compares the output of the `run` function to truth and provides a boolean if correct @arg *args (any): Any arguments that should be passed to `run` @arg **kargs (any): Any kargs that should be passed to compare @return (int): The amount of things that failed ''' print('Starting test for TODO {}'.format(todo)) failed = 0 try: output = run(*args) except Exception as e: traceback.print_exc() print("TODO {} threw an exception, see exception above".format(todo)) return if type(output) is list or type(output) is tuple: for i in range(len(output)): if not compare(output[i], truth[i], **kargs): print("TODO {} doesn't pass test: {}".format(todo, i)) failed += 1 else: if not compare(output, truth, **kargs): print("TODO {} doesn't pass test".format(todo)) failed += 1 return failed HKD = features.HarrisKeypointDetector() SFD = features.SimpleFeatureDescriptor() MFD = features.MOPSFeatureDescriptor() SSDFM = features.SSDFeatureMatcher() image = np.array(Image.open('resources/triangle1.jpg')) grayImage = cv2.cvtColor(image.astype(np.float32) / 255.0, cv2.COLOR_BGR2GRAY) def compute_and_save(): (a, b) = HKD.computeHarrisValues(grayImage) # Todo1 c = HKD.computeLocalMaxima(a) # Todo2 d = HKD.detectKeypoints(image) # Todo3 e = SFD.describeFeatures(image, d) # Todo 4 f = MFD.describeFeatures(image, d) # Todo 5,6 # No test for Todo 7 or 8 d_proc = pickle_cv2(d)
np.savez('resources/arrays', a=a, b=b, c=c, d_proc=d_proc, e=e, f=f)
numpy.savez
import numpy as np import pytest from fdm import forward_fdm, backward_fdm, central_fdm, FDM from .util import approx def test_construction(): with pytest.raises(ValueError): FDM([-1, 0, 1], 3) @pytest.mark.parametrize("f", [forward_fdm, backward_fdm, central_fdm]) def test_correctness(f): approx(f(10, 1)(np.sin, 1),
np.cos(1)
numpy.cos
import os import csv import time from pathlib import Path import fire import matplotlib.pyplot as plt import numpy as np from alive_progress import alive_bar from dask.distributed import Client, LocalCluster from ribs.archives import CVTArchive, GridArchive from ribs.emitters import (GaussianEmitter, ImprovementEmitter, IsoLineEmitter, GradientEmitter, GradientImprovementEmitter) from ribs.optimizers import Optimizer from ribs.visualize import grid_archive_heatmap def calc_sphere(sol): dim = sol.shape[1] # Shift the Sphere function so that the optimal value is at x_i = 2.048. target_shift = 5.12 * 0.4 # Normalize the objective to the range [0, 100] where 100 is optimal. best_obj = 0.0 worst_obj = (-5.12 - target_shift)**2 * dim raw_obj = np.sum(np.square(sol - target_shift), axis=1) objs = (raw_obj - worst_obj) / (best_obj - worst_obj) * 100 derivatives = -2 * (sol - target_shift) return objs, derivatives def calc_rastrigin(sol): A = 10.0 dim = sol.shape[1] # Shift the Rastrigin function so that the optimal value is at x_i = 2.048. target_shift = 5.12 * 0.4 best_obj = np.zeros(len(sol)) displacement = -5.12 * np.ones(sol.shape) - target_shift sum_terms = np.square(displacement) - A * np.cos(2 * np.pi * displacement) worst_obj = 10 * dim + np.sum(sum_terms, axis=1) displacement = sol - target_shift sum_terms =
np.square(displacement)
numpy.square
import numpy as np import pandas as pd import lightgbm as lgb import re from pitci.lightgbm import LGBMBoosterLeafNodeScaledConformalPredictor import pitci import pytest class TestInit: """Tests for the LGBMBoosterLeafNodeScaledConformalPredictor._init__ method.""" def test_inheritance(self): """Test that LGBMBoosterLeafNodeScaledConformalPredictor inherits from LeafNodeScaledConformalPredictor. """ assert ( LGBMBoosterLeafNodeScaledConformalPredictor.__mro__[1] is pitci.base.LeafNodeScaledConformalPredictor ), ( "LGBMBoosterLeafNodeScaledConformalPredictor does not inherit from " "LeafNodeScaledConformalPredictor" ) def test_model_type_exception(self): """Test an exception is raised if model is not a lgb.Booster object.""" with pytest.raises( TypeError, match=re.escape( f"model is not in expected types {[lgb.basic.Booster]}, got {list}" ), ): LGBMBoosterLeafNodeScaledConformalPredictor([1, 2, 3]) def test_attributes_set(self, lgb_booster_1_split_1_tree): """Test that SUPPORTED_OBJECTIVES, version and model attributes are set.""" confo_model = LGBMBoosterLeafNodeScaledConformalPredictor( lgb_booster_1_split_1_tree ) assert ( confo_model.__version__ == pitci.__version__ ), "__version__ attribute not set to package version value" assert ( confo_model.model is lgb_booster_1_split_1_tree ), "model attribute not set with the value passed in init" assert ( confo_model.SUPPORTED_OBJECTIVES == pitci.lightgbm.SUPPORTED_OBJECTIVES_ABSOLUTE_ERROR ), "SUPPORTED_OBJECTIVES attribute incorrect" def test_check_objective_supported_called(self, mocker, lgb_booster_1_split_1_tree): """Test that check_objective_supported is called in init.""" mocked = mocker.patch.object(pitci.lightgbm, "check_objective_supported") LGBMBoosterLeafNodeScaledConformalPredictor(lgb_booster_1_split_1_tree) assert ( mocked.call_count == 1 ), "check_objective_supported not called (once) in init" call_args = mocked.call_args_list[0] call_pos_args = call_args[0] call_kwargs = call_args[1] assert call_pos_args == ( lgb_booster_1_split_1_tree, pitci.lightgbm.SUPPORTED_OBJECTIVES_ABSOLUTE_ERROR, ), "positional args in check_objective_supported call not correct" assert ( call_kwargs == {} ), "keyword args in check_objective_supported call not correct" def test_super_init_call(self, mocker, lgb_booster_1_split_1_tree): """Test that LeafNodeScaledConformalPredictor.__init__ is called.""" mocked = mocker.patch.object( pitci.base.LeafNodeScaledConformalPredictor, "__init__" ) LGBMBoosterLeafNodeScaledConformalPredictor(lgb_booster_1_split_1_tree) assert ( mocked.call_count == 1 ), "LeafNodeScaledConformalPredictor.__init__ not called (once) in init" call_args = mocked.call_args_list[0] call_pos_args = call_args[0] call_kwargs = call_args[1] assert ( call_pos_args == () ), "positional args in LeafNodeScaledConformalPredictor.__init__ call not correct" assert call_kwargs == { "model": lgb_booster_1_split_1_tree }, "keyword args in LeafNodeScaledConformalPredictor.__init__ call not correct" class TestCalibrate: """Tests for the LGBMBoosterLeafNodeScaledConformalPredictor.calibrate method.""" def test_data_exception(self, lgb_booster_1_split_1_tree): """Test that an exception is raised if data is not a np.array or pd.Series.""" confo_model = LGBMBoosterLeafNodeScaledConformalPredictor( lgb_booster_1_split_1_tree ) with pytest.raises( TypeError, match=re.escape( f"data is not in expected types {[np.ndarray, pd.DataFrame]}, got {int}" ), ): confo_model.calibrate(data=1, response=np.ndarray([1, 2]), alpha=0.8) def test_train_data_type_exception(self, lgb_booster_1_split_1_tree): """Test that an exception is raised if train_data is not a np.array or pd.Series.""" confo_model = LGBMBoosterLeafNodeScaledConformalPredictor( lgb_booster_1_split_1_tree ) with pytest.raises( TypeError, match=re.escape( f"train_data is not in expected types {[np.ndarray, pd.DataFrame, type(None)]}, got {bool}" ), ): confo_model.calibrate( data=np.ndarray([1, 2]), response=np.ndarray([1, 2]), train_data=True ) def test_super_calibrate_call( self, mocker, np_2x1_with_label, lgb_booster_1_split_1_tree ): """Test that LeafNodeScaledConformalPredictor.calibrate is called correctly.""" confo_model = LGBMBoosterLeafNodeScaledConformalPredictor( lgb_booster_1_split_1_tree ) mocked = mocker.patch.object( pitci.base.LeafNodeScaledConformalPredictor, "calibrate" ) train_data_array = np.array([6, 9]) confo_model.calibrate( data=np_2x1_with_label[0], alpha=0.99, response=np_2x1_with_label[1], train_data=train_data_array, ) assert ( mocked.call_count == 1 ), "incorrect number of calls to LeafNodeScaledConformalPredictor.calibrate" call_args = mocked.call_args_list[0] call_pos_args = call_args[0] call_kwargs = call_args[1] assert ( call_pos_args == () ), "positional args incorrect in call to LeafNodeScaledConformalPredictor.calibrate" assert call_kwargs["alpha"] == 0.99 np.testing.assert_array_equal(call_kwargs["data"], np_2x1_with_label[0]) np.testing.assert_array_equal(call_kwargs["response"], np_2x1_with_label[1]) np.testing.assert_array_equal(call_kwargs["train_data"], train_data_array) class TestPredictWithInterval: """Tests for the LGBMBoosterLeafNodeScaledConformalPredictor.predict_with_interval method.""" def test_data_type_exception(self, lgb_booster_1_split_1_tree): """Test an exception is raised if data is not a xgb.DMatrix object.""" confo_model = LGBMBoosterLeafNodeScaledConformalPredictor( lgb_booster_1_split_1_tree ) confo_model.calibrate( data=np.array([[1], [2], [3]]), response=np.array([1, 2, 3]), ) with pytest.raises( TypeError, match=re.escape( f"data is not in expected types {[np.ndarray, pd.DataFrame]}, got {int}" ), ): confo_model.predict_with_interval(1) def test_super_predict_with_interval_call(self, mocker, lgb_booster_1_split_1_tree): """Test that LeafNodeScaledConformalPredictor.predict_with_interval is called and the outputs of this are returned from the method. """ confo_model = LGBMBoosterLeafNodeScaledConformalPredictor( lgb_booster_1_split_1_tree ) confo_model.calibrate(np.array([[1], [2], [3]]), response=np.array([1, 2, 3])) predict_return_value = np.array([200, 101, 1234]) mocked = mocker.patch.object( pitci.base.LeafNodeScaledConformalPredictor, "predict_with_interval", return_value=predict_return_value, ) data_array =
np.array([[11], [21], [31]])
numpy.array
import numpy as np # 2013-10-31 Added MultiRate class, simplified fitting methods, removed full_output parameter # 2014-12-18 Add loading of Frequency, Integration time and Iterations, calculate lower # bound on errors from Poisson distribution # 2015-01-28 Simplified fitting again. Needs more work # 2015-03-02 Added functions for number density calculation _verbosity = 2 def set_verbosity(level): """ 0: serious/unrecoverable error 1: recoverable error 2: warning 3: information """ global _verbosity _verbosity = level def warn(message, level): if level <= _verbosity: print(message) def fitter(p0, errfunc, args): from lmfit import minimize result = minimize(errfunc, p0, args=args, nan_policy="omit") if not result.success: msg = " Optimal parameters not found: " + result.message raise RuntimeError(msg) for i, name in enumerate(result.var_names): if result.params[name].value == result.init_vals[i]: warn("Warning: fitter: parameter \"%s\" was not changed, it is probably redundant"%name, 2) from scipy.stats import chi2 chi = chi2.cdf(result.chisqr, result.nfree) if chi > 0.5: pval = -(1-chi)*2 else: pval = chi*2 pval = 1-chi return result.params, pval, result def dict2Params(dic): from lmfit import Parameters if isinstance(dic, Parameters): return dic.copy() p = Parameters() for key, val in dic.items(): p.add(key, value=val) return p P = dict2Params class Rate: def __init__(self, fname, full_data=False, skip_iter=[]): import re import datetime as dt fr = open(fname) state = -1 npoints = 0 nions = 0 pointno = 0 iterno = 0 ioniter = [] ionname = [] frequency = 0 integration = 0 poisson_error = True # -1 header # 0 init # 1 read time # 2 read data for lineno, line in enumerate(fr): # read header if state == -1: if lineno == 2: T1 = line[:22].split() T2 = line[22:].split() self.starttime = dt.datetime.strptime(" ".join(T1), "%Y-%m-%d %H:%M:%S.%f") self.stoptime = dt.datetime.strptime(" ".join(T2), "%Y-%m-%d %H:%M:%S.%f") if lineno == 3: state = 0 toks = line.split() if len(toks) == 0: continue if state == 0: if re.search("Period \(s\)=", line): frequency = 1/float(re.search("Period \(s\)=([0-9.]+)", line).group(1)) if re.search("Frequency=", line): frequency = float(re.search("Frequency=([0-9.]+)", line).group(1)) if re.search("Integration time \(s\)", line): integration = float(re.search("Integration time \(s\)=([0-9.]+)", line).group(1)) if re.search("Number of Points=", line): npoints = int(re.search("Number of Points=(\d+)", line).group(1)) if re.search("Number of Iterations=", line): self.niter = int(re.search("Number of Iterations=(\d+)", line).group(1)) if toks[0] == "[Ion": nions += 1 if re.search("^Iterations=", line) : ioniter.append(int(re.search("Iterations=(\d+)", line).group(1))) if re.search("^Name=", line) : ionname.append(re.search("Name=(.+)$", line).group(1).strip('\"')) if toks[0] == "Time": if len(toks)-2 != nions: print("Corrupt file", fname, "Wrong number of ions in the header. Trying to recover") # Assume that the Time header is correct: nions = len(toks)-2 ioniter = ioniter[:nions] if len(ioniter) < nions: warn("Corrupt file " + str(fname) + ": Iterations for all species not recorded, guessing...", 1) while len(ioniter) < nions: ioniter.append(ioniter[-1]) if len(ionname) < nions: warn("Corrupt file " + str(fname) + ": Names for all species not recorded, making something up...", 2) ionname += toks[len(ionname)+2:] state = 1 time = [] data = np.zeros((nions, npoints, self.niter)) continue if state == 1: try: newtime = float(toks[0]) except ValueError: if pointno != npoints: warn("Corrupt file " + fname + " trying to guess number of points", 2) npoints = pointno data.resize((nions, npoints, self.niter)) time = np.array(time) state = 2 else: time.append(newtime) pointno += 1 if state == 2: if toks[0] == "Iteration": iterno = int(toks[1])-1 if iterno+1 > self.niter: warn("Corrupt file " + fname + " trying to guess number of iterations", 2) #msg = "Corrupt file: " + fname #raise IOError(msg) self.niter = iterno+1 data.resize((nions, npoints, self.niter)) pointno = 0 continue try: data[:, pointno, iterno] = [float(x) for x in toks][1:-1] except ValueError: warn("Error in file " + fname + " number of ions probably wrong") pointno += 1 ioniter = np.array(ioniter) # in case of multiple measurements per iteration if iterno+1 != self.niter: if self.niter % (iterno+1) != 0: msg = "Corrupt file: " + fname print(("Corrupt file " + fname + " trying to guess number of iterations:" + str(iterno+1))) if iterno+1 < self.niter: data = data[:,:,:iterno+1] else: newdata = np.zeros((nions, npoints, iterno+1)) newdata[:,:,:self.niter] = data print(data, newdata) data = newdata #data.resize((nions, npoints, iterno+1)) self.niter = iterno+1 data = data[:,:,:iterno+1] #print skip_iter, np.shape(skip_iter) if len(skip_iter)!=0: skip_iter = np.array(skip_iter) indices = np.ones(self.niter, dtype=bool) indices[skip_iter] = False data = data[:,:,indices] # XXX frequency is sometimes wrong in the files # use some heuristics to estimate the frequency # repetition time is usually set in multiples of 0.1s measurement_time = np.ceil(time[-1]/0.1)*0.1 if frequency*measurement_time > 1.1 or frequency*measurement_time < 0.4: warn("Recorded frequency in " + fname + " is probably wrong. Using estimate %f" % (1/measurement_time), 1) frequency = 1/measurement_time # this is later used to estimate Poisson error self.total_iterations = ioniter[:,None]*integration*frequency*self.niter self.nions = nions self.ionname = ionname self.time = time self.data = data self.fname = fname self.average() if not full_data: self.data = None self.mask = None def average(self): data_mean = np.mean(self.data, axis=2) data_std = np.std(self.data, axis=2)/np.sqrt(self.niter) #print(np.shape(self.data), np.shape(data_mean), np.shape(self.total_iterations)) data_counts = data_mean*self.total_iterations # divide by sqrt(total_iterations) twice - once to get Poisson # variance of measured data and once to the error of estimated mean # this should be verified, but it is in agreement with errors obtained # by treating data as normal variables for large numbers data_poiss_err = np.sqrt(np.maximum(data_counts, 3))/self.total_iterations # we assume that if 0 counts are observed, 3 counts is within confidence interval # we use std error if it is larger than poisson error to capture other sources # of error e.g. fluctuations data_std = np.maximum(data_std, data_poiss_err) self.data_mean = data_mean self.data_std = data_std def merge(self, rate2): self.data_mean = np.concatenate((self.data_mean, rate2.data_mean), axis=1) self.data_std = np.concatenate((self.data_std, rate2.data_std), axis=1) self.time = np.concatenate((self.time, rate2.time), axis=0) #print " ** merging ** " #print self.data_mean, self.data_std, self.time def poisson_test1(self): shape = np.shape(self.data_mean) #check only H- XXX shape = (1, shape[1]) pval = np.zeros(shape) for specno in range(shape[0]): for pointno in range(shape[1]): if self.mask != None: dataline = self.data[specno, pointno, self.mask[specno, pointno, :]] else: dataline = self.data[specno, pointno, :] mean = np.mean(dataline) Q = np.sum((dataline-mean)**2)/mean niter = len(dataline[~np.isnan(dataline)]) dof = niter-1 from scipy.stats import chi2 chi = chi2.cdf(Q, dof) if chi > 0.5: pval[specno, pointno] = (1-chi)*2 else: pval[specno, pointno] = chi*2 print((chi, Q, pval[specno, pointno])) return np.min(pval) def cut3sigma(self, nsigma=3): shape = np.shape(self.data) self.mask = np.zeros(shape, dtype=bool) for specno in range(shape[0]): for pointno in range(shape[1]): stddev = self.data_std[specno, pointno]*np.sqrt(self.niter) low = self.data_mean[specno, pointno] - nsigma*stddev high = self.data_mean[specno, pointno] + nsigma*stddev dataline = self.data[specno, pointno, :] mask = (dataline > low) & (dataline < high) #self.data[specno, pointno, ~mask] = float("nan") self.mask[specno, pointno, :] = mask self.data_mean[specno, pointno] = np.mean(dataline[mask]) self.data_std[specno, pointno] = np.std(dataline[mask])/np.sqrt(self.niter) #data_mean = np.mean(self.data[self.mask], axis=2) #data_std = np.std(self.data, axis=2)/np.sqrt(self.niter) #print self.data_mean, self.data_std #self.data[self.data<120] = 130 def fit_ode_mpmath(self, p0=[60.0, .1], columns=[0]): from mpmath import odefun def fitfunc(p, x): eqn = lambda x, y: -p[1]*y y0 = p[0] f = odefun(eqn, 0, y0) g = np.vectorize(lambda x: float(f(x))) return g(x) return self._fit(fitfunc, p0, columns) def fit_ode_scipy(self, p0=[60.0, .1], columns=[0]): from scipy.integrate import odeint def fitfunc(p, x): eqn = lambda y, x: -p[1]*y y0 = p[0] t = np.r_[0., x] y = odeint(eqn, y0, t) return y[1:,0] return self._fit(fitfunc, p0, columns) def fit_inc(self, p0=[1.0, .01, 0.99], columns=[1]): #fitfuncinc = lambda p, x: p[0]*(1-np.exp(-x/p[1]))+p[2] fitfunc = lambda p, x: -abs(p[0])*np.exp(-x/abs(p[1]))+abs(p[2]) return self._fit(fitfunc, p0, columns) def fit_equilib(self, p0=[70.0, .1, 1], columns=[0]): fitfunc = lambda p, x: abs(p[0])*np.exp(-x/abs(p[1]))+abs(p[2]) return self._fit(fitfunc, p0, columns) class MultiRate: def __init__(self, fnames, directory=""): if isinstance(fnames, str): fnames = [fnames] self.rates = [Rate(directory+fname, full_data=True) for fname in fnames] # if True, a normalization factor for each rate with respect to rates[0] is a free fitting param self.normalized = True self.norms = [1]*len(self.rates) self.fitfunc = None self.fitparam = None self.fitresult = None self.fitcolumns = None self.fitmask = slice(None) self.fnames = fnames self.sigma_min = 0.01 # lower bound on the measurement accuracy def plot_to_file(self, fname, comment=None, figsize=(6,8.5), logx=False, *args, **kwargs): import matplotlib.pyplot as plt from lmfit import fit_report f = plt.figure(figsize=figsize) ax = f.add_axes([.15, .5, .8, .45]) self.plot(ax=ax, show=False, *args, **kwargs) ax.set_yscale("log") if logx: ax.set_xscale("log") ax.legend(loc="lower right", fontsize=5) ax.set_title(comment, size=8) if self.fitresult is not None: f.text(0.1, 0.44, "p-value = %.2g\n"%self.fitpval + fit_report(self.fitresult, min_correl=0.5), size=6, va="top", family='monospace') if ax.get_ylim()[0] < 1e-4: ax.set_ylim(bottom=1e-4) ax.set_xlabel(r"$t (\rm s)$") ax.set_ylabel(r"$N_{\rm i}$") if self.fitresult is not None: ax2 = f.add_axes([.55, .345, .40, .10]) if logx: ax2.set_xscale("log") self.plot_residuals(ax=ax2, show=False, weighted=True) ax2.tick_params(labelsize=7) ax2.set_title("weighted residuals", size=7) ax2.set_xlabel(r"$t (\rm