prompt
stringlengths 15
655k
| completion
stringlengths 3
32.4k
| api
stringlengths 8
52
|
---|---|---|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import division, print_function
import os
import glob
import tqdm
import fitsio
import numpy as np
from functools import partial
from sklearn.decomposition import PCA
from scipy import interpolate
from scipy.signal import medfilt2d as mf
from scipy.interpolate import interp1d
from multiprocessing import Pool
from eleanor import fill_grid
# Pre-compute the low pass filter
fc = 0.12
b = 0.08
N = int(np.ceil((4 / b)))
if not N % 2:
N += 1
n = np.arange(N)
sinc_func = np.sinc(2 * fc * (n - (N - 1) / 2.))
window = 0.42 - 0.5 * np.cos(2 * np.pi * n / (N - 1))
window += 0.08 * np.cos(4 * np.pi * n / (N - 1))
sinc_func = sinc_func * window
sinc_func = sinc_func / np.sum(sinc_func)
def lowpass(vec):
new_signal = np.convolve(vec, sinc_func)
lns = len(new_signal)
diff = int(np.abs(lns - len(vec))/2) # low pass filter to remove high order modes
return new_signal[diff:-diff]
def do_pca(i, j, data, factor, q):
xvals = np.dot(factor, data[i,j,:][q])
return xvals
def calc_2dbkg(flux, qual, time, fast=True):
q = qual == 0
med = np.percentile(flux[:,:,:], 1, axis=(2)) # build a single frame in shape of detector. This was once the median image, not sure why it was changed
med = med-mf(med, 21) # subtract off median to remove stable background emission, which is especially apparent in corners
g = np.ma.masked_where(med < np.percentile(med, 70.), med) # mask which should separate pixels dominated by starlight from background
modes = 21
X = flux[g.mask][:, q]
pca = PCA(n_components=modes)
pca.fit(X)
pv = pca.components_[0:modes]
vv = np.column_stack((pv))
for i in range(-15, 16, 3):
if i != 0:
if i > 0:
rolled = np.pad(pv, ((0,0),(i,0)), mode='constant')[:, :-i].T
else:
rolled = np.pad(pv, ((0,0),(0,-i)), mode='constant')[:, -i:].T # assumption: background is a linear sum of what is seen on pixels on the
# detector. Because the earthshine varies with axis, this can be time-shifted
# so that individual pixels see the same response at different times
vv = np.column_stack((vv, rolled))
vv = np.column_stack((vv, np.ones_like(vv[:,0])))
factor = np.linalg.solve(np.dot(vv.T, vv), vv.T)
maskvals = np.ma.masked_array(data=np.zeros((104,148,np.shape(vv)[1])),
mask=np.zeros((104,148,np.shape(vv)[1])))
for i in range(len(g)):
for j in range(len(g[0])):
if g.mask[i][j] == True:
maskvals.data[i, j] = do_pca(i, j, flux, factor, q) # build eigenvectors to model the background at each pixel
noval = maskvals.data[:,:,:] == 0
maskvals.mask[noval] = True
outmeasure =
|
np.zeros_like(maskvals[:,:,0])
|
numpy.zeros_like
|
# -*- coding: utf-8 -*-
# Copyright (c) 2015, <NAME>, <NAME>
# Licensed under the BSD 3-clause license (see LICENSE.txt)
"""
Classes in this module enhance several stationary covariance functions with the
Stochastic Differential Equation (SDE) functionality.
"""
from .rbf import RBF
from .stationary import Exponential
from .stationary import RatQuad
import numpy as np
import scipy as sp
try:
from scipy.linalg import solve_continuous_lyapunov as lyap
except ImportError:
from scipy.linalg import solve_lyapunov as lyap
import warnings
class sde_RBF(RBF):
"""
Class provide extra functionality to transfer this covariance function into
SDE form.
Radial Basis Function kernel:
.. math::
k(r) = \sigma^2 \exp \\bigg(- \\frac{1}{2} r^2 \\bigg) \\ \\ \\ \\ \text{ where } r = \sqrt{\sum_{i=1}^{input dim} \frac{(x_i-y_i)^2}{\ell_i^2} }
"""
def __init__(self, *args, **kwargs):
"""
Init constructior.
Two optinal extra parameters are added in addition to the ones in
RBF kernel.
:param approx_order: approximation order for the RBF covariance. (Default 10)
:type approx_order: int
:param balance: Whether to balance this kernel separately. (Defaulf True). Model has a separate parameter for balancing.
:type balance: bool
"""
if 'balance' in kwargs:
self.balance = bool( kwargs.get('balance') )
del kwargs['balance']
else:
self.balance = True
if 'approx_order' in kwargs:
self.approx_order = kwargs.get('approx_order')
del kwargs['approx_order']
else:
self.approx_order = 6
super(sde_RBF, self).__init__(*args, **kwargs)
def sde_update_gradient_full(self, gradients):
"""
Update gradient in the order in which parameters are represented in the
kernel
"""
self.variance.gradient = gradients[0]
self.lengthscale.gradient = gradients[1]
def sde(self):
"""
Return the state space representation of the covariance.
Note! For Sparse GP inference too small or two high values of lengthscale
lead to instabilities. This is because Qc are too high or too low
and P_inf are not full rank. This effect depends on approximatio order.
For N = 10. lengthscale must be in (0.8,8). For other N tests must be conducted.
N=6: (0.06,31)
Variance should be within reasonable bounds as well, but its dependence is linear.
The above facts do not take into accout regularization.
"""
#import pdb; pdb.set_trace()
if self.approx_order is not None:
N = self.approx_order
else:
N = 10# approximation order ( number of terms in exponent series expansion)
roots_rounding_decimals = 6
fn = np.math.factorial(N)
p_lengthscale = float( self.lengthscale )
p_variance = float(self.variance)
kappa = 1.0/2.0/p_lengthscale**2
Qc = np.array( ((p_variance*np.sqrt(np.pi/kappa)*fn*(4*kappa)**N,),) )
eps = 1e-12
if (float(Qc) > 1.0/eps) or (float(Qc) < eps):
warnings.warn("""sde_RBF kernel: the noise variance Qc is either very large or very small.
It influece conditioning of P_inf: {0:e}""".format(float(Qc)) )
pp1 = np.zeros((2*N+1,)) # array of polynomial coefficients from higher power to lower
for n in range(0, N+1): # (2N+1) - number of polynomial coefficients
pp1[2*(N-n)] = fn*(4.0*kappa)**(N-n)/np.math.factorial(n)*(-1)**n
pp = sp.poly1d(pp1)
roots = sp.roots(pp)
neg_real_part_roots = roots[np.round(np.real(roots) ,roots_rounding_decimals) < 0]
aa = sp.poly1d(neg_real_part_roots, r=True).coeffs
F = np.diag(np.ones((N-1,)),1)
F[-1,:] = -aa[-1:0:-1]
L= np.zeros((N,1))
L[N-1,0] = 1
H = np.zeros((1,N))
H[0,0] = 1
# Infinite covariance:
Pinf = lyap(F, -np.dot(L,np.dot( Qc[0,0],L.T)))
Pinf = 0.5*(Pinf + Pinf.T)
# Allocating space for derivatives
dF = np.empty([F.shape[0],F.shape[1],2])
dQc = np.empty([Qc.shape[0],Qc.shape[1],2])
dPinf = np.empty([Pinf.shape[0],Pinf.shape[1],2])
# Derivatives:
dFvariance = np.zeros(F.shape)
dFlengthscale = np.zeros(F.shape)
dFlengthscale[-1,:] = -aa[-1:0:-1]/p_lengthscale * np.arange(-N,0,1)
dQcvariance = Qc/p_variance
dQclengthscale = np.array(( (p_variance*np.sqrt(2*np.pi)*fn*2**N*p_lengthscale**(-2*N)*(1-2*N),),))
dPinf_variance = Pinf/p_variance
lp = Pinf.shape[0]
coeff = np.arange(1,lp+1).reshape(lp,1) + np.arange(1,lp+1).reshape(1,lp) - 2
coeff[np.mod(coeff,2) != 0] = 0
dPinf_lengthscale = -1/p_lengthscale*Pinf*coeff
dF[:,:,0] = dFvariance
dF[:,:,1] = dFlengthscale
dQc[:,:,0] = dQcvariance
dQc[:,:,1] = dQclengthscale
dPinf[:,:,0] = dPinf_variance
dPinf[:,:,1] = dPinf_lengthscale
P0 = Pinf.copy()
dP0 = dPinf.copy()
if self.balance:
# Benefits of this are not very sound. Helps only in one case:
# SVD Kalman + RBF kernel
import GPy.models.state_space_main as ssm
(F, L, Qc, H, Pinf, P0, dF, dQc, dPinf,dP0) = ssm.balance_ss_model(F, L, Qc, H, Pinf, P0, dF, dQc, dPinf, dP0 )
return (F, L, Qc, H, Pinf, P0, dF, dQc, dPinf, dP0)
class sde_Exponential(Exponential):
"""
Class provide extra functionality to transfer this covariance function into
SDE form.
Exponential kernel:
.. math::
k(r) = \sigma^2 \exp \\bigg(- \\frac{1}{2} r \\bigg) \\ \\ \\ \\ \text{ where } r = \sqrt{\sum_{i=1}^{input dim} \frac{(x_i-y_i)^2}{\ell_i^2} }
"""
def sde_update_gradient_full(self, gradients):
"""
Update gradient in the order in which parameters are represented in the
kernel
"""
self.variance.gradient = gradients[0]
self.lengthscale.gradient = gradients[1]
def sde(self):
"""
Return the state space representation of the covariance.
"""
variance = float(self.variance.values)
lengthscale = float(self.lengthscale)
F = np.array(((-1.0/lengthscale,),))
L = np.array(((1.0,),))
Qc =
|
np.array( ((2.0*variance/lengthscale,),) )
|
numpy.array
|
# coding=utf-8
# Copyright 2022 The Robustness Metrics Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Figures for 'Revisiting Calibration of Modern Neural Networks'.
This module contains figures showing ECE and accuracy, as well as reliability
diagrams, on clean ImageNet.
"""
from typing import Dict, List, Optional, Tuple
import matplotlib as mpl
from matplotlib import pyplot as plt
import numpy as np
import pandas as pd
from robustness_metrics.projects.revisiting_calibration import display
from robustness_metrics.projects.revisiting_calibration import plotting
from robustness_metrics.projects.revisiting_calibration import utils
def plot(df_main: pd.DataFrame,
df_reliability: pd.DataFrame,
gce_prefix: str = plotting.STD_GCE_PREFIX,
rescaling_method: str = "temperature_scaling",
add_guo: bool = False) -> mpl.figure.Figure:
"""Plots acc/calib and reliability diagrams on clean ImageNet (Figure 1)."""
family_order = display.get_model_families_sorted()
if add_guo:
family_order.append("guo")
if rescaling_method == "both":
rescaling_methods = ["none", "temperature_scaling"]
else:
rescaling_methods = [rescaling_method]
# Set up figure:
fig = plt.figure(figsize=(display.FULL_WIDTH, 1.6))
if rescaling_method == "both":
widths = [1.75, 1.75, 1, 1, 1]
else:
widths = [1.8, 1, 1, 1, 1, 1]
heights = [0.3, 1]
spec = fig.add_gridspec(
ncols=len(widths),
nrows=len(heights),
width_ratios=widths,
height_ratios=heights)
# First panels: acc vs calib ImageNet:
for ax_i, rescaling_method in enumerate(rescaling_methods):
df_plot, cmap = _get_data(df_main, gce_prefix, family_order,
rescaling_methods=[rescaling_method])
ax = fig.add_subplot(
spec[0:2, ax_i], box_aspect=1.0)
big_ax = ax
for i, family in enumerate(family_order):
if family == "guo":
continue
data_sub = df_plot[df_plot.ModelFamily == family]
if data_sub.empty:
continue
ax.scatter(
data_sub["downstream_error"],
data_sub["MetricValue"],
s=plotting.model_to_scatter_size(data_sub.model_size),
c=data_sub.family_index,
cmap=cmap,
vmin=0,
vmax=len(family_order),
marker=utils.assert_and_get_constant(data_sub.family_marker),
alpha=0.7,
linewidth=0.0,
zorder=100 - i, # Z-order is same as model family order.
label=family)
# Manually add Guo et al data:
# From Table 1 and Table S2 in https://arxiv.org/pdf/1706.04599.pdf.
# First model is DenseNet161, second is ResNet152.
if add_guo:
size = plotting.model_to_scatter_size(1)
color = [len(family_order) - 1] * 2
marker = "x"
if rescaling_method == "none":
ax.scatter([0.2257, 0.2231], [0.0628, 0.0548],
s=size, c=color, marker=marker, alpha=0.7, label="guo")
if rescaling_method == "temperature_scaling":
ax.scatter([0.2257, 0.2231], [0.0199, 0.0186],
s=size, c=color, marker=marker, alpha=0.7, label="guo")
plotting.show_spines(ax)
ax.set_anchor("N")
ax.grid(False, which="minor")
ax.grid(True, axis="both")
ax.xaxis.set_major_locator(mpl.ticker.MultipleLocator(0.1))
ax.yaxis.set_major_locator(mpl.ticker.MultipleLocator(0.01))
ax.set_ylim(bottom=0.01, top=0.09)
ax.set_xlim(0.05, 0.55)
ax.set_xlabel(display.XLABEL_INET_ERROR)
if len(rescaling_methods) == 1: # Showing just one rescaling method.
if rescaling_method == "none":
ax.set_ylabel(display.YLABEL_ECE_UNSCALED)
elif rescaling_method == "temperature_scaling":
ax.set_ylabel(display.YLABEL_ECE_TEMP_SCALED)
else: # Showing both rescaling methods.
if rescaling_method == "none":
ax.set_title("Unscaled")
elif rescaling_method == "temperature_scaling":
ax.set_title("Temperature-scaled")
if ax.is_first_col():
ax.set_ylabel("ECE")
# Remaining panels: Reliability diagrams:
offset = len(rescaling_methods)
model_names = [
"mixer/jft-300m/H/14",
"vit-h/14",
"bit-jft-r152-x4-480",
]
if offset == 1:
model_names += ["wsl_32x48d", "simclr-4x-fine-tuned-100"]
dataset_name = "imagenet(split='validation[20%:]')"
for i, model_name in enumerate(model_names):
# Get predictions:
mask = df_main.ModelName == model_name
mask &= df_main.rescaling_method == "none"
mask &= df_main.Metric == "accuracy"
mask &= df_main.DatasetName == dataset_name
raw_model_name = df_main[mask].RawModelName
assert len(raw_model_name) <= 1, df_main[mask]
if len(raw_model_name) == 0: # pylint: disable=g-explicit-length-test
continue
binned = _get_binned_reliability_data(
df_reliability, utils.assert_and_get_constant(raw_model_name),
dataset_name)
rel_ax = fig.add_subplot(spec[1, i + offset])
_plot_confidence_and_reliability(
conf_ax=fig.add_subplot(spec[0, i + offset]),
rel_ax=rel_ax, binned=binned, model_name=model_name, first_col=offset)
if rescaling_method == "none":
rel_ax.set_xlabel("Confidence\n(unscaled)")
elif rescaling_method == "temperature_scaled":
rel_ax.set_xlabel("Confidence\n(temp. scaled)")
# Model family legend:
handles, labels = plotting.get_model_family_legend(big_ax, family_order)
legend = big_ax.legend(
handles=handles, labels=labels, loc="upper right", frameon=True,
labelspacing=0.25, handletextpad=0.1, borderpad=0.3, fontsize=4)
legend.get_frame().set_linewidth(mpl.rcParams["axes.linewidth"])
legend.get_frame().set_edgecolor("lightgray")
plotting.apply_to_fig_text(fig, display.prettify)
offset = 0.05
for ax in fig.axes[1:]:
box = ax.get_position()
box.x0 += offset
box.x1 += offset
ax.set_position(box)
return fig
def plot_reliability_diagrams(
df_main: pd.DataFrame,
df_reliability: pd.DataFrame,
family: str,
rescaling_method: str = "temperature_scaling",
dataset_name: str = "imagenet(split='validation[20%:]')",
gce_prefix=plotting.STD_GCE_PREFIX) -> mpl.figure.Figure:
"""Plots acc/calib and reliability diagrams on clean ImageNet (Figure 1)."""
df_plot, _ = _get_data(
df_main, gce_prefix, [family], rescaling_methods=[rescaling_method],
dataset_name=dataset_name)
df_models = df_plot.drop_duplicates(subset=["ModelName"])
df_models = df_models.sort_values(by="model_size")
model_names = df_models.ModelName.to_list()
# Set up figure:
num_cols = max(5, len(model_names))
width = num_cols * 0.80
fig = plt.figure(figsize=(width, 1.4))
spec = fig.add_gridspec(ncols=num_cols, nrows=2, height_ratios=[0.4, 1])
for i in range(num_cols):
if i >= len(model_names):
# Add axes as placeholders for formatting but set to invisible:
fig.add_subplot(spec[0, i]).set_visible(False)
fig.add_subplot(spec[1, i]).set_visible(False)
continue
model_name = model_names[i]
# Get predictions:
mask = df_main.ModelName == model_name
mask &= df_main.rescaling_method == rescaling_method
mask &= df_main.Metric == "accuracy"
mask &= df_main.DatasetName == dataset_name
raw_model_name = df_main[mask].RawModelName
assert len(raw_model_name) == 1
binned = _get_binned_reliability_data(
df_reliability, utils.assert_and_get_constant(raw_model_name),
dataset_name)
rel_ax = fig.add_subplot(spec[1, i])
_plot_confidence_and_reliability(
conf_ax=fig.add_subplot(spec[0, i]),
rel_ax=rel_ax, binned=binned, model_name=model_name)
if rescaling_method == "none":
rel_ax.set_xlabel("Confidence\n(unscaled)")
elif rescaling_method == "temperature_scaling":
rel_ax.set_xlabel("Confidence\n(temp. scaled)")
def prettify(s):
s = display.prettify(s)
s = s.replace("MLP-Mixer-", "MLP-Mixer\n")
return s
plotting.apply_to_fig_text(fig, prettify)
plotting.apply_to_fig_text(fig, lambda x: x.replace("EfficientNet", "EffNet"))
fig.subplots_adjust(hspace=-0.05)
return fig
def _plot_confidence_and_reliability(conf_ax: mpl.axes.Axes,
rel_ax: mpl.axes.Axes,
binned: Dict[str, np.ndarray],
model_name: str,
first_col: int = 0) -> None:
"""Plots a confidence hist and reliability diagram into the provided axes."""
plot_single_reliability_diagram(rel_ax, binned, zorder=100)
# Plot and format confidence histogram (top row):
ax = conf_ax
bin_widths =
|
np.diff(binned["edges"])
|
numpy.diff
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
acq400.py interface to one acq400 appliance instance
- enumerates all site services, available as uut.sX.knob
- simple property interface allows natural "script-like" usage
- eg::
uut1.s0.set_arm = 1
- equivalent to running this on a logged in shell session on the UUT::
set.site1 set_arm=1
- monitors transient status on uut, provides blocking events
- read_channels() - reads all data from channel data service.
Created on Sun Jan 8 12:36:38 2017
@author: pgm
"""
import threading
import re
import os
import errno
import signal
import sys
from . import netclient
import numpy as np
import socket
import timeit
import time
class AcqPorts:
"""server port constants"""
TSTAT = 2235
STREAM = 4210
SITE0 = 4220
SEGSW = 4250
SEGSR = 4251
DPGSTL = 4521
GPGSTL= 4541
GPGDUMP = 4543
WRPG = 4606
BOLO8_CAL = 45072
DATA0 = 53000
MULTI_EVENT_TMP = 53555
MULTI_EVENT_DISK = 53556
LIVETOP = 53998
ONESHOT = 53999
AWG_ONCE = 54201
AWG_AUTOREARM = 54202
MGTDRAM = 53990
MGTDRAM_PULL_DATA = 53991
class AcqSites:
# site service at AcqPorts.SITE0+ AcqSites.SITEi
SITE0 = 0
SITE1 = 1
SITE2 = 2
SITE3 = 3
SITE4 = 4
SITE5 = 5
SITE6 = 6
SITE_CA = 13
SITE_CB = 12
SITE_DSP = 14
class SF:
"""state constants"""
STATE = 0
PRE = 1
POST = 2
ELAPSED = 3
DEMUX = 5
class STATE:
"""transient states"""
IDLE = 0
ARM = 1
RUNPRE = 2
RUNPOST = 3
POPROCESS = 4
CLEANUP = 5
@staticmethod
def str(st):
if st==STATE.IDLE:
return "IDLE"
if st==STATE.ARM:
return "ARM"
if st==STATE.RUNPRE:
return "RUNPRE"
if st==STATE.RUNPOST:
return "RUNPOST"
if st==STATE.POPROCESS:
return "POPROCESS"
if st==STATE.CLEANUP:
return "CLEANUP"
return "UNDEF"
class Signals:
EXT_TRG_DX = 'd0'
INT_TRG_DX = 'd1'
MB_CLK_DX = 'd1'
class StreamClient(netclient.Netclient):
"""handles live streaming data"""
def __init__(self, addr):
print("worktodo")
class RawClient(netclient.Netclient):
""" handles raw data from any service port
"""
def __init__(self, addr, port):
netclient.Netclient.__init__(self, addr, port)
def read(self, nelems, data_size=2, ncols=1, maxbuf=0x400000):
"""read ndata from channel data server, return as np array.
Args:
nelems number of data elements, each data_size*ncols
nelems <=0 :: read until the end
data_size : 2|4 short or int
ncols : optional, to create a 2D array
"""
_dtype = np.dtype('i4' if data_size == 4 else 'i2') # hmm, what if unsigned?
if nelems <= 0:
nelems = 0x80000000 #2GB approximates infinity. what is infinity in python?
bytestogo = nelems * data_size * ncols
total_buf = ""
while bytestogo > 0:
new_buf = self.sock.recv(bytestogo)
if not new_buf:
break # end of file
bytestogo = bytestogo - len(new_buf)
total_buf += new_buf # still dubious of append :-)
return np.frombuffer(total_buf, _dtype)
def get_blocks(self, nelems, data_size=2, ncols=1):
block = np.array([1])
while len(block) > 0:
block = self.read(nelems, data_size=data_size, ncols=ncols)
if len(block) > 0:
yield block
class MgtDramPullClient(RawClient):
def __init__(self, addr):
RawClient.__init__(self, addr, AcqPorts.MGTDRAM_PULL_DATA)
class ChannelClient(netclient.Netclient):
"""handles post shot data for one channel.
Args:
addr (str) : ip address or dns name
ch (int) : channel number 1..N
"""
def __init__(self, addr, ch):
netclient.Netclient.__init__(self, addr, AcqPorts.DATA0+ch)
# on Linux, recv returns on ~mtu
# on Windows, it may buffer up, and it's very slow unless we use a larger buffer
def read(self, ndata, data_size=2, maxbuf=0x400000):
"""read ndata from channel data server, return as np array.
Args:
ndata (int): number of elements
data_size : 2|4 short or int
maxbuf=4096 : max bytes to read per packet
Returns:
np: data array
* TODO buffer +=
this is probably horribly inefficient probably better::
retbuf = np.array(dtype, ndata)
retbuf[cursor].
"""
_dtype = np.dtype('i4' if data_size == 4 else 'i2')
total_buffer = buffer = self.sock.recv(maxbuf)
if int(ndata) == 0 or int(ndata) == -1:
while True:
buffer = self.sock.recv(maxbuf)
if not buffer:
return
|
np.frombuffer(total_buffer, dtype=_dtype, count=-1)
|
numpy.frombuffer
|
import hashlib
import math
import numpy as np
import pprint
import pytest
import random
import re
import subprocess
import sys
import tempfile
import json
from catboost import (
CatBoost,
CatBoostClassifier,
CatBoostRegressor,
CatBoostError,
EFstrType,
FeaturesData,
Pool,
cv,
sum_models,
train,)
from catboost.eval.catboost_evaluation import CatboostEvaluation, EvalType
from catboost.utils import eval_metric, create_cd, get_roc_curve, select_threshold
from catboost.utils import DataMetaInfo, TargetStats, compute_training_options
import os.path
from pandas import read_table, DataFrame, Series, Categorical
from six import PY3
from six.moves import xrange
from catboost_pytest_lib import (
DelayedTee,
binary_path,
data_file,
local_canonical_file,
permute_dataset_columns,
remove_time_from_json,
test_output_path,
generate_random_labeled_set
)
if sys.version_info.major == 2:
import cPickle as pickle
else:
import _pickle as pickle
pytest_plugins = "list_plugin",
fails_on_gpu = pytest.mark.fails_on_gpu
EPS = 1e-5
BOOSTING_TYPE = ['Ordered', 'Plain']
OVERFITTING_DETECTOR_TYPE = ['IncToDec', 'Iter']
NONSYMMETRIC = ['Lossguide', 'Depthwise']
TRAIN_FILE = data_file('adult', 'train_small')
TEST_FILE = data_file('adult', 'test_small')
CD_FILE = data_file('adult', 'train.cd')
NAN_TRAIN_FILE = data_file('adult_nan', 'train_small')
NAN_TEST_FILE = data_file('adult_nan', 'test_small')
NAN_CD_FILE = data_file('adult_nan', 'train.cd')
CLOUDNESS_TRAIN_FILE = data_file('cloudness_small', 'train_small')
CLOUDNESS_TEST_FILE = data_file('cloudness_small', 'test_small')
CLOUDNESS_CD_FILE = data_file('cloudness_small', 'train.cd')
QUERYWISE_TRAIN_FILE = data_file('querywise', 'train')
QUERYWISE_TEST_FILE = data_file('querywise', 'test')
QUERYWISE_CD_FILE = data_file('querywise', 'train.cd')
QUERYWISE_CD_FILE_WITH_GROUP_WEIGHT = data_file('querywise', 'train.cd.group_weight')
QUERYWISE_CD_FILE_WITH_GROUP_ID = data_file('querywise', 'train.cd.query_id')
QUERYWISE_CD_FILE_WITH_SUBGROUP_ID = data_file('querywise', 'train.cd.subgroup_id')
QUERYWISE_TRAIN_PAIRS_FILE = data_file('querywise', 'train.pairs')
QUERYWISE_TRAIN_PAIRS_FILE_WITH_PAIR_WEIGHT = data_file('querywise', 'train.pairs.weighted')
QUERYWISE_TEST_PAIRS_FILE = data_file('querywise', 'test.pairs')
AIRLINES_5K_TRAIN_FILE = data_file('airlines_5K', 'train')
AIRLINES_5K_TEST_FILE = data_file('airlines_5K', 'test')
AIRLINES_5K_CD_FILE = data_file('airlines_5K', 'cd')
SMALL_CATEGORIAL_FILE = data_file('small_categorial', 'train')
SMALL_CATEGORIAL_CD_FILE = data_file('small_categorial', 'train.cd')
BLACK_FRIDAY_TRAIN_FILE = data_file('black_friday', 'train')
BLACK_FRIDAY_TEST_FILE = data_file('black_friday', 'test')
BLACK_FRIDAY_CD_FILE = data_file('black_friday', 'cd')
OUTPUT_MODEL_PATH = 'model.bin'
OUTPUT_COREML_MODEL_PATH = 'model.mlmodel'
OUTPUT_CPP_MODEL_PATH = 'model.cpp'
OUTPUT_PYTHON_MODEL_PATH = 'model.py'
OUTPUT_JSON_MODEL_PATH = 'model.json'
OUTPUT_ONNX_MODEL_PATH = 'model.onnx'
PREDS_PATH = 'predictions.npy'
PREDS_TXT_PATH = 'predictions.txt'
FIMP_NPY_PATH = 'feature_importance.npy'
FIMP_TXT_PATH = 'feature_importance.txt'
OIMP_PATH = 'object_importances.txt'
JSON_LOG_PATH = 'catboost_info/catboost_training.json'
TARGET_IDX = 1
CAT_FEATURES = [0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 16]
model_diff_tool = binary_path("catboost/tools/model_comparator/model_comparator")
np.set_printoptions(legacy='1.13')
class LogStdout:
def __init__(self, file):
self.log_file = file
def __enter__(self):
self.saved_stdout = sys.stdout
sys.stdout = self.log_file
return self.saved_stdout
def __exit__(self, exc_type, exc_value, exc_traceback):
sys.stdout = self.saved_stdout
self.log_file.close()
def compare_canonical_models(model, diff_limit=0):
return local_canonical_file(model, diff_tool=[model_diff_tool, '--diff-limit', str(diff_limit)])
def map_cat_features(data, cat_features):
result = []
for i in range(data.shape[0]):
result.append([])
for j in range(data.shape[1]):
result[i].append(str(data[i, j]) if j in cat_features else data[i, j])
return result
def _check_shape(pool, object_count, features_count):
return np.shape(pool.get_features()) == (object_count, features_count)
def _check_data(data1, data2):
return np.all(np.isclose(data1, data2, rtol=0.001, equal_nan=True))
def _count_lines(afile):
with open(afile, 'r') as f:
num_lines = sum(1 for line in f)
return num_lines
def _generate_nontrivial_binary_target(num, seed=20181219, prng=None):
'''
Generate binary vector with non zero variance
:param num:
:return:
'''
if prng is None:
prng = np.random.RandomState(seed=seed)
def gen():
return prng.randint(0, 2, size=num)
if num <= 1:
return gen()
y = gen() # 0/1 labels
while y.min() == y.max():
y = gen()
return y
def _generate_random_target(num, seed=20181219, prng=None):
if prng is None:
prng = np.random.RandomState(seed=seed)
return prng.random_sample((num,))
def set_random_weight(pool, seed=20181219, prng=None):
if prng is None:
prng = np.random.RandomState(seed=seed)
pool.set_weight(prng.random_sample(pool.num_row()))
if pool.num_pairs() > 0:
pool.set_pairs_weight(prng.random_sample(pool.num_pairs()))
def verify_finite(result):
inf = float('inf')
for r in result:
assert(r == r)
assert(abs(r) < inf)
def append_param(metric_name, param):
return metric_name + (':' if ':' not in metric_name else ';') + param
# returns (features DataFrame, cat_feature_indices)
def load_pool_features_as_df(pool_file, cd_file, target_idx):
data = read_table(pool_file, header=None, dtype=str)
data.drop([target_idx], axis=1, inplace=True)
return (data, Pool(pool_file, column_description=cd_file).get_cat_feature_indices())
# Test cases begin here ########################################################
def test_load_file():
assert _check_shape(Pool(TRAIN_FILE, column_description=CD_FILE), 101, 17)
def test_load_list():
pool = Pool(TRAIN_FILE, column_description=CD_FILE)
cat_features = pool.get_cat_feature_indices()
data = map_cat_features(pool.get_features(), cat_features)
label = pool.get_label()
assert _check_shape(Pool(data, label, cat_features), 101, 17)
def test_load_ndarray():
pool = Pool(TRAIN_FILE, column_description=CD_FILE)
cat_features = pool.get_cat_feature_indices()
data = np.array(map_cat_features(pool.get_features(), cat_features))
label = np.array(pool.get_label())
assert _check_shape(Pool(data, label, cat_features), 101, 17)
@pytest.mark.parametrize('dataset', ['adult', 'adult_nan', 'querywise'])
def test_load_df_vs_load_from_file(dataset):
train_file, cd_file, target_idx, other_non_feature_columns = {
'adult': (TRAIN_FILE, CD_FILE, TARGET_IDX, []),
'adult_nan': (NAN_TRAIN_FILE, NAN_CD_FILE, TARGET_IDX, []),
'querywise': (QUERYWISE_TRAIN_FILE, QUERYWISE_CD_FILE, 2, [0, 1, 3, 4])
}[dataset]
pool1 = Pool(train_file, column_description=cd_file)
data = read_table(train_file, header=None)
labels = DataFrame(data.iloc[:, target_idx], dtype=np.float32)
data.drop([target_idx] + other_non_feature_columns, axis=1, inplace=True)
cat_features = pool1.get_cat_feature_indices()
pool2 = Pool(data, labels, cat_features)
assert _check_data(pool1.get_features(), pool2.get_features())
assert _check_data([float(label) for label in pool1.get_label()], pool2.get_label())
def test_load_series():
pool = Pool(TRAIN_FILE, column_description=CD_FILE)
data = read_table(TRAIN_FILE, header=None)
labels = Series(data.iloc[:, TARGET_IDX])
data.drop([TARGET_IDX], axis=1, inplace=True)
data = Series(list(data.values))
cat_features = pool.get_cat_feature_indices()
pool2 = Pool(data, labels, cat_features)
assert _check_data(pool.get_features(), pool2.get_features())
assert [int(label) for label in pool.get_label()] == pool2.get_label()
def test_pool_cat_features():
pool = Pool(TRAIN_FILE, column_description=CD_FILE)
assert np.all(pool.get_cat_feature_indices() == CAT_FEATURES)
def test_pool_cat_features_as_strings():
df = DataFrame(data=[[1, 2], [3, 4]], columns=['col1', 'col2'])
pool = Pool(df, cat_features=['col2'])
assert np.all(pool.get_cat_feature_indices() == [1])
data = [[1, 2, 3], [4, 5, 6]]
pool = Pool(data, feature_names=['col1', 'col2', 'col3'], cat_features=['col2', 'col3'])
assert np.all(pool.get_cat_feature_indices() == [1, 2])
data = [[1, 2, 3], [4, 5, 6]]
with pytest.raises(CatBoostError):
Pool(data, cat_features=['col2', 'col3'])
def test_load_generated():
pool_size = (100, 10)
prng = np.random.RandomState(seed=20181219)
data = np.round(prng.normal(size=pool_size), decimals=3)
label = _generate_nontrivial_binary_target(pool_size[0], prng=prng)
pool = Pool(data, label)
assert _check_data(pool.get_features(), data)
assert _check_data(pool.get_label(), label)
def test_load_dumps():
pool_size = (100, 10)
prng = np.random.RandomState(seed=20181219)
data = prng.randint(10, size=pool_size)
labels = _generate_nontrivial_binary_target(pool_size[0], prng=prng)
pool1 = Pool(data, labels)
lines = []
for i in range(len(data)):
line = [str(labels[i])] + [str(x) for x in data[i]]
lines.append('\t'.join(line))
text = '\n'.join(lines)
with open('test_data_dumps', 'w') as f:
f.write(text)
pool2 = Pool('test_data_dumps')
assert _check_data(pool1.get_features(), pool2.get_features())
assert pool1.get_label() == [int(label) for label in pool2.get_label()]
def test_dataframe_with_pandas_categorical_columns():
df = DataFrame()
df['num_feat_0'] = [0, 1, 0, 2, 3, 1, 2]
df['num_feat_1'] = [0.12, 0.8, 0.33, 0.11, 0.0, 1.0, 0.0]
df['cat_feat_2'] = Series(['A', 'B', 'A', 'C', 'A', 'A', 'A'], dtype='category')
df['cat_feat_3'] = Series(['x', 'x', 'y', 'y', 'y', 'x', 'x'])
df['cat_feat_4'] = Categorical(
['large', 'small', 'medium', 'large', 'small', 'small', 'medium'],
categories=['small', 'medium', 'large'],
ordered=True
)
df['cat_feat_5'] = [0, 1, 0, 2, 3, 1, 2]
labels = [0, 1, 1, 0, 1, 0, 1]
model = CatBoostClassifier(iterations=2)
model.fit(X=df, y=labels, cat_features=[2, 3, 4, 5])
pred = model.predict(df)
preds_path = test_output_path(PREDS_TXT_PATH)
np.savetxt(preds_path, np.array(pred), fmt='%.8f')
return local_canonical_file(preds_path)
# feature_matrix is (doc_count x feature_count)
def get_features_data_from_matrix(feature_matrix, cat_feature_indices, order='C'):
object_count = len(feature_matrix)
feature_count = len(feature_matrix[0])
cat_feature_count = len(cat_feature_indices)
num_feature_count = feature_count - cat_feature_count
result_num = np.empty((object_count, num_feature_count), dtype=np.float32, order=order)
result_cat = np.empty((object_count, cat_feature_count), dtype=object, order=order)
for object_idx in xrange(object_count):
num_feature_idx = 0
cat_feature_idx = 0
for feature_idx in xrange(len(feature_matrix[object_idx])):
if (cat_feature_idx < cat_feature_count) and (cat_feature_indices[cat_feature_idx] == feature_idx):
# simplified handling of transformation to bytes for tests
result_cat[object_idx, cat_feature_idx] = (
feature_matrix[object_idx, feature_idx]
if isinstance(feature_matrix[object_idx, feature_idx], bytes)
else str(feature_matrix[object_idx, feature_idx]).encode('utf-8')
)
cat_feature_idx += 1
else:
result_num[object_idx, num_feature_idx] = float(feature_matrix[object_idx, feature_idx])
num_feature_idx += 1
return FeaturesData(num_feature_data=result_num, cat_feature_data=result_cat)
def get_features_data_from_file(data_file, drop_columns, cat_feature_indices, order='C'):
data_matrix_from_file = read_table(data_file, header=None, dtype=str)
data_matrix_from_file.drop(drop_columns, axis=1, inplace=True)
return get_features_data_from_matrix(np.array(data_matrix_from_file), cat_feature_indices, order)
def compare_flat_index_and_features_data_pools(flat_index_pool, features_data_pool):
assert flat_index_pool.shape == features_data_pool.shape
cat_feature_indices = flat_index_pool.get_cat_feature_indices()
num_feature_count = flat_index_pool.shape[1] - len(cat_feature_indices)
flat_index_pool_features = flat_index_pool.get_features()
features_data_pool_features = features_data_pool.get_features()
for object_idx in xrange(flat_index_pool.shape[0]):
num_feature_idx = 0
cat_feature_idx = 0
for flat_feature_idx in xrange(flat_index_pool.shape[1]):
if (
(cat_feature_idx < len(cat_feature_indices))
and (cat_feature_indices[cat_feature_idx] == flat_feature_idx)
):
# simplified handling of transformation to bytes for tests
assert (flat_index_pool_features[object_idx][flat_feature_idx] ==
features_data_pool_features[object_idx][num_feature_count + cat_feature_idx])
cat_feature_idx += 1
else:
assert np.isclose(
flat_index_pool_features[object_idx][flat_feature_idx],
features_data_pool_features[object_idx][num_feature_idx],
rtol=0.001,
equal_nan=True
)
num_feature_idx += 1
@pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F'])
def test_from_features_data_vs_load_from_files(order):
pool_from_files = Pool(TRAIN_FILE, column_description=CD_FILE)
features_data = get_features_data_from_file(
data_file=TRAIN_FILE,
drop_columns=[TARGET_IDX],
cat_feature_indices=pool_from_files.get_cat_feature_indices(),
order=order
)
pool_from_features_data = Pool(data=features_data)
compare_flat_index_and_features_data_pools(pool_from_files, pool_from_features_data)
def test_features_data_with_empty_objects():
fd = FeaturesData(
cat_feature_data=np.empty((0, 4), dtype=object)
)
assert fd.get_object_count() == 0
assert fd.get_feature_count() == 4
assert fd.get_num_feature_count() == 0
assert fd.get_cat_feature_count() == 4
assert fd.get_feature_names() == [''] * 4
fd = FeaturesData(
num_feature_data=np.empty((0, 2), dtype=np.float32),
num_feature_names=['f0', 'f1']
)
assert fd.get_object_count() == 0
assert fd.get_feature_count() == 2
assert fd.get_num_feature_count() == 2
assert fd.get_cat_feature_count() == 0
assert fd.get_feature_names() == ['f0', 'f1']
fd = FeaturesData(
cat_feature_data=np.empty((0, 2), dtype=object),
num_feature_data=np.empty((0, 3), dtype=np.float32)
)
assert fd.get_object_count() == 0
assert fd.get_feature_count() == 5
assert fd.get_num_feature_count() == 3
assert fd.get_cat_feature_count() == 2
assert fd.get_feature_names() == [''] * 5
def test_features_data_names():
# empty specification of names
fd = FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object),
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32),
)
assert fd.get_feature_names() == [''] * 5
# full specification of names
fd = FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object),
cat_feature_names=['shop', 'search'],
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32),
num_feature_names=['weight', 'price', 'volume']
)
assert fd.get_feature_names() == ['weight', 'price', 'volume', 'shop', 'search']
# partial specification of names
fd = FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object),
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32),
num_feature_names=['weight', 'price', 'volume']
)
assert fd.get_feature_names() == ['weight', 'price', 'volume', '', '']
# partial specification of names
fd = FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object),
cat_feature_names=['shop', 'search'],
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32),
)
assert fd.get_feature_names() == ['', '', '', 'shop', 'search']
def compare_pools_from_features_data_and_generic_matrix(
features_data,
generic_matrix,
cat_features_indices,
feature_names=None
):
pool1 = Pool(data=features_data)
pool2 = Pool(data=generic_matrix, cat_features=cat_features_indices, feature_names=feature_names)
assert _check_data(pool1.get_features(), pool2.get_features())
assert pool1.get_cat_feature_indices() == pool2.get_cat_feature_indices()
assert pool1.get_feature_names() == pool2.get_feature_names()
@pytest.mark.parametrize('order', ['C', 'F'], ids=['order=C', 'order=F'])
def test_features_data_good(order):
# 0 objects
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(cat_feature_data=np.empty((0, 4), dtype=object, order=order)),
np.empty((0, 4), dtype=object),
cat_features_indices=[0, 1, 2, 3]
)
# 0 objects
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
cat_feature_data=np.empty((0, 2), dtype=object, order=order),
cat_feature_names=['cat0', 'cat1'],
num_feature_data=np.empty((0, 3), dtype=np.float32, order=order),
),
np.empty((0, 5), dtype=object),
cat_features_indices=[3, 4],
feature_names=['', '', '', 'cat0', 'cat1']
)
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order)
),
[[b'amazon', b'bing'], [b'ebay', b'google']],
cat_features_indices=[0, 1]
)
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order)
),
[[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]],
cat_features_indices=[]
)
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order),
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order)
),
[[1.0, 2.0, 3.0, b'amazon', b'bing'], [22.0, 7.1, 10.2, b'ebay', b'google']],
cat_features_indices=[3, 4]
)
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order),
cat_feature_names=['shop', 'search']
),
[[b'amazon', b'bing'], [b'ebay', b'google']],
cat_features_indices=[0, 1],
feature_names=['shop', 'search']
)
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order),
num_feature_names=['weight', 'price', 'volume']
),
[[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]],
cat_features_indices=[],
feature_names=['weight', 'price', 'volume']
)
compare_pools_from_features_data_and_generic_matrix(
FeaturesData(
cat_feature_data=np.array([[b'amazon', b'bing'], [b'ebay', b'google']], dtype=object, order=order),
cat_feature_names=['shop', 'search'],
num_feature_data=np.array([[1.0, 2.0, 3.0], [22.0, 7.1, 10.2]], dtype=np.float32, order=order),
num_feature_names=['weight', 'price', 'volume']
),
[[1.0, 2.0, 3.0, b'amazon', b'bing'], [22.0, 7.1, 10.2, b'ebay', b'google']],
cat_features_indices=[3, 4],
feature_names=['weight', 'price', 'volume', 'shop', 'search']
)
def test_features_data_bad():
# empty
with pytest.raises(CatBoostError):
FeaturesData()
# names w/o data
with pytest.raises(CatBoostError):
FeaturesData(cat_feature_data=[[b'amazon', b'bing']], num_feature_names=['price'])
# bad matrix type
with pytest.raises(CatBoostError):
FeaturesData(
cat_feature_data=[[b'amazon', b'bing']],
num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float32)
)
# bad matrix shape
with pytest.raises(CatBoostError):
FeaturesData(num_feature_data=np.array([[[1.0], [2.0], [3.0]]], dtype=np.float32))
# bad element type
with pytest.raises(CatBoostError):
FeaturesData(
cat_feature_data=np.array([b'amazon', b'bing'], dtype=object),
num_feature_data=np.array([1.0, 2.0, 3.0], dtype=np.float64)
)
# bad element type
with pytest.raises(CatBoostError):
FeaturesData(cat_feature_data=
|
np.array(['amazon', 'bing'])
|
numpy.array
|
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 3 19:30:34 2021
@author: <NAME>
"""
# Unidad de recursos de generación
# Codigo principal --- Optimización de estabilidad de perfiles de voltaje
# Importa librerias necesarias
import pandas as pd; import numpy as np; import random; from datetime import date
import time
# Leectura de la base de datos
print("")
today = date.today().strftime("%d/%m/%Y")
print(date.today() ,' Inicia lectura del sistema a analizar')
print(' ',date.today() ,' ',time.strftime("%X"))
Data_collection = pd.read_excel("14 bus data.xlsx", sheet_name=None, header=0)
print(date.today() ,' Finaliza lectura del sistema a analizar')
# Define las 4 matrices de datos
LINE = 1*Data_collection['Line']; BUS = 1*Data_collection['Bus'];
GEN = 1*Data_collection['Gen']; SHUNT = 1*Data_collection['Shunts'];
# # ++++++++++++++++ Evalua la red original y determina el plan de expansión ++++++++++++++++
print("")
# Inicia la población del algoritmo de optimización
poblacion = 10
if poblacion*(len(GEN)+len(SHUNT)) <= 60: pop = 60
else: pop = 120
# Define la población inicial de los voltajes de los nodos PV
print(' Población inicial de los voltajes de los nodos PV')
Vmin = 0.93; Vmax = 1.07
x_vgen = np.zeros((pop,len(GEN)))
for k in range(0,pop):
for j in range(0,len(GEN)):
x_vgen[k,j] = Vmin + (Vmax - Vmin)*np.random.rand(1)
print(' Propuesta de los niveles de generación')
x_gen = np.zeros((pop,len(GEN)))
for k in range(0,pop):
for j in range(0,len(GEN)):
x_gen[k,j] = GEN.iloc[j,3] + (GEN.iloc[j,2] - GEN.iloc[j,3])*np.random.rand(1)
print(' Corrigiendo generación')
for k in range(0,pop):
# si la generación es mayor que la carga
if sum(x_gen[k,:]) > 1.01*sum(BUS.iloc[:,5]):
alfa = sum(BUS.iloc[:,5])/sum(x_gen[k,:])
x_gen[k,:] = alfa*x_gen[k,:]
# si la carga es mayor que la generación
elif sum(BUS.iloc[:,5]) > sum(x_gen[k,:]):
beta = sum(x_gen[k,:])/sum(BUS.iloc[:,5])
x_gen[k,:] = x_gen[k,:]/beta
# Define la población inicial de los Taps de los transformadores
# Busca transformadores en el sistema
TAP = []; a = LINE.columns.tolist().index('Tipo de línea')
for k in range(0,len(LINE)):
if LINE.iloc[k,a] > 0: TAP.append(LINE.iloc[k,::])
TAP = pd.DataFrame(TAP)
if len(TAP) > 0:
print(' Población inicial de las posiciones de los taps')
Tmin = 0.9; Tmax = 1.1
x_tap = np.zeros((pop,len(TAP)))
for k in range(0,pop):
for j in range(0,len(TAP)):
x_tap[k,j] = (random.randint(int(Tmin*100),int(Tmax*100))/100)
else:
print(' No se encontraron transformadores en la red')
# # Define la población inicial de los shunts
if len(SHUNT) > 0:
print(' Población inicial de las suceptancias shunt')
Smax = np.zeros(len(SHUNT))
Smin = np.zeros(len(SHUNT))
x_shunt = np.zeros((pop,len(SHUNT)))
maxind = SHUNT.columns.tolist().index('Bsvc max pu')
minind = SHUNT.columns.tolist().index('Bsvc min pu')
for k in range(0,len(SHUNT)):
Smax[k] = SHUNT.iloc[k,maxind]
Smin[k] = SHUNT.iloc[k,minind]
for k in range(0,pop):
for j in range(0,len(SHUNT)):
x_shunt[k,j] = Smin[j] + (Smax[j] - Smin[j])*np.random.rand(1)
else:
print(' No se encontraron elementos shunt en la red')
# Total de iteraciones
n_itera = 10
# Función para determinar elnumero de subconjuntos
def Mvalue(m,Obf1,Obf0):
if min(Obf0) <= min(Obf1): m = m+1
elif min(Obf0) > min(Obf1) and m >=3: m = m - 1
# Corrige valor de m en caso de ser muy grande
if m > 6: m = 6
return m
# Numero inicial de subconjuntos
M = 2
# Matrices de almacenamiento de información
bsof=[]
xigen = np.zeros((n_itera,len(GEN))); xivgen = np.zeros((n_itera,len(GEN)))
Obfun=np.zeros((n_itera,pop)); Obfunnew=np.zeros((n_itera,pop))
XPG=np.zeros((n_itera,pop,len(GEN))) # guarda datos de cadidatos de generación
XVG=np.zeros((n_itera,pop,len(GEN))) # guarda datos de voltajes candidatos
if len (TAP) > 0:
XTAP = np.zeros((n_itera,pop,len(TAP))) # guarda datos de TAPS candidatos
xitap = np.zeros((n_itera,len(TAP)))
if len (SHUNT) > 0:
XSHUNT = np.zeros((n_itera,pop,len(SHUNT))) # guarda datos de suceptancias candidatos
xishunt = np.zeros((n_itera,len(SHUNT)))
# Llama a las funciones del proceso iterativo
from Power_Flow import PowerFlowAC # Función para calculo de flujos AC
from M_YBUS import YBUS_mod # Función para construir Ybus modificada
from Invparcial import shipley # Función para construir inversa parcial
from Fobjetivo import Lindex # Función para construir inversa parcial
from ActualizaX import UpdateDesitionVariablesAA # Función para actualizar 2 variables de desición
from ActualizaX import UpdateDesitionVariablesBB # Función para actualizar 3 variables de desición
from ActualizaX import UpdateDesitionVariablesCC # Función para actualizar 4 variables de desición
print("")
print(date.today() ,' Inicia proceso iterativo')
print(' ',date.today() ,' ',time.strftime("%X"))
# +++++++++++++++++++++++++++ Inicia proceso iterativo +++++++++++++++++++++++
for k in range(0,n_itera):
# Crea los conjuntos de pobalciones
m=[]
for n in range(0,M):
if n==0: m.append(round(pop/M))
#elif n == int(M-1): m.append(int(pop))
else: m.append(round((n+1)*pop/M))
for p in range(0,pop):
# Matrices auxiliares de datos
line = 1*LINE; bus = 1*BUS
shunt = 1*SHUNT; Gen = 1*GEN
# asigna columna de generacion a cero
bus.iloc[:,3] = 1*np.zeros(len(BUS))
# asigna columna de dispositivos de compensación a cero
bus.iloc[:,8] = 1*np.zeros(len(BUS))
# Modifica la matriz line de acuerdo a la poblacion de los TAPS
if len(TAP) > 0:
for i in range(0,len(TAP)):
for j in range(0,len(line)):
if TAP.iloc[i,0] == line.iloc[j,0] and TAP.iloc[i,1] == line.iloc[j,1]:
# Modifica el valor del tap
line.iloc[j,a] = x_tap[p,i]
# Modifica la matriz bus de acuerdo a los dispositivos shunt
if len(SHUNT) > 0:
for i in range(0,len(SHUNT)):
for j in range(0,len(bus)):
if bus.iloc[j,0] == shunt.iloc[i,1]:
# Modifica el valor de la suceptancia
# solo en esta ocasión se utiliza la solución inicial del voltage
bus.iloc[j,8] = x_shunt[p,i]
# Modifica la matriz bus de acuerdo a la población de voltajes de generación
for i in range(0,len(GEN)):
for j in range(0,len(bus)):
if bus.iloc[j,0] == GEN.iloc[i,1]:
# Modifica el valor del voltaje
bus.iloc[j,1] = x_vgen[p,i]
# Modifica la matriz bus de acuerdo a la población de generación
for i in range(0,len(GEN)):
for j in range(0,len(bus)):
if bus.iloc[j,0] == GEN.iloc[i,1]:
# Modifica el valor del generación
bus.iloc[j,3] += x_gen[p,i]
busa=1*np.asarray(bus); linea=1*
|
np.asarray(line)
|
numpy.asarray
|
import numpy as np
from numpy.ctypeslib import as_array
from numpy.testing import assert_array_equal
from meshkernel import (
Contacts,
GeometryList,
Mesh1d,
Mesh2d,
MeshRefinementParameters,
OrthogonalizationParameters,
)
from meshkernel.c_structures import (
CContacts,
CGeometryList,
CMesh1d,
CMesh2d,
CMeshRefinementParameters,
COrthogonalizationParameters,
)
def test_cmesh2d_from_mesh2d():
"""Tests `from_mesh2d` of the `CMesh2D` class with a simple mesh."""