s)$", size=7) ax2.set_ylabel(r"$R/\sigma$", size=7) f.savefig(fname, dpi=200) plt.close(f) def plot(self, ax=None, show=False, plot_fitfunc=True, symbols=["o", "s", "v", "^", "D", "h"], colors=["r", "g", "b", "m", "k", "orange"],\ opensymbols=False, fitfmt="-", fitcolor=None, hide_uncertain=False, plot_columns=None): import matplotlib.pyplot as plt if ax is None: ax = plt.gca() lines = {} if plot_columns is None: plot_columns = range(self.rates[0].nions) for i in plot_columns: if opensymbols: kwargs = {"markeredgewidth":1, "markerfacecolor":"w", "markeredgecolor": colors[i], "color":colors[i]} else: kwargs = {"markeredgewidth":0, "color":colors[i]} l = None for j, rate in enumerate(self.rates): norm = 1/self.norms[j] I = rate.data_std[i] < rate.data_mean[i] if hide_uncertain else slice(None) if l==None: l = ax.errorbar(rate.time[I], rate.data_mean[i][I]*norm, yerr=rate.data_std[i][I]*norm, label=rate.ionname[i], fmt = symbols[i], **kwargs) color = l.get_children()[0].get_color() else: l = ax.errorbar(rate.time[I], rate.data_mean[i][I]*norm, yerr=rate.data_std[i][I]*norm, fmt = symbols[i], color=color, markeredgewidth=0) lines[i] = l # plot sum for j, rate in enumerate(self.rates): # calculate the sum over the plotted data only S = np.sum(rate.data_mean[plot_columns], axis=0) label = "sum" if j==0 else None ax.plot(rate.time, S/self.norms[j], ".", c="0.5", label=label) if self.fitfunc != None and self.fitparam != None: mintime = np.min([np.min(r.time[self.fitmask]) for r in self.rates]) maxtime = np.max([np.max(r.time[self.fitmask]) for r in self.rates]) x = np.logspace(np.log10(mintime), np.log10(maxtime), 500)-self.fit_t0 x = x[x>=0.] fit = self.fitfunc(self.fitparam, x) for i, column in enumerate(self.fitcolumns): if column not in plot_columns: continue if fitcolor == None: c = lines[column].get_children()[0].get_color() else: c = fitcolor ax.plot(x+self.fit_t0, fit[i], fitfmt, c=c) if len(self.fitcolumns) > 1: ax.plot(x+self.fit_t0, np.sum(fit, axis=0), c="k") if show == True: ax.set_yscale("log") ax.legend() plt.show() return ax def plot_residuals(self, ax=None, show=False, weighted=False, symbols=["o", "s", "v", "^", "D", "h"], colors=["r", "g", "b", "m", "k", "orange"],\ opensymbols=False, plot_columns=None): import matplotlib.pyplot as plt if ax is None: ax = plt.gca() if plot_columns is None: plot_columns = range(self.rates[0].nions) cdict = {col: i for i, col in enumerate(plot_columns)} lines = {} for j, rate in enumerate(self.rates): t = rate.time[self.fitmask] #print("\n"*3 + "*"*80) #print(rate.fname) fit = self.fitfunc(self.fitparam, t-self.fit_t0) for i, column in enumerate(self.fitcolumns): """ print("\n"*2 + "*"*3 + " " + rate.ionname[column]) print(rate.time) print(t - self.fit_t0) print(rate.data_mean[column]) print(rate.data_std[column]) print(fit[i]) print((rate.data_mean[column][self.fitmask] - fit[i])/rate.data_std[column][self.fitmask]) """ if column in plot_columns: j = cdict[column] if weighted: ax.plot(t, (rate.data_mean[column][self.fitmask] - fit[i])/rate.data_std[column][self.fitmask], symbols[j], color=colors[j], lw=0.5, ms=2) else: ax.errorbar(t, rate.data_mean[column][self.fitmask] - fit[i], yerr=rate.data_std[column][self.fitmask], fmt=symbols[j], color=colors[j], lw=0.5, ms=2) #ax.set_yscale("symlog", linthresh=10) if show == True: ax.set_yscale("log") ax.legend() plt.show() return ax def save_data(self, filename): to_save = [] for j, rate in enumerate(self.rates): norm = 1/self.norms[j] to_save.append(np.hstack((rate.time[:,np.newaxis], rate.data_mean.T, rate.data_std.T))) to_save = np.vstack(to_save) np.savetxt(filename, to_save) def save_fit(self, filename, time = None): if time is None: mintime = np.min([np.min(r.time[self.fitmask]) for r in self.rates]) maxtime = np.max([np.max(r.time[self.fitmask]) for r in self.rates]) time = np.logspace(np.log10(mintime), np.log10(maxtime), 500) time = time[time-self.fit_t0 >= 0.] fit = self.fitfunc(self.fitparam, time-self.fit_t0) to_save = np.vstack((time, np.vstack(fit))).T np.savetxt(filename, to_save) def save_data_fit_excel(self, filename, time=None, normalize=False, metadata={}): import pandas as pd dfs = [] for j, rate in enumerate(self.rates): df = pd.DataFrame(rate.time, columns=["tt"]) if self.normalized: df["norm"] = 1/self.norms[j] if normalize: norm = 1/self.norms[j] else: norm = 1 for k, name in enumerate(rate.ionname): df[name] = rate.data_mean[k]*norm df[name+"_err"] = rate.data_std[k]*norm df["rate"] = rate.fname dfs.append(df) df = pd.concat(dfs, ignore_index=True) writer = pd.ExcelWriter(filename) df.to_excel(writer, "data") if self.fitfunc != None and self.fitparam != None: if time is None: mintime = np.min([np.min(r.time[self.fitmask]) for r in self.rates]) maxtime = np.max([np.max(r.time[self.fitmask]) for r in self.rates]) time = np.logspace(np.log10(mintime), np.log10(maxtime), 500) time = time[time-self.fit_t0 >= 0.] fit = self.fitfunc(self.fitparam, time-self.fit_t0) df_fit = pd.DataFrame(time, columns = ["tt"]) for i, column in enumerate(self.fitcolumns): name = self.rates[0].ionname[column] df_fit[name] = fit[i] df_fit.to_excel(writer, "fit") for key in metadata.keys(): metadata[key].to_excel(writer, key) writer.save() def _errfunc(self, p, bounds={}): def errfunc_single( p, x, y, xerr, norm=1): res = (self.fitfunc(p, x)*norm-y[self.fitcolumns,:])/\ (xerr[self.fitcolumns,:] + self.sigma_min) return res.ravel() # sum errors over all files (normalize if requested) err = [] mask = self.fitmask for i, rate in enumerate(self.rates): norm = p["n%d"%i].value if (i>0 and self.normalized) else 1 err.append(errfunc_single(p, rate.time[mask] - self.fit_t0, rate.data_mean[:,mask], rate.data_std[:,mask], norm)) # add penalty for bounded fitting penalty = [weight*(np.fmax(lo-p[key], 0) + np.fmax(0, p[key]-hi))\ for key, (lo, hi, weight) in bounds.items()] err.append(penalty) #print("err = ", np.sum(np.hstack(err)**2)) return np.hstack(err) def _errfunc_species(self, p, species, bounds={}): def errfunc_single( p, x, y, xerr, norm=1): res = (self.fitfunc(p, x)[species]*norm-y[self.fitcolumns,:][species])/\ (xerr[self.fitcolumns,:][species] + self.sigma_min) return res.ravel() # sum errors over all files (normalize if requested) err = [] mask = self.fitmask for i, rate in enumerate(self.rates): norm = p["n%d"%i].value if (i>0 and self.normalized) else 1 err.append(errfunc_single(p, rate.time[mask] - self.fit_t0, rate.data_mean[:,mask], rate.data_std[:,mask], norm)) # add penalty for bounded fitting penalty = [weight*(np.fmax(lo-p[key], 0) + np.fmax(0, p[key]-hi))\ for key, (lo, hi, weight) in bounds.items()] err.append(penalty) #print("err = ", np.sum(np.hstack(err)**2)) return np.hstack(err) def fit_model(self, model, p0, columns, mask=slice(None), t0=0., quadratic_bounds=True, boundweight=1e3): self.fitfunc = model.func # store the fitfunc for later self.model = model self.fitcolumns = columns self.fit_t0 = t0 self.fitmask = mask p0 = model.init_params(p0) # use custom implementation of bounded parameters, which can # estimate errors even if the parameter is "forced" outside the interval # idea: detect if fitted parameter is close to boundary, then make it fixed... bounds = {} if quadratic_bounds: for key, p in p0.items(): if np.any(
np.isfinite([p.min, p.max])
numpy.isfinite
from typing import Any, Set, Tuple, Union, Optional from pathlib import Path from collections import defaultdict from html.parser import HTMLParser import pytest from anndata import AnnData import numpy as np import xarray as xr from imageio import imread, imsave import tifffile from squidpy.im import ImageContainer from squidpy.im._utils import CropCoords, CropPadding, _NULL_COORDS from squidpy._constants._pkg_constants import Key class SimpleHTMLValidator(HTMLParser): # modified from CellRank def __init__(self, n_expected_rows: int, expected_tags: Set[str], **kwargs: Any): super().__init__(**kwargs) self._cnt = defaultdict(int) self._n_rows = 0 self._n_expected_rows = n_expected_rows self._expected_tags = expected_tags def handle_starttag(self, tag: str, attrs: Any) -> None: self._cnt[tag] += 1 self._n_rows += tag == "strong" def handle_endtag(self, tag: str) -> None: self._cnt[tag] -= 1 def validate(self) -> None: assert self._n_rows == self._n_expected_rows assert set(self._cnt.keys()) == self._expected_tags if len(self._cnt): assert set(self._cnt.values()) == {0} class TestContainerIO: def test_empty_initialization(self): img = ImageContainer() assert not len(img) assert isinstance(img.data, xr.Dataset) assert img.shape == (0, 0) assert str(img) assert repr(img) def _test_initialize_from_dataset(self): dataset = xr.Dataset({"foo": xr.DataArray(np.zeros((100, 100, 3)))}, attrs={"foo": "bar"}) img = ImageContainer._from_dataset(data=dataset) assert img.data is not dataset assert "foo" in img assert img.shape == (100, 100) np.testing.assert_array_equal(img.data.values(), dataset.values) assert img.data.attrs == dataset.attrs def test_save_load_zarr(self, tmpdir): img = ImageContainer(np.random.normal(size=(100, 100, 1))) img.data.attrs["scale"] = 42 img.save(Path(tmpdir) / "foo") img2 = ImageContainer.load(Path(tmpdir) / "foo") np.testing.assert_array_equal(img["image"].values, img2["image"].values) np.testing.assert_array_equal(img.data.dims, img2.data.dims) np.testing.assert_array_equal(sorted(img.data.attrs.keys()), sorted(img2.data.attrs.keys())) for k, v in img.data.attrs.items(): assert type(v) == type(img2.data.attrs[k]) # noqa: E721 assert v == img2.data.attrs[k] def test_load_zarr_2_objects_can_overwrite_store(self, tmpdir): img = ImageContainer(np.random.normal(size=(100, 100, 1))) img.data.attrs["scale"] = 42 img.save(Path(tmpdir) / "foo") img2 = ImageContainer.load(Path(tmpdir) / "foo") img2.data.attrs["sentinel"] = "foobar" img2["image"].values += 42 img2.save(Path(tmpdir) / "foo") img3 = ImageContainer.load(Path(tmpdir) / "foo") assert "sentinel" in img3.data.attrs assert img3.data.attrs["sentinel"] == "foobar" np.testing.assert_array_equal(img3["image"].values, img2["image"].values) np.testing.assert_allclose(img3["image"].values - 42, img["image"].values) @pytest.mark.parametrize( ("shape1", "shape2"), [ ((100, 200, 3), (100, 200, 1)), ((100, 200, 3), (100, 200)), ], ) def test_add_img(self, shape1: Tuple[int, ...], shape2: Tuple[int, ...]): img_orig = np.random.randint(low=0, high=255, size=shape1, dtype=np.uint8) cont = ImageContainer(img_orig, layer="img_orig") img_new = np.random.randint(low=0, high=255, size=shape2, dtype=np.uint8) cont.add_img(img_new, layer="img_new", channel_dim="mask") assert "img_orig" in cont assert "img_new" in cont np.testing.assert_array_equal(np.squeeze(cont.data["img_new"]), np.squeeze(img_new)) @pytest.mark.parametrize("shape", [(100, 200, 3), (100, 200, 1)]) def test_load_jpeg(self, shape: Tuple[int, ...], tmpdir): img_orig = np.random.randint(low=0, high=255, size=shape, dtype=np.uint8) fname = tmpdir / "tmp.jpeg" imsave(str(fname), img_orig) gt = imread(str(fname)) # because of compression, we load again cont = ImageContainer(str(fname)) np.testing.assert_array_equal(cont["image"].values.squeeze(), gt.squeeze()) @pytest.mark.parametrize("shape", [(100, 200, 3), (100, 200, 1), (10, 100, 200, 1)]) def test_load_tiff(self, shape: Tuple[int, ...], tmpdir): img_orig = np.random.randint(low=0, high=255, size=shape, dtype=np.uint8) fname = tmpdir / "tmp.tiff" tifffile.imsave(fname, img_orig) cont = ImageContainer(str(fname)) if len(shape) > 3: # multi-channel tiff np.testing.assert_array_equal(cont["image"], img_orig[..., 0].transpose(1, 2, 0)) else: np.testing.assert_array_equal(cont["image"], img_orig) def test_load_netcdf(self, tmpdir): arr = np.random.normal(size=(100, 10, 4)) ds = xr.Dataset({"quux": xr.DataArray(arr, dims=["foo", "bar", "baz"])}) fname = tmpdir / "tmp.nc" ds.to_netcdf(str(fname)) cont = ImageContainer(str(fname)) assert len(cont) == 1 assert "quux" in cont np.testing.assert_array_equal(cont["quux"], ds["quux"]) @pytest.mark.parametrize( "array", [np.zeros((10, 10, 3), dtype=np.uint8), np.random.rand(10, 10, 1).astype(np.float32)] ) def test_array_dtypes(self, array: Union[np.ndarray, xr.DataArray]): img = ImageContainer(array) np.testing.assert_array_equal(img["image"].data, array) assert img["image"].data.dtype == array.dtype img = ImageContainer(xr.DataArray(array)) np.testing.assert_array_equal(img["image"].data, array) assert img["image"].data.dtype == array.dtype def test_add_img_invalid_yx(self, small_cont_1c: ImageContainer): arr = xr.DataArray(
np.empty((small_cont_1c.shape[0] - 1, small_cont_1c.shape[1]))
numpy.empty
import numpy as np a=np.arange(10) print(a) #save numpy array np.save("saved",a) #new file is craeted with name saved.npy new_a=np.load("saved.npy") #load the saved file print(new_a) #saving multiple arrays as zip or archive file a1=np.arange(25) a2=np.arange(30)
np.savez("saved_archive.npz",x=a1,y=a2)
numpy.savez
import argparse import json import os import time from bisect import bisect from functools import partial, reduce from itertools import product from operator import itemgetter import kornia import matplotlib import matplotlib.pyplot as plt from sklearn.metrics import average_precision_score, roc_auc_score, precision_recall_curve, roc_curve import pickle import numpy as np import sklearn import sklearn.datasets import torch import torch.nn as nn import torch.nn.functional as F import torchvision from torch.nn.utils import spectral_norm, clip_grad_norm_ from torchvision.utils import save_image from models.mcmc import short_run_mcmc, \ DiffSampler, DiffSamplerMultiDim, get_one_hot, get_onehots, convert_struct_onehot, \ get_onehot_struct_mask, get_label_axes, get_diff_label_axes, get_struct_mask, per_example_mask from utils import get_logger, makedirs, save_ckpt from utils.data import MNISTWithAttributes from utils.downsample import Downsample from utils.dsprites import get_dsprites_dset from utils.process import utzappos_tensor_dset, utzappos_zero_shot_tensor_dset, split_utzappos, \ celeba_tensor_dset, split_celeba, cub_tensor_dset, split_cub, get_data_gen, log_dset_label_info, \ CELEBA_ZERO_SHOT_COMBOS, CELEBA_ZERO_SHOT_ATTRIBUTES, find_combos_in_tst_set, lbl_in_combos, index_by_combo_name from utils.visualize_flow import plt_flow_density, plt_samples # noinspection PyUnresolvedReferences torch.backends.cudnn.benchmark = True # noinspection PyUnresolvedReferences torch.backends.cudnn.enabled = True matplotlib.use("Agg") IMG_DSETS = ["mnist", "fashionmnist", "celeba", "mwa", "dsprites", "utzappos", "cub"] UTZAPPOS_TEST_LEN = CELEBA_TEST_LEN = CUB_TEST_LEN = 5000 def xor(x, y): return (x or y) and not (x and y) def implies(x, y): return (not x) or y def clamp_x(x, min_val=0, max_val=1): return torch.clamp(x, min=min_val, max=max_val) def deq_x(x): return (255 * x + torch.rand_like(x)) / 256. def cond_attributes_from_labels(labels_b, cond_cls): cond_cls_ind, cond_cls_val = cond_cls return labels_b[:, cond_cls_ind] == cond_cls_val def f1_score_missing(y_true, y_pred, individual=False, micro=False): """ Compute the f1 score, accounting for missing labels in `y_true`. """ assert not (individual and micro) assert y_true.shape == y_pred.shape assert len(y_true.shape) == 2 if micro: # average over attributes using "micro" method (treat each attribute as a separate sample) y_true = y_true.view(-1) y_pred = y_pred.view(-1) missing_mask = y_true != -1 tp = (y_true == y_pred) * (y_true == 1) err = (y_true != y_pred) # any missing values don't contribute to the sums tp = (tp * missing_mask).sum(0) err = (err * missing_mask).sum(0) f1 = (tp / (tp + .5 * err)) if not individual: # if no individual scores desired, average over attributes ("macro" average) f1 = f1.mean() return f1 def get_calibration(y, p_mean, num_bins=20, axis=-1, multi_label=True, individual=False, micro=False, debug=False): """Compute the calibration. Modified from: https://github.com/xwinxu/bayesian-sde/blob/main/brax/utils/utils.py References: https://arxiv.org/abs/1706.04599 https://arxiv.org/abs/1807.00263 Args: y: class labels (binarized) p_mean: numpy array, size (batch_size, num_classes) containing the mean output predicted probabilities num_bins: number of bins axis: Axis of the labels multi_label: Multiple labels individual: Return ECE for individual labels micro: Return micro average of ECE scores across attributes debug: Return debug information Returns: cal: a dictionary { reliability_diag: realibility diagram ece: Expected Calibration Error nb_items: nb_items_bin/np.sum(nb_items_bin) } """ assert implies(individual or micro, multi_label) assert not (individual and micro) if micro: y = y.view(-1) p_mean = p_mean.view(-1, p_mean.shape[2]) # compute predicted class and its associated confidence (probability) conf, class_pred = p_mean.max(axis) assert y.shape[0] == p_mean.shape[0] assert len(p_mean.shape) == len(y.shape) + 1 assert p_mean.shape[1] > 1 if multi_label and not micro: assert len(y.shape) == 2 assert y.shape[1] > 1 assert p_mean.shape[2] > 1 else: assert len(y.shape) == 1 tau_tab = torch.linspace(0, 1, num_bins + 1, device=p_mean.device) conf = conf[None] for _ in range(len(y.shape)): tau_tab = tau_tab.unsqueeze(-1) sec = (conf < tau_tab[1:]) & (conf >= tau_tab[:-1]) nb_items_bin = sec.sum(1) mean_conf = (conf * sec).sum(1) / nb_items_bin acc_tab = ((class_pred == y)[None] * sec).sum(1) / nb_items_bin _weights = nb_items_bin.float() / nb_items_bin.sum(0) ece = ((mean_conf - acc_tab).abs() * _weights).nansum(0) if not individual: # pytorch doesn't have a built in nanmean ece[ece.isnan()] = 0 ece = ece.mean(0) cal = { 'reliability_diag': (mean_conf, acc_tab), 'ece': ece, '_weights': _weights, } if debug: cal.update({ 'conf': conf, 'sec': sec, 'tau_tab': tau_tab, 'acc_tab': acc_tab, 'p_mean': p_mean }) return cal def ap_score(y_true, y_pred, individual=False, micro=False): assert not (individual and micro) assert y_true.shape == y_pred.shape assert len(y_true.shape) == 2 if (y_true == -1).any(): raise NotImplementedError(f"Missing AP score not implemented.") if micro: y_true = y_true.view(-1) y_pred = y_pred.view(-1) return average_precision_score(y_true=y_true.cpu().numpy(), y_score=y_pred.cpu().numpy()) else: y_true = y_true.cpu().numpy() y_pred = y_pred.cpu().numpy() individual_ap = [average_precision_score(y_true=y_true[:, label_dim_], y_score=y_pred[:, label_dim_]) for label_dim_ in range(y_true.shape[1])] individual_ap = torch.tensor(individual_ap) if not individual: return individual_ap.mean() return individual_ap def auroc_score(y_true, y_pred, individual=False, micro=False): assert not (individual and micro) assert y_true.shape == y_pred.shape assert len(y_true.shape) == 2 if (y_true == -1).any(): raise NotImplementedError(f"Missing AP score not implemented.") if micro: y_true = y_true.view(-1) y_pred = y_pred.view(-1) return roc_auc_score(y_true=y_true.cpu().numpy(), y_score=y_pred.cpu().numpy()) else: y_true = y_true.cpu().numpy() y_pred = y_pred.cpu().numpy() individual_ap = [roc_auc_score(y_true=y_true[:, label_dim_], y_score=y_pred[:, label_dim_]) for label_dim_ in range(y_true.shape[1])] individual_ap = torch.tensor(individual_ap) if not individual: return individual_ap.mean() return individual_ap class ReplayBuffer: def __init__(self, max_size, example_sample): """ Parameters ---------- max_size: int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. example_sample: Example samples (shape and device) """ self._storage = example_sample self.buffer_len = 0 self.max_size = max_size self._next_idx = 0 def __len__(self): return self.buffer_len def _add_full_buffer(self, x, which_added=None): batch_size = x.shape[0] if which_added is None: if batch_size + self._next_idx < self.max_size: self._storage[self._next_idx:self._next_idx + batch_size] = x which_added = torch.arange(self._next_idx, self._next_idx + batch_size) else: split_idx = self.max_size - self._next_idx self._storage[self._next_idx:] = x[:split_idx] self._storage[:batch_size - split_idx] = x[split_idx:] which_added = torch.cat([torch.arange(batch_size - split_idx), torch.arange(self._next_idx, len(self._storage))], dim=0) else: self._storage[which_added] = x assert len(which_added) == batch_size return batch_size, which_added def add(self, x, which_added=None): num_added, which_added = self._add_full_buffer(x, which_added) batch_size = x.shape[0] self._next_idx = (self._next_idx + batch_size) % self.max_size self.buffer_len = min(self.max_size, self.buffer_len + batch_size) return num_added, which_added def sample(self, batch_size, inds=None): if inds is None: inds = torch.randint(0, len(self._storage), (batch_size,)) return self._storage[inds], inds class ReservoirBuffer(ReplayBuffer): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._n = 0 def _add_full_buffer(self, x, which_added_add_inds_mask=None): batch_size = x.shape[0] if which_added_add_inds_mask is None: if self._next_idx >= len(self): num_added, which_added = super()._add_full_buffer(x, which_added_add_inds_mask) add_inds_mask = torch.ones(which_added.shape, device=which_added.device, dtype=torch.bool) which_added_add_inds_mask = (which_added, add_inds_mask) else: randint_bounds = self._n + 1 + torch.arange(batch_size) inds = (torch.rand((batch_size,)) * randint_bounds).floor().long() add_inds_mask = inds < len(self) which_added = inds[add_inds_mask] self._storage[which_added] = x[add_inds_mask] num_added = add_inds_mask.sum() which_added_add_inds_mask = (which_added, add_inds_mask) self._n += batch_size else: which_added, add_inds_mask = which_added_add_inds_mask self._storage[which_added] = x[add_inds_mask] num_added = len(which_added) return num_added, which_added_add_inds_mask class GaussianBlur: def __init__(self, min_val=0.1, max_val=2.0, kernel_size=9): self.min_val = min_val self.max_val = max_val self.kernel_size = kernel_size def __call__(self, sample): # blur the image with a 50% chance prob = np.random.random_sample() if prob < 0.5: sigma = (self.max_val - self.min_val) * np.random.random_sample() + self.min_val sample = kornia.filters.GaussianBlur2d((self.kernel_size, self.kernel_size), (sigma, sigma))(sample) return sample def get_color_distortion(s=1.0): color_jitter = kornia.augmentation.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.4 * s) rnd_color_jitter = torchvision.transforms.RandomApply([color_jitter], p=0.8) rnd_gray = kornia.augmentation.RandomGrayscale(p=0.2) color_distort = torchvision.transforms.Compose([rnd_color_jitter, rnd_gray]) return color_distort class AISModel(nn.Module): def __init__(self, model, init_dist): super().__init__() self.model = model self.init_dist = init_dist def forward(self, x, beta): logpx = self.model(x).squeeze() logpi = self.init_dist.log_prob(x).sum(-1) return logpx * beta + logpi * (1. - beta) def repeat_x(x): repeat_shape = (x.shape[0],) + tuple(1 for _ in range(len(x.shape) - 1)) return x[0][None].repeat(*repeat_shape) def get_data(args, dataset, batch_size, device, return_dset=False, zero_shot=False, return_trn_len=False, return_tst_dset=False): if return_dset and dataset not in ("utzappos", "celeba", "cub"): raise NotImplementedError(f"Returning dataset is not implemented for {dataset}.") if zero_shot and dataset != "utzappos": raise NotImplementedError(f"Zero-shot learning is not implemented for {dataset}.") if return_trn_len and dataset not in ["celeba", "utzappos"]: raise NotImplementedError(f"Returning dataset length not configured for {dataset}.") if not implies(return_tst_dset, dataset == "celeba" and args.dset_split_type == "zero_shot"): raise NotImplementedError(f"Retuning tst dataset not configured for {dataset} and {args.dset_split_type}.") assert implies(zero_shot, return_dset), f"Must be returning dataset labels when doing zero-shot." assert implies(return_dset, args.full_test), f"Must be using test set when returning dataset labels." if dataset == "mnist": if args.small_cnn: assert args.img_size == 32 transforms = [ torchvision.transforms.Resize(args.img_size), torchvision.transforms.ToTensor(), lambda x: (255 * x + torch.rand_like(x)) / 256., ] if args.logit: logger("================= DOING LOGIT TRANSFORM BOIII =================") transforms += [ lambda x: x * (1 - 2 * 1e-6) + 1e-6, lambda x: x.log() - (1. - x).log() ] else: transforms = [ torchvision.transforms.ToTensor(), lambda x: x.view(-1), lambda x: (255 * x + torch.rand_like(x)) / 256., ] if not args.cnn and args.logit: logger("================= DOING LOGIT TRANSFORM BOIII =================") transforms += [ lambda x: x * (1 - 2 * 1e-6) + 1e-6, lambda x: x.log() - (1. - x).log() ] dset_train = torchvision.datasets.MNIST(root="./data", train=True, download=True, transform=torchvision.transforms.Compose(transforms)) dset_test = torchvision.datasets.MNIST(root="./data", train=False, download=True, transform=torchvision.transforms.Compose(transforms)) trn_batch = get_data_gen(dataset=dset_train, batch_size=batch_size, split="trn", device=device) tst_batch = get_data_gen(dataset=dset_test, batch_size=batch_size, split="tst", device=device) return trn_batch, tst_batch elif dataset == "dsprites": print("================= DOING LOGIT TRANSFORM BOIII =================") if args.cnn: transforms = [] else: transforms = [lambda x: x.view(-1)] transforms += [ lambda x: (7. * x + torch.rand_like(x)) / 8., lambda x: x * (1 - 2 * 1e-6) + 1e-6, lambda x: x.log() - (1. - x).log() ] dset = get_dsprites_dset(args.root, torchvision.transforms.Compose(transforms), test=args.dsprites_test) if args.dsprites_test: dset_train, dset_test = dset trn_batch = get_data_gen(dataset=dset_train, batch_size=batch_size, split="trn", device=device) tst_batch = get_data_gen(dataset=dset_test, batch_size=batch_size, split="tst", device=device) return trn_batch, tst_batch else: batch = get_data_gen(dataset=dset, batch_size=batch_size, split="trn", device=device) return batch, None elif dataset == "fashionmnist": dset_train = torchvision.datasets.FashionMNIST(root="./data", train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), lambda x: x.view(-1), lambda x: (255 * x + torch.rand_like(x)) / 256., lambda x: x * (1 - 2 * 1e-6) + 1e-6, lambda x: x.log() - (1. - x).log() ])) batch = get_data_gen(dataset=dset_train, batch_size=batch_size, split="trn", device=device) return batch elif dataset == "celeba": transforms = [ lambda x: (255 * x + torch.rand_like(x)) / 256., lambda x: x + args.img_sigma * torch.randn_like(x) ] if args.clamp_data: transforms.append(clamp_x) root = os.path.join(args.root, "celeba") dset, dset_label_info, cache_fn = celeba_tensor_dset(root=root, img_size=args.img_size, transform=torchvision.transforms.Compose(transforms), attr_fn=os.path.join(root, "list_attr_celeba.txt"), pkl_fn=os.path.join(root, "cache.pickle"), cache_fn=os.path.join(root, "dset.pickle"), drop_infreq=args.celeba_drop_infreq) log_dset_label_info(logger, dset_label_info) if args.full_test: # overwrite dset instead of naming it trn_dset, since we return a copy not a pointer? dset, tst_dset = split_celeba(dset, root=root, cache_fn=cache_fn, split_len=CELEBA_TEST_LEN, split_type=args.dset_split_type, balanced_split_ratio=args.dset_balanced_split_ratio, dset_label_info=dset_label_info) trn_batch = get_data_gen(dataset=dset, batch_size=batch_size, split="trn", device=device) tst_batch = get_data_gen(dataset=tst_dset, batch_size=batch_size, split="tst", device=device) return_tpl = (trn_batch, tst_batch, dset_label_info, len(tst_dset)) if return_tst_dset: return_tpl += (tst_dset,) if return_dset: # get all labels in the train set return_tpl += (dset[:][1].float().mean(0)[:, None].to(args.device),) if args.dset_split_type == "zero_shot": logger("=========== ZERO SHOT ATTRIBUTE COMBINATION SAMPLING ===========") tst_combos = find_combos_in_tst_set(dset[:][1], tst_dset[:][1], dset_label_info, CELEBA_ZERO_SHOT_COMBOS) trn_combos = [combo for combo in CELEBA_ZERO_SHOT_COMBOS if combo not in tst_combos] assert len(trn_combos) + len(tst_combos) == len(CELEBA_ZERO_SHOT_COMBOS) logger(f"{len(tst_combos)} COMBOS HELD OUT IN TEST SET") for tst_combo in tst_combos: logger(tst_combo) # find mutually exclusive labels in the test set tst_labels_combos = lbl_in_combos(tst_dset[:][1], dset_label_info, tst_combos) tst_labels_combos_filter = tst_labels_combos.sum(1) == 1 tst_labels_combos_nums = tst_labels_combos.sum(0) > 0 logger(f"Found {tst_labels_combos_filter.sum()} of {len(tst_dset)} " f"in test set with mutually exclusive labels.") logger(f"Found {tst_labels_combos_nums.sum()} of {len(tst_combos)} " f"mutually exclusive combos in the test set.") return_tpl += (tst_combos,) trn_labels_combos = lbl_in_combos(tst_dset[:][1], dset_label_info, trn_combos) trn_labels_combos_filter = trn_labels_combos.sum(1) == 1 trn_labels_combos_nums = trn_labels_combos.sum(0) > 0 logger(f"Found trn {trn_labels_combos_filter.sum()} of {len(tst_dset)} " f"in test set with mutually exclusive labels.") logger(f"Found trn {trn_labels_combos_nums.sum()} of {len(trn_combos)} " f"mutually exclusive combos in the test set.") else: trn_batch = get_data_gen(dataset=dset, batch_size=batch_size, split="trn", device=device) return_tpl = (trn_batch, dset_label_info) if return_trn_len: return_tpl += (len(dset),) return return_tpl elif "utzappos" in dataset: transforms = [ lambda x: (255 * x + torch.rand_like(x)) / 256., lambda x: x + args.img_sigma * torch.randn_like(x) ] if args.clamp_data: transforms.append(clamp_x) if zero_shot: root = os.path.join(args.root, "utzappos", "zero-shot") _dset_kwargs = { "root": os.path.join(root, "images"), "attr_fn": root, "pkl_fn": os.path.join(root, "cache.pickle"), "cache_fn": os.path.join(root, "dset.pickle"), "transform": torchvision.transforms.Compose(transforms) } else: root = os.path.join(args.root, "utzappos", "ut-zap50k-images-square") _dset_kwargs = { "root": root, "attr_fn": os.path.join(root, "meta-data.csv"), "pkl_fn": os.path.join(root, "cache.pickle"), "cache_fn": os.path.join(root, "dset.pickle"), "transform": torchvision.transforms.Compose(transforms) } if zero_shot: _dset_kwargs.update({ "img_size": args.img_size }) elif dataset == "utzappos": _dset_kwargs.update({ "observed": True, "binarized": True, "drop_infreq": args.utzappos_drop_infreq, "img_size": args.img_size }) else: assert dataset == "utzappos_old", f"Unrecognized dataset {dataset}" assert False if zero_shot: trn_dset, dset_label_info, cache_fn = utzappos_zero_shot_tensor_dset(split="trn", **_dset_kwargs) val_dset, *_ = utzappos_zero_shot_tensor_dset(split="val", **_dset_kwargs) tst_dset, *_ = utzappos_zero_shot_tensor_dset(split="tst", **_dset_kwargs) dset_lengths = {'trn': len(trn_dset), 'val': len(val_dset), 'tst': len(tst_dset)} log_dset_label_info(logger, dset_label_info) trn_batch = get_data_gen(dataset=trn_dset, batch_size=batch_size, split="trn", device=device, zs_mode=True) val_batch = get_data_gen(dataset=val_dset, batch_size=batch_size, split="tst", device=device, zs_mode=True) tst_batch = get_data_gen(dataset=tst_dset, batch_size=batch_size, split="tst", device=device, zs_mode=True) return_tpl = (trn_batch, val_batch, tst_batch, dset_label_info, dset_lengths) if return_dset: # get all labels in the train set trn_labels = trn_dset[:][1] # trn_dset is a CustomTensorDataset, we need special indexing return_tpl += (trn_labels.float().mean(0)[:, None].to(args.device),) if return_trn_len: return_tpl += (len(trn_dset),) else: dset, dset_label_info, cache_fn = utzappos_tensor_dset(**_dset_kwargs) log_dset_label_info(logger, dset_label_info) # find_duplicates_in_dsets(dset, dset, itself=True) if args.full_test: trn_dset, tst_dset = split_utzappos(dset, root=root, cache_fn=cache_fn, split_len=UTZAPPOS_TEST_LEN, split_type=args.dset_split_type, balanced_split_ratio=args.dset_balanced_split_ratio) trn_batch = get_data_gen(dataset=trn_dset, batch_size=batch_size, split="trn", device=device) tst_batch = get_data_gen(dataset=tst_dset, batch_size=batch_size, split="tst", device=device) return_tpl = (trn_batch, tst_batch, dset_label_info, len(tst_dset)) if return_dset: # get all labels in the train set trn_labels = trn_dset[:][1] # trn_dset is a CustomTensorDataset, we need special indexing return_tpl += (trn_labels.float().mean(0)[:, None].to(args.device),) # find_duplicates_in_dsets(trn_dset, tst_dset) if return_trn_len: return_tpl += (len(trn_dset),) else: trn_batch = get_data_gen(dataset=dset, batch_size=batch_size, split="trn", device=device) return_tpl = (trn_batch, dset_label_info) if return_trn_len: return_tpl += (len(dset),) return return_tpl elif dataset == "cub": transforms = [ lambda x: (255 * x + torch.rand_like(x)) / 256., lambda x: x + args.img_sigma * torch.randn_like(x) ] if args.clamp_data: transforms.append(clamp_x) root = os.path.join(args.root, "CUB") dset, dset_label_info, cache_fn = cub_tensor_dset(root=root, img_size=args.img_size, transform=torchvision.transforms.Compose(transforms), drop_infreq=args.cub_drop_infreq, attr_fn=os.path.join(root, "CUB_200_2011", "attributes", "image_attribute_labels.txt"), attr_name_fn=os.path.join(root, "attributes.txt"), img_id_fn=os.path.join(root, "CUB_200_2011", "images.txt"), bb_fn=os.path.join(root, "CUB_200_2011", "bounding_boxes.txt"), pkl_fn=os.path.join(root, "cache.pickle"), cache_fn=os.path.join(root, "dset.pickle")) log_dset_label_info(logger, dset_label_info) if args.full_test: trn_dset, tst_dset = split_cub(dset, root=root, cache_fn=cache_fn, split_len=CUB_TEST_LEN, split_type=args.dset_split_type, balanced_split_ratio=args.dset_balanced_split_ratio) trn_batch = get_data_gen(dataset=trn_dset, batch_size=batch_size, split="trn", device=device) tst_batch = get_data_gen(dataset=tst_dset, batch_size=batch_size, split="tst", device=device) return_tpl = (trn_batch, tst_batch, dset_label_info) if return_dset: # get all labels in the train set trn_labels = trn_dset[:][1] # trn_dset is a CustomTensorDataset, we need special indexing return_tpl += (trn_labels.float().mean(0)[:, None].to(args.device),) else: trn_batch = get_data_gen(dataset=dset, batch_size=batch_size, split="trn", device=device) return_tpl = (trn_batch, dset_label_info) return return_tpl elif dataset == "mwa": transforms = [ torchvision.transforms.Normalize((.5, .5, .5), (.5, .5, .5)), lambda x: x + args.img_sigma * torch.randn_like(x) ] dset = MNISTWithAttributes(root="data", img_size=args.img_size, transform=torchvision.transforms.Compose(transforms)) batch = get_data_gen(dataset=dset, batch_size=batch_size, split="trn", device=device) return batch elif dataset == "moons": data, labels = sklearn.datasets.make_moons(n_samples=batch_size, noise=0.1) data = data.astype("float32") data = data * 2 + np.array([-1, -0.2]) elif dataset == "swissroll": data, labels = sklearn.datasets.make_swiss_roll(n_samples=batch_size, noise=1.0) data = data.astype("float32")[:, [0, 2]] data /= 5 elif dataset in ["rings", "rings_struct"]: rng = np.random.RandomState() obs = batch_size batch_size *= 20 n_samples4 = n_samples3 = n_samples2 = batch_size // 4 n_samples1 = batch_size - n_samples4 - n_samples3 - n_samples2 # so as not to have the first point = last point, we set endpoint=False linspace4 = np.linspace(0, 2 * np.pi, n_samples4, endpoint=False) linspace3 = np.linspace(0, 2 * np.pi, n_samples3, endpoint=False) linspace2 = np.linspace(0, 2 * np.pi, n_samples2, endpoint=False) linspace1 = np.linspace(0, 2 * np.pi, n_samples1, endpoint=False) circ4_x = np.cos(linspace4) circ4_y = np.sin(linspace4) circ3_x = np.cos(linspace4) * 0.75 circ3_y = np.sin(linspace3) * 0.75 circ2_x = np.cos(linspace2) * 0.5 circ2_y = np.sin(linspace2) * 0.5 circ1_x = np.cos(linspace1) * 0.25 circ1_y = np.sin(linspace1) * 0.25 X = np.vstack([ np.hstack([circ4_x, circ3_x, circ2_x, circ1_x]), np.hstack([circ4_y, circ3_y, circ2_y, circ1_y]) ]).T * 3.0 Y = np.array([0] * n_samples1 + [1] * n_samples2 + [2] * n_samples3 + [3] * n_samples4) # Add noise X += rng.normal(scale=0.08, size=X.shape) inds = np.random.choice(list(range(batch_size)), obs) data = X[inds].astype("float32") labels = Y[inds] if dataset == "rings_struct": labels_1 = (labels < 2).astype(int) labels_2 = (labels % 2) labels = np.hstack((labels_1[:, None], labels_2[:, None])) elif dataset == "circles": data, labels = sklearn.datasets.make_circles(n_samples=batch_size, factor=.5, noise=0.08) data = data.astype("float32") data *= 3 elif dataset == "checkerboard": # uniform on (-2, 2) x1 = np.random.rand(batch_size) * 4 - 2 # uniform on (0, 1) U (-2, -1) row = np.random.randint(0, 2, batch_size) x2_ = np.random.rand(batch_size) - row * 2 # add {-2, -1, 0, 1} -> {0, 1} -> {(-2, -1), (-1, 0), (0, 1), (1, 2)} x2 = x2_ + (np.floor(x1) % 2) data = np.concatenate([x1[:, None], x2[:, None]], 1) * 2 col = (np.floor(x1) + 2).astype(int) labels = col * 2 + row elif "8gaussians" in dataset: centers = [ (0, -1), (1, 0), (0, 1), (-1, 0), (1. / np.sqrt(2), -1. / np.sqrt(2)), (1. / np.sqrt(2), 1. / np.sqrt(2)), (-1. / np.sqrt(2), 1. / np.sqrt(2)), (-1. / np.sqrt(2), -1. / np.sqrt(2)) ] centers = 4. * np.array(centers) labels = np.random.randint(8, size=batch_size) points = np.random.randn(batch_size, 2) * 0.5 data = centers[labels] + points data /= 1.414 if "struct" in dataset: labels_1 = (labels < 4).astype(int) labels_2 = labels % 4 labels = np.hstack((labels_1[:, None], labels_2[:, None])) elif "multi" in dataset: labels_1 = (labels < 4).astype(int) labels_2 = labels % 2 labels_3 = (labels // 2) % 2 labels = np.hstack((labels_1[:, None], labels_2[:, None], labels_3[:, None])) elif "hierarch" in dataset: labels_1 = (labels < 4).astype(int) labels_2 = np.isin(labels, [0, 1, 4, 7]).astype(int) labels_3 = np.isin(labels, [0, 2, 4, 5]).astype(int) labels = np.hstack((labels_1[:, None], labels_2[:, None], labels_3[:, None])) else: raise ValueError(f"Unrecognized dataset {dataset}") else: assert False, f"Unknown dataset {dataset}" if "missing" in dataset: mask_ind = np.array(list(product(*(range(2) for _ in range(labels.shape[1]))))).astype(bool) assert mask_ind[-1].all() # corresponds to removing all labels num_label_masks = 2 ** labels.shape[1] if "unsup" not in dataset: num_label_masks -= 1 # don't choose the option to remove all labels labels_to_mask = np.random.choice(num_label_masks, labels.shape[0]) labels_mask = mask_ind[labels_to_mask] labels[labels_mask] = -1 return torch.tensor(data).to(device).float(), torch.tensor(labels).to(device) def get_data_batch(args, dataset, batch_size, device, return_dset=False, zero_shot=False, return_trn_len=False, return_tst_dset=False): if dataset in IMG_DSETS: return get_data(args, dataset, batch_size, device, return_dset, zero_shot, return_trn_len, return_tst_dset) else: return lambda: get_data(args, dataset, batch_size, device, zero_shot) class SpectralLinear(nn.Module): def __init__(self, nin, nout, init_scale=1): super().