# 2---3
# | |
# 0---1
node_x = np.array([0.0, 1.0, 1.0, 0.0], dtype=np.double)
node_y = np.array([0.0, 0.0, 1.0, 1.0], dtype=np.double)
edge_nodes = np.array([0, 1, 1, 3, 3, 2, 2, 0], dtype=np.int32)
face_nodes = np.array([0, 1, 2, 3], dtype=np.int32)
nodes_per_face = np.array([4], dtype=np.int32)
edge_x = np.array([0.5, 1.0, 0.5, 0.0], dtype=np.double)
edge_y = np.array([0.0, 0.5, 1.0, 0.5], dtype=np.double)
face_x = np.array([0.5], dtype=np.double)
face_y = np.array([0.5], dtype=np.double)
mesh2d = Mesh2d(node_x, node_y, edge_nodes)
mesh2d.face_nodes = face_nodes
mesh2d.nodes_per_face = nodes_per_face
mesh2d.edge_x = edge_x
mesh2d.edge_y = edge_y
mesh2d.face_x = face_x
mesh2d.face_y = face_y
c_mesh2d = CMesh2d.from_mesh2d(mesh2d)
# Get the numpy arrays from the ctypes object
c_mesh2d_node_x = as_array(c_mesh2d.node_x, (4,))
c_mesh2d_node_y = as_array(c_mesh2d.node_y, (4,))
c_mesh2d_edge_nodes =
|
as_array(c_mesh2d.edge_nodes, (8,))
|
numpy.ctypeslib.as_array
|
import collections
import numpy as np
import time
import datetime
import os
import networkx as nx
import pytz
import cloudvolume
import pandas as pd
from multiwrapper import multiprocessing_utils as mu
from . import mincut
from google.api_core.retry import Retry, if_exception_type
from google.api_core.exceptions import Aborted, DeadlineExceeded, \
ServiceUnavailable
from google.auth import credentials
from google.cloud import bigtable
from google.cloud.bigtable.row_filters import TimestampRange, \
TimestampRangeFilter, ColumnRangeFilter, ValueRangeFilter, RowFilterChain, \
ColumnQualifierRegexFilter, RowFilterUnion, ConditionalRowFilter, \
PassAllFilter, BlockAllFilter, RowFilter
from google.cloud.bigtable.column_family import MaxVersionsGCRule
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union
# global variables
HOME = os.path.expanduser("~")
N_DIGITS_UINT64 = len(str(np.iinfo(np.uint64).max))
LOCK_EXPIRED_TIME_DELTA = datetime.timedelta(minutes=2, seconds=00)
UTC = pytz.UTC
# Setting environment wide credential path
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = \
HOME + "/.cloudvolume/secrets/google-secret.json"
def compute_indices_pandas(data) -> pd.Series:
""" Computes indices of all unique entries
Make sure to remap your array to a dense range starting at zero
https://stackoverflow.com/questions/33281957/faster-alternative-to-numpy-where
:param data: np.ndarray
:return: pandas dataframe
"""
d = data.ravel()
f = lambda x: np.unravel_index(x.index, data.shape)
return pd.Series(d).groupby(d).apply(f)
def log_n(arr, n):
""" Computes log to base n
:param arr: array or float
:param n: int
base
:return: return log_n(arr)
"""
if n == 2:
return np.log2(arr)
elif n == 10:
return np.log10(arr)
else:
return np.log(arr) / np.log(n)
def pad_node_id(node_id: np.uint64) -> str:
""" Pad node id to 20 digits
:param node_id: int
:return: str
"""
return "%.20d" % node_id
def serialize_uint64(node_id: np.uint64) -> bytes:
""" Serializes an id to be ingested by a bigtable table row
:param node_id: int
:return: str
"""
return serialize_key(pad_node_id(node_id)) # type: ignore
def deserialize_uint64(node_id: bytes) -> np.uint64:
""" De-serializes a node id from a BigTable row
:param node_id: bytes
:return: np.uint64
"""
return np.uint64(node_id.decode()) # type: ignore
def serialize_key(key: str) -> bytes:
""" Serializes a key to be ingested by a bigtable table row
:param key: str
:return: bytes
"""
return key.encode("utf-8")
def deserialize_key(key: bytes) -> str:
""" Deserializes a row key
:param key: bytes
:return: str
"""
return key.decode()
def row_to_byte_dict(row: bigtable.row.Row, f_id: str = None, idx: int = None
) -> Dict[int, Dict]:
""" Reads row entries to a dictionary
:param row: row
:param f_id: str
:param idx: int
:return: dict
"""
row_dict = {}
for fam_id in row.cells.keys():
row_dict[fam_id] = {}
for row_k in row.cells[fam_id].keys():
if idx is None:
row_dict[fam_id][deserialize_key(row_k)] = \
[c.value for c in row.cells[fam_id][row_k]]
else:
row_dict[fam_id][deserialize_key(row_k)] = \
row.cells[fam_id][row_k][idx].value
if f_id is not None and f_id in row_dict:
return row_dict[f_id]
elif f_id is None:
return row_dict
else:
raise Exception("Family id not found")
def compute_bitmasks(n_layers: int, fan_out: int) -> Dict[int, int]:
"""
:param n_layers: int
:return: dict
layer -> bits for layer id
"""
bitmask_dict = {}
for i_layer in range(n_layers, 0, -1):
if i_layer == 1:
# Lock this layer to an 8 bit layout to maintain compatibility with
# the exported segmentation
# n_bits_for_layers = np.ceil(log_n(fan_out**(n_layers - 2), fan_out))
n_bits_for_layers = 8
else:
n_bits_for_layers = max(1,
np.ceil(log_n(fan_out**(n_layers - i_layer),
fan_out)))
# n_bits_for_layers = fan_out ** int(np.ceil(log_n(n_bits_for_layers, fan_out)))
n_bits_for_layers = int(n_bits_for_layers)
assert n_bits_for_layers <= 8
bitmask_dict[i_layer] = n_bits_for_layers
return bitmask_dict
class ChunkedGraph(object):
def __init__(self,
table_id: str,
instance_id: str = "pychunkedgraph",
project_id: str = "neuromancer-seung-import",
chunk_size: Tuple[int, int, int] = None,
fan_out: Optional[int] = None,
n_layers: Optional[int] = None,
credentials: Optional[credentials.Credentials] = None,
client: bigtable.Client = None,
cv_path: str = None,
is_new: bool = False) -> None:
if client is not None:
self._client = client
else:
self._client = bigtable.Client(project=project_id, admin=True,
credentials=credentials)
self._instance = self.client.instance(instance_id)
self._table_id = table_id
self._table = self.instance.table(self.table_id)
if is_new:
self.check_and_create_table()
self._n_layers = self.check_and_write_table_parameters("n_layers",
n_layers)
self._fan_out = self.check_and_write_table_parameters("fan_out",
fan_out)
self._cv_path = self.check_and_write_table_parameters("cv_path",
cv_path)
self._chunk_size = self.check_and_write_table_parameters("chunk_size",
chunk_size)
self._bitmasks = compute_bitmasks(self.n_layers, self.fan_out)
self._cv = None
# Hardcoded parameters
self._n_bits_for_layer_id = 8
self._cv_mip = 3
@property
def client(self) -> bigtable.Client:
return self._client
@property
def instance(self) -> bigtable.instance.Instance:
return self._instance
@property
def table(self) -> bigtable.table.Table:
return self._table
@property
def table_id(self) -> str:
return self._table_id
@property
def instance_id(self):
return self.instance.instance_id
@property
def project_id(self):
return self.client.project
@property
def family_id(self) -> str:
return "0"
@property
def incrementer_family_id(self) -> str:
return "1"
@property
def log_family_id(self) -> str:
return "2"
@property
def cross_edge_family_id(self) -> str:
return "3"
@property
def fan_out(self) -> int:
return self._fan_out
@property
def chunk_size(self) -> np.ndarray:
return self._chunk_size
@property
def n_layers(self) -> int:
return self._n_layers
@property
def bitmasks(self) -> Dict[int, int]:
return self._bitmasks
@property
def cv_path(self) -> str:
return self._cv_path
@property
def cv_mip(self) -> int:
return self._cv_mip
@property
def cv(self) -> cloudvolume.CloudVolume:
if self._cv is None:
self._cv = cloudvolume.CloudVolume(self.cv_path, mip=self._cv_mip)
return self._cv
@property
def root_chunk_id(self):
return self.get_chunk_id(layer=int(self.n_layers), x=0, y=0, z=0)
def check_and_create_table(self) -> None:
""" Checks if table exists and creates new one if necessary """
table_ids = [t.table_id for t in self.instance.list_tables()]
if not self.table_id in table_ids:
self.table.create()
f = self.table.column_family(self.family_id)
f.create()
f_inc = self.table.column_family(self.incrementer_family_id,
gc_rule=MaxVersionsGCRule(1))
f_inc.create()
f_log = self.table.column_family(self.log_family_id)
f_log.create()
f_ce = self.table.column_family(self.cross_edge_family_id,
gc_rule=MaxVersionsGCRule(1))
f_ce.create()
print("Table created")
def check_and_write_table_parameters(self, param_key: str,
value: Optional[np.uint64] = None
) -> np.uint64:
""" Checks if a parameter already exists in the table. If it already
exists it returns the stored value, else it stores the given value. It
raises an exception if no value is passed and the parameter does not
exist, yet.
:param param_key: str
:param value: np.uint64
:return: np.uint64
value
"""
ser_param_key = serialize_key(param_key)
row = self.table.read_row(serialize_key("params"))
if row is None or ser_param_key not in row.cells[self.family_id]:
assert value is not None
if param_key in ["fan_out", "n_layers"]:
val_dict = {param_key: np.array(value,
dtype=np.uint64).tobytes()}
elif param_key in ["cv_path"]:
val_dict = {param_key: serialize_key(value)}
elif param_key in ["chunk_size"]:
val_dict = {param_key: np.array(value,
dtype=np.uint64).tobytes()}
else:
raise Exception("Unknown type for parameter")
row = self.mutate_row(serialize_key("params"), self.family_id,
val_dict)
self.bulk_write([row])
else:
value = row.cells[self.family_id][ser_param_key][0].value
if param_key in ["fan_out", "n_layers"]:
value = np.frombuffer(value, dtype=np.uint64)[0]
elif param_key in ["cv_path"]:
value = deserialize_key(value)
elif param_key in ["chunk_size"]:
value = np.frombuffer(value, dtype=np.uint64)
else:
raise Exception("Unknown key")
return value
def get_serialized_info(self):
""" Rerturns dictionary that can be used to load this ChunkedGraph
:return: dict
"""
info = {"table_id": self.table_id,
"instance_id": self.instance_id,
"project_id": self.project_id}
try:
info["credentials"] = self.client.credentials
except:
info["credentials"] = self.client._credentials
return info
def get_chunk_layer(self, node_or_chunk_id: np.uint64) -> int:
""" Extract Layer from Node ID or Chunk ID
:param node_or_chunk_id: np.uint64
:return: int
"""
return int(node_or_chunk_id) >> 64 - self._n_bits_for_layer_id
def get_chunk_coordinates(self, node_or_chunk_id: np.uint64
) -> np.ndarray:
""" Extract X, Y and Z coordinate from Node ID or Chunk ID
:param node_or_chunk_id: np.uint64
:return: Tuple(int, int, int)
"""
layer = self.get_chunk_layer(node_or_chunk_id)
bits_per_dim = self.bitmasks[layer]
x_offset = 64 - self._n_bits_for_layer_id - bits_per_dim
y_offset = x_offset - bits_per_dim
z_offset = y_offset - bits_per_dim
x = int(node_or_chunk_id) >> x_offset & 2 ** bits_per_dim - 1
y = int(node_or_chunk_id) >> y_offset & 2 ** bits_per_dim - 1
z = int(node_or_chunk_id) >> z_offset & 2 ** bits_per_dim - 1
return np.array([x, y, z])
def get_chunk_id(self, node_id: Optional[np.uint64] = None,
layer: Optional[int] = None,
x: Optional[int] = None,
y: Optional[int] = None,
z: Optional[int] = None) -> np.uint64:
""" (1) Extract Chunk ID from Node ID
(2) Build Chunk ID from Layer, X, Y and Z components
:param node_id: np.uint64
:param layer: int
:param x: int
:param y: int
:param z: int
:return: np.uint64
"""
assert node_id is not None or \
all(v is not None for v in [layer, x, y, z])
if node_id is not None:
layer = self.get_chunk_layer(node_id)
bits_per_dim = self.bitmasks[layer]
if node_id is not None:
chunk_offset = 64 - self._n_bits_for_layer_id - 3 * bits_per_dim
return np.uint64((int(node_id) >> chunk_offset) << chunk_offset)
else:
if not(x < 2 ** bits_per_dim and
y < 2 ** bits_per_dim and
z < 2 ** bits_per_dim):
raise Exception("Chunk coordinate is out of range for"
"this graph on layer %d with %d bits/dim."
"[%d, %d, %d]; max = %d."
% (layer, bits_per_dim, x, y, z,
2 ** bits_per_dim))
layer_offset = 64 - self._n_bits_for_layer_id
x_offset = layer_offset - bits_per_dim
y_offset = x_offset - bits_per_dim
z_offset = y_offset - bits_per_dim
return np.uint64(layer << layer_offset | x << x_offset |
y << y_offset | z << z_offset)
def get_chunk_ids_from_node_ids(self, node_ids: Iterable[np.uint64]
) -> np.ndarray:
""" Extract a list of Chunk IDs from a list of Node IDs
:param node_ids: np.ndarray(dtype=np.uint64)
:return: np.ndarray(dtype=np.uint64)
"""
# TODO: measure and improve performance(?)
return np.array(list(map(lambda x: self.get_chunk_id(node_id=x),
node_ids)), dtype=np.uint64)
def get_segment_id_limit(self, node_or_chunk_id: np.uint64) -> np.uint64:
""" Get maximum possible Segment ID for given Node ID or Chunk ID
:param node_or_chunk_id: np.uint64
:return: np.uint64
"""
layer = self.get_chunk_layer(node_or_chunk_id)
bits_per_dim = self.bitmasks[layer]
chunk_offset = 64 - self._n_bits_for_layer_id - 3 * bits_per_dim
return np.uint64(2 ** chunk_offset - 1)
def get_segment_id(self, node_id: np.uint64) -> np.uint64:
""" Extract Segment ID from Node ID
:param node_id: np.uint64
:return: np.uint64
"""
return node_id & self.get_segment_id_limit(node_id)
def get_node_id(self, segment_id: np.uint64,
chunk_id: Optional[np.uint64] = None,
layer: Optional[int] = None,
x: Optional[int] = None,
y: Optional[int] = None,
z: Optional[int] = None) -> np.uint64:
""" (1) Build Node ID from Segment ID and Chunk ID
(2) Build Node ID from Segment ID, Layer, X, Y and Z components
:param segment_id: np.uint64
:param chunk_id: np.uint64
:param layer: int
:param x: int
:param y: int
:param z: int
:return: np.uint64
"""
if chunk_id is not None:
return chunk_id | segment_id
else:
return self.get_chunk_id(layer=layer, x=x, y=y, z=z) | segment_id
def get_unique_segment_id_range(self, chunk_id: np.uint64, step: int = 1
) -> np.ndarray:
""" Return unique Segment ID for given Chunk ID
atomic counter
:param chunk_id: np.uint64
:param step: int
:return: np.uint64
"""
counter_key = serialize_key('counter')
# Incrementer row keys start with an "i" followed by the chunk id
row_key = serialize_key("i%s" % pad_node_id(chunk_id))
append_row = self.table.row(row_key, append=True)
append_row.increment_cell_value(self.incrementer_family_id,
counter_key, step)
# This increments the row entry and returns the value AFTER incrementing
latest_row = append_row.commit()
max_segment_id_b = latest_row[self.incrementer_family_id][counter_key][0][0]
max_segment_id = int.from_bytes(max_segment_id_b, byteorder="big")
min_segment_id = max_segment_id + 1 - step
segment_id_range = np.array(range(min_segment_id, max_segment_id + 1),
dtype=np.uint64)
return segment_id_range
def get_unique_segment_id(self, chunk_id: np.uint64) -> np.uint64:
""" Return unique Segment ID for given Chunk ID
atomic counter
:param chunk_id: np.uint64
:param step: int
:return: np.uint64
"""
return self.get_unique_segment_id_range(chunk_id=chunk_id, step=1)[0]
def get_unique_node_id_range(self, chunk_id: np.uint64, step: int = 1
) -> np.ndarray:
""" Return unique Node ID range for given Chunk ID
atomic counter
:param chunk_id: np.uint64
:param step: int
:return: np.uint64
"""
segment_ids = self.get_unique_segment_id_range(chunk_id=chunk_id,
step=step)
node_ids = np.array([self.get_node_id(segment_id, chunk_id)
for segment_id in segment_ids], dtype=np.uint64)
return node_ids
def get_unique_node_id(self, chunk_id: np.uint64) -> np.uint64:
""" Return unique Node ID for given Chunk ID
atomic counter
:param chunk_id: np.uint64
:return: np.uint64
"""
return self.get_unique_node_id_range(chunk_id=chunk_id, step=1)[0]
def get_max_node_id(self, chunk_id: np.uint64) -> np.uint64:
""" Gets maximal node id in a chunk based on the atomic counter
This is an approximation. It is not guaranteed that all ids smaller or
equal to this id exists. However, it is guaranteed that no larger id
exist at the time this function is executed.
:return: uint64
"""
counter_key = serialize_key('counter')
# Incrementer row keys start with an "i"
row_key = serialize_key("i%s" % pad_node_id(chunk_id))
row = self.table.read_row(row_key)
# Read incrementer value
if row is not None:
max_node_id_b = row.cells[self.incrementer_family_id][counter_key][0].value
max_node_id = int.from_bytes(max_node_id_b, byteorder="big")
else:
max_node_id = 0
return np.uint64(max_node_id)
def get_unique_operation_id(self) -> np.uint64:
""" Finds a unique operation id
atomic counter
Operations essentially live in layer 0. Even if segmentation ids might
live in layer 0 one day, they would not collide with the operation ids
because we write information belonging to operations in a separate
family id.
:return: str
"""
counter_key = serialize_key('counter')
# Incrementer row keys start with an "i"
row_key = serialize_key("ioperations")
append_row = self.table.row(row_key, append=True)
append_row.increment_cell_value(self.incrementer_family_id,
counter_key, 1)
# This increments the row entry and returns the value AFTER incrementing
latest_row = append_row.commit()
operation_id_b = latest_row[self.incrementer_family_id][counter_key][0][0]
operation_id = int.from_bytes(operation_id_b, byteorder="big")
return np.uint64(operation_id)
def get_max_operation_id(self) -> np.uint64:
""" Gets maximal operation id based on the atomic counter
This is an approximation. It is not guaranteed that all ids smaller or
equal to this id exists. However, it is guaranteed that no larger id
exist at the time this function is executed.
:return: uint64
"""
counter_key = serialize_key('counter')
# Incrementer row keys start with an "i"
row_key = serialize_key("ioperations")
row = self.table.read_row(row_key)
# Read incrementer value
if row is not None:
max_operation_id_b = row.cells[self.incrementer_family_id][counter_key][0].value
max_operation_id = int.from_bytes(max_operation_id_b,
byteorder="big")
else:
max_operation_id = 0
return np.uint64(max_operation_id)
def get_cross_chunk_edges_layer(self, cross_edges):
if len(cross_edges) == 0:
return np.array([], dtype=np.int)
cross_chunk_edge_layers = np.ones(len(cross_edges), dtype=np.int) * 2
cross_edge_coordinates = []
for cross_edge in cross_edges:
cross_edge_coordinates.append(
[self.get_chunk_coordinates(cross_edge[0]),
self.get_chunk_coordinates(cross_edge[1])])
cross_edge_coordinates = np.array(cross_edge_coordinates, dtype=np.int)
for layer in range(3, self.n_layers):
cross_edge_coordinates = cross_edge_coordinates // self.fan_out
edge_diff = np.sum(np.abs(cross_edge_coordinates[:, 0] -
cross_edge_coordinates[:, 1]), axis=1)
cross_chunk_edge_layers[edge_diff > 0] += 1
return cross_chunk_edge_layers
def get_cross_chunk_edge_dict(self, cross_edges):
cce_layers = self.get_cross_chunk_edges_layer(cross_edges)
u_cce_layers = np.unique(cce_layers)
cross_edge_dict = {}
for l in range(2, self.n_layers):
cross_edge_dict[l] = \
np.array([], dtype=np.uint64).reshape(-1, 2)
val_dict = {}
for cc_layer in u_cce_layers:
layer_cross_edges = cross_edges[cce_layers == cc_layer]
if len(layer_cross_edges) > 0:
val_dict["atomic_cross_edges_%d" % cc_layer] = \
layer_cross_edges.tobytes()
cross_edge_dict[cc_layer] = layer_cross_edges
return cross_edge_dict
def read_row(self, node_id: np.uint64, key: str, idx: int = 0,
dtype: type = np.uint64, get_time_stamp: bool = False,
fam_id: str = None) -> Any:
""" Reads row from BigTable and takes care of serializations
:param node_id: uint64
:param key: table column
:param idx: column list index
:param dtype: np.dtype
:param get_time_stamp: bool
:param fam_id: str
:return: row entry
"""
key = serialize_key(key)
if fam_id is None:
fam_id = self.family_id
row = self.table.read_row(serialize_uint64(node_id),
filter_=ColumnQualifierRegexFilter(key))
if row is None or key not in row.cells[fam_id]:
if get_time_stamp:
return None, None
else:
return None
cell_entries = row.cells[fam_id][key]
if dtype is None:
cell_value = cell_entries[idx].value
else:
cell_value = np.frombuffer(cell_entries[idx].value, dtype=dtype)
if get_time_stamp:
return cell_value, cell_entries[idx].timestamp
else:
return cell_value
def mutate_row(self, row_key: bytes, column_family_id: str, val_dict: dict,
time_stamp: Optional[datetime.datetime] = None
) -> bigtable.row.Row:
""" Mutates a single row
:param row_key: serialized bigtable row key
:param column_family_id: str
serialized column family id
:param val_dict: dict
:param time_stamp: None or datetime
:return: list
"""
row = self.table.row(row_key)
for column, value in val_dict.items():
row.set_cell(column_family_id=column_family_id, column=column,
value=value, timestamp=time_stamp)
return row
def bulk_write(self, rows: Iterable[bigtable.row.DirectRow],
root_ids: Optional[Union[np.uint64,
Iterable[np.uint64]]] = None,
operation_id: Optional[np.uint64] = None,
slow_retry: bool = True,
block_size: int = 2000) -> bool:
""" Writes a list of mutated rows in bulk
WARNING: If <rows> contains the same row (same row_key) and column
key two times only the last one is effectively written to the BigTable
(even when the mutations were applied to different columns)
--> no versioning!
:param rows: list
list of mutated rows
:param root_ids: list if uint64
:param operation_id: uint64 or None
operation_id (or other unique id) that *was* used to lock the root
the bulk write is only executed if the root is still locked with
the same id.
:param slow_retry: bool
:param block_size: int
"""
if slow_retry:
initial = 5
else:
initial = 1
retry_policy = Retry(
predicate=if_exception_type((Aborted,
DeadlineExceeded,
ServiceUnavailable)),
initial=initial,
maximum=15.0,
multiplier=2.0,
deadline=LOCK_EXPIRED_TIME_DELTA.seconds)
if root_ids is not None and operation_id is not None:
if isinstance(root_ids, int):
root_ids = [root_ids]
if not self.check_and_renew_root_locks(root_ids, operation_id):
return False
for i_row in range(0, len(rows), block_size):
status = self.table.mutate_rows(rows[i_row: i_row + block_size],
retry=retry_policy)
if not all(status):
raise Exception(status)
return True
def _range_read_execution(self, start_id, end_id,
row_filter: RowFilter = None,
n_retries: int = 100):
""" Executes predefined range read (read_rows)
:param start_id: np.uint64
:param end_id: np.uint64
:param row_filter: BigTable RowFilter
:param n_retries: int
:return: dict
"""
# Set up read
range_read = self.table.read_rows(
start_key=serialize_uint64(start_id),
end_key=serialize_uint64(end_id),
# allow_row_interleaving=True,
end_inclusive=True,
filter_=row_filter)
range_read.consume_all()
# Execute read
consume_success = False
# Retry reading if any of the writes failed
i_tries = 0
while not consume_success and i_tries < n_retries:
try:
range_read.consume_all()
consume_success = True
except:
time.sleep(i_tries)
i_tries += 1
if not consume_success:
raise Exception("Unable to consume range read: "
"%d - %d -- n_retries = %d" %
(start_id, end_id, n_retries))
return range_read.rows
def range_read(self, start_id: np.uint64, end_id: np.uint64,
n_retries: int = 100, max_block_size: int = 50000,
row_keys: Optional[Iterable[str]] = None,
row_key_filters: Optional[Iterable[str]] = None,
time_stamp: datetime.datetime = datetime.datetime.max
) -> Union[
bigtable.row_data.PartialRowData,
Dict[bytes, bigtable.row_data.PartialRowData]]:
""" Reads all ids within a given range
:param start_id: np.uint64
:param end_id: np.uint64
:param n_retries: int
:param max_block_size: int
:param row_keys: list of str
more efficient read through row filters
:param row_key_filters: list of str
rows *with* this column will be ignored
:param time_stamp: datetime.datetime
:return: dict
"""
# Comply to resolution of BigTables TimeRange
time_stamp -= datetime.timedelta(
microseconds=time_stamp.microsecond % 1000)
# Create filters: time and id range
time_filter = TimestampRangeFilter(TimestampRange(end=time_stamp))
if row_keys is not None:
filters = []
for k in row_keys:
filters.append(ColumnQualifierRegexFilter(serialize_key(k)))
if len(filters) > 1:
row_filter = RowFilterUnion(filters)
else:
row_filter = filters[0]
else:
row_filter = None
if row_filter is None:
row_filter = time_filter
else:
row_filter = RowFilterChain([time_filter, row_filter])
if row_key_filters is not None:
for row_key in row_key_filters:
key_filter = ColumnRangeFilter(
column_family_id=self.family_id,
start_column=row_key,
end_column=row_key,
inclusive_start=True,
inclusive_end=True)
row_filter = ConditionalRowFilter(base_filter=key_filter,
false_filter=row_filter,
true_filter=BlockAllFilter(True))
max_block_size = np.uint64(max_block_size)
block_start_ids = range(start_id, end_id, max_block_size)
row_dict = {}
for block_start_id in block_start_ids:
block_end_id = np.uint64(block_start_id + max_block_size)
if block_end_id > end_id:
block_end_id = end_id
block_row_dict = self._range_read_execution(start_id=block_start_id,
end_id=block_end_id,
row_filter=row_filter,
n_retries=n_retries)
row_dict.update(block_row_dict)
return row_dict
def range_read_chunk(self, layer: int, x: int, y: int, z: int,
n_retries: int = 100, max_block_size: int = 1000000,
row_keys: Optional[Iterable[str]] = None,
row_key_filters: Optional[Iterable[str]] = None,
time_stamp: datetime.datetime = datetime.datetime.max,
) -> Union[
bigtable.row_data.PartialRowData,
Dict[bytes, bigtable.row_data.PartialRowData]]:
""" Reads all ids within a chunk
:param layer: int
:param x: int
:param y: int
:param z: int
:param n_retries: int
:param max_block_size: int
:param row_keys: list of str
more efficient read through row filters
:param row_key_filters: list of str
rows *with* this column will be ignored
:param time_stamp: datetime.datetime
:return: dict
"""
chunk_id = self.get_chunk_id(layer=layer, x=x, y=y, z=z)
if layer == 1:
max_segment_id = self.get_segment_id_limit(chunk_id)
max_block_size = max_segment_id + 1
else:
max_segment_id = self.get_max_node_id(chunk_id=chunk_id)
# Define BigTable keys
start_id = self.get_node_id(np.uint64(0), chunk_id=chunk_id)
end_id = self.get_node_id(max_segment_id, chunk_id=chunk_id)
try:
rr = self.range_read(start_id, end_id, n_retries=n_retries,
max_block_size=max_block_size,
row_keys=row_keys,
row_key_filters=row_key_filters,
time_stamp=time_stamp)
except:
raise Exception("Unable to consume range read: "
"[%d, %d, %d], l = %d, n_retries = %d" %
(x, y, z, layer, n_retries))
return rr
def range_read_operations(self,
time_start: datetime.datetime = datetime.datetime.min,
time_end: datetime.datetime = None,
start_id: np.uint64 = 0,
end_id: np.uint64 = None,
n_retries: int = 100,
row_keys: Optional[Iterable[str]] = None
) -> Dict[bytes, bigtable.row_data.PartialRowData]:
""" Reads all ids within a chunk
:param time_start: datetime
:param time_end: datetime
:param start_id: uint64
:param end_id: uint64
:param n_retries: int
:param row_keys: list of str
more efficient read through row filters
:return: list or yield of rows
"""
# Set defaults
if end_id is None:
end_id = self.get_max_operation_id()
if time_end is None:
time_end = datetime.datetime.utcnow()
if end_id < start_id:
return {}
# Comply to resolution of BigTables TimeRange
time_start -= datetime.timedelta(
microseconds=time_start.microsecond % 1000)
time_end -= datetime.timedelta(
microseconds=time_end.microsecond % 1000)
# Create filters: time and id range
time_filter = TimestampRangeFilter(TimestampRange(start=time_start,
end=time_end))
if row_keys is not None:
filters = []
for k in row_keys:
filters.append(ColumnQualifierRegexFilter(serialize_key(k)))
if len(filters) > 1:
row_filter = RowFilterUnion(filters)
else:
row_filter = filters[0]
else:
row_filter = None
if row_filter is None:
row_filter = time_filter
else:
row_filter = RowFilterChain([time_filter, row_filter])
# Set up read
range_read = self.table.read_rows(
start_key=serialize_uint64(start_id),
end_key=serialize_uint64(end_id),
end_inclusive=False,
filter_=row_filter)
range_read.consume_all()
# Execute read
consume_success = False
# Retry reading if any of the writes failed
i_tries = 0
while not consume_success and i_tries < n_retries:
try:
range_read.consume_all()
consume_success = True
except:
time.sleep(i_tries)
i_tries += 1
if not consume_success:
raise Exception("Unable to consume chunk range read: "
"n_retries = %d" % (n_retries))
return range_read.rows
def range_read_layer(self, layer_id: int):
""" Reads all ids within a layer
This can take a while depending on the size of the graph
:param layer_id: int
:return: list of rows
"""
raise NotImplementedError()
def test_if_nodes_are_in_same_chunk(self, node_ids: Sequence[np.uint64]
) -> bool:
""" Test whether two nodes are in the same chunk
:param node_ids: list of two ints
:return: bool
"""
assert len(node_ids) == 2
return self.get_chunk_id(node_id=node_ids[0]) == \
self.get_chunk_id(node_id=node_ids[1])
def get_chunk_id_from_coord(self, layer: int,
x: int, y: int, z: int) -> np.uint64:
""" Return ChunkID for given chunked graph layer and voxel coordinates.
:param layer: int -- ChunkedGraph layer
:param x: int -- X coordinate in voxel
:param y: int -- Y coordinate in voxel
:param z: int -- Z coordinate in voxel
:return: np.uint64 -- ChunkID
"""
base_chunk_span = int(self.fan_out) ** max(0, layer - 2)
return self.get_chunk_id(
layer=layer,
x=x // (int(self.chunk_size[0]) * base_chunk_span),
y=y // (int(self.chunk_size[1]) * base_chunk_span),
z=z // (int(self.chunk_size[2]) * base_chunk_span))
def get_atomic_id_from_coord(self, x: int, y: int, z: int,
parent_id: np.uint64, n_tries: int=5
) -> np.uint64:
""" Determines atomic id given a coordinate
:param x: int
:param y: int
:param z: int
:param parent_id: np.uint64
:param n_tries: int
:return: np.uint64 or None
"""
if self.get_chunk_layer(parent_id) == 1:
return parent_id
x /= 2**self.cv_mip
y /= 2**self.cv_mip
x = int(x)
y = int(y)
checked = []
atomic_id = None
root_id = self.get_root(parent_id)
for i_try in range(n_tries):
# Define block size -- increase by one each try
x_l = x - (i_try - 1)**2
y_l = y - (i_try - 1)**2
z_l = z - (i_try - 1)**2
x_h = x + 1 + (i_try - 1)**2
y_h = y + 1 + (i_try - 1)**2
z_h = z + 1 + (i_try - 1)**2
if x_l < 0:
x_l = 0
if y_l < 0:
y_l = 0
if z_l < 0:
z_l = 0
# Get atomic ids from cloudvolume
atomic_id_block = self.cv[x_l: x_h, y_l: y_h, z_l: z_h]
atomic_ids, atomic_id_count = np.unique(atomic_id_block,
return_counts=True)
# sort by frequency and discard those ids that have been checked
# previously
sorted_atomic_ids = atomic_ids[np.argsort(atomic_id_count)]
sorted_atomic_ids = sorted_atomic_ids[~np.in1d(sorted_atomic_ids,
checked)]
# For each candidate id check whether its root id corresponds to the
# given root id
for candidate_atomic_id in sorted_atomic_ids:
ass_root_id = self.get_root(candidate_atomic_id)
if ass_root_id == root_id:
# atomic_id is not None will be our indicator that the
# search was successful
atomic_id = candidate_atomic_id
break
else:
checked.append(candidate_atomic_id)
if atomic_id is not None:
break
# Returns None if unsuccessful
return atomic_id
def _create_split_log_row(self, operation_id: np.uint64, user_id: str,
root_ids: Sequence[np.uint64],
selected_atomic_ids: Sequence[np.uint64],
removed_edges: Sequence[np.uint64],
time_stamp: datetime.datetime
) -> bigtable.row.Row:
val_dict = {serialize_key("user"): serialize_key(user_id),
serialize_key("roots"):
np.array(root_ids, dtype=np.uint64).tobytes(),
serialize_key("atomic_ids"):
np.array(selected_atomic_ids).tobytes(),
serialize_key("removed_edges"):
np.array(removed_edges, dtype=np.uint64).tobytes()}
row = self.mutate_row(serialize_uint64(operation_id),
self.log_family_id, val_dict, time_stamp)
return row
def _create_merge_log_row(self, operation_id: np.uint64, user_id: str,
root_ids: Sequence[np.uint64],
selected_atomic_ids: Sequence[np.uint64],
time_stamp: datetime.datetime
) -> bigtable.row.Row:
val_dict = {serialize_key("user"):
serialize_key(user_id),
serialize_key("roots"):
np.array(root_ids, dtype=np.uint64).tobytes(),
serialize_key("atomic_ids"):
np.array(selected_atomic_ids).tobytes()}
row = self.mutate_row(serialize_uint64(operation_id),
self.log_family_id, val_dict, time_stamp)
return row
def add_atomic_edges_in_chunks(self, edge_id_dict: dict,
edge_aff_dict: dict, edge_area_dict: dict,
isolated_node_ids: Sequence[np.uint64],
verbose: bool = True,
time_stamp: Optional[datetime.datetime] = None):
""" Creates atomic nodes in first abstraction layer for a SINGLE chunk
and all abstract nodes in the second for the same chunk
Alle edges (edge_ids) need to be from one chunk and no nodes should
exist for this chunk prior to calling this function. All cross edges
(cross_edge_ids) have to point out the chunk (first entry is the id
within the chunk)
:param edge_ids: n x 2 array of uint64s
:param cross_edge_ids: m x 2 array of uint64s
:param edge_affs: float array of length n
:param cross_edge_affs: float array of length m
:param isolated_node_ids: list of uint64s
ids of nodes that have no edge in the chunked graph
:param verbose: bool
:param time_stamp: datetime
"""
if time_stamp is None:
time_stamp = datetime.datetime.utcnow()
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
edge_id_keys = ["in_connected", "in_disconnected", "cross",
"between_connected", "between_disconnected"]
edge_aff_keys = ["in_connected", "in_disconnected", "between_connected",
"between_disconnected"]
# Check if keys exist and include an empty array if not
n_edge_ids = 0
chunk_id = None
for edge_id_key in edge_id_keys:
if not edge_id_key in edge_id_dict:
empty_edges = np.array([], dtype=np.uint64).reshape(0, 2)
edge_id_dict[edge_id_key] = empty_edges
else:
n_edge_ids += len(edge_id_dict[edge_id_key])
if len(edge_id_dict[edge_id_key]) > 0:
node_id = edge_id_dict[edge_id_key][0, 0]
chunk_id = self.get_chunk_id(node_id)
for edge_aff_key in edge_aff_keys:
if not edge_aff_key in edge_aff_dict:
edge_aff_dict[edge_aff_key] = np.array([], dtype=np.float32)
time_start = time.time()
# Catch trivial case
if n_edge_ids == 0 and len(isolated_node_ids) == 0:
return 0
# Make parent id creation easier
if chunk_id is None:
chunk_id = self.get_chunk_id(isolated_node_ids[0])
chunk_id_c = self.get_chunk_coordinates(chunk_id)
parent_chunk_id = self.get_chunk_id(layer=2, x=chunk_id_c[0],
y=chunk_id_c[1], z=chunk_id_c[2])
# Get connected component within the chunk
chunk_node_ids = np.concatenate([
isolated_node_ids,
np.unique(edge_id_dict["in_connected"]),
np.unique(edge_id_dict["in_disconnected"]),
np.unique(edge_id_dict["cross"][:, 0]),
np.unique(edge_id_dict["between_connected"][:, 0]),
np.unique(edge_id_dict["between_disconnected"][:, 0])])
chunk_node_ids = np.unique(chunk_node_ids)
node_chunk_ids = np.array([self.get_chunk_id(c)
for c in chunk_node_ids],
dtype=np.uint64)
u_node_chunk_ids, c_node_chunk_ids = np.unique(node_chunk_ids,
return_counts=True)
if len(u_node_chunk_ids) > 1:
raise Exception("%d: %d chunk ids found in node id list. "
"Some edges might be in the wrong order. "
"Number of occurences:" %
(chunk_id, len(u_node_chunk_ids)), c_node_chunk_ids)
chunk_g = nx.Graph()
chunk_g.add_nodes_from(chunk_node_ids)
chunk_g.add_edges_from(edge_id_dict["in_connected"])
ccs = list(nx.connected_components(chunk_g))
# if verbose:
# print("CC in chunk: %.3fs" % (time.time() - time_start))
# Add rows for nodes that are in this chunk
# a connected component at a time
node_c = 0 # Just a counter for the print / speed measurement
n_ccs = len(ccs)
parent_ids = self.get_unique_node_id_range(parent_chunk_id, step=n_ccs)
time_start = time.time()
time_dict = collections.defaultdict(list)
time_start_1 = time.time()
sparse_indices = {}
remapping = {}
for k in edge_id_dict.keys():
# Circumvent datatype issues
u_ids, inv_ids = np.unique(edge_id_dict[k], return_inverse=True)
mapped_ids = np.arange(len(u_ids), dtype=np.int32)
remapped_arr = mapped_ids[inv_ids].reshape(edge_id_dict[k].shape)
sparse_indices[k] = compute_indices_pandas(remapped_arr)
remapping[k] = dict(zip(u_ids, mapped_ids))
time_dict["sparse_indices"].append(time.time() - time_start_1)
rows = []
for i_cc, cc in enumerate(ccs):
# if node_c % 1000 == 1 and verbose:
# dt = time.time() - time_start
# print("%5d at %5d - %.5fs " %
# (i_cc, node_c, dt / node_c), end="\r")
node_ids = np.array(list(cc))
u_chunk_ids = np.unique([self.get_chunk_id(n) for n in node_ids])
if len(u_chunk_ids) > 1:
print("Found multiple chunk ids:", u_chunk_ids)
raise Exception()
# Create parent id
parent_id = parent_ids[i_cc]
parent_id_b = np.array(parent_id, dtype=np.uint64).tobytes()
parent_cross_edges = np.array([], dtype=np.uint64).reshape(0, 2)
# Add rows for nodes that are in this chunk
for i_node_id, node_id in enumerate(node_ids):
# Extract edges relevant to this node
# in chunk + connected
time_start_2 = time.time()
if node_id in remapping["in_connected"]:
row_ids, column_ids = sparse_indices["in_connected"][remapping["in_connected"][node_id]]
inv_column_ids = (column_ids + 1) % 2
connected_ids = edge_id_dict["in_connected"][row_ids, inv_column_ids]
connected_affs = edge_aff_dict["in_connected"][row_ids]
connected_areas = edge_area_dict["in_connected"][row_ids]
time_dict["in_connected"].append(time.time() - time_start_2)
time_start_2 = time.time()
else:
connected_ids = np.array([], dtype=np.uint64)
connected_affs = np.array([], dtype=np.float32)
connected_areas = np.array([], dtype=np.uint64)
# in chunk + disconnected
if node_id in remapping["in_disconnected"]:
row_ids, column_ids = sparse_indices["in_disconnected"][remapping["in_disconnected"][node_id]]
inv_column_ids = (column_ids + 1) % 2
disconnected_ids = edge_id_dict["in_disconnected"][row_ids, inv_column_ids]
disconnected_affs = edge_aff_dict["in_disconnected"][row_ids]
disconnected_areas = edge_area_dict["in_disconnected"][row_ids]
time_dict["in_disconnected"].append(time.time() - time_start_2)
time_start_2 = time.time()
else:
disconnected_ids = np.array([], dtype=np.uint64)
disconnected_affs = np.array([], dtype=np.float32)
disconnected_areas = np.array([], dtype=np.uint64)
# out chunk + connected
if node_id in remapping["between_connected"]:
row_ids, column_ids = sparse_indices["between_connected"][remapping["between_connected"][node_id]]
row_ids = row_ids[column_ids == 0]
column_ids = column_ids[column_ids == 0]
inv_column_ids = (column_ids + 1) % 2
time_dict["out_connected_mask"].append(time.time() - time_start_2)
time_start_2 = time.time()
connected_ids = np.concatenate([connected_ids, edge_id_dict["between_connected"][row_ids, inv_column_ids]])
connected_affs = np.concatenate([connected_affs, edge_aff_dict["between_connected"][row_ids]])
connected_areas = np.concatenate([connected_areas, edge_area_dict["between_connected"][row_ids]])
parent_cross_edges = np.concatenate([parent_cross_edges, edge_id_dict["between_connected"][row_ids]])
time_dict["out_connected"].append(time.time() - time_start_2)
time_start_2 = time.time()
# out chunk + disconnected
if node_id in remapping["between_disconnected"]:
row_ids, column_ids = sparse_indices["between_disconnected"][remapping["between_disconnected"][node_id]]
row_ids = row_ids[column_ids == 0]
column_ids = column_ids[column_ids == 0]
inv_column_ids = (column_ids + 1) % 2
time_dict["out_disconnected_mask"].append(time.time() - time_start_2)
time_start_2 = time.time()
connected_ids = np.concatenate([connected_ids, edge_id_dict["between_disconnected"][row_ids, inv_column_ids]])
connected_affs = np.concatenate([connected_affs, edge_aff_dict["between_disconnected"][row_ids]])
connected_areas = np.concatenate([connected_areas, edge_area_dict["between_disconnected"][row_ids]])
time_dict["out_disconnected"].append(time.time() - time_start_2)
time_start_2 = time.time()
# cross
if node_id in remapping["cross"]:
row_ids, column_ids = sparse_indices["cross"][remapping["cross"][node_id]]
row_ids = row_ids[column_ids == 0]
column_ids = column_ids[column_ids == 0]
inv_column_ids = (column_ids + 1) % 2
time_dict["cross_mask"].append(time.time() - time_start_2)
time_start_2 = time.time()
connected_ids = np.concatenate([connected_ids, edge_id_dict["cross"][row_ids, inv_column_ids]])
connected_affs = np.concatenate([connected_affs, np.full((len(row_ids)), np.inf, dtype=np.float32)])
connected_areas = np.concatenate([connected_areas, np.zeros((len(row_ids)), dtype=np.uint64)])
parent_cross_edges = np.concatenate([parent_cross_edges, edge_id_dict["cross"][row_ids]])
time_dict["cross"].append(time.time() - time_start_2)
time_start_2 = time.time()
# Create node
val_dict = \
{"atomic_connected_partners": connected_ids.tobytes(),
"atomic_connected_affinities": connected_affs.tobytes(),
"atomic_connected_areas": connected_areas.tobytes(),
"atomic_disconnected_partners": disconnected_ids.tobytes(),
"atomic_disconnected_affinities": disconnected_affs.tobytes(),
"atomic_disconnected_areas": disconnected_areas.tobytes(),
"parents": parent_id_b}
rows.append(self.mutate_row(serialize_uint64(node_id),
self.family_id, val_dict,
time_stamp=time_stamp))
node_c += 1
time_dict["creating_lv1_row"].append(time.time() - time_start_2)
time_start_1 = time.time()
# Create parent node
rows.append(self.mutate_row(serialize_uint64(parent_id),
self.family_id,
{"children": node_ids.tobytes()},
time_stamp=time_stamp))
time_dict["creating_lv2_row"].append(time.time() - time_start_1)
time_start_1 = time.time()
cce_layers = self.get_cross_chunk_edges_layer(parent_cross_edges)
u_cce_layers = np.unique(cce_layers)
val_dict = {}
for cc_layer in u_cce_layers:
layer_cross_edges = parent_cross_edges[cce_layers == cc_layer]
if len(layer_cross_edges) > 0:
val_dict["atomic_cross_edges_%d" % cc_layer] = \
layer_cross_edges.tobytes()
if len(val_dict) > 0:
rows.append(self.mutate_row(serialize_uint64(parent_id),
self.cross_edge_family_id, val_dict,
time_stamp=time_stamp))
node_c += 1
time_dict["adding_cross_edges"].append(time.time() - time_start_1)
if len(rows) > 100000:
time_start_1 = time.time()
self.bulk_write(rows)
time_dict["writing"].append(time.time() - time_start_1)
if len(rows) > 0:
time_start_1 = time.time()
self.bulk_write(rows)
time_dict["writing"].append(time.time() - time_start_1)
if verbose:
print("Time creating rows: %.3fs for %d ccs with %d nodes" %
(time.time() - time_start, len(ccs), node_c))
for k in time_dict.keys():
print("%s -- %.3fms for %d instances -- avg = %.3fms" %
(k, np.sum(time_dict[k])*1000, len(time_dict[k]),
np.mean(time_dict[k])*1000))
def add_layer(self, layer_id: int,
child_chunk_coords: Sequence[Sequence[int]],
time_stamp: Optional[datetime.datetime] = None,
verbose: bool = True, n_threads: int = 20) -> None:
""" Creates the abstract nodes for a given chunk in a given layer
:param layer_id: int
:param child_chunk_coords: int array of length 3
coords in chunk space
:param time_stamp: datetime
:param verbose: bool
:param n_threads: int
"""
def _read_subchunks_thread(chunk_coord):
# Get start and end key
x, y, z = chunk_coord
row_keys = ["children"] + \
["atomic_cross_edges_%d" % l
for l in range(layer_id - 1, self.n_layers)]
range_read = self.range_read_chunk(layer_id - 1, x, y, z,
row_keys=row_keys)
# Due to restarted jobs some parents might be duplicated. We can
# find these duplicates only by comparing their children because
# each node has a unique id. However, we can use that more recently
# created nodes have higher segment ids. We are only interested in
# the latest version of any duplicated parents.
# Deserialize row keys and store child with highest id for
# comparison
row_cell_dict = {}
segment_ids = []
row_ids = []
max_child_ids = []
for row_id_b, row_data in range_read.items():
row_id = deserialize_uint64(row_id_b)
segment_id = self.get_segment_id(row_id)
cells = row_data.cells
cell_family = cells[self.family_id]
if self.cross_edge_family_id in cells:
row_cell_dict[row_id] = cells[self.cross_edge_family_id]
node_child_ids_b = cell_family[children_key][0].value
node_child_ids = np.frombuffer(node_child_ids_b,
dtype=np.uint64)
max_child_ids.append(np.max(node_child_ids))
segment_ids.append(segment_id)
row_ids.append(row_id)
segment_ids = np.array(segment_ids, dtype=np.uint64)
row_ids = np.array(row_ids)
max_child_ids = np.array(max_child_ids, dtype=np.uint64)
sorting = np.argsort(segment_ids)[::-1]
row_ids = row_ids[sorting]
max_child_ids = max_child_ids[sorting]
counter = collections.defaultdict(int)
max_child_ids_occ_so_far = np.zeros(len(max_child_ids),
dtype=np.int)
for i_row in range(len(max_child_ids)):
max_child_ids_occ_so_far[i_row] = counter[max_child_ids[i_row]]
counter[max_child_ids[i_row]] += 1
# Filter last occurences (we inverted the list) of each node
m = max_child_ids_occ_so_far == 0
row_ids = row_ids[m]
ll_node_ids.extend(row_ids)
# Loop through nodes from this chunk
for row_id in row_ids:
if row_id in row_cell_dict:
cross_edge_dict[row_id] = {}
cell_family = row_cell_dict[row_id]
for l in range(layer_id - 1, self.n_layers):
row_key = serialize_key("atomic_cross_edges_%d" % l)
if row_key in cell_family:
cross_edge_dict[row_id][l] = cell_family[row_key][0].value
if int(layer_id - 1) in cross_edge_dict[row_id]:
atomic_cross_edges_b = cross_edge_dict[row_id][layer_id - 1]
atomic_cross_edges = \
np.frombuffer(atomic_cross_edges_b,
dtype=np.uint64).reshape(-1, 2)
if len(atomic_cross_edges) > 0:
atomic_partner_id_dict[row_id] = \
atomic_cross_edges[:, 1]
new_pairs = zip(atomic_cross_edges[:, 0],
[row_id] * len(atomic_cross_edges))
atomic_child_id_dict_pairs.extend(new_pairs)
def _resolve_cross_chunk_edges_thread(args) -> None:
start, end = args
for i_child_key, child_key in\
enumerate(atomic_partner_id_dict_keys[start: end]):
this_atomic_partner_ids = atomic_partner_id_dict[child_key]
partners = {atomic_child_id_dict[atomic_cross_id]
for atomic_cross_id in this_atomic_partner_ids
if atomic_child_id_dict[atomic_cross_id] != 0}
if len(partners) > 0:
partners = np.array(list(partners), dtype=np.uint64)[:, None]
this_ids = np.array([child_key] * len(partners),
dtype=np.uint64)[:, None]
these_edges = np.concatenate([this_ids, partners], axis=1)
edge_ids.extend(these_edges)
def _write_out_connected_components(args) -> None:
start, end = args
n_ccs = int(end - start)
parent_ids = self.get_unique_node_id_range(chunk_id, step=n_ccs)
rows = []
for i_cc, cc in enumerate(ccs[start: end]):
node_ids = np.array(list(cc))
parent_id = parent_ids[i_cc]
parent_id_b = np.array(parent_id, dtype=np.uint64).tobytes()
parent_cross_edges_b = {}
for l in range(layer_id, self.n_layers):
parent_cross_edges_b[l] = b""
# Add rows for nodes that are in this chunk
for i_node_id, node_id in enumerate(node_ids):
if node_id in cross_edge_dict:
# Extract edges relevant to this node
for l in range(layer_id, self.n_layers):
if l in cross_edge_dict[node_id]:
parent_cross_edges_b[l] += \
cross_edge_dict[node_id][l]
# Create node
val_dict = {"parents": parent_id_b}
rows.append(self.mutate_row(serialize_uint64(node_id),
self.family_id, val_dict,
time_stamp=time_stamp))
# Create parent node
val_dict = {"children": node_ids.tobytes()}
rows.append(self.mutate_row(serialize_uint64(parent_id),
self.family_id, val_dict,
time_stamp=time_stamp))
val_dict = {}
for l in range(layer_id, self.n_layers):
if l in parent_cross_edges_b:
val_dict["atomic_cross_edges_%d" % l] = \
parent_cross_edges_b[l]
if len(val_dict) > 0:
rows.append(self.mutate_row(serialize_uint64(parent_id),
self.cross_edge_family_id,
val_dict,
time_stamp=time_stamp))
if len(rows) > 100000:
self.bulk_write(rows)
rows = []
if len(rows) > 0:
self.bulk_write(rows)
if time_stamp is None:
time_stamp = datetime.datetime.utcnow()
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
# 1 --------------------------------------------------------------------
# The first part is concerned with reading data from the child nodes
# of this layer and pre-processing it for the second part
time_start = time.time()
children_key = serialize_key("children")
atomic_partner_id_dict = {}
cross_edge_dict = {}
atomic_child_id_dict_pairs = []
ll_node_ids = []
multi_args = child_chunk_coords
n_jobs = np.min([n_threads, len(multi_args)])
if n_jobs > 0:
mu.multithread_func(_read_subchunks_thread, multi_args,
n_threads=n_jobs)
d = dict(atomic_child_id_dict_pairs)
atomic_child_id_dict = collections.defaultdict(np.uint64, d)
ll_node_ids = np.array(ll_node_ids, dtype=np.uint64)
if verbose:
print("Time iterating through subchunks: %.3fs" %
(time.time() - time_start))
time_start = time.time()
# Extract edges from remaining cross chunk edges
# and maintain unused cross chunk edges
edge_ids = []
# u_atomic_child_ids = np.unique(atomic_child_ids)
atomic_partner_id_dict_keys = \
np.array(list(atomic_partner_id_dict.keys()), dtype=np.uint64)
if n_threads > 1:
n_jobs = n_threads * 3 # Heuristic
else:
n_jobs = 1
n_jobs = np.min([n_jobs, len(atomic_partner_id_dict_keys)])
if n_jobs > 0:
spacing = np.linspace(0, len(atomic_partner_id_dict_keys),
n_jobs+1).astype(np.int)
starts = spacing[:-1]
ends = spacing[1:]
multi_args = list(zip(starts, ends))
mu.multithread_func(_resolve_cross_chunk_edges_thread, multi_args,
n_threads=n_threads)
if verbose:
print("Time resolving cross chunk edges: %.3fs" %
(time.time() - time_start))
time_start = time.time()
# 2 --------------------------------------------------------------------
# The second part finds connected components, writes the parents to
# BigTable and updates the childs
# Make parent id creation easier
x, y, z = np.min(child_chunk_coords, axis=0) // self.fan_out
chunk_id = self.get_chunk_id(layer=layer_id, x=x, y=y, z=z)
# Extract connected components
chunk_g = nx.from_edgelist(edge_ids)
# Add single node objects that have no edges
isolated_node_mask = ~np.in1d(ll_node_ids, np.unique(edge_ids))
add_ccs = list(ll_node_ids[isolated_node_mask][:, None])
ccs = list(nx.connected_components(chunk_g)) + add_ccs
if verbose:
print("Time connected components: %.3fs" %
(time.time() - time_start))
time_start = time.time()
# Add rows for nodes that are in this chunk
# a connected component at a time
if n_threads > 1:
n_jobs = n_threads * 3 # Heuristic
else:
n_jobs = 1
n_jobs = np.min([n_jobs, len(ccs)])
spacing = np.linspace(0, len(ccs), n_jobs+1).astype(np.int)
starts = spacing[:-1]
ends = spacing[1:]
multi_args = list(zip(starts, ends))
mu.multithread_func(_write_out_connected_components, multi_args,
n_threads=n_threads)
if verbose:
print("Time writing %d connected components in layer %d: %.3fs" %
(len(ccs), layer_id, time.time() - time_start))
def get_atomic_cross_edge_dict(self, node_id: np.uint64,
layer_ids: Sequence[int] = None,
deserialize_node_ids: bool = False,
reshape: bool = False):
""" Extracts all atomic cross edges and serves them as a dictionary
:param node_id: np.uitn64
:param layer_ids: list of ints
:param deserialize_node_ids: bool
:param reshape: bool
reshapes the list of node ids to an edge list (n x 2)
Only available when deserializing
:return: dict
"""
row = self.table.read_row(serialize_uint64(node_id))
if row is None:
return {}
atomic_cross_edges = {}
if isinstance(layer_ids, int):
layer_ids = [layer_ids]
if layer_ids is None:
layer_ids = range(2, self.n_layers)
if self.cross_edge_family_id in row.cells:
for l in layer_ids:
key = serialize_key("atomic_cross_edges_%d" % l)
row_cell = row.cells[self.cross_edge_family_id]
atomic_cross_edges[l] = []
if key in row_cell:
row_val = row_cell[key][0].value
if deserialize_node_ids:
atomic_cross_edges[l] = np.frombuffer(row_val,
dtype=np.uint64)
if reshape:
atomic_cross_edges[l] = \
atomic_cross_edges[l].reshape(-1, 2)
else:
atomic_cross_edges[l] = row_val
return atomic_cross_edges
def get_parent(self, node_id: np.uint64,
get_only_relevant_parent: bool = True,
time_stamp: Optional[datetime.datetime] = None) -> Union[
List[Tuple[np.uint64, datetime.datetime]],
np.uint64, None]:
""" Acquires parent of a node at a specific time stamp
:param node_id: uint64
:param get_only_relevant_parent: bool
True: return single parent according to time_stamp
False: return n x 2 list of all parents
((parent_id, time_stamp), ...)