__init__() self.linear = spectral_norm(nn.Linear(nin, nout)) self.log_scale = nn.Parameter(torch.zeros(1,) + np.log(init_scale), requires_grad=True) @property def scale(self): return self.log_scale.exp() def forward(self, x): return self.scale * self.linear(x) def smooth_mlp_ebm_big(nin, nout=1): return nn.Sequential( nn.Linear(nin, 1000), nn.ELU(), nn.Linear(1000, 1000), nn.ELU(), nn.Linear(1000, 500), nn.ELU(), nn.Linear(500, nout), ) def smooth_mlp_ebm_bigger(act, nin, nout=1, spectral=False): """ Large MLP EBM. """ if act == "elu": assert not spectral return nn.Sequential( nn.Linear(nin, 1000), nn.ELU(), nn.Linear(1000, 500), nn.ELU(), nn.Linear(500, 500), nn.ELU(), nn.Linear(500, 250), nn.ELU(), nn.Linear(250, 250), nn.ELU(), nn.Linear(250, 250), nn.ELU(), nn.Linear(250, nout) ) elif act == "lrelu": assert not spectral return nn.Sequential( nn.Linear(nin, 1000), nn.LeakyReLU(.2, inplace=True), nn.Linear(1000, 500), nn.LeakyReLU(.2, inplace=True), nn.Linear(500, 500), nn.LeakyReLU(.2, inplace=True), nn.Linear(500, 250), nn.LeakyReLU(.2, inplace=True), nn.Linear(250, 250), nn.LeakyReLU(.2, inplace=True), nn.Linear(250, 250), nn.LeakyReLU(.2, inplace=True), nn.Linear(250, nout) ) elif act == "swish": if spectral: return nn.Sequential( spectral_norm(nn.Linear(nin, 1000)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(1000, 500)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(500, 500)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(500, 250)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(250, 250)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(250, 250)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(250, nout)) ) else: return nn.Sequential( nn.Linear(nin, 1000), nn.SiLU(inplace=True), nn.Linear(1000, 500), nn.SiLU(inplace=True), nn.Linear(500, 500), nn.SiLU(inplace=True), nn.Linear(500, 250), nn.SiLU(inplace=True), nn.Linear(250, 250), nn.SiLU(inplace=True), nn.Linear(250, 250), nn.SiLU(inplace=True), nn.Linear(250, nout) ) else: assert f"act {act} not known" def smooth_mlp_ebm(spectral, nin, nout=1, init_scale=1): if spectral: net = nn.Sequential( SpectralLinear(nin, 256, init_scale), nn.ELU(), SpectralLinear(256, 256, init_scale), nn.ELU(), SpectralLinear(256, 256, init_scale), nn.ELU(), SpectralLinear(256, nout, init_scale), ) else: net = nn.Sequential( nn.Linear(nin, 256), nn.ELU(), nn.Linear(256, 256), nn.ELU(), nn.Linear(256, 256), nn.ELU(), nn.Linear(256, nout), ) return net def small_mlp_ebm(nin, nout=1, nhidden=256, spectral=False): if spectral: net = nn.Sequential( spectral_norm(nn.Linear(nin, nhidden)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(nhidden, nhidden)), nn.SiLU(inplace=True), spectral_norm(nn.Linear(nhidden, nout)), ) else: net = nn.Sequential( nn.Linear(nin, nhidden), nn.SiLU(inplace=True), nn.Linear(nhidden, nhidden), nn.SiLU(inplace=True), nn.Linear(nhidden, nout), ) return net class WSConv2d(nn.Conv2d): def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True): super(WSConv2d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias) def forward(self, x): weight = self.weight weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True) weight = weight - weight_mean std = weight.view(weight.size(0), -1).std(dim=1).view(-1, 1, 1, 1) + 1e-5 weight = weight / std.expand_as(weight) return F.conv2d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups) class CondResBlock(nn.Module): def __init__(self, args, downsample=True, rescale=True, filters=64, latent_dim=64, im_size=64, classes=512, norm=True, spec_norm=False): super(CondResBlock, self).__init__() self.filters = filters self.latent_dim = latent_dim self.im_size = im_size self.downsample = downsample if filters <= 128: self.bn1 = nn.InstanceNorm2d(filters, affine=True) else: self.bn1 = nn.GroupNorm(32, filters) if not norm: self.bn1 = None self.args = args if spec_norm: self.conv1 = spectral_norm(nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1)) else: self.conv1 = WSConv2d(filters, filters, kernel_size=3, stride=1, padding=1) if filters <= 128: self.bn2 = nn.InstanceNorm2d(filters, affine=True) else: self.bn2 = nn.GroupNorm(32, filters, affine=True) if not norm: self.bn2 = None if spec_norm: self.conv2 = spectral_norm(nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1)) else: self.conv2 = WSConv2d(filters, filters, kernel_size=3, stride=1, padding=1) self.dropout = nn.Dropout(0.2) # Upscale to an mask of image self.latent_map = nn.Linear(classes, 2*filters) self.latent_map_2 = nn.Linear(classes, 2*filters) self.relu = torch.nn.ReLU(inplace=True) self.act = nn.SiLU(inplace=True) # Upscale to mask of image if downsample: if rescale: self.conv_downsample = nn.Conv2d(filters, 2 * filters, kernel_size=3, stride=1, padding=1) if args.alias: self.avg_pool = Downsample(channels=2*filters) else: self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1) else: self.conv_downsample = nn.Conv2d(filters, filters, kernel_size=3, stride=1, padding=1) if args.alias: self.avg_pool = Downsample(channels=filters) else: self.avg_pool = nn.AvgPool2d(3, stride=2, padding=1) def forward(self, x, y): if y is not None: latent_map = self.latent_map(y).view(-1, 2*self.filters, 1, 1) gain = latent_map[:, :self.filters] bias = latent_map[:, self.filters:] else: gain = bias = None # appeasing the linter x = self.conv1(x) if self.bn1 is not None: x = self.bn1(x) if y is not None: x = gain * x + bias x = self.act(x) if y is not None: latent_map = self.latent_map_2(y).view(-1, 2*self.filters, 1, 1) gain = latent_map[:, :self.filters] bias = latent_map[:, self.filters:] x = self.conv2(x) if self.bn2 is not None: x = self.bn2(x) if y is not None: x = gain * x + bias x = self.act(x) x_out = x if self.downsample: x_out = self.conv_downsample(x_out) x_out = self.act(self.avg_pool(x_out)) return x_out class Self_Attn(nn.Module): """ Self attention Layer""" def __init__(self, in_dim, activation): super(Self_Attn, self).__init__() self.chanel_in = in_dim self.activation = activation self.query_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1) self.key_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim//8, kernel_size=1) self.value_conv = nn.Conv2d(in_channels=in_dim, out_channels=in_dim, kernel_size=1) self.gamma = nn.Parameter(torch.zeros(1)) self.softmax = nn.Softmax(dim=-1) def forward(self, x): """ inputs : x : input feature maps( B X C X W X H) returns : out : self attention value + input feature attention: B X N X N (N is Width*Height) """ m_batchsize, C, width, height = x.size() proj_query = self.query_conv(x).view(m_batchsize, -1, width * height).permute(0, 2, 1) # B X CX(N) proj_key = self.key_conv(x).view(m_batchsize, -1, width * height) # B X C x (W * H) energy = torch.bmm(proj_query, proj_key) # transpose check attention = self.softmax(energy) # BX (N) X (N) proj_value = self.value_conv(x).view(m_batchsize, -1, width * height) # B X C X N out = torch.bmm(proj_value, attention.permute(0, 2, 1)) out = out.view(m_batchsize, C, width, height) out = self.gamma * out + x return out, attention class MNISTModel(nn.Module): def __init__(self, args): super(MNISTModel, self).__init__() self.act = nn.SiLU(inplace=True) self.args = args self.n_f = args.n_f self.init_main_model() self.init_label_map() self.cond = False def init_main_model(self): args = self.args filter_dim = self.n_f im_size = 28 self.conv1 = nn.Conv2d(1, filter_dim, kernel_size=3, stride=1, padding=1) self.res1 = CondResBlock(args, filters=filter_dim, latent_dim=1, im_size=im_size) self.res2 = CondResBlock(args, filters=2*filter_dim, latent_dim=1, im_size=im_size) self.res3 = CondResBlock(args, filters=4*filter_dim, latent_dim=1, im_size=im_size) self.energy_map = nn.Linear(filter_dim*8, 1) def init_label_map(self): self.map_fc1 = nn.Linear(10, 256) self.map_fc2 = nn.Linear(256, 256) def main_model(self, x, latent): x = x.view(-1, 1, 28, 28) x = self.act(self.conv1(x)) x = self.res1(x, latent) x = self.res2(x, latent) x = self.res3(x, latent) x = self.act(x) x = x.mean(dim=2).mean(dim=2) energy = self.energy_map(x) return energy def label_map(self, latent): x = self.act(self.map_fc1(latent)) x = self.map_fc2(x) return x def forward(self, x, latent=None): x = x.view(x.size(0), -1) if self.cond: latent = self.label_map(latent) energy = self.main_model(x, latent) return energy class CNNCond(nn.Module): def __init__(self, n_c=3, n_f=32, cnn_out_dim=512, label_dim=0, uncond=False): super(CNNCond, self).__init__() self.label_dim = label_dim self.cnn_out_dim = cnn_out_dim self.uncond = uncond self.cnn = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.LeakyReLU(.2), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.LeakyReLU(.2), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.LeakyReLU(.2), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.LeakyReLU(.2), nn.Conv2d(n_f * 8, n_f, 1, 1, 0), nn.Flatten() ) self.mlp = smooth_mlp_ebm(spectral=False, nin=label_dim + cnn_out_dim, nout=1) def forward(self, x, label=None): x = self.cnn(x) if label is None: assert self.uncond return self.mlp(x) else: label = label.flatten(start_dim=1) return self.mlp(torch.cat([x, label], dim=1)) class CelebAModel(nn.Module): def __init__(self, args, debug=False): super(CelebAModel, self).__init__() self.act = nn.SiLU(inplace=True) self.max_pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.cond = False self.args = args self.init_main_model() if args.multiscale: self.init_mid_model() self.init_small_model() self.relu = torch.nn.ReLU(inplace=True) self.downsample = Downsample(channels=3) self.heir_weight = nn.Parameter(torch.Tensor([1.0, 1.0, 1.0])) self.debug = debug def init_main_model(self): args = self.args filter_dim = args.n_f latent_dim = args.n_f im_size = args.img_size self.conv1 = nn.Conv2d(3, filter_dim // 2, kernel_size=3, stride=1, padding=1) self.res_1a = CondResBlock(args, filters=filter_dim // 2, latent_dim=latent_dim, im_size=im_size, downsample=True, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_1b = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=False, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_2a = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=True, rescale=False, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_2b = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=True, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_3a = CondResBlock(args, filters=2 * filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=False, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_3b = CondResBlock(args, filters=2 * filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=True, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_4a = CondResBlock(args, filters=4 * filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=False, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.res_4b = CondResBlock(args, filters=4 * filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=True, classes=2, norm=args.norm, spec_norm=args.spec_norm) self.self_attn = Self_Attn(4 * filter_dim, self.act) self.energy_map = nn.Linear(filter_dim*8, 1) def init_mid_model(self): args = self.args filter_dim = args.n_f latent_dim = args.n_f im_size = args.img_size self.mid_conv1 = nn.Conv2d(3, filter_dim, kernel_size=3, stride=1, padding=1) self.mid_res_1a = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=True, rescale=False, classes=2) self.mid_res_1b = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=False, classes=2) self.mid_res_2a = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=True, rescale=False, classes=2) self.mid_res_2b = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=True, classes=2) self.mid_res_3a = CondResBlock(args, filters=2 * filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=False, classes=2) self.mid_res_3b = CondResBlock(args, filters=2 * filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=True, classes=2) self.mid_energy_map = nn.Linear(filter_dim * 4, 1) self.avg_pool = Downsample(channels=3) def init_small_model(self): args = self.args filter_dim = args.n_f latent_dim = args.n_f im_size = args.img_size self.small_conv1 = nn.Conv2d(3, filter_dim, kernel_size=3, stride=1, padding=1) self.small_res_1a = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=True, rescale=False, classes=2) self.small_res_1b = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=False, classes=2) self.small_res_2a = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, downsample=True, rescale=False, classes=2) self.small_res_2b = CondResBlock(args, filters=filter_dim, latent_dim=latent_dim, im_size=im_size, rescale=True, classes=2) self.small_energy_map = nn.Linear(filter_dim * 2, 1) def main_model(self, x, latent): x = self.act(self.conv1(x)) x = self.res_1a(x, latent) x = self.res_1b(x, latent) x = self.res_2a(x, latent) x = self.res_2b(x, latent) x = self.res_3a(x, latent) x = self.res_3b(x, latent) if self.args.self_attn: x, _ = self.self_attn(x) x = self.res_4a(x, latent) x = self.res_4b(x, latent) x = self.act(x) x = x.mean(dim=2).mean(dim=2) x = x.view(x.size(0), -1) energy = self.energy_map(x) return energy def mid_model(self, x, latent): x = F.avg_pool2d(x, 3, stride=2, padding=1) x = self.act(self.mid_conv1(x)) x = self.mid_res_1a(x, latent) x = self.mid_res_1b(x, latent) x = self.mid_res_2a(x, latent) x = self.mid_res_2b(x, latent) x = self.mid_res_3a(x, latent) x = self.mid_res_3b(x, latent) x = self.act(x) x = x.mean(dim=2).mean(dim=2) x = x.view(x.size(0), -1) energy = self.mid_energy_map(x) return energy def small_model(self, x, latent): x = F.avg_pool2d(x, 3, stride=2, padding=1) x = F.avg_pool2d(x, 3, stride=2, padding=1) x = self.act(self.small_conv1(x)) x = self.small_res_1a(x, latent) x = self.small_res_1b(x, latent) x = self.small_res_2a(x, latent) x = self.small_res_2b(x, latent) x = self.act(x) x = x.mean(dim=2).mean(dim=2) x = x.view(x.size(0), -1) energy = self.small_energy_map(x) return energy def label_map(self, latent): x = self.act(self.map_fc1(latent)) x = self.act(self.map_fc2(x)) x = self.act(self.map_fc3(x)) x = self.act(self.map_fc4(x)) return x def forward(self, x, latent=None): assert (latent is None) == (not self.cond) args = self.args if not self.cond: latent = None energy = self.main_model(x, latent) if args.multiscale: large_energy = energy mid_energy = self.mid_model(x, latent) small_energy = self.small_model(x, latent) energy = torch.cat([small_energy, mid_energy, large_energy], dim=-1) return energy class CNNCondBigger(nn.Module): def __init__(self, n_c=1, n_f=8, label_dim=0, uncond=False, cond_mode=None, small_mlp=False, spectral=False): super(CNNCondBigger, self).__init__() self.label_dim = label_dim self.uncond = uncond self.cond_mode = cond_mode if uncond: if spectral: self.cnn = nn.Sequential( spectral_norm(nn.Conv2d(n_c, n_f, 3, 1, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f, n_f * 2, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 8, 1, 4, 1, 0)) ) else: self.cnn = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, 1, 4, 1, 0) ) else: assert cond_mode is not None if cond_mode == "dot": cnn_out_dim = 1024 if n_f == 8: pass elif n_f == 16: cnn_out_dim *= 2 elif n_f == 32: cnn_out_dim *= 4 elif n_f == 64: cnn_out_dim *= 8 else: raise ValueError if spectral: self.cnn = nn.Sequential( spectral_norm(nn.Conv2d(n_c, n_f, 3, 1, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f, n_f * 2, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1)), nn.Flatten(), ) else: self.cnn = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.Flatten(), ) if small_mlp: self.mlp = small_mlp_ebm(nin=label_dim, nout=cnn_out_dim, spectral=spectral) else: self.mlp = smooth_mlp_ebm_bigger('swish', nin=label_dim, nout=cnn_out_dim, spectral=spectral) elif cond_mode == "cnn-mlp": cnn_out_dim = 128 if n_f == 8: pass elif n_f == 16: cnn_out_dim *= 2 elif n_f == 32: cnn_out_dim *= 4 elif n_f == 64: cnn_out_dim *= 8 else: raise ValueError if spectral: self.cnn = nn.Sequential( spectral_norm(nn.Conv2d(n_c, n_f, 3, 1, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f, n_f * 2, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1)), nn.SiLU(inplace=True), spectral_norm(nn.Conv2d(n_f * 8, n_f, 1, 1, 0)), nn.Flatten(), ) else: self.cnn = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, n_f, 1, 1, 0), nn.Flatten(), ) if small_mlp: self.mlp = small_mlp_ebm(nin=label_dim + cnn_out_dim, nout=1, spectral=spectral) else: self.mlp = smooth_mlp_ebm_bigger('swish', nin=label_dim + cnn_out_dim, nout=1, spectral=spectral) else: raise ValueError def forward(self, x, label=None): x = self.cnn(x) if label is None: assert self.uncond return x.squeeze() else: label = label.flatten(start_dim=1) if self.cond_mode == "dot": label = self.mlp(label) return (x * label).sum(-1) elif self.cond_mode == "cnn-mlp": return self.mlp(torch.cat([x, label], dim=1)).squeeze() else: raise ValueError class MNISTCNNCond(nn.Module): def __init__(self, n_c=1, n_f=8, label_dim=0, cond_mode=None, small_mlp=False): super(MNISTCNNCond, self).__init__() self.label_dim = label_dim self.cond_mode = cond_mode assert cond_mode is not None if cond_mode in ("dot", "cos"): cnn_out_dim = 1024 assert n_f in (8, 16, 32, 64), f"Unrecognized n_f {n_f}" cnn_out_dim *= n_f // 8 self.cnn = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.Flatten(), ) if small_mlp: self.mlp = small_mlp_ebm(nin=label_dim, nout=cnn_out_dim, spectral=False) else: self.mlp = smooth_mlp_ebm_bigger('swish', nin=label_dim, nout=cnn_out_dim, spectral=False) elif cond_mode == "cnn-mlp": cnn_out_dim = 128 assert n_f in (8, 16, 32, 64), f"Unrecognized n_f {n_f}" cnn_out_dim *= n_f // 8 self.cnn = nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, n_f, 1, 1, 0), nn.Flatten(), ) if small_mlp: self.mlp = small_mlp_ebm(nin=label_dim + cnn_out_dim, nout=1, spectral=False) else: self.mlp = smooth_mlp_ebm_bigger('swish', nin=label_dim + cnn_out_dim, nout=1, spectral=False) else: raise ValueError(f"Unrecognized cond_mode {cond_mode}") def forward(self, x, label): x = self.cnn(x) label = label.flatten(start_dim=1) if self.cond_mode in ("dot", "cos"): label = self.mlp(label) if self.cond_mode == "dot": return (x * label).sum(-1) else: return (x * label).sum(-1) / (x.norm(p=2, dim=-1) * label.norm(p=2, dim=-1)) elif self.cond_mode == "cnn-mlp": return self.mlp(torch.cat([x, label], dim=1)).squeeze() else: raise ValueError class ZapposCNNCond(nn.Module): def __init__(self, img_size=64, n_c=1, n_f=8, label_dim=0, cond_mode=None, small_mlp=False, small_mlp_nhidden=256, all_binary=False): super(ZapposCNNCond, self).