:param time_stamp: datetime or None
:return: uint64 or None
"""
if time_stamp is None:
time_stamp = datetime.datetime.utcnow()
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
parent_key = serialize_key("parents")
all_parents = []
p_filter_ = ColumnQualifierRegexFilter(parent_key)
row = self.table.read_row(serialize_uint64(node_id), filter_=p_filter_)
if row and parent_key in row.cells[self.family_id]:
for parent_entry in row.cells[self.family_id][parent_key]:
if get_only_relevant_parent:
if parent_entry.timestamp > time_stamp:
continue
else:
return np.frombuffer(parent_entry.value,
dtype=np.uint64)[0]
else:
all_parents.append((np.frombuffer(parent_entry.value,
dtype=np.uint64)[0],
parent_entry.timestamp))
else:
return None
if len(all_parents) == 0:
raise Exception("Did not find a valid parent for %d with"
" the given time stamp" % node_id)
else:
return all_parents
def get_children(self, node_id: np.uint64) -> np.ndarray:
""" Returns all children of a node
:param node_id: np.uint64
:return: np.ndarray[np.uint64]
"""
children = self.read_row(node_id, "children", dtype=np.uint64)
if children is None:
return np.empty(0, dtype=np.uint64)
else:
return children
def get_latest_edge_affinity(self, atomic_edge: [np.uint64, np.uint64],
check: bool = False) -> np.float32:
""" Looks up the LATEST affinity of an edge
Future work should add a timestamp option
:param atomic_edge: [uint64, uint64]
:param check: bool
whether to look up affinity from both sides and compare
:return: float32
"""
edge_affinities = []
if check:
iter_max = 2
else:
iter_max = 1
for i in range(iter_max):
atomic_partners, atomic_affinities = \
self.get_atomic_partners(atomic_edge[i % 2],
include_connected_partners=True,
include_disconnected_partners=True)
edge_mask = atomic_partners == atomic_edge[(i + 1) % 2]
if len(edge_mask) == 0:
raise Exception("Edge does not exist")
edge_affinities.append(atomic_affinities[edge_mask][0])
if len(np.unique(edge_affinities)) == 1:
return edge_affinities[0]
else:
raise Exception("Different edge affinities found... Something went "
"horribly wrong.")
def get_latest_roots(self, time_stamp: Optional[datetime.datetime] = datetime.datetime.max,
n_threads: int = 1):
"""
:param time_stamp:
:return:
"""
def _read_root_rows(args) -> None:
start_seg_id, end_seg_id = args
start_id = self.get_node_id(segment_id=start_seg_id,
chunk_id=self.root_chunk_id)
end_id = self.get_node_id(segment_id=end_seg_id,
chunk_id=self.root_chunk_id)
range_read = self.table.read_rows(
start_key=serialize_uint64(start_id),
end_key=serialize_uint64(end_id),
# allow_row_interleaving=True,
end_inclusive=False,
filter_=time_filter)
range_read.consume_all()
rows = range_read.rows
for row_id, row_data in rows.items():
row_keys = row_data.cells[self.family_id]
if not serialize_key("new_parents") in row_keys:
root_ids.append(deserialize_uint64(row_id))
time_stamp -= datetime.timedelta(microseconds=time_stamp.microsecond % 1000)
time_filter = TimestampRangeFilter(TimestampRange(end=time_stamp))
max_seg_id = self.get_max_node_id(self.root_chunk_id) + 1
root_ids = []
n_blocks = np.min([n_threads*3+1, max_seg_id])
seg_id_blocks = np.linspace(1, max_seg_id, n_blocks, dtype=np.uint64)
multi_args = []
for i_id_block in range(0, len(seg_id_blocks) - 1):
multi_args.append([seg_id_blocks[i_id_block],
seg_id_blocks[i_id_block + 1]])
mu.multithread_func(
_read_root_rows, multi_args, n_threads=n_threads,
debug=False, verbose=True)
return root_ids
def get_root(self, node_id: np.uint64,
time_stamp: Optional[datetime.datetime] = None
) -> Union[List[np.uint64], np.uint64]:
""" Takes a node id and returns the associated agglomeration ids
:param atomic_id: uint64
:param time_stamp: None or datetime
:return: np.uint64
"""
if time_stamp is None:
time_stamp = datetime.datetime.utcnow()
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
early_finish = True
if self.get_chunk_layer(node_id) == self.n_layers:
raise Exception("node is already root")
parent_id = node_id
while early_finish:
parent_id = node_id
early_finish = False
for i_layer in range(self.get_chunk_layer(node_id)+1,
int(self.n_layers + 1)):
temp_parent_id = self.get_parent(parent_id, time_stamp=time_stamp)
if temp_parent_id is None:
early_finish = True
break
else:
parent_id = temp_parent_id
return parent_id
def get_all_parents(self, node_id: np.uint64,
time_stamp: Optional[datetime.datetime] = None
) -> Union[List[np.uint64], np.uint64]:
""" Takes a node id and returns all parents and parents' parents up to
the top
:param atomic_id: uint64
:param time_stamp: None or datetime
:return: np.uint64
"""
if time_stamp is None:
time_stamp = datetime.datetime.utcnow()
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
early_finish = True
parent_ids: List[np.uint64] = []
while early_finish:
parent_id = node_id
parent_ids = []
early_finish = False
for i_layer in range(self.get_chunk_layer(node_id)+1,
int(self.n_layers + 1)):
temp_parent_id = self.get_parent(parent_id,
time_stamp=time_stamp)
if temp_parent_id is None:
early_finish = True
break
else:
parent_id = temp_parent_id
parent_ids.append(parent_id)
return parent_ids
def lock_root_loop(self, root_ids: Sequence[np.uint64],
operation_id: np.uint64, max_tries: int = 1,
waittime_s: float = 0.5) -> Tuple[bool, np.ndarray]:
""" Attempts to lock multiple roots at the same time
:param root_ids: list of uint64
:param operation_id: uint64
:param max_tries: int
:param waittime_s: float
:return: bool, list of uint64s
success, latest root ids
"""
i_try = 0
while i_try < max_tries:
lock_acquired = False
# Collect latest root ids
new_root_ids: List[np.uint64] = []
for i_root_id in range(len(root_ids)):
future_root_ids = self.get_future_root_ids(root_ids[i_root_id])
if len(future_root_ids) == 0:
new_root_ids.append(root_ids[i_root_id])
else:
new_root_ids.extend(future_root_ids)
# Attempt to lock all latest root ids
root_ids = np.unique(new_root_ids)
for i_root_id in range(len(root_ids)):
print("operation id: %d - root id: %d" %
(operation_id, root_ids[i_root_id]))
lock_acquired = self.lock_single_root(root_ids[i_root_id],
operation_id)
# Roll back locks if one root cannot be locked
if not lock_acquired:
for j_root_id in range(len(root_ids)):
self.unlock_root(root_ids[j_root_id], operation_id)
break
if lock_acquired:
return True, root_ids
time.sleep(waittime_s)
i_try += 1
print(i_try)
return False, root_ids
def lock_single_root(self, root_id: np.uint64, operation_id: np.uint64
) -> bool:
""" Attempts to lock the latest version of a root node
:param root_id: uint64
:param operation_id: uint64
an id that is unique to the process asking to lock the root node
:return: bool
success
"""
operation_id_b = serialize_uint64(operation_id)
lock_key = serialize_key("lock")
new_parents_key = serialize_key("new_parents")
# Build a column filter which tests if a lock was set (== lock column
# exists) and if it is still valid (timestamp younger than
# LOCK_EXPIRED_TIME_DELTA) and if there is no new parent (== new_parents
# exists)
time_cutoff = datetime.datetime.utcnow() - LOCK_EXPIRED_TIME_DELTA
# Comply to resolution of BigTables TimeRange
time_cutoff -= datetime.timedelta(
microseconds=time_cutoff.microsecond % 1000)
time_filter = TimestampRangeFilter(TimestampRange(start=time_cutoff))
# lock_key_filter = ColumnQualifierRegexFilter(lock_key)
# new_parents_key_filter = ColumnQualifierRegexFilter(new_parents_key)
lock_key_filter = ColumnRangeFilter(
column_family_id=self.family_id,
start_column=lock_key,
end_column=lock_key,
inclusive_start=True,
inclusive_end=True)
new_parents_key_filter = ColumnRangeFilter(
column_family_id=self.family_id,
start_column=new_parents_key,
end_column=new_parents_key,
inclusive_start=True,
inclusive_end=True)
# Combine filters together
chained_filter = RowFilterChain([time_filter, lock_key_filter])
combined_filter = ConditionalRowFilter(
base_filter=chained_filter,
true_filter=PassAllFilter(True),
false_filter=new_parents_key_filter)
# Get conditional row using the chained filter
root_row = self.table.row(serialize_uint64(root_id),
filter_=combined_filter)
# Set row lock if condition returns no results (state == False)
time_stamp = datetime.datetime.utcnow()
root_row.set_cell(self.family_id, lock_key, operation_id_b, state=False,
timestamp=time_stamp)
# The lock was acquired when set_cell returns False (state)
lock_acquired = not root_row.commit()
if not lock_acquired:
r = self.table.read_row(serialize_uint64(root_id))
l_operation_ids = []
for cell in r.cells[self.family_id][lock_key]:
l_operation_id = deserialize_uint64(cell.value)
l_operation_ids.append(l_operation_id)
print("Locked operation ids:", l_operation_ids)
return lock_acquired
def unlock_root(self, root_id: np.uint64, operation_id: np.uint64) -> bool:
""" Unlocks a root
This is mainly used for cases where multiple roots need to be locked and
locking was not sucessful for all of them
:param root_id: np.uint64
:param operation_id: uint64
an id that is unique to the process asking to lock the root node
:return: bool
success
"""
operation_id_b = serialize_uint64(operation_id)
lock_key = serialize_key("lock")
# Build a column filter which tests if a lock was set (== lock column
# exists) and if it is still valid (timestamp younger than
# LOCK_EXPIRED_TIME_DELTA) and if the given operation_id is still
# the active lock holder
time_cutoff = datetime.datetime.utcnow() - LOCK_EXPIRED_TIME_DELTA
# Comply to resolution of BigTables TimeRange
time_cutoff -= datetime.timedelta(
microseconds=time_cutoff.microsecond % 1000)
time_filter = TimestampRangeFilter(TimestampRange(start=time_cutoff))
# column_key_filter = ColumnQualifierRegexFilter(lock_key)
# value_filter = ColumnQualifierRegexFilter(operation_id_b)
column_key_filter = ColumnRangeFilter(
column_family_id=self.family_id,
start_column=lock_key,
end_column=lock_key,
inclusive_start=True,
inclusive_end=True)
value_filter = ValueRangeFilter(
start_value=operation_id_b,
end_value=operation_id_b,
inclusive_start=True,
inclusive_end=True)
# Chain these filters together
chained_filter = RowFilterChain([time_filter, column_key_filter,
value_filter])
# Get conditional row using the chained filter
root_row = self.table.row(serialize_uint64(root_id),
filter_=chained_filter)
# Delete row if conditions are met (state == True)
root_row.delete_cell(self.family_id, lock_key, state=True)
return root_row.commit()
def check_and_renew_root_locks(self, root_ids: Iterable[np.uint64],
operation_id: np.uint64) -> bool:
""" Tests if the roots are locked with the provided operation_id and
renews the lock to reset the time_stam
This is mainly used before executing a bulk write
:param root_ids: uint64
:param operation_id: uint64
an id that is unique to the process asking to lock the root node
:return: bool
success
"""
for root_id in root_ids:
if not self.check_and_renew_root_lock_single(root_id, operation_id):
print("check_and_renew_root_locks failed - %d" % root_id)
return False
return True
def check_and_renew_root_lock_single(self, root_id: np.uint64,
operation_id: np.uint64) -> bool:
""" Tests if the root is locked with the provided operation_id and
renews the lock to reset the time_stam
This is mainly used before executing a bulk write
:param root_id: uint64
:param operation_id: uint64
an id that is unique to the process asking to lock the root node
:return: bool
success
"""
operation_id_b = serialize_uint64(operation_id)
lock_key = serialize_key("lock")
new_parents_key = serialize_key("new_parents")
# Build a column filter which tests if a lock was set (== lock column
# exists) and if the given operation_id is still the active lock holder
# and there is no new parent (== new_parents column exists). The latter
# is not necessary but we include it as a backup to prevent things
# from going really bad.
# column_key_filter = ColumnQualifierRegexFilter(lock_key)
# value_filter = ColumnQualifierRegexFilter(operation_id_b)
column_key_filter = ColumnRangeFilter(
column_family_id=self.family_id,
start_column=lock_key,
end_column=lock_key,
inclusive_start=True,
inclusive_end=True)
value_filter = ValueRangeFilter(
start_value=operation_id_b,
end_value=operation_id_b,
inclusive_start=True,
inclusive_end=True)
new_parents_key_filter = ColumnRangeFilter(
column_family_id=self.family_id, start_column=new_parents_key,
end_column=new_parents_key, inclusive_start=True,
inclusive_end=True)
# Chain these filters together
chained_filter = RowFilterChain([column_key_filter, value_filter])
combined_filter = ConditionalRowFilter(
base_filter=chained_filter,
true_filter=new_parents_key_filter,
false_filter=PassAllFilter(True))
# Get conditional row using the chained filter
root_row = self.table.row(serialize_uint64(root_id),
filter_=combined_filter)
# Set row lock if condition returns a result (state == True)
root_row.set_cell(self.family_id, lock_key, operation_id_b, state=False)
# The lock was acquired when set_cell returns True (state)
lock_acquired = not root_row.commit()
return lock_acquired
def get_latest_root_id(self, root_id: np.uint64) -> np.ndarray:
""" Returns the latest root id associated with the provided root id
:param root_id: uint64
:return: list of uint64s
"""
id_working_set = [root_id]
new_parent_key = serialize_key("new_parents")
latest_root_ids = []
while len(id_working_set) > 0:
next_id = id_working_set[0]
del(id_working_set[0])
r = self.table.read_row(serialize_uint64(next_id))
# Check if a new root id was attached to this root id
if new_parent_key in r.cells[self.family_id]:
id_working_set.extend(
np.frombuffer(
r.cells[self.family_id][new_parent_key][0].value,
dtype=np.uint64))
else:
latest_root_ids.append(next_id)
return np.unique(latest_root_ids)
def get_future_root_ids(self, root_id: np.uint64,
time_stamp: Optional[datetime.datetime] =
datetime.datetime.max)-> np.ndarray:
""" Returns all future root ids emerging from this root
This search happens in a monotic fashion. At no point are past root
ids of future root ids taken into account.
:param root_id: np.uint64
:param time_stamp: None or datetime
restrict search to ids created before this time_stamp
None=search whole future
:return: array of uint64
"""
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
id_history = []
next_ids = [root_id]
while len(next_ids):
temp_next_ids = []
for next_id in next_ids:
ids, row_time_stamp = self.read_row(next_id,
key="new_parents",
dtype=np.uint64,
get_time_stamp=True)
if ids is None:
r, row_time_stamp = self.read_row(next_id,
key="children",
dtype=np.uint64,
get_time_stamp=True)
if row_time_stamp is None:
raise Exception("Something went wrong...")
if row_time_stamp < time_stamp:
if ids is not None:
temp_next_ids.extend(ids)
if next_id != root_id:
id_history.append(next_id)
next_ids = temp_next_ids
return np.unique(np.array(id_history, dtype=np.uint64))
def get_past_root_ids(self, root_id: np.uint64,
time_stamp: Optional[datetime.datetime] =
datetime.datetime.min) -> np.ndarray:
""" Returns all future root ids emerging from this root
This search happens in a monotic fashion. At no point are future root
ids of past root ids taken into account.
:param root_id: np.uint64
:param time_stamp: None or datetime
restrict search to ids created after this time_stamp
None=search whole future
:return: array of uint64
"""
if time_stamp.tzinfo is None:
time_stamp = UTC.localize(time_stamp)
id_history = []
next_ids = [root_id]
while len(next_ids):
temp_next_ids = []
for next_id in next_ids:
ids, row_time_stamp = self.read_row(next_id,
key="former_parents",
dtype=np.uint64,
get_time_stamp=True)
if ids is None:
_, row_time_stamp = self.read_row(next_id,
key="children",
dtype=np.uint64,
get_time_stamp=True)
if row_time_stamp is None:
raise Exception("Something went wrong...")
if row_time_stamp > time_stamp:
if ids is not None:
temp_next_ids.extend(ids)
if next_id != root_id:
id_history.append(next_id)
next_ids = temp_next_ids
return np.unique(np.array(id_history, dtype=np.uint64))
def get_root_id_history(self, root_id: np.uint64,
time_stamp_past:
Optional[datetime.datetime] = datetime.datetime.min,
time_stamp_future:
Optional[datetime.datetime] = datetime.datetime.max
) -> np.ndarray:
""" Returns all future root ids emerging from this root
This search happens in a monotic fashion. At no point are future root
ids of past root ids or past root ids of future root ids taken into
account.
:param root_id: np.uint64
:param time_stamp_past: None or datetime
restrict search to ids created after this time_stamp
None=search whole future
:param time_stamp_future: None or datetime
restrict search to ids created before this time_stamp
None=search whole future
:return: array of uint64
"""
past_ids = self.get_past_root_ids(root_id=root_id,
time_stamp=time_stamp_past)
future_ids = self.get_future_root_ids(root_id=root_id,
time_stamp=time_stamp_future)
history_ids = np.concatenate([past_ids,
np.array([root_id], dtype=np.uint64),
future_ids])
return history_ids
def get_subgraph(self, agglomeration_id: np.uint64,
bounding_box: Optional[Sequence[Sequence[int]]] = None,
bb_is_coordinate: bool = False,
stop_lvl: int = 1,
get_edges: bool = False, verbose: bool = True
) -> Union[Tuple[np.ndarray, np.ndarray], np.ndarray]:
""" Returns all edges between supervoxels belonging to the specified
agglomeration id within the defined bouning box
:param agglomeration_id: int
:param bounding_box: [[x_l, y_l, z_l], [x_h, y_h, z_h]]
:param bb_is_coordinate: bool
:param stop_lvl: int
:param get_edges: bool
:param verbose: bool
:return: edge list
"""
# Helper functions for multithreading
def _handle_subgraph_children_layer2_edges_thread(
child_ids: Iterable[np.uint64]) -> Tuple[List[np.ndarray],
List[np.float32]]:
_edges = []
_affinities = []
for child_id in child_ids:
this_edges, this_affinities = self.get_subgraph_chunk(
child_id, time_stamp=time_stamp)
_edges.extend(this_edges)
_affinities.extend(this_affinities)
return _edges, _affinities
def _handle_subgraph_children_layer2_thread(
child_ids: Iterable[np.uint64]) -> None:
for child_id in child_ids:
atomic_ids.extend(self.get_children(child_id))
def _handle_subgraph_children_higher_layers_thread(
child_ids: Iterable[np.uint64]) -> None:
for child_id in child_ids:
_children = self.get_children(child_id)
if bounding_box is not None:
chunk_ids = self.get_chunk_ids_from_node_ids(_children)
chunk_ids = np.array([self.get_chunk_coordinates(c)
for c in chunk_ids])
chunk_ids = np.array(chunk_ids)
bounding_box_layer = bounding_box / self.fan_out ** np.max([0, (layer - 3)])
bound_check = np.array([
np.all(chunk_ids < bounding_box_layer[1], axis=1),
np.all(chunk_ids + 1 > bounding_box_layer[0], axis=1)]).T
bound_check_mask = np.all(bound_check, axis=1)
_children = _children[bound_check_mask]
new_childs.extend(_children)
# Make sure that edges are not requested if we should stop on an
# intermediate level
assert stop_lvl == 1 or not get_edges
if get_edges:
time_stamp = self.read_row(agglomeration_id, "children",
get_time_stamp=True)[1]
if bounding_box is not None:
if bb_is_coordinate:
bounding_box = np.array(bounding_box,
dtype=np.float32) / self.chunk_size
bounding_box[0] = np.floor(bounding_box[0])
bounding_box[1] = np.ceil(bounding_box[1])
bounding_box = bounding_box.astype(np.int)
else:
bounding_box = np.array(bounding_box, dtype=np.int)
edges = np.array([], dtype=np.uint64).reshape(0, 2)
atomic_ids = []
affinities = np.array([], dtype=np.float32)
child_ids = [agglomeration_id]
time_start = time.time()
while len(child_ids) > 0:
new_childs = []
layer = self.get_chunk_layer(child_ids[0])
if stop_lvl == layer:
atomic_ids = child_ids
break
# Use heuristic to guess the optimal number of threads
n_child_ids = len(child_ids)
this_n_threads = np.min([int(n_child_ids // 20) + 1, mu.n_cpus])
if layer == 2:
if get_edges:
edges_and_affinities = mu.multithread_func(
_handle_subgraph_children_layer2_edges_thread,
np.array_split(child_ids, this_n_threads),
n_threads=this_n_threads, debug=this_n_threads == 1)
for edges_and_affinities_pair in edges_and_affinities:
_edges, _affinities = edges_and_affinities_pair
affinities = np.concatenate([affinities, _affinities])
edges = np.concatenate([edges, _edges])
else:
mu.multithread_func(
_handle_subgraph_children_layer2_thread,
np.array_split(child_ids, this_n_threads),
n_threads=this_n_threads, debug=this_n_threads == 1)
else:
mu.multithread_func(
_handle_subgraph_children_higher_layers_thread,
np.array_split(child_ids, this_n_threads),
n_threads=this_n_threads, debug=this_n_threads == 1)
child_ids = new_childs
if verbose:
print("Layer %d: %.3fms for %d children with %d threads" %
(layer, (time.time() - time_start) * 1000, n_child_ids,
this_n_threads))
# if len(child_ids) != len(np.unique(child_ids)):
# print("N children %d - %d" % (len(child_ids), len(np.unique(child_ids))))
# # print(agglomeration_id, child_ids)
#
# assert len(child_ids) == len(np.unique(child_ids))
time_start = time.time()
atomic_ids =
|
np.array(atomic_ids, np.uint64)
|
numpy.array
|
import os
import cv2
import time
import json
import numpy as np
import matplotlib.pyplot as plt
from collections import OrderedDict
from PIL import Image
from Code.utils import extract_video_parameters, release_video, load_video, write_video, fixBorder, convert_to_gray, \
apply_mask, scale_matrix_0_to_255, geodesic_distance_2d
from scipy.stats import gaussian_kde
def create_scribbles(mask: np.ndarray, type: str, num_of_points: int) -> np.ndarray:
if type == 'foreground':
indices = np.where(mask == 255)
elif type == 'background':
indices = np.where(mask == 0)
scribbles = np.zeros((num_of_points, 2))
chosen_indices = np.random.choice(len(indices[0]), num_of_points)
scribbles[:, 0] = indices[0][chosen_indices]
scribbles[:, 1] = indices[1][chosen_indices]
return scribbles
def kde_scipy(x, x_grid, bandwidth=0.2, **kwargs):
"""Kernel Density Estimation with Scipy"""
kde = gaussian_kde(x, bw_method=bandwidth, **kwargs)
return kde.evaluate(x_grid)
def video_matting(binary_video: cv2.VideoCapture, input_video: cv2.VideoCapture, config: dict):
video_params = extract_video_parameters(input_video)
n_frames = video_params['n_frames']
HSV_frames = load_video(input_video, 'hsv')
mask_frames = load_video(binary_video, 'gray')
num_of_points = 200
foreground_values = np.zeros((num_of_points, 1))
background_values = np.zeros((num_of_points, 1))
trimap = np.zeros((n_frames, video_params['h'], video_params['w'])).astype(np.uint8)
for frame_index, frame in enumerate(mask_frames):
print(f"[VM] - Frame: {frame_index + 1} / {n_frames}")
foreground_scribbles = create_scribbles(frame, 'foreground', num_of_points)
background_scribbles = create_scribbles(frame, 'background', num_of_points)
frame_v_channel = HSV_frames[frame_index][:, :, 2]
frame_v_channel = cv2.equalizeHist(frame_v_channel)
foreground_values = frame_v_channel[
|
np.uint32(foreground_scribbles[:, 0])
|
numpy.uint32
|
import pytest
import numpy as np
from lmdec.decomp import PowerMethod, SuccessiveBatchedPowerMethod
from lmdec.array.metrics import subspace_dist
from lmdec.array.matrix_ops import svd_to_trunc_svd
from lmdec.decomp.utils import make_snp_array
import dask.array as da
def test_PowerMethod_case1():
n = 100
p = 80
array = np.random.rand(100, 80)
mu = array.mean(axis=0)
std = np.diag(1/array.std(axis=0))
scaled_centered_array = (array-mu).dot(std)
U, S, V = np.linalg.svd(scaled_centered_array, full_matrices=False) # Ground Truth
array = make_snp_array(da.array(array), mean=True, std=True,
std_method='norm', mask_nan=False, dtype='float64')
for k in range(1, 10):
U_k, S_k, V_k = U[:, :k], S[:k], V[:k, :]
PM = PowerMethod(k=k, tol=1e-9, scoring_method='rmse', max_iter=100, sub_svd_start=False,
init_row_sampling_factor=1, factor=None, lmbd=0)
U_k_PM, S_k_PM, V_k_PM = PM.svd(array)
np.testing.assert_array_almost_equal(S_k, S_k_PM)
assert V_k.shape == V_k_PM.shape == (k, p)
assert U_k.shape == U_k_PM.shape == (n, k)
np.testing.assert_almost_equal(subspace_dist(V_k, V_k_PM, S_k_PM), 0)
np.testing.assert_almost_equal(subspace_dist(U_k, U_k_PM, S_k_PM), 0)
def test_PowerMethod_case2():
array = np.random.rand(100, 100)
mu = array.mean(axis=0)
std = np.diag(1/array.std(axis=0))
scaled_centered_array = (array-mu).dot(std)
array = make_snp_array(da.array(array), mean=True, std=True,
std_method='norm', mask_nan=False, dtype='float64')
U, S, V = np.linalg.svd(scaled_centered_array.dot(scaled_centered_array.T), full_matrices=False) # Ground Truth
_, _, V = np.linalg.svd(scaled_centered_array.T.dot(scaled_centered_array), full_matrices=False)
S = np.sqrt(S)
k = 10
U_k, S_k, V_k = U[:, :k], S[:k], V[:k, :]
previous_S_error = float('inf')
previous_U_error = float('inf')
previous_V_error = float('inf')
for t in np.logspace(0, -12, 20):
PM = PowerMethod(k=k, tol=t, scoring_method='q-vals', max_iter=100, factor=None, lmbd=0)
U_k_PM, S_k_PM, V_k_PM = PM.svd(array)
assert subspace_dist(U_k, U_k_PM, S_k) <= previous_U_error
assert subspace_dist(V_k, V_k_PM, S_k) <= previous_V_error
assert np.linalg.norm(S_k-S_k_PM) <= previous_S_error
previous_S_error = np.linalg.norm(S_k-S_k_PM)
previous_U_error = subspace_dist(U_k, U_k_PM, S_k)
previous_V_error = subspace_dist(V_k, V_k_PM, S_k)
assert subspace_dist(U_k, U_k_PM, S_k) <= 1e-9
assert subspace_dist(V_k, V_k_PM, S_k) <= 1e-9
assert np.linalg.norm(S_k - S_k_PM) <= 1e-12
def test_PowerMethod_subsvd_finds_eigenvectors():
N = 1000
k = 10
s_orig = np.array([1.01**i for i in range(1, N+1)])
array = da.diag(s_orig)
PM = PowerMethod(tol=1e-16, factor=None, lmbd=.1, max_iter=100)
U_PM, S_PM, V_PM = PM.svd(array)
np.testing.assert_array_almost_equal(s_orig[-k:][::-1], S_PM, decimal=0) # Max Q-Val is 21,000
v = np.zeros_like(V_PM).compute()
for j in range(k):
v[j, N - k + j] = 1
np.testing.assert_almost_equal(subspace_dist(V_PM, v, S_PM), 0, decimal=5)
def test_PowerMethod_subsvd_finds_eigenvectors_failure():
N = 1000
k = 10
s_orig = np.array([1.01**i for i in range(1, N+1)])
array = da.diag(s_orig)
PM = PowerMethod(tol=1e-16, lmbd=0, max_iter=100)
U_PM, S_PM, V_PM = PM.svd(array)
with pytest.raises(AssertionError):
np.testing.assert_array_almost_equal(s_orig[-k:][::-1], S_PM, decimal=0)
def test_PowerMethod_all_tols_agree():
n = 100
p = 80
k = 10
array = np.random.rand(n, p)
PM = PowerMethod(k=k, tol=1e-9, scoring_method='q-vals', max_iter=100, lmbd=0)
U_q, S_q, V_q = PM.svd(array)
PM = PowerMethod(k=k, tol=1e-4, scoring_method='rmse', max_iter=100, lmbd=0)
U_r, S_r, V_r = PM.svd(array)
PM = PowerMethod(k=k, tol=1e-9, scoring_method='v-subspace', max_iter=100, lmbd=0)
U_v, S_v, V_v = PM.svd(array)
np.testing.assert_array_almost_equal(S_q, S_r)
np.testing.assert_array_almost_equal(S_q, S_v)
np.testing.assert_almost_equal(subspace_dist(U_q, U_r, S_q), 0)
np.testing.assert_almost_equal(subspace_dist(U_q, U_v, S_q), 0)
np.testing.assert_almost_equal(subspace_dist(V_q, V_r, S_q), 0)
np.testing.assert_almost_equal(subspace_dist(V_q, V_v, S_q), 0)
def test_PowerMethod_factor():
n = 100
p = 80
array = np.random.rand(n, p)
sym_array = array.dot(array.T)
for f in ['n', 'p', None]:
if f == 'n':
factor = n
elif f == 'p':
factor = p
else:
factor = 1
U, S, V = np.linalg.svd(sym_array/factor, full_matrices=False)
S = np.sqrt(S)
k = 10
U_k, S_k, V_k = U[:, :k], S[:k], V[:k, :]
array = make_snp_array(da.array(array), mean=False, std=False,
std_method='norm', mask_nan=False, dtype='float64')
PM = PowerMethod(k=k, tol=1e-9, scoring_method='q-vals', max_iter=100, factor=f, lmbd=0)
U_k_PM, S_k_PM, V_k_PM = PM.svd(array)
np.testing.assert_array_almost_equal(S_k, S_k_PM)
assert U_k.shape == U_k_PM.shape == (n, k)
np.testing.assert_almost_equal(subspace_dist(U_k, U_k_PM, S_k_PM), 0)
def test_PowerMethod_scale_center():
array = np.random.rand(100, 70)
mu = array.mean(axis=0)
std = np.diag(1 / array.std(axis=0))
k = 10
for scale in [True, False]:
for center in [True, False]:
new_array = array
if center:
new_array = new_array - mu
if scale:
new_array = new_array.dot(std)
U, S, _ = np.linalg.svd(new_array.dot(new_array.T), full_matrices=False) # Ground Truth
_, _, V = np.linalg.svd(new_array.T.dot(new_array), full_matrices=False) # Ground Truth
S = np.sqrt(S)
U_k, S_k, V_k = U[:, :k], S[:k], V[:k, :]
snp_array = make_snp_array(da.array(array), std=scale, mean=center, std_method='norm', dtype='float64')
np.testing.assert_array_almost_equal(new_array, snp_array)
PM = PowerMethod(k=k, tol=1e-12, scoring_method='q-vals', max_iter=100,
factor=None, lmbd=0)
U_q, S_q, V_q = PM.svd(snp_array)
assert subspace_dist(U_k, U_q, S_k) <= 1e-8
assert subspace_dist(V_k, V_q, S_k) <= 1e-8
assert np.linalg.norm(S_k - S_q) <= 1e-9
def test_PowerMethod_multi_tol():
array = np.random.rand(100, 70)
k = 10
tol_groups = [[1e-1, 1e-1, 1e-1],
[1e-16, 1e-4, 1-16],
[1e-6, 1e-16, 1e-16],
[1e-16, 1e-16, 1e-6]]
for tols in tol_groups:
PM = PowerMethod(k=k, tol=tols, scoring_method=['q-vals', 'rmse', 'v-subspace'], factor=None, lmbd=0)
_, _, _ = PM.svd(array)
assert (min(PM.history.acc['q-vals']) <= tols[0]
or min(PM.history.acc['rmse']) <= tols[1]
or min(PM.history.acc['v-subspace']) <= tols[2])
fail_test_tols = [1e-6, 1e-16, 1e-16]
PM = PowerMethod(k=k, tol=fail_test_tols, scoring_method=['q-vals', 'rmse', 'v-subspace'], factor=None, lmbd=0)
_, _, _ = PM.svd(array)
assert (min(PM.history.acc['q-vals']) <= fail_test_tols[0]
and min(PM.history.acc['rmse']) >= fail_test_tols[1]
and min(PM.history.acc['v-subspace']) >= fail_test_tols[2])
def test_PowerMethod_k():
with pytest.raises(ValueError):
_ = PowerMethod(k=0)
with pytest.raises(ValueError):
_ = PowerMethod(k=-1)
PM = PowerMethod(k=100)
array = np.random.rand(50, 50)
with pytest.raises(ValueError):
_, _, _ = PM.svd(array)
def test_PowerMethod_max_iter():
with pytest.raises(ValueError):
_ = PowerMethod(max_iter=0)
PM = PowerMethod(max_iter=1)
array = np.random.rand(100, 100)
_, _, _ = PM.svd(array)
assert PM.num_iter == 1
assert len(PM.history.iter['S']) == 1
def test_PowerMethod_time_limit():
with pytest.raises(ValueError):
_ = PowerMethod(time_limit=0)
PM = PowerMethod(time_limit=10, max_iter=int(1e10), tol=1e-20)
array = np.random.rand(100, 100)
_, _, _ = PM.svd(array)
assert 9 <= PM.time <= 11
@pytest.mark.skip('Have yet to implement stochastic power methods efficiently within dask.')
def test_PowerMethod_p():
with pytest.raises(ValueError):
_ = PowerMethod(p=-1)
with pytest.raises(ValueError):
_ = PowerMethod(p=1)
def test_PowerMethod_buffer():
with pytest.raises(ValueError):
_ = PowerMethod(buffer=-1)
array = np.random.rand(1000, 1000)
U, S, V = np.linalg.svd(array)
S[0:15] = 1e3 + S[0:15]
array = U.dot(np.diag(S).dot(V))
for method in ['q-vals', 'rmse', 'v-subspace']:
PM1 = PowerMethod(buffer=2, max_iter=3, tol=1e-16, scoring_method=method)
PM2 = PowerMethod(buffer=30, max_iter=3, tol=1e-16, scoring_method=method)
_, _, _ = PM1.svd(array)
_, _, _ = PM2.svd(array)
if method == 'v-subspace':
# V-Subspace for this convergese quickly due small size of test case
assert np.abs(PM1.history.acc[method][-1] - PM2.history.acc[method][-1]) < 1e-4
else:
assert PM1.history.acc[method][-1] > PM2.history.acc[method][-1]
def test_PowerMethod_sub_svd_start():
array = np.random.rand(100, 100)
PM1 = PowerMethod(sub_svd_start=True, tol=1e-12, lmbd=0)
_, S1, _ = PM1.svd(array)
PM2 = PowerMethod(sub_svd_start=False, tol=1e-12, lmbd=0)
_, S2, _ = PM2.svd(array)
np.testing.assert_array_almost_equal(S1, S2)
def test_PowerMethod_init_row_sampling_factor():
with pytest.raises(ValueError):
_ = PowerMethod(init_row_sampling_factor=0)
PM1 = PowerMethod(init_row_sampling_factor=4)
array = np.random.rand(100, 100)
_, _, _ = PM1.svd(array)
def test_PowerMethod_bad_arrays():
PM = PowerMethod()
with pytest.raises(ValueError):
PM.svd(np.random.rand(100))
with pytest.raises(ValueError):
PM.svd(np.random.rand(100, 100, 100))
def test_PowerMethod_nan_arrays():
array = np.random.randn(100, 100)
for bad_type in [float('nan')]:
array[0, 0] = bad_type
for start in [True, False]:
PM = PowerMethod(sub_svd_start=start, max_iter=2)
with pytest.raises(np.linalg.LinAlgError):
_, _, _ = PM.svd(da.array(array))
clean_array = make_snp_array(da.array(array), mask_nan=True, std_method='norm', dtype='float64')
_, _, _ = PM.svd(clean_array)
@pytest.mark.skip
def test_PowerMethod_nan_arrays_fills():
array = np.random.randint(0, 3, size=(100, 100)).astype(float)
array[0, 0] = 10000
median = round(np.median(array))
mean = round(np.mean(array))
k = 10
for method in ['mean', 'median', 10]:
PM = PowerMethod(factor=None, scale=False, center=False, tol=1e-16, lmbd=0)
if method == 'mean':
filled_value = mean
elif method == 'median':
filled_value = median
else:
filled_value = method
array[0, 1] = filled_value
U, S, V = np.linalg.svd(array, full_matrices=False)
U_k, S_k, V_k = svd_to_trunc_svd(U, S, V, k=k)
array[0, 1] = float('nan')
U, S, V = PM.svd(da.array(array), mask_fill=method, mask_nan=True)
assert PM.array.array[0, 1] == filled_value
np.testing.assert_array_almost_equal(S, S_k)
def test_PowerMethod_reset():
for start in [True, False]:
PM = PowerMethod(sub_svd_start=start)
_, _, _ = PM.svd(da.array(np.random.randn(100, 50)))
_, _, _ = PM.svd(da.array(np.random.randn(110, 60)))
@pytest.mark.skip
def test_PowerMethod_transpose_array_shape():
N, P, K = 100, 200, 10
array = da.array(np.random.rand(N, P))
PM = PowerMethod(k=K)
U_PM, S_PM, V_PM = PM.svd(array)
assert U_PM.shape == (N, K)
assert S_PM.shape == (K,)
assert V_PM.shape == (K, P)
U_PM, S_PM, V_PM = PM.svd(array)
assert U_PM.shape == (P, K)
assert S_PM.shape == (K,)
assert V_PM.shape == (K, N)
@pytest.mark.skip
def test_PowerMethod_transpose_array():
array = da.array(np.random.rand(100, 200))
k = 10
U, S, V = da.linalg.svd(array)
U_k, S_k, V_k = svd_to_trunc_svd(U, S, V, k=k)
PM = PowerMethod(tol=1e-12, k=k, factor=None, scale=False, center=False, lmbd=0)
U_PM, S_PM, V_PM = PM.svd(array)
np.testing.assert_array_almost_equal(S_k, S_PM)
np.testing.assert_almost_equal(subspace_dist(V_k, V_PM, S_PM), 0)
assert U_k.shape == U_PM.shape
U_PM, S_PM, V_PM = PM.svd(array, transpose=True)
np.testing.assert_almost_equal(subspace_dist(U_PM.T, V_k, S_PM), 0)
assert V_PM.shape != U_PM.shape
@pytest.mark.skip
def test_PowerMethod_persist():
N = 10000
x = da.random.random((N, N))
PM = PowerMethod(max_iter=1)
_, _, _ = PM.svd(x, persist=False)
_, _, _ = PM.svd(x, persist=True)
for dt in ['float64', 'float32', 'int8', 'uint8', 'int64', 'uint64']:
_, _, _ = PM.svd(x, persist=True, dtype=dt)
def test_PowerMethod_std_method():
N = 1000
P = 100
k = 10
array = da.random.randint(0, 3, size=(N, P))
for method in ['norm', 'binom']:
new_array = make_snp_array(array, std_method=method)
PM = PowerMethod(k=k, scoring_method='q-vals', tol=1e-13, factor=None)
U_PM, S_PM, V_PM = PM.svd(array=new_array)
mean = array.mean(axis=0)
if method == 'norm':
std = array.std(axis=0)
else:
p = mean/2
std = da.sqrt(2*p*(1-p))
x = (array - mean).dot(np.diag(1/std))
U, S, V = da.linalg.svd(x)
U_k, S_k, V_k = svd_to_trunc_svd(U, S, V, k=k)
np.testing.assert_almost_equal(subspace_dist(U_PM, U_k, S_k), 0, decimal=3)
np.testing.assert_almost_equal(subspace_dist(V_PM, V_k, S_k), 0, decimal=3)
np.testing.assert_array_almost_equal(S_k, S_PM, decimal=2)
@pytest.mark.xfail
def test_PowerMethod_project():
N, P = 1000, 1000
k = 10
svd_array = da.random.random(size=(N, P)).persist()
proj_array = da.random.random(size=(10, P)).persist()
mu = da.mean(svd_array, axis=0).persist()
std = da.diag(1/da.std(svd_array, axis=0)).persist()
for scale in [True, False]:
for center in [True, False]:
svd_array1 = svd_array
proj_array1 = proj_array
if center:
svd_array1 = svd_array1 - mu
proj_array1 = proj_array1 - mu
if scale:
svd_array1 = svd_array1.dot(std)
proj_array1 = proj_array1.dot(std)
U, S, V = da.linalg.svd(svd_array1)
U_k, S_k, V_k = svd_to_trunc_svd(U, S, V, k=k)
PM = PowerMethod(k=k, scale=scale, center=center, factor=None, tol=1e-12)
U_PM, S_PM, V_PM = PM.svd(array=svd_array)
np.testing.assert_array_almost_equal(PM.project(proj_array, onto=V_k.T), proj_array1.dot(V_k.T))
def test_PowerMethod_return_history():
max_iter = 5
array = da.random.random(size=(1000, 1000))
PM = PowerMethod(scoring_method=['rmse', 'q-vals', 'v-subspace'], max_iter=max_iter, tol=[1e-16, 1e-16, 1e-16])
history = PM.svd(array, return_history=True)
assert len(history.acc['q-vals']) == max_iter
assert len(history.acc['rmse']) == max_iter
assert len(history.acc['v-subspace']) == max_iter
assert len(history.iter['U']) == 0
assert len(history.iter['S']) == max_iter
assert len(history.iter['V']) == max_iter
assert len(history.iter['last_value']) == 3
assert history.time['start'] < history.time['stop']
assert len(history.time['step']) == max_iter
assert len(history.time['acc']) == max_iter
np.testing.assert_array_almost_equal(np.array(history.time['iter']),
np.array(history.time['acc']) + np.array(history.time['step']), decimal=3)
def test_SSPM_case1():
N, P, k = 100000, 100, 10
array = np.zeros(shape=(N, P))
s_orig = np.linspace(1, 2, P)
array[:P, :] = np.diag(np.linspace(1, 2, P))
array[N - 1, :] = 1
U, S, V = np.linalg.svd(array, full_matrices=False)
U_k, S_k, V_k = svd_to_trunc_svd(U, S, V, k=k)
SSPM = SuccessiveBatchedPowerMethod(k=k,
sub_svd_start=True,
tol=1e-12,
factor=None)
U_PM, S_PM, V_PM = SSPM.svd(array)
np.testing.assert_almost_equal(subspace_dist(U_PM, U_k, S_k), 0)
np.testing.assert_almost_equal(subspace_dist(V_PM, V_k, S_k), 0)
np.testing.assert_array_almost_equal(S_k, S_PM)
for sub_S in SSPM.history.iter['S'][:-1]:
|
np.testing.assert_array_almost_equal(s_orig[::-1][:k], sub_S)
|
numpy.testing.assert_array_almost_equal
|
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 28 19:38:58 2016
similarity
@author: liudiwei
"""
import numpy as np
#欧几里得距离,使用1/(1+distance)归一化
def eulisSim(matA, matB):
return 1.0/(1.0 +
|
np.linalg.norm(matA - matB)
|
numpy.linalg.norm
|
# -*- coding: utf-8 -*-
from __future__ import absolute_import, division, print_function, unicode_literals
from six.moves import zip
import warnings
import scipy.signal
import numpy as np
import utool as ut
from .util_math import TAU
def argsubmax(ydata, xdata=None):
"""
Finds a single submaximum value to subindex accuracy.
If xdata is not specified, submax_x is a fractional index.
Otherwise, submax_x is sub-xdata (essentially doing the index interpolation
for you)
Example:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
>>> import ubelt as ub
>>> ydata = [ 0, 1, 2, 1.5, 0]
>>> xdata = [00, 10, 20, 30, 40]
>>> result1 = argsubmax(ydata, xdata=None)
>>> result2 = argsubmax(ydata, xdata=xdata)
>>> result = ub.repr2([result1, result2], precision=4, nl=1, nobr=True)
>>> print(result)
2.1667, 2.0208,
21.6667, 2.0208,
Example:
>>> from vtool_ibeis.histogram import * # NOQA
>>> hist_ = np.array([0, 1, 2, 3, 4])
>>> centers = None
>>> maxima_thresh=None
>>> argsubmax(hist_)
(4.0, 4.0)
"""
if len(ydata) == 0:
raise IndexError('zero length array')
ydata = np.asarray(ydata)
xdata = None if xdata is None else np.asarray(xdata)
submaxima_x, submaxima_y = argsubmaxima(ydata, centers=xdata)
idx = submaxima_y.argmax()
submax_y = submaxima_y[idx]
submax_x = submaxima_x[idx]
return submax_x, submax_y
def argsubmaxima(hist, centers=None, maxima_thresh=None, _debug=False):
r"""
Determines approximate maxima values to subindex accuracy.
Args:
hist_ (ndarray): ydata, histogram frequencies
centers (ndarray): xdata, histogram labels
maxima_thresh (float): cutoff point for labeing a value as a maxima
Returns:
tuple: (submaxima_x, submaxima_y)
CommandLine:
python -m vtool_ibeis.histogram argsubmaxima
python -m vtool_ibeis.histogram argsubmaxima --show
Example:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
>>> maxima_thresh = .8
>>> hist = np.array([6.73, 8.69, 0.00, 0.00, 34.62, 29.16, 0.00, 0.00, 6.73, 8.69])
>>> centers = np.array([-0.39, 0.39, 1.18, 1.96, 2.75, 3.53, 4.32, 5.11, 5.89, 6.68])
>>> (submaxima_x, submaxima_y) = argsubmaxima(hist, centers, maxima_thresh)
>>> result = str((submaxima_x, submaxima_y))
>>> print(result)
>>> # xdoctest: +REQUIRES(--show)
>>> import plottool_ibeis as pt
>>> pt.draw_hist_subbin_maxima(hist, centers)
>>> pt.show_if_requested()
(array([ 3.0318792]), array([ 37.19208239]))
"""
maxima_x, maxima_y, argmaxima = hist_argmaxima(hist, centers, maxima_thresh=maxima_thresh)
argmaxima = np.asarray(argmaxima)
if _debug:
print('Argmaxima: ')
print(' * maxima_x = %r' % (maxima_x))
print(' * maxima_y = %r' % (maxima_y))
print(' * argmaxima = %r' % (argmaxima))
flags = (argmaxima == 0) | (argmaxima == len(hist) - 1)
argmaxima_ = argmaxima[~flags]
submaxima_x_, submaxima_y_ = interpolate_submaxima(argmaxima_, hist, centers)
if np.any(flags):
endpts = argmaxima[flags]
submaxima_x = (np.hstack([submaxima_x_, centers[endpts]])
if centers is not None else
np.hstack([submaxima_x_, endpts]))
submaxima_y = np.hstack([submaxima_y_, hist[endpts]])
else:
submaxima_y = submaxima_y_
submaxima_x = submaxima_x_
if _debug:
print('Submaxima: ')
print(' * submaxima_x = %r' % (submaxima_x))
print(' * submaxima_y = %r' % (submaxima_y))
return submaxima_x, submaxima_y
def argsubmin2(ydata, xdata=None):
if len(ydata) == 0:
raise ValueError('zero length array')
ydata = np.asarray(ydata)
xdata = None if xdata is None else np.asarray(xdata)
submax_x, submax_y = argsubmax2(-ydata, xdata)
submin_x = submax_x
submin_y = -submax_y
return submin_x, submin_y
def argsubmax2(ydata, xdata=None):
"""
Finds a single submaximum value to subindex accuracy.
If xdata is not specified, submax_x is a fractional index.
This version always normalizes x-coordinates.
Example:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
>>> ydata = [ 0, 1, 2, 1.5, 0]
>>> xdata = [00, 10, 20, 30, 40]
>>> result1 = argsubmax(ydata, xdata=None)
>>> result2 = argsubmax(ydata, xdata=xdata)
>>> import ubelt as ub
>>> result = ub.repr2([result1, result2], precision=4, nl=1, nobr=True)
>>> print(result)
(2.1667, 2.0208),
(21.6667, 2.0208),
Example:
>>> from vtool_ibeis.histogram import * # NOQA
>>> hist_ = np.array([0, 1, 2, 3, 4])
>>> centers = None
>>> thresh_factor = None
>>> argsubmax(hist_)
(4.0, 4.0)
"""
if len(ydata) == 0:
raise ValueError('zero length array')
ydata = np.asarray(ydata)
xdata = None if xdata is None else np.asarray(xdata)
submaxima_x, submaxima_y = argsubmaxima2(ydata, xdata=xdata,
normalize_x=True)
idx = submaxima_y.argmax()
submax_y = submaxima_y[idx]
submax_x = submaxima_x[idx]
return submax_x, submax_y
def argsubmaxima2(ydata, xdata=None, thresh_factor=None, normalize_x=True):
return argsubextrema2('max', ydata, xdata=xdata,
thresh_factor=thresh_factor, normalize_x=normalize_x)
def argsubminima2(ydata, xdata=None, thresh_factor=None, normalize_x=True):
"""
"""
return argsubextrema2('min', ydata, xdata=xdata,
thresh_factor=thresh_factor, normalize_x=normalize_x)
def argsubextrema2(op, ydata, xdata=None, thresh_factor=None, normalize_x=True,
flat=True):
r"""
Determines approximate maxima values to subindex accuracy.
Args:
ydata (ndarray): ydata, histogram frequencies
xdata (ndarray): xdata, histogram labels
thresh_factor (float): cutoff point for labeing a value as a maxima
flat (bool): if True allows for flat extrema to be found.
Returns:
tuple: (submaxima_x, submaxima_y)
CommandLine:
python -m vtool_ibeis.histogram argsubmaxima
python -m vtool_ibeis.histogram argsubmaxima --show
Example:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
>>> thresh_factor = .8
>>> ydata = np.array([6.73, 8.69, 0.00, 0.00, 34.62, 29.16, 0.00, 0.00, 6.73, 8.69])
>>> xdata = np.array([-0.39, 0.39, 1.18, 1.96, 2.75, 3.53, 4.32, 5.11, 5.89, 6.68])
>>> op = 'min'
>>> (subextrema_x, subextrema_y) = argsubextrema2(op, ydata, xdata, thresh_factor)
>>> result = str((subextrema_x, subextrema_y))
>>> print(result)
>>> # xdoctest: +REQUIRES(--show)
>>> import plottool_ibeis as pt
>>> pt.draw_hist_subbin_maxima(ydata, xdata)
>>> pt.show_if_requested()
Doctest:
>>> from vtool_ibeis.histogram import * # NOQA
>>> thresh_factor = .8
>>> ydata = np.array([1, 1, 1, 2, 1, 2, 3, 2, 4, 1.1, 5, 1.2, 1.1, 1.1, 1.2, 1.1])
>>> op = 'max'
>>> thresh_factor = .8
>>> (subextrema_x, subextrema_y) = argsubextrema2(op, ydata, thresh_factor=thresh_factor)
>>> result = str((subextrema_x, subextrema_y))
>>> print(result)
>>> # xdoctest: +REQUIRES(--show)
>>> import plottool_ibeis as pt
>>> pt.qtensure()
>>> xdata = np.arange(len(ydata))
>>> pt.figure(fnum=1, doclf=True)
>>> pt.plot(xdata, ydata)
>>> pt.plot(subextrema_x, subextrema_y, 'o')
>>> ut.show_if_requested()
"""
if op == 'max':
cmp = np.greater
cmp_eq = np.greater_equal
extreme = np.max
factor_op = np.multiply
elif op == 'min':
cmp = np.less
cmp_eq = np.less_equal
extreme = np.min
factor_op = np.divide
else:
raise KeyError(op)
# absolute extrema
abs_extreme_y = extreme(ydata)
if thresh_factor is None:
thresh_factor = 1.0
# thresh_factor = None
if thresh_factor is None:
thresh_value = None
flags = np.ones(len(ydata), dtype=np.bool)
else:
# Find relative and flat extrema
thresh_value = factor_op(abs_extreme_y, thresh_factor)
flags = cmp_eq(ydata, thresh_value)
# Only consider non-boundary points
flags[[0, -1]] = False
mxs = np.where(flags)[0]
# ydata[np.vstack([mxs - 1, mxs, mxs + 1])]
lvals, mvals, rvals = ydata[mxs - 1], ydata[mxs], ydata[mxs + 1]
is_mid_extrema = cmp_eq(mvals, lvals) & cmp_eq(mvals, rvals)
is_rel_extrema = cmp(mvals, lvals) & cmp(mvals, rvals)
is_flat_extrema = is_mid_extrema & ~is_rel_extrema
flat_argextrema = mxs[is_flat_extrema]
rel_argextrema = mxs[is_rel_extrema]
# Sublocalize relative extrema
if len(rel_argextrema) > 0:
# rel_subextrema_x, rel_subextrema_y = _sublocalize_extrema(
# ydata, xdata, rel_argextrema, cmp, normalize_x)
neighbs = np.vstack((rel_argextrema - 1, rel_argextrema, rel_argextrema + 1))
y123 = ydata[neighbs]
if normalize_x or xdata is None:
x123 = neighbs
else:
x123 = xdata[neighbs]
# Fit parabola around points
coeff_list = []
for (x, y) in zip(x123.T, y123.T):
coeff = np.polyfit(x, y, deg=2)
coeff_list.append(coeff)
A, B, C = np.vstack(coeff_list).T
# Extreme x point is where the derivative is 0
rel_subextrema_x = -B / (2 * A)
rel_subextrema_y = C - B * B / (4 * A)
if xdata is not None and normalize_x:
# Convert x back to data coordinates if we normalized durring polynimal
# fitting. Do linear interpoloation.
rel_subextrema_x = linear_interpolation(xdata, rel_subextrema_x)
# Check to make sure rel_subextrema is not less extreme than the original
# extrema (can be the case only if the extrema is incorrectly given)
# In this case just return what the user wanted as the extrema
violates = cmp(ydata[rel_argextrema], rel_subextrema_y)
if np.any(violates):
warnings.warn(
'rel_subextrema was less extreme than the measured extrema',
RuntimeWarning)
if xdata is not None:
rel_subextrema_x[violates] = xdata[rel_argextrema[violates]]
else:
rel_subextrema_x[violates] = rel_argextrema[violates]
rel_subextrema_y[violates] = ydata[rel_argextrema[violates]]
else:
x123 = None # for plottool_ibeis
coeff_list = [] # for plottool_ibeis
rel_subextrema_x, rel_subextrema_y = [], []
# Check left boundary
boundary_argextrema = []
if len(ydata) > 1:
if thresh_value is None or cmp_eq(ydata[0], thresh_value):
if cmp_eq(ydata[0], ydata[1]):
boundary_argextrema.append(0)
# Check right boundary
if len(ydata) > 2:
if thresh_value is None or cmp_eq(ydata[0], thresh_value):
if cmp_eq(ydata[-1], ydata[-2]):
boundary_argextrema.append(len(ydata) - 1)
# Any non-flat mid extrema can be sublocalized
other_argextrema = np.hstack([boundary_argextrema, flat_argextrema])
other_argextrema = other_argextrema.astype(np.int)
other_subextrema_y = ydata[other_argextrema]
if xdata is None:
other_subextrema_x = other_argextrema
else:
other_subextrema_x = xdata[other_argextrema]
# Recombine and order all extremas
subextrema_y = np.hstack([rel_subextrema_y, other_subextrema_y])
subextrema_x = np.hstack([rel_subextrema_x, other_subextrema_x])
sortx = subextrema_x.argsort()
subextrema_x = subextrema_x[sortx]
subextrema_y = subextrema_y[sortx]
return subextrema_x, subextrema_y
def _sublocalize_extrema(ydata, xdata, argextrema, cmp, normalize_x=True):
"""
Assumes argextrema are all relative and not on the boundaries
"""
# extrema_y = ydata[argextrema]
# extrema_x = argextrema if xdata is None else xdata[argextrema]
neighbs = np.vstack((argextrema - 1, argextrema, argextrema + 1))
y123 = ydata[neighbs]
if normalize_x or xdata is None:
x123 = neighbs
else:
x123 = xdata[neighbs]
# Fit parabola around points
coeff_list = []
for (x, y) in zip(x123.T, y123.T):
coeff = np.polyfit(x, y, deg=2)
coeff_list.append(coeff)
A, B, C = np.vstack(coeff_list).T
# Extreme x point is where the derivative is 0
subextrema_x = -B / (2 * A)
subextrema_y = C - B * B / (4 * A)
if xdata is not None and normalize_x:
# Convert x back to data coordinates if we normalized durring polynimal
# fitting. Do linear interpoloation.
subextrema_x = linear_interpolation(xdata, subextrema_x)
# Check to make sure subextrema is not less extreme than the original
# extrema (can be the case only if the extrema is incorrectly given)
# In this case just return what the user wanted as the extrema
violates = cmp(ydata[argextrema], subextrema_y)
if np.any(violates):
warnings.warn(
'subextrema was less extreme than the measured extrema',
RuntimeWarning)
if xdata is not None:
subextrema_x[violates] = xdata[argextrema[violates]]
else:
subextrema_x[violates] = argextrema[violates]
subextrema_y[violates] = ydata[argextrema[violates]]
return subextrema_x, subextrema_y
def linear_interpolation(arr, subindices):
"""
Does linear interpolation to lookup subindex values
Example:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
>>> arr = np.array([0, 1, 2, 3])
>>> subindices = np.array([0, .1, 1, 1.8, 2, 2.5, 3] )
>>> subvalues = linear_interpolation(arr, subindices)
>>> assert np.allclose(subindices, subvalues)
>>> assert np.allclose(2.3, linear_interpolation(arr, 2.3))
"""
idx1 = np.floor(subindices).astype(np.int)
idx2 = np.floor(subindices + 1).astype(np.int)
idx2 = np.minimum(idx2, len(arr) - 1)
alpha = idx2 - subindices
subvalues = arr[idx1] * (alpha) + arr[idx2] * (1 - alpha)
return subvalues
# subindex_take = linear_interpolation
def hist_argmaxima(hist, centers=None, maxima_thresh=None):
"""
must take positive only values
CommandLine:
python -m vtool_ibeis.histogram hist_argmaxima
Example:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
>>> maxima_thresh = .8
>>> hist = np.array([ 6.73, 8.69, 0.00, 0.00, 34.62, 29.16, 0.00, 0.00, 6.73, 8.69])
>>> centers = np.array([-0.39, 0.39, 1.18, 1.96, 2.75, 3.53, 4.32, 5.11, 5.89, 6.68])
>>> maxima_x, maxima_y, argmaxima = hist_argmaxima(hist, centers)
>>> result = str((maxima_x, maxima_y, argmaxima))
>>> print(result)
"""
# FIXME: Not handling general cases
# [0] index because argrelmaxima returns a tuple
argmaxima_ = scipy.signal.argrelextrema(hist, np.greater)[0]
if len(argmaxima_) == 0:
argmaxima_ = hist.argmax()
if maxima_thresh is not None:
# threshold maxima to be within a factor of the maximum
maxima_y = hist[argmaxima_]
isvalid = maxima_y > maxima_y.max() * maxima_thresh
argmaxima = argmaxima_[isvalid]
else:
argmaxima = argmaxima_
maxima_y = hist[argmaxima]
maxima_x = argmaxima if centers is None else centers[argmaxima]
return maxima_x, maxima_y, argmaxima
def hist_argmaxima2(hist, maxima_thresh=.8):
"""
must take positive only values
Setup:
>>> # ENABLE_DOCTEST
>>> from vtool_ibeis.histogram import * # NOQA
GridSearch:
>>> hist1 = np.array([1, .9, .8, .99, .99, 1.1, .9, 1.0, 1.0])
>>> hist2 = np.array([1, .9, .8, .99, .99, 1.1, 1.0, 1.0])
>>> hist2 = np.array([1, .9, .8, .99, .99, 1.1, 1.0])
>>> hist2 = np.array([1, .9, .8, .99, .99, 1.1, 1.2])
>>> hist2 = np.array([1, 1.2])
>>> hist2 = np.array([1, 1, 1.2])
>>> hist2 = np.array([1])
>>> hist2 = np.array([])
Example:
>>> # ENABLE_DOCTEST
>>> maxima_thresh = .8
>>> hist = np.array([1, .9, .8, .99, .99, 1.1, .9, 1.0, 1.0])
>>> argmaxima = hist_argmaxima2(hist)
>>> print(argmaxima)
"""
# FIXME: Not handling general cases
# [0] index because argrelmaxima returns a tuple
if len(hist) == 0:
return
|
np.empty(dtype=np.int)
|
numpy.empty
|
from prunedcv import PrunedCV, PrunedGridSearchCV
from sklearn.datasets import fetch_california_housing, load_wine
from sklearn.linear_model import LogisticRegression
from lightgbm import LGBMRegressor
import numpy as np
import pandas as pd
import pytest
def test_pruner_prun_yes():
pruner = PrunedCV(4, 0.1)
for i in range(6):
pruner._add_split_value_and_prun(1.0)
pruner._add_split_value_and_prun(10000.0)
assert pruner.prune
def test_pruner_prun_no():
pruner = PrunedCV(4, 0.1)
for i in range(4):
pruner._add_split_value_and_prun(1.0)
for i in range(3):
pruner._add_split_value_and_prun(.6)
assert not pruner.prune
def test_pruner_prun_back():
pruner = PrunedCV(4, 0.1)
for i in range(4):
pruner._add_split_value_and_prun(1.0)
for i in range(2):
pruner._add_split_value_and_prun(10000.0)
for i in range(3):
pruner._add_split_value_and_prun(1.0)
assert not pruner.prune
def test_prun_first_run():
pruner = PrunedCV(4, 0.1)
for i in range(4):
pruner._add_split_value_and_prun(1.0)
assert pruner.best_splits_list_ == [1.0, 1.0, 1.0, 1.0]
def test_prun_first_run_check():
pruner = PrunedCV(4, 0.1)
for i in range(4):
pruner._add_split_value_and_prun(1.0)
assert not pruner.first_run_
def test_prun_folds_int():
with pytest.raises(TypeError):
pruner = PrunedCV(1.1, 0.1)
pruner._add_split_value_and_prun(1)
def test_prun_folds_num():
with pytest.raises(ValueError):
pruner = PrunedCV(1, 0.1)
pruner._add_split_value_and_prun(1)
def test_prun_vals_type():
with pytest.raises(TypeError):
pruner = PrunedCV(4, 0.1)
pruner._add_split_value_and_prun(1)
def test_prun_score_val_constant():
pruner = PrunedCV(4, 0.1)
for i in range(8):
pruner._add_split_value_and_prun(1.0)
assert pruner.cross_val_score_value == 1.0
def test_prun_score_val_dec():
pruner = PrunedCV(4, 0.1)
for i in range(7):
pruner._add_split_value_and_prun(1.0)
pruner._add_split_value_and_prun(.9)
assert pruner.cross_val_score_value < 1.0
def test_prun_score_val_inc():
pruner = PrunedCV(4, 0.1)
for i in range(7):
pruner._add_split_value_and_prun(1.0)
pruner._add_split_value_and_prun(1.1)
assert pruner.cross_val_score_value > 1.0
def test_prun_score_val_best():
pruner = PrunedCV(4, 0.1)
for i in range(7):
pruner._add_split_value_and_prun(1.0)
pruner._add_split_value_and_prun(1.1)
assert sum(pruner.best_splits_list_) / pruner.cv == 1.0
def test_prun_pruned_cv_score():
pruner = PrunedCV(4, 0.1)
for i in range(4):
pruner._add_split_value_and_prun(1.0)
for i in range(2):
pruner._add_split_value_and_prun(2.0)
assert pruner.cross_val_score_value == 2.0
def test_prun_3models():
data = fetch_california_housing()
x = data['data']
y = data['target']
pruner = PrunedCV(cv=8, tolerance=.1)
model1 = LGBMRegressor(max_depth=25)
model2 = LGBMRegressor(max_depth=10)
model3 = LGBMRegressor(max_depth=2)
score1 = pruner.cross_val_score(model1, x, y, shuffle=True, random_state=42)
score2 = pruner.cross_val_score(model2, x, y, shuffle=True, random_state=42)
score3 = pruner.cross_val_score(model3, x, y, shuffle=True, random_state=42)
assert (sum(pruner.best_splits_list_) / pruner.cv == score2) and (score2 < score1) and (score2 < score3)
def test_prun_cv_x():
with pytest.raises(TypeError):
pruner = PrunedCV(cv=4, tolerance=.1)
model = LGBMRegressor()
x = [1, 2, 3]
y = np.array([1, 2, 3])
pruner.cross_val_score(model, x, y)
def test_prun_cv_y():
with pytest.raises(TypeError):
pruner = PrunedCV(cv=4, tolerance=.1)
model = LGBMRegressor()
y = [1, 2, 3]
x =
|
np.array([1, 2, 3])
|
numpy.array
|
#!/usr/bin/python
# -*- coding: <UTF-8> -*-
"""
Main functions for visual analytics approach.
"""
import json
import numpy as np
import os
import toml
from flask import Flask, render_template, request
from sklearn.metrics import confusion_matrix
app = Flask(__name__)
@app.route("/")
def main():
global userData
cwd = os.getcwd()
print(cwd)
userData = toml.load(r"userData.toml")
return render_template("visualizations.html",
datasets=userData.keys())
@app.route("/dimRed", methods=["POST"])
def dimRed():
global data, userData
parameters = request.get_json()
dataset = parameters["dataset"]
# read json file
with open(userData[dataset]) as f:
data = json.load(f)
distances_2D, distances_orig = getDistancesToNextSample(data["projection"], data["hiddenStates"])
confusionMatrix = array_to_list(confusion_matrix(data["actualValues"], data["predictions"], labels=range(len(data["classes"]))))
return {"projection": data["projection"],
"actualValues": data["actualValues"],
"predictions": data["predictions"],
"hiddenStates": data["hiddenStates"],
"modelOutputs": data["modelOutputs"],
"texts": data["texts"],
"classes": data["classes"],
"distances": array_to_list(distances_orig / getMax(distances_orig)),
"confusionMatrix": confusionMatrix,
"accuracy": data["model_accuracy"]}
def getDistancesToNextSample(data2D, dataOrig):
allDists2D = []
allDistsOrig = []
for i in range(len(data2D)):
dists2D = []
distsOrig = []
for j in range(len(data2D[i]) - 1):
dist2D = distance(np.asarray(data2D[i][j]), np.asarray(data2D[i][j + 1]))
distOrig = distance(np.asarray(dataOrig[i][j]), np.asarray(dataOrig[i][j + 1]))
dists2D.append(dist2D)
distsOrig.append(distOrig)
allDists2D.append(np.asarray(dists2D))
allDistsOrig.append(np.asarray(distsOrig))
return np.asarray(allDists2D), np.asarray(allDistsOrig)
def distance(a, b):
return
|
np.linalg.norm(a - b)
|
numpy.linalg.norm
|
# Utility methods for dealing with Dataset objects
from __future__ import division
import decimal
from six import string_types, integer_types
from scipy import stats
import pandas as pd
import numpy as np
import warnings
import sys
import copy
import datetime
from functools import wraps
def parse_result_format(result_format):
"""This is a simple helper utility that can be used to parse a string result_format into the dict format used
internally by great_expectations. It is not necessary but allows shorthand for result_format in cases where
there is no need to specify a custom partial_unexpected_count."""
if isinstance(result_format, string_types):
result_format = {
'result_format': result_format,
'partial_unexpected_count': 20
}
else:
if 'partial_unexpected_count' not in result_format:
result_format['partial_unexpected_count'] = 20
return result_format
class DotDict(dict):
"""dot.notation access to dictionary attributes"""
def __getattr__(self, attr):
return self.get(attr)
__setattr__= dict.__setitem__
__delattr__= dict.__delitem__
def __dir__(self):
return self.keys()
#Cargo-cultishly copied from: https://github.com/spindlelabs/pyes/commit/d2076b385c38d6d00cebfe0df7b0d1ba8df934bc
def __deepcopy__(self, memo):
return DotDict([(copy.deepcopy(k, memo), copy.deepcopy(v, memo)) for k, v in self.items()])
"""Docstring inheriting descriptor. Note that this is not a docstring so that this is not added to @DocInherit-\
decorated functions' hybrid docstrings.
Usage::
class Foo(object):
def foo(self):
"Frobber"
pass
class Bar(Foo):
@DocInherit
def foo(self):
pass
Now, Bar.foo.__doc__ == Bar().foo.__doc__ == Foo.foo.__doc__ == "Frobber"
Original implementation cribbed from:
https://stackoverflow.com/questions/2025562/inherit-docstrings-in-python-class-inheritance,
following a discussion on comp.lang.python that resulted in:
http://code.activestate.com/recipes/576862/. Unfortunately, the
original authors did not anticipate deep inheritance hierarchies, and
we ran into a recursion issue when implementing custom subclasses of
PandasDataset:
https://github.com/great-expectations/great_expectations/issues/177.
Our new homegrown implementation directly searches the MRO, instead
of relying on super, and concatenates documentation together.
"""
class DocInherit(object):
def __init__(self, mthd):
self.mthd = mthd
self.name = mthd.__name__
self.mthd_doc = mthd.__doc__
def __get__(self, obj, cls):
doc = self.mthd_doc if self.mthd_doc is not None else ''
for parent in cls.mro():
if self.name not in parent.__dict__:
continue
if parent.__dict__[self.name].__doc__ is not None:
doc = doc + '\n' + parent.__dict__[self.name].__doc__
@wraps(self.mthd, assigned=('__name__', '__module__'))
def f(*args, **kwargs):
return self.mthd(obj, *args, **kwargs)
f.__doc__ = doc
return f
def recursively_convert_to_json_serializable(test_obj):
"""
Helper function to convert a dict object to one that is serializable
Args:
test_obj: an object to attempt to convert a corresponding json-serializable object
Returns:
(dict) A converted test_object
Warning:
test_obj may also be converted in place.
"""
# Validate that all aruguments are of approved types, coerce if it's easy, else exception
# print(type(test_obj), test_obj)
#Note: Not 100% sure I've resolved this correctly...
try:
if not isinstance(test_obj, list) and np.isnan(test_obj):
# np.isnan is functionally vectorized, but we only want to apply this to single objects
# Hence, why we test for `not isinstance(list))`
return None
except TypeError:
pass
except ValueError:
pass
if isinstance(test_obj, (string_types, integer_types, float, bool)):
# No problem to encode json
return test_obj
elif isinstance(test_obj, dict):
new_dict = {}
for key in test_obj:
new_dict[key] = recursively_convert_to_json_serializable(test_obj[key])
return new_dict
elif isinstance(test_obj, (list, tuple, set)):
new_list = []
for val in test_obj:
new_list.append(recursively_convert_to_json_serializable(val))
return new_list
elif isinstance(test_obj, (np.ndarray, pd.Index)):
#test_obj[key] = test_obj[key].tolist()
## If we have an array or index, convert it first to a list--causing coercion to float--and then round
## to the number of digits for which the string representation will equal the float representation
return [recursively_convert_to_json_serializable(x) for x in test_obj.tolist()]
#Note: This clause has to come after checking for np.ndarray or we get:
# `ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()`
elif test_obj == None:
# No problem to encode json
return test_obj
elif isinstance(test_obj, (datetime.datetime, datetime.date)):
return str(test_obj)
# Use built in base type from numpy, https://docs.scipy.org/doc/numpy-1.13.0/user/basics.types.html
# https://github.com/numpy/numpy/pull/9505
elif np.issubdtype(type(test_obj), np.bool_):
return bool(test_obj)
elif np.issubdtype(type(test_obj), np.integer) or np.issubdtype(type(test_obj), np.uint):
return int(test_obj)
elif np.issubdtype(type(test_obj), np.floating):
# Note: Use np.floating to avoid FutureWarning from numpy
return float(round(test_obj, sys.float_info.dig))
# elif np.issubdtype(type(test_obj), np.complexfloating):
# Note: Use np.complexfloating to avoid Future Warning from numpy
# Complex numbers consist of two floating point numbers
# return complex(
# float(round(test_obj.real, sys.float_info.dig)),
# float(round(test_obj.imag, sys.float_info.dig)))
elif isinstance(test_obj, decimal.Decimal):
return float(test_obj)
else:
raise TypeError('%s is of type %s which cannot be serialized.' % (str(test_obj), type(test_obj).__name__))
def is_valid_partition_object(partition_object):
"""Tests whether a given object is a valid continuous or categorical partition object.
:param partition_object: The partition_object to evaluate
:return: Boolean
"""
if is_valid_continuous_partition_object(partition_object) or is_valid_categorical_partition_object(partition_object):
return True
return False
def is_valid_categorical_partition_object(partition_object):
"""Tests whether a given object is a valid categorical partition object.
:param partition_object: The partition_object to evaluate
:return: Boolean
"""
if partition_object is None or ("weights" not in partition_object) or ("values" not in partition_object):
return False
# Expect the same number of values as weights; weights should sum to one
if len(partition_object['values']) == len(partition_object['weights']) and \
np.allclose(np.sum(partition_object['weights']), 1):
return True
return False
def is_valid_continuous_partition_object(partition_object):
"""Tests whether a given object is a valid continuous partition object.
:param partition_object: The partition_object to evaluate
:return: Boolean
"""
if (partition_object is None) or ("weights" not in partition_object) or ("bins" not in partition_object):
return False
if("tail_weights" in partition_object):
if (len(partition_object["tail_weights"])!=2):
return False
comb_weights=partition_object["tail_weights"]+partition_object["weights"]
else:
comb_weights=partition_object["weights"]
# Expect one more bin edge than weight; all bin edges should be monotonically increasing; weights should sum to one
if (len(partition_object['bins']) == (len(partition_object['weights']) + 1)) and \
np.all(np.diff(partition_object['bins']) > 0) and \
np.allclose(
|
np.sum(comb_weights)
|
numpy.sum
|
from copy import deepcopy
from scripts.fileReadWriteOperations import *
from scripts.runCommand import *
import multiprocessing
import pickle
import pprint
import sys
import numpy as np
import pandas as pd
def divide_chunks( l, n ):
# looping till length l
for i in range( 0, len( l ), n ):
yield l[i:i + n]
def removeSpuriousExonsAndTranscripts( whole_annotation ):
remove_these_transcripts = []
for transcript_id in whole_annotation:
# Remove transcripts that are less than 50 nucleotides long
if whole_annotation[transcript_id]["transcript_end"] - whole_annotation[transcript_id]["transcript_start"] + 1 < 50:
remove_these_transcripts.append( transcript_id )
return whole_annotation
def createNewTranscripts( combined_list_of_exons_and_breakpoints, transcript_id ):
"""
"""
# Merge consequent cut-points
combined_list_of_exons_and_breakpoints_new = []
while True:
i = 0
while i < len( combined_list_of_exons_and_breakpoints ):
if i + 1 < len( combined_list_of_exons_and_breakpoints ) and combined_list_of_exons_and_breakpoints[i][-1] == 'c' and combined_list_of_exons_and_breakpoints[i + 1][-1] == 'c':
combined_list_of_exons_and_breakpoints_new.append( [combined_list_of_exons_and_breakpoints[i][0],
combined_list_of_exons_and_breakpoints[i + 1][1], 'c'] )
i += 1
else:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
i += 1
"""print(transcript_id,len(combined_list_of_exons_and_breakpoints),len(combined_list_of_exons_and_breakpoints_new))
sys.stdout.flush()"""
combined_list_of_exons_and_breakpoints = combined_list_of_exons_and_breakpoints_new
i = 0
flag = 0
while i < len( combined_list_of_exons_and_breakpoints ) - 1:
if combined_list_of_exons_and_breakpoints[i][-1] == 'c' and combined_list_of_exons_and_breakpoints[i + 1][-1] == 'c':
flag = 1
break
i += 1
if flag == 0:
break
combined_list_of_exons_and_breakpoints_new = []
# Remove cut points that span both introns and exons
combined_list_of_exons_and_breakpoints_new = []
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[0] )
i = 0
while i < len( combined_list_of_exons_and_breakpoints ):
if combined_list_of_exons_and_breakpoints[i][-1] == 'c':
exon1_start, exon1_end = combined_list_of_exons_and_breakpoints[i - 1][:2]
cutpoint_start, cutpoint_end = combined_list_of_exons_and_breakpoints[i][:2]
if exon1_start <= cutpoint_start and cutpoint_end <= exon1_end:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
else:
pass
else:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
i += 1
combined_list_of_exons_and_breakpoints = combined_list_of_exons_and_breakpoints_new
# Remove those cases where cut points fall at extreme edges (within 5 nucl) of exon boundaries
combined_list_of_exons_and_breakpoints_new = []
i = 0
while i < len( combined_list_of_exons_and_breakpoints ):
if combined_list_of_exons_and_breakpoints[i][-1] == 'c':
if i - 1 >= 0 and i + 1 < len( combined_list_of_exons_and_breakpoints ) - 1:
prev_exon = combined_list_of_exons_and_breakpoints[i - 1][:2]
next_exon = combined_list_of_exons_and_breakpoints[i + 1][:2]
cut_point_start, cut_point_end = combined_list_of_exons_and_breakpoints[i][:2]
if abs( cut_point_start - prev_exon[0] ) <= 5 or abs( cut_point_end - next_exon[1] ) <= 5 or abs( cut_point_start - next_exon[0] ) <= 5 or abs( cut_point_end - prev_exon[1] ) <= 5:
pass
else:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
elif i == 0:
next_exon = combined_list_of_exons_and_breakpoints[i + 1][:2]
cut_point_start, cut_point_end = combined_list_of_exons_and_breakpoints[i][:2]
if abs( cut_point_end - next_exon[1] ) <= 5 or abs( cut_point_start - next_exon[0] ) <= 5:
pass
else:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
elif i == len( combined_list_of_exons_and_breakpoints ) - 1:
prev_exon = combined_list_of_exons_and_breakpoints[i - 1][:2]
cut_point_start, cut_point_end = combined_list_of_exons_and_breakpoints[i][:2]
if abs( cut_point_start - prev_exon[0] ) <= 5 or abs( cut_point_end - prev_exon[1] ) <= 5:
pass
else:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
else:
combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[i] )
i += 1
# combined_list_of_exons_and_breakpoints_new.append( combined_list_of_exons_and_breakpoints[-1])
"""print("Prev_length",len(combined_list_of_exons_and_breakpoints))
print("Next_length",len(combined_list_of_exons_and_breakpoints_new))"""
combined_list_of_exons_and_breakpoints = combined_list_of_exons_and_breakpoints_new
if len( combined_list_of_exons_and_breakpoints ) >= 2:
combined_list_of_exons_and_breakpoints_new = []
if combined_list_of_exons_and_breakpoints[-1][2] == 'c' and combined_list_of_exons_and_breakpoints[-2][1] == combined_list_of_exons_and_breakpoints[-1][1]:
combined_list_of_exons_and_breakpoints_new = combined_list_of_exons_and_breakpoints[:-1]
combined_list_of_exons_and_breakpoints = combined_list_of_exons_and_breakpoints_new
subtract_this_value = combined_list_of_exons_and_breakpoints[0][0]
combined_list_of_exons_and_breakpoints_new = []
for row in combined_list_of_exons_and_breakpoints:
combined_list_of_exons_and_breakpoints_new.append( [row[0] - subtract_this_value,
row[1] - subtract_this_value,
row[2]] )
combined_list_of_exons_and_breakpoints = combined_list_of_exons_and_breakpoints_new
list_of_exon_definitons_of_transcripts = []
current_transcript_exon_definition = []
exon_num = 0
while exon_num < len( combined_list_of_exons_and_breakpoints ):
flag = 0
exon = combined_list_of_exons_and_breakpoints[exon_num]
if exon[2] == 'e' and exon_num + 1 < len( combined_list_of_exons_and_breakpoints ) and combined_list_of_exons_and_breakpoints[exon_num + 1][2] == 'e':
current_transcript_exon_definition.append( [exon[0], exon[1]] )
elif exon[2] == 'e' and exon_num + 1 < len( combined_list_of_exons_and_breakpoints ) and combined_list_of_exons_and_breakpoints[exon_num + 1][2] == 'c':
# Check if the cutpoint is overlapping with intron
cutpoint = combined_list_of_exons_and_breakpoints[exon_num + 1]
exon1 = exon
try:
exon2 = combined_list_of_exons_and_breakpoints[exon_num + 2]
except IndexError:
# print(transcript_id)
# pprint.pprint(combined_list_of_exons_and_breakpoints)
# sys.exit()
flag = 1
if flag == 0 and exon1[1] <= cutpoint[0] and cutpoint[1] <= exon2[0]:
current_transcript_exon_definition.append( [exon[0], exon[1]] )
current_transcript_exon_definition_cp = deepcopy( current_transcript_exon_definition )
list_of_exon_definitons_of_transcripts.append( current_transcript_exon_definition_cp )
current_transcript_exon_definition = [[exon2[0], exon2[1]]]
else:
current_transcript_exon_definition.append( [exon[0], combined_list_of_exons_and_breakpoints[exon_num + 1][0] - 1] )
current_transcript_exon_definition_cp = deepcopy( current_transcript_exon_definition )
list_of_exon_definitons_of_transcripts.append( current_transcript_exon_definition_cp )
current_transcript_exon_definition = [[combined_list_of_exons_and_breakpoints[exon_num + 1][1] + 1, exon[1]]]
exon_num += 1
elif exon[2] == 'e' and exon_num == len( combined_list_of_exons_and_breakpoints ) - 1:
current_transcript_exon_definition.append( [exon[0], exon[1]] )
exon_num += 1
# current_transcript_exon_definition.append(current_transcript_exon_definition)
list_of_exon_definitons_of_transcripts.append( current_transcript_exon_definition )
# print(transcript_id)
"""if transcript_id=="1.7600.0" or transcript_id=="3.41089.0" or transcript_id=="3.41089.1" or transcript_id=="3.46058.0" or transcript_id=="4.47251.1" or transcript_id=="4.47251.2" or transcript_id=="5.71927.0" or transcript_id=="5.71927.1":
print(transcript_id)
pprint.pprint(combined_list_of_exons_and_breakpoints)
for each_transcript_exon_definition in list_of_exon_definitons_of_transcripts:
pprint.pprint(each_transcript_exon_definition)
print("-"*150)
print("="*150)"""
list_of_exon_definitons_of_transcripts_new = []
for each_transcript_exon_definition in list_of_exon_definitons_of_transcripts:
each_transcript_exon_definition_new = []
for row in each_transcript_exon_definition:
each_transcript_exon_definition_new.append( [row[0] + subtract_this_value,
row[1] + subtract_this_value] )
list_of_exon_definitons_of_transcripts_new.append( each_transcript_exon_definition_new )
list_of_exon_definitons_of_transcripts = list_of_exon_definitons_of_transcripts_new
return list_of_exon_definitons_of_transcripts
def removeOverlappingExonsFromEachTranscript( transcript_info ):
"""
Scans each transcript and removes those exons that are subsets of other exons
"""
for transcript_id in transcript_info:
remove_these_exons = []
i = 0
while i < len( transcript_info[transcript_id]["exons"] ):
j = i + 1
exon_i = transcript_info[transcript_id]["exons"][i]
while j < len( transcript_info[transcript_id]["exons"] ):
exon_j = transcript_info[transcript_id]["exons"][j]
if exon_i[0] == exon_j[0] and exon_i[1] == exon_j[1]:
remove_these_exons.append( i )
# Check if ith exon is contained in jth exon
elif exon_j[0] <= exon_i[0] and exon_i[1] <= exon_j[1]:
remove_these_exons.append( i )
# Check if jth exon is contained in ith exon
elif exon_i[0] <= exon_j[0] and exon_j[1] <= exon_i[1]:
remove_these_exons.append( j )
j += 1
i += 1
remove_these_exons = list( set( remove_these_exons ) )[::-1]
"""if transcript_id in ["1.15397_0_covsplit.0 ","1.17646_0_covsplit.0","1.19072_0_covsplit.0","4.50055_0_covsplit.0","5.68350_0_covsplit.0","5.68602_0_covsplit.0","5.69132_0_covsplit.0","5.71535_0_covsplit.0"]:
print(transcript_id,len(transcript_info[transcript_id]["exons"]),len(transcript_info[transcript_id]["exons"])-len(remove_these_exons))
print(transcript_info[transcript_id]["exons"])
print("="*150)"""
for r in remove_these_exons:
transcript_info[transcript_id]["exons"].pop( r )
return transcript_info
def fixOverlappingAndMergedTranscripts( options, logger_proxy, logging_mutex ):
#########################################################################################################
# Read in all the exons that overlap with some intron
#########################################################################################################
# Selecting the first Run from the first condition
gtffilename = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/combined_transcripts_connecting_two_transcripts.gtf"
output_gtf_filename = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/combined_cov_opp_split.gtf"
if options.skip_cpd == True:
os.system( f"mv {gtffilename} {output_gtf_filename}" )
return
if os.path.exists( output_gtf_filename ) == True:return
exons_overlapping_with_introns_bedfilename = gtffilename[:-4] + "_exons_overlapping_with_introns.bed"
overlaps = {}
cmd = "bedtools getfasta -s -fi " + options.genome + " -bed <(cat " + gtffilename + "|awk '$3==\"exon\"') > "
cmd += options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/sequence_per_exon.fasta"
runCommand( ["dummy", cmd] )
donot_split_these_exons = {}
sequence_per_exon = readFastaFile( options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/sequence_per_exon.fasta" )
for id in sequence_per_exon:
if len( sequence_per_exon[id] ) % 3 == 0:
frame_0 = translate( sequence_per_exon[id] )
elif len( sequence_per_exon[id] ) % 3 == 1:
frame_0 = translate( sequence_per_exon[id][:-1] )
elif len( sequence_per_exon[id] ) % 3 == 2:
frame_0 = translate( sequence_per_exon[id][:-2] )
if len( sequence_per_exon[id][1:] ) % 3 == 0:
frame_1 = translate( sequence_per_exon[id][1:] )
elif len( sequence_per_exon[id][1:] ) % 3 == 1:
frame_1 = translate( sequence_per_exon[id][1:-1] )
elif len( sequence_per_exon[id][1:] ) % 3 == 2:
frame_1 = translate( sequence_per_exon[id][1:-2] )
if len( sequence_per_exon[id][2:] ) % 3 == 0:
frame_2 = translate( sequence_per_exon[id][2:] )
elif len( sequence_per_exon[id][2:] ) % 3 == 1:
frame_2 = translate( sequence_per_exon[id][2:-1] )
elif len( sequence_per_exon[id][2:] ) % 3 == 2:
frame_2 = translate( sequence_per_exon[id][2:-2] )
skip = 0
if abs( len( sequence_per_exon[id] ) / 3 - len( frame_0 ) ) <= 1:
skip = 1
if abs( len( sequence_per_exon[id] ) / 3 - len( frame_1 ) ) <= 1:
skip = 1
if abs( len( sequence_per_exon[id] ) / 3 - len( frame_2 ) ) <= 1:
skip = 1
if skip == 1:
chromosome = id.strip()[:-3].split( ":" )[0]
start = str( int( id.strip()[:-3].split( ":" )[-1].split( "-" )[0] ) + 1 )
end = id.strip()[:-3].split( ":" )[-1].split( "-" )[-1]
if chromosome not in donot_split_these_exons:
donot_split_these_exons = []
donot_split_these_exons.append( start + "-" + end )
# if len(frame_0)
# print(len(sequence_per_exon[id])/3,len(frame_0),len(frame_1),len(frame_2))
"""for chromosome in donot_split_these_exons:
print(chromosome,len(donot_split_these_exons))
pprint.pprint(donot_split_these_exons)
return"""
fhr = open( exons_overlapping_with_introns_bedfilename, "r" )
for line in fhr:
chromosome, start, end = line.strip().split()[:3]
if chromosome not in overlaps:
overlaps = []
overlaps.append( str( int( start ) + 1 ) + "-" + end )
for chromosome in overlaps:
overlaps = set( overlaps )
#########################################################################################################
# Read all the transcript info
#########################################################################################################
complete_transcript_info = readAllTranscriptsFromGTFFileInParallel( [options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/combined_transcripts_connecting_two_transcripts.gtf", "dummy", "dummy"] )[0]
exons_to_transcripts = {}
for transcript_id in complete_transcript_info:
chromosome = complete_transcript_info[transcript_id]["chromosome"]
if chromosome not in exons_to_transcripts:
exons_to_transcripts[chromosome] = {}
for exon in complete_transcript_info[transcript_id]["exons"]:
exon_str = str( exon[0] ) + "-" + str( exon[1] )
if exon_str not in exons_to_transcripts[chromosome]:
exons_to_transcripts[chromosome][exon_str] = []
if transcript_id not in exons_to_transcripts[chromosome][exon_str]:
exons_to_transcripts[chromosome][exon_str].append( transcript_id )
combined_transcript_info = deepcopy( complete_transcript_info )
#########################################################################################################
# Create file for Change Points Detection computation for each condition and each exon
#########################################################################################################
# File content and structure
#
# Comma separated list
# Each entry on newline
# Field 1 - "cov" or "opp" Indicating whether the exon should be treated for a coverage split or overlapping case
# Field 2 - condition
# Field 3 - Chromosome
# Field 4 - Exon start
# Field 5 - Exon end
# Field 6 - Either 2 or 3 Denotes the number of break points
# Field 7 onwards - Coverage for each nucleotide for each run
inputfile_for_CPD = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/" + "inputfileforCPD"
outputfile_for_CPD = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/" + "outputfileforCPD"
# Create exon_coverage field
for transcript_id in complete_transcript_info:
complete_transcript_info[transcript_id]["exon_coverage"] = []
# Populate the exon_coverage for each condition
exons_processed_for_opp_overlapping_transcripts_all_conditions = {}
exons_processed_for_cov_transcripts_all_conditions = {}
fhw = open( inputfile_for_CPD, "w" )
for condition in options.mrna_md:
combined_transcript_info = deepcopy( complete_transcript_info )
for Run in options.mrna_md[condition]:
with logging_mutex:
logger_proxy.info( "Processing inside fixOverlappingAndMergedTranscripts " + condition + " " + Run )
coverage_info, skip = pickle.load( open( options.output_star + "/" + Run + "_counts_all_info.pkl", "rb" ) )
for transcript_id in coverage_info:
chromosome = transcript_id.split( "." )[0]
temp = []
for exon_coverage in coverage_info[transcript_id]["bed_cov"]:
temp.append( np.array( exon_coverage ) )
coverage_info[transcript_id]["bed_cov"] = np.array( temp )
# if transcript_id not in complete_transcript_info:continue
if len( complete_transcript_info[transcript_id]["exon_coverage"] ) == 0:
# print("cov",coverage_info[transcript_id]["bed_cov"])
complete_transcript_info[transcript_id]["exon_coverage"] = np.array( coverage_info[transcript_id]["bed_cov"] )
else:
complete_transcript_info[transcript_id]["exon_coverage"] = np.add( complete_transcript_info[transcript_id]["exon_coverage"],
np.array( coverage_info[transcript_id]["bed_cov"] ) )
if len( combined_transcript_info[transcript_id]["exon_coverage"] ) == 0:
combined_transcript_info[transcript_id]["exon_coverage"] = np.array( coverage_info[transcript_id]["bed_cov"] )
else:
combined_transcript_info[transcript_id]["exon_coverage"] = np.add( combined_transcript_info[transcript_id]["exon_coverage"],
np.array( coverage_info[transcript_id]["bed_cov"] ) )
# Coverage patterns for each condition
#########################################################################################################
# Same exon shared by transcripts in opposite direction
#########################################################################################################
exons_processed_for_opp_overlapping_transcripts = {}
for chromosome in exons_to_transcripts:
exons_processed = []
for exon in exons_to_transcripts[chromosome]:
if len( exons_to_transcripts[chromosome][exon] ) == 1:continue
list_to_be_written_to_file = []
for i in range( len( exons_to_transcripts[chromosome][exon] ) ):
transcript_id_i = exons_to_transcripts[chromosome][exon][i]
j = i + 1
while j < len( exons_to_transcripts[chromosome][exon] ):
transcript_id_j = exons_to_transcripts[chromosome][exon][j]
if "+" in ( complete_transcript_info[transcript_id_i]["direction"], complete_transcript_info[transcript_id_j]["direction"] ) and "-" in ( complete_transcript_info[transcript_id_i]["direction"], complete_transcript_info[transcript_id_j]["direction"] ):
exon_num = 0 if str( complete_transcript_info[transcript_id_i]["exons"][0][0] ) + "-" + str( complete_transcript_info[transcript_id_i]["exons"][0][1] ) == exon else -1
# print(exon_num,complete_transcript_info[transcript_id_i]["exon_coverage"])
if len( complete_transcript_info[transcript_id_i]["exon_coverage"] ) == 0:
# print(condition,Run,transcript_id_i,'exon_coverage')
j += 1
continue
exon_coverage = complete_transcript_info[transcript_id_i]["exon_coverage"][exon_num]
list_to_be_written_to_file = ["opp", condition, chromosome, exon.split( "-" )[0], exon.split( "-" )[1], "ext"]
list_to_be_written_to_file.append( "2" + ";" + ";".join( list( map( str, exon_coverage ) ) ) )
fhw.write( ",".join( list_to_be_written_to_file ) + "\n" )
if chromosome not in exons_processed_for_opp_overlapping_transcripts:
exons_processed_for_opp_overlapping_transcripts = []
if chromosome not in exons_processed_for_opp_overlapping_transcripts_all_conditions:
exons_processed_for_opp_overlapping_transcripts_all_conditions = []
exons_processed_for_opp_overlapping_transcripts.append( exon )
exons_processed_for_opp_overlapping_transcripts_all_conditions.append( exon )
j += 1
if len( list_to_be_written_to_file ) > 0:
break
if len( list_to_be_written_to_file ) > 0:
break
for chromosome in exons_processed_for_opp_overlapping_transcripts:
exons_processed_for_opp_overlapping_transcripts = set( exons_processed_for_opp_overlapping_transcripts )
threshold = 5 * len( options.mrna_md[condition] )
max_threshold = 20 * len( options.mrna_md[condition] )
exons_processed = []
for transcript_id in complete_transcript_info:
# Skip mono exonic transcripts
if len( complete_transcript_info[transcript_id]["exons"] ) == 1:continue
for exon_num, exon in enumerate( complete_transcript_info[transcript_id]["exons"] ):
# Skip exons that have complete ORFs in them
# exon=str(exon[0])+"-"+str(exon[1])
if chromosome in donot_split_these_exons and str( exon[0] ) + "-" + str( exon[1] ) in donot_split_these_exons:
# print(chromosome+":"+str(exon[0])+"-"+str(exon[1]))
continue
if chromosome in exons_processed_for_opp_overlapping_transcripts and str( exon[0] ) + "-" + str( exon[1] ) in exons_processed_for_opp_overlapping_transcripts:continue
if str( exon[0] ) + "-" + str( exon[1] ) not in exons_processed:
exons_processed.append( str( exon[0] ) + "-" + str( exon[1] ) )
else:
continue
# Skip exons that overlap with introns since coverage will dip anyways
if chromosome in overlaps and str( exon[0] ) + "-" + str( exon[1] ) in overlaps:continue
external_exon = ( 1 if ( exon_num == 0 or exon_num == len( complete_transcript_info[transcript_id]["exons"] ) - 1 ) else 0 )
try:
exon_coverage = complete_transcript_info[transcript_id]["exon_coverage"][exon_num]
except IndexError:
print( transcript_id, len( complete_transcript_info[transcript_id]["exons"] ), len( complete_transcript_info[transcript_id]["exon_coverage"] ) )
sys.exit()
if external_exon == 0:
min_coverage = min( exon_coverage )
max_coverage = max( exon_coverage )
else:
# Skip the external exon if its less than 100
if len( exon_coverage ) < 100:continue
if exon_num == 0: # First Exon
# start_from=100 if len(exon_coverage)>100 else int(0.1*len(exon_coverage))
min_coverage = min( exon_coverage )
max_coverage = max( exon_coverage )
else: # Last Exon
# end_at=100 if len(exon_coverage)>100 else int(0.1*len(exon_coverage))
min_coverage = min( exon_coverage )
max_coverage = max( exon_coverage )
std_dev = np.std( exon_coverage )
if min_coverage < threshold and std_dev >= 5 and len( exon_coverage ) >= 50:
list_to_be_written_to_file = ["cov", condition, str( chromosome ), str( exon[0] ), str( exon[1] ), ( "ext" if external_exon == 1 else "int" )]
# list_to_be_written_to_file.extend(list(map(str,exon_coverage)))
list_to_be_written_to_file.append( ( "3" if external_exon == 1 else "2" ) + ";" + ";".join( list( map( str, exon_coverage ) ) ) )
# all_lines_to_be_written["cov"][str(chromosome)+":"+str(exon[0])+"-"+str(exon[1])]=list_to_be_written_to_file
fhw.write( ",".join( list_to_be_written_to_file ) + "\n" )
if chromosome not in exons_processed_for_cov_transcripts_all_conditions:
exons_processed_for_cov_transcripts_all_conditions = []
exons_processed_for_cov_transcripts_all_conditions.append( str( exon[0] ) + "-" + str( exon[1] ) )
# Clearing out complete_transcript_info for next run
for transcript_id in complete_transcript_info:
complete_transcript_info[transcript_id]["exon_coverage"] = []
for chromosome in exons_processed_for_opp_overlapping_transcripts_all_conditions:
exons_processed_for_opp_overlapping_transcripts_all_conditions = set( exons_processed_for_opp_overlapping_transcripts_all_conditions )
for chromosome in exons_processed_for_cov_transcripts_all_conditions:
exons_processed_for_cov_transcripts_all_conditions = set( exons_processed_for_cov_transcripts_all_conditions )
# Coverage patterns for all conditions combined
exons_in_opp = []
exons_in_cov = []
with logging_mutex:
logger_proxy.info( "Processing inside fixOverlappingAndMergedTranscripts all conditions and runs combined" )
for transcript_id in combined_transcript_info:
chromosome = combined_transcript_info[transcript_id]["chromosome"]
for exon_num, exon in enumerate( combined_transcript_info[transcript_id]["exons"] ):
exon_str = str( exon[0] ) + "-" + str( exon[1] )
if chromosome in exons_processed_for_opp_overlapping_transcripts_all_conditions and exon_str in exons_processed_for_opp_overlapping_transcripts_all_conditions[chromosome]:
if exon_str not in exons_in_opp:
exons_in_opp.append( exon_str )
else:
continue
exon_coverage = combined_transcript_info[transcript_id]["exon_coverage"][exon_num]
list_to_be_written_to_file = ["opp", "combined", chromosome, exon_str.split( "-" )[0], exon_str.split( "-" )[1], "ext"]
list_to_be_written_to_file.append( "2" + ";" + ";".join( list( map( str, exon_coverage ) ) ) )
fhw.write( ",".join( list_to_be_written_to_file ) + "\n" )
if chromosome in exons_processed_for_cov_transcripts_all_conditions and exon_str in exons_processed_for_cov_transcripts_all_conditions:
if exon_str not in exons_in_cov:
exons_in_cov.append( exon_str )
else:
continue
if exon_str in exons_in_opp:
print( chromosome, exon, "found in opp" )
sys.stdout.flush()
continue
external_exon = ( 1 if ( exon_num == 0 or exon_num == len( combined_transcript_info[transcript_id]["exons"] ) - 1 ) else 0 )
exon_coverage = combined_transcript_info[transcript_id]["exon_coverage"][exon_num]
list_to_be_written_to_file = ["cov", "combined", str( chromosome ), str( exon[0] ), str( exon[1] ), ( "ext" if external_exon == 1 else "int" )]
# list_to_be_written_to_file.extend(list(map(str,exon_coverage)))
list_to_be_written_to_file.append( ( "3" if external_exon == 1 else "2" ) + ";" + ";".join( list( map( str, exon_coverage ) ) ) )
# all_lines_to_be_written["cov"][str(chromosome)+":"+str(exon[0])+"-"+str(exon[1])]=list_to_be_written_to_file
fhw.write( ",".join( list_to_be_written_to_file ) + "\n" )
inputfile_for_CPD = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/" + "inputfileforCPD"
outputfile_for_CPD = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/" + "outputfileforCPD"
pool = multiprocessing.Pool( processes = int( options.cpu ) )
# Split inputfile into chunks
if len( open( inputfile_for_CPD, "r" ).read().split( "\n" ) ) > 5000:
chunked_file = list( divide_chunks( open( inputfile_for_CPD, "r" ).read().split( "\n" ), 5000 ) )
time.sleep( 5 )
for file_num, chunk in enumerate( chunked_file ):
fhw = open( inputfile_for_CPD + "_" + str( file_num ), "w" )
fhw.write( "\n".join( chunk ) )
fhw.close()
else:
os.system( f"cp {inputfile_for_CPD} {inputfile_for_CPD}_0" )
chunked_file = []
with logging_mutex:
logger_proxy.info( "inputfileforCPD generation is complete" )
round_num = 1
present = 0
while present == 0:
with logging_mutex:
logger_proxy.info( "Starting round " + str( round_num ) )
allinputs = []
for file_num, chunk in enumerate( chunked_file ):
outputfilename_portion = outputfile_for_CPD + "_" + str( file_num )
cmd = "Rscript $(which " + options.softwares["find_exonic_troughs"] + ")"
cmd += " " + inputfile_for_CPD + "_" + str( file_num )
cmd += " " + outputfilename_portion
cmd += " 2 "
cmd += " 2> " + outputfilename_portion + ".error"
if os.path.exists( outputfilename_portion ) == False:
allinputs.append( ["dummy", cmd] )
with logging_mutex:
logger_proxy.info( "Performing calculation for " + outputfile_for_CPD + "_" + str( file_num ) )
logger_proxy.info( f"Running cmd - {cmd}" )
pool.map( runCommand, allinputs )
time.sleep( 5 )
file_absent = 0
for file_num, chunk in enumerate( chunked_file ):
if os.path.exists( outputfile_for_CPD + "_" + str( file_num ) ) == True:
pass
else:
file_absent = 1
with logging_mutex:
logger_proxy.info( "Missing outputfile " + outputfile_for_CPD + "_" + str( file_num ) )
if file_absent == 1:
present = 0
elif file_absent == 0:
present = 1
if present == 0:
round_num += 1
# Combine results in one file
cmd = "cat "
for f in range( len( list( chunked_file ) ) ):
cmd += outputfile_for_CPD + "_" + str( f ) + " "
cmd += " > " + outputfile_for_CPD
cmd += " 2> " + outputfile_for_CPD + ".error"
os.system( cmd )
# return
cmd = "rm " + outputfile_for_CPD + "_* " + inputfile_for_CPD + "_* "
os.system( cmd )
inputfile_for_CPD = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/" + "inputfileforCPD"
outputfile_for_CPD = options.output_assemblies_psiclass_terminal_exon_length_modified + "/combined/" + "outputfileforCPD"
fhr_coverage = open( inputfile_for_CPD, "r" )
fhr_changepoints = open( outputfile_for_CPD, "r" )
exons_with_no_breakpoints_opp = {}
exons_to_split_exons_opp = {}
exons_to_split_exons_cov = {}
complete_info_about_breakpoints = {"cov":{}, "opp":{}}
while True:
line_coverage = fhr_coverage.readline().strip()
line_changepoints = fhr_changepoints.readline().strip()
if not line_coverage or not line_changepoints:
break
type_cov, condition_cov, chromosome_cov, start_cov, end_cov, exon_loc_cov, coverage = line_coverage.strip().split( "," )
type_cpd, condition_cpd, chromosome_cpd, start_cpd, end_cpd, num_breakpoints, exon_loc_cpd, changepoints_cpd = line_changepoints.strip().split( "," )
num_breakpoints = int( num_breakpoints )
if ";" in changepoints_cpd:
changepoints_cpd = list( map( int, changepoints_cpd.split( ";" ) ) )
else:
changepoints_cpd = []
coverage = list( map( int, coverage.split( ";" ) ) )[2:]
exon = start_cpd + "-" + end_cpd
if type_cov == "opp":
if len( changepoints_cpd ) == 0:
pass
else:
if chromosome_cpd not in exons_to_split_exons_opp:
exons_to_split_exons_opp[chromosome_cpd] = {}
if len( changepoints_cpd ) == 1:
exons_to_split_exons_opp[chromosome_cpd][start_cpd + "-" + end_cpd] = [int( changepoints_cpd[0] )]
elif len( changepoints_cpd ) == 2:
exons_to_split_exons_opp[chromosome_cpd][start_cpd + "-" + end_cpd] = [int( changepoints_cpd[0] ), int( changepoints_cpd[1] )]
if chromosome_cpd not in complete_info_about_breakpoints["opp"]:
complete_info_about_breakpoints["opp"][chromosome_cpd] = {}
if exon not in complete_info_about_breakpoints["opp"][chromosome_cpd]:
complete_info_about_breakpoints["opp"][chromosome_cpd][exon] = {}
complete_info_about_breakpoints["opp"][chromosome_cpd][exon][condition_cpd] = {"changepoints":changepoints_cpd, "ratio":[]}
elif type_cov == "cov":
if chromosome_cpd not in exons_to_split_exons_cov:
exons_to_split_exons_cov[chromosome_cpd] = {}
if num_breakpoints == 1:
pass
elif num_breakpoints == 2:
if len( changepoints_cpd ) == 2:
coverage = list( map( int, coverage ) )
coverage_1st_portion = coverage[:changepoints_cpd[0]]
coverage_2nd_portion = coverage[changepoints_cpd[0]:changepoints_cpd[1]]
coverage_3rd_portion = coverage[changepoints_cpd[1]:]
ratio1 = round( np.average( coverage_2nd_portion ) / np.average( coverage_1st_portion ), 2 )
ratio2 = round( np.average( coverage_2nd_portion ) / np.average( coverage_3rd_portion ), 2 )
"""
if np.average(coverage_2nd_portion)/np.average(coverage_1st_portion)<1 and np.average(coverage_2nd_portion)/np.average(coverage_3rd_portion)<1:
print(condition,chromosome_cov+":"+start_cov+"-"+end_cov,np.average(coverage_2nd_portion)/np.average(coverage_1st_portion),np.average(coverage_2nd_portion)/np.average(coverage_3rd_portion),changepoints)
"""
exons_to_split_exons_cov[chromosome_cpd][start_cpd + "-" + end_cpd] = [int( changepoints_cpd[0] ), int( changepoints_cpd[1] )]
# print(line_changepoints,ratio1,ratio2)
if 0 < min( ratio1, ratio2 ) < 1 and max( ratio1, ratio2 ) < 1:
if chromosome_cpd not in complete_info_about_breakpoints["cov"]:
complete_info_about_breakpoints["cov"][chromosome_cpd] = {}
if exon not in complete_info_about_breakpoints["cov"][chromosome_cpd]:
complete_info_about_breakpoints["cov"][chromosome_cpd][exon] = {}
complete_info_about_breakpoints["cov"][chromosome_cpd][exon][condition_cpd] = {"changepoints":changepoints_cpd, "ratio":[ratio1, ratio2]}
"""if chromosome_cpd=="4" and start_cpd=="10439766" and end_cpd=="10440165":
print("Ratios",ratio1,ratio2)
sys.stdout.flush()"""
else:
# Do nothing - its a false positive
if chromosome_cpd not in complete_info_about_breakpoints["cov"]:
complete_info_about_breakpoints["cov"][chromosome_cpd] = {}
if exon not in complete_info_about_breakpoints["cov"][chromosome_cpd]:
complete_info_about_breakpoints["cov"][chromosome_cpd][exon] = {}
complete_info_about_breakpoints["cov"][chromosome_cpd][exon][condition_cpd] = {"changepoints":[], "ratio":[]}
elif num_breakpoints == 3:
if len( changepoints_cpd ) == 3:
coverage = list( map( int, coverage ) )
coverage_1st_portion = coverage[:changepoints_cpd[0]]
coverage_2nd_portion = coverage[changepoints_cpd[0]:changepoints_cpd[1]]
coverage_3rd_portion = coverage[changepoints_cpd[1]:changepoints_cpd[2]]
coverage_4th_portion = coverage[changepoints_cpd[2]:]
ratio1 = round( np.average( coverage_2nd_portion ) / np.average( coverage_1st_portion ), 2 )
ratio2 = round( np.average( coverage_2nd_portion ) / np.average( coverage_3rd_portion ), 2 )
ratio3 = round( np.average( coverage_3rd_portion ) / np.average( coverage_2nd_portion ), 2 )
ratio4 = round( np.average( coverage_3rd_portion ) / np.average( coverage_4th_portion ), 2 )
if 0 < min( ratio1, ratio2 ) < 1 and max( ratio1, ratio2 ) < 1:
# print(condition,changepoints,chromosome_cov+":"+start_cov+"-"+end_cov,np.average(coverage_2nd_portion)/np.average(coverage_1st_portion),np.average(coverage_2nd_portion)/np.average(coverage_3rd_portion))
# print(line_changepoints,ratio1,ratio2)
if chromosome_cpd not in complete_info_about_breakpoints["cov"]:
complete_info_about_breakpoints["cov"][chromosome_cpd] = {}
if exon not in complete_info_about_breakpoints["cov"][chromosome_cpd]:
complete_info_about_breakpoints["cov"][chromosome_cpd][exon] = {}
complete_info_about_breakpoints["cov"][chromosome_cpd][exon][condition_cpd] = {"changepoints":changepoints_cpd[:2], "ratio":[ratio1, ratio2]}
elif 0 < min( ratio3, ratio4 ) < 1 and max( ratio3, ratio4 ) < 1:
# print(condition,changepoints,chromosome_cov+":"+start_cov+"-"+end_cov,np.average(coverage_3rd_portion)/np.average(coverage_2nd_portion),np.average(coverage_3rd_portion)/np.average(coverage_4th_portion))
# print(line_changepoints,ratio3,ratio4)
if chromosome_cpd not in complete_info_about_breakpoints["cov"]:
complete_info_about_breakpoints["cov"][chromosome_cpd] = {}
if exon not in complete_info_about_breakpoints["cov"][chromosome_cpd]:
complete_info_about_breakpoints["cov"][chromosome_cpd][exon] = {}
complete_info_about_breakpoints["cov"][chromosome_cpd][exon][condition_cpd] = {"changepoints":changepoints_cpd[1:], "ratio":[ratio3, ratio4]}
"""if chromosome_cpd=="5" and start_cpd=="6688611" and end_cpd=="6690038":
print("this",ratio1,ratio2,ratio3,ratio4,np.average(coverage_1st_portion),np.average(coverage_2nd_portion),np.average(coverage_3rd_portion),np.average(coverage_4th_portion))"""
else:
# Do nothing - its a false positive
if chromosome_cpd not in complete_info_about_breakpoints["cov"]:
complete_info_about_breakpoints["cov"][chromosome_cpd] = {}
if exon not in complete_info_about_breakpoints["cov"][chromosome_cpd]:
complete_info_about_breakpoints["cov"][chromosome_cpd][exon] = {}
complete_info_about_breakpoints["cov"][chromosome_cpd][exon][condition_cpd] = {"changepoints":[], "ratio":[]}
# Modify end exons of transcripts
overlapping_transcripts_end_modified = []
for chromosome in complete_info_about_breakpoints["opp"]:
for exon in complete_info_about_breakpoints["opp"][chromosome]:
# if len(complete_info_about_breakpoints["cov"][chromosome][exon])==total_num_of_conditions+1:
median_changepoints = list( map( int, list( np.median(
|
np.array( [complete_info_about_breakpoints["opp"][chromosome][exon][condition]["changepoints"] for condition in complete_info_about_breakpoints["opp"][chromosome][exon]] )
|
numpy.array
|
# -*- coding: utf-8 -*-
"""
Defines unit tests for :mod:`colour.recovery.jakob2019` module.
"""
from __future__ import division, unicode_literals
import numpy as np
import os
import shutil
import tempfile
import unittest
from colour.characterisation import COLOURCHECKER_SDS
from colour.colorimetry import (ILLUMINANTS, ILLUMINANT_SDS,
STANDARD_OBSERVER_CMFS, SpectralDistribution,
sd_to_XYZ)
from colour.difference import delta_E_CIE1976
from colour.models import RGB_COLOURSPACES, RGB_to_XYZ, XYZ_to_Lab
from colour.recovery.jakob2019 import (
XYZ_to_sd_Jakob2019, sd_Jakob2019, error_function,
dimensionalise_coefficients, DEFAULT_SPECTRAL_SHAPE_JAKOB_2019,
ACCEPTABLE_DELTA_E, Jakob2019Interpolator)
from colour.utilities import domain_range_scale, full, ones, zeros
__author__ = 'Colour Developers'
__copyright__ = 'Copyright (C) 2013-2020 - Colour Developers'
__license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause'
__maintainer__ = 'Colour Developers'
__email__ = '<EMAIL>'
__status__ = 'Production'
__all__ = [
'TestErrorFunction', 'TestXYZ_to_sd_Jakob2019', 'TestJakob2019Interpolator'
]
CMFS = STANDARD_OBSERVER_CMFS['CIE 1931 2 Degree Standard Observer']
sRGB = RGB_COLOURSPACES['sRGB']
PROPHOTO_RGB = RGB_COLOURSPACES['ProPhoto RGB']
D65 = SpectralDistribution(ILLUMINANT_SDS['D65'])
D65_XY = ILLUMINANTS['CIE 1931 2 Degree Standard Observer']["D65"]
class TestErrorFunction(unittest.TestCase):
"""
Defines :func:`colour.recovery.jakob2019.error_function` definition unit
tests methods.
"""
def setUp(self):
"""
Initialises common tests attributes.
"""
self._Lab_e = np.array([72, -20, 61])
def test_compare_intermediates(self):
"""
Compares intermediate results of
:func:`colour.recovery.jakob2019.error_function` with
:func:`colour.sd_to_XYZ`, :func:`colour.XYZ_to_Lab` and checks if the
error is computed correctly by comparing it with
:func:`colour.difference.delta_E_CIE1976`.
"""
# Quoted names refer to colours from ColorChecker N Ohta (using D65).
coefficient_list = [
np.array([0, 0, 0]), # 50% gray
np.array([0, 0, -1e+9]), # Pure black
np.array([0, 0, +1e+9]), # Pure white
np.array([1e+9, -1e+9, 2.1e+8]), # A pathological example
np.array([2.2667394, -7.6313081, 1.03185]), # 'blue'
np.array([-31.377077, 26.810094, -6.1139927]), # 'green'
np.array([25.064246, -16.072039, 0.10431365]), # 'red'
np.array([-19.325667, 22.242319, -5.8144924]), # 'yellow'
np.array([21.909902, -17.227963, 2.142351]), # 'magenta'
np.array([-15.864009, 8.6735071, -1.4012552]), # 'cyan'
]
# error_function will not align these for us.
shape = DEFAULT_SPECTRAL_SHAPE_JAKOB_2019
aligned_cmfs = CMFS.copy().align(shape)
illuminant = D65.copy().align(shape)
XYZ_n = sd_to_XYZ(D65)
XYZ_n /= XYZ_n[1]
for coefficients in coefficient_list:
error, _derror, R, XYZ, Lab = error_function(
coefficients,
self._Lab_e,
aligned_cmfs,
illuminant,
additional_data=True)
sd = sd_Jakob2019(
dimensionalise_coefficients(coefficients, shape), shape)
sd_XYZ = sd_to_XYZ(sd, illuminant=illuminant) / 100
sd_Lab = XYZ_to_Lab(XYZ, D65_XY)
error_reference = delta_E_CIE1976(self._Lab_e, Lab)
np.testing.assert_allclose(sd.values, R, atol=1e-14)
np.testing.assert_allclose(XYZ, sd_XYZ, atol=1e-14)
self.assertLess(abs(error_reference - error), ACCEPTABLE_DELTA_E)
self.assertLess(delta_E_CIE1976(Lab, sd_Lab), ACCEPTABLE_DELTA_E)
def test_derivatives(self):
"""
Compares gradients computed using closed-form expressions of
derivatives with finite difference approximations.
"""
shape = DEFAULT_SPECTRAL_SHAPE_JAKOB_2019
aligned_cmfs = CMFS.copy().align(shape)
illuminant = D65.copy().align(shape)
XYZ_n = sd_to_XYZ(D65)
XYZ_n /= XYZ_n[1]
var_range = np.linspace(-10, 10, 1000)
h = var_range[1] - var_range[0]
# Vary one coefficient at a time, keeping the others fixed to 1.
for coefficient_i in range(3):
errors = np.empty_like(var_range)
derrors = np.empty_like(var_range)
for i, var in enumerate(var_range):
coefficients = ones(3)
coefficients[coefficient_i] = var
error, derror = error_function(coefficients, self._Lab_e,
aligned_cmfs, illuminant)
errors[i] = error
derrors[i] = derror[coefficient_i]
staggered_derrors = (derrors[:-1] + derrors[1:]) / 2
approximate_derrors = np.diff(errors) / h
# The approximated derivatives aren't too accurate, so tolerances
# have to be rather loose.
np.testing.assert_allclose(
staggered_derrors, approximate_derrors, atol=1e-3, rtol=1e-2)
class TestXYZ_to_sd_Jakob2019(unittest.TestCase):
"""
Defines :func:`colour.recovery.jakob2019.XYZ_to_sd_Jakob2019` definition
unit tests methods.
"""
def test_XYZ_to_sd_Jakob2019(self):
"""
Tests :func:`colour.recovery.jakob2019.XYZ_to_sd_Jakob2019` definition.