__init__() self.label_dim = label_dim self.cond_mode = cond_mode assert cond_mode is not None assert n_f in (8, 16, 32, 64), f"Unrecognized n_f {n_f}" cnn_layers = [nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1)] if img_size == 64: cnn_layers.extend([nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, n_f * 8, 4, 2, 1)]) else: if img_size != 32: raise ValueError(f"Unrecognized img size {img_size}") if cond_mode in ("dot", "cos"): cnn_out_dim = 1024 cnn_out_dim *= n_f // 8 nin, nout = label_dim, cnn_out_dim # get input features to last layer cnn_layers = cnn_layers + [nn.Flatten()] elif cond_mode in ("cnn-mlp", "poj"): cnn_out_dim = 128 cnn_out_dim *= n_f // 8 if cond_mode == "cnn-mlp": nin, nout = label_dim + cnn_out_dim, 1 elif cond_mode == "poj": nin, nout = cnn_out_dim, label_dim if all_binary: nout *= 2 else: raise ValueError(f"Unrecognized cond mode {cond_mode}") # add 1x1 conv layer cnn_layers = cnn_layers + [nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, n_f, 1, 1, 0), nn.Flatten()] else: raise ValueError(f"Unrecognized cond_mode {cond_mode}") self.cnn = nn.Sequential(*cnn_layers) if small_mlp: mlp_ = partial(small_mlp_ebm, spectral=False, nhidden=small_mlp_nhidden) else: mlp_ = partial(smooth_mlp_ebm_bigger, 'swish', spectral=False) self.mlp = mlp_(nin=nin, nout=nout) def forward(self, x, label=None): assert implies(label is None, self.cond_mode == "poj") x = self.cnn(x) if self.cond_mode == "poj": return self.mlp(x).squeeze() else: label = label.flatten(start_dim=1) if self.cond_mode in ("dot", "cos"): label = self.mlp(label) if self.cond_mode == "dot": return (x * label).sum(-1) else: return (x * label).sum(-1) / (x.norm(p=2, dim=-1) * label.norm(p=2, dim=-1)) elif self.cond_mode == "cnn-mlp": return self.mlp(torch.cat([x, label], dim=1)).squeeze() else: raise ValueError def small_cnn(n_c=3, n_f=32): return nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, 1, 4, 1, 0) ) def medium_cnn(n_c=3, n_f=64): return nn.Sequential( nn.Conv2d(n_c, n_f, 3, 1, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f, n_f * 2, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 2, n_f * 4, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 4, n_f * 8, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, n_f * 8, 4, 2, 1), nn.SiLU(inplace=True), nn.Conv2d(n_f * 8, 1, 4, 1, 0) ) def get_scales(net): scales = [] for k, v in net.named_children(): if int(k) % 2 == 0: scales.append(v.scale.item()) return scales def ema_model(model, model_ema, mu=0.99): assert 0 <= mu <= 1 if mu != 1: # if mu is 1, the ema parameters stay the same for param, param_ema in zip(model.parameters(), model_ema.parameters()): param_ema.data[:] = mu * param_ema.data + (1 - mu) * param.data def ema_params(model, model_ema): """ Check if params are the same. """ for param, param_ema in zip(model.parameters(), model_ema.parameters()): if not torch.eq(param_ema.data, param.data).all(): return False return True def get_sample_q(init_x_random, init_b_random, reinit_freq, step_size, sigma, device, transform=None, one_hot_b=None, only_transform_buffer=False): def sample_p_0(replay_buffer, bs, y=None, y_replay_buffer=None, y_cond=None): if len(replay_buffer) == 0 and not isinstance(replay_buffer, ReplayBuffer): return init_x_random(bs), [] assert implies(y_cond is not None, y_replay_buffer is not None), "Buffer conditional sampling requires buffer" assert implies(y is not None, y_replay_buffer is not None), "Joint initialization requires buffer" assert y is None or y_cond is None, "Buffer conditional sampling or joint initialization, but not both" # conditional buffer sampling if y_cond is not None: if not isinstance(y_cond, int): assert len(y_cond) == 1, "Init conditionally with 1 label only!" assert len(y_cond.shape) == 1, "Wrong shape" if isinstance(replay_buffer, ReplayBuffer): raise NotImplementedError("Condtional yd buffer is not available") else: replay_buffer = replay_buffer[y_replay_buffer == y_cond] buffer_size = len(replay_buffer) if buffer_size == 0 and not isinstance(replay_buffer, ReplayBuffer): logger(f"====== WARNING ====== Encountered buffer size 0 for class {y_cond}") return init_x_random(bs), [] choose_random = (torch.rand(bs) < reinit_freq).float().to(device) if y is None: random_samples = init_x_random(bs) buffer_samples, inds = get_buffer_samples(replay_buffer, buffer_size, bs) if only_transform_buffer: buffer_samples = transform(buffer_samples) samples = get_random_or_buffer_samples(choose_random, random_samples, buffer_samples) else: samples = get_random_or_buffer_samples(choose_random, random_samples, buffer_samples) samples = samples.to(device) # TODO: i'm pretty sure this is redundant, everything's already on device samples = transform(samples) else: random_x_samples, random_y_samples = init_x_random(bs), init_b_random(bs, label_samples=True) # pass inds when sampling y, so we get the corresponding y buffer samples buffer_x_samples, inds = get_buffer_samples(replay_buffer, buffer_size, bs) buffer_y_samples, inds = get_buffer_samples(y_replay_buffer, buffer_size, bs, inds) if only_transform_buffer: buffer_x_samples = transform(buffer_x_samples) x_samples = get_random_or_buffer_samples(choose_random, random_x_samples, buffer_x_samples) y_samples = get_random_or_buffer_samples(choose_random, random_y_samples, buffer_y_samples) x_samples, y_samples = x_samples.to(device), y_samples.to(device) y_samples = one_hot_b(y_samples.type(random_y_samples.dtype)) else: x_samples = get_random_or_buffer_samples(choose_random, random_x_samples, buffer_x_samples) y_samples = get_random_or_buffer_samples(choose_random, random_y_samples, buffer_y_samples) x_samples, y_samples = x_samples.to(device), y_samples.to(device) x_samples, y_samples = transform(x_samples), one_hot_b(y_samples.type(random_y_samples.dtype)) samples = (x_samples, y_samples) return samples, inds def get_buffer_samples(replay_buffer, buffer_size, bs, inds=None): if inds is None and not isinstance(replay_buffer, ReplayBuffer): # if yd buffer, let it generate its own inds inds = torch.randint(0, buffer_size, (bs,)) if isinstance(replay_buffer, ReplayBuffer): buffer_samples, inds = replay_buffer.sample(bs, inds) else: buffer_samples = replay_buffer[inds] return buffer_samples.to(device), inds def get_random_or_buffer_samples(choose_random, random_samples, buffer_samples): assert random_samples.shape == buffer_samples.shape assert len(choose_random.shape) == 1 assert choose_random.shape[0] == random_samples.shape[0] choose_random = choose_random[:, None] structured_shape = random_samples.shape if len(random_samples.shape) == 2: pass elif len(random_samples.shape) == 3: random_samples = random_samples.view(random_samples.shape[0], -1) buffer_samples = random_samples.view(buffer_samples.shape[0], -1) elif len(random_samples.shape) == 4: choose_random = choose_random[:, None, None] else: raise ValueError(f"Unrecognized samples shape {random_samples.shape}") final_samples = choose_random * random_samples + (1 - choose_random) * buffer_samples return final_samples.view(structured_shape) def init_sampling(replay_buffer, x, y=None, y_replay_buffer=None, y_cond=None): """ Generate initial samples and buffer inds of those samples (if buffer is used) """ if y_replay_buffer is not None: assert len(replay_buffer) == len(y_replay_buffer) assert isinstance(replay_buffer, ReplayBuffer) == isinstance(y_replay_buffer, ReplayBuffer) if len(replay_buffer) == 0 and not isinstance(replay_buffer, ReplayBuffer): init_x_sample = x init_y_sample = y buffer_inds = [] else: bs = x.size(0) init_sample, buffer_inds = sample_p_0(replay_buffer, bs=bs, y=y, y_replay_buffer=y_replay_buffer, y_cond=y_cond) if y is None: init_x_sample, init_y_sample = init_sample, None else: init_x_sample, init_y_sample = init_sample init_x_sample = init_x_sample.clone().detach().requires_grad_(True) if init_y_sample is not None: init_y_sample = init_y_sample.clone().detach().requires_grad_(True) init_sample = (init_x_sample, init_y_sample) else: init_sample = init_x_sample return init_sample, buffer_inds def step_sampling(f, x_k, sigma_=sigma, bp=False): if bp: # track changes for autograd so we can do truncated langevin backprop f_prime = torch.autograd.grad(f(x_k).sum(), [x_k], retain_graph=True, create_graph=True)[0] x_k = x_k + step_size * f_prime + sigma_ * torch.randn_like(x_k) # += is in-place!! else: f_prime = torch.autograd.grad(f(x_k).sum(), [x_k], retain_graph=True)[0] x_k.data += step_size * f_prime + sigma_ * torch.randn_like(x_k) return x_k def set_sampling(x_k, replay_buffer, y_replay_buffer, buffer_inds, update_buffer=True, y=None, y_k=None): if y_replay_buffer is not None: assert len(replay_buffer) == len(y_replay_buffer) assert isinstance(replay_buffer, ReplayBuffer) == isinstance(y_replay_buffer, ReplayBuffer) assert implies(update_buffer, y_k is not None) final_samples = x_k.detach() if y_k is not None: final_y_samples = y_k.detach() else: final_y_samples = None num_added = None # update replay buffer if isinstance(replay_buffer, ReplayBuffer): if update_buffer: num_added, which_added = replay_buffer.add(final_samples) if y_replay_buffer is not None: y_replay_buffer.add(final_y_samples, which_added) else: if len(replay_buffer) > 0 and update_buffer: replay_buffer[buffer_inds] = final_samples if y is not None: # noinspection PyUnresolvedReferences y_replay_buffer[buffer_inds] = y.squeeze() if y_k is not None: final_samples = (final_samples, one_hot_b(final_y_samples).detach()) return final_samples, num_added return init_sampling, step_sampling, set_sampling def _plot_pr_curve(save_dir, fn, precision, recall, ap, freq, dset_label_info): plt.clf() with open(f"{save_dir}/cache_pr_{fn}.pickle", "wb") as f: d = {"precision": precision, "recall": recall, "ap": ap, "freq": freq, "dset_label_info": dset_label_info} pickle.dump(d, f, protocol=4) plt.plot(recall, precision) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall') plt.ylabel('Precision') plt.title(f"Precision-Recall Curve. Average Precision: {ap:.4f} (Freq. {freq:.4f})") plt.savefig(f"{save_dir}/pr_{fn}.png") def _plot_roc_curve(save_dir, fn, fpr, tpr, auroc, freq, dset_label_info): plt.clf() with open(f"{save_dir}/cache_auroc_{fn}.pickle", "wb") as f: d = {"fpr": fpr, "tpr": tpr, "auroc": auroc, "freq": freq, "dset_label_info": dset_label_info} pickle.dump(d, f, protocol=4) plt.plot(fpr, tpr) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False-Positive Rate') plt.ylabel('True-Positive Rate') plt.title(f"AUROC: {auroc:.4f} (Freq. {freq:.4f})") plt.savefig(f"{save_dir}/auroc_{fn}.png") def _plot_ece_hist_no_cache(save_dir, fn, reliability_diag, ece, freq, dset_label_info): plt.clf() with open(f"{save_dir}/cache_ece_{fn}.pickle", "wb") as f: d = {"reliability_diag": reliability_diag, "ece": ece, "freq": freq, "dset_label_info": dset_label_info} pickle.dump(d, f, protocol=4) conf, acc = reliability_diag conf[conf.isnan()] = 0 acc[acc.isnan()] = 0 num_bins = 20 tau_tab = torch.linspace(0, 1, num_bins + 1) binned_confs = tau_tab[torch.searchsorted(tau_tab, conf)] font = {'family': 'normal', 'size': 20} plt.rc('font', **font) fig = plt.figure() ax = fig.add_subplot(111) ax.set_aspect('equal', adjustable='box') plt.bar(binned_confs, acc, color="lightcoral", linewidth=.1, edgecolor="black", align="edge", width=1 / num_bins) plt.plot(np.linspace(0, 1, 1000), np.linspace(0, 1, 1000), "--") plt.annotate(f"ECE: {ece * 100:.2f}%", xy=(140, 240), xycoords='axes points', # TODO: xy=(130, 240) for ebm (140 s) size=20, ha='right', va='top', bbox=dict(boxstyle='round', fc="#f6b2b2", color="#f6b2b2")) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xticks([.0, .5, 1.]) plt.yticks([.0, .5, 1.]) plt.xlabel('Confidence') plt.ylabel('Accuracy') plt.title('') plt.gcf().subplots_adjust(right=.95, left=.14, bottom=.15) plt.savefig(f"{save_dir}/ece_{fn}.png") plt.close(fig) def _plot_ece_hist(save_dir, fn, reliability_diag=None, ece=None, freq=None, dset_label_info=None, from_cache=False): if from_cache: with open(f"{save_dir}/cache_ece_{fn}.pickle", "rb") as f: d = pickle.load(f) else: d = {"reliability_diag": reliability_diag, "ece": ece, "freq": freq, "dset_label_info": dset_label_info} _plot_ece_hist_no_cache(save_dir, fn, **d) def main(args): zero_shot_tst_dset = zero_shot_combos = tst_dset_len = None if args.zero_shot: *_rest, trn_dset_freqs = get_data_batch(args, args.data, args.batch_size, args.device, return_dset=True, zero_shot=True) data_batch, data_val_batch, data_test_batch, dset_label_info, dset_lengths = _rest trn_dset_len = dset_lengths['trn'] else: if args.data == "mnist" or args.dsprites_test or args.full_test: if args.data == "celeba" and args.dset_split_type == "zero_shot": *_rest, trn_dset_freqs, zero_shot_combos, trn_dset_len \ = get_data_batch(args, args.data, args.batch_size, args.device, return_dset=True, return_trn_len=True, return_tst_dset=True) else: *_rest, trn_dset_freqs, trn_dset_len = get_data_batch(args, args.data, args.batch_size, args.device, return_dset=True, return_trn_len=True) if args.data in ("utzappos", "celeba", "cub"): if args.data == "celeba" and args.dset_split_type == "zero_shot": data_batch, data_test_batch, dset_label_info, tst_dset_len, zero_shot_tst_dset = _rest else: data_batch, data_test_batch, dset_label_info, tst_dset_len = _rest tst_dset_len, zero_shot_tst_dset = None, None else: data_batch, data_test_batch = _rest dset_label_info, tst_dset_len, zero_shot_tst_dset = None, None, None else: data_batch = get_data_batch(args, args.data, args.batch_size, args.device) data_test_batch, trn_dset_freqs, trn_dset_len, tst_dset_len, dset_label_info = None, None, None, None, None zero_shot_tst_dset = None data_val_batch = dset_lengths = None label_shape = (-1,) all_labels = 0 all_binary = False unif_label_shape = None diff_label_axes = None struct_mask = None fix_label_axis_mask = None if args.data == "celeba": if args.dset_split_type == "zero_shot": custom_cls_combos = CELEBA_ZERO_SHOT_COMBOS if args.eval_filter_to_tst_combos: custom_cls_combos = [combo for combo in CELEBA_ZERO_SHOT_COMBOS if combo in zero_shot_combos] else: custom_cls_combos = [{"Male": 1, "No_Beard": 0}, {"Male": 0, "Smiling": 1}, {"Male": 0, "Wearing_Lipstick": 1}, {"Male": 0, "Arched_Eyebrows": 1}, {"Male": 0, "High_Cheekbones": 1}, {"Male": 0, "Bangs": 1}, {"Male": 0, "Young": 1}, {"Male": 0, "Smiling": 1, "Young": 1}, {"Male": 0, "Smiling": 1, "Young": 1, "Wavy_Hair": 1}, {"Male": 1, "No_Beard": 0, "Black_Hair": 1}, {"Male": 1, "No_Beard": 0, "Black_Hair": 1, "Bushy_Eyebrows": 1}] else: custom_cls_combos = [{"Gender_Men": 1, "Category_Boots": 1, "Material_Leather": 1}, {"Gender_Men": 1, "Category_Boots": 1, "Closure_Lace up": 1}, {"Gender_Men": 1, "SubCategory_Sneakers and Athletic Shoes": 1, "Closure_Lace up": 1}, {"Gender_Women": 1, "Category_Boots": 1, "Closure_Lace up": 1}, {"Gender_Women": 1, "Category_Boots": 1, "Material_Leather": 1}, {"Gender_Women": 1, "Closure_Slip-On": 1, "SubCategory_Heels": 1}, {"Gender_Women": 1, "Closure_Slip-On": 1, "Material_Leather": 1}, {"Gender_Women": 1, "Closure_Slip-On": 1, "SubCategory_Heels": 1, "Material_Leather": 1}] if args.data in IMG_DSETS: if args.data == "dsprites": data_dim = 32 ** 2 # need to actually set this because using MLP else: data_dim = 784 if args.mode == "uncond" and not args.uncond_poj: label_dim = 0 else: if args.data == "mwa": label_shape = (4, 4, 4, 4, 4) unif_label_shape, = set(label_shape) label_dim = sum(label_shape) all_labels = int(np.prod(label_shape)) elif args.data == "celeba": all_binary = True if not args.uncond_poj: label_dim = all_labels = len(dset_label_info) label_shape = (label_dim,) # set this to reuse the plotting code else: label_dim = 0 elif args.data == "cub": all_binary = True label_dim = all_labels = len(dset_label_info) label_shape = (label_dim,) # set this to reuse the plotting code elif args.data == "utzappos_old": label_shape = (4, 21, 7, 14, 18, 8, 62, 19) label_axes = get_label_axes(torch.tensor(label_shape, device=args.device)) diff_label_axes = get_diff_label_axes(label_axes) struct_mask = get_struct_mask(label_axes) label_dim = sum(label_shape) all_labels = int(np.prod(label_shape)) elif args.data == "utzappos": all_binary = True if not args.uncond_poj: label_dim = all_labels = len(dset_label_info) label_shape = (label_dim,) # set this to reuse the plotting code else: label_dim = 0 elif args.data == "dsprites": label_shape = (16, 16) unif_label_shape, = set(label_shape) label_dim = sum(label_shape) all_labels = int(np.prod(label_shape)) else: label_dim = 10 all_labels = label_dim def plot_samples(x, fn): if x.size(0) > 0: pad_value = 0 if args.data == "celeba": img_size = args.img_size num_channels = 3 # x = (x + 1) / 2 # colours and shit elif args.data == "utzappos": img_size = args.img_size num_channels = 3 elif args.data == "cub": img_size = args.img_size num_channels = 3 elif args.data == "mwa": img_size = args.img_size num_channels = 3 x = (x + 1) / 2 elif args.data == "dsprites": img_size = 32 num_channels = 1 x = torch.sigmoid(x) x = (x - 1e-6) / (1 - 2 * 1e-6) pad_value = 1 elif args.data == "mnist": if args.small_cnn: img_size = args.img_size else: img_size = 28 num_channels = 1 if args.logit: x = torch.sigmoid(x) x = (x - 1e-6) / (1 - 2 * 1e-6) else: img_size = 28 num_channels = 1 save_image(x.view(x.size(0), num_channels, img_size, img_size), fn, normalize=False, nrow=int(x.size(0) ** .5), pad_value=pad_value) if args.data == "celeba": if label_dim == 0 and not args.uncond_poj: # net_fn = lambda *_: CelebAModel(args) if args.img_size == 32: net_fn = lambda *_: small_cnn(n_f=args.n_f) elif args.img_size == 64: net_fn = lambda *_: medium_cnn(n_f=args.n_f) else: raise ValueError(f"Got img size {args.img_size} for CelebA") else: net_fn = lambda *_: ZapposCNNCond(img_size=args.img_size, n_c=3, n_f=args.n_f, label_dim=len(dset_label_info) if args.uncond_poj else label_dim, cond_mode="poj" if args.model == "poj" else args.cond_mode, small_mlp=args.small_mlp, small_mlp_nhidden=args.small_mlp_nhidden, all_binary=all_binary) elif args.data == "cub": if label_dim == 0: # net_fn = lambda *_: CelebAModel(args) if args.img_size == 32: net_fn = lambda *_: small_cnn(n_f=args.n_f) elif args.img_size == 64: net_fn = lambda *_: medium_cnn(n_f=args.n_f) else: raise ValueError(f"Got img size {args.img_size} for CelebA") else: net_fn = lambda *_: ZapposCNNCond(img_size=args.img_size, n_c=3, n_f=args.n_f, label_dim=label_dim, cond_mode="poj" if args.model == "poj" else args.cond_mode, small_mlp=args.small_mlp, small_mlp_nhidden=args.small_mlp_nhidden, all_binary=all_binary) elif args.data == "utzappos": if label_dim == 0 and not args.uncond_poj: # net_fn = lambda *_: CelebAModel(args) if args.img_size == 32: net_fn = lambda *_: small_cnn(n_f=args.n_f) elif args.img_size == 64: net_fn = lambda *_: medium_cnn(n_f=args.n_f) else: raise ValueError(f"Got img size {args.img_size} for UTZappos") else: net_fn = lambda *_: ZapposCNNCond(img_size=args.img_size, n_c=3, n_f=args.n_f, label_dim=len(dset_label_info) if args.uncond_poj else label_dim, cond_mode="poj" if args.model == "poj" else args.cond_mode, small_mlp=args.small_mlp, small_mlp_nhidden=args.small_mlp_nhidden, all_binary=all_binary) # net_fn = lambda *_: CNNCond(label_dim=label_dim, uncond=label_dim == 0) elif args.data == "mwa": if args.model != "joint": raise NotImplementedError if label_dim == 0 and not args.cond_arch: net_fn = lambda *_: small_cnn() else: net_fn = lambda *_: CNNCond(label_dim=label_dim, uncond=label_dim == 0) elif args.data == "dsprites": if args.model != "joint": raise NotImplementedError if args.cnn: net_fn = lambda *_: CNNCondBigger(n_c=1, n_f=args.n_f, label_dim=label_dim, uncond=label_dim == 0, cond_mode=args.cond_mode, small_mlp=args.small_mlp, spectral=args.spectral) else: net_fn = partial(smooth_mlp_ebm_bigger, 'elu') else: if args.model != "joint": raise NotImplementedError if args.cnn: net_fn = lambda *_: MNISTModel(args) elif args.small_cnn: if label_dim == 0: net_fn = lambda *_: small_cnn(n_c=1) else: net_fn = lambda *_: MNISTCNNCond(n_c=1, n_f=args.n_f, label_dim=label_dim, cond_mode=args.cond_mode, small_mlp=args.small_mlp) else: net_fn = partial(smooth_mlp_ebm_bigger, args.mnist_act) else: data_dim = 2 if args.mode == "uncond": label_dim = 0 else: if args.data == "rings": label_dim = 4 all_labels = label_dim elif args.data == "rings_struct": label_shape = (2, 2) unif_label_shape, = set(label_shape) label_dim = sum(label_shape) all_labels = int(np.prod(label_shape)) elif args.data in ["checkerboard", "8gaussians"]: label_dim = 8 all_labels = label_dim elif args.data == "circles": all_binary = True label_dim = 1 all_labels = label_dim elif "8gaussians_struct" in args.data: label_shape = (2, 4) label_axes = get_label_axes(torch.tensor(label_shape, device=args.device)) diff_label_axes = get_diff_label_axes(label_axes) struct_mask = get_struct_mask(label_axes) label_dim = sum(label_shape) all_labels = int(np.prod(label_shape)) elif args.data in ["8gaussians_multi", "8gaussians_hierarch", "8gaussians_hierarch_missing"]: label_shape = (2, 2, 2) unif_label_shape, = set(label_shape) label_dim = sum(label_shape) all_labels = int(np.prod(label_shape)) elif "8gaussians_hierarch_binarized" in args.data: all_binary = True label_dim = all_labels = 3 label_shape = (label_dim,) # set this to reuse the plotting code else: raise ValueError(f"Unrecognized data {args.data}") def plot_samples(x, fn): plt.clf() plt_samples(x, plt.gca()) plt.savefig(fn) net_fn = partial(smooth_mlp_ebm, args.spectral) if args.model == "joint": net_fn_args = (data_dim + label_dim, 1) elif args.model == "poj": if all_binary: net_fn_args = (data_dim, 2 * label_dim) else: net_fn_args = (data_dim, label_dim) else: raise ValueError(f"Unrecognized model {args.model}") logp_net = net_fn(*net_fn_args) if args.mode == "sup": ema_logp_net = logp_net else: ema_logp_net = net_fn(*net_fn_args) ema_logp_net.load_state_dict(logp_net.state_dict()) # copy the weights of logp_net if args.multi_gpu: logp_net = nn.DataParallel(logp_net).cuda() ema_logp_net = nn.DataParallel(ema_logp_net).cuda() elif args.old_multi_gpu: logp_net = nn.DataParallel(logp_net) ema_logp_net = nn.DataParallel(ema_logp_net) logp_net.to(args.device) ema_logp_net.to(args.device) else: # idk if this does anything logp_net.to(args.device) ema_logp_net.to(args.device) logger(logp_net) if args.log_ema: logger(f"Params the same: {ema_params(logp_net, ema_logp_net)}") if label_dim > 1 and not all_binary: if label_shape != (-1,): if unif_label_shape is None: sampler = DiffSamplerMultiDim(n_steps=1, approx=True, temp=args.temp, struct=True, label_shape=label_shape, shift_logit=not args.no_shift_logit, other_reverse_changes=args.other_reverse_changes, device=args.device) cond_sampler = sampler else: sampler = DiffSamplerMultiDim(n_steps=1, approx=True, temp=args.temp, struct=False, label_shape=label_shape, shift_logit=not args.no_shift_logit, other_reverse_changes=args.other_reverse_changes, device=args.device) cond_sampler = sampler else: sampler = DiffSamplerMultiDim(n_steps=1, approx=True, temp=args.temp, shift_logit=not args.no_shift_logit, other_reverse_changes=args.other_reverse_changes, device=args.device) cond_sampler = sampler else: sampler = DiffSampler(n_steps=1, approx=True, temp=args.temp) cond_sampler = sampler def init_x_random(bs=args.batch_size, to_device=True): init_x_random_samples_ = x_init_dist.sample((bs,)) if to_device: init_x_random_samples_ = init_x_random_samples_.to(args.device) return init_x_random_samples_ def init_b_random(bs=args.batch_size, label_samples=False, to_device=True): samples_ = b_init_dist.sample((bs,)) if to_device: samples_ = samples_.to(args.device) if label_samples: samples_ = label(samples_) return samples_ def energy(net, x, b=None): """ Define tuple interface for energy so we can hold one of them fixed while sampling. """ if args.model == "poj": return logit_logsumexp(net(x)).sum(-1) if label_dim == 0: return net(x).squeeze() else: assert b is not None if args.data in ["mwa", "utzappos"]: return net(x, b.float()).squeeze() else: if args.cnn or args.small_cnn: return net(x, b).squeeze() else: if args.data in ["dsprites", "8gaussians_multi", "8gaussians_hierarch", "8gaussians_hierarch_missing", "rings_struct"]: return net(torch.cat([x, b.view(-1, label_dim).float()], 1)).squeeze() else: return net(torch.cat([x, b.float()], 1)).squeeze() def format_fix_label_axis(fix_label_axis): if fix_label_axis is None: return fix_label_axis if isinstance(fix_label_axis, int): fix_label_axis = torch.tensor([fix_label_axis]) elif isinstance(fix_label_axis, list): assert len(fix_label_axis) > 0 assert len(set(map(type, fix_label_axis))) == 1 assert isinstance(fix_label_axis[0], int) fix_label_axis = torch.tensor(fix_label_axis) else: assert isinstance(fix_label_axis, torch.Tensor) if unif_label_shape: assert len(fix_label_axis.shape) == 1 return fix_label_axis.to(args.device) def init_sample_b(b_init, fix_label_axes=None): """ Process b_init for sampling. Reshape b. If labels need to be fixed, create mask and split labels. Returns: b: The labels that need to be resampled. b_all: The entire label, both those that are fixed and those are resampled. b_fixed: The labels that are fixed. axis_mask: The mask from which b and b_fixed can be obtained from b_all. """ # reshape b if label_shape != (-1,) and unif_label_shape is not None: # in the case of structured labels, we'll want to pass in structured b to the sampler b = b_init b = b.view(b.shape[0], len(label_shape), unif_label_shape) elif all_binary: b = b_init # don't expand dims else: b = b_init[:, None] if fix_label_axes is not None: if not all_binary: assert (fix_label_axes < len(label_shape)).all() b_all = b # per example mask (from masking out missing data), in the case of structured labels if fix_label_axes.shape[0] == b_init.shape[0]: fix_label_axes_nonzero = fix_label_axes.nonzero()[:, -1][:, None] set_axis_mask = get_onehot_struct_mask(diff_label_axes, struct_mask, fix_label_axes_nonzero) axis_mask = torch.zeros_like(b_all).type(torch.bool) axis_mask[fix_label_axes.any(-1)] = set_axis_mask b = init_b_random(axis_mask.shape[0])[:, None][axis_mask] # init missing b b_fixed = b_all[~axis_mask] # per example mask (from masking out missing data), in the case of simple (unstructured) labels elif (fix_label_axes == -1).all(): axis_mask = (b_all == 0).all(-1) b = init_b_random(axis_mask.shape[0])[axis_mask][:, None] # init missing b b_fixed = b_all[~axis_mask][:, None] # fixing one label axis everywhere, for conditional sampling else: axis_mask = (fix_label_axis_mask[..., None] != fix_label_axes[None]).all(-1) if unif_label_shape is None and not all_binary: axis_mask = ~get_onehot_struct_mask(diff_label_axes, struct_mask, fix_label_axes[:, None]).squeeze() if len(fix_label_axes) > 1: axis_mask = axis_mask.all(0) axis_mask = axis_mask[None] b = b_all[:, axis_mask] b_fixed = b_all[:, ~axis_mask] else: b_all = None axis_mask = None b_fixed = None return b, b_all, b_fixed, axis_mask def sample_b(net, x_init, b_init, steps=args.n_steps, verbose=False, fix_label_axis=None): """ Sample b from net conditioned on x_init (and b_init). """ a_s = np.zeros(steps) lrs = np.zeros(steps) lfs = np.zeros(steps) l_s = np.zeros(steps) m_s = np.zeros(steps) p_s = np.zeros(steps) h_s = np.zeros(steps) fix_label_axis = format_fix_label_axis(fix_label_axis) b, b_all, b_fixed, axis_mask = init_sample_b(b_init, fix_label_axis) for i in range(steps): b, *_info = step_sample_b(net, x_init, b, axis_mask=axis_mask, b_fixed=b_fixed, b_all=b_all) a_s[i], lrs[i], lfs[i], l_s[i], m_s[i], p_s[i], h_s[i] = _info if fix_label_axis is not None: if per_example_mask(axis_mask): b_all[axis_mask] = b.squeeze() b_all[~axis_mask] = b_fixed.squeeze() else: b_all[:, axis_mask] = b b_all[:, ~axis_mask] = b_fixed b = b_all if label_shape != (-1,) and unif_label_shape is not None: # we'll want to flatten b again in case it wasn't, so that # concatenation operations work outside the function b = b.view(b.shape[0], label_dim) if label_dim > 1: return_tpl = (b.squeeze(), ) else: return_tpl = (b, ) if verbose: log_tpl = (np.mean(a_s), np.mean(lrs), np.mean(lfs), np.mean(l_s), np.mean(m_s), np.mean(p_s), np.mean(h_s)) return return_tpl + log_tpl else: return return_tpl[0] def step_sample_b(net, x_init, b, axis_mask=None, b_fixed=None, b_all=None): assert (axis_mask is None) == (b_fixed is None) == (b_all is None) if all_binary: # remove any added dims if they exist b = b.squeeze() if label_shape != (-1,) and unif_label_shape is not None: # if we have structured b we'll want to shape it here # if b is already structured then this is a no-op, but this isn't the case when doing interleaved sampling # if an axis is fixed, the number of labels is reduced, hence -1 instead of len(label_shape) b = b.view(b.shape[0], -1, unif_label_shape) if axis_mask is not None: b_all = torch.zeros_like(b_all) if per_example_mask(axis_mask): # the axis mask must be per batch example assert axis_mask.shape[0] == b_all.shape[0] if unif_label_shape: # noinspection PyUnresolvedReferences b_all[~axis_mask] = b_fixed.squeeze(1) else: b_all[~axis_mask] = b_fixed else: b_all[:, ~axis_mask] = b_fixed def energy_(b_): if unif_label_shape is None: b_ = b_.squeeze() if per_example_mask(axis_mask): if unif_label_shape: b_all[axis_mask] = b_.squeeze(1) else: b_all[axis_mask] = b_ else: b_all[:, axis_mask] = b_ return energy(net, x_init, b_all.squeeze()) else: if label_dim > 1: energy_ = lambda b_: energy(net, x_init, b_.squeeze()) else: energy_ = lambda b_: energy(net, x_init, b_) if args.model == "joint": if axis_mask is not None: if all_binary: b = cond_sampler.step(b.detach(), energy_).detach() else: b = cond_sampler.step(b.detach(), energy_, axis_mask).detach() else: b = sampler.step(b.detach(), energy_).detach() else: b_logits = shape_logits(net(x_init)) if axis_mask is not None: if all_binary: # just resample the ones which aren't fixed # need a categorical since logits parameterize a softmax over two categories b = torch.distributions.Categorical(logits=b_logits[:, axis_mask]).sample().float() else: raise NotImplementedError else: if all_binary: b = torch.distributions.Categorical(logits=b_logits).sample().float() else: raise NotImplementedError return b, sampler._ar, sampler._lr, sampler._lf, sampler._la, sampler._mt, sampler._pt, sampler._hops def sample_x_b(net, x_init, b_init, steps=args.k, gibbs_steps=args.gibbs_steps, gibbs_k_steps=args.gibbs_k_steps, gibbs_n_steps=args.gibbs_n_steps, verbose=False, fix_label_axis=None, update_buffer=True, new_replay_buffer=None, new_y_replay_buffer=None, return_steps=0, steps_batch_ind=0, temp=False, anneal=False, truncated_bp=False, full_bp=False, return_num_added=False, transform_every=None, marginalize_free_b=False): assert (new_replay_buffer is None) == (new_y_replay_buffer is None) assert not (anneal and temp) if new_replay_buffer is None: new_replay_buffer = replay_buffer if new_y_replay_buffer is None: new_y_replay_buffer = y_replay_buffer assert (new_replay_buffer is None) == (new_y_replay_buffer is None) assert implies(update_buffer and (args.yd_buffer is None), len(new_replay_buffer) > 0) x, b = x_init, b_init assert implies(fix_label_axis is not None, label_shape != (-1,)) fix_label_axis = format_fix_label_axis(fix_label_axis) if label_dim == 1: # need to expand dims if we do conditional sampling first, one-hot already has 2 dims b = b[:, None] if anneal: betas = torch.linspace(0., 1., gibbs_steps * gibbs_k_steps) else: betas = None if temp: start_, end_ = args.plot_temp_sigma_start, args.sigma assert start_ > end_, "Untempered should have larger noise!" sigmas = torch.linspace(start_, end_, gibbs_steps * gibbs_k_steps) else: sigmas = None a_s = np.zeros(gibbs_steps) lrs = np.zeros(gibbs_steps) lfs = np.zeros(gibbs_steps) l_s = np.zeros(gibbs_steps) m_s = np.zeros(gibbs_steps) p_s = np.zeros(gibbs_steps) h_s = np.zeros(gibbs_steps) if args.interleave: if args.sampling == "pcd": (x, b), buffer_inds = init_sampling(new_replay_buffer, x, y=b, y_replay_buffer=new_y_replay_buffer) if args.clamp_samples: x = clamp_x(x) else: buffer_inds = None b, b_all, b_fixed, axis_mask = init_sample_b(b.squeeze(), fix_label_axis) else: buffer_inds = None b_all, b_fixed, axis_mask = None, None, None x_steps = [] x_kl = None num_added = None for i in range(gibbs_steps): if args.interleave: if args.first_gibbs == "dis": for _ in range(gibbs_n_steps): b, *_info = step_sample_b(net, x, b.squeeze()[:, None], b_all=b_all, b_fixed=b_fixed, axis_mask=axis_mask) a_s[i], lrs[i], lfs[i], l_s[i], m_s[i], p_s[i], h_s[i] = _info for k in range(gibbs_k_steps): if return_steps > 0 and (i * gibbs_k_steps + k) % return_steps == 0: if steps_batch_ind is None: x_steps.append(x.clone().detach()[None]) else: x_steps.append(x.clone().detach()[steps_batch_ind][None]) if transform_every is not None and (i * gibbs_k_steps + k) % transform_every == 0 \ and (i * gibbs_k_steps + k) != 0: # don't transform at first iteration since buffer sampling does that already x = transform(x) if fix_label_axis is not None: if unif_label_shape is None and not all_binary: b_all[:, axis_mask] = b.squeeze() b_all[:, ~axis_mask] = b_fixed.squeeze() else: b_all[:, axis_mask] = b b_all[:, ~axis_mask] = b_fixed b = b_all if args.model == "joint": if label_dim > 1: if temp: x = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x, sigmas[i * gibbs_k_steps + k]) elif anneal: net_ = AISModel(lambda x_: energy(net, x_, b.squeeze()), normal_x_init_dist) x = step_sampling(lambda x_: net_(x_, betas[i * gibbs_k_steps + k]), x) elif truncated_bp and i == gibbs_steps - 1 and k == gibbs_k_steps - 1: x_kl = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x, bp=True) if args.clamp_samples: x_kl = clamp_x(x_kl) x = x_kl.detach() elif full_bp: x = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x, bp=True) else: x = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x) else: if temp: x = step_sampling(lambda x_: energy(net, x_, b), x, sigmas[i * gibbs_k_steps + k]) elif anneal: net_ = AISModel(lambda x_: energy(net, x_, b), normal_x_init_dist) x = step_sampling(lambda x_: net_(x_, betas[i * gibbs_k_steps + k]), x) elif truncated_bp and i == gibbs_steps - 1 and k == gibbs_k_steps - 1: x_kl = step_sampling(lambda x_: energy(net, x_, b), x, bp=True) if args.clamp_samples: x_kl = clamp_x(x_kl) x = x_kl.detach() elif full_bp: x = step_sampling(lambda x_: energy(net, x_, b), x, bp=True) else: x = step_sampling(lambda x_: energy(net, x_, b), x) else: if all_binary: if marginalize_free_b: def cond_energy_x_(x_): logits_neg_ = net(x_) fixed_log_probs = logit_log_prob_ind_subset(shape_logits(logits_neg_), b.long(), list(fix_label_axis.cpu().numpy())) marginalized_log_probs = logit_logsumexp(logits_neg_)[:, axis_mask] return fixed_log_probs.sum(-1) + marginalized_log_probs.sum(-1) else: def cond_energy_x_(x_): logits_neg_ = net(x_) # index the logits according to the sampled classes return logit_log_prob_ind(shape_logits(logits_neg_), b.long()).sum(-1) if temp: x = step_sampling(cond_energy_x_, x, sigmas[i * gibbs_k_steps + k]) elif anneal: raise NotImplementedError elif truncated_bp and i == gibbs_steps - 1 and k == gibbs_k_steps - 1: x_kl = step_sampling(cond_energy_x_, x, bp=True) if args.clamp_samples: x_kl = clamp_x(x_kl) x = x_kl.detach() elif full_bp: raise NotImplementedError else: x = step_sampling(cond_energy_x_, x) else: raise NotImplementedError if args.clamp_samples: x = clamp_x(x) if fix_label_axis is not None: b = b_all[:, axis_mask] else: for k in range(gibbs_k_steps): if return_steps > 0 and (i * gibbs_k_steps + k) % return_steps == 0: if steps_batch_ind is None: x_steps.append(x.clone().detach()[None]) else: x_steps.append(x.clone().detach()[steps_batch_ind][None]) if transform_every is not None and (i * gibbs_k_steps + k) % transform_every == 0 \ and (i * gibbs_k_steps + k) != 0: # don't transform at first iteration since buffer sampling does that already x = transform(x) if fix_label_axis is not None: if unif_label_shape is None and not all_binary: b_all[:, axis_mask] = b.squeeze() b_all[:, ~axis_mask] = b_fixed.squeeze() else: b_all[:, axis_mask] = b b_all[:, ~axis_mask] = b_fixed b = b_all if args.model == "joint": if label_dim > 1: if temp: x = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x, sigmas[i * gibbs_k_steps + k]) elif anneal: net_ = AISModel(lambda x_: energy(net, x_, b.squeeze()), normal_x_init_dist) x = step_sampling(lambda x_: net_(x_, betas[i * gibbs_k_steps + k]), x) elif truncated_bp and i == gibbs_steps - 1 and k == gibbs_k_steps - 1: x_kl = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x, bp=True) if args.clamp_samples: x_kl = clamp_x(x_kl) x = x_kl.detach() elif full_bp: x = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x, bp=True) else: x = step_sampling(lambda x_: energy(net, x_, b.squeeze()), x) else: if temp: x = step_sampling(lambda x_: energy(net, x_, b), x, sigmas[i * gibbs_k_steps + k]) elif anneal: net_ = AISModel(lambda x_: energy(net, x_, b), normal_x_init_dist) x = step_sampling(lambda x_: net_(x_, betas[i * gibbs_k_steps + k]), x) elif truncated_bp and i == gibbs_steps - 1 and k == gibbs_k_steps - 1: x_kl = step_sampling(lambda x_: energy(net, x_, b), x, bp=True) if args.clamp_samples: x_kl = clamp_x(x_kl) x = x_kl.detach() elif full_bp: x = step_sampling(lambda x_: energy(net, x_, b), x, bp=True) else: x = step_sampling(lambda x_: energy(net, x_, b), x) else: if all_binary: if marginalize_free_b: def cond_energy_x_(x_): logits_neg_ = net(x_) fixed_log_probs = logit_log_prob_ind_subset(shape_logits(logits_neg_), b.long(), list(fix_label_axis.cpu().numpy())) marginalized_log_probs = logit_logsumexp(logits_neg_)[:, axis_mask] return fixed_log_probs.sum(-1) + marginalized_log_probs.sum(-1) else: def cond_energy_x_(x_): logits_neg_ = net(x_) # index the logits according to the sampled classes return logit_log_prob_ind(shape_logits(logits_neg_), b.long()).sum(-1) if temp: x = step_sampling(cond_energy_x_, x, sigmas[i * gibbs_k_steps + k]) elif anneal: raise NotImplementedError elif truncated_bp and i == gibbs_steps - 1 and k == gibbs_k_steps - 1: x_kl = step_sampling(cond_energy_x_, x, bp=True) if args.clamp_samples: x_kl = clamp_x(x_kl) x = x_kl.detach() elif full_bp: raise NotImplementedError else: x = step_sampling(cond_energy_x_, x) else: raise NotImplementedError if args.clamp_samples: x = clamp_x(x) if fix_label_axis is not None: b = b_all[:, axis_mask] for _ in range(gibbs_n_steps): b, *_info = step_sample_b(net, x, b.squeeze()[:, None], b_all=b_all, b_fixed=b_fixed, axis_mask=axis_mask) a_s[i], lrs[i], lfs[i], l_s[i], m_s[i], p_s[i], h_s[i] = _info else: if args.first_gibbs == "dis": # sample discrete if verbose: b, *_info = sample_b(net, x, b.squeeze(), verbose=verbose, fix_label_axis=fix_label_axis, steps=gibbs_n_steps) a_s[i], lrs[i], lfs[i], l_s[i], m_s[i], p_s[i], h_s[i] = _info else: b = sample_b(net, x, b.squeeze(), verbose=verbose, fix_label_axis=fix_label_axis, steps=gibbs_n_steps) # sample cts x = uncond_sample_x(lambda x_: energy(net, x_, b), x, steps=steps, update_buffer=update_buffer, new_replay_buffer=new_replay_buffer, new_y_replay_buffer=new_y_replay_buffer, return_steps=return_steps, steps_batch_ind=steps_batch_ind, temp=temp, anneal=anneal, truncated_bp=truncated_bp, full_bp=full_bp, return_num_added=return_num_added, transform_every=transform_every) if return_num_added: *x, num_added = x if return_steps > 0: x, x_steps = x else: # sample cts x = uncond_sample_x(lambda x_: energy(net, x_, b), x, steps=steps, update_buffer=update_buffer, new_replay_buffer=new_replay_buffer, new_y_replay_buffer=new_y_replay_buffer, return_steps=return_steps, steps_batch_ind=steps_batch_ind, temp=temp, anneal=anneal, truncated_bp=truncated_bp, full_bp=full_bp, return_num_added=return_num_added, transform_every=transform_every) if return_num_added: *x, num_added = x if return_steps > 0: x, x_steps = x # sample discrete if verbose: b, *_info = sample_b(net, x, b.squeeze(), verbose=verbose, fix_label_axis=fix_label_axis, steps=gibbs_n_steps) a_s[i], lrs[i], lfs[i], l_s[i], m_s[i], p_s[i], h_s[i] = _info else: b = sample_b(net, x, b.squeeze(), verbose=verbose, fix_label_axis=fix_label_axis, steps=gibbs_n_steps) if args.interleave: if fix_label_axis is not None: b_all[:, axis_mask] = b b_all[:, ~axis_mask] = b_fixed b = b_all if label_dim > 1: b = b.squeeze() if label_shape != (-1,) and unif_label_shape is not None: b = b.view(b.shape[0], label_dim) if args.sampling == "pcd": (x, b), num_added = set_sampling(x, new_replay_buffer, new_y_replay_buffer, buffer_inds, update_buffer=update_buffer, y_k=label(b)) if return_steps > 0: x_steps = torch.cat(x_steps, dim=0) if return_steps > 0 or truncated_bp or full_bp or return_num_added: x = (x,) if return_steps > 0: x += (x_steps,) if truncated_bp or full_bp: x += (x_kl,) if return_num_added: x += (num_added,) if verbose: return x, b, \ np.mean(a_s), np.mean(lrs), np.mean(lfs),
np.mean(l_s)
numpy.mean