"""
# Tests the round-trip with values of a colour checker.
for name, sd in COLOURCHECKER_SDS['ColorChecker N Ohta'].items():
# The colours aren't too saturated and the tests should pass with
# or without feedback.
for use_feedback in [False, True]:
XYZ = sd_to_XYZ(sd, illuminant=D65) / 100
_recovered_sd, error = XYZ_to_sd_Jakob2019(
XYZ,
illuminant=D65,
optimisation_kwargs={'use_feedback': use_feedback},
additional_data=True)
if error > ACCEPTABLE_DELTA_E:
self.fail('Delta E for \'{0}\' with use_feedback={1}'
' is {2}'.format(name, use_feedback, error))
def test_domain_range_scale_XYZ_to_sd_Jakob2019(self):
"""
Tests :func:`colour.recovery.jakob2019.XYZ_to_sd_Jakob2019` definition
domain and range scale support.
"""
XYZ_i =
|
np.array([0.21781186, 0.12541048, 0.04697113])
|
numpy.array
|
import autolens as al
from skimage import measure
import numpy as np
import pytest
from astropy import cosmology as cosmo
from test_autoarray.mock import mock_inversion as mock_inv
def critical_curve_via_magnification_from_tracer_and_grid(tracer, grid):
magnification = tracer.magnification_from_grid(grid=grid)
inverse_magnification = 1 / magnification
critical_curves_indices = measure.find_contours(inverse_magnification.in_2d, 0)
no_critical_curves = len(critical_curves_indices)
contours = []
critical_curves = []
for jj in np.arange(no_critical_curves):
contours.append(critical_curves_indices[jj])
contour_x, contour_y = contours[jj].T
pixel_coord = np.stack((contour_x, contour_y), axis=-1)
critical_curve = grid.geometry.grid_scaled_from_grid_pixels_1d_for_marching_squares(
grid_pixels_1d=pixel_coord, shape_2d=magnification.sub_shape_2d
)
critical_curve = al.grid_irregular.manual_1d(grid=critical_curve)
critical_curves.append(critical_curve)
return critical_curves
def caustics_via_magnification_from_tracer_and_grid(tracer, grid):
caustics = []
critical_curves = critical_curve_via_magnification_from_tracer_and_grid(
tracer=tracer, grid=grid
)
for i in range(len(critical_curves)):
critical_curve = critical_curves[i]
deflections_1d = tracer.deflections_from_grid(grid=critical_curve)
caustic = critical_curve - deflections_1d
caustics.append(caustic)
return caustics
class TestAbstractTracer:
class TestProperties:
def test__total_planes(self):
tracer = al.Tracer.from_galaxies(galaxies=[al.Galaxy(redshift=0.5)])
assert tracer.total_planes == 1
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=1.0)]
)
assert tracer.total_planes == 2
tracer = al.Tracer.from_galaxies(
galaxies=[
al.Galaxy(redshift=1.0),
al.Galaxy(redshift=2.0),
al.Galaxy(redshift=3.0),
]
)
assert tracer.total_planes == 3
tracer = al.Tracer.from_galaxies(
galaxies=[
al.Galaxy(redshift=1.0),
al.Galaxy(redshift=2.0),
al.Galaxy(redshift=1.0),
]
)
assert tracer.total_planes == 2
def test__has_galaxy_with_light_profile(self):
gal = al.Galaxy(redshift=0.5)
gal_lp = al.Galaxy(redshift=0.5, light_profile=al.lp.LightProfile())
gal_mp = al.Galaxy(redshift=0.5, mass_profile=al.mp.SphericalIsothermal())
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.has_light_profile is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_mp, gal_mp])
assert tracer.has_light_profile is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_lp])
assert tracer.has_light_profile is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal])
assert tracer.has_light_profile is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_mp])
assert tracer.has_light_profile is True
def test_plane_with_galaxy(self, sub_grid_7x7):
g1 = al.Galaxy(redshift=1)
g2 = al.Galaxy(redshift=2)
tracer = al.Tracer.from_galaxies(galaxies=[g1, g2])
assert tracer.plane_with_galaxy(g1).galaxies == [g1]
assert tracer.plane_with_galaxy(g2).galaxies == [g2]
def test__has_galaxy_with_mass_profile(self, sub_grid_7x7):
gal = al.Galaxy(redshift=0.5)
gal_lp = al.Galaxy(redshift=0.5, light_profile=al.lp.LightProfile())
gal_mp = al.Galaxy(redshift=0.5, mass_profile=al.mp.SphericalIsothermal())
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.has_mass_profile is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_mp, gal_mp])
assert tracer.has_mass_profile is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_lp])
assert tracer.has_mass_profile is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal])
assert tracer.has_mass_profile is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_mp])
assert tracer.has_mass_profile is True
def test__planes_indexes_with_inversion(self):
gal = al.Galaxy(redshift=0.5)
gal_pix = al.Galaxy(
redshift=0.5,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.plane_indexes_with_pixelizations == []
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal])
assert tracer.plane_indexes_with_pixelizations == [0]
gal_pix = al.Galaxy(
redshift=1.0,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal])
assert tracer.plane_indexes_with_pixelizations == [1]
gal_pix_0 = al.Galaxy(
redshift=0.6,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
gal_pix_1 = al.Galaxy(
redshift=2.0,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
gal0 = al.Galaxy(redshift=0.25)
gal1 = al.Galaxy(redshift=0.5)
gal2 = al.Galaxy(redshift=0.75)
tracer = al.Tracer.from_galaxies(
galaxies=[gal_pix_0, gal_pix_1, gal0, gal1, gal2]
)
assert tracer.plane_indexes_with_pixelizations == [2, 4]
def test__has_galaxy_with_pixelization(self, sub_grid_7x7):
gal = al.Galaxy(redshift=0.5)
gal_lp = al.Galaxy(redshift=0.5, light_profile=al.lp.LightProfile())
gal_pix = al.Galaxy(
redshift=0.5,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.has_pixelization is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_lp])
assert tracer.has_pixelization is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal_pix])
assert tracer.has_pixelization is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal])
assert tracer.has_pixelization is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal_lp])
assert tracer.has_pixelization is True
def test__has_galaxy_with_regularization(self, sub_grid_7x7):
gal = al.Galaxy(redshift=0.5)
gal_lp = al.Galaxy(redshift=0.5, light_profile=al.lp.LightProfile())
gal_reg = al.Galaxy(
redshift=0.5,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.has_regularization is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_lp])
assert tracer.has_regularization is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_reg, gal_reg])
assert tracer.has_regularization is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_reg, gal])
assert tracer.has_regularization is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_reg, gal_lp])
assert tracer.has_regularization is True
def test__has_galaxy_with_hyper_galaxy(self, sub_grid_7x7):
gal = al.Galaxy(redshift=0.5)
gal_lp = al.Galaxy(redshift=0.5, light_profile=al.lp.LightProfile())
gal_hyper = al.Galaxy(redshift=0.5, hyper_galaxy=al.HyperGalaxy())
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.has_hyper_galaxy is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_lp, gal_lp])
assert tracer.has_hyper_galaxy is False
tracer = al.Tracer.from_galaxies(galaxies=[gal_hyper, gal_hyper])
assert tracer.has_hyper_galaxy is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_hyper, gal])
assert tracer.has_hyper_galaxy is True
tracer = al.Tracer.from_galaxies(galaxies=[gal_hyper, gal_lp])
assert tracer.has_hyper_galaxy is True
def test__upper_plane_index_with_light_profile(self):
g0 = al.Galaxy(redshift=0.5)
g1 = al.Galaxy(redshift=1.0)
g2 = al.Galaxy(redshift=2.0)
g3 = al.Galaxy(redshift=3.0)
g0_lp = al.Galaxy(redshift=0.5, light_profile=al.lp.LightProfile())
g1_lp = al.Galaxy(redshift=1.0, light_profile=al.lp.LightProfile())
g2_lp = al.Galaxy(redshift=2.0, light_profile=al.lp.LightProfile())
g3_lp = al.Galaxy(redshift=3.0, light_profile=al.lp.LightProfile())
tracer = al.Tracer.from_galaxies(galaxies=[g0_lp])
assert tracer.upper_plane_index_with_light_profile == 0
tracer = al.Tracer.from_galaxies(galaxies=[g0, g0_lp])
assert tracer.upper_plane_index_with_light_profile == 0
tracer = al.Tracer.from_galaxies(galaxies=[g1_lp])
assert tracer.upper_plane_index_with_light_profile == 0
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1_lp])
assert tracer.upper_plane_index_with_light_profile == 1
tracer = al.Tracer.from_galaxies(galaxies=[g0_lp, g1_lp, g2_lp])
assert tracer.upper_plane_index_with_light_profile == 2
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2_lp])
assert tracer.upper_plane_index_with_light_profile == 2
tracer = al.Tracer.from_galaxies(galaxies=[g0_lp, g1, g2, g3_lp])
assert tracer.upper_plane_index_with_light_profile == 3
tracer = al.Tracer.from_galaxies(galaxies=[g0_lp, g1, g2_lp, g3])
assert tracer.upper_plane_index_with_light_profile == 2
def test__hyper_model_image_of_galaxy_with_pixelization(self, sub_grid_7x7):
gal = al.Galaxy(redshift=0.5)
gal_pix = al.Galaxy(
redshift=0.5,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
)
tracer = al.Tracer.from_galaxies(galaxies=[gal, gal])
assert tracer.hyper_galaxy_image_of_planes_with_pixelizations == [None]
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal_pix])
assert tracer.hyper_galaxy_image_of_planes_with_pixelizations == [None]
gal_pix = al.Galaxy(
redshift=0.5,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
hyper_galaxy_image=1,
)
tracer = al.Tracer.from_galaxies(galaxies=[gal_pix, gal])
assert tracer.hyper_galaxy_image_of_planes_with_pixelizations == [1]
gal0 = al.Galaxy(redshift=0.25)
gal1 = al.Galaxy(redshift=0.75)
gal2 = al.Galaxy(redshift=1.5)
gal_pix0 = al.Galaxy(
redshift=0.5,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
hyper_galaxy_image=1,
)
gal_pix1 = al.Galaxy(
redshift=2.0,
pixelization=al.pix.Pixelization(),
regularization=al.reg.Constant(),
hyper_galaxy_image=2,
)
tracer = al.Tracer.from_galaxies(
galaxies=[gal0, gal1, gal2, gal_pix0, gal_pix1]
)
assert tracer.hyper_galaxy_image_of_planes_with_pixelizations == [
None,
1,
None,
None,
2,
]
class TestPixelizations:
def test__no_galaxy_has_regularization__returns_list_of_ones(
self, sub_grid_7x7
):
galaxy_no_pix = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_pix, galaxy_no_pix])
assert tracer.pixelizations_of_planes == [None]
def test__source_galaxy_has_regularization__returns_list_with_none_and_regularization(
self, sub_grid_7x7
):
galaxy_pix = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(value=1),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
galaxy_no_pix = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_pix, galaxy_pix])
assert tracer.pixelizations_of_planes[0] is None
assert tracer.pixelizations_of_planes[1].value == 1
def test__both_galaxies_have_pixelization__returns_both_pixelizations(
self, sub_grid_7x7
):
galaxy_pix_0 = al.Galaxy(
redshift=0.5,
pixelization=mock_inv.MockPixelization(value=1),
regularization=mock_inv.MockRegularization(matrix_shape=(3, 3)),
)
galaxy_pix_1 = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(value=2),
regularization=mock_inv.MockRegularization(matrix_shape=(4, 4)),
)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_pix_0, galaxy_pix_1])
assert tracer.pixelizations_of_planes[0].value == 1
assert tracer.pixelizations_of_planes[1].value == 2
class TestRegularizations:
def test__no_galaxy_has_regularization__returns_empty_list(self, sub_grid_7x7):
galaxy_no_reg = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_reg, galaxy_no_reg])
assert tracer.regularizations_of_planes == [None]
def test__source_galaxy_has_regularization__returns_regularizations(
self, sub_grid_7x7
):
galaxy_reg = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(value=1),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
galaxy_no_reg = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_reg, galaxy_reg])
assert tracer.regularizations_of_planes[0] is None
assert tracer.regularizations_of_planes[1].shape == (1, 1)
def test__both_galaxies_have_regularization__returns_both_regularizations(
self, sub_grid_7x7
):
galaxy_reg_0 = al.Galaxy(
redshift=0.5,
pixelization=mock_inv.MockPixelization(value=1),
regularization=mock_inv.MockRegularization(matrix_shape=(3, 3)),
)
galaxy_reg_1 = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(value=2),
regularization=mock_inv.MockRegularization(matrix_shape=(4, 4)),
)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_reg_0, galaxy_reg_1])
assert tracer.regularizations_of_planes[0].shape == (3, 3)
assert tracer.regularizations_of_planes[1].shape == (4, 4)
class TestGalaxyLists:
def test__galaxy_list__comes_in_plane_redshift_order(self, sub_grid_7x7):
g0 = al.Galaxy(redshift=0.5)
g1 = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
assert tracer.galaxies == [g0, g1]
g2 = al.Galaxy(redshift=1.0)
g3 = al.Galaxy(redshift=1.0)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2, g3])
assert tracer.galaxies == [g0, g1, g2, g3]
g4 = al.Galaxy(redshift=0.75)
g5 = al.Galaxy(redshift=1.5)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2, g3, g4, g5])
assert tracer.galaxies == [g0, g1, g4, g2, g3, g5]
# def test__galaxy_in_planes_lists__comes_in_lists_of_planes_in_redshift_order(self, sub_grid_7x7):
# g0 = al.Galaxy(redshift=0.5)
# g1 = al.Galaxy(redshift=0.5)
#
# tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
#
# assert tracer.galaxies_in_planes == [[g0, g1]]
#
# g2 = al.Galaxy(redshift=1.0)
# g3 = al.Galaxy(redshift=1.0)
#
# tracer = al.Tracer.from_galaxies(galaxies=[g0, g1], galaxies=[g2, g3],
# )
#
# assert tracer.galaxies_in_planes == [[g0, g1], [g2, g3]]
#
# g4 = al.Galaxy(redshift=0.75)
# g5 = al.Galaxy(redshift=1.5)
#
# tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2, g3, g4, g5],
# )
#
# assert tracer.galaxies_in_planes == [[g0, g1], [g4], [g2, g3], [g5]]
class TestLightProfileQuantities:
def test__extract_centres_of_all_light_profiles_of_all_planes_and_galaxies(
self
):
g0 = al.Galaxy(
redshift=0.5, light=al.lp.SphericalGaussian(centre=(1.0, 1.0))
)
g1 = al.Galaxy(
redshift=0.5, light=al.lp.SphericalGaussian(centre=(2.0, 2.0))
)
g2 = al.Galaxy(
redshift=1.0,
light0=al.lp.SphericalGaussian(centre=(3.0, 3.0)),
light1=al.lp.SphericalGaussian(centre=(4.0, 4.0)),
)
plane_0 = al.Plane(galaxies=[al.Galaxy(redshift=0.5)], redshift=None)
plane_1 = al.Plane(galaxies=[al.Galaxy(redshift=1.0)], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.light_profile_centres_of_planes == []
assert tracer.light_profile_centres == []
plane_0 = al.Plane(galaxies=[g0], redshift=None)
plane_1 = al.Plane(galaxies=[g1], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.light_profile_centres_of_planes == [
[(1.0, 1.0)],
[(2.0, 2.0)],
]
assert tracer.light_profile_centres == [(1.0, 1.0), (2.0, 2.0)]
plane_0 = al.Plane(galaxies=[g0, g1], redshift=None)
plane_1 = al.Plane(galaxies=[g2], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.light_profile_centres_of_planes == [
[(1.0, 1.0), (2.0, 2.0)],
[(3.0, 3.0), (4.0, 4.0)],
]
assert tracer.light_profile_centres == [
(1.0, 1.0),
(2.0, 2.0),
(3.0, 3.0),
(4.0, 4.0),
]
class TestMassProfileQuantities:
def test__extract_mass_profiles_of_all_planes_and_galaxies(self):
g0 = al.Galaxy(
redshift=0.5, mass=al.mp.SphericalIsothermal(centre=(1.0, 1.0))
)
g1 = al.Galaxy(
redshift=0.5, mass=al.mp.SphericalIsothermal(centre=(2.0, 2.0))
)
g2 = al.Galaxy(
redshift=1.0,
mass0=al.mp.SphericalIsothermal(centre=(3.0, 3.0)),
mass1=al.mp.SphericalIsothermal(centre=(4.0, 4.0)),
)
plane_0 = al.Plane(galaxies=[al.Galaxy(redshift=0.5)], redshift=None)
plane_1 = al.Plane(galaxies=[al.Galaxy(redshift=1.0)], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profiles == []
assert tracer.mass_profiles == []
plane_0 = al.Plane(galaxies=[g0], redshift=None)
plane_1 = al.Plane(galaxies=[g1], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profiles_of_planes == [[g0.mass], [g1.mass]]
assert tracer.mass_profiles == [g0.mass, g1.mass]
plane_0 = al.Plane(galaxies=[g0, g1], redshift=None)
plane_1 = al.Plane(galaxies=[g2], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profiles_of_planes == [
[g0.mass, g1.mass],
[g2.mass0, g2.mass1],
]
assert tracer.mass_profiles == [g0.mass, g1.mass, g2.mass0, g2.mass1]
def test__extract_centres_of_all_mass_profiles_of_all_planes_and_galaxies__ignores_mass_sheets(
self
):
g0 = al.Galaxy(
redshift=0.5, mass=al.mp.SphericalIsothermal(centre=(1.0, 1.0))
)
g1 = al.Galaxy(
redshift=0.5, mass=al.mp.SphericalIsothermal(centre=(2.0, 2.0))
)
g2 = al.Galaxy(
redshift=1.0,
mass0=al.mp.SphericalIsothermal(centre=(3.0, 3.0)),
mass1=al.mp.SphericalIsothermal(centre=(4.0, 4.0)),
)
plane_0 = al.Plane(galaxies=[al.Galaxy(redshift=0.5)], redshift=None)
plane_1 = al.Plane(galaxies=[al.Galaxy(redshift=1.0)], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profile_centres_of_planes == []
assert tracer.mass_profile_centres == []
plane_0 = al.Plane(galaxies=[g0], redshift=None)
plane_1 = al.Plane(galaxies=[g1], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profile_centres_of_planes == [[(1.0, 1.0)], [(2.0, 2.0)]]
assert tracer.mass_profile_centres == [(1.0, 1.0), (2.0, 2.0)]
plane_0 = al.Plane(galaxies=[g0, g1], redshift=None)
plane_1 = al.Plane(galaxies=[g2], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profile_centres_of_planes == [
[(1.0, 1.0), (2.0, 2.0)],
[(3.0, 3.0), (4.0, 4.0)],
]
assert tracer.mass_profile_centres == [
(1.0, 1.0),
(2.0, 2.0),
(3.0, 3.0),
(4.0, 4.0),
]
g1 = al.Galaxy(
redshift=0.5,
mass=al.mp.SphericalIsothermal(centre=(2.0, 2.0)),
sheet=al.mp.MassSheet(centre=(10.0, 10.0)),
)
g2 = al.Galaxy(
redshift=1.0,
mass0=al.mp.SphericalIsothermal(centre=(3.0, 3.0)),
mass1=al.mp.SphericalIsothermal(centre=(4.0, 4.0)),
sheet=al.mp.MassSheet(centre=(10.0, 10.0)),
)
plane_0 = al.Plane(galaxies=[g0, g1], redshift=None)
plane_1 = al.Plane(galaxies=[g2], redshift=None)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=None)
assert tracer.mass_profile_centres_of_planes == [
[(1.0, 1.0), (2.0, 2.0)],
[(3.0, 3.0), (4.0, 4.0)],
]
assert tracer.mass_profile_centres == [
(1.0, 1.0),
(2.0, 2.0),
(3.0, 3.0),
(4.0, 4.0),
]
class TestUnits:
def test__light_profiles_conversions(self):
profile_0 = al.lp.EllipticalGaussian(
centre=(
al.dim.Length(value=3.0, unit_length="arcsec"),
al.dim.Length(value=3.0, unit_length="arcsec"),
),
intensity=al.dim.Luminosity(value=2.0, unit_luminosity="eps"),
)
galaxy_0 = al.Galaxy(light=profile_0, redshift=1.0)
profile_1 = al.lp.EllipticalGaussian(
centre=(
al.dim.Length(value=4.0, unit_length="arcsec"),
al.dim.Length(value=4.0, unit_length="arcsec"),
),
intensity=al.dim.Luminosity(value=5.0, unit_luminosity="eps"),
)
galaxy_1 = al.Galaxy(light=profile_1, redshift=1.0)
plane_0 = al.Plane(galaxies=[galaxy_0])
plane_1 = al.Plane(galaxies=[galaxy_1])
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=cosmo.Planck15)
assert tracer.planes[0].galaxies[0].light.centre == (3.0, 3.0)
assert tracer.planes[0].galaxies[0].light.unit_length == "arcsec"
assert tracer.planes[0].galaxies[0].light.intensity == 2.0
assert tracer.planes[0].galaxies[0].light.intensity.unit_luminosity == "eps"
assert tracer.planes[1].galaxies[0].light.centre == (4.0, 4.0)
assert tracer.planes[1].galaxies[0].light.unit_length == "arcsec"
assert tracer.planes[1].galaxies[0].light.intensity == 5.0
assert tracer.planes[1].galaxies[0].light.intensity.unit_luminosity == "eps"
tracer = tracer.new_object_with_units_converted(
unit_length="kpc",
kpc_per_arcsec=2.0,
unit_luminosity="counts",
exposure_time=0.5,
)
assert tracer.planes[0].galaxies[0].light.centre == (6.0, 6.0)
assert tracer.planes[0].galaxies[0].light.unit_length == "kpc"
assert tracer.planes[0].galaxies[0].light.intensity == 1.0
assert (
tracer.planes[0].galaxies[0].light.intensity.unit_luminosity == "counts"
)
assert tracer.planes[1].galaxies[0].light.centre == (8.0, 8.0)
assert tracer.planes[1].galaxies[0].light.unit_length == "kpc"
assert tracer.planes[1].galaxies[0].light.intensity == 2.5
assert (
tracer.planes[1].galaxies[0].light.intensity.unit_luminosity == "counts"
)
def test__mass_profiles_conversions(self):
profile_0 = al.mp.EllipticalSersic(
centre=(
al.dim.Length(value=3.0, unit_length="arcsec"),
al.dim.Length(value=3.0, unit_length="arcsec"),
),
intensity=al.dim.Luminosity(value=2.0, unit_luminosity="eps"),
mass_to_light_ratio=al.dim.MassOverLuminosity(
value=5.0, unit_mass="angular", unit_luminosity="eps"
),
)
galaxy_0 = al.Galaxy(mass=profile_0, redshift=1.0)
profile_1 = al.mp.EllipticalSersic(
centre=(
al.dim.Length(value=4.0, unit_length="arcsec"),
al.dim.Length(value=4.0, unit_length="arcsec"),
),
intensity=al.dim.Luminosity(value=5.0, unit_luminosity="eps"),
mass_to_light_ratio=al.dim.MassOverLuminosity(
value=10.0, unit_mass="angular", unit_luminosity="eps"
),
)
galaxy_1 = al.Galaxy(mass=profile_1, redshift=1.0)
plane_0 = al.Plane(galaxies=[galaxy_0])
plane_1 = al.Plane(galaxies=[galaxy_1])
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=cosmo.Planck15)
assert tracer.planes[0].galaxies[0].mass.centre == (3.0, 3.0)
assert tracer.planes[0].galaxies[0].mass.unit_length == "arcsec"
assert tracer.planes[0].galaxies[0].mass.intensity == 2.0
assert tracer.planes[0].galaxies[0].mass.intensity.unit_luminosity == "eps"
assert tracer.planes[0].galaxies[0].mass.mass_to_light_ratio == 5.0
assert (
tracer.planes[0].galaxies[0].mass.mass_to_light_ratio.unit_mass
== "angular"
)
assert tracer.planes[1].galaxies[0].mass.centre == (4.0, 4.0)
assert tracer.planes[1].galaxies[0].mass.unit_length == "arcsec"
assert tracer.planes[1].galaxies[0].mass.intensity == 5.0
assert tracer.planes[1].galaxies[0].mass.intensity.unit_luminosity == "eps"
assert tracer.planes[1].galaxies[0].mass.mass_to_light_ratio == 10.0
assert (
tracer.planes[1].galaxies[0].mass.mass_to_light_ratio.unit_mass
== "angular"
)
tracer = tracer.new_object_with_units_converted(
unit_length="kpc",
kpc_per_arcsec=2.0,
unit_luminosity="counts",
exposure_time=0.5,
unit_mass="solMass",
critical_surface_density=3.0,
)
assert tracer.planes[0].galaxies[0].mass.centre == (6.0, 6.0)
assert tracer.planes[0].galaxies[0].mass.unit_length == "kpc"
assert tracer.planes[0].galaxies[0].mass.intensity == 1.0
assert (
tracer.planes[0].galaxies[0].mass.intensity.unit_luminosity == "counts"
)
assert tracer.planes[0].galaxies[0].mass.mass_to_light_ratio == 30.0
assert (
tracer.planes[0].galaxies[0].mass.mass_to_light_ratio.unit_mass
== "solMass"
)
assert tracer.planes[1].galaxies[0].mass.centre == (8.0, 8.0)
assert tracer.planes[1].galaxies[0].mass.unit_length == "kpc"
assert tracer.planes[1].galaxies[0].mass.intensity == 2.5
assert (
tracer.planes[1].galaxies[0].mass.intensity.unit_luminosity == "counts"
)
assert tracer.planes[1].galaxies[0].mass.mass_to_light_ratio == 60.0
assert (
tracer.planes[1].galaxies[0].mass.mass_to_light_ratio.unit_mass
== "solMass"
)
def test__tracer_keeps_attributes(self):
profile_0 = al.lp.EllipticalGaussian(
centre=(
al.dim.Length(value=3.0, unit_length="arcsec"),
al.dim.Length(value=3.0, unit_length="arcsec"),
),
intensity=al.dim.Luminosity(value=2.0, unit_luminosity="eps"),
)
galaxy_0 = al.Galaxy(light=profile_0, redshift=1.0)
profile_1 = al.lp.EllipticalGaussian(
centre=(
al.dim.Length(value=4.0, unit_length="arcsec"),
al.dim.Length(value=4.0, unit_length="arcsec"),
),
intensity=al.dim.Luminosity(value=5.0, unit_luminosity="eps"),
)
galaxy_1 = al.Galaxy(light=profile_1, redshift=1.0)
plane_0 = al.Plane(galaxies=[galaxy_0])
plane_1 = al.Plane(galaxies=[galaxy_1])
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=1)
assert tracer.cosmology == 1
tracer = tracer.new_object_with_units_converted(
unit_length="kpc",
kpc_per_arcsec=2.0,
unit_luminosity="counts",
exposure_time=0.5,
)
assert tracer.cosmology == 1
class TestAbstractTracerCosmology:
def test__2_planes__z01_and_z1(self):
g0 = al.Galaxy(redshift=0.1)
g1 = al.Galaxy(redshift=1.0)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
assert tracer.cosmology == cosmo.Planck15
assert tracer.image_plane.arcsec_per_kpc == pytest.approx(0.525060, 1e-5)
assert tracer.image_plane.kpc_per_arcsec == pytest.approx(1.904544, 1e-5)
assert tracer.image_plane.angular_diameter_distance_to_earth_in_units(
unit_length="kpc"
) == pytest.approx(392840, 1e-5)
assert tracer.source_plane.arcsec_per_kpc == pytest.approx(0.1214785, 1e-5)
assert tracer.source_plane.kpc_per_arcsec == pytest.approx(8.231907, 1e-5)
assert tracer.source_plane.angular_diameter_distance_to_earth_in_units(
unit_length="kpc"
) == pytest.approx(1697952, 1e-5)
assert tracer.angular_diameter_distance_from_image_to_source_plane_in_units(
unit_length="kpc"
) == pytest.approx(1481890.4, 1e-5)
assert tracer.critical_surface_density_between_planes_in_units(
i=0, j=1, unit_length="kpc", unit_mass="solMass"
) == pytest.approx(4.85e9, 1e-2)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
assert tracer.critical_surface_density_between_planes_in_units(
i=0, j=1, unit_length="arcsec", unit_mass="solMass"
) == pytest.approx(17593241668, 1e-2)
def test__3_planes__z01_z1__and_z2(self):
g0 = al.Galaxy(redshift=0.1)
g1 = al.Galaxy(redshift=1.0)
g2 = al.Galaxy(redshift=2.0)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2], cosmology=cosmo.Planck15
)
assert tracer.arcsec_per_kpc_proper_of_plane(i=0) == pytest.approx(
0.525060, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=0) == pytest.approx(
1.904544, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=0, unit_length="kpc"
) == pytest.approx(392840, 1e-5)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=0, unit_length="kpc"
)
== 0.0
)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=1, unit_length="kpc"
) == pytest.approx(1481890.4, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=2, unit_length="kpc"
) == pytest.approx(1626471, 1e-5)
assert tracer.arcsec_per_kpc_proper_of_plane(i=1) == pytest.approx(
0.1214785, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=1) == pytest.approx(
8.231907, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=1, unit_length="kpc"
) == pytest.approx(1697952, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=0, unit_length="kpc"
) == pytest.approx(-2694346, 1e-5)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=1, unit_length="kpc"
)
== 0.0
)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=2, unit_length="kpc"
) == pytest.approx(638544, 1e-5)
assert tracer.arcsec_per_kpc_proper_of_plane(i=2) == pytest.approx(
0.116500, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=2) == pytest.approx(
8.58368, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=2, unit_length="kpc"
) == pytest.approx(1770512, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=0, unit_length="kpc"
) == pytest.approx(-4435831, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=1, unit_length="kpc"
) == pytest.approx(-957816)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=2, unit_length="kpc"
)
== 0.0
)
assert tracer.critical_surface_density_between_planes_in_units(
i=0, j=1, unit_length="kpc", unit_mass="solMass"
) == pytest.approx(4.85e9, 1e-2)
assert tracer.critical_surface_density_between_planes_in_units(
i=0, j=1, unit_length="arcsec", unit_mass="solMass"
) == pytest.approx(17593241668, 1e-2)
assert tracer.scaling_factor_between_planes(i=0, j=1) == pytest.approx(
0.9500, 1e-4
)
assert tracer.scaling_factor_between_planes(i=0, j=2) == pytest.approx(
1.0, 1e-4
)
assert tracer.scaling_factor_between_planes(i=1, j=2) == pytest.approx(
1.0, 1e-4
)
def test__4_planes__z01_z1_z2_and_z3(self):
g0 = al.Galaxy(redshift=0.1)
g1 = al.Galaxy(redshift=1.0)
g2 = al.Galaxy(redshift=2.0)
g3 = al.Galaxy(redshift=3.0)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3], cosmology=cosmo.Planck15
)
assert tracer.arcsec_per_kpc_proper_of_plane(i=0) == pytest.approx(
0.525060, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=0) == pytest.approx(
1.904544, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=0, unit_length="kpc"
) == pytest.approx(392840, 1e-5)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=0, unit_length="kpc"
)
== 0.0
)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=1, unit_length="kpc"
) == pytest.approx(1481890.4, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=2, unit_length="kpc"
) == pytest.approx(1626471, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=0, j=3, unit_length="kpc"
) == pytest.approx(1519417, 1e-5)
assert tracer.arcsec_per_kpc_proper_of_plane(i=1) == pytest.approx(
0.1214785, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=1) == pytest.approx(
8.231907, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=1, unit_length="kpc"
) == pytest.approx(1697952, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=0, unit_length="kpc"
) == pytest.approx(-2694346, 1e-5)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=1, unit_length="kpc"
)
== 0.0
)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=2, unit_length="kpc"
) == pytest.approx(638544, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=1, j=3, unit_length="kpc"
) == pytest.approx(778472, 1e-5)
assert tracer.arcsec_per_kpc_proper_of_plane(i=2) == pytest.approx(
0.116500, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=2) == pytest.approx(
8.58368, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=2, unit_length="kpc"
) == pytest.approx(1770512, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=0, unit_length="kpc"
) == pytest.approx(-4435831, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=1, unit_length="kpc"
) == pytest.approx(-957816)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=2, unit_length="kpc"
)
== 0.0
)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=2, j=3, unit_length="kpc"
) == pytest.approx(299564)
assert tracer.arcsec_per_kpc_proper_of_plane(i=3) == pytest.approx(
0.12674, 1e-5
)
assert tracer.kpc_per_arcsec_proper_of_plane(i=3) == pytest.approx(
7.89009, 1e-5
)
assert tracer.angular_diameter_distance_of_plane_to_earth_in_units(
i=3, unit_length="kpc"
) == pytest.approx(1627448, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=3, j=0, unit_length="kpc"
) == pytest.approx(-5525155, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=3, j=1, unit_length="kpc"
) == pytest.approx(-1556945, 1e-5)
assert tracer.angular_diameter_distance_between_planes_in_units(
i=3, j=2, unit_length="kpc"
) == pytest.approx(-399419, 1e-5)
assert (
tracer.angular_diameter_distance_between_planes_in_units(
i=3, j=3, unit_length="kpc"
)
== 0.0
)
assert tracer.critical_surface_density_between_planes_in_units(
i=0, j=1, unit_length="kpc", unit_mass="solMass"
) == pytest.approx(4.85e9, 1e-2)
assert tracer.critical_surface_density_between_planes_in_units(
i=0, j=1, unit_length="arcsec", unit_mass="solMass"
) == pytest.approx(17593241668, 1e-2)
assert tracer.scaling_factor_between_planes(i=0, j=1) == pytest.approx(
0.9348, 1e-4
)
assert tracer.scaling_factor_between_planes(i=0, j=2) == pytest.approx(
0.984, 1e-4
)
assert tracer.scaling_factor_between_planes(i=0, j=3) == pytest.approx(
1.0, 1e-4
)
assert tracer.scaling_factor_between_planes(i=1, j=2) == pytest.approx(
0.754, 1e-4
)
assert tracer.scaling_factor_between_planes(i=1, j=3) == pytest.approx(
1.0, 1e-4
)
assert tracer.scaling_factor_between_planes(i=2, j=3) == pytest.approx(
1.0, 1e-4
)
def test__6_galaxies__tracer_planes_are_correct(self):
g0 = al.Galaxy(redshift=2.0)
g1 = al.Galaxy(redshift=2.0)
g2 = al.Galaxy(redshift=0.1)
g3 = al.Galaxy(redshift=3.0)
g4 = al.Galaxy(redshift=1.0)
g5 = al.Galaxy(redshift=3.0)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3, g4, g5], cosmology=cosmo.Planck15
)
assert tracer.planes[0].galaxies == [g2]
assert tracer.planes[1].galaxies == [g4]
assert tracer.planes[2].galaxies == [g0, g1]
assert tracer.planes[3].galaxies == [g3, g5]
class TestAbstractTracerLensing:
class TestTracedGridsFromGrid:
def test__x2_planes__no_galaxy__image_and_source_planes_setup__same_coordinates(
self, sub_grid_7x7
):
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=1.0)]
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
assert traced_grids_of_planes[0][0] == pytest.approx(
np.array([1.25, -1.25]), 1e-3
)
assert traced_grids_of_planes[0][1] == pytest.approx(
np.array([1.25, -0.75]), 1e-3
)
assert traced_grids_of_planes[0][2] == pytest.approx(
np.array([0.75, -1.25]), 1e-3
)
assert traced_grids_of_planes[0][3] == pytest.approx(
np.array([0.75, -0.75]), 1e-3
)
assert traced_grids_of_planes[1][0] == pytest.approx(
np.array([1.25, -1.25]), 1e-3
)
assert traced_grids_of_planes[1][1] == pytest.approx(
np.array([1.25, -0.75]), 1e-3
)
assert traced_grids_of_planes[1][2] == pytest.approx(
np.array([0.75, -1.25]), 1e-3
)
assert traced_grids_of_planes[1][3] == pytest.approx(
np.array([0.75, -0.75]), 1e-3
)
def test__x2_planes__sis_lens__traced_grid_includes_deflections__on_planes_setup(
self, sub_grid_7x7_simple, gal_x1_mp
):
tracer = al.Tracer.from_galaxies(
galaxies=[gal_x1_mp, al.Galaxy(redshift=1.0)]
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7_simple
)
assert traced_grids_of_planes[0][0] == pytest.approx(
np.array([1.0, 1.0]), 1e-3
)
assert traced_grids_of_planes[0][1] == pytest.approx(
np.array([1.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[0][2] == pytest.approx(
np.array([1.0, 1.0]), 1e-3
)
assert traced_grids_of_planes[0][3] == pytest.approx(
np.array([1.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[1][0] == pytest.approx(
np.array([1.0 - 0.707, 1.0 - 0.707]), 1e-3
)
assert traced_grids_of_planes[1][1] == pytest.approx(
np.array([0.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[1][2] == pytest.approx(
np.array([1.0 - 0.707, 1.0 - 0.707]), 1e-3
)
assert traced_grids_of_planes[1][3] == pytest.approx(
np.array([0.0, 0.0]), 1e-3
)
def test__same_as_above_but_2_sis_lenses__deflections_double(
self, sub_grid_7x7_simple, gal_x1_mp
):
tracer = al.Tracer.from_galaxies(
galaxies=[gal_x1_mp, gal_x1_mp, al.Galaxy(redshift=1.0)]
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7_simple
)
assert traced_grids_of_planes[0][0] == pytest.approx(
np.array([1.0, 1.0]), 1e-3
)
assert traced_grids_of_planes[0][1] == pytest.approx(
np.array([1.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[0][2] == pytest.approx(
np.array([1.0, 1.0]), 1e-3
)
assert traced_grids_of_planes[0][3] == pytest.approx(
np.array([1.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[1][0] == pytest.approx(
np.array([1.0 - 2.0 * 0.707, 1.0 - 2.0 * 0.707]), 1e-3
)
assert traced_grids_of_planes[1][1] == pytest.approx(
np.array([-1.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[1][2] == pytest.approx(
np.array([1.0 - 2.0 * 0.707, 1.0 - 2.0 * 0.707]), 1e-3
)
assert traced_grids_of_planes[1][3] == pytest.approx(
np.array([-1.0, 0.0]), 1e-3
)
def test__4_planes__grids_are_correct__sis_mass_profile(
self, sub_grid_7x7_simple
):
g0 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g2 = al.Galaxy(
redshift=0.1,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g3 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g4 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g5 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3, g4, g5], cosmology=cosmo.Planck15
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7_simple
)
# The scaling factors are as follows and were computed independently from the test_autoarray.
beta_01 = 0.9348
beta_02 = 0.9839601
# Beta_03 = 1.0
beta_12 = 0.7539734
# Beta_13 = 1.0
# Beta_23 = 1.0
val = np.sqrt(2) / 2.0
assert traced_grids_of_planes[0][0] == pytest.approx(
np.array([1.0, 1.0]), 1e-4
)
assert traced_grids_of_planes[0][1] == pytest.approx(
np.array([1.0, 0.0]), 1e-4
)
assert traced_grids_of_planes[1][0] == pytest.approx(
np.array([(1.0 - beta_01 * val), (1.0 - beta_01 * val)]), 1e-4
)
assert traced_grids_of_planes[1][1] == pytest.approx(
np.array([(1.0 - beta_01 * 1.0), 0.0]), 1e-4
)
defl11 = g0.deflections_from_grid(
grid=al.grid_irregular.manual_1d(
[[(1.0 - beta_01 * val), (1.0 - beta_01 * val)]]
)
)
defl12 = g0.deflections_from_grid(
grid=al.grid_irregular.manual_1d([[(1.0 - beta_01 * 1.0), 0.0]])
)
assert traced_grids_of_planes[2][0] == pytest.approx(
np.array(
[
(1.0 - beta_02 * val - beta_12 * defl11[0, 0]),
(1.0 - beta_02 * val - beta_12 * defl11[0, 1]),
]
),
1e-4,
)
assert traced_grids_of_planes[2][1] == pytest.approx(
np.array([(1.0 - beta_02 * 1.0 - beta_12 * defl12[0, 0]), 0.0]), 1e-4
)
assert traced_grids_of_planes[3][1] == pytest.approx(
np.array([1.0, 0.0]), 1e-4
)
def test__same_as_above_but_multiple_sets_of_positions(self):
import math
g0 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g2 = al.Galaxy(
redshift=0.1,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g3 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g4 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g5 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3, g4, g5], cosmology=cosmo.Planck15
)
traced_positions_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=al.coordinates([[(1.0, 1.0), (1.0, 1.0)], [(1.0, 1.0)]])
)
# From unit test_autoarray below:
# Beta_01 = 0.9348
beta_02 = 0.9839601
# Beta_03 = 1.0
beta_12 = 0.7539734
# Beta_13 = 1.0
# Beta_23 = 1.0
val = math.sqrt(2) / 2.0
assert traced_positions_of_planes[0][0][0] == pytest.approx(
(1.0, 1.0), 1e-4
)
assert traced_positions_of_planes[1][0][0] == pytest.approx(
((1.0 - 0.9348 * val), (1.0 - 0.9348 * val)), 1e-4
)
defl11 = g0.deflections_from_grid(
grid=al.grid_irregular.manual_1d(
[[(1.0 - 0.9348 * val), (1.0 - 0.9348 * val)]]
)
)
assert traced_positions_of_planes[2][0][0] == pytest.approx(
(
(
1.0 - beta_02 * val - beta_12 * defl11[0, 0],
1.0 - beta_02 * val - beta_12 * defl11[0, 1],
)
),
1e-4,
)
assert traced_positions_of_planes[3][0][0] == pytest.approx(
(1.0, 1.0), 1e-4
)
assert traced_positions_of_planes[0][0][1] == pytest.approx(
(1.0, 1.0), 1e-4
)
assert traced_positions_of_planes[1][0][1] == pytest.approx(
((1.0 - 0.9348 * val), (1.0 - 0.9348 * val)), 1e-4
)
defl11 = g0.deflections_from_grid(
grid=al.grid_irregular.manual_1d(
[[(1.0 - 0.9348 * val), (1.0 - 0.9348 * val)]]
)
)
assert traced_positions_of_planes[2][0][1] == pytest.approx(
(
(
1.0 - beta_02 * val - beta_12 * defl11[0, 0],
1.0 - beta_02 * val - beta_12 * defl11[0, 1],
)
),
1e-4,
)
assert traced_positions_of_planes[3][0][1] == pytest.approx(
(1.0, 1.0), 1e-4
)
assert traced_positions_of_planes[0][1][0] == pytest.approx(
(1.0, 1.0), 1e-4
)
assert traced_positions_of_planes[1][1][0] == pytest.approx(
((1.0 - 0.9348 * val), (1.0 - 0.9348 * val)), 1e-4
)
defl11 = g0.deflections_from_grid(
grid=al.grid_irregular.manual_1d(
[[(1.0 - 0.9348 * val), (1.0 - 0.9348 * val)]]
)
)
assert traced_positions_of_planes[2][1][0] == pytest.approx(
(
(
1.0 - beta_02 * val - beta_12 * defl11[0, 0],
1.0 - beta_02 * val - beta_12 * defl11[0, 1],
)
),
1e-4,
)
assert traced_positions_of_planes[3][1][0] == pytest.approx(
(1.0, 1.0), 1e-4
)
def test__positions_are_same_as_grid(self):
g0 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g2 = al.Galaxy(
redshift=0.1,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g3 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g4 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g5 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3, g4, g5], cosmology=cosmo.Planck15
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=al.grid_irregular.manual_1d([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
)
traced_positions_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=al.coordinates([[(1.0, 2.0), (3.0, 4.0)], [(5.0, 6.0)]])
)
assert traced_positions_of_planes[0][0][0] == tuple(
traced_grids_of_planes[0][0]
)
assert traced_positions_of_planes[1][0][0] == tuple(
traced_grids_of_planes[1][0]
)
assert traced_positions_of_planes[2][0][0] == tuple(
traced_grids_of_planes[2][0]
)
assert traced_positions_of_planes[3][0][0] == tuple(
traced_grids_of_planes[3][0]
)
assert traced_positions_of_planes[0][0][1] == tuple(
traced_grids_of_planes[0][1]
)
assert traced_positions_of_planes[1][0][1] == tuple(
traced_grids_of_planes[1][1]
)
assert traced_positions_of_planes[2][0][1] == tuple(
traced_grids_of_planes[2][1]
)
assert traced_positions_of_planes[3][0][1] == tuple(
traced_grids_of_planes[3][1]
)
assert traced_positions_of_planes[0][1][0] == tuple(
traced_grids_of_planes[0][2]
)
assert traced_positions_of_planes[1][1][0] == tuple(
traced_grids_of_planes[1][2]
)
assert traced_positions_of_planes[2][1][0] == tuple(
traced_grids_of_planes[2][2]
)
assert traced_positions_of_planes[3][1][0] == tuple(
traced_grids_of_planes[3][2]
)
def test__x2_planes__sis_lens__upper_plane_limit_removes_final_plane(
self, sub_grid_7x7_simple, gal_x1_mp
):
tracer = al.Tracer.from_galaxies(
galaxies=[gal_x1_mp, al.Galaxy(redshift=1.0)]
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7_simple, plane_index_limit=0
)
assert traced_grids_of_planes[0][0] == pytest.approx(
np.array([1.0, 1.0]), 1e-3
)
assert traced_grids_of_planes[0][1] == pytest.approx(
np.array([1.0, 0.0]), 1e-3
)
assert traced_grids_of_planes[0][2] == pytest.approx(
np.array([1.0, 1.0]), 1e-3
)
assert traced_grids_of_planes[0][3] == pytest.approx(
np.array([1.0, 0.0]), 1e-3
)
assert len(traced_grids_of_planes) == 1
def test__4_planes__grids_are_correct__upper_plane_limit_removes_final_planes(
self, sub_grid_7x7_simple
):
g0 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=2.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g2 = al.Galaxy(
redshift=0.1,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g3 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g4 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g5 = al.Galaxy(
redshift=3.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3, g4, g5], cosmology=cosmo.Planck15
)
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7_simple, plane_index_limit=1
)
# The scaling factors are as follows and were computed independently from the test_autoarray.
beta_01 = 0.9348
val = np.sqrt(2) / 2.0
assert traced_grids_of_planes[0][0] == pytest.approx(
np.array([1.0, 1.0]), 1e-4
)
assert traced_grids_of_planes[0][1] == pytest.approx(
np.array([1.0, 0.0]), 1e-4
)
assert traced_grids_of_planes[1][0] == pytest.approx(
np.array([(1.0 - beta_01 * val), (1.0 - beta_01 * val)]), 1e-4
)
assert traced_grids_of_planes[1][1] == pytest.approx(
np.array([(1.0 - beta_01 * 1.0), 0.0]), 1e-4
)
assert len(traced_grids_of_planes) == 2
class TestProfileImages:
def test__x1_plane__single_plane_tracer(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
g2 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=3.0)
)
image_plane = al.Plane(galaxies=[g0, g1, g2])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
image_plane_profile_image = image_plane.profile_image_from_grid(
grid=sub_grid_7x7
)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert tracer_profile_image.shape_2d == (7, 7)
assert (tracer_profile_image == image_plane_profile_image).all()
def test__x2_planes__galaxy_light__no_mass__image_sum_of_image_and_source_plane(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
image_plane = al.Plane(galaxies=[g0])
source_plane = al.Plane(galaxies=[g1])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image = image_plane.profile_image_from_grid(
grid=sub_grid_7x7
) + source_plane.profile_image_from_grid(grid=sub_grid_7x7)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert tracer_profile_image.shape_2d == (7, 7)
assert image == pytest.approx(tracer_profile_image, 1.0e-4)
def test__x2_planes__galaxy_light_mass_sis__source_plane_image_includes_deflections(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
image_plane = al.Plane(galaxies=[g0])
source_plane_grid = image_plane.traced_grid_from_grid(grid=sub_grid_7x7)
source_plane = al.Plane(galaxies=[g1])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image = image_plane.profile_image_from_grid(
grid=sub_grid_7x7
) + source_plane.profile_image_from_grid(grid=source_plane_grid)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert image == pytest.approx(tracer_profile_image, 1.0e-4)
def test__x2_planes__image__compare_to_galaxy_images(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
g2 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=3.0)
)
g0_image = g0.profile_image_from_grid(grid=sub_grid_7x7)
g1_image = g1.profile_image_from_grid(grid=sub_grid_7x7)
g2_image = g2.profile_image_from_grid(grid=sub_grid_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert tracer_profile_image == pytest.approx(
g0_image + g1_image + g2_image, 1.0e-4
)
def test__x2_planes__returns_image_of_each_plane(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
image_plane = al.Plane(galaxies=[g0])
source_plane_grid = image_plane.traced_grid_from_grid(grid=sub_grid_7x7)
source_plane = al.Plane(galaxies=[g1])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
plane_profile_image = image_plane.profile_image_from_grid(
grid=sub_grid_7x7
) + source_plane.profile_image_from_grid(grid=source_plane_grid)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert tracer_profile_image == pytest.approx(plane_profile_image, 1.0e-4)
def test__x3_planes___light_no_mass_in_each_plane__image_of_each_plane_is_galaxy_image(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.1, light_profile=al.lp.EllipticalSersic(intensity=0.1)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.2)
)
g2 = al.Galaxy(
redshift=2.0, light_profile=al.lp.EllipticalSersic(intensity=0.3)
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2], cosmology=cosmo.Planck15
)
plane_0 = al.Plane(galaxies=[g0])
plane_1 = al.Plane(galaxies=[g1])
plane_2 = al.Plane(galaxies=[g2])
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
image = (
plane_0.profile_image_from_grid(grid=sub_grid_7x7)
+ plane_1.profile_image_from_grid(grid=traced_grids_of_planes[1])
+ plane_2.profile_image_from_grid(grid=traced_grids_of_planes[2])
)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert image.shape_2d == (7, 7)
assert image == pytest.approx(tracer_profile_image, 1.0e-4)
def test__x3_planes__galaxy_light_mass_sis__source_plane_image_includes_deflections(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.1, light_profile=al.lp.EllipticalSersic(intensity=0.1)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.2)
)
g2 = al.Galaxy(
redshift=2.0, light_profile=al.lp.EllipticalSersic(intensity=0.3)
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2], cosmology=cosmo.Planck15
)
plane_0 = tracer.planes[0]
plane_1 = tracer.planes[1]
plane_2 = tracer.planes[2]
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
image = (
plane_0.profile_image_from_grid(grid=sub_grid_7x7)
+ plane_1.profile_image_from_grid(grid=traced_grids_of_planes[1])
+ plane_2.profile_image_from_grid(grid=traced_grids_of_planes[2])
)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert image.shape_2d == (7, 7)
assert image == pytest.approx(tracer_profile_image, 1.0e-4)
def test__x3_planes__same_as_above_more_galaxies(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.1, light_profile=al.lp.EllipticalSersic(intensity=0.1)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.2)
)
g2 = al.Galaxy(
redshift=2.0, light_profile=al.lp.EllipticalSersic(intensity=0.3)
)
g3 = al.Galaxy(
redshift=0.1, light_profile=al.lp.EllipticalSersic(intensity=0.4)
)
g4 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.5)
)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2, g3, g4], cosmology=cosmo.Planck15
)
plane_0 = al.Plane(galaxies=[g0, g3])
plane_1 = al.Plane(galaxies=[g1, g4])
plane_2 = al.Plane(galaxies=[g2])
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
image = (
plane_0.profile_image_from_grid(grid=sub_grid_7x7)
+ plane_1.profile_image_from_grid(grid=traced_grids_of_planes[1])
+ plane_2.profile_image_from_grid(grid=traced_grids_of_planes[2])
)
tracer_profile_image = tracer.profile_image_from_grid(grid=sub_grid_7x7)
assert image.shape_2d == (7, 7)
assert image == pytest.approx(tracer_profile_image, 1.0e-4)
def test__profile_images_of_planes__planes_without_light_profiles_are_all_zeros(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.1, light_profile=al.lp.EllipticalSersic(intensity=0.1)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.2)
)
g2 = al.Galaxy(redshift=2.0)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2], cosmology=cosmo.Planck15
)
plane_0 = al.Plane(galaxies=[g0])
plane_1 = al.Plane(galaxies=[g1])
plane_0_image = plane_0.profile_image_from_grid(grid=sub_grid_7x7)
plane_1_image = plane_1.profile_image_from_grid(grid=sub_grid_7x7)
tracer_profile_image_of_planes = tracer.profile_images_of_planes_from_grid(
grid=sub_grid_7x7
)
assert len(tracer_profile_image_of_planes) == 3
assert tracer_profile_image_of_planes[0].shape_2d == (7, 7)
assert tracer_profile_image_of_planes[0] == pytest.approx(
plane_0_image, 1.0e-4
)
assert tracer_profile_image_of_planes[1].shape_2d == (7, 7)
assert tracer_profile_image_of_planes[1] == pytest.approx(
plane_1_image, 1.0e-4
)
assert tracer_profile_image_of_planes[2].shape_2d == (7, 7)
assert (
tracer_profile_image_of_planes[2].in_2d_binned == np.zeros((7, 7))
).all()
def test__x1_plane__padded_image__compare_to_galaxy_images_using_padded_grid_stack(
self, sub_grid_7x7
):
padded_grid = sub_grid_7x7.padded_grid_from_kernel_shape(
kernel_shape_2d=(3, 3)
)
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
g2 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=3.0)
)
padded_g0_image = g0.profile_image_from_grid(grid=padded_grid)
padded_g1_image = g1.profile_image_from_grid(grid=padded_grid)
padded_g2_image = g2.profile_image_from_grid(grid=padded_grid)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
padded_tracer_profile_image = tracer.padded_profile_image_from_grid_and_psf_shape(
grid=sub_grid_7x7, psf_shape_2d=(3, 3)
)
assert padded_tracer_profile_image.shape_2d == (9, 9)
assert padded_tracer_profile_image == pytest.approx(
padded_g0_image + padded_g1_image + padded_g2_image, 1.0e-4
)
def test__x3_planes__padded_2d_image_from_plane__mapped_correctly(
self, sub_grid_7x7
):
padded_grid = sub_grid_7x7.padded_grid_from_kernel_shape(
kernel_shape_2d=(3, 3)
)
g0 = al.Galaxy(
redshift=0.1, light_profile=al.lp.EllipticalSersic(intensity=0.1)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.2)
)
g2 = al.Galaxy(
redshift=2.0, light_profile=al.lp.EllipticalSersic(intensity=0.3)
)
padded_g0_image = g0.profile_image_from_grid(grid=padded_grid)
padded_g1_image = g1.profile_image_from_grid(grid=padded_grid)
padded_g2_image = g2.profile_image_from_grid(grid=padded_grid)
tracer = al.Tracer.from_galaxies(
galaxies=[g0, g1, g2], cosmology=cosmo.Planck15
)
padded_tracer_profile_image = tracer.padded_profile_image_from_grid_and_psf_shape(
grid=sub_grid_7x7, psf_shape_2d=(3, 3)
)
assert padded_tracer_profile_image.shape_2d == (9, 9)
assert padded_tracer_profile_image == pytest.approx(
padded_g0_image + padded_g1_image + padded_g2_image, 1.0e-4
)
def test__galaxy_image_dict_from_grid(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
light_profile=al.lp.EllipticalSersic(intensity=2.0),
)
g2 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=3.0)
)
g3 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=5.0)
)
g0_image = g0.profile_image_from_grid(grid=sub_grid_7x7)
g1_image = g1.profile_image_from_grid(grid=sub_grid_7x7)
g2_image = g2.profile_image_from_grid(grid=sub_grid_7x7)
g1_deflections = g1.deflections_from_grid(grid=sub_grid_7x7)
source_grid_7x7 = sub_grid_7x7 - g1_deflections
g3_image = g3.profile_image_from_grid(grid=source_grid_7x7)
tracer = al.Tracer.from_galaxies(
galaxies=[g3, g1, g0, g2], cosmology=cosmo.Planck15
)
image_1d_dict = tracer.galaxy_profile_image_dict_from_grid(
grid=sub_grid_7x7
)
assert (image_1d_dict[g0].in_1d == g0_image).all()
assert (image_1d_dict[g1].in_1d == g1_image).all()
assert (image_1d_dict[g2].in_1d == g2_image).all()
assert (image_1d_dict[g3].in_1d == g3_image).all()
image_dict = tracer.galaxy_profile_image_dict_from_grid(grid=sub_grid_7x7)
assert (image_dict[g0].in_2d == g0_image.in_2d).all()
assert (image_dict[g1].in_2d == g1_image.in_2d).all()
assert (image_dict[g2].in_2d == g2_image.in_2d).all()
assert (image_dict[g3].in_2d == g3_image.in_2d).all()
class TestConvergence:
def test__galaxy_mass_sis__no_source_plane_convergence(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(redshift=0.5)
image_plane = al.Plane(galaxies=[g0])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image_plane_convergence = image_plane.convergence_from_grid(
grid=sub_grid_7x7
)
tracer_convergence = tracer.convergence_from_grid(grid=sub_grid_7x7)
assert image_plane_convergence.shape_2d == (7, 7)
assert (image_plane_convergence == tracer_convergence).all()
def test__galaxy_entered_3_times__both_planes__different_convergence_for_each(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=2.0),
)
g2 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=3.0),
)
g0_convergence = g0.convergence_from_grid(grid=sub_grid_7x7)
g1_convergence = g1.convergence_from_grid(grid=sub_grid_7x7)
g2_convergence = g2.convergence_from_grid(grid=sub_grid_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
image_plane_convergence = tracer.image_plane.convergence_from_grid(
grid=sub_grid_7x7
)
source_plane_convergence = tracer.source_plane.convergence_from_grid(
grid=sub_grid_7x7
)
tracer_convergence = tracer.convergence_from_grid(grid=sub_grid_7x7)
assert image_plane_convergence == pytest.approx(
g0_convergence + g1_convergence, 1.0e-4
)
assert (source_plane_convergence == g2_convergence).all()
assert tracer_convergence == pytest.approx(
g0_convergence + g1_convergence + g2_convergence, 1.0e-4
)
def test__galaxy_entered_2_times__grid_is_positions(self, positions_7x7):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=2.0),
)
g0_convergence = g0.convergence_from_grid(grid=positions_7x7)
g1_convergence = g1.convergence_from_grid(grid=positions_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image_plane_convergence = tracer.image_plane.convergence_from_grid(
grid=positions_7x7
)
source_plane_convergence = tracer.source_plane.convergence_from_grid(
grid=positions_7x7
)
tracer_convergence = tracer.convergence_from_grid(grid=positions_7x7)
assert image_plane_convergence[0][0] == pytest.approx(
g0_convergence[0][0] + g1_convergence[0][0], 1.0e-4
)
assert tracer_convergence[0][0] == pytest.approx(
g0_convergence[0][0] + g1_convergence[0][0], 1.0e-4
)
def test__no_galaxy_has_mass_profile__convergence_returned_as_zeros(
self, sub_grid_7x7
):
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=0.5)]
)
assert (
tracer.convergence_from_grid(grid=sub_grid_7x7).in_2d_binned
== np.zeros(shape=(7, 7))
).all()
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.1), al.Galaxy(redshift=0.2)]
)
assert (
tracer.convergence_from_grid(grid=sub_grid_7x7).in_2d_binned
== np.zeros(shape=(7, 7))
).all()
class TestPotential:
def test__galaxy_mass_sis__no_source_plane_potential(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(redshift=0.5)
image_plane = al.Plane(galaxies=[g0])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image_plane_potential = image_plane.potential_from_grid(grid=sub_grid_7x7)
tracer_potential = tracer.potential_from_grid(grid=sub_grid_7x7)
assert image_plane_potential.shape_2d == (7, 7)
assert (image_plane_potential == tracer_potential).all()
def test__galaxy_entered_3_times__both_planes__different_potential_for_each(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=2.0),
)
g2 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=3.0),
)
g0_potential = g0.potential_from_grid(grid=sub_grid_7x7)
g1_potential = g1.potential_from_grid(grid=sub_grid_7x7)
g2_potential = g2.potential_from_grid(grid=sub_grid_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
image_plane_potential = tracer.image_plane.potential_from_grid(
grid=sub_grid_7x7
)
source_plane_potential = tracer.source_plane.potential_from_grid(
grid=sub_grid_7x7
)
tracer_potential = tracer.potential_from_grid(grid=sub_grid_7x7)
assert image_plane_potential == pytest.approx(
g0_potential + g1_potential, 1.0e-4
)
assert (source_plane_potential == g2_potential).all()
assert tracer_potential == pytest.approx(
g0_potential + g1_potential + g2_potential, 1.0e-4
)
def test__galaxy_entered_2_times__grid_is_positions(self, positions_7x7):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=2.0),
)
g0_potential = g0.potential_from_grid(grid=positions_7x7)
g1_potential = g1.potential_from_grid(grid=positions_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image_plane_potential = tracer.image_plane.potential_from_grid(
grid=positions_7x7
)
source_plane_potential = tracer.source_plane.potential_from_grid(
grid=positions_7x7
)
tracer_potential = tracer.potential_from_grid(grid=positions_7x7)
assert image_plane_potential[0][0] == pytest.approx(
g0_potential[0][0] + g1_potential[0][0], 1.0e-4
)
assert tracer_potential[0][0] == pytest.approx(
g0_potential[0][0] + g1_potential[0][0], 1.0e-4
)
def test__no_galaxy_has_mass_profile__potential_returned_as_zeros(
self, sub_grid_7x7
):
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=0.5)]
)
assert (
tracer.potential_from_grid(grid=sub_grid_7x7).in_2d_binned
== np.zeros(shape=(7, 7))
).all()
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.1), al.Galaxy(redshift=0.2)]
)
assert (
tracer.potential_from_grid(grid=sub_grid_7x7).in_2d_binned
== np.zeros(shape=(7, 7))
).all()
class TestDeflectionsOfSummedPlanes:
def test__galaxy_mass_sis__source_plane_no_mass__deflections_is_ignored(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(redshift=0.5)
image_plane = al.Plane(galaxies=[g0])
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image_plane_deflections = image_plane.deflections_from_grid(
grid=sub_grid_7x7
)
tracer_deflections = tracer.deflections_of_planes_summed_from_grid(
grid=sub_grid_7x7
)
assert tracer_deflections.shape_2d == (7, 7)
assert (image_plane_deflections == tracer_deflections).all()
def test__galaxy_entered_3_times__different_deflections_for_each(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=2.0),
)
g2 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=3.0),
)
g0_deflections = g0.deflections_from_grid(grid=sub_grid_7x7)
g1_deflections = g1.deflections_from_grid(grid=sub_grid_7x7)
g2_deflections = g2.deflections_from_grid(grid=sub_grid_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
image_plane_deflections = tracer.image_plane.deflections_from_grid(
grid=sub_grid_7x7
)
source_plane_deflections = tracer.source_plane.deflections_from_grid(
grid=sub_grid_7x7
)
tracer_deflections = tracer.deflections_of_planes_summed_from_grid(
grid=sub_grid_7x7
)
assert image_plane_deflections == pytest.approx(
g0_deflections + g1_deflections, 1.0e-4
)
assert source_plane_deflections == pytest.approx(g2_deflections, 1.0e-4)
assert tracer_deflections == pytest.approx(
g0_deflections + g1_deflections + g2_deflections, 1.0e-4
)
def test__galaxy_entered_2_times__grid_is_positions(self, positions_7x7):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=2.0),
)
g0_deflections = g0.deflections_from_grid(grid=positions_7x7)
g1_deflections = g1.deflections_from_grid(grid=positions_7x7)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
image_plane_deflections = tracer.image_plane.deflections_from_grid(
grid=positions_7x7
)
tracer_deflections = tracer.deflections_of_planes_summed_from_grid(
grid=positions_7x7
)
assert image_plane_deflections[0][0][0] == pytest.approx(
g0_deflections[0][0][0] + g1_deflections[0][0][0], 1.0e-4
)
assert image_plane_deflections[0][0][1] == pytest.approx(
g0_deflections[0][0][1] + g1_deflections[0][0][1], 1.0e-4
)
assert tracer_deflections[0][0][0] == pytest.approx(
g0_deflections[0][0][0] + g1_deflections[0][0][0], 1.0e-4
)
assert tracer_deflections[0][0][1] == pytest.approx(
g0_deflections[0][0][1] + g1_deflections[0][0][1], 1.0e-4
)
def test__no_galaxy_has_mass_profile__deflections_returned_as_zeros(
self, sub_grid_7x7
):
tracer = al.Tracer.from_galaxies(
galaxies=[al.Galaxy(redshift=0.5), al.Galaxy(redshift=0.5)]
)
tracer_deflections = tracer.deflections_of_planes_summed_from_grid(
grid=sub_grid_7x7
)
assert (
tracer_deflections.in_2d_binned[:, :, 0] == np.zeros(shape=(7, 7))
).all()
assert (
tracer_deflections.in_2d_binned[:, :, 1] == np.zeros(shape=(7, 7))
).all()
class TestGridAtRedshift:
def test__lens_z05_source_z01_redshifts__match_planes_redshifts__gives_same_grids(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=1.0
),
)
g1 = al.Galaxy(redshift=1.0)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=0.5
)
assert (grid_at_redshift == sub_grid_7x7).all()
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=1.0
)
source_plane_grid = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7
)[1]
assert (grid_at_redshift == source_plane_grid).all()
def test__same_as_above_but_for_multi_tracing(self, sub_grid_7x7):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=1.0
),
)
g1 = al.Galaxy(
redshift=0.75,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=2.0
),
)
g2 = al.Galaxy(
redshift=1.5,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=3.0
),
)
g3 = al.Galaxy(
redshift=1.0,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=4.0
),
)
g4 = al.Galaxy(redshift=2.0)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2, g3, g4])
traced_grids_of_planes = tracer.traced_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=0.5
)
assert grid_at_redshift == pytest.approx(traced_grids_of_planes[0], 1.0e-4)
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=0.75
)
assert grid_at_redshift == pytest.approx(traced_grids_of_planes[1], 1.0e-4)
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=1.0
)
assert grid_at_redshift == pytest.approx(traced_grids_of_planes[2], 1.0e-4)
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=1.5
)
assert grid_at_redshift == pytest.approx(traced_grids_of_planes[3], 1.0e-4)
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=2.0
)
assert grid_at_redshift == pytest.approx(traced_grids_of_planes[4], 1.0e-4)
def test__input_redshift_between_two_planes__two_planes_between_earth_and_input_redshift(
self, sub_grid_7x7
):
sub_grid_7x7[0] = np.array([[1.0, -1.0]])
sub_grid_7x7[1] = np.array([[1.0, 0.0]])
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=1.0
),
)
g1 = al.Galaxy(
redshift=0.75,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=2.0
),
)
g2 = al.Galaxy(redshift=2.0)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2])
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7, redshift=1.9
)
assert grid_at_redshift[0][0] == pytest.approx(-1.06587, 1.0e-1)
assert grid_at_redshift[0][1] == pytest.approx(1.06587, 1.0e-1)
assert grid_at_redshift[1][0] == pytest.approx(-1.921583, 1.0e-1)
assert grid_at_redshift[1][1] == pytest.approx(0.0, 1.0e-1)
def test__input_redshift_before_first_plane__returns_image_plane(
self, sub_grid_7x7
):
g0 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=1.0
),
)
g1 = al.Galaxy(
redshift=0.75,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=2.0
),
)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
grid_at_redshift = tracer.grid_at_redshift_from_grid_and_redshift(
grid=sub_grid_7x7.geometry.unmasked_grid, redshift=0.3
)
assert (grid_at_redshift == sub_grid_7x7.geometry.unmasked_grid).all()
class TestMultipleImages:
def test__simple_isothermal_case_positions_are_correct(self):
grid = al.grid.uniform(shape_2d=(100, 100), pixel_scales=0.05, sub_size=1)
g0 = al.Galaxy(
redshift=0.5,
mass=al.mp.EllipticalIsothermal(
centre=(0.001, 0.001), einstein_radius=1.0, axis_ratio=0.8
),
)
g1 = al.Galaxy(redshift=1.0)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
coordinates = tracer.image_plane_multiple_image_positions(
grid=grid, source_plane_coordinate=(0.0, 0.0)
)
assert coordinates[0][0] == pytest.approx((1.025, -0.025), 1.0e-4)
assert coordinates[0][1] == pytest.approx((0.025, -0.975), 1.0e-4)
assert coordinates[0][2] == pytest.approx((0.025, 0.975), 1.0e-4)
assert coordinates[0][3] == pytest.approx((-1.025, -0.025), 1.0e-4)
assert coordinates.scaled[0][0] == pytest.approx((1.025, -0.025), 1.0e-4)
assert coordinates.scaled[0][1] == pytest.approx((0.025, -0.975), 1.0e-4)
assert coordinates.scaled[0][2] == pytest.approx((0.025, 0.975), 1.0e-4)
assert coordinates.scaled[0][3] == pytest.approx((-1.025, -0.025), 1.0e-4)
assert coordinates.pixels == [[(29, 49), (49, 30), (49, 69), (70, 49)]]
def test__multiple_image_coordinate_of_light_profile_centres_of_source_plane(
self
):
grid = al.grid.uniform(shape_2d=(50, 50), pixel_scales=0.05, sub_size=4)
g0 = al.Galaxy(
redshift=0.5,
mass=al.mp.EllipticalIsothermal(
centre=(0.0, 0.0), einstein_radius=1.0, axis_ratio=0.9
),
)
g1 = al.Galaxy(
redshift=1.0, light=al.lp.SphericalGaussian(centre=(0.0, 0.0))
)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
coordinates_manual = tracer.image_plane_multiple_image_positions(
grid=grid, source_plane_coordinate=(0.0, 0.0)
)
assert coordinates_manual.pixels == [[(4, 24), (45, 24)]]
assert (
coordinates_manual.scaled
== tracer.image_plane_multiple_image_positions_of_galaxies(grid=grid)[0]
)
class TestContributionMap:
def test__contribution_maps_are_same_as_hyper_galaxy_calculation(self):
hyper_model_image = al.array.manual_2d([[2.0, 4.0, 10.0]])
hyper_galaxy_image = al.array.manual_2d([[1.0, 5.0, 8.0]])
hyper_galaxy_0 = al.HyperGalaxy(contribution_factor=5.0)
hyper_galaxy_1 = al.HyperGalaxy(contribution_factor=10.0)
galaxy_0 = al.Galaxy(
redshift=0.5,
hyper_galaxy=hyper_galaxy_0,
hyper_model_image=hyper_model_image,
hyper_galaxy_image=hyper_galaxy_image,
)
galaxy_1 = al.Galaxy(
redshift=1.0,
hyper_galaxy=hyper_galaxy_1,
hyper_model_image=hyper_model_image,
hyper_galaxy_image=hyper_galaxy_image,
)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_0, galaxy_1])
assert (
tracer.contribution_map
== tracer.image_plane.contribution_map
+ tracer.source_plane.contribution_map
).all()
assert (
tracer.contribution_maps_of_planes[0].in_1d
== tracer.image_plane.contribution_map
).all()
assert (
tracer.contribution_maps_of_planes[1].in_1d
== tracer.source_plane.contribution_map
).all()
galaxy_0 = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_0, galaxy_1])
assert (
tracer.contribution_map == tracer.source_plane.contribution_map
).all()
assert tracer.contribution_maps_of_planes[0] == None
assert (
tracer.contribution_maps_of_planes[1].in_1d
== tracer.source_plane.contribution_map
).all()
galaxy_1 = al.Galaxy(redshift=1.0)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_0, galaxy_1])
assert tracer.contribution_map == None
assert tracer.contribution_maps_of_planes[0] == None
assert tracer.contribution_maps_of_planes[1] == None
class TestLensingObject:
def test__correct_einstein_mass_caclulated_for_multiple_mass_profiles__means_all_innherited_methods_work(
self
):
sis_0 = al.mp.SphericalIsothermal(centre=(0.0, 0.0), einstein_radius=0.2)
sis_1 = al.mp.SphericalIsothermal(centre=(0.0, 0.0), einstein_radius=0.4)
sis_2 = al.mp.SphericalIsothermal(centre=(0.0, 0.0), einstein_radius=0.6)
sis_3 = al.mp.SphericalIsothermal(centre=(0.0, 0.0), einstein_radius=0.8)
galaxy_0 = al.Galaxy(
mass_profile_0=sis_0, mass_profile_1=sis_1, redshift=0.5
)
galaxy_1 = al.Galaxy(
mass_profile_0=sis_2, mass_profile_1=sis_3, redshift=0.5
)
plane = al.Plane(galaxies=[galaxy_0, galaxy_1])
tracer = al.Tracer(
planes=[plane, al.Plane(redshift=1.0)], cosmology=cosmo.Planck15
)
assert tracer.einstein_mass_in_units(unit_mass="angular") == pytest.approx(
np.pi * 2.0 ** 2.0, 1.0e-1
)
class TestAbstractTracerData:
class TestBlurredProfileImages:
def test__blurred_image_from_grid_and_psf(
self, sub_grid_7x7, blurring_grid_7x7, psf_3x3
):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
plane_0 = al.Plane(redshift=0.5, galaxies=[g0])
plane_1 = al.Plane(redshift=1.0, galaxies=[g1])
blurred_image_0 = plane_0.blurred_profile_image_from_grid_and_psf(
grid=sub_grid_7x7, psf=psf_3x3, blurring_grid=blurring_grid_7x7
)
source_grid_7x7 = plane_0.traced_grid_from_grid(grid=sub_grid_7x7)
source_blurring_grid_7x7 = plane_0.traced_grid_from_grid(
grid=blurring_grid_7x7
)
blurred_image_1 = plane_1.blurred_profile_image_from_grid_and_psf(
grid=source_grid_7x7,
psf=psf_3x3,
blurring_grid=source_blurring_grid_7x7,
)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=cosmo.Planck15)
blurred_image = tracer.blurred_profile_image_from_grid_and_psf(
grid=sub_grid_7x7, psf=psf_3x3, blurring_grid=blurring_grid_7x7
)
assert blurred_image.in_1d == pytest.approx(
blurred_image_0.in_1d + blurred_image_1.in_1d, 1.0e-4
)
assert blurred_image.in_2d == pytest.approx(
blurred_image_0.in_2d + blurred_image_1.in_2d, 1.0e-4
)
def test__blurred_images_of_planes_from_grid_and_psf(
self, sub_grid_7x7, blurring_grid_7x7, psf_3x3
):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
plane_0 = al.Plane(redshift=0.5, galaxies=[g0])
plane_1 = al.Plane(redshift=1.0, galaxies=[g1])
blurred_image_0 = plane_0.blurred_profile_image_from_grid_and_psf(
grid=sub_grid_7x7, psf=psf_3x3, blurring_grid=blurring_grid_7x7
)
source_grid_7x7 = plane_0.traced_grid_from_grid(grid=sub_grid_7x7)
source_blurring_grid_7x7 = plane_0.traced_grid_from_grid(
grid=blurring_grid_7x7
)
blurred_image_1 = plane_1.blurred_profile_image_from_grid_and_psf(
grid=source_grid_7x7,
psf=psf_3x3,
blurring_grid=source_blurring_grid_7x7,
)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=cosmo.Planck15)
blurred_images = tracer.blurred_profile_images_of_planes_from_grid_and_psf(
grid=sub_grid_7x7, psf=psf_3x3, blurring_grid=blurring_grid_7x7
)
assert (blurred_images[0].in_1d == blurred_image_0.in_1d).all()
assert (blurred_images[1].in_1d == blurred_image_1.in_1d).all()
assert (blurred_images[0].in_2d == blurred_image_0.in_2d).all()
assert (blurred_images[1].in_2d == blurred_image_1.in_2d).all()
def test__blurred_image_from_grid_and_convolver(
self, sub_grid_7x7, blurring_grid_7x7, convolver_7x7
):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
plane_0 = al.Plane(redshift=0.5, galaxies=[g0])
plane_1 = al.Plane(redshift=1.0, galaxies=[g1])
blurred_image_0 = plane_0.blurred_profile_image_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
source_grid_7x7 = plane_0.traced_grid_from_grid(grid=sub_grid_7x7)
source_blurring_grid_7x7 = plane_0.traced_grid_from_grid(
grid=blurring_grid_7x7
)
blurred_image_1 = plane_1.blurred_profile_image_from_grid_and_convolver(
grid=source_grid_7x7,
convolver=convolver_7x7,
blurring_grid=source_blurring_grid_7x7,
)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=cosmo.Planck15)
blurred_image = tracer.blurred_profile_image_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
assert blurred_image.in_1d == pytest.approx(
blurred_image_0.in_1d + blurred_image_1.in_1d, 1.0e-4
)
assert blurred_image.in_2d == pytest.approx(
blurred_image_0.in_2d + blurred_image_1.in_2d, 1.0e-4
)
def test__blurred_images_of_planes_from_grid_and_convolver(
self, sub_grid_7x7, blurring_grid_7x7, convolver_7x7
):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
plane_0 = al.Plane(redshift=0.5, galaxies=[g0])
plane_1 = al.Plane(redshift=1.0, galaxies=[g1])
blurred_image_0 = plane_0.blurred_profile_image_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
source_grid_7x7 = plane_0.traced_grid_from_grid(grid=sub_grid_7x7)
source_blurring_grid_7x7 = plane_0.traced_grid_from_grid(
grid=blurring_grid_7x7
)
blurred_image_1 = plane_1.blurred_profile_image_from_grid_and_convolver(
grid=source_grid_7x7,
convolver=convolver_7x7,
blurring_grid=source_blurring_grid_7x7,
)
tracer = al.Tracer(planes=[plane_0, plane_1], cosmology=cosmo.Planck15)
blurred_images = tracer.blurred_profile_images_of_planes_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
assert (blurred_images[0].in_1d == blurred_image_0.in_1d).all()
assert (blurred_images[1].in_1d == blurred_image_1.in_1d).all()
assert (blurred_images[0].in_2d == blurred_image_0.in_2d).all()
assert (blurred_images[1].in_2d == blurred_image_1.in_2d).all()
def test__galaxy_blurred_image_dict_from_grid_and_convolver(
self, sub_grid_7x7, blurring_grid_7x7, convolver_7x7
):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
light_profile=al.lp.EllipticalSersic(intensity=2.0),
)
g2 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=3.0)
)
g3 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=5.0)
)
g0_blurred_image = g0.blurred_profile_image_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
g1_blurred_image = g1.blurred_profile_image_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
g2_blurred_image = g2.blurred_profile_image_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
g1_deflections = g1.deflections_from_grid(grid=sub_grid_7x7)
source_grid_7x7 = sub_grid_7x7 - g1_deflections
g1_blurring_deflections = g1.deflections_from_grid(grid=blurring_grid_7x7)
source_blurring_grid_7x7 = blurring_grid_7x7 - g1_blurring_deflections
g3_blurred_image = g3.blurred_profile_image_from_grid_and_convolver(
grid=source_grid_7x7,
convolver=convolver_7x7,
blurring_grid=source_blurring_grid_7x7,
)
tracer = al.Tracer.from_galaxies(
galaxies=[g3, g1, g0, g2], cosmology=cosmo.Planck15
)
blurred_image_dict = tracer.galaxy_blurred_profile_image_dict_from_grid_and_convolver(
grid=sub_grid_7x7,
convolver=convolver_7x7,
blurring_grid=blurring_grid_7x7,
)
assert (blurred_image_dict[g0].in_1d == g0_blurred_image.in_1d).all()
assert (blurred_image_dict[g1].in_1d == g1_blurred_image.in_1d).all()
assert (blurred_image_dict[g2].in_1d == g2_blurred_image.in_1d).all()
assert (blurred_image_dict[g3].in_1d == g3_blurred_image.in_1d).all()
class TestUnmaskedBlurredProfileImages:
def test__unmasked_images_of_tracer_planes_and_galaxies(self):
psf = al.kernel.manual_2d(
array=(np.array([[0.0, 3.0, 0.0], [0.0, 1.0, 2.0], [0.0, 0.0, 0.0]])),
pixel_scales=1.0,
)
mask = al.mask.manual(
mask_2d=np.array(
[[True, True, True], [True, False, True], [True, True, True]]
),
pixel_scales=1.0,
sub_size=1,
)
grid = al.masked.grid.from_mask(mask=mask)
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=0.1)
)
g1 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=0.2)
)
g2 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.3)
)
g3 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=0.4)
)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1, g2, g3])
padded_grid = grid.padded_grid_from_kernel_shape(
kernel_shape_2d=psf.shape_2d
)
traced_padded_grids = tracer.traced_grids_of_planes_from_grid(
grid=padded_grid
)
manual_blurred_image_0 = tracer.image_plane.profile_images_of_galaxies_from_grid(
grid=traced_padded_grids[0]
)[
0
]
manual_blurred_image_0 = psf.convolved_array_from_array(
array=manual_blurred_image_0
)
manual_blurred_image_1 = tracer.image_plane.profile_images_of_galaxies_from_grid(
grid=traced_padded_grids[0]
)[
1
]
manual_blurred_image_1 = psf.convolved_array_from_array(
array=manual_blurred_image_1
)
manual_blurred_image_2 = tracer.source_plane.profile_images_of_galaxies_from_grid(
grid=traced_padded_grids[1]
)[
0
]
manual_blurred_image_2 = psf.convolved_array_from_array(
array=manual_blurred_image_2
)
manual_blurred_image_3 = tracer.source_plane.profile_images_of_galaxies_from_grid(
grid=traced_padded_grids[1]
)[
1
]
manual_blurred_image_3 = psf.convolved_array_from_array(
array=manual_blurred_image_3
)
unmasked_blurred_image = tracer.unmasked_blurred_profile_image_from_grid_and_psf(
grid=grid, psf=psf
)
assert unmasked_blurred_image.in_2d == pytest.approx(
manual_blurred_image_0.in_2d_binned[1:4, 1:4]
+ manual_blurred_image_1.in_2d_binned[1:4, 1:4]
+ manual_blurred_image_2.in_2d_binned[1:4, 1:4]
+ manual_blurred_image_3.in_2d_binned[1:4, 1:4],
1.0e-4,
)
unmasked_blurred_image_of_planes = tracer.unmasked_blurred_profile_image_of_planes_from_grid_and_psf(
grid=grid, psf=psf
)
assert unmasked_blurred_image_of_planes[0].in_2d == pytest.approx(
manual_blurred_image_0.in_2d_binned[1:4, 1:4]
+ manual_blurred_image_1.in_2d_binned[1:4, 1:4],
1.0e-4,
)
assert unmasked_blurred_image_of_planes[1].in_2d == pytest.approx(
manual_blurred_image_2.in_2d_binned[1:4, 1:4]
+ manual_blurred_image_3.in_2d_binned[1:4, 1:4],
1.0e-4,
)
unmasked_blurred_image_of_planes_and_galaxies = tracer.unmasked_blurred_profile_image_of_planes_and_galaxies_from_grid_and_psf(
grid=grid, psf=psf
)
assert (
unmasked_blurred_image_of_planes_and_galaxies[0][0].in_2d
== manual_blurred_image_0.in_2d_binned[1:4, 1:4]
).all()
assert (
unmasked_blurred_image_of_planes_and_galaxies[0][1].in_2d
== manual_blurred_image_1.in_2d_binned[1:4, 1:4]
).all()
assert (
unmasked_blurred_image_of_planes_and_galaxies[1][0].in_2d
== manual_blurred_image_2.in_2d_binned[1:4, 1:4]
).all()
assert (
unmasked_blurred_image_of_planes_and_galaxies[1][1].in_2d
== manual_blurred_image_3.in_2d_binned[1:4, 1:4]
).all()
class TestVisibilities:
def test__visibilities_from_grid_and_transformer(
self, sub_grid_7x7, transformer_7x7_7
):
g0 = al.Galaxy(
redshift=0.5,
light_profile=al.lp.EllipticalSersic(intensity=1.0),
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
g0_image_1d = g0.profile_image_from_grid(grid=sub_grid_7x7)
deflections = g0.deflections_from_grid(grid=sub_grid_7x7)
source_grid_7x7 = sub_grid_7x7 - deflections
g1_image_1d = g1.profile_image_from_grid(grid=source_grid_7x7)
visibilities = transformer_7x7_7.visibilities_from_image(
image=g0_image_1d + g1_image_1d
)
tracer = al.Tracer.from_galaxies(galaxies=[g0, g1])
tracer_visibilities = tracer.profile_visibilities_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
assert visibilities == pytest.approx(tracer_visibilities, 1.0e-4)
def test__visibilities_of_planes_from_grid_and_transformer(
self, sub_grid_7x7, transformer_7x7_7
):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=2.0)
)
plane_0 = al.Plane(redshift=0.5, galaxies=[g0])
plane_1 = al.Plane(redshift=0.5, galaxies=[g1])
plane_2 = al.Plane(redshift=1.0, galaxies=[al.Galaxy(redshift=1.0)])
visibilities_0 = plane_0.profile_visibilities_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
visibilities_1 = plane_1.profile_visibilities_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
tracer = al.Tracer(
planes=[plane_0, plane_1, plane_2], cosmology=cosmo.Planck15
)
visibilities = tracer.profile_visibilities_of_planes_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
assert (visibilities[0] == visibilities_0).all()
assert (visibilities[1] == visibilities_1).all()
def test__galaxy_visibilities_dict_from_grid_and_transformer(
self, sub_grid_7x7, transformer_7x7_7
):
g0 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=1.0)
)
g1 = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(einstein_radius=1.0),
light_profile=al.lp.EllipticalSersic(intensity=2.0),
)
g2 = al.Galaxy(
redshift=0.5, light_profile=al.lp.EllipticalSersic(intensity=3.0)
)
g3 = al.Galaxy(
redshift=1.0, light_profile=al.lp.EllipticalSersic(intensity=5.0)
)
g0_visibilities = g0.profile_visibilities_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
g1_visibilities = g1.profile_visibilities_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
g2_visibilities = g2.profile_visibilities_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
g1_deflections = g1.deflections_from_grid(grid=sub_grid_7x7)
source_grid_7x7 = sub_grid_7x7 - g1_deflections
g3_visibilities = g3.profile_visibilities_from_grid_and_transformer(
grid=source_grid_7x7, transformer=transformer_7x7_7
)
tracer = al.Tracer.from_galaxies(
galaxies=[g3, g1, g0, g2], cosmology=cosmo.Planck15
)
visibilities_dict = tracer.galaxy_profile_visibilities_dict_from_grid_and_transformer(
grid=sub_grid_7x7, transformer=transformer_7x7_7
)
assert (visibilities_dict[g0] == g0_visibilities).all()
assert (visibilities_dict[g1] == g1_visibilities).all()
assert (visibilities_dict[g2] == g2_visibilities).all()
assert (visibilities_dict[g3] == g3_visibilities).all()
class TestGridIrregularsOfPlanes:
def test__x2_planes__traced_grid_setup_correctly(self, sub_grid_7x7):
galaxy_pix = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(
value=1, grid=np.array([[1.0, 1.0]])
),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
galaxy_no_pix = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_pix, galaxy_pix])
pixelization_grids = tracer.sparse_image_plane_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
assert pixelization_grids[0] == None
assert (pixelization_grids[1] == np.array([[1.0, 1.0]])).all()
def test__multi_plane__traced_grid_setup_correctly(self, sub_grid_7x7):
galaxy_pix0 = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(
value=1, grid=np.array([[1.0, 1.0]])
),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
galaxy_pix1 = al.Galaxy(
redshift=2.0,
pixelization=mock_inv.MockPixelization(
value=1, grid=np.array([[2.0, 2.0]])
),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
galaxy_no_pix0 = al.Galaxy(redshift=0.25)
galaxy_no_pix1 = al.Galaxy(redshift=0.5)
galaxy_no_pix2 = al.Galaxy(redshift=1.5)
tracer = al.Tracer.from_galaxies(
galaxies=[
galaxy_pix0,
galaxy_pix1,
galaxy_no_pix0,
galaxy_no_pix1,
galaxy_no_pix2,
]
)
pixelization_grids = tracer.sparse_image_plane_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
assert pixelization_grids[0] == None
assert pixelization_grids[1] == None
assert (pixelization_grids[2] == np.array([[1.0, 1.0]])).all()
assert pixelization_grids[3] == None
assert (pixelization_grids[4] == np.array([[2.0, 2.0]])).all()
class TestTracedGridIrregularsOfPlanes:
def test__x2_planes__no_mass_profiles__traced_grid_setup_correctly(
self, sub_grid_7x7
):
galaxy_pix = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(
value=1,
grid=al.grid.manual_2d([[[1.0, 0.0]]], pixel_scales=(1.0, 1.0)),
),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
galaxy_no_pix = al.Galaxy(redshift=0.5)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_pix, galaxy_pix])
traced_pixelization_grids = tracer.traced_sparse_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
assert traced_pixelization_grids[0] == None
assert (traced_pixelization_grids[1] == np.array([[1.0, 0.0]])).all()
def test__x2_planes__include_mass_profile__traced_grid_setup_correctly(
self, sub_grid_7x7
):
galaxy_no_pix = al.Galaxy(
redshift=0.5,
mass_profile=al.mp.SphericalIsothermal(
centre=(0.0, 0.0), einstein_radius=0.5
),
)
galaxy_pix = al.Galaxy(
redshift=1.0,
pixelization=mock_inv.MockPixelization(
value=1,
grid=al.grid.manual_2d([[[1.0, 0.0]]], pixel_scales=(1.0, 1.0)),
),
regularization=mock_inv.MockRegularization(matrix_shape=(1, 1)),
)
tracer = al.Tracer.from_galaxies(galaxies=[galaxy_no_pix, galaxy_pix])
traced_pixelization_grids = tracer.traced_sparse_grids_of_planes_from_grid(
grid=sub_grid_7x7
)
assert traced_pixelization_grids[0] == None
assert traced_pixelization_grids[1] == pytest.approx(
|
np.array([[1.0 - 0.5, 0.0]])
|
numpy.array
|
###########################################################################################
# Script to load the Sprites video dataset (stored in .npy format)
# Adapted from <NAME> (https://github.com/YingzhenLi/Sprites)
###########################################################################################
import math
import time
import numpy as np
def sprites_act(path, seed=0, return_labels=False):
directions = ['front', 'left', 'right']
actions = ['walk', 'spellcard', 'slash']
start = time.time()
path = path + '/npy/'
X_train = []
X_test = []
if return_labels:
A_train = [];
A_test = []
D_train = [];
D_test = []
for act in range(len(actions)):
for i in range(len(directions)):
label = 3 * act + i
print(actions[act], directions[i], act, i, label)
x = np.load(path + '%s_%s_frames_train.npy' % (actions[act], directions[i]))
X_train.append(x)
y = np.load(path + '%s_%s_frames_test.npy' % (actions[act], directions[i]))
X_test.append(y)
if return_labels:
a =
|
np.load(path + '%s_%s_attributes_train.npy' % (actions[act], directions[i]))
|
numpy.load
|
# export DISPLAY=:0
import sys
sys.path.append("../")
import numpy as np
import gym
from dqn_car.dqn_agent import DQNAgent
from dqn_car.networks import NeuralNetwork, TargetNetwork
from tensorboard_evaluation import *
import itertools as it
from utils import EpisodeStats
def run_episode(env, agent, deterministic, history_length, skip_frames=2, do_training=True, rendering=True, max_timesteps=1000, test=False):
"""
This methods runs one episode for a gym environment.
deterministic == True => agent executes only greedy actions according the Q function approximator (no random actions).
do_training == True => train agent
"""
stats = EpisodeStats()
# Save history
image_hist = []
step = 0
total_reward = 0
state = env.reset()
# fix bug of corrupted states without rendering in gym environment
env.viewer.window.dispatch_events()
# append image history to first state
state = state_preprocessing(state)
image_hist.extend([state] * (history_length + 1))
state = np.array(image_hist).reshape(96, 96, history_length + 1)
counter = 7
while True:
# TODO: get action_id from agent
# Hint: adapt the probabilities of the 5 actions for random sampling so that the agent explores properly.
action_id = agent.act(state=state, deterministic=deterministic)
if test and counter>0:
action_id = 3
counter -= 1
action = action_id_to_action(action_id)
# Hint: frame skipping might help you to get better results.
reward = 0
for _ in range(skip_frames + 1):
next_state, r, terminal, info = env.step(action)
reward += r
# reward = reward if not terminal else -10
if rendering:
env.render()
if terminal:
break
next_state = state_preprocessing(next_state)
image_hist.append(next_state)
image_hist.pop(0)
next_state = np.array(image_hist).reshape(96, 96, history_length + 1)
if do_training:
agent.train(state, action_id, next_state, reward, terminal)
stats.step(reward, action_id)
state = next_state
if terminal or (step * (skip_frames + 1)) > max_timesteps :
break
step += 1
return stats
def action_id_to_action(action_id):
if (action_id==0): a = np.array([0.0, 0.0, 0.0]).astype('float32')
if (action_id==1): a = np.array([-1.0, 0.0, 0.0]).astype('float32')
if (action_id==2): a = np.array([1.0, 0.0, 0.0]).astype('float32')
if (action_id==3): a = np.array([0.0, 1.2, 0.0]).astype('float32')
if (action_id==4): a = np.array([0.0, 0.0, 0.2]).astype('float32')
return a
def train_online(env, agent, num_episodes, history_length, model_dir="./models_carracing", tensorboard_dir="./tensorboard"):
if not os.path.exists(model_dir):
os.mkdir(model_dir)
print("... train agent")
tensorboard = Evaluation(os.path.join(tensorboard_dir, "train"), ["episode_reward", "valid_episode_reward", "straight", "left", "right", "accel", "brake"])
for i in range(num_episodes):
print("epsiode %d" % i)
timesteps = int(np.max([300, i]))
stats = run_episode(env, agent, history_length=history_length, max_timesteps=timesteps, deterministic=False, do_training=True)
if i % 50 == 0:
valid_reward = 0
for j in range(5):
valid_stats = run_episode(env, agent, deterministic=True, do_training=False, test=True)
valid_reward += valid_stats.episode_reward
tensorboard.write_episode_data(i, eval_dict={ "episode_reward" : stats.episode_reward,
"valid_episode_reward" : valid_reward/5,
"straight" : stats.get_action_usage(0),
"left" : stats.get_action_usage(1),
"right" : stats.get_action_usage(2),
"accel" : stats.get_action_usage(3),
"brake" : stats.get_action_usage(4)
})
if i % 100 == 0 or (i >= num_episodes - 1):
agent.saver.save(agent.sess, os.path.join(model_dir, "dqn_agent.ckpt"))
tensorboard.close_session()
def state_preprocessing(state):
return rgb2gray(state).reshape(96, 96) / 255.0
def rgb2gray(rgb):
"""
this method converts rgb images to grayscale.
"""
gray =
|
np.dot(rgb[...,:3], [0.2125, 0.7154, 0.0721])
|
numpy.dot
|
import numpy as np
import os
import xml.etree.ElementTree as ET
import sys
import pickle as pkl
from astropy import units as u
from astropy.time import Time
from astropy.timeseries import TimeSeries
from astropy.table import vstack
from astropy.table import Table
from astropy.stats import sigma_clip, mad_std
from scipy.signal import savgol_filter
|
np.random.seed(42)
|
numpy.random.seed
|
from __future__ import print_function, division
import os
import sys
root = os.path.join(os.getcwd().split('src')[0], 'src')
if root not in sys.path:
sys.path.append(root)
from utils import *
from metrics.abcd import abcd
import numpy as np
from collections import Counter
import pandas
from tabulate import tabulate
from random import random as rand, choice
from sklearn.svm import LinearSVC
from sklearn.metrics import roc_auc_score
from datasets.handler import get_all_datasets
def target_details(test_set):
""" Return Max and Min and 'Mass' from the test set """
test_set = test_set[test_set.columns[:-1]]
hi, lo = test_set.max().values, test_set.min().values
return lo, hi
def get_weights(train_set, maxs, mins):
s_i = []
for i in xrange(len(train_set)):
s_i.append((train_set.ix[i].values,
np.sum(
[1 if lo <= val < hi else 0 for lo, val, hi in
zip(mins, train_set.ix[i].values[:-1], maxs)]) / len(
train_set.columns[:-1])))
return s_i
def weight_training(train, test, verbose=False):
def train_validation_split():
""" Split training data into X_train and X_validation"""
sorted_train = sorted(train_w, key=lambda x: x[1], reverse=True)
N = len(sorted_train)
train0, validation = sorted_train[int(N * 2 / 5):], sorted_train[:int(N * 2 / 5)]
return train0, validation
def multiply_dframe(dframe, weight):
assert len(weight) == len(dframe)
N = len(dframe.columns) - 1
wt_array = pd.DataFrame(np.array(N * [weight]).T, columns=dframe.columns[:-1])
new_dframe = dframe.multiply(wt_array)
new_dframe[dframe.columns[-1]] = dframe[dframe.columns[-1]]
return new_dframe[dframe.columns].dropna(axis=1, inplace=False)
def ensemble_measure(lst, classifiers, weigths):
def norm_lst(lst):
import numpy as np
s = np.sum(lst)
arr = np.array(lst) / s
return np.nan_to_num(arr)
tst = pd.DataFrame([t[0] for t in lst], columns=train.columns)
X = tst[tst.columns[:-1]]
y = tst[tst.columns[-1]]
y_hat = []
y_pred = []
for clf in classifiers:
y_hat.append(clf.decision_function(X))
if len(y_hat) == 1:
y = [1 if p == True else -1 for p in y]
auc = roc_auc_score(y, y_hat[0])
else:
for pred, wgt in zip(y_hat, norm_lst(weigths)):
y_pred.append([wgt * p for p in pred])
y_pred = np.sum(np.array(y_pred).T, axis=1)
y = [1 if p == True else -1 for p in y]
try:
auc = roc_auc_score(y, y_pred)
except:
set_trace()
return auc
def resample(train0, weights):
""" The name says it all; resample training set"""
def oversample(lst):
new_lst = []
while len(new_lst) < N:
# set_trace()
a = choice(lst)
b = choice(lst)
c = choice(lst)
r = rand()
new = [x + r * (y - z) for x, y, z in zip(a[0][0][:-1], b[0][0][:-1], c[0][0][:-1])] + [a[0][0][-1]]
new_lst.append(((new, (a[0][1] + b[0][1] + c[0][1]) / 3), a[1] + r * (b[1] - c[1])))
return new_lst
def undersample(lst):
return [choice(lst) for _ in xrange(len(lst))]
klass = [t[0][-1] for t in train0]
count = Counter(klass)
# set_trace()
[major, minor] = sorted(count)[::-1]
N = int(0.5 * (count[minor] + count[major]))
oversamp = []
undersmp = []
therest = []
w_cutoff = np.median(weights)
for w, b in zip(weights, train0):
if b[1] <= w_cutoff and b[0][-1] is minor:
oversamp.append((b, w))
else:
therest.append((b, w))
if b[1] >= w_cutoff and b[0][-1] is major:
undersmp.append((b, w))
else:
therest.append((b, w))
try:
therest.extend(undersample(undersmp))
therest.extend(oversample(oversamp))
except:
pass
weights = [t[1] for t in therest]
therest = [t[0] for t in therest]
return therest, weights
lo, hi = target_details(test)
train_w = get_weights(train, hi, lo)
train0, validation = train_validation_split()
rho_best = 0
h = []
a_m = []
lam = 0.5 # Penalty for each iteration
train1 = train0
w = len(train1) * [1]
a_best = a_m
trn_best = train1
for iter in xrange(5):
if verbose: print("Interation number: {}".format(iter))
train1, w = resample(train1, w)
sim = [t[1] for t in train1]
try:
trn = pd.DataFrame([t[0] for t in train1], columns=train.columns)
except:
trn = pd.DataFrame([t for t in train1], columns=train.columns)
w_trn = multiply_dframe(trn, w)
# Create an SVM model
X = w_trn[w_trn.columns[:-1]]
y = w_trn[w_trn.columns[-1]]
clf = LinearSVC()
clf.fit(X, y)
h.append(clf)
y_prd = h[-1].predict(X)
e_m = np.sum([w0 if not y_hat == y_act else 0 for w0, y_hat, y_act in zip(w, y_prd, y)]) / np.sum(
w)
a_m.append(lam * np.log((1 - e_m) / (e_m)))
w = [w0 * np.exp(a_m[-1]) if not y_hat == y_act else w0 for w0, y_hat, y_act in zip(w, y_prd, y)]
p_m = ensemble_measure(validation, h, a_m)
if p_m >= rho_best:
if verbose: print("Found better Rho. Previously: {0:.2f} | Now: {1:.2f}".format(rho_best, p_m))
rho_best = p_m
a_best = a_m
trn_best = w_trn
if verbose: print("Boosting terminated. Best Rho={}".format(rho_best))
return trn_best, a_best, h
def predict_defects(test, weights, classifiers):
def norm_lst(lst):
import numpy as np
s = np.sum(lst)
arr = np.array(lst) / s
return np.nan_to_num(arr)
X = test[test.columns[:-1]]
y = test[test.columns[-1]]
y_hat = []
y_pred = []
for clf in classifiers:
y_hat.append(clf.decision_function(X))
if len(y_hat) == 1:
actuals = [1 if p > 0 else 0 for p in y]
distribution = y_hat[0]
predicted = [1 if p > 0 else 0 for p in distribution]
else:
for pred, wgt in zip(y_hat, norm_lst(weights)):
y_pred.append([wgt * p for p in pred])
distribution = np.sum(np.array(y_pred).T, axis=1)
actuals = [1 if p == True else 0 for p in y]
predicted = [1 if p > 0 else 0 for p in distribution]
return actuals, predicted, distribution
def vcb(source, target, verbose=False, n_rep=12):
"""
TNB: Transfer Naive Bayes
:param source:
:param target:
:param n_rep: number of repeats
:return: result
"""
result = dict()
for tgt_name, tgt_path in target.iteritems():
stats = []
if verbose: print("{} \r".format(tgt_name[0].upper() + tgt_name[1:]))
val = []
for src_name, src_path in source.iteritems():
if not src_name == tgt_name:
src = pandas.read_csv(src_path)
tgt = pandas.read_csv(tgt_path)
pd, pf, pr, f1, g, auc = [], [], [], [], [], []
for _ in xrange(n_rep):
_train, clf_w, classifiers = weight_training(train=src, test=tgt)
actual, predicted, distribution = predict_defects(tgt, clf_w, classifiers)
p_d, p_f, p_r, rc, f_1, e_d, _g, auroc = abcd(actual, predicted, distribution)
pd.append(p_d)
pf.append(p_f)
pr.append(p_r)
f1.append(f_1)
g.append(_g)
auc.append(int(auroc))
stats.append([src_name, int(np.mean(pd)), int(np.mean(pf)),
int(
|
np.mean(pr)
|
numpy.mean
|
# Functions for step algorithms: Newton-Raphson, Rational Function Optimization,
# <NAME>.
import numpy as np
from math import sqrt, fabs
# from .OptParams import Params # this will not cause changes in trust to persist
import logging
from . import v3d
from .exceptions import AlgError, OptError
from . import optparams as op
from . import optimize
from .history import oHistory
from .displace import displace_molsys
from .addIntcos import linear_bend_check
from .misc import is_dq_symmetric
from .printTools import print_array_string, print_mat_string
from .linearAlgebra import abs_max, symm_mat_eig, asymm_mat_eig, symm_mat_inv, norm
# TODO I'd like to move the displace call and wrap up here. Make this a proper wrapper
# for the stepAlgorithgms
def take_step(oMolsys, E, q_forces, H, stepType=None, computer=None):
""" Calls one of the optimization algorithms to take a step
Parameters
----------
oMolsys : object
optking's molecular system
E : double
energy [aO]
q_forces : ndarray
forces in internal coordinates [aO]
H : ndarray
hessian in internal coordinates
stepType : string, optional
defaults to stepType in options
computer : computeWrapper, optional
Returns
-------
ndarray
dispalcement in internals
Notes
-----
This method computes dq (the step in internal coordinates), calls displace to
to take the step (updating the molecular systems geometry) and updates history with
the results
"""
if len(H) == 0 or len(q_forces) == 0:
return np.zeros((0))
if not stepType:
stepType = op.Params.step_type
if stepType == 'NR':
return dq_nr(oMolsys, E, q_forces, H)
elif stepType == 'RFO':
return dq_rfo(oMolsys, E, q_forces, H)
elif stepType == 'SD':
return dq_sd(oMolsys, E, q_forces)
elif stepType == 'BACKSTEP':
return dq_backstep(oMolsys)
elif stepType == 'P_RFO':
return dq_p_rfo(oMolsys, E, q_forces, H)
elif stepType == 'LINESEARCH':
return dq_linesearch(oMolsys, E, q_forces, H, computer)
else:
raise OptError('Dq: step type not yet implemented')
# TODO this method was described as crude do we need to revisit?
def apply_intrafrag_step_scaling(dq):
""" Apply maximum step limit by scaling."""
logger = logging.getLogger(__name__)
trust = op.Params.intrafrag_trust
if sqrt(np.dot(dq, dq)) > trust:
scale = trust / sqrt(np.dot(dq, dq))
logger.info("\tStep length exceeds trust radius of %10.5f." % trust)
logger.info("\tScaling displacements by %10.5f" % scale)
dq *= scale
return
def de_projected(model, step, grad, hess):
""" Compute anticpated energy change along one dimension """
if model == 'NR':
return step * grad + 0.5 * step * step * hess
elif model == 'RFO':
return (step * grad + 0.5 * step * step * hess) / (1 + step * step)
else:
raise OptError("de_projected does not recognize model.")
# TODO why store the attemtped dq?
def dq_nr(oMolsys, E, fq, H):
""" Takes a step according to Newton Raphson algorithm
Parameters
----------
oMolsys : molsys.Molsys
optking molecular system
E : double
energy
fq : ndarray
forces in internal coordiantes
H : ndarray
hessian in internal coordinates
Notes
-----
Presently, the attempted dq is stored in history not the
actual dq from the backtransformation
"""
logger = logging.getLogger(__name__)
logger.info("\tTaking NR optimization step.")
# Hinv fq = dq
Hinv = symm_mat_inv(H, redundant=True)
dq = np.dot(Hinv, fq)
# applies maximum internal coordinate change
apply_intrafrag_step_scaling(dq)
# get norm |q| and unit vector in the step direction
nr_dqnorm = sqrt(np.dot(dq, dq))
nr_u = dq.copy() / nr_dqnorm
logger.info("\tNorm of target step-size %15.10lf" % nr_dqnorm)
# get gradient and hessian in step direction
nr_g = -1 * np.dot(fq, nr_u) # gradient, not force
nr_h = np.dot(nr_u, np.dot(H, nr_u))
if op.Params.print_lvl > 1:
logger.info('\tNR target step|: %15.10f' % nr_dqnorm)
logger.info('\tNR_gradient: %15.10f' % nr_g)
logger.info('\tNR_hessian: %15.10f' % nr_h)
DEprojected = de_projected('NR', nr_dqnorm, nr_g, nr_h)
logger.info("\tProjected energy change by quadratic approximation: %10.10lf\n"
% DEprojected)
# Scale fq into aJ for printing
fq_aJ = oMolsys.q_show_forces(fq)
displace_molsys(oMolsys, dq, fq_aJ)
dq_actual = sqrt(np.dot(dq, dq))
logger.info("\tNorm of achieved step-size %15.10f" % dq_actual)
# Symmetrize the geometry for next step
# symmetrize_geom()
# save values in step data
oHistory.append_record(DEprojected, dq, nr_u, nr_g, nr_h)
# Can check full geometry, but returned indices will correspond then to that.
linearList = linear_bend_check(oMolsys, dq)
if linearList:
raise AlgError("New linear angles", newLinearBends=linearList)
return dq
# Take Rational Function Optimization step
def dq_rfo(oMolsys, E, fq, H):
""" Takes a step using Rational Function Optimization
Parameters
----------
oMolsys : molsys.Molsys
optking molecular system
E : double
energy
fq : ndarray
forces in internal coordinates
H : ndarray
hessian in internal coordinates
"""
logger = logging.getLogger(__name__)
logger.info("\tTaking RFO optimization step.")
dim = len(fq)
dq = np.zeros((dim)) # To be determined and returned.
trust = op.Params.intrafrag_trust # maximum step size
max_projected_rfo_iter = 25 # max. # of iterations to try to converge RS-RFO
rfo_follow_root = op.Params.rfo_follow_root # whether to follow root
rfo_root = op.Params.rfo_root # if following, which root to follow
# Determine the eigenvectors/eigenvalues of H.
Hevals, Hevects = symm_mat_eig(H)
# Build the original, unscaled RFO matrix.
RFOmat = np.zeros((dim + 1, dim + 1))
for i in range(dim):
for j in range(dim):
RFOmat[i, j] = H[i, j]
RFOmat[i, dim] = RFOmat[dim, i] = -fq[i]
if op.Params.print_lvl >= 4:
logger.debug("\tOriginal, unscaled RFO matrix:\n\n" +
print_mat_string(RFOmat))
symm_rfo_step = False
SRFOmat = np.zeros((dim + 1, dim + 1)) # For scaled RFO matrix.
converged = False
dqtdq = 10 # square of norm of step
alpha = 1.0 # scaling factor for RS-RFO, scaling matrix is sI
last_iter_evect = np.zeros((dim))
if rfo_follow_root and len(oHistory.steps) > 1:
last_iter_evect[:] = oHistory.steps[
-2].followedUnitVector # RFO vector from previous geometry step
# Iterative sequence to find alpha
alphaIter = -1
while not converged and alphaIter < max_projected_rfo_iter:
alphaIter += 1
# If we exhaust iterations without convergence, then bail on the
# restricted-step algorithm. Set alpha=1 and apply crude scaling instead.
if alphaIter == max_projected_rfo_iter:
logger.warning("\tFailed to converge alpha. Doing simple step-scaling instead.")
alpha = 1.0
elif op.Params.simple_step_scaling:
# Simple_step_scaling is on, not an iterative method.
# Proceed through loop with alpha == 1, and then continue
alphaIter = max_projected_rfo_iter
# Scale the RFO matrix.
for i in range(dim + 1):
for j in range(dim):
SRFOmat[j, i] = RFOmat[j, i] / alpha
SRFOmat[dim, i] = RFOmat[dim, i]
if op.Params.print_lvl >= 4:
logger.debug("\tScaled RFO matrix.\n\n" +
print_mat_string(SRFOmat))
# Find the eigenvectors and eigenvalues of RFO matrix.
SRFOevals, SRFOevects = asymm_mat_eig(SRFOmat)
if op.Params.print_lvl >= 4:
logger.debug("\tEigenvectors of scaled RFO matrix.\n\n" +
print_mat_string(SRFOevects))
if op.Params.print_lvl >= 4:
logger.debug("\tEigenvalues of scaled RFO matrix.\n\n\t" +
print_array_string(SRFOevals))
logger.debug("\tFirst eigenvector (unnormalized) of scaled RFO matrix.\n\n\t" +
print_array_string(SRFOevects[0]))
# Do intermediate normalization. RFO paper says to scale eigenvector
# to make the last element equal to 1. Bogus evect leads can be avoided
# using root following.
for i in range(dim + 1):
# How big is dividing going to make the largest element?
# Same check occurs below for acceptability.
if fabs(SRFOevects[i][dim]) > 1.0e-10:
tval = abs_max(SRFOevects[i] / SRFOevects[i][dim])
if tval < op.Params.rfo_normalization_max:
for j in range(dim + 1):
SRFOevects[i, j] /= SRFOevects[i, dim]
if op.Params.print_lvl >= 4:
logger.debug("\tAll scaled RFO eigenvectors (rows).\n\n" +
print_mat_string(SRFOevects))
# Use input rfo_root
# If root-following is turned off, then take the eigenvector with the
# rfo_root'th lowest eigvenvalue. If its the first iteration, then do the same.
# In subsequent steps, overlaps will be checked.
if not rfo_follow_root or len(oHistory.steps) < 2:
# Determine root only once at beginning ?
if alphaIter == 0:
logger.debug("\tChecking RFO solution %d." % (rfo_root + 1))
for i in range(rfo_root, dim + 1):
# Check symmetry of root.
dq[:] = SRFOevects[i, 0:dim]
if not op.Params.accept_symmetry_breaking:
symm_rfo_step = is_dq_symmetric(oMolsys, dq)
if not symm_rfo_step: # Root is assymmetric so reject it.
logger.warning("\tRejecting RFO root %d because it breaks \
the molecular point group." % (rfo_root+1))
continue
# Check normalizability of root.
if fabs(SRFOevects[i][dim]) < 1.0e-10: # don't even try to divide
logger.warning("\tRejecting RFO root %d because normalization \
gives large value." % (rfo_root + 1))
continue
tval = abs_max(SRFOevects[i] / SRFOevects[i][dim])
if tval > op.Params.rfo_normalization_max: # matching test in code above
logger.warning("\tRejecting RFO root %d because normalization \
gives large value." % (rfo_root + 1))
continue
rfo_root = i # This root is acceptable.
break
else:
rfo_root = op.Params.rfo_root
# no good one found, use the default
# Save initial root. 'Follow' during the RS-RFO iterations.
rfo_follow_root = True
else: # Do root following.
# Find maximum overlap. Dot only within H block.
dots = np.array(
[v3d.dot(SRFOevects[i], last_iter_evect, dim) for i in range(dim)], float)
bestfit = np.argmax(dots)
if bestfit != rfo_root:
logger.info("\tRoot-following has changed rfo_root value to %d."