import cv2 import numpy as np import BboxToolkit as bt import pycocotools.mask as maskUtils from mmdet.core import PolygonMasks, BitmapMasks pi = 3.141592 def bbox2mask(bboxes, w, h, mask_type='polygon'): polys = bt.bbox2type(bboxes, 'poly') assert mask_type in ['polygon', 'bitmap'] if mask_type == 'bitmap': masks = [] for poly in polys: rles = maskUtils.frPyObjects([poly.tolist()], h, w) masks.append(maskUtils.decode(rles[0])) gt_masks = BitmapMasks(masks, h, w) else: gt_masks = PolygonMasks([[poly] for poly in polys], h, w) return gt_masks def switch_mask_type(masks, mtype='bitmap'): if isinstance(masks, PolygonMasks) and mtype == 'bitmap': width, height = masks.width, masks.height bitmap_masks = [] for poly_per_obj in masks.masks: rles = maskUtils.frPyObjects(poly_per_obj, height, width) rle = maskUtils.merge(rles) bitmap_masks.append(maskUtils.decode(rle).astype(np.uint8)) masks = BitmapMasks(bitmap_masks, height, width) elif isinstance(masks, BitmapMasks) and mtype == 'polygon': width, height = masks.width, masks.height polygons = [] for bitmask in masks.masks: try: contours, _ = cv2.findContours( bitmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) except ValueError: _, contours, _ = cv2.findContours( bitmask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) polygons.append(list(contours)) masks = PolygonMasks(polygons, width, height) return masks def rotate_polygonmask(masks, matrix, width, height): if len(masks) == 0: return masks points, sections, instances = [], [], [] for i, polys_per_obj in enumerate(masks): for j, poly in enumerate(polys_per_obj): poly_points = poly.reshape(-1, 2) num_points = poly_points.shape[0] points.append(poly_points) sections.append(np.full((num_points, ), j)) instances.append(np.full((num_points, ), i)) points = np.concatenate(points, axis=0) sections = np.concatenate(sections, axis=0) instances = np.concatenate(instances, axis=0) points = cv2.transform(points[:, None, :], matrix)[:, 0, :] warpped_polygons = [] for i in range(len(masks)): _points = points[instances == i] _sections = sections[instances == i] warpped_polygons.append( [_points[_sections == j].reshape(-1) for j in np.unique(_sections)]) return PolygonMasks(warpped_polygons, height, width) def polymask2hbb(masks): hbbs = [] for mask in masks: all_mask_points = np.concatenate(mask, axis=0).reshape(-1, 2) min_points = all_mask_points.min(axis=0) max_points = all_mask_points.max(axis=0) hbbs.append(np.concatenate([min_points, max_points], axis=0)) hbbs = np.array(hbbs, dtype=np.float32) if hbbs else \ np.zeros((0, 4), dtype=np.float32) return hbbs def polymask2obb(masks): obbs = [] for mask in masks: all_mask_points = np.concatenate(mask, axis=0).reshape(-1, 2) all_mask_points = all_mask_points.astype(np.float32) (x, y), (w, h), angle = cv2.minAreaRect(all_mask_points) angle = -angle theta = angle / 180 * pi obbs.append([x, y, w, h, theta]) if not obbs: obbs = np.zeros((0, 5), dtype=np.float32) else: obbs = np.array(obbs, dtype=np.float32) obbs = bt.regular_obb(obbs) return obbs def polymask2poly(masks): polys = [] for mask in masks: all_mask_points = np.concatenate(mask, axis=0)[None, :] if all_mask_points.size != 8: all_mask_points = bt.bbox2type(all_mask_points, 'obb') all_mask_points = bt.bbox2type(all_mask_points, 'poly') polys.append(all_mask_points) if not polys: polys = np.zeros((0, 8), dtype=np.float32) else: polys = np.concatenate(polys, axis=0) return polys def bitmapmask2hbb(masks): if len(masks) == 0: return np.zeros((0, 4), dtype=np.float32) bitmaps = masks.masks height, width = masks.height, masks.width num = bitmaps.shape[0] x, y = np.arange(width), np.arange(height) xx, yy = np.meshgrid(x, y) coors = np.stack([xx, yy], axis=-1) coors = coors[None, ...].repeat(num, axis=0) coors_ = coors.copy() coors_[bitmaps == 0] = -1 max_points = np.max(coors_, axis=(1, 2)) + 1 coors_ = coors.copy() coors_[bitmaps == 0] = 99999 min_points =
np.min(coors_, axis=(1, 2))
numpy.min
import copy import torch import numpy as np from torch import optim def collect_optimized_episode(env, agent, random=False, eval=False, semi_am=True, ngs=50): """ Collects an episode of experience using the model and environment. The policy distribution is optimized using gradient descent at each step. Args: env (gym.env): the environment agent (Agent): the agent random (bool): whether to use random actions eval (bool): whether to evaluate the agent semi_am (bool): whether to first use direct inference ngs (int): number of gradient steps to perform Returns episode (dict), n_steps (int), and env_states (dict). """ agent.reset(); agent.eval() state = env.reset() reward = 0. done = False n_steps = 0 env_states = {'qpos': [], 'qvel': []} optimized_actions = [] gaps = [] while not done: if n_steps > 1000: break if 'sim' in dir(env.unwrapped): env_states['qpos'].append(copy.deepcopy(env.sim.data.qpos)) env_states['qvel'].append(copy.deepcopy(env.sim.data.qvel)) action = env.action_space.sample() if random else None agent.act(state, reward, done, action, eval=eval) ## SEMI - AMORTIZATION ################################################# state = state.to(agent.device) actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) direct_obj = obj.view(agent.n_action_samples, -1, 1).mean(dim=0).detach() agent.n_action_samples = 100 grad_obj = [] dist_params = {k: v.data.requires_grad_() for k, v in agent.approx_post.get_dist_params().items()} agent.approx_post.reset(dist_params=dist_params) dist_param_list = [param for _, param in dist_params.items()] optimizer = optim.Adam(dist_param_list, lr=5e-3) optimizer.zero_grad() # initial estimate agent.approx_post._sample = None actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) grad_obj.append(-obj.detach()) for it_inf in range(ngs): obj.sum().backward(retain_graph=True) optimizer.step() optimizer.zero_grad() # clear the sample to force resampling agent.approx_post._sample = None actions = agent.approx_post.sample(agent.n_action_samples) obj = agent.estimate_objective(state, actions) obj = - obj.view(agent.n_action_samples, -1, 1).mean(dim=0) grad_obj.append(-obj.detach()) # gradient_obj = np.array([obj.numpy() for obj in grad_obj]).reshape(-1) gaps.append((grad_obj[-1] - grad_obj[0]).cpu().numpy().item()) # sample from the optimized distribution action = agent.approx_post.sample(n_samples=1, argmax=eval) action = action.tanh() if agent.postprocess_action else action action = action.detach().cpu().numpy() optimized_actions.append(action) ######################################################################## # step the environment with the optimized action state, reward, done, _ = env.step(action) n_steps += 1 print(' Average Improvement: ' + str(np.mean(gaps))) if 'sim' in dir(env.unwrapped): env_states['qpos'].append(copy.deepcopy(env.sim.data.qpos)) env_states['qvel'].append(copy.deepcopy(env.sim.data.qvel)) env_states['qpos'] = np.stack(env_states['qpos']) env_states['qvel'] = np.stack(env_states['qvel']) agent.act(state, reward, done) episode = agent.collector.get_episode() if not random: # replace the collector's actions with optimized actions final_action = np.zeros(optimized_actions[-1].shape) optimized_actions.append(final_action) optimized_actions =
np.concatenate(optimized_actions, axis=0)
numpy.concatenate
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(228, 'F d -3 c :2', transformations) space_groups[228] = sg space_groups['F d -3 c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,0,1,0,1,0,1,0,0])
numpy.array
__all__ = ['multigaussian', 'multigaussian_deviates'] import sys import numpy as np # ----------------------------------------------------------------- # model for fitting EIS line profiles using mpfit.py # ----------------------------------------------------------------- # series of Guassian model functions with polynomial background def multigaussian(param, x, n_gauss=1, n_poly=0): """Multigaussian model with a polynomial background Parameters ---------- param : array_like Model fit parameters. There must be 3*n_gauss + n_poly param values. For each Gaussian component, the parameters are assumed to have the following order: [peak, centroid, width] x : array_like Independent variable values to evaluate the function at. For EIS data, this will usually correspond to wavelength values. n_gauss : int, optional Number of Gaussian components. Default is "1" n_poly : int, optional Number of background polynomial terms. Common values are: o (no background), 1 (constant), and 2 (linear). Default is "0" Returns ------- f : array_like Function evaluated at each x value """ # check inputs n_param = len(param) if n_param != 3*n_gauss+n_poly: print(' ! input parameter sizes do not match ... stopping') sys.exit() # compute Gaussians nx = len(x) f =
np.zeros(nx)
numpy.zeros
import numpy as np from numpy.testing import assert_equal, assert_, run_module_suite import unittest from qutip import * import qutip.settings as qset if qset.has_openmp: from qutip.cy.openmp.benchmark import _spmvpy, _spmvpy_openmp @unittest.skipIf(qset.has_openmp == False, 'OPENMP not available.') def test_openmp_spmv(): "OPENMP : spmvpy_openmp == spmvpy" for k in range(100): L = rand_herm(10,0.25).data vec = rand_ket(L.shape[0],0.25).full().ravel() out = np.zeros_like(vec) out_openmp = np.zeros_like(vec) _spmvpy(L.data, L.indices, L.indptr, vec, 1, out) _spmvpy_openmp(L.data, L.indices, L.indptr, vec, 1, out_openmp, 2) assert_(np.allclose(out, out_openmp, 1e-15)) @unittest.skipIf(qset.has_openmp == False, 'OPENMP not available.') def test_openmp_mesolve(): "OPENMP : mesolve" N = 100 wc = 1.0 * 2 * np.pi # cavity frequency wa = 1.0 * 2 * np.pi # atom frequency g = 0.05 * 2 * np.pi # coupling strength kappa = 0.005 # cavity dissipation rate gamma = 0.05 # atom dissipation rate n_th_a = 1 # temperature in frequency units use_rwa = 0 # operators a = tensor(destroy(N), qeye(2)) sm = tensor(qeye(N), destroy(2)) # Hamiltonian if use_rwa: H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag()) else: H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() + a) * (sm + sm.dag()) c_op_list = [] rate = kappa * (1 + n_th_a) if rate > 0.0: c_op_list.append(np.sqrt(rate) * a) rate = kappa * n_th_a if rate > 0.0: c_op_list.append(
np.sqrt(rate)
numpy.sqrt
#!/usr/bin/env python u""" ncdf_read.py Written by <NAME> (11/2021) Reads spatial data from COARDS-compliant netCDF4 files CALLING SEQUENCE: dinput = ncdf_read(filename, DATE=False, VERBOSE=False) INPUTS: filename: netCDF4 file to be opened and read OUTPUTS: data: z value of dataset lon: longitudinal array lat: latitudinal array time: time value of dataset (if specified by DATE) attributes: netCDF4 attributes (for variables and title) OPTIONS: DATE: netCDF4 file has date information VERBOSE: will print to screen the netCDF4 structure parameters VARNAME: z variable name in netCDF4 file LONNAME: longitude variable name in netCDF4 file LATNAME: latitude variable name in netCDF4 file TIMENAME: time variable name in netCDF4 file COMPRESSION: netCDF4 file is compressed or streaming as bytes gzip zip bytes PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python (https://numpy.org) netCDF4: Python interface to the netCDF C library (https://unidata.github.io/netcdf4-python/netCDF4/index.html) UPDATE HISTORY: Updated 11/2021: try to get more global attributes. use kwargs Updated 10/2021: using python logging for handling verbose output Updated 02/2021: prevent warnings with python3 compatible regex strings Updated 12/2020: try/except for getting variable unit attributes attempt to get a standard set of attributes from each variable add fallback for finding netCDF4 file within from zip files added bytes option for COMPRESSION if streaming from memory Updated 08/2020: flake8 compatible regular expression strings add options to read from gzip or zip compressed files Updated 07/2020: added function docstrings Updated 06/2020: output data as lat/lon following spatial module attempt to read fill value attribute and set to None if not present Updated 10/2019: changing Y/N flags to True/False Updated 03/2019: print variables keys in list for Python3 compatibility Updated 06/2018: extract fill_value and title without variable attributes Updated 07-09/2016: using netCDF4-python Updated 06/2016: using __future__ print, output filename if VERBOSE Updated 05/2016: will only transpose if data is 2 dimensional (not 3) added parameter to read the TITLE variable Updated 07/2015: updated read title for different cases with regex Updated 05/2015: added parameter TIMENAME for time variable name Updated 04/2015: fix attribute outputs (forgot to copy to new dictionary) Updated 02/2015: added copy for variable outputs fixes new error flag from mmap=True Updated 11/2014: new parameters for variable names and attributes all variables in a single python dictionary Updated 05/2014: new parameter for missing value new outputs: all attributes, fill value added try for TITLE attribute converting time to numpy array Updated 02/2014: minor update to if statements Updated 07/2013: switched from Scientific Python to Scipy Updated 01/2013: adding time variable Written 07/2012 """ from __future__ import print_function import os import re import uuid import gzip import logging import netCDF4 import zipfile import numpy as np def ncdf_read(filename, **kwargs): """ Reads spatial data from COARDS-compliant netCDF4 files Arguments --------- filename: netCDF4 file to be opened and read Keyword arguments ----------------- DATE: netCDF4 file has date information VERBOSE: will print to screen the netCDF4 structure parameters VARNAME: z variable name in netCDF4 file LONNAME: longitude variable name in netCDF4 file LATNAME: latitude variable name in netCDF4 file TIMENAME: time variable name in netCDF4 file COMPRESSION: netCDF4 file is compressed or streaming as bytes gzip zip bytes Returns ------- data: z value of dataset lon: longitudinal array lat: latitudinal array time: time value of dataset attributes: netCDF4 attributes """ #-- set default keyword arguments kwargs.setdefault('DATE',False) kwargs.setdefault('VARNAME','z') kwargs.setdefault('LONNAME','lon') kwargs.setdefault('LATNAME','lat') kwargs.setdefault('TIMENAME','time') kwargs.setdefault('COMPRESSION',None) #-- Open the NetCDF4 file for reading if (kwargs['COMPRESSION'] == 'gzip'): #-- read as in-memory (diskless) netCDF4 dataset with gzip.open(os.path.expanduser(filename),'r') as f: fileID = netCDF4.Dataset(os.path.basename(filename),memory=f.read()) elif (kwargs['COMPRESSION'] == 'zip'): #-- read zipped file and extract file into in-memory file object fileBasename,_ = os.path.splitext(os.path.basename(filename)) with zipfile.ZipFile(os.path.expanduser(filename)) as z: #-- first try finding a netCDF4 file with same base filename #-- if none found simply try searching for a netCDF4 file try: f,=[f for f in z.namelist() if re.match(fileBasename,f,re.I)] except: f,=[f for f in z.namelist() if re.search(r'\.nc(4)?$',f)] #-- read bytes from zipfile as in-memory (diskless) netCDF4 dataset fileID = netCDF4.Dataset(uuid.uuid4().hex, memory=z.read(f)) elif (kwargs['COMPRESSION'] == 'bytes'): #-- read as in-memory (diskless) netCDF4 dataset fileID = netCDF4.Dataset(uuid.uuid4().hex, memory=filename.read()) else: #-- read netCDF4 dataset fileID = netCDF4.Dataset(os.path.expanduser(filename), 'r') #-- create python dictionary for output variables dinput = {} dinput['attributes'] = {} #-- Output NetCDF file information logging.info(fileID.filepath()) logging.info(list(fileID.variables.keys())) #-- mapping between output keys and netCDF4 variable names keys = ['lon','lat','data'] nckeys = [kwargs['LONNAME'],kwargs['LATNAME'],kwargs['VARNAME']] if kwargs['DATE']: keys.append('time') nckeys.append(kwargs['TIMENAME']) #-- list of variable attributes attributes_list = ['description','units','long_name','calendar', 'standard_name','_FillValue','missing_value'] #-- for each variable for key,nckey in zip(keys,nckeys): #-- Getting the data from each NetCDF variable dinput[key] =
np.squeeze(fileID.variables[nckey][:].data)
numpy.squeeze
import numpy as np import matplotlib.pyplot as plt import copy import torch from torch import nn from torchsummary import summary from sklearn.metrics import confusion_matrix import torchvision from . import constants from sklearn.metrics import roc_curve from sklearn.metrics import auc from sklearn.metrics import roc_auc_score # import scikitplot as skplt def evaluate_acc_par(args, model, param_G, dataloader, cf_mat=False, roc=False, preds=False): model.eval() param_G.eval() valid_batch_acc_1, valid_batch_acc_2 = [], [] y_true_1, y_pred_1, y_prob_1 = [], [], [] y_true_2, y_pred_2, y_prob_2 = [], [], [] auc_scores_1 = [] n_samples = 0 for batch_id, (images, labels) in enumerate(dataloader): images, labels = images.to(args.device), labels.to(args.device) output_valid_1 = model(images) output_valid_2 = param_G(output_valid_1) auc_scores_1.append(roc_auc_score(labels[:, 0].cpu().detach(), output_valid_1.max(1)[1].cpu().detach())) # auc_scores_2 = roc_auc_score(labels[:, 1], output_valid_2) predictions_1 = output_valid_1.max(1)[1] predictions_2 = output_valid_2.max(1)[1] current_acc_1 = torch.sum((predictions_1 == labels[:, 0]).float()) current_acc_2 = torch.sum((predictions_2 == labels[:, 1]).float()) valid_batch_acc_1.append(current_acc_1) valid_batch_acc_2.append(current_acc_2) n_samples += len(labels) y_true_1 = y_true_1 + labels[:, 0].tolist() y_pred_1 = y_pred_1 + predictions_1.tolist() if constants.SOFTMAX: y_prob_1 = y_prob_1 + ((output_valid_1).detach().cpu().numpy()).tolist() else: y_prob_1 = y_prob_1 + (nn.Softmax(dim=1)(output_valid_1).detach().cpu().numpy()).tolist() y_true_2 = y_true_2 + labels[:, 1].tolist() y_pred_2 = y_pred_2 + predictions_2.tolist() y_prob_2 = y_prob_2 + (nn.Softmax(dim=1)(output_valid_2).detach().cpu().numpy()).tolist() acc_1 = (sum(valid_batch_acc_1) / n_samples) * 100 acc_2 = (sum(valid_batch_acc_2) / n_samples) * 100 if preds: return y_prob_1 if roc: plt.figure(figsize=(5, 5)) # skplt.metrics. plot_roc(y_true_1, y_prob_1, plot_micro=False, plot_macro=False, title=None, cmap='prism', figsize=(5, 5), text_fontsize="large", title_fontsize="large", line_color=['r', 'b'], line_labels=["y=0", "y=1"]) plt.show() plt.figure(figsize=(5, 5)) # skplt.metrics. plot_roc(y_true_2, y_prob_2, plot_micro=False, plot_macro=False, title=None, cmap='prism', figsize=(5, 5), text_fontsize="large", title_fontsize="large", line_color=['m', 'g', 'y'], line_labels=["s=0", "s=1", "s=2"]) plt.show() if cf_mat: cf_1 = confusion_matrix(y_true_1, y_pred_1, normalize='true') cf_2 = confusion_matrix(y_true_2, y_pred_2, normalize='true') return acc_1, acc_2, cf_1, cf_2 return acc_1, acc_2 def evaluate_acc_reg(args, model, dataloader, cf_mat=False, roc=False, preds=False, beTau=constants.REGTAU): model.eval() valid_batch_acc_1, valid_batch_acc_2 = [], [] y_true_1, y_pred_1, y_prob_1 = [], [], [] y_true_2, y_pred_2, y_prob_2 = [], [], [] n_samples = 0 for batch_id, (images, labels) in enumerate(dataloader): images, labels = images.to(args.device), labels.to(args.device) output_valid_1 = model(images) predictions_1 = output_valid_1.max(1)[1] if constants.SOFTMAX: output_valid_2 = output_valid_1 else: output_valid_2 = nn.Softmax(dim=1)(output_valid_1) output_valid_2 = output_valid_2 + 1e-16 entropies = -(torch.sum(output_valid_2 * torch.log(output_valid_2), dim=1)) predictions_2 = torch.where(entropies >= beTau, torch.tensor(1.).to(args.device), torch.tensor(0.).to(args.device)) current_acc_1 = torch.sum((predictions_1 == labels[:, 0]).float()) current_acc_2 = torch.sum((predictions_2 == labels[:, 1]).float()) valid_batch_acc_1.append(current_acc_1) valid_batch_acc_2.append(current_acc_2) n_samples += len(labels) y_true_1 = y_true_1 + labels[:, 0].tolist() y_pred_1 = y_pred_1 + predictions_1.tolist() y_prob_1 = y_prob_1 + output_valid_2.detach().cpu().numpy().tolist() y_true_2 = y_true_2 + labels[:, 1].tolist() y_pred_2 = y_pred_2 + predictions_2.tolist() entropies = entropies.detach().cpu().numpy() y_prob_2 = y_prob_2 + np.concatenate((1 - entropies[:, np.newaxis], entropies[:, np.newaxis]), axis=1).tolist() acc_1 = (sum(valid_batch_acc_1) / n_samples) * 100 acc_2 = (sum(valid_batch_acc_2) / n_samples) * 100 y_true_2 = [int(x) for x in y_true_2] if roc: plt.figure(figsize=(5, 5)) # skplt.metrics. plot_roc(y_true_1, y_prob_1, plot_micro=False, plot_macro=False, title=None, cmap='prism', figsize=(5, 5), text_fontsize=14, title_fontsize="large", line_color=['r', 'b', 'g'], line_labels=["label 0", "label 1", "label 2"], line_style=["-", "--", ":"]) plt.show() plt.figure(figsize=(5, 5)) # skplt.metrics. plot_roc(y_true_2, y_prob_2, plot_micro=False, plot_macro=False, title=None, cmap='prism', figsize=(5, 5), text_fontsize=14, title_fontsize="large", line_color=['m', 'g', 'y'], line_labels=["male", "female"], line_style=["-.", ":"]) plt.show() if cf_mat: cf_1 = confusion_matrix(y_true_1, y_pred_1, normalize='true') cf_2 = confusion_matrix(y_true_2, y_pred_2, normalize='true') return acc_1, acc_2, cf_1, cf_2 return acc_1, acc_2 def evaluate_acc_get_preds(args, model, param_G, dataloader): model.eval() param_G.eval() preds = [] n_samples = 0 for batch_id, (images, labels) in enumerate(dataloader): images, labels = images.to(args.device), labels.to(args.device) preds = preds + ((model(images)).detach().cpu().numpy()).tolist() return preds def log_sum_exp(x, axis=1): m = torch.max(x, dim=1)[0] return m + torch.log(torch.sum(torch.exp(x - m.unsqueeze(1)), dim=axis)) def print_dataset_info(dataset): print("Data Dimensions: ", dataset[0].shape) labels = np.array(dataset[1]).astype(int) _unique, _counts = np.unique(labels[:, 0], return_counts=True) print("Honest:\n", np.asarray((_unique, _counts)).T) _unique, _counts =
np.unique(labels[:, 1], return_counts=True)
numpy.unique