% (bestfit + 1))
rfo_root = bestfit
if alphaIter == 0:
logger.info("\tUsing RFO solution %d." % (rfo_root + 1))
last_iter_evect[:] = SRFOevects[rfo_root][0:dim] # omit last column on right
# Print only the lowest eigenvalues/eigenvectors
if op.Params.print_lvl >= 2:
logger.info("\trfo_root is %d" % (rfo_root + 1))
for i in range(dim + 1):
if SRFOevals[i] < -1e-6 or i < rfo_root:
eigen_val_vec = ("\n\tScaled RFO eigenvalue %d:\n\t%15.10lf (or 2*%-15.10lf)\n"
% (i + 1, SRFOevals[i], SRFOevals[i] / 2))
eigen_val_vec += ("\n\teigenvector:\n\t")
eigen_val_vec += print_array_string(SRFOevects[i])
logger.info(eigen_val_vec)
dq[:] = SRFOevects[rfo_root][0:dim] # omit last column
# Project out redundancies in steps.
# Added this projection in 2014; but doesn't seem to help, as f,H are already projected.
# project_dq(dq);
# zero steps for frozen coordinates?
dqtdq = np.dot(dq, dq)
# If alpha explodes, give up on iterative scheme
if fabs(alpha) > op.Params.rsrfo_alpha_max:
converged = False
alphaIter = max_projected_rfo_iter - 1
elif sqrt(dqtdq) < (trust + 1e-5):
converged = True
if alphaIter == 0 and not op.Params.simple_step_scaling:
logger.info("\tDetermining step-restricting scale parameter for RS-RFO.")
if alphaIter == 0:
logger.info("\n\tMaximum step size allowed %10.5lf" % trust)
rfo_step_report = ("\n\n\t Iter |step| alpha rfo_root"
+ "\n\t------------------------------------------------"
+ "\n\t %5d%12.5lf%14.5lf%12d\n"
% (alphaIter + 1, sqrt(dqtdq), alpha, rfo_root + 1))
elif alphaIter > 0 and not op.Params.simple_step_scaling:
rfo_step_report = ("\t%5d%12.5lf%14.5lf%12d\n"
% (alphaIter + 1, sqrt(dqtdq), alpha, rfo_root + 1))
# Find the analytical derivative, d(norm step squared) / d(alpha)
#rfo_step_report += ("\t------------------------------------------------\n")
logger.info(rfo_step_report)
Lambda = -1 * v3d.dot(fq, dq, dim)
if op.Params.print_lvl >= 2:
disp_forces = ("\tDisplacement and Forces\n\n")
disp_forces += ("\tDq:" + print_array_string(dq, dim))
disp_forces += ("\tFq:" + print_array_string(fq, dim))
logger.info(disp_forces)
logger.info("\tLambda calculated by (dq^t).(-f) = %15.10lf\n" % Lambda)
# Calculate derivative of step size wrt alpha.
tval = 0
for i in range(dim):
tval += (pow(v3d.dot(Hevects[i], fq, dim), 2)) / (pow(
(Hevals[i] - Lambda * alpha), 3))
analyticDerivative = 2 * Lambda / (1 + alpha * dqtdq) * tval
if op.Params.print_lvl >= 2:
rfo_step_report = ("\t Analytic derivative d(norm)/d(alpha) = %15.10lf\n"
% analyticDerivative)
# + "\n\t------------------------------------------------\n")
logger.info(rfo_step_report)
# Calculate new scaling alpha value.
# Equation 20, Besalu and Bofill, Theor. Chem. Acc., 1998, 100:265-274
alpha += 2 * (trust * sqrt(dqtdq) - dqtdq) / analyticDerivative
# end alpha RS-RFO iterations
# TODO remove if this is indeed old
# Crude/old way to limit step size if RS-RFO iterations
if not converged or op.Params.simple_step_scaling:
apply_intrafrag_step_scaling(dq)
if op.Params.print_lvl >= 3:
logger.debug("\tFinal scaled step dq:\n\n\t" + print_array_string(dq))
# Get norm |dq|, unit vector, gradient and hessian in step direction
# TODO double check Hevects[i] here instead of H ? as for NR
rfo_dqnorm = sqrt(np.dot(dq, dq))
logger.info("\tNorm of target step-size: %15.10f\n" % rfo_dqnorm)
rfo_u = dq.copy() / rfo_dqnorm
rfo_g = -1 * np.dot(fq, rfo_u)
rfo_h = np.dot(rfo_u, np.dot(H, rfo_u))
DEprojected = de_projected('RFO', rfo_dqnorm, rfo_g, rfo_h)
if op.Params.print_lvl > 1:
logger.info('\tRFO target step = %15.10f' % rfo_dqnorm)
logger.info('\tRFO gradient = %15.10f' % rfo_g)
logger.info('\tRFO hessian = %15.10f' % rfo_h)
logger.info("\tProjected energy change by RFO approximation %15.5f\n" % DEprojected)
fq_aJ = oMolsys.q_show_forces(fq)
displace_molsys(oMolsys, dq, fq_aJ)
# For now, saving RFO unit vector and using it in projection to match C++ code,
# could use actual Dq instead.
dqnorm_actual = sqrt(np.dot(dq, dq))
logger.info("\tNorm of achieved step-size \t %15.10f\n" % dqnorm_actual)
# To test step sizes
# x_before = original geometry
# x_after = new geometry
# masses
# change = 0.0;
# for i in range(natom):
# for xyz in range(3):
# change += (x_before[3*i+xyz] - x_after[3*i+xyz]) * (x_before[3*i+xyz] - x_after[3*i+xyz])
# * masses[i]
# change = sqrt(change);
# printxopt("Step-size in mass-weighted cartesian coordinates [bohr (amu)^1/2] : %20.10lf\n"
# % change)
# printxopt("\tSymmetrizing new geometry\n")
# geom = symmetrize_xyz(geom)
oHistory.append_record(DEprojected, dq, rfo_u, rfo_g, rfo_h)
linearList = linear_bend_check(oMolsys, dq)
if linearList:
raise AlgError("New linear angles", newLinearBends=linearList)
# Before quitting, make sure step is reasonable. It should only be
# screwball if we are using the "First Guess" after the back-transformation failed.
if sqrt(np.dot(dq, dq)) > 10 * trust:
raise AlgError("dq_rfo(): Step is far too large.")
return dq
def dq_p_rfo(oMolsys, E, fq, H):
logger = logging.getLogger(__name__)
Hdim = len(fq) # size of Hessian
trust = op.Params.intrafrag_trust # maximum step size
# rfo_follow_root = op.Params.rfo_follow_root # whether to follow root
# rfo follow root is not currently implemented
print_lvl = op.Params.print_lvl
if print_lvl > 2:
logger.info("\tHessian matrix\n" + print_mat_string(H))
# Diagonalize H (technically only have to semi-diagonalize)
hEigValues, hEigVectors = symm_mat_eig(H)
if print_lvl > 2:
logger.info("\tEigenvalues of Hessian\n\n\t" + print_array_string(hEigValues))
logger.info("\tEigenvectors of Hessian (rows)\n" + print_mat_string(hEigVectors))
# Construct diagonalized Hessian with evals on diagonal
HDiag = np.zeros((Hdim, Hdim))
for i in range(Hdim):
HDiag[i, i] = hEigValues[i]
if print_lvl > 2:
logger.info("\tH diagonal\n" + print_mat_string(HDiag))
logger.debug(
"\tFor P-RFO, assuming rfo_root=1, maximizing along lowest eigenvalue of Hessian.")
logger.debug("\tLarger values of rfo_root are not yet supported.")
rfo_root = 0
""" TODO: use rfo_root to decide which eigenvectors are moved into the max/mu space.
if not rfo_follow_root or len(oHistory.steps) < 2:
rfo_root = op.Params.rfo_root
printxopt("\tMaximizing along %d lowest eigenvalue of Hessian.\n" % (rfo_root+1) )
else:
last_iter_evect = history[-1].Dq
dots = np.array([v3d.dot(hEigVectors[i],last_iter_evect,Hdim) for i in range(Hdim)], float)
rfo_root = np.argmax(dots)
printxopt("\tOverlaps with previous step checked for root-following.\n")
printxopt("\tMaximizing along %d lowest eigenvalue of Hessian.\n" % (rfo_root+1) )
"""
# number of degrees along which to maximize; assume 1 for now
mu = 1
logger.info("\tInternal forces in au:\n\n\t" + print_array_string(fq))
fqTransformed = np.dot(hEigVectors, fq) # gradient transformation
logger.info("\tInternal forces in au, in Hevect basis:\n\n\t"
+ print_array_string(fqTransformed))
# Build RFO max
maximizeRFO = np.zeros((mu + 1, mu + 1))
for i in range(mu):
maximizeRFO[i, i] = hEigValues[i]
maximizeRFO[i, -1] = -fqTransformed[i]
maximizeRFO[-1, i] = -fqTransformed[i]
if print_lvl > 2:
logger.info("\tRFO max\n" + print_mat_string(maximizeRFO))
# Build RFO min
minimizeRFO = np.zeros((Hdim - mu + 1, Hdim - mu + 1))
for i in range(0, Hdim - mu):
minimizeRFO[i, i] = HDiag[i + mu, i + mu]
minimizeRFO[i, -1] = -fqTransformed[i + mu]
minimizeRFO[-1, i] = -fqTransformed[i + mu]
if print_lvl > 2:
logger.info("\tRFO min\n" + print_mat_string(minimizeRFO))
RFOMaxEValues, RFOMaxEVectors = symm_mat_eig(maximizeRFO)
RFOMinEValues, RFOMinEVectors = symm_mat_eig(minimizeRFO)
logger.info("\tRFO min eigenvalues:\n\n\t" + print_array_string(RFOMinEValues))
logger.info("\tRFO max eigenvalues:\n\n\t" + print_array_string(RFOMaxEValues))
if print_lvl > 2:
logger.info("\tRFO min eigenvectors (rows) before normalization:\n"
+ print_mat_string(RFOMinEVectors))
logger.info("\tRFO max eigenvectors (rows) before normalization:\n"
+ print_mat_string(RFOMaxEVectors))
# Normalize max and min eigenvectors
for i in range(mu + 1):
if abs(RFOMaxEVectors[i, mu]) > 1.0e-10:
tval = abs(abs_max(RFOMaxEVectors[i, 0:mu]) / RFOMaxEVectors[i, mu])
if fabs(tval) < op.Params.rfo_normalization_max:
RFOMaxEVectors[i] /= RFOMaxEVectors[i, mu]
if print_lvl > 2:
logger.info("\tRFO max eigenvectors (rows):\n" + print_mat_string(RFOMaxEVectors))
for i in range(Hdim - mu + 1):
if abs(RFOMinEVectors[i][Hdim - mu]) > 1.0e-10:
tval = abs(
abs_max(RFOMinEVectors[i, 0:Hdim - mu]) / RFOMinEVectors[i, Hdim - mu])
if fabs(tval) < op.Params.rfo_normalization_max:
RFOMinEVectors[i] /= RFOMinEVectors[i, Hdim - mu]
if print_lvl > 2:
logger.info("\tRFO min eigenvectors (rows):\n" + print_mat_string(RFOMinEVectors))
VectorP = RFOMaxEVectors[mu, 0:mu]
VectorN = RFOMinEVectors[rfo_root, 0:Hdim - mu]
logger.debug("\tVector P\n\n\t" + print_array_string(VectorP))
logger.debug("\tVector N\n\n\t" + print_array_string(VectorN))
# Combines the eignvectors from RFO max and min
PRFOEVector = np.zeros(Hdim)
PRFOEVector[0:len(VectorP)] = VectorP
PRFOEVector[len(VectorP):] = VectorN
PRFOStep = np.dot(hEigVectors.transpose(), PRFOEVector)
if print_lvl > 1:
logger.info("\tRFO step in Hessian Eigenvector Basis\n\n\t"
+ print_array_string(PRFOEVector))
logger.info("\tRFO step in original Basis\n\n\t"
+ print_array_string(PRFOStep))
dq = PRFOStep
# if not converged or op.Params.simple_step_scaling:
apply_intrafrag_step_scaling(dq)
# Get norm |dq|, unit vector, gradient and hessian in step direction
# TODO double check Hevects[i] here instead of H ? as for NR
rfo_dqnorm = sqrt(np.dot(dq, dq))
logger.info("\tNorm of target step-size %15.10f" % rfo_dqnorm)
rfo_u = dq.copy() / rfo_dqnorm
rfo_g = -1 * np.dot(fq, rfo_u)
rfo_h = np.dot(rfo_u, np.dot(H, rfo_u))
DEprojected = de_projected('RFO', rfo_dqnorm, rfo_g, rfo_h)
if op.Params.print_lvl > 1:
logger.info('\t|RFO target step| : %15.10f' % rfo_dqnorm)
logger.info('\tRFO gradient : %15.10f' % rfo_g)
logger.info('\tRFO hessian : %15.10f' % rfo_h)
logger.info("\tProjected Delta(E) : %15.10f" % DEprojected)
# Scale fq into aJ for printing
fq_aJ = oMolsys.q_show_forces(fq)
displace_molsys(oMolsys, dq, fq_aJ)
# For now, saving RFO unit vector and using it in projection to match C++ code,
# could use actual Dq instead.
dqnorm_actual = sqrt(np.dot(dq, dq))
logger.info("\tNorm of achieved step-size %15.10f" % dqnorm_actual)
oHistory.append_record(DEprojected, dq, rfo_u, rfo_g, rfo_h)
linearList = linear_bend_check(oMolsys, dq)
if linearList:
raise AlgError("New linear angles", newLinearBends=linearList)
# Before quitting, make sure step is reasonable. It should only be
# screwball if we are using the "First Guess" after the back-transformation failed.
if sqrt(np.dot(dq, dq)) > 10 * trust:
raise AlgError("opt.py: Step is far too large.")
return dq
# Take Steepest Descent step
def dq_sd(oMolsys, E, fq):
""" Take a step using steepest descent method
Parameters
----------
oMolsys : object
optking molecular system
E : double
energy
fq : ndarray
forces in internal coordinates
"""
logger = logging.getLogger(__name__)
logger.info("\tTaking SD optimization step.")
dim = len(fq)
sd_h = op.Params.sd_hessian # default value
if len(oHistory.steps) > 1:
previous_forces = oHistory.steps[-2].forces
previous_dq = oHistory.steps[-2].Dq
# Compute overlap of previous forces with current forces.
previous_forces_u = previous_forces.copy() / np.linalg.norm(previous_forces)
forces_u = fq.copy() / np.linalg.norm(fq)
overlap = np.dot(previous_forces_u, forces_u)
logger.debug("\tOverlap of current forces with previous forces %8.4lf" % overlap)
previous_dq_norm = np.linalg.norm(previous_dq)
if overlap > 0.50:
# Magnitude of current force
fq_norm = np.linalg.norm(fq)
# Magnitude of previous force in step direction
previous_forces_norm = v3d.dot(previous_forces, fq, dim) / fq_norm
sd_h = (previous_forces_norm - fq_norm) / previous_dq_norm
logger.info("\tEstimate of Hessian along step: %10.5e" % sd_h)
dq = fq / sd_h
apply_intrafrag_step_scaling(dq)
sd_dqnorm = np.linalg.norm(dq)
logger.info("\tNorm of target step-size %10.5f" % sd_dqnorm)
# unit vector in step direction
sd_u = dq.copy() / np.linalg.norm(dq)
sd_g = -1.0 * sd_dqnorm
DEprojected = de_projected('NR', sd_dqnorm, sd_g, sd_h)
logger.info(
"\tProjected energy change by quadratic approximation: %20.5lf" % DEprojected)
fq_aJ = oMolsys.q_show_forces(fq) # for printing
displace_molsys(oMolsys, dq, fq_aJ)
dqnorm_actual = np.linalg.norm(dq)
logger.info("\tNorm of achieved step-size %15.10f" % dqnorm_actual)
# Symmetrize the geometry for next step
# symmetrize_geom()
oHistory.append_record(DEprojected, dq, sd_u, sd_g, sd_h)
linearList = linear_bend_check(oMolsys, dq)
if linearList:
raise AlgError("New linear angles", newLinearBends=linearList)
return dq
# Take partial backward step. Update current step in history.
# Divide the last step size by 1/2 and displace from old geometry.
# HISTORY contains:
# consecutiveBacksteps : increase by 1
# HISTORY.STEP contains:
# No change to these:
# forces, geom, E, followedUnitVector, oneDgradient, oneDhessian
# Update these:
# Dq - cut in half
# projectedDE - recompute
def dq_backstep(oMolsys):
""" takes a partial step backwards
Parameters
----------
oMolsys : molsys.Molsys
optking molecular system
Notes
-----
Divides the previous step size by 1/2 and displaces from old geometry
Updates dq (cut in half) and recomputes projected DE
"""
logger = logging.getLogger(__name__)
logger.warning("\tRe-doing last optimization step - smaller this time.\n")
# Calling function shouldn't let this happen; this is a check for developer
if len(oHistory.steps) < 2:
raise OptError("Backstep called, but no history is available.")
# Erase last, partial step data for current step.
del oHistory.steps[-1]
# Get data from previous step.
fq = oHistory.steps[-1].forces
dq = oHistory.steps[-1].Dq
oneDgradient = oHistory.steps[-1].oneDgradient
oneDhessian = oHistory.steps[-1].oneDhessian
# Copy old geometry so displace doesn't change history
geom = oHistory.steps[-1].geom.copy()
# printxopt('test geom old from history\n')
# printMat(oMolsys.geom)
# Compute new Dq and energy step projection.
dq /= 2
dqNorm = np.linalg.norm(dq)
logger.info("\tNorm of target step-size %10.5f" % dqNorm)
# Compute new Delta(E) projection.
if op.Params.step_type == 'RFO':
DEprojected = de_projected('RFO', dqNorm, oneDgradient, oneDhessian)
else:
DEprojected = de_projected('NR', dqNorm, oneDgradient, oneDhessian)
logger.info("\tProjected energy change : %20.5lf" % DEprojected)
fq_aJ = oMolsys.q_show_forces(fq) # Displace from previous geometry
oMolsys.geom = geom # uses setter; writes into all fragments
displace_molsys(oMolsys, dq, fq_aJ)
dqNormActual = np.linalg.norm(dq)
logger.info("\tNorm of achieved step-size %15.10f" % dqNormActual)
# Symmetrize the geometry for next step
# symmetrize_geom()
# Update the history entries which changed.
oHistory.steps[-1].projectedDE = DEprojected
oHistory.steps[-1].Dq[:] = dq
linearList = linear_bend_check(oMolsys, dq)
if linearList:
raise AlgError("New linear angles", newLinearBends=linearList)
return dq
# Take Rational Function Optimization step
def dq_linesearch(oMolsys, E, fq, H, computer):
""" performs linesearch in direction of gradient
Parameters
----------
oMolsys : object
optking molecular system
E : double
energy
fq : ndarray
forces in internal coordinates
H : ndarray
hessian in internal coordinates
computer : computeWrapper
"""
logger = logging.getLogger(__name__)
s = op.Params.linesearch_step
if len(oHistory.steps) > 1:
s = norm(oHistory.steps[-2].Dq) / 2
logger.info("\tModifying linesearch s to %10.6f" % s)
logger.info("\n\tTaking LINESEARCH optimization step.")
fq_unit = fq / sqrt(np.dot(fq, fq))
logger.info("\tUnit vector in gradient direction.\n\n\t"
+ print_array_string(fq_unit) + "\n")
Ea = E
geomA = oMolsys.geom # get copy of original geometry
Eb = Ec = 0
bounded = False
ls_iter = 0
stepScale = 2
# Iterate until we find 3 points bounding minimum.
while ls_iter < 10 and not bounded:
ls_iter += 1
if Eb == 0:
logger.debug("\n\tStepping along forces distance %10.5f" % s)
dq = s * fq_unit
fq_aJ = oMolsys.q_show_forces(fq)
displace_molsys(oMolsys, dq, fq_aJ)
xyz = oMolsys.geom
logger.debug("\tComputing energy at this point now.")
Eb = computer.compute(xyz, driver='energy', return_full=False)
oMolsys.geom = geomA # reset geometry to point A
if Ec == 0:
logger.debug("\n\tStepping along forces distance %10.5f" % (stepScale * s))
dq = (stepScale * s) * fq_unit
fq_aJ = oMolsys.q_show_forces(fq)
displace_molsys(oMolsys, dq, fq_aJ)
xyz = oMolsys.geom
logger.debug("\tComputing energy at this point now.")
Ec = computer.compute(xyz, driver='energy', return_full=False)
oMolsys.geom = geomA # reset geometry to point A
logger.info("\n\tCurrent linesearch bounds.\n")
logger.info("\t s=%7.5f, Ea=%17.12f" % (0, Ea))
logger.info("\t s=%7.5f, Eb=%17.12f" % (s, Eb))
logger.info("\t s=%7.5f, Ec=%17.12f\n" % (stepScale * s, Ec))
if Eb < Ea and Eb < Ec:
# second point is lowest do projection
logger.debug("\tMiddle point is lowest energy. Good. Projecting minimum.")
Sa = 0.0
Sb = s
Sc = stepScale * s
A = np.zeros((2, 2))
A[0, 0] = Sc * Sc - Sb * Sb
A[0, 1] = Sc - Sb
A[1, 0] = Sb * Sb - Sa * Sa
A[1, 1] = Sb - Sa
B = np.zeros((2))
B[0] = Ec - Eb
B[1] = Eb - Ea
x = np.linalg.solve(A, B)
Xmin = -x[1] / (2 * x[0])
logger.debug("\tParabolic fit ax^2 + bx + c along gradient.")
logger.debug("\t *a = %15.10f" % x[0])
logger.debug("\t *b = %15.10f" % x[1])
logger.debug("\t *c = %15.10f" % Ea)
Emin_projected = x[0] * Xmin * Xmin + x[1] * Xmin + Ea
dq = Xmin * fq_unit
logger.info("\tProjected step size to minimum is %12.6f" % Xmin)
displace_molsys(oMolsys, dq, fq_aJ)
xyz = oMolsys.geom
logger.debug("\tComputing energy at projected point.")
Emin = computer.compute(xyz, driver='energy', return_full=False)
logger.info("\tProjected energy along line: %15.10f" % Emin_projected)
logger.info("\t Actual energy along line: %15.10f" % Emin)
bounded = True
elif Ec < Eb and Ec < Ea:
# unbounded. increase step size
logger.debug("\tSearching with larger step beyond 3rd point.")
s *= stepScale
Eb = Ec
Ec = 0
else:
logger.debug("\tSearching with smaller step between first 2 points.")
s *= 0.5
Ec = Eb
Eb = 0
# get norm |q| and unit vector in the step direction
ls_dqnorm = sqrt(np.dot(dq, dq))
ls_u = dq.copy() / ls_dqnorm
# get gradient and hessian in step direction
ls_g = -1 * np.dot(fq, ls_u) # should be unchanged
ls_h = np.dot(ls_u,
|
np.dot(H, ls_u)
|
numpy.dot
|
from collections import defaultdict
import bisect
import numpy as np
import json
import os
def new_round(_float, _len):
"""
Parameters
----------
_float: float
_len: int, 指定四舍五入需要保留的小数点后几位数为_len
Returns
-------
type ==> float, 返回四舍五入后的值
"""
if isinstance(_float, float):
if str(_float)[::-1].find('.') <= _len:
return (_float)
if str(_float)[-1] == '5':
return (round(float(str(_float)[:-1] + '6'), _len))
else:
return (round(_float, _len))
else:
return (round(_float, _len))
method_name_to_paper = {"tangent_attack":"Tangent Attack(hemisphere)", "ellipsoid_tangent_attack":"Tangent Attack(semiellipsoid)", "HSJA":"HSJA",
"SignOPT":"Sign-OPT", "SVMOPT":"SVM-OPT"}
#"RayS": "RayS","GeoDA": "GeoDA"}
#"biased_boundary_attack": "Biased Boundary Attack"}
def from_method_to_dir_path(dataset, method, norm, targeted):
if method == "tangent_attack":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method, dataset=dataset,
norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
if method == "ellipsoid_tangent_attack":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method, dataset=dataset,
norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
elif method == "HSJA":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method, dataset=dataset,
norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
elif method == "GeoDA":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method, dataset=dataset,
norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
elif method == "biased_boundary_attack":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method,dataset=dataset,norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
elif method == "RayS":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method,dataset=dataset,norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
elif method == "SignOPT":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method,dataset=dataset,norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
elif method == "SVMOPT":
path = "{method}_on_defensive_model-{dataset}-{norm}-{target_str}".format(method=method,dataset=dataset,norm=norm, target_str="untargeted" if not targeted else "targeted_increment")
return path
def read_json_and_extract(json_path):
with open(json_path, "r") as file_obj:
json_content = json.load(file_obj)
distortion = json_content["distortion"]
return distortion
def get_file_name_list(dataset, method_name_to_paper, norm, targeted):
folder_path_dict = {}
for method, paper_method_name in method_name_to_paper.items():
file_path = "/home1/machen/hard_label_attacks/logs/" + from_method_to_dir_path(dataset, method, norm, targeted)
folder_path_dict[paper_method_name] = file_path
return folder_path_dict
def bin_search(arr, target):
if target not in arr:
return None
arr.sort()
return arr[arr.index(target)-1], arr.index(target)-1
def get_mean_and_median_distortion_given_query_budgets(distortion_dict, query_budgets, want_key):
mean_and_median_distortions = {}
for query_budget in query_budgets:
distortion_list = []
for image_index, query_distortion in distortion_dict.items():
query_distortion = {float(query):float(dist) for query,dist in query_distortion.items()}
queries = list(query_distortion.keys())
queries = np.sort(queries)
find_index = bisect.bisect(queries, query_budget) - 1
# print(len(queries),find_index)
# find_index = np.searchsorted(queries, query_budget, side='right') - 1
if query_budget < queries[find_index]:
print("query budget is {}, find query is {}, min query is {}, len query_distortion is {}".format(query_budget, queries[find_index], np.min(queries).item(), len(query_distortion)))
continue
distortion_list.append(query_distortion[queries[find_index]])
distortion_list = np.array(distortion_list)
distortion_list = distortion_list[~np.isnan(distortion_list)] # 去掉nan的值
mean_distortion = np.mean(distortion_list)
median_distortion =
|
np.median(distortion_list)
|
numpy.median
|
import numpy as np
# native endian native int
a =
|
np.array([1, 2, 3, 4])
|
numpy.array
|
### from https://github.com/emmanuelle/tomo-tv
### Sea also http://scikit-learn.org/stable/auto_examples/applications/plot_tomography_l1_reconstruction.html
import numpy as np
from scipy import sparse
from scipy import ndimage
from scipy import fftpack
def build_projection_operator(l_x, n_dir=None, l_det=None, subpix=1,
offset=0, pixels_mask=None):
"""
Compute the tomography design matrix.
Parameters
----------
l_x : int
linear size of image array
n_dir : int, default l_x
number of angles at which projections are acquired. n_dir
projection angles are regularly spaced between 0 and 180.
l_det : int, default is l_x
number of pixels in the detector. If l_det is not specified,
we suppose that l_det = l_x.
subpix : int, default 1
number of linear subdivisions used to compute the projection of
one image pixel onto a detector pixel. For example, if subpix=2,
one image pixel is divided into 2x2 subpixels that are projected
onto the detector, and the value of the projections is computed
from these 4 projections.
offset : int, default 0
width of the strip of image pixels not covered by the detector.
offset > 0 means that the image is acquired in local tomography
(aka ROI) mode, with the image larger than the detector. If the
linear size of the array is l_x, the size of the detector is
l_x - 2 offset.
pixels_mask : 1-d ndarray of size l_x**2
mask of pixels to keep in the matrix (useful if one wishes
to remove pixels inside or outside of a circle, for example)
Returns
-------
p : sparse matrix of shape (n_dir l_x, l_x**2), in csr format
Tomography design matrix. The csr (compressed sparse row)
allows for efficient subsequent matrix multiplication. The
dtype of the elements is float32, in order to save memory.
Notes
-----
The returned matrix is sparse, but may nevertheless require a lot
of memory for large l_x. For example, with l_x=512 and n_dir=512,
the operator takes around 3 Gb of memory. The memory cost is of
the order of l_x^2 x n_dir x 8 in bytes.
For a given angle, the center of the pixels are rotated by the
angle, and projected onto the detector. The value of the data pixel
is added to the two pixels of the detector in between which the
projection is located, with weights determined by a linear
interpolation.
Using subpix > 1 slows down the computation of the operator, because
a histogram in 2-D has to be computed in order to group the projections
of subpixels corresponding to a single image pixel.
(this should be accelerated by a Cython function... to be written)
Examples
--------
>>> # Image with 256 pixels, 128 directions
>>> op = build_projection_operator(256, n_dir=128)
>>> # Image with 128 pixels (to be reconstructed), 256 detector pixels
>>> # subpix = 2 is used for a good precision of the projection of the
>>> # coarse image pixels
>>> op = build_projection_operator(128, n_dir=256, l_det=256, subpix=2)
>>> # Image with 256 pixels, that is twice the size of the detector that
>>> # has 128 pixels.
>>> op = build_projection_operator(256, n_dir=256, l_det=128, offset=64)
>>> # Image with 256 pixels, that is twice the size of the detector that
>>> # has 256 pixels. We use subpixels for better precision.
>>> op = build_projection_operator(256, n_dir=256, l_det=256, offset=64)
>>> # Using a mask: projection operator only for pixels inside a
>>> # central circle
>>> l_x = 128
>>> X, Y = np.ogrid[:l_x, :l_x]
>>> mask = (X - l_x/2)**2 + (Y - l_x/2)**2 < (l_x/2)**2
>>> op = build_projection_operator(l_x, pixels_mask=mask)
>>> op.shape
(16384, 12849)
"""
if l_det is None:
l_det = l_x
X, Y = _generate_center_coordinates(subpix * l_x)
X *= 1. / subpix
Y *= 1. / subpix
Xbig, Ybig = _generate_center_coordinates(l_det)
Xbig *= (l_x - 2 * offset) / float(l_det)
orig = Xbig.min()
labels = None
if subpix > 1:
# Block-group subpixels
Xlab, Ylab = np.mgrid[:subpix * l_x, :subpix * l_x]
labels = (l_x * (Xlab / subpix) + Ylab / subpix).ravel()
if n_dir is None:
n_dir = l_x
angles = np.linspace(0, np.pi, n_dir, endpoint=False)
weights, data_inds, detector_inds = [], [], []
# Indices for data pixels. For each data, one data pixel
# will contribute to the value of two detector pixels.
for i, angle in enumerate(angles):
# rotate data pixels centers
Xrot = np.cos(angle) * X - np.sin(angle) * Y
# compute linear interpolation weights
inds, dat_inds, w = _weights_fast(Xrot, dx=(l_x - 2 * offset) / float(l_det),
orig=orig, labels=labels)
# crop projections outside the detector
mask = np.logical_and(inds >= 0, inds < l_det)
weights.append(w[mask])
detector_inds.append((inds[mask] + i * l_det).astype(np.int32))
data_inds.append(dat_inds[mask])
weights = np.concatenate(weights)
weights /= subpix**2
detector_inds = np.concatenate(detector_inds)
data_inds = np.concatenate(data_inds)
if pixels_mask is not None:
if pixels_mask.ndim > 1:
pixels_mask = pixels_mask.ravel()
mask = pixels_mask[data_inds]
data_inds = data_inds[mask]
data_inds = rank_order(data_inds)[0]
detector_inds = detector_inds[mask]
weights = weights[mask]
proj_operator = sparse.coo_matrix((weights, (detector_inds, data_inds)))
return sparse.csr_matrix(proj_operator)
def _weights_fast(x, dx=1, orig=0, ravel=True, labels=None):
"""
Compute linear interpolation weights for projection array `x`
and regularly spaced detector pixels separated by `dx` and
starting at `orig`.
"""
if ravel:
x = np.ravel(x)
floor_x = np.floor((x - orig) / dx).astype(np.int32)
alpha = ((x - orig - floor_x * dx) / dx).astype(np.float32)
inds = np.hstack((floor_x, floor_x + 1))
weights = np.hstack((1 - alpha, alpha))
data_inds =
|
np.arange(x.size, dtype=np.int32)
|
numpy.arange
|
import numpy as np
import random
def hash(tile, dir=None):
# manually specify test area
x = y = w = h = 0
if(dir != None):
x1 = [1, 0, 0, 0][dir] * (tile.shape[0] - 1)
y1 = [0, 0, 0, 1][dir] * (tile.shape[1] - 1)
x2 = x1 + [0, 1, 0, 1][dir] * (tile.shape[0] - 1) + 1
y2 = y1 + [1, 0, 1, 0][dir] * (tile.shape[1] - 1) + 1
else:
x1 = y1 = 0
x2 = tile.shape[0]
y2 = tile.shape[1]
area = tile[y1:y2, x1:x2]
return str(area.flatten())
def createPropagator(tiles):
n = len(tiles)
propagator = np.zeros((n, 4, n), dtype=int)
for i in range(n):
for dir in range(4):
hash1 = hash(tiles[i], dir)
for j in range(n):
propagator[i][dir][j] = hash1 == hash(tiles[j], (dir+2) % 4)
return propagator
xr = [[1,0],[0,-1],[-1,0],[0,1]]
yr = [[0,1],[1,0],[0,-1],[-1,0]]
t = [[0,0],[0,1],[1,1],[1,0]]
def expandRotations(tiles):
if tiles.shape[1] != tiles.shape[2]:
return tiles # not square! TODO could still do 180 rots
newTiles = []
for tile in tiles:
hashes = []
for d in range(4):
tile = np.rot90(tile)
hashRotated = hash(tile)
if(not hashRotated in hashes):
newTiles.append(tile)
hashes.append(hashRotated)
return np.array(newTiles)
deltas = [[1,0], [0,-1], [-1,0], [0,1]]
cacheTileHashes = None
cachedPropagator = None
def runWFC(tiles, w, h, initialTile=0):
generator = wfcGenerator(tiles, w, h, initialTile)
image = next(generator)
try:
while True:
next(generator)
except StopIteration:
pass
return image
def wfcGenerator(tiles, w, h, initialTile=0):
global cacheTileHashes, cachedPropagator, deltas
n = len(tiles)
propagator = None
if(not cachedPropagator is None and not cacheTileHashes is None and len(cacheTileHashes) == len(tiles)):
same = True
for i in range(n):
if(hash(tiles[i]) != cacheTileHashes[i]):
same = False
break
if(same):
propagator = cachedPropagator
if(propagator is None):
propagator = cachedPropagator = createPropagator(tiles)
cacheTileHashes = [hash(tile) for tile in tiles]
inBounds = lambda p : p[0]>=0 and p[1]>=0 and p[0]<w and p[1]<h
possibilitySpace = np.ones((w, h, n), dtype=np.int)
# buffer that contains number of possible tiles at the positions (inverse of constraint)
# positions where the possibility space is collapsed to 0 or a tile is already placed have value n+1
possibilityBuffer = np.ones((w, h), dtype=np.int) * n
# edge precondition
edgeTile = 0
for x in range(w):
possibilitySpace[x][0] *= propagator[edgeTile][3]
possibilitySpace[x][h-1] *= propagator[edgeTile][1]
for y in range(h):
possibilitySpace[0][y] *= propagator[edgeTile][0]
possibilitySpace[w-1][y] *= propagator[edgeTile][2]
tileW = tiles.shape[1]
tileH = tiles.shape[2]
image = np.ones((h * tileH, w * tileW), np.int) * initialTile
yield image
while(True):
yield image # always the same image! but we still yield it just in case
# find random maximum constrained position
minVal = int(np.amin(possibilityBuffer))
if minVal == n+1:
break
tupleList = np.where(possibilityBuffer == minVal)
listOfCordinates = list(zip(tupleList[0], tupleList[1]))
p = np.array(listOfCordinates[random.randint(0, len(listOfCordinates) - 1)])
# replace
superposition = possibilitySpace[tuple(p)]
possibleIndeces = np.where(superposition == 1)[0]
tileIndex = possibleIndeces[random.randrange(len(possibleIndeces))]
# tileIndex = possibleIndeces[0]
possibilitySpace[tuple(p)] =
|
np.zeros(n)
|
numpy.zeros
|
import numpy as np
from scipy.stats import rankdata, norm, gaussian_kde
from scipy.sparse import issparse
def rank(data,axis=None):
# this is only approximate for speed
return rankdata(data, axis=axis, method='ordinal')
def _unit_norm(data,axis=None):
# l1-normalization
if issparse(data):
sum_data = np.sum(data,axis=axis)
return data.multiply(1/sum_data)
if axis is not None:
sum_data = np.sum(data,axis=axis)
sum_data = np.expand_dims(sum_data, axis=axis)
else:
sum_data = np.sum(data)
return data/sum_data
def confusion(samps1, samps2, res=200):
xmin = min(samps1.min(), samps2.min())
xmax = max(samps1.max(), samps2.max())
xgrid = np.linspace(xmin,xmax,res)
try:
kde_1 = gaussian_kde(samps1)
kde_2 = gaussian_kde(samps2)
f = kde_1.evaluate(xgrid)
g = kde_2.evaluate(xgrid)
integrand = f*g/(f+g)
c = np.trapz(integrand,xgrid)
except np.linalg.LinAlgError as error:
if 'singular matrix' in str(error):
c = 0.5000001
else:
raise
if np.isnan(c):
d = 1
else:
d = 1-c
return d - 0.5
def confusion_filters(data, n_each=1000,offset=0.5):
feat_means = np.mean(data,axis=0) # Feature means
n_feat = data.shape[1] # Length of features
order = np.argsort(feat_means) # Features sorted by mean value
if issparse(data):
order = order.A1
if n_each == 'all': # Take all available samples
samp_inds = np.arange(np.size(data,0))
elif type(n_each) == int: # Randomly select a smaller sample of data
if n_each >= data.shape[0]:
samp_inds = np.arange(np.size(data,0))
else:
samp_inds = np.random.choice(np.size(data,0), n_each, replace=False)
else:
raise ValueError('Unrecognised n_each value %s with type %s', n_each, type(n_each))
if issparse(data):
inc = data[samp_inds,:].toarray()
else:
inc = data[samp_inds,:]
dist_map = np.zeros([n_feat,3])
for ward in range(1,n_feat):
c_top = confusion(inc[:,order[-ward-1]],inc[:,order[-1]])
c_neighbour = confusion(inc[:,order[-ward-1]],inc[:,order[-ward]])
c_bottom = confusion(inc[:,order[-ward-1]],inc[:,order[0]])
dist_map[ward,:] = [c_top,c_neighbour,c_bottom]
p_map=np.zeros(n_feat)
running_p=offset+dist_map[-1,1]
p_map[0]=offset
p_map[1]=running_p
for ward in range(2,n_feat):
p_neigh=dist_map[-ward,1]
n_sum=1
if dist_map[-ward,0]<1 and dist_map[-ward+1,0]<1:
p_top=(dist_map[-ward,0]-dist_map[-ward+1,0])
n_sum+=1
else:
p_top=0
if dist_map[-ward,2]<1 and dist_map[-ward+1,2]<1:
p_bottom=(dist_map[-ward+1,2]-dist_map[ward,2])
n_sum+=1
else:
p_bottom=0
t_p=(p_top+p_neigh+p_bottom)/n_sum
running_p+=max(t_p,0)
p_map[ward] = running_p
return p_map
class FilterFactory():
"""Factory class to build filters for rank similarity estimators.
Parameters
----------
filter_function : {'auto'} or callable, default='auto'
Function which determines the weights from subsections of the input
data. 'auto' performs a mean and rank, optionally drawn from a
distribution.
create_distribution : {'confusion'}, callable or None, default=None
Creates a distribution to draw ranks from.
- 'confusion' is a distribution based on the confusibility of
features in the input data.
Note: the 'confusion' option is extremely slow.
per_label : bool, default=False
Creates a separate distribution per class label.
Only used when ``create_distribution != None``.
"""
def __init__(self, filter_function='auto', create_distribution=None, per_label=False):
self.filter_function = filter_function
self.create_distribution = create_distribution
self.per_label = per_label
if self.filter_function == 'auto':
if self.create_distribution == None:
self.filter_function = self.rank_mean_filter
elif self.create_distribution == 'confusion':
self.filter_function = self.distribution_mean_filter
else:
self.filter_function = self.distribution_mean_filter
else:
#test function
nsamp = 5
nfet = 10
X = np.random.rand(nsamp, nfet)
distribution = np.random.rand(1,nfet)
try:
tmp = self.filter_function(X, distribution, 0)
except:
print("Testing filter_function failed\n",
"It should accept 3 inputs- X, distribution, index")
raise
# checks that output looks as expected
if not tmp.shape[0] == 1:
raise ValueError("Output of filter_function is not a single filter, it has shape %i" % tmp.shape[0])
if not tmp.shape[1] == nfet:
raise ValueError("N features output of filter_function %i is different than input %i" % (tmp.shape[1], nfet))
self.dist_index = 0
self.distribution = None
def transform(self, X):
"""Transforms data X into a filter.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
Returns
-------
filter : ndarray of shape (n_features, )
"""
return self.filter_function(X, self.distribution, self.dist_index)
def fit_distribution(self,X,y=None):
"""Fits a distribution to data X.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples, n_features)
The input data.
y : ndarray, shape (n_samples,) or None, default=None
Target values when distribution is created per label.
"""
if self.create_distribution == 'confusion':
self.create_distribution = confusion_filters
if self.per_label == True:
all_labels =
|
np.unique(y)
|
numpy.unique
|
from __future__ import division, absolute_import, print_function
import numpy as np
import scipy.sparse as ss
import scipy.sparse.csgraph as ssc
from scipy.linalg import solve
from collections import deque
from ..mini_six import range
class TransformMixin(object):
def kernelize(self, kernel):
'''Re-weight according to a specified kernel function.
kernel : str, {none, binary, rbf}
none -> no reweighting
binary -> all edges are given weight 1
rbf -> applies a gaussian function to edge weights
'''
if kernel == 'none':
return self
if kernel == 'binary':
if self.is_weighted():
return self._update_edges(1, copy=True)
return self
if kernel == 'rbf':
w = self.edge_weights()
r = np.exp(-w / w.std())
return self._update_edges(r, copy=True)
raise ValueError('Invalid kernel type: %r' % kernel)
def barycenter_edge_weights(self, X, copy=True, reg=1e-3):
'''Re-weight such that the sum of each vertex's edge weights is 1.
The resulting weighted graph is suitable for locally linear embedding.
reg : amount of regularization to keep the problem well-posed
'''
new_weights = []
for i, adj in enumerate(self.adj_list()):
C = X[adj] - X[i]
G = C.dot(C.T)
trace = np.trace(G)
r = reg * trace if trace > 0 else reg
G.flat[::G.shape[1] + 1] += r
w = solve(G, np.ones(G.shape[0]), sym_pos=True,
overwrite_a=True, overwrite_b=True)
w /= w.sum()
new_weights.extend(w.tolist())
return self.reweight(new_weights, copy=copy)
def connected_subgraphs(self, directed=True, ordered=False):
'''Generates connected components as subgraphs.
When ordered=True, subgraphs are ordered by number of vertices.
'''
num_ccs, labels = self.connected_components(directed=directed)
# check the trivial case first
if num_ccs == 1:
yield self
raise StopIteration
if ordered:
# sort by descending size (num vertices)
order = np.argsort(np.bincount(labels))[::-1]
else:
order = range(num_ccs)
# don't use self.subgraph() here, because we can reuse adj
adj = self.matrix('dense', 'csr', 'csc')
for c in order:
mask = labels == c
sub_adj = adj[mask][:,mask]
yield self.__class__.from_adj_matrix(sub_adj)
def shortest_path_subtree(self, start_idx, directed=True):
'''Returns a subgraph containing only the shortest paths from start_idx to
every other vertex.
'''
adj = self.matrix()
_, pred = ssc.dijkstra(adj, directed=directed, indices=start_idx,
return_predecessors=True)
adj = ssc.reconstruct_path(adj, pred, directed=directed)
if not directed:
adj = adj + adj.T
return self.__class__.from_adj_matrix(adj)
def minimum_spanning_subtree(self):
'''Returns the (undirected) minimum spanning tree subgraph.'''
dist = self.matrix('dense', copy=True)
dist[dist==0] = np.inf
np.fill_diagonal(dist, 0)
mst = ssc.minimum_spanning_tree(dist)
return self.__class__.from_adj_matrix(mst + mst.T)
def neighborhood_subgraph(self, start_idx, radius=1, weighted=True,
directed=True, return_mask=False):
'''Returns a subgraph containing only vertices within a given
geodesic radius of start_idx.'''
adj = self.matrix('dense', 'csr', 'csc')
dist = ssc.dijkstra(adj, directed=directed, indices=start_idx,
unweighted=(not weighted), limit=radius)
mask = np.isfinite(dist)
sub_adj = adj[mask][:,mask]
g = self.__class__.from_adj_matrix(sub_adj)
if return_mask:
return g, mask
return g
def isograph(self, min_weight=None):
'''Remove short-circuit edges using the Isograph algorithm.
min_weight : float, optional
Minimum weight of edges to consider removing. Defaults to max(MST).
From "Isograph: Neighbourhood Graph Construction Based On Geodesic Distance
For Semi-Supervised Learning" by <NAME> al., 2011.
Note: This uses the non-iterative algorithm which removes edges
rather than reweighting them.
'''
W = self.matrix('dense')
# get candidate edges: all edges - MST edges
tree = self.minimum_spanning_subtree()
candidates = np.argwhere((W - tree.matrix('dense')) > 0)
cand_weights = W[candidates[:,0], candidates[:,1]]
# order by increasing edge weight
order = np.argsort(cand_weights)
cand_weights = cand_weights[order]
# disregard edges shorter than a threshold
if min_weight is None:
min_weight = tree.edge_weights().max()
idx = np.searchsorted(cand_weights, min_weight)
cand_weights = cand_weights[idx:]
candidates = candidates[order[idx:]]
# check each candidate edge
to_remove = np.zeros_like(cand_weights, dtype=bool)
for i, (u,v) in enumerate(candidates):
W_uv =
|
np.where(W < cand_weights[i], W, 0)
|
numpy.where
|
# Tests the matrices.py file, which is responsible for the creation and manipulation of scattering matrices
import unittest
from rcwa.testing import *
from rcwa.shorthand import *
from rcwa import Source, Layer, LayerStack
import numpy as np
from rcwa.matrices import *
class Test1x1Harmonic(unittest.TestCase):
def testCalculateKz(self):
KzCalculated = calculateKzForward(self.Kx, self.Ky, self.layerStack.reflectionLayer)
KzActual =
|
np.float64(self.KzReflectionRegion)
|
numpy.float64
|
#!/usr/bin/env Python3
"""
ProtienNetMap LabeledFunctions for working with the Sequence UNET model
"""
from dataclasses import dataclass
import numpy as np
import pandas as pd
from Bio import SeqIO
from graph_cnn import contact_graph
from proteinnetpy.data import LabeledFunction
AMINO_ACIDS = np.array(['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N',
'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'])
AA_HASH = {aa: index for index, aa in enumerate(AMINO_ACIDS)}
# TODO Move these to ProteinNetPy?
class SequenceUNETMapFunction(LabeledFunction):
"""
ProteinNetMapFunction returning the required data for the sequence UNET model
"""
def __init__(self, num_layers=4, threshold=None, contact_graph=False,
weights=False, pssm=False):
self.num_layers = num_layers
self.threshold = threshold
self.contact_graph = contact_graph
self.weights = weights
self.pssm = pssm
output_shapes = ([None, 20], [None, None]) if self.contact_graph else ([None, 20],)
output_types = ('float32', 'float32') if self.contact_graph else ('float32',)
output_shapes = [output_shapes, [None, 20]]
output_types = [output_types, 'int32' if self.threshold is not None else 'float32']
if self.weights:
output_shapes.append([None])
output_types.append('float32')
self.output_shapes = tuple(output_shapes)
self.output_types = tuple(output_types)
def __call__(self, record):
data = record.evolutionary.T if self.pssm else record.get_one_hot_sequence().T
labels = record.evolutionary.T
weights = np.ones(data.shape[0])
if self.threshold is not None:
labels = labels < self.threshold
labels = labels.astype(int) + 1
# Need to make sure output can be halved a sufficient number of time
pad_rows = 2 ** (self.num_layers - 1) - data.shape[0] % 2 ** (self.num_layers - 1)
if pad_rows:
data = np.pad(data, ((0, pad_rows), (0, 0)), mode='constant')
labels = np.pad(labels, ((0, pad_rows), (0, 0)), mode='constant')
weights = np.pad(weights, (0, pad_rows), mode='constant')
if self.contact_graph:
contacts = contact_graph(record)
if pad_rows:
contacts = np.pad(contacts, ((0, pad_rows), (0, pad_rows)), mode='constant')
out = (data, contacts) if self.contact_graph else (data,)
if self.weights:
return out, labels, weights
else:
return out, labels
class MaskedSequenceMapFunction(LabeledFunction):
"""
ProteinNetMapFunction returning sequences with masked positions and the true AAs in those
positions. This is used to train a generalisable base for the sequence UNET model
num_layers: number of layers in the SequenceUNET model, used to 0 pad output so it can be
halved an appropriate number of times.
contact_graph: Include contact graph input
mask: Number of positions to mask. Treated as an absolute if an integer or a proportion
if a float.