import numpy as np import scipy.optimize import scipy.linalg from scipy.stats import unitary_group as UG ############### ### Matrix Operations ############### def dag(A): return 1.*np.conjugate(np.transpose(A)) def dot(A,B): return np.trace(dag(A)@B) def norm(A): return np.sqrt(np.abs(dot(A,A))) def kprod(A,B): return np.kron(A,B) def ksum(A,B): return np.kron(A,one) + np.kron(one,B) def eig(A): vals, vecs = np.linalg.eigh(A) vecs = np.transpose(vecs) ## so vecs[0] is an eigenvector return 1.*vals, 1.*vecs def couter(psi): return 1.*np.outer(psi, np.conjugate(psi)) ############### ### Multipartite Matrix Operations ############### ## basis dictionaries d22 = {'00':0, '01':1, '10':2, '11':3} d23 = {'00':0, '01':1, '02':2, '10':3, '11':4, '12':5} d33 = {'00':0, '01':1, '02':2, '10':3, '11':4, '12':5, '20':6, '21':7, '22':8} d222 = {'000':0, '001':1, '010':2, '011':3, '100':4, '101':5, '110':6, '111':7} d223 = {'000':0, '001':1, '002':2, '010':3, '011':4, '012':5, '100':6, '101':7, '102':8, '110':9, '111':10, '112':11} d2222 = {format(i,'04b'):i for i in range(16)} dxx = {'22':d22, '23':d23, '222':d222, '223':d223, '33':d33, '2222':d2222} ## dictionary lookup from n=(nA,nB,...) def ndict(n): return dxx[''.join([str(nn) for nn in n])] ## generate list of basis index labels for system of type n=(nA,nB,...), possibly holding some index values fixed ## sums over all index values which are 'x' in the hold argument ## "mind" = "multipartite indices" def mind(n=[2,2], hold='xxxxx'): ss = [''.join([str(i) for i in range(nn)]) for nn in n] for i in range(len(n)): if not hold[i] == 'x': ss[i] = hold[i] ijk= [x for x in ss[0]] for s in ss[1:]: ijk = [x+y for x in ijk for y in s] return tuple(ijk) ## "rind" = "rho indices" def rind(n=[2,2], hold='xxxxx'): dd = ndict(n) return np.array([dd[idx] for idx in mind(n,hold)], dtype=int) ## compute reduced density matrices given n=(nA,nB,...) and rho def REDUCE(rho, n): ## check dims match if len(rho)==np.prod(n): if len(n)==1: red = [1.*rho] if len(n)>1: red = [np.zeros((nn,nn), dtype=complex) for nn in n] ## iterate over subspaces for m in range(len(n)): ## iterate over reduced density matrix elements for i in range(n[m]): for j in range(n[m]): ## indices to sum over hold = len(n)*'x' hold = hold[:m]+str(i)+hold[m+1:] mi, ri = mind(n,hold), rind(n,hold) mj, rj = mind(n,hold.replace(str(i),str(j))), rind(n,hold.replace(str(i),str(j))) ## fill rho red[m][i,j] = np.sum([rho[ri[k],rj[k]] for k in range(len(ri))], axis=0, dtype=complex) ## return return tuple([1.*rr for rr in red]) ############### ### Generate Arbitrary 2 or 3 dimensional rank-1 coarse-graining ############### ## function used in parameterizing SU3 def FF(v,w,x,y,z): v,w,x,y,z = 1.*v,1.*w,1.*x,1.*y,1.*z return -np.cos(v)*np.cos(w)*np.cos(x)*np.exp(1j*y) - np.sin(w)*np.sin(x)*np.exp(-1j*z) ## arbitrary SU matrix parameterized by real vector x in (0,1) def SU(x): if len(x)==3: return SU2(x) if len(x)==8: return SU3(x) ## SU2 parameterized by real vector x def SU2(x=np.zeros(3)): ## identity is at x = np.array([0.,0.,0.]) ## periodic as each x=x+1, so use x in (0,1) th = 2.*np.pi*x su = np.array( [ [ np.cos(th[0])*np.exp( 1j*th[1]), np.sin(th[0])*np.exp( 1j*th[2])], [-np.sin(th[0])*np.exp(-1j*th[2]), np.cos(th[0])*np.exp(-1j*th[1])], ], dtype=complex) return 1.*su ## SU3 parameterized by real vector x def SU3(x=np.array([.5,.5,.5,0.,0.,0.,0.,0.])): ## https://arxiv.org/abs/1303.5904 ## identity is at x = np.array([.5,.5,.5,0.,0.,0.,0.,0.]) ## periodic as each x=x+1, so use x in (0,1) x = 2.*np.pi*x pi = np.pi ph31, th31, th32, ph32, ch32, th21, ch21, ph21 = 1.*x su = np.zeros((3,3), dtype=complex) ## top row su[0,0] = FF(th31,0,0,ph31+pi,0) su[0,1] = FF(th31-pi/2.,th32,pi,ph32,0) su[0,2] = FF(th31-pi/2.,th32-pi/2.,pi,ch32,0) ## middle row su[1,0] = FF(th31-pi/2.,pi,th21,ph21,0) su[1,1] = FF(th31,th32,th21,-ph31+ph32+ph21,ch32+ch21) su[1,2] = FF(th31,th32-pi/2.,th21,-ph31+ch32+ph21,ph32+ch21) ## bottom row su[2,0] = FF(th31-pi/2.,pi,th21-pi/2.,ch21,0) su[2,1] = FF(th31,th32,th21-pi/2,-ph31+ph32+ch21,ch32+ph21) su[2,2] = FF(th31,th32-pi/2,th21-pi/2,-ph31+ch32+ch21,ph32+ph21) ## return return 1.*su ## make a set of projectors from the columns of a unitary matrix def PROJ(U): proj = np.array([couter(U[i]) for i in range(len(U))], dtype=complex) return 1.*proj ## combine two sets of projectors by tensor product def PROJPROD(PA,PB): return 1.*np.array([kprod(pa,pb) for pa in PA for pb in PB], dtype=complex) ## combine a list of sets of projectors by tensor product def PROJMP(PX): proj = PX[0] for j in range(1,len(PX)): proj = PROJPROD(proj,PX[j]) return 1.*proj ## product projectors parameterized by real vector x ## n=(nA,nB,...) dictates how dimensions split into product def PROJN(x=np.zeros(6), n=[2,2], factors_out=False): n =
np.array(n, dtype=int)
numpy.array
import os import numpy as np import pydensecrf.densecrf as dcrf from pydensecrf.utils import unary_from_softmax import matplotlib matplotlib.use("TkAgg") import matplotlib.pyplot as plt class DenseCRF: def __init__(self): # self.gauss_sxy = 3 # self.gauss_compat = 30 # self.bilat_sxy = 10 # self.bilat_srgb = 20 # self.bilat_compat = 50 # self.n_infer = 5 self.gauss_sxy = 3 self.gauss_compat = 30 self.bilat_sxy = 10 self.bilat_srgb = 20 self.bilat_compat = 50 self.n_infer = 5 def load_config(self, path): if os.path.exists(path): config = np.load(path) self.gauss_sxy, self.gauss_compat, self.bilat_sxy, self.bilat_srgb, self.bilat_compat, self.n_config = \ config[0] else: print('Warning: dense CRF config file ' + path + ' does not exist - using defaults') def process(self, probs, images): # Set up variable sizes num_input_images = probs.shape[0] num_classes = probs.shape[1] size = images.shape[1:3] crf = np.zeros((num_input_images, num_classes, size[0], size[1])) for iter_input_image in range(num_input_images): pass_class_inds = np.where(np.sum(np.sum(probs[iter_input_image], axis=1), axis=1) > 0) # Set up dense CRF 2D d = dcrf.DenseCRF2D(size[1], size[0], len(pass_class_inds[0])) if len(pass_class_inds[0]) > 0: cur_probs = probs[iter_input_image, pass_class_inds[0]] # Unary energy U = np.ascontiguousarray(unary_from_softmax(cur_probs)) d.setUnaryEnergy(U) # Penalize small, isolated segments # (sxy are PosXStd, PosYStd) d.addPairwiseGaussian(sxy=self.gauss_sxy, compat=self.gauss_compat) # Incorporate local colour-dependent features # (sxy are Bi_X_Std and Bi_Y_Std, # srgb are Bi_R_Std, Bi_G_Std, Bi_B_Std) d.addPairwiseBilateral(sxy=self.bilat_sxy, srgb=self.bilat_srgb, rgbim=
np.uint8(images[iter_input_image])
numpy.uint8
from torch import nn import numpy as np import torch import sys # import torch.nn.functional as F # Deprecated # 因果卷积,哪里体现了因果呢?dilation吗? # 因为是逐层递推的,所以是因果卷积 # 假设seq=8, 则layer=0,1,2, 经过三层CausalConv单词维度划分为: # [embedding0, 0, 0, 0] # [embedding3, 3, 23, 0123] # [embedding7, 67, 4567, 01234567] # 不断汇聚前文信息 class CausalConv1d(nn.Module): # dilation: 膨胀 # kernel_size始终为2 def __init__(self, in_channels, out_channels, kernel_size=2, dilation=2): super().__init__() self.padding = dilation self.causal_conv = nn.Conv1d(in_channels, out_channels, kernel_size, padding=self.padding, dilation=dilation) def forward(self, minibatch): # 保持序列长度不变 return self.causal_conv(minibatch)[:, :, :-self.padding] class DenseBlock(nn.Module): """卷积后拼接在一起""" def __init__(self, in_channels, filters, dilation=2): super().__init__() self.causal_conv1 = CausalConv1d(in_channels, out_channels=filters, dilation=dilation) self.causal_conv2 = CausalConv1d(in_channels, out_channels=filters, dilation=dilation) def forward(self, minibatch): tanh = torch.tanh(self.causal_conv1(minibatch)) sig = torch.sigmoid(self.causal_conv2(minibatch)) # element-wise product return torch.cat([minibatch, tanh * sig], dim=1) class TCBlock(nn.Module): def __init__(self, in_channels, filters, seq_len): """ 不能处理变长数据,可能需要save then load """ super().__init__() layer_count = np.ceil(np.log2(seq_len)).astype(np.int) # 取对数,上取整 blocks = [] channel_count = in_channels for layer in range(layer_count): # 序列长度: # L_out = L_in + 2 * padding - dilation # 经过DenseBlock序列长度是不变的 block = DenseBlock(channel_count, filters, dilation=2**layer) blocks.append(block) channel_count += filters self.tcblock = nn.Sequential(*blocks) self._dim = channel_count def forward(self, minibatch): return self.tcblock(minibatch) @property def dim(self): # 向量维度 return self._dim class AttentionBlock(nn.Module): def __init__(self, dims, k_size, v_size): """ self-attention :param dims: 输入维度 :param k_size: key维度 :param v_size: value维度 """ super().__init__() self.key_layer = nn.Linear(dims, k_size) self.query_layer = nn.Linear(dims, k_size) self.value_layer = nn.Linear(dims, v_size) self.sqrt_k =
np.sqrt(k_size)
numpy.sqrt
from moviepy.editor import VideoFileClip from camera_calibration import camera_calibration import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.image as mpimg from pipeline import pipeline ret, mtx, dist, rvecs, tvecs = camera_calibration() # straight_lines1.jpg src = np.float32([[209, 719], [1095, 719], [538, 492], [751, 492]]) dst = np.float32([[209, 719], [1095, 719], [209, 0], [1095, 0]]) M1 = cv2.getPerspectiveTransform(src, dst) Minv1 = cv2.getPerspectiveTransform(dst, src) # print(M1) # straight_lines2.jpg src = np.float32([[228, 719], [1109, 719], [537, 492], [757, 492]]) dst = np.float32([[228, 719], [1109, 719], [228, 0], [1109, 0]]) M2 = cv2.getPerspectiveTransform(src, dst) Minv2 = cv2.getPerspectiveTransform(dst, src) # print(M2) M = (M1 + M2) / 2 Minv = (Minv1 + Minv2) / 2 print(M) def process_image(img): img = cv2.undistort(img, mtx, dist, None, mtx) threshed = pipeline(img) height, width, channels = img.shape binary_warped = cv2.warpPerspective(threshed, M, (width, height), flags=cv2.INTER_LINEAR) # Assuming you have created a warped binary image called "binary_warped" # Take a histogram of the bottom half of the image histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0) # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255 # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines midpoint =
np.int(histogram.shape[0] // 2)
numpy.int
import numpy as np from allocmodel.topics.OptimizerRhoOmegaBetter import kvec from util import NumericUtil from util import digamma, gammaln from util.StickBreakUtil import rho2beta from util.NumericUtil import calcRlogRdotv_allpairs from util.NumericUtil import calcRlogRdotv_specificpairs from util.NumericUtil import calcRlogR_allpairs, calcRlogR_specificpairs from util.NumericUtil import calcRlogR, calcRlogRdotv from util.SparseRespStatsUtil import calcSparseRlogR, calcSparseRlogRdotv from util.SparseRespStatsUtil \ import calcSparseMergeRlogR, calcSparseMergeRlogRdotv ELBOTermDimMap = dict( slackTheta='K', slackThetaRem=None, gammalnTheta='K', gammalnThetaRem=None, gammalnSumTheta=None, Hresp=None, ) def calcELBO(**kwargs): """ Calculate ELBO objective for provided model state. Returns ------- L : scalar float L is the value of the objective function at provided state. """ Llinear = calcELBO_LinearTerms(**kwargs) Lnon = calcELBO_NonlinearTerms(**kwargs) if isinstance(Lnon, dict): Llinear.update(Lnon) return Llinear return Lnon + Llinear def calcELBO_LinearTerms(SS=None, LP=None, nDoc=None, rho=None, omega=None, Ebeta=None, alpha=0, gamma=None, afterGlobalStep=0, todict=0, **kwargs): """ Calculate ELBO objective terms that are linear in suff stats. Returns ------- L : scalar float L is sum of any term in ELBO that is const/linear wrt suff stats. """ if LP is not None: nDoc = LP['theta'].shape[0] elif SS is not None: nDoc = SS.nDoc return L_alloc( nDoc=nDoc, rho=rho, omega=omega, Ebeta=Ebeta, alpha=alpha, gamma=gamma, todict=todict) def calcELBO_NonlinearTerms(Data=None, SS=None, LP=None, todict=0, rho=None, Ebeta=None, alpha=None, resp=None, nDoc=None, DocTopicCount=None, theta=None, thetaRem=None, ElogPi=None, ElogPiRem=None, sumLogPi=None, sumLogPiRem=None, sumLogPiRemVec=None, Hresp=None, slackTheta=None, slackThetaRem=None, gammalnTheta=None, gammalnSumTheta=None, gammalnThetaRem=None, thetaEmptyComp=None, ElogPiEmptyComp=None, ElogPiOrigComp=None, gammalnThetaOrigComp=None, slackThetaOrigComp=None, returnMemoizedDict=0, **kwargs): """ Calculate ELBO objective terms non-linear in suff stats. """ if resp is not None: N, K = resp.shape elif LP is not None: if 'resp' in LP: N, K = LP['resp'].shape else: N, K = LP['spR'].shape if Ebeta is None: Ebeta = rho2beta(rho, returnSize='K+1') if LP is not None: DocTopicCount = LP['DocTopicCount'] nDoc = DocTopicCount.shape[0] theta = LP['theta'] thetaRem = LP['thetaRem'] ElogPi = LP['ElogPi'] ElogPiRem = LP['ElogPiRem'] sumLogPi = np.sum(ElogPi, axis=0) sumLogPiRem =
np.sum(ElogPiRem)
numpy.sum
import numpy as np import matplotlib.pyplot as plt import matplotlib as mpl from perlin import generate_perlin def gaussian_2d_fast(size, amp, mu_x, mu_y, sigma): x = np.arange(0, 1, 1/size[0]) y = np.arange(0, 1, 1/size[1]) xs, ys = np.meshgrid(x,y) dxs = np.minimum(np.abs(xs-mu_x), 1-np.abs(xs-mu_x)) dys = np.minimum(np.abs(ys-mu_y), 1-np.abs(ys-mu_y)) heat_map = amp*np.exp(-(dxs**2+dys**2)/(2*sigma**2)) return heat_map def excitability_matrix(sigma_e, sigma_i, perlin_scale, grid_offset, p_e=0.05, p_i=0.05, we=0.22, g=4, n_row_e=120, n_row_i=60, mu_gwn=0, multiple_connections=True, expected_connectivity=True, is_plot=True): n_pop_e = n_row_e**2 n_pop_i = n_row_i**2 gL = 25 * 1e-9 # Siemens p_max_e = p_e / (2 * np.pi * sigma_e**2) p_max_i = p_i / (2 * np.pi * sigma_i**2) # Two landscapes: e and i. The contribution of each neuron is stored separately in the n_row_e**2 matrices e_landscape = np.zeros((n_row_e**2, n_row_e, n_row_e)) i_landscape = np.zeros((n_row_i**2, n_row_e, n_row_e)) perlin = generate_perlin(n_row_e, perlin_scale, seed_value=0) x = np.arange(0,1,1/n_row_e) y = np.arange(0,1,1/n_row_e) X, Y = np.meshgrid(x,y) U = np.cos(perlin) V = np.sin(perlin) # Excitatory mu_xs = np.arange(0,1,1/n_row_e) mu_ys = np.arange(0,1,1/n_row_e) counter = 0 for i, mu_x in enumerate(mu_xs): for j, mu_y in enumerate(mu_ys): x_offset = grid_offset / n_row_e * np.cos(perlin[i,j]) y_offset = grid_offset / n_row_e * np.sin(perlin[i,j]) mh = gaussian_2d_fast((n_row_e, n_row_e), p_max_e, mu_x+x_offset, mu_y+y_offset, sigma_e) if not multiple_connections: #clip probabilities at 1 e_landscape[counter] = np.minimum(mh, np.ones(mh.shape)) else: e_landscape[counter] = mh counter += 1 # Inhibitory mu_xs = np.arange(1/n_row_e,1+1/n_row_e,1/n_row_i) mu_ys = np.arange(1/n_row_e,1+1/n_row_e,1/n_row_i) counter = 0 for mu_x in mu_xs: for mu_y in mu_ys: mh = gaussian_2d_fast((n_row_e, n_row_e), p_max_i, mu_x, mu_y, sigma_i) if not multiple_connections: #clip probabilities at 1 i_landscape[counter] = np.minimum(mh,
np.ones(mh.shape)
numpy.ones
from __future__ import print_function import argparse import numpy as np import cv2 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "path to the image") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow("Image", image) cv2.waitKey(0) lap = cv2.Laplacian(image,cv2.CV_64F) lap = np.uint8(np.absolute(lap)) cv2.imshow("Laplacian", lap) cv2.waitKey(0) sobelX = cv2.Sobel(image, cv2.CV_64F, 1, 0) sobelY = cv2.Sobel(image, cv2.CV_64F, 0, 1) sobelX = np.uint8(np.absolute(sobelX)) sobelY = np.uint8(np.absolute(sobelY)) sobelCombined = cv2.bitwise_or(sobelX, sobelY) cv2.imshow("three",
np.hstack([sobelX, sobelY, sobelCombined])
numpy.hstack
"""@package etddf Shares the N most recent measurements of an agent into the buffer """ __author__ = "<NAME>" __copyright__ = "Copyright 2020, COHRINT Lab" __email__ = "<EMAIL>" __status__ = "Development" __license__ = "MIT" __maintainer__ = "<NAME>" from copy import deepcopy from etddf.etfilter import ETFilter, ETFilter_Main from etddf.ros2python import get_internal_meas_from_ros_meas from etddf_minau.msg import Measurement import time from pdb import set_trace as st import numpy as np import scipy import scipy.optimize import rospy # Just used for debugging # class Measurement: # def __init__(self, meas_type, stamp, src_asset, measured_asset, data, variance, global_pose): # self.meas_type = meas_type # self.stamp = stamp # self.src_asset = src_asset # self.measured_asset = measured_asset # self.data = data # self.variance = variance # self.global_pose = global_pose class MostRecent: """Windowed Communication Event Triggered Communication Provides a buffer that can be pulled and received from another. Just shares the N most recent measurements of another agent """ def __init__(self, num_ownship_states, x0, P0, buffer_capacity, meas_space_table, delta_codebook_table, delta_multipliers, asset2id, my_name, default_meas_variance): """Constructor Arguments: num_ownship_states {int} -- Number of ownship states for each asset x0 {np.ndarray} -- initial states P0 {np.ndarray} -- initial uncertainty buffer_capacity {int} -- capacity of measurement buffer meas_space_table {dict} -- Hash that stores how much buffer space a measurement takes up. Str (meas type) -> int (buffer space) delta_codebook_table {dict} -- Hash that stores delta trigger for each measurement type. Str(meas type) -> float (delta trigger) delta_multipliers {list} -- List of delta trigger multipliers asset2id {dict} -- Hash to get the id number of an asset from the string name my_name {str} -- Name to loopkup in asset2id the current asset's ID# default_meas_variance {dict} -- Hash to get measurement variance """ self.meas_ledger = [] self.asset2id = asset2id self.my_name = my_name self.default_meas_variance = default_meas_variance self.filter = ETFilter(asset2id[my_name], num_ownship_states, 3, x0, P0, True) # Remember for instantiating new LedgerFilters self.num_ownship_states = num_ownship_states self.buffer_capacity = buffer_capacity self.meas_space_table = meas_space_table self.last_update_time = None def add_meas(self, ros_meas, common=False): """Adds a measurement to filter Arguments: ros_meas {etddf.Measurement.msg} -- Measurement taken Keyword Arguments: delta_multiplier {int} -- not used (left to keep consistent interface) force_fuse {bool} -- not used """ src_id = self.asset2id[ros_meas.src_asset] if ros_meas.measured_asset in self.asset2id.keys(): measured_id = self.asset2id[ros_meas.measured_asset] elif ros_meas.measured_asset == "": measured_id = -1 #self.asset2id["surface"] else: rospy.logerr("ETDDF doesn't recognize: " + ros_meas.measured_asset + " ... ignoring") return meas = get_internal_meas_from_ros_meas(ros_meas, src_id, measured_id) self.filter.add_meas(meas) self.meas_ledger.append(ros_meas) @staticmethod def run_covariance_intersection(xa, Pa, xb, Pb): """Runs covariance intersection on the two estimates A and B Arguments: xa {np.ndarray} -- mean of A Pa {np.ndarray} -- covariance of A xb {np.ndarray} -- mean of B Pb {np.ndarray} -- covariance of B Returns: c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance """ Pa_inv = np.linalg.inv(Pa) Pb_inv = np.linalg.inv(Pb) fxn = lambda omega: np.trace(np.linalg.inv(omega*Pa_inv + (1-omega)*Pb_inv)) omega_optimal = scipy.optimize.minimize_scalar(fxn, bounds=(0,1), method="bounded").x # print("Omega: {}".format(omega_optimal)) # We'd expect a value of 1 Pcc = np.linalg.inv(omega_optimal*Pa_inv + (1-omega_optimal)*Pb_inv) c_bar = Pcc.dot( omega_optimal*Pa_inv.dot(xa) + (1-omega_optimal)*Pb_inv.dot(xb)) jump = max( [np.linalg.norm(c_bar - xa), np.linalg.norm(c_bar - xb)] ) if jump > 10: # Think this is due to a floating point error in the inversion print("!!!!!!!!!!! BIG JUMP!!!!!!!") print(xa) print(xb) print(c_bar) print(omega_optimal) print(Pa) print(Pb) print(Pcc) return c_bar.reshape(-1,1), Pcc def psci(self, x_prior, P_prior, c_bar, Pcc): """ Partial State Update all other states of the filter using the result of CI Arguments: x_prior {np.ndarray} -- This filter's prior estimate (over common states) P_prior {np.ndarray} -- This filter's prior covariance c_bar {np.ndarray} -- intersected estimate Pcc {np.ndarray} -- intersected covariance Returns: None Updates self.main_filter.filter.x_hat and P, the delta tier's primary estimate """ # Full state estimates x = self.filter.x_hat P = self.filter.P D_inv =
np.linalg.inv(Pcc)
numpy.linalg.inv