"""
def __init__(self, num_layers=4, contact_graph=False, mask=5):
self.num_layers = num_layers
self.contact_graph = contact_graph
self.mask = mask
if isinstance(self.mask, int):
self.int_mask = True
elif isinstance(self.mask, float):
self.int_mask = False
else:
raise TypeError(f"mask must be an int or float, recieved {mask}")
output_shapes = ([None, 20], [None, None]) if self.contact_graph else ([None, 20],)
output_types = ('float32', 'float32') if self.contact_graph else ('float32',)
output_shapes = [output_shapes, [None, 20], [None]]
output_types = [output_types, 'float32', 'float32']
self.output_shapes = tuple(output_shapes)
self.output_types = tuple(output_types)
def __call__(self, record):
seq = record.get_one_hot_sequence().T
labels = np.copy(seq)
length = seq.shape[0]
weights = np.zeros(length)
# Mask sequences
n_masked = self.mask if self.int_mask else int(self.mask * length)
masked_positions = np.random.choice(length, n_masked, replace=False)
seq[masked_positions, :] = 0
weights[masked_positions] = 1
# Need to make sure output can be halved a sufficient number of time
pad_rows = 2 ** (self.num_layers - 1) - length % 2 ** (self.num_layers - 1)
if pad_rows:
seq = np.pad(seq, ((0, pad_rows), (0, 0)), mode='constant')
labels = np.pad(labels, ((0, pad_rows), (0, 0)), mode='constant')
weights = np.pad(weights, (0, pad_rows), mode='constant')
# Generate contact graph
# TODO Should this be masked?
if self.contact_graph:
contacts = contact_graph(record)
if pad_rows:
contacts = np.pad(contacts, ((0, pad_rows), (0, pad_rows)), mode='constant')
out = (seq, contacts)
else:
out = (seq,)
return out, labels, weights
class ClinVarMapFunction(LabeledFunction):
"""
ProteinNetMapFunction returning the required data for the Mutation PSSM Top model
clinvar: Annotated clinvar variants pandas data frame
num_layers: Number of layers of UNET model
contact_graph: Include contact graph in output
pssm: Return the true PSSM instead of the sequence
"""
def __init__(self, clinvar, num_layers=None, contact_graph=True, pssm=False):
self.clinvar = clinvar
self.clinvar['pdb_id'] = self.clinvar['pdb_id'].str.upper()
self.num_layers = num_layers
self.contact_graph = contact_graph
self.pssm = pssm
out_shape = ([None, 20], [None, None]) if self.contact_graph else ([None, 20],)
out_type = ('float32', 'float32') if self.contact_graph else ('float32',)
# (Seq, struct graph), labels
self.output_shapes = (out_shape, [None, 20])
self.output_types = (out_type, 'int32')
def __call__(self, record):
out_main = record.evolutionary.T if self.pssm else record.get_one_hot_sequence().T
contacts = contact_graph(record, contact_distance=800) if self.contact_graph else None
labels = self._calc_clinvar(record, shape=out_main.shape)
if self.num_layers is not None:
# Need to make sure output can be halved a sufficient number of time
pad_rows = 2 ** (self.num_layers - 1) - out_main.shape[0] % 2 ** (self.num_layers - 1)
if pad_rows:
out_main = np.pad(out_main, ((0, pad_rows), (0, 0)), mode='constant')
labels = np.pad(labels, ((0, pad_rows), (0, 0)), mode='constant')
if self.contact_graph:
contacts = np.pad(contacts, ((0, pad_rows), (0, pad_rows)), mode='constant')
if self.contact_graph:
return (out_main, contacts), labels
else:
return (out_main,), labels
def _calc_clinvar(self, record, shape):
"""
Generate clinvar label matrix for a given record
"""
try:
muts = self.clinvar[((self.clinvar.pdb_id == record.pdb_id) &
(self.clinvar.chain == record.pdb_chain))]
# Offset pos by first unmasked index, since that is what first_pdb_pos corresponds to
pos = (np.nonzero(record.mask)[0][0] + muts.pdb_pos - muts.first_pdb_pos).values
aa =
|
np.vectorize(AA_HASH.__getitem__)
|
numpy.vectorize
|
from OpenGL.GL import *
from OpenGL.GLUT import *
from OpenGL.GLU import *
import sys
# from pyquaternion import Quaternion ## would be useful for 3D simulation
import numpy as np
import math as math
window = 0 # number of the glut window
theta = 0.0
simTime = 0
dT = 0.01
simRun = True
RAD_TO_DEG = 180.0 / 3.1416
multi = 0
boardY = 0
#####################################################
#### Link class, i.e., for a rigid body
#####################################################
class Link:
color = [0, 0, 0] ## draw color
size = [1, 1, 1] ## dimensions
mass = 1.0 ## mass in kg
izz = 1.0 ## moment of inertia about z-axis
theta = 0 ## 2D orientation (will need to change for 3D)
omega = 0 ## 2D angular velocity
posn = np.array([0.0, 0.0, 0.0]) ## 3D position (keep z=0 for 2D)
vel = np.array([0.0, 0.0, 0.0]) ## initial velocity
def draw(self): ### steps to draw a link
glPushMatrix() ## save copy of coord frame
glTranslatef(self.posn[0], self.posn[1], self.posn[2]) ## move
glRotatef(self.theta * RAD_TO_DEG, 0, 0, 1) ## rotate
glScale(self.size[0], self.size[1], self.size[2]) ## set size
glColor3f(self.color[0], self.color[1], self.color[2]) ## set colour
DrawCube() ## draw a scaled cube
glPopMatrix() ## restore old coord frame
#####################################################
# #### Bar class, i.e., for dynamic illustration
#####################################################
class Bar:
color = [0, 0, 0]
size = [1, 1, 1]
posn = np.array([5.0, 0.0, 0.0])
def draw(self):
glPushMatrix() ## save copy of coord frame
glTranslatef(self.posn[0], self.posn[1], self.posn[2]) ## move
glScale(self.size[0], self.size[1], self.size[2]) ## set size
glColor3f(self.color[0], self.color[1], self.color[2]) ## set colour
DrawCube() ## draw a scaled cube
glPopMatrix() ## restore old coord frame
#####################################################
# #### Bar class, i.e., for dynamic illustration
#####################################################
class Ground:
color = [0.1, 0.1, 0.7]
size = [7, 0.02, 7]
posn = np.array([0.0, -3.5, 0.0])
def draw(self):
glPushMatrix() ## save copy of coord frame
glTranslatef(self.posn[0], self.posn[1], self.posn[2]) ## move
glScale(self.size[0], self.size[1], self.size[2]) ## set size
glColor3f(self.color[0], self.color[1], self.color[2]) ## set colour
DrawCube() ## draw a scaled cube
glPopMatrix() ## restore old coord frame
#####################################################
#### main(): launches app
#####################################################
def main():
global window
global link1, link2, link3, link4, alone
global kBar, pBar
global ground
global multi
multi = 0
glutInit(sys.argv)
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH) # display mode
glutInitWindowSize(640, 480) # window size
glutInitWindowPosition(0, 0) # window coords for mouse start at top-left
window = glutCreateWindow("Lotus' Pendulum")
glutDisplayFunc(DrawWorld) # register the function to draw the world
# glutFullScreen() # full screen
glutIdleFunc(SimWorld) # when doing nothing, redraw the scene
glutReshapeFunc(ReSizeGLScene) # register the function to call when window is resized
glutKeyboardFunc(keyPressed) # register the function to call when keyboard is pressed
InitGL(640, 480) # initialize window
link1 = Link();
link2 = Link();
link3 = Link();
link4 = Link();
alone = Link();
kBar = Bar()
pBar = Bar()
ground = Ground();
resetSim()
glutMainLoop() # start event processing loop
#####################################################
#### keyPressed(): called whenever a key is pressed
#####################################################
def resetSim():
global link1, link2, link3, link4
global kBar, pBar
global simTime, simRun
global ground
global boardY
printf("Simulation reset\n")
simRun = True
simTime = 0
alone.size = [0.04, 1.0, 0.12]
alone.color = [0.5, 0.9, 0.9]
alone.vel = np.array([0.0, 0.0, 0.0])
alone.theta = math.pi * 3/4
alone.posn = np.array([-0.5 * math.sin(alone.theta), 0.5 * math.cos(alone.theta), 0.0])
alone.omega = 0.0 ## radians per second
link1.size = [0.04, 1.0, 0.12]
link1.color = [0.85, 0.9, 1.0]
link1.vel = np.array([0.0, 0.0, 0.0])
link1.theta = math.pi * 3/4
link1.posn = [0,0,0] + np.array([-0.5 * math.sin(link1.theta), 0.5 * math.cos(link1.theta), 0.0])
link1.omega = 0.0 ## radians per second
link2.size = [0.04, 1.0, 0.12]
link2.color = [0.65, 0.79, 0.99]
link2.theta = math.pi * 3/4
link2.vel = np.array([0.0, 0.0, 0.0])
link2.posn = link1.posn + np.array([-math.sin(link1.theta), math.cos(link1.theta), 0.0])
link2.omega = 0.0 ## radians per second
link3.size = [0.04, 1.0, 0.12]
link3.color = [0.45, 0.66, 0.98]
link3.theta = math.pi * 3/4
link3.posn = link2.posn + np.array([-math.sin(link2.theta), math.cos(link2.theta), 0.0])
link3.vel = np.array([0.0, 0.0, 0.0])
link3.omega = 0.0 ## radians per second
link4.size = [0.04, 1.0, 0.12]
link4.color = [0.3, 0.55, 0.95]
link4.theta = math.pi * 3 / 4
link4.posn = link3.posn + np.array([-math.sin(link3.theta), math.cos(link3.theta), 0.0])
link4.vel = np.array([0.0, 0.0, 0.0])
link4.omega = 0.0 ## radians per second
kBar.color = [0.6, 0.7, 0.8]
kBar.size = [0.2, 0.4, 0.2]
kBar.posn = np.array([1.0, -3.5, 6.5])
pBar.color = [0.6, 0.9, 0.65]
pBar.size = [0.2, 0.4, 0.2]
pBar.posn = np.array([kBar.posn[0], kBar.size[1], kBar.posn[2]])
ground.color = [0.3, 0.3, 0.7]
boardY = ground.posn[1]
#####################################################
#### keyPressed(): called whenever a key is pressed
#####################################################
def keyPressed(key, x, y):
global simRun
global multi
global boardY
ch = key.decode("utf-8")
if ch == ' ': #### toggle the simulation
if (simRun == True):
simRun = False
else:
simRun = True
elif ch == chr(27): #### ESC key
sys.exit()
elif ch == 'q': #### quit
sys.exit()
elif ch == 'r': #### reset simulation
resetSim()
elif ch == 'n': #### reset simulation
multi = 0
resetSim()
elif ch == 'm': #### reset simulation
multi = 1
resetSim()
elif ch == 'w': #### reset simulation
boardY += 1
elif ch == 's': #### reset simulation
boardY -= 1
#####################################################
#### SimWorld(): simulates a time step
#####################################################
def SimWorld():
global simTime, dT, simRun
global link1, link2, link3, link4, alone
global boardY
I = 1.0/12.0
deltaTheta = 2.4
if (simRun == False): ## is simulation stopped?
return
###############################
#### For 4-link
###############################
r1 = [0.5 * math.sin(link1.theta),-0.5 * math.cos(link1.theta),0]
r1x = r1[0]
r1y = r1[1]
r2 = [0.5 * math.sin(link2.theta),-0.5 * math.cos(link2.theta),0]
r2x = r2[0]
r2y = r2[1]
r3 = [0.5 * math.sin(link3.theta),-0.5 * math.cos(link3.theta),0]
r3x = r3[0]
r3y = r3[1]
r4 = [0.5 * math.sin(link4.theta),-0.5 * math.cos(link4.theta),0]
r4x = r4[0]
r4y = r4[1]
constraint1 =1*(link1.posn + r1 - [0,0,0])+ 0.01*(np.cross([0,0,link1.omega], r1) - link1.vel)
constraint2 =1*(link2.posn + r2 - (link1.posn - r1))+ 0.01*(np.cross([0,0,link2.omega], r2) - link2.vel)
constraint3 =1*(link3.posn + r3 - (link2.posn - r2))+ 0.01*(np.cross([0,0,link3.omega], r3) - link3.vel)
constraint4 =1*(link4.posn + r4 - (link3.posn - r3))+ 0.01*(np.cross([0,0,link4.omega], r4) - link4.vel)
t1x = -r1x * link1.omega * link1.omega + constraint1[0]
t1y = -r1y * link1.omega * link1.omega + constraint1[1]
t2x = r1x * link1.omega * link1.omega + r2x * link2.omega * link2.omega - constraint2[0]
t2y = r1y * link1.omega * link1.omega + r2y * link2.omega * link2.omega - constraint2[1]
t3x = r2x * link2.omega * link2.omega + r3x * link3.omega * link3.omega - constraint3[0]
t3y = r2y * link2.omega * link2.omega + r3y * link3.omega * link3.omega - constraint3[1]
t4x = r3x * link3.omega * link3.omega + r4x * link4.omega * link4.omega - constraint4[0]
t4y = r3y * link3.omega * link3.omega + r4y * link4.omega * link4.omega - constraint4[1]
damp1 = link1.omega * 0.5
damp2 = link2.omega * 0.5
damp3 = link3.omega * 0.5
damp4 = link4.omega * 0.5
ground.posn[1] = boardY
bottom4 = link4.posn - r4 - 0.2
bottom3 = link3.posn - r3 - 0.2
bottom2 = link2.posn - r2 - 0.2
bottom1 = link1.posn - r1 - 0.2
penalty4 = 80.0 * (ground.posn[1] - bottom4[1]) - 20.0* link4.vel[1]
penalty3 = 80.0 * (ground.posn[1] - bottom3[1]) - 20.0 * link3.vel[1]
penalty2 = 80.0 * (ground.posn[1] - bottom2[1]) - 20.0 * link2.vel[1]
penalty1 = 80.0 * (ground.posn[1] - bottom1[1]) - 20.0 * link1.vel[1]
if ground.posn[1] > bottom4[1]:
ground.color = [0.9,0.9,0.9]
else:
ground.color = [0.85, 0.85, 0.85]
penalty4 = 0
if ground.posn[1] > bottom3[1]:
ground.color = [0.9,0.9,0.9]
else:
ground.color = [0.85, 0.85, 0.85]
penalty3 = 0
if ground.posn[1] > bottom2[1]:
ground.color = [0.9,0.9,0.9]
else:
ground.color = [0.85, 0.85, 0.85]
penalty2 = 0
if ground.posn[1] > bottom1[1]:
ground.color = [0.9,0.9,0.9]
else:
ground.color = [0.85, 0.85, 0.85]
penalty1= 0
# print(penalty)
# 1 2 3 4 A B C D
a = np.array([[1,0,0, 0,0,0, 0,0,0, 0,0,0, -1,0, 1,0, 0,0, 0,0], #1
[0,1,0, 0,0,0, 0,0,0, 0,0,0, 0,-1, 0,1, 0,0, 0,0],
[0,0,I, 0,0,0, 0,0,0, 0,0,0, r1y,-r1x,r1y,-r1x,0,0, 0,0],
[0,0,0, 1,0,0, 0,0,0, 0,0,0, 0,0, -1,0, 1,0, 0,0], #2
[0,0,0, 0,1,0, 0,0,0, 0,0,0, 0,0, 0,-1, 0,1, 0,0],
[0,0,0, 0,0,I, 0,0,0, 0,0,0, 0,0,r2y,-r2x,r2y,-r2x, 0,0],
[0,0,0, 0,0,0, 1,0,0, 0,0,0, 0,0, 0,0, -1,0, 1,0], #3
[0,0,0, 0,0,0, 0,1,0, 0,0,0, 0,0, 0,0, 0,-1, 0,1],
[0,0,0, 0,0,0, 0,0,I, 0,0,0, 0,0, 0,0,r3y,-r3x,r3y,-r3x],
[0,0,0, 0,0,0, 0,0,0, 1,0,0, 0,0, 0,0, 0,0, -1,0], #4
[0,0,0, 0,0,0, 0,0,0, 0,1,0, 0,0, 0,0, 0,0, 0,-1],
[0,0,0, 0,0,0, 0,0,0, 0,0,I, 0,0, 0,0, 0,0,r4y,-r4x],
[-1,0,r1y, 0,0,0, 0,0,0, 0,0,0, 0,0, 0,0, 0,0, 0,0], #A
[0,-1,-r1x, 0,0,0, 0,0,0, 0,0,0, 0,0, 0,0, 0,0, 0,0],
[-1,0,-r1y, 1,0,-r2y,0,0,0, 0,0,0, 0,0, 0,0, 0,0, 0,0], #B
[0,-1,r1x, 0,1,r2x, 0,0,0, 0,0,0, 0,0, 0,0, 0,0, 0,0],
[0,0,0, -1,0,-r2y,1,0,-r3y,0,0,0, 0,0, 0,0, 0,0, 0,0], #C
[0,0,0, 0,-1,r2x,0,1,r3x, 0,0,0, 0,0, 0,0, 0,0, 0,0],
[0,0,0, 0,0,0, -1,0,-r3y,1,0,-r4y, 0,0, 0,0, 0,0, 0,0], #D
[0,0,0, 0,0,0, 0,-1,r3x, 0,1,r4x, 0,0, 0,0, 0,0, 0,0]])
b = np.array([0,-10+penalty1,-damp1- r1x * penalty1, 0,-10+penalty2,-damp2- r2x * penalty2, 0,-10+penalty3,-damp3- r3x * penalty3, 0,-10+penalty4, -damp4 - r4x * penalty4, t1x,t1y, t2x,t2y, t3x,t3y, t4x,t4y])
x = np.linalg.solve(a, b)
#### solve for the equations of motion (simple in this case!)
acc1 = np.array([x[0], x[1], 0]) ### linear acceleration = [0, -G, 0]
acc2 = np.array([x[3], x[4], 0]) ### linear acceleration = [0, -G, 0]
acc3 = np.array([x[6], x[7], 0]) ### linear acceleration = [0, -G, 0]
acc4 = np.array([x[9], x[10], 0]) ### linear acceleration = [0, -G, 0]
omega_dot1 = x[2] ### assume no angular acceleration
omega_dot2 = x[5] ### assume no angular acceleration
omega_dot3 = x[8] ### assume no angular acceleration
omega_dot4 = x[11] ### assume no angular acceleration
#### explicit Euler integration to update the state
link1.posn += link1.vel * dT
link1.vel += acc1 * dT
link1.theta += link1.omega * dT
link1.omega += omega_dot1 * dT
link2.posn += link2.vel * dT
link2.vel += acc2 * dT
link2.theta += link2.omega * dT
link2.omega += omega_dot2 * dT
link3.posn += link3.vel * dT
link3.vel += acc3 * dT
link3.theta += link3.omega * dT
link3.omega += omega_dot3 * dT
link4.posn += link4.vel * dT
link4.vel += acc4 * dT
link4.theta += link4.omega * dT
link4.omega += omega_dot4 * dT
#################################
####### For Alone:
#################################
ra = [0.5 * math.sin(alone.theta), -0.5 * math.cos(alone.theta), 0]
rax = ra[0]
ray = ra[1]
dampA = alone.omega * 0.04
constraintA = 2 * (alone.posn + ra - [0, 0, 0]) + 0.002 * (np.cross([0, 0, alone.omega], ra) - alone.vel)
tax = -rax * alone.omega * alone.omega + constraintA[0]
tay = -ray * alone.omega * alone.omega + constraintA[1]
aa = np.array([[1, 0, 0, -1, 0],
[0, 1, 0, 0, -1],
[0, 0, I, ray,-rax],
[-1, 0, ray, 0, 0],
[0, -1, -rax, 0, 0]])
ab =
|
np.array([0, -10, -dampA, tax, tay])
|
numpy.array
|
# # Jupyter Notebook for Counting Building Occupancy from Polaris Traffic Simulation Data
#
# This notebook will load a Polaris SQLlite data file into a Pandas data frame using sqlite3 libraries and count the average number of people in each building in each hour of the simulation.
#
# For help with Jupyter notebooks
#
# For help on using sql with Pandas see
# http://www.pererikstrandberg.se/blog/index.cgi?page=PythonDataAnalysisWithSqliteAndPandas
#
# For help on data analysis with Pandas see
# http://nbviewer.jupyter.org/github/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/Index.ipynb
#
import sqlite3
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
fname = ".\data\detroit-Demand.sqlite"
outfolder = ".\\output\\"
print(f'Connecting to database {fname}')
# Create your connection. Assumes data is in a parallel subdirectory to this one
cnx = sqlite3.connect('.\data\detroit2-Demand.sqlite')
print("getting location data from SQLite File")
# exract all the beginning locations of the building simulation
beginning_location = pd.read_sql_query("SELECT * FROM Beginning_Location_All", cnx)
print("getting trip data from SQLite File")
trips = pd.read_sql_query("SELECT start, end, origin, destination, person FROM Trip", cnx)
trips["start_hr"] = trips.start // 3600
trips["end_hr"] = trips.end // 3600
print("analyzing data from SQL file")
# create the data frames that have the counts of things grouped by start hr & origin and end hr & destination
departs = trips.groupby(['start_hr', 'origin']).size().reset_index(name='countleave')
arrives = trips.groupby(['end_hr', 'destination']).size().reset_index(name='countarrive')
departm = {}
arrivem = {}
# create an array of hours for general use
hr = list(range(24))
print("extracting departures and arrivals")
# create a dataframe for departurses and arrivals per hour by location
# columns are hours, rows are locations. Fill in missing data with zeros
for i in hr:
departm[i] = pd.merge(
beginning_location, departs[departs.start_hr == i],
left_on='location', right_on='origin', how='left'
).fillna(0)
arrivem[i] = pd.merge(
beginning_location, arrives[arrives.end_hr == i],
left_on='location', right_on='destination', how='left'
).fillna(0)
# now create an occupancy for each building at each our by adding arrivals and
# subtracting departures from each building at each hour
occm = {}
occm[0] = departm[0].occupants + arrivem[0].countarrive - departm[0].countleave
for i in range(1, 24):
occm[i] = occm[i-1] + arrivem[i].countarrive - departm[i].countleave
# convert occupancy dictionary to a dataframe
occupancy = pd.DataFrame(occm)
print("counting up occupancy")
# add columns with the locations and their land use / categorization
# to the occupancy dataframe
occupancy["location"]=beginning_location.location
occupancy['land_use']=beginning_location.land_use
cols=['location', 'land_use']+list(range(23))
# reorder the columns putting location and land use at the beginning
cols=['location', 'land_use'] + hr
occupancy = occupancy[cols]
print("removing zero occupancy locations dataframe")
# Remove locations with no occupancy over 24 hours
occupancy_clean = occupancy[occupancy.iloc[:, 2:].abs().sum(axis=1) != 0]
print("grouping locations by land use type")
# Group locations by land use type
land_uses = occupancy_clean.land_use.unique()
occu_profiles = {}
for land in land_uses:
profiles = occupancy_clean[occupancy_clean.land_use == land].drop('land_use', axis=1)
occu_profiles[land] = profiles.set_index('location')
print("plotting occupancy by land use")
# plot Occupancy schedules by land use type
fig, axs = plt.subplots(5, 2, figsize=(16, 20))
axs_flat = [x for y in axs for x in y]
for i, ax in enumerate(axs_flat[:-1]):
land_type = list(occu_profiles.keys())[i]
df = occu_profiles[land_type]
ax.step(hr, df.mean(axis=0), color=[0, 0.45, 0.7], label='average')
ax.fill_between(
hr, df.min(axis=0), df.max(axis=0),
step='pre', color=[0, 0.45, 0.7], alpha=0.5, label='range'
)
ax.set_xticks(range(0, 24, 2))
ax.tick_params(labelsize=14)
ax.set_xlabel('hour', fontsize=14)
ax.set_ylabel('occupancy', fontsize=14)
ax.legend(fontsize=14)
ax.set_xlim([0,23])
ax.set_ylim([df.min().min() - 1,df.max().max() + 1])
ax.set_title(land_type, fontsize=18)
fig.tight_layout()
fig.savefig(outfolder + 'occupancy_by_land_use_type.png', bbox_inches='tight', dpi=600)
plt.close()
print("plotting occupancy histograms")
# plot histogram of maximum occupancy by land use type
fig, axs = plt.subplots(5, 2, figsize=(12, 20))
axs_flat = [x for y in axs for x in y]
for i, ax in enumerate(axs_flat[:-1]):
land_type = list(occu_profiles.keys())[i]
df = occu_profiles[land_type]
ax.hist(
x=df.max(axis=1).values, color=[0, 0.45, 0.7],
alpha=0.5, label='all buildings'
)
ax.axvline(
x=df.max(axis=1).mean(), color=[0, 0.45, 0.7],
linewidth=2, label='average'
)
# ax.set_xticks(range(0, 24, 1))
ax.tick_params(labelsize=14)
ax.set_xlabel('Maximum occpuancy', fontsize=14)
ax.set_ylabel('Counts', fontsize=14)
ax.legend(fontsize=14)
ax.set_title(land_type, fontsize=18)
fig.tight_layout()
fig.savefig( outfolder+'maximum_occupancy_by_land_use_type.png', bbox_inches='tight', dpi=600)
plt.close()
print("developing schedules")
# Export occupancy profile data
for key, value in occu_profiles.items():
csv_out = outfolder + f'Detroit_occupancy_{key.lower()}.csv'
value.to_csv(csv_out)
# Extract schedules with 4+ maximum occupancy and 0+ minimum occupancy
occu_profiles_clean = {}
for key, value in occu_profiles.items():
occu_profiles_clean[key] = value[(value.max(axis=1) >= 4) & (value.min(axis=1) >= 0)]
# Normalize by maximum occupancy
occu_profiles_clean_norm = {}
for key, value in occu_profiles_clean.items():
occu_profiles_clean_norm[key] = value.div(value.max(axis=1), axis=0)
land_types = ['BUSINESS', 'RESIDENTIAL-MULTI']
print("plotting schedules by land use type ")
# Cleaned occupancy schedules by land use type
for land_type in land_types:
fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)
df = occu_profiles_clean[land_type]
ax.step(hr, df.mean(axis=0), color=[0, 0.45, 0.7], label='average')
ax.fill_between(
hr, df.min(axis=0), df.max(axis=0),
step='pre', color=[0, 0.45, 0.7], alpha=0.5, label='range'
)
ax.set_xticks(range(0, 24, 2))
ax.tick_params(labelsize=14)
ax.set_xlabel('hour', fontsize=14)
ax.set_ylabel('occupancy', fontsize=14)
ax.legend(fontsize=14)
ax.set_xlim([0,23])
ax.set_ylim([df.min().min() - 1,df.max().max() + 1])
ax.set_title(land_type, fontsize=18)
fig.savefig(outfolder + 'occupancy_clean_{}.png'.format(land_type.lower()), bbox_inches='tight', dpi=600)
plt.close()
print("plotting average occupancy with 905% CI")
# Plot average occupancy profiles with 95% range
for land_type in land_types:
fig = plt.figure(figsize=(12, 5))
ax = fig.add_subplot(111)
df = occu_profiles_clean_norm[land_type]
ax.step(hr, df.mean(axis=0), color=[0, 0.45, 0.7], label='average')
ax.fill_between(
hr, df.quantile(0.025, axis=0), df.quantile(0.975, axis=0),
step='pre', color=[0, 0.45, 0.7], alpha=0.5, label='95% range'
)
ax.set_xticks(range(0, 24, 2))
ax.tick_params(labelsize=14)
ax.set_xlabel('hour', fontsize=14)
ax.set_ylabel('occupancy percentage', fontsize=14)
ax.legend(fontsize=14)
ax.set_xlim([0,23])
ax.set_title(land_type, fontsize=18)
fig.savefig(outfolder + f'occupancy_clean_norm_{land_type.lower()}.png', bbox_inches='tight', dpi=600)
plt.close()
print("exporting data to CSVs")
# Export cleaned and normalized data
for land_type in land_types:
csv_out_clean = outfolder + f'Detroit_occupancy_clean_{land_type.lower()}.csv'
csv_out_clean_norm = outfolder + f'Detroit_occupancy_clean_norm_{land_type.lower()}.csv'
occu_profiles_clean[land_type].to_csv(csv_out_clean)
occu_profiles_clean_norm[land_type].to_csv(csv_out_clean_norm)
occu_profiles_clean['BUSINESS'].max(axis=1).value_counts()
# Reference schedules from prototype building models
ref_sches = {
'occupancy': {
'BUSINESS': [
0, 0, 0, 0, 0, 0, 0.11, 0.21, 1, 1, 1, 1,
0.53, 1, 1, 1, 1, 0.32, 0.11, 0.11, 0.11, 0.11, 0.05, 0
],
'RESIDENTIAL-MULTI': [
1, 1, 1, 1, 1, 1, 1, 0.85, 0.39, 0.25, 0.25, 0.25,
0.25, 0.25, 0.25, 0.25, 0.30, 0.52, 0.87, 0.87, 0.87, 1, 1, 1
]
},
'light': {
'BUSINESS': [
0.18, 0.18, 0.18, 0.18, 0.18, 0.23, 0.23, 0.42, 0.9, 0.9, 0.9, 0.9,
0.8, 0.9, 0.9, 0.9, 0.9, 0.61, 0.42, 0.42, 0.32, 0.32, 0.23, 0.18
],
'RESIDENTIAL-MULTI': [
0.011, 0.011, 0.011, 0.011, 0.034, 0.074, 0.079, 0.074, 0.034, 0.023, 0.023, 0.023,
0.023, 0.023, 0.023, 0.040, 0.079, 0.113, 0.153, 0.181, 0.181, 0.124, 0.068, 0.028
]
},
'plug': {
'BUSINESS': [
0.5, 0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1, 1, 1, 1,
0.94, 1, 1, 1, 1, 0.5, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2
],
'RESIDENTIAL-MULTI': [
0.45, 0.41, 0.39, 0.38, 0.38, 0.43, 0.54, 0.65, 0.66, 0.67, 0.69, 0.70,
0.69, 0.66, 0.65, 0.68, 0.80, 1.00, 1.00, 0.93, 0.89, 0.85, 0.71, 0.58
]
},
}
# Adjust lighting and plug load schedules using KNN regression
def adjust_sche(elec_ref, occu_ref, occu, n=3):
hours_adjusted = np.asarray(range(1, 25)) / 24 * np.pi
occu_ref_array = np.asarray(occu_ref)
elec_ref_array = np.asarray(elec_ref)
elec = []
for i in range(24):
dist = np.sqrt(
np.sin(abs(hours_adjusted - (i+1) / 24 * np.pi)) ** 2 + (occu_ref_array - occu[i]) ** 2
)
try:
elec.append(elec_ref_array[dist == 0][0])
except IndexError:
idxs = np.argsort(dist)[:n]
elec.append(
|
np.average(elec_ref_array[idxs], weights=1/dist[idxs])
|
numpy.average
|
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import random
class MCLoss(nn.Module):
def __init__(self, num_classes=200, cnums=[10, 11], cgroups=[152, 48], p=0.4, lambda_=10):
super().__init__()
if isinstance(cnums, int): cnums = [cnums]
elif isinstance(cnums, tuple): cnums = list(cnums)
assert isinstance(cnums, list), print("Error: cnums should be int or a list of int, not {}".format(type(cnums)))
assert sum(cgroups) == num_classes, print("Error: num_classes != cgroups.")
self.cnums = cnums
self.cgroups = cgroups
self.p = p
self.lambda_ = lambda_
self.celoss = nn.CrossEntropyLoss()
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
def forward(self, feat, targets):
n, c, h, w = feat.size()
sp = [0]
tmp =
|
np.array(self.cgroups)
|
numpy.array
|
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 10 00:03:08 2015
@author: <NAME>
"""
import numpy as np
import matplotlib.pyplot as pl
import path
from matplotlib import gridspec
def load_txt(filepath):
# skip header
l = np.loadtxt(filepath,skiprows = 1,unpack = True)
return l
def summarize(a,b):
summary = a,b
return summary
def save_txt(summary):
filename = 'summary.txt'
np.savetxt(filename,
|
np.transpose([summary])
|
numpy.transpose
|
import numpy as np
import matplotlib.pyplot as plt
import aux as a
### DEFINITIONS ###
nx = 801 # Pixels in image plane
ny = 801 # Pixels in source plane
xl = 5.0 # Size of image plane covered (theta_E)
yl = 5.0 # Size of source plane covered (theta_E)
### LENS PARAMETERS ###
xlens = 0.0 # Lens x-position
ylens = 0.0 # Lens y-position
mlens = 20.0 # Lens mass (affects Einstein radius)
xs = 2.0 * xl / (nx - 1) # Pixel size on image map
ys = 2.0 * yl / (ny - 1) # Pixel size on source map
# x and y positions of source (circle of radius 0.4)
rad = 0.1
x_lst =
|
np.arange(-1,1,0.1)
|
numpy.arange
|
import numpy as np
def LMS(input, desired, mu, L):
"""
Performs LMS adpative filtering on input signal
Parameters:
input : array-like
Input signa;
desired : array-like
Desired signal
mu : float
Learning rate
L : int
Length of adaptive filter
Return:
y : array-like
Filtered signal
e : array-like
Error signal
w : array-like
Final filter coefficients (of length L)
"""
assert len(input) == len(
desired), 'Desired and input signals must have equal length'
N = len(input)
w = np.zeros(L)
y = np.zeros(N)
x_win = np.zeros(L)
e = np.zeros(N)
for n in range(N):
x_win = np.concatenate((x_win[1:L], [input[n]]))
y[n] = np.dot(w, x_win)
e[n] = desired[n] - y[n]
w = w + mu * e[n] * x_win
return y, e, w
def NLMS(input, desired, mu=0.1, L=7):
"""
Performs Norm LMS adpative filtering on input signal
Parameters:
input : array-like
Input signa;
desired : array-like
Desired signal
mu : float
Learning rate
L : int
Length of adaptive filter
Return:
y : array-like
Filtered signal
e : array-like
Error signal
w : array-like
Final filter coefficients (of length L)
"""
assert len(input) == len(
desired), 'Desired and input signals must have equal length'
N = len(input)
w = np.zeros(L)
y = np.zeros(N)
x_win = np.zeros(L)
e = np.zeros(N)
for n in range(N):
x_win = np.concatenate((x_win[1:L], [input[n]]))
y[n] = np.dot(w, x_win)
e[n] = desired[n] - y[n]
w = w + mu * e[n] * x_win / np.sqrt(np.sum(x_win**2))
return y, e, w
def NL_LMS(input, desired, mu, L, g, g_prime):
"""
Performs Nonlinear LMS adaptive filtering on input signal
Parameters:
input : array-like
Input signa;
desired : array-like
Desired signal
mu : float
Learning rate
L : int
Length of adaptive filter
g : lambda (float) : float
Nonlinear function, ex: tanh(x)
g_prime : lambda (float) : float
Derivative of nonlinear function, ex 1/cosh(x)^2
Return:
y : array-like
Filtered signal
e : array-like
Error signal
w : array-like
Final filter coefficients (of length L)
"""
assert len(input) == len(
desired), 'Desired and input signals must have equal length'
N = len(input)
w = np.zeros(L)
y =
|
np.zeros(N)
|
numpy.zeros
|
import unittest
import numpy as np
import spectral_estimators as se
class TestComplexSinusoid(unittest.TestCase):
def test_zero(self):
for n in range(1, 100):
t = np.random.randn(n)
y = se.utils.complex_sinusoid(0, t)
np.testing.assert_allclose(np.ones(n),
|
np.real(y)
|
numpy.real
|
import sys
import os
import shutil
import collections
import warnings
from contextlib import contextmanager
from typing import Union, Iterable, Sized, Generator, Sequence
import wget
import requests
import tqdm
import numpy as np
import scipy.special as spec
from scipy.interpolate import interp1d
from astropy.constants import c # the speed of light
from astropy import cosmology
from astropy import units
import halotools.utils as ht_utils
from . import mocksurvey as ms
@contextmanager
def temp_seed(seed):
if seed is None:
# Do NOT alter random state
do_alter = False
elif is_int(seed):
# New state with specified seed
do_alter = True
else:
# New state with random seed
assert isinstance(seed, str) and seed.lower() == "none", \
f"seed={seed} not understood. Must be int, None, or 'none'"
do_alter = True
seed = None
state = np.random.get_state()
if do_alter:
np.random.seed(seed)
try:
yield
finally:
if do_alter:
# noinspection PyTypeChecker
np.random.set_state(state)
@contextmanager
def suppress_stdout():
with open(os.devnull, "w") as devnull:
old_stdout = sys.stdout
sys.stdout = devnull
try:
yield
finally:
sys.stdout = old_stdout
def explicit_path(path: str,
assert_dir=False, assert_file=False) -> bool:
ans = path.startswith((os.path.sep,
os.path.curdir,
os.path.pardir))
if ans and assert_dir and not os.path.isdir(path):
raise NotADirectoryError(f"Explicit path {path} must "
f"already exist as a directory.")
if ans and assert_file and not os.path.isfile(path):
raise FileNotFoundError(f"Explicit path {path} must "
f"already exist as a file.")
return ans
def selector_from_meta(meta: dict):
x, y = np.array([meta["x_arcmin"], meta["y_arcmin"]]) / 60 * np.pi / 180
omega = 2 * x * np.sin(y / 2.)
selector = ms.LightConeSelector(
meta["z_low"], meta["z_high"],
omega * (180 / np.pi) ** 2,
fieldshape="square", realspace=True)
for key in meta.keys():
if key.startswith("selector_"):
selector &= eval(
meta[key]
.replace(" km / (Mpc s),", ",")
.replace(" K,", ",")
.replace("LightConeSelector", "ms.LightConeSelector")
.replace("FlatLambdaCDM", "cosmology.FlatLambdaCDM"))
return selector
def make_struc_array(names, values,
dtypes: Union[Iterable[str], str] = "<f4",
subshapes: Union[Sized, None] = None):
if subshapes is None:
subshapes = [() for _ in names]
subshapes = [() if x is None else
(tuple(x) if is_arraylike(x) else (x,))
for x in subshapes]
if isinstance(dtypes, str):
dtypes = [dtypes for _ in names]
if len(values):
lengths = [len(val) for val in values]
length = lengths[0]
assert np.all([x == length for x in lengths]), \
f"Arrays must be same length: names={names}, lengths={lengths}"
else:
length = 0
dtype = [(n, d, s) for n, d, s in zip(names, dtypes, subshapes)]
ans = np.zeros(length, dtype=dtype)
for n, v in zip(names, values):
ans[n] = v
return ans
def lightcone_array(id=None, upid=None, x=None, y=None, z=None, obs_sm=None,
obs_sfr=None, redshift=None, ra=None, dec=None, **kwargs):
dtypes = []
array = dict(id=id, upid=upid, x=x, y=y, z=z, obs_sm=obs_sm,
obs_sfr=obs_sfr, redshift=redshift, ra=ra, dec=dec, **kwargs)
for name in list(array.keys()):
if array[name] is None:
del array[name]
elif name in ("id", "upid"):
dtypes.append("<i8")
else:
dtypes.append("<f4")
return make_struc_array(array.keys(), array.values(), dtypes)
def apply_over_window(func, a, window, axis=-1, edge_case=None, **kwargs):
"""
`func` must be a numpy-friendly function which accepts
an array as a positional argument and utilizes
an `axis` keyword argument
This function is just a wrapper for rolling_window,
and is essentially implemented by the following code:
>>> return func(rolling_window(a, window, axis=axis), axis=-1)
See rolling_window docstring for more info
"""
return func(rolling_window(a, window, axis=axis, edge_case=edge_case),
axis=-1, **kwargs)
def rolling_window(a, window, axis=-1, edge_case=None):
"""
Append a new axis of length `window` on `a` over which to roll over
the specified `axis` of `a`. The new window axis is always the LAST
axis in the returned array.
WARNING: Memory usage for this function is O(a.size * window)
Parameters
----------
a : array-like
Input array over which to add a new axis containing windows
window : int
Number of elements in each window
axis : int (default = -1)
The specified axis with which windows are drawn from
edge_case : str (default = "replace")
We need to choose a scheme of how to deal with the ``window - 1``
windows which contain entries beyond the edge of our specified axis.
The following options are supported:
edge_case = None | "replace"
Windows containing entries beyond the edges will still exist, but
those entries will be replaced with the edge entry. The nth axis
element will be positioned in the ``window//2``th element of the
nth window
edge_case = "wrap"
Windows containing entries beyond the edges will still exist, and
those entries will wrap around the axis. The nth axis element will
be positioned in the ``window//2``th element of the nth window
edge_case = "contract"
Windows containing entries beyond the edges will be removed
entirely (e.g., if ``a.shape = (10, 10, 10)``, ``window = 4``,
and ``axis = 1`` then the output array will have shape
``(10, 7, 10, 4)`` because the specified axis will be reduced by
a length of ``window-1``). The nth axis element will be positioned
in the 0th element of the nth window.
"""
# Input sanitization
a = np.asarray(a)
window = int(window)
axis = int(axis)
ndim = len(a.shape)
axis = axis + ndim if axis < 0 else axis
assert -1 < axis < ndim, "Invalid value for `axis`"
assert 1 < window < a.shape[axis], "Invalid value for `window`"
assert edge_case in [None, "replace", "contract", "wrap"], \
"Invalid value for `edge_case`"
# Convenience function 'onaxes' maps smaller-dimensional arrays
# along the desired axes of dimension of the output array
def onaxes(*axes):
return tuple(slice(None) if i in axes else None for i in range(ndim + 1))
# Repeat the input array `window` times, adding a new axis at the end
rep = np.repeat(a[..., None], window, axis=-1)
# Create `window`-lengthed index arrays that increase by one
# for each window (i.e., rolling indices)
ind = np.repeat(np.arange(a.shape[axis])[:, None], window, axis=-1
)[onaxes(axis, ndim)]
ind += np.arange(window)[onaxes(ndim)]
# Handle the edge cases
if (edge_case is None) or (edge_case == "replace"):
ind -= window // 2
ind[ind < 0] = 0
ind[ind >= a.shape[axis]] = a.shape[axis] - 1
elif edge_case == "wrap":
ind -= window // 2
ind %= a.shape[axis]
elif edge_case == "contract":
ind = ind[tuple(slice(1 - window) if i == axis else slice(None)
for i in range(ndim + 1))]
# Select the output array using our array of rolling indices `ind`
selection = tuple(ind if i == axis else np.arange(rep.shape[i])[onaxes(i)]
for i in range(ndim + 1))
return rep[selection]
def generate_sublists(full_list: Sized, sublength: int) -> Generator:
"""Break up a list into sub-lists of a given length"""
def generator():
i = 0
imax = len(full_list)
while i < imax:
yield full_list[i: (i := i + sublength)]
return generator()
def rejoin_sublists(sub_lists: Iterable) -> Generator:
"""Iterate over items in sub-lists created by generate_sublists()"""
if hasattr(sub_lists, "tolist") and callable(sub_lists.tolist):
sub_lists = sub_lists.tolist()
def generator():
for sub_list in sub_lists:
for item in sub_list:
yield item
return generator()
def unbiased_std_factor(n):
"""
Returns 1/c4(n)
"""
if is_arraylike(n):
wh = n < 343
ans = np.ones(np.shape(n)) * (4. * n - 3.) / (4. * n - 4.)
n = n[wh]
ans[wh] = spec.gamma((n - 1) / 2) / np.sqrt(2 / (n - 1)) / spec.gamma(n / 2)
return ans
else:
ans = spec.gamma((n - 1) / 2) / np.sqrt(2 / (n - 1)) / spec.gamma(n / 2)
return ans if n < 343 else (4. * n - 3.) / (4. * n - 4.)
def auto_bootstrap(func, args, nbootstrap=50):
results = [func(*args) for _ in range(nbootstrap)]
results = np.array(results)
mean = np.nanmean(results, axis=0)
std = np.nanstd(results, axis=0, ddof=1)
return mean, std
# noinspection PyPep8Naming
def get_N_subsamples_len_M(sample, N, M, norepeats=False, suppress_warning=False, seed=None):
"""
Returns (N,M,*) array containing N subsamples, each of length M.
We require M < L, where (L,*) is the shape of `sample`.
If norepeats=True, then we require N*M < L."""
with temp_seed(seed):
assert (is_arraylike(sample))
maxM = len(sample)
assert (M <= maxM)
maxN = np.math.factorial(maxM) // (np.math.factorial(M) * np.math.factorial(maxM - M))
if N is None:
N = int(maxM // M)
assert (N <= maxN)
if norepeats:
if N * M > maxM:
msg = "Warning: Cannot make %d subsamples without repeats\n" % N
N = int(maxM / float(M))
msg += "Making %d subsamples instead" % N
if not suppress_warning:
print(msg)
sample = np.asarray(sample)
newshape = (N, M, *sample.shape[1:])
newsize = N * M
np.random.shuffle(sample)
return sample[:newsize].reshape(newshape)
if isinstance(sample, np.ndarray):
return get_N_subsamples_len_M_numpy(sample, N, M, maxM, seed)
else:
return get_N_subsamples_len_M_list(sample, N, M, maxM, seed)
# noinspection PyPep8Naming
def get_N_subsamples_len_M_list(sample, N, M, maxM, seed=None):
with temp_seed(seed):
i = 0
subsamples = []
while i < N:
subsample = set(np.random.choice(maxM, M, replace=False))
if subsample not in subsamples:
subset = []
for index in subsample:
subset.append(sample[index])
subsamples.append(subset)
i += 1
return subsamples
# noinspection PyPep8Naming
def get_N_subsamples_len_M_numpy(sample, N, M, maxM, seed=None):
with temp_seed(seed):
i = 0
subsamples = np.zeros((N, maxM), dtype=bool)
while i < N:
subsample = np.random.choice(maxM, M, replace=False)
subsample = np.bincount(subsample, minlength=maxM).astype(bool)
if np.any(np.all(subsample[None, :] == subsamples[:i, :], axis=1)):
continue
else:
subsamples[i, :] = subsample
i += 1
subset = np.tile(sample, (N, *[1] * len(sample.shape)))[subsamples].reshape((N, M, *sample.shape[1:]))
return subset
def is_arraylike(a):
# return isinstance(a, (tuple, list, np.ndarray))
return isinstance(a, collections.abc.Container
) and not isinstance(a, str)
def is_int(a):
return np.asarray(a).dtype.kind == "i"
def angular_separation(ra1, dec1, ra2=0, dec2=0):
"""All angles (ra1, dec1, ra2=0, dec2=0) must be given in radians"""
cos_theta = np.sin(dec1) * np.sin(dec2) + np.cos(dec1) * np.cos(dec2) * np.cos(ra1 - ra2)
return np.arccos(cos_theta)
def angle_to_dist(angle, redshift, cosmo, deg=False):
if deg:
angle *= np.pi / 180.
angle = min([angle, np.pi / 2.])
z = comoving_disth(redshift, cosmo)
dist = z * 2 * np.tan(angle / 2.)
return dist
def redshift_lim_to_dist(delta_redshift, mean_redshift, cosmo):
redshifts = np.asarray([mean_redshift - delta_redshift / 2., mean_redshift + delta_redshift / 2.])
distances = comoving_disth(redshifts, cosmo)
dist = distances[1] - distances[0]
return dist
# noinspection PyPep8Naming
def get_random_center(Lbox, fieldshape, numcenters=None, seed=None, pad=30):
with temp_seed(seed):
# origin_shift = np.asarray(origin_shift)
Lbox = np.asarray(Lbox)
fieldshape = np.asarray(fieldshape)
if numcenters is None:
shape = 3
else:
shape = (numcenters, 3)
if pad is None:
pad = np.array([0., 0., 0.])
else:
pad = np.asarray(pad)
assert (np.all(2. * pad + fieldshape <= Lbox))
xyz_min = np.random.random(shape) * (Lbox - fieldshape - 2. * pad) # - origin_shift
center = xyz_min + fieldshape / 2. + pad
return center
# noinspection PyPep8Naming
def get_random_gridded_center(Lbox, fieldshape, numcenters=None, pad=None, replace=False, seed=None):
with temp_seed(seed):
Lbox = np.asarray(Lbox)
fieldshape = np.asarray(fieldshape)
if numcenters is None:
numcenters = 1
one_dim = True
else:
one_dim = False
centers = grid_centers(Lbox, fieldshape, pad)
if not replace and numcenters > len(centers):
raise ValueError("numcenters=%d, but there are only %d possible grid centers" % (numcenters, len(centers)))
if isinstance(numcenters, str) and numcenters.lower().startswith("all"):
numcenters = len(centers)
which = np.random.choice(np.arange(len(centers)), numcenters, replace=replace)
centers = centers[which]
if one_dim:
return centers[0]
else:
return centers
# noinspection PyPep8Naming
def grid_centers(Lbox, fieldshape, pad=None):
if pad is None:
pad = np.array([0., 0., 0.])
nbd = (Lbox / (np.asarray(fieldshape) + 2 * pad)).astype(int)
xcen, ycen, zcen = [np.linspace(0, Lbox[i], nbd[i] + 1)[1:] for i in range(3)]
centers = np.asarray(np.meshgrid(xcen, ycen, zcen)).reshape((3, xcen.size * ycen.size * zcen.size)).T
centers -= np.asarray([xcen[0], ycen[0], zcen[0]])[np.newaxis, :] / 2.
return centers
def sample_fraction(sample, fraction, seed=None):
with temp_seed(seed):
assert (0 <= fraction <= 1)
if hasattr(sample, "__len__"):
n = len(sample)
return_indices = False
else:
n = sample
return_indices = True
nfrac = int(n * fraction)
indices = np.random.choice(n, nfrac, replace=False)
if return_indices:
return indices
else:
return sample[indices]
def kwargs2attributes(obj, kwargs):
class_name = str(obj.__class__).split("'")[1].split(".")[1]
if not set(kwargs).issubset(obj.__dict__):
valid_keys = obj.__dict__.keys()
bad_keys = set(kwargs) - valid_keys
raise KeyError("Invalid keys %s in %s creation. Valid keys are: %s"
% (str(bad_keys), class_name, str(valid_keys)))
for key in set(kwargs.keys()):
if kwargs[key] is None:
del kwargs[key]
obj.__dict__.update(kwargs)
def rdz2xyz(rdz, cosmo, use_um_convention=False, deg=False):
"""If cosmo=None then z is assumed to already be distance, not redshift."""
if cosmo is None:
dist = rdz[:, 2]
else:
dist = comoving_disth(rdz[:, 2], cosmo)
if deg:
rdz = rdz.copy()
rdz[:, :2] *= np.pi / 180.0
z = (dist * np.cos(rdz[:, 1]) * np.cos(rdz[:, 0])).astype(np.float32)
x = (dist * np.cos(rdz[:, 1]) * np.sin(rdz[:, 0])).astype(np.float32)
y = (dist * np.sin(rdz[:, 1])).astype(np.float32)
xyz = np.vstack([x, y, z]).T
if use_um_convention:
xyz = xyz_convention_ms2um(xyz)
return xyz # in Mpc/h
def xyz_convention_ms2um(xyz):
# Convert an xyz array from mocksurvey convention (left-handed; z=los)
# to UniverseMachine convention (right-handed; x=los)
xyz = xyz[:, [2, 0, 1]]
xyz[:, 1] *= -1
return xyz
def redshift_rest_flux_correction(from_z, to_z, cosmo):
shift = (1 + from_z) / (1 + to_z)
dist = (cosmo.luminosity_distance(from_z).value /
cosmo.luminosity_distance(to_z).value)
return shift * dist ** 2
def comoving_disth(redshifts, cosmo):
z = np.asarray(redshifts)
dist = cosmo.comoving_distance(z).value * cosmo.h
return (dist.astype(z.dtype)
if is_arraylike(dist) else dist)
def distance2redshift(dist, cosmo, vr=None, zprec=1e-3, h_scaled=True):
c_km_s = c.to('km/s').value
dist_units = units.Mpc / cosmo.h if h_scaled else units.Mpc
def d2z(d):
return cosmology.z_at_value(
cosmo.comoving_distance, d * dist_units, -0.99)
if not is_arraylike(dist):
return d2z(dist)
if len(dist) == 0:
return np.array([])
zmin, zmax = [d2z(f(dist)) for f in [min, max]]
zmin = (zmin + 1) * .99 - 1
zmax = (zmax + 1) * 1.01 - 1
# compute cosmological redshift + doppler shift
num_points = int((zmax - zmin) / zprec) + 2
yy = np.linspace(zmin, zmax, num_points, dtype=np.float32)
xx = cosmo.comoving_distance(yy).value.astype(np.float32)
if h_scaled:
xx *= cosmo.h
f = interp1d(xx, yy, kind='cubic')
z_cos = f(dist).astype(np.float32)
# Add velocity distortion
if vr is None:
redshift = z_cos
else:
redshift = z_cos + (vr / c_km_s) * (1.0 + z_cos)
return redshift
def ra_dec_z(xyz, vel=None, cosmo=None, zprec=1e-3, deg=False):
"""
Convert position array `xyz` and velocity array `vel` (optional),
each of shape (N,3), into ra/dec/redshift array, using the
(ra,dec) convention of
:math:`\\hat{z} \\rightarrow ({\\rm ra}=0,{\\rm dec}=0)`,
:math:`\\hat{x} \\rightarrow ({\\rm ra}=\\frac{\\pi}{2},{\\rm dec}=0)`,
:math:`\\hat{y} \\rightarrow ({\\rm ra}=0,{\\rm dec}=\\frac{\\pi}{2})`
If cosmo is None, redshift is replaced with comoving distance (same units as xyz)
"""
if cosmo is not None:
# remove h scaling from position so we can use the cosmo object
xyz = xyz / cosmo.h
# comoving distance from observer (at origin)
r = np.sqrt(xyz[:, 0] ** 2 + xyz[:, 1] ** 2 + xyz[:, 2] ** 2)
r_cyl_eq = np.sqrt(xyz[:, 2] ** 2 + xyz[:, 0] ** 2)
# radial velocity from observer (at origin)
if vel is None:
vr = None
else:
r_safe = r.copy()
r_safe[r_safe == 0] = 1.
vr = np.sum(xyz * vel, axis=1) / r_safe
if cosmo is None:
redshift = r
else:
redshift = distance2redshift(r, cosmo, vr, zprec, h_scaled=False)
# calculate spherical coordinates
# theta = np.arccos(xyz[:, 2]/r) # <--- causes large round off error near (x,y) = (0,0)
# theta = np.arctan2(r_cyl, xyz[:, 2])
# phi = np.arctan2(xyz[:, 1], xyz[:, 0])
# Put ra,dec = 0,0 on the z-axis
dec = np.arctan2(xyz[:, 1], r_cyl_eq)
ra = np.arctan2(xyz[:, 0], xyz[:, 2])
if deg:
ra *= 180 / np.pi
dec *= 180 / np.pi
return np.vstack([ra, dec, redshift]).T.astype(np.float32)
def update_table(table, coldict):
for key in coldict:
table[key] = coldict[key]
def xyz_array(struc_array, keys=None, attributes=False):
if keys is None:
keys = ['x', 'y', 'z']
if attributes:
struc_array = struc_array.__dict__
return np.vstack([struc_array[key] for key in keys]).T
# noinspection PyPep8Naming,PyUnusedLocal
def logN(data, rands, njackknife=None, volume_factor=1):
del rands
if njackknife is None:
jackknife_factor = 1
else:
n = np.product(njackknife)
jackknife_factor = n / float(n - 1)
return np.log(volume_factor * jackknife_factor * len(data))
# noinspection PyUnusedLocal,PyShadowingNames
def logn(data, rands, volume, njackknife=None):
del rands
if njackknife is None:
jackknife_factor = 1
else:
n = np.product(njackknife)
jackknife_factor = n / float(n - 1)
return np.log(jackknife_factor * len(data) / float(volume))
# noinspection PyPep8Naming
def rand_rdz(N, ralim, declim, zlim, cosmo=None, seed=None):
"""
Returns an array of shape (N,3) with columns ra,dec,z (z is treated
as distance, unless cosmo is specified) within the specified limits such
that the selected points are chosen randomly over a uniform distribution
Caution: Limits beyond dec = +/-pi/2 will be trimmed silently
"""
declim = [max(min(declim), -np.pi/2), min(max(declim), np.pi/2)]
with temp_seed(seed):
N = int(N)
ans = np.random.random((N, 3))
ans[:, 0] = (ralim[1] - ralim[0]) * ans[:, 0] + ralim[0]
ans[:, 1] = np.arcsin((np.sin(declim[1]) - np.sin(declim[0])) * ans[:, 1] + np.sin(declim[0]))
ans[:, 2] = ((zlim[1] ** 3 - zlim[0] ** 3) * ans[:, 2] + zlim[0] ** 3) ** (1. / 3.)
if cosmo is not None:
ans[:, 2] = distance2redshift(ans[:, 2], cosmo=cosmo, vr=None)
return ans
def volume(sqdeg, zlim, cosmo=None):
"""
Returns the comoving volume of a chunk of a sphere in units of [Mpc/h]^3.
z is interpreted as distance [Mpc/h] unless cosmo is given
"""
if cosmo is not None:
zlim = comoving_disth(zlim, cosmo)
omega = sqdeg * (np.pi/180.) ** 2
return omega/3. * (zlim[1] ** 3 - zlim[0] ** 3)
def volume_rdz(ralim, declim, zlim, cosmo=None):
"""
Returns the comoving volume of a chunk of a sphere of given limits in
ra, dec, and z. z is interpreted as distance unless cosmo is given
"""
if cosmo is not None:
zlim = comoving_disth(zlim, cosmo)
omega = 2. * (ralim[1] - ralim[0]) * np.sin((declim[1] - declim[0]) / 2.)
return omega/3. * (zlim[1] ** 3 - zlim[0] ** 3)
def rdz_distance(rdz, rdz_prime, cosmo=None):
"""
rdz is an array of coordinates of shape (N,3) while rdz_prime is a single point of comparison of shape (3,)
z is interpreted as radial distance unless cosmo is given
Returns the distance of each rdz coordinate from rdz_prime
"""
if cosmo is not None:
rdz[:, 2] = comoving_disth(rdz[:, 2], cosmo)
r, d, z = rdz.T
rp, dp, zp = rdz_prime
return np.sqrt(r ** 2 + rp ** 2 - 2. * r * rp * (np.cos(d) * np.cos(dp) * np.cos(r - rp) + np.sin(d) * np.sin(dp)))
def xyz_distance(xyz, xyz_prime):
x, y, z = xyz.T
xp, yp, zp = xyz_prime
return np.sqrt((x - xp) ** 2 + (y - yp) ** 2 + (z - zp) ** 2)
def unit_vector(theta, phi):
x = np.sin(theta) * np.cos(phi)
y = np.sin(theta) * np.sin(phi)
z = np.cos(theta)
return x, y, z
def make_npoly(radius, n):
import spherical_geometry.polygon as spoly
phi1 = 2. * np.pi / float(n)
points = [unit_vector(radius, phi1 * i) for i in
|
np.arange(n)
|
numpy.arange
|
import tensorflow as tf
import numpy as np
from model import Unet
import sys
import skimage.io as io
import cv2
from cv2 import resize
sys.path.append("../tools")
from pycocotools.coco import COCO
from pycocotools import mask
from utils import img_generator, probaToBinaryMask
import argparse
from tqdm import tqdm
def arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--nb_classes", default = "10", type = int, help = "number of categories")
parser.add_argument("--epochs", default = "10", type = int, help = "number of epochs")
parser.add_argument("--batch_size", default = "2", type = int, help = "size of miniibatch")
parser.add_argument("--learning_rate", default = "0.001", type = float, help = "learning_rate")
parser.add_argument("--loss", default = "crossentropy", help = "type of loss function : crossentropy or dice")
args = parser.parse_args()
return args
class Trainer:
def __init__(self, args):
#save args
self.args = args
#init coco utils
self.coco_train = COCO("../annotations/instances_train2014.json")
self.coco_val = COCO("../annotations/instances_val2014.json")
#init tensorflow session
tf.reset_default_graph()
config = tf.ConfigProto(allow_soft_placement=True)
config.gpu_options.allow_growth = True
self.sess = tf.Session(config = config)
#init model
self.input_img = tf.placeholder(tf.float32, shape = (None,None,None,3))
self.label = tf.placeholder(tf.float32, shape = (None,None,None,args.nb_classes))
self.model = Unet(input_img = self.input_img, nb_classes = args.nb_classes)
#define loss : Cross Entropy and Dice
with tf.variable_scope('optimization'):
with tf.variable_scope('loss'):
if args.loss == 'crossentropy':
"""logits = tf.reshape(self.model.output_log, [-1, args.nb_classes])
labels = tf.reshape(self.label, [-1, args.nb_classes])"""
self.loss = -tf.reduce_mean(tf.multiply(self.label,tf.log(self.model.output_proba)))
elif args.loss == "dice":
labels = self.label
proba = self.model.output_proba
intersection = tf.reduce_sum(proba*labels)
union = tf.reduce_sum(proba + labels)
self.loss = -intersection/union
#Optimizer
self.optimizer = tf.train.MomentumOptimizer(learning_rate=args.learning_rate, momentum=0.99)
self.train_op = self.optimizer.minimize(self.loss)
#summary file for tensorboard
self.tf_train_loss = tf.Variable(0.0, trainable = False, name = 'Train_Loss')
self.tf_train_loss_summary = tf.summary.scalar("Loss", self.tf_train_loss)
self.tf_train_accuracy = tf.Variable(0.0, trainable = False, name = 'Train_Accuracy')
self.tf_train_accuracy_summary = tf.summary.scalar("Train Accuracy", self.tf_train_accuracy)
self.tf_train_dice = tf.Variable(0.0, trainable=False, name="Train_Dice_Coef")
self.tf_train_dice_summary = tf.summary.scalar("Train Dice Coef", self.tf_train_dice)
self.tf_eval_accuracy = tf.Variable(0.0, trainable = False, name = 'Eval_accuracy')
self.tf_eval_accuracy_summary = tf.summary.scalar('Evaluation Accuracy', self.tf_eval_accuracy)
self.tf_eval_dice = tf.Variable(0.0, trainable = False, name = "Eval_Dice_Coef")
self.tf_eval_dice_summary = tf.summary.scalar("Evaluation Dice Coef", self.tf_eval_dice)
self.writer = tf.summary.FileWriter('./graphs', self.sess.graph)
#saver
self.saver = tf.train.Saver()
self.sess.run(tf.initialize_all_variables())
def save_model(self, filename):
with tf.Graph().as_default():
self.saver.save(self.sess, filename)
def train(self):
with tf.Graph().as_default():
for i_epoch in range(1, self.args.epochs+1):
#init paramters for summary
loss_train = []
accuracy_train = []
accuracy_val = []
dice_train = []
dice_val = []
#streaming image
#images_train = img_generator('images_train.json')
#images_val = img_generator('images_val.json')
#checkpoint
self.save_model(filename = './checkpoints/checkpoint_epoch-{}.ckpt'.format(i_epoch))
#train
catIDs = list(range(1,self.args.nb_classes+1))
print("Epoch {} \n".format(i_epoch))
print("Train \n")
#minibatch
minibatch_image = []
minibatch_label = []
count = 0
#Find images with categories
imgIds = self.coco_train.getImgIds(catIds = catIDs)
catIDs = [x-1 for x in catIDs]
for imgId in tqdm(imgIds):
count += 1
#get image
image = self.coco_train.loadImgs([imgId])
#create grouth truth map
y = np.zeros((512, 512, self.args.nb_classes))
for cat in catIDs:
annIds = self.coco_train.getAnnIds(imgIds = image[0]['id'], catIds = [cat+1])
anns = self.coco_train.loadAnns(annIds)
if len(anns) > 0:
for ann in anns:
mask = self.coco_train.annToMask(ann)
mask = resize(mask, (512,512), interpolation = cv2.INTER_NEAREST)
y[:,:,cat] = np.logical_or(y[:,:,cat], mask).astype(np.float32)
#import image
img = io.imread("../train2014/{}".format(image[0]["file_name"]))
img = resize(img, (512, 512))
if img.shape == (512,512):
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
minibatch_image.append(img)
minibatch_label.append(y)
if len(minibatch_image) == self.args.batch_size or count == len(imgIds):
# get loss training
loss_train.append(self.sess.run(self.loss, feed_dict={
self.input_img:
|
np.asarray(minibatch_image)
|
numpy.asarray
|
from Synthetic_Dataset import Synthetic_Dataset
import random
import numpy as np
import math
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision.utils as vutils
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision.datasets import CIFAR10, MNIST
from torchvision.models.inception import inception_v3
import argparse
from Run_GAN_Training import *
from ComputationalTools import *
from models import MLP, ResNet18
aux_model_folder = "Aux_Models"
if not os.path.exists(aux_model_folder):
os.makedirs(aux_model_folder)
def Get_classification_logit_prob_class(net, input, device=torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')):
with torch.no_grad():
pred_logits = net(torch.from_numpy(input).to(device).float())
# print(pred_logits)
pred_probs = F.softmax(pred_logits, dim=1).data.cpu().numpy()
# print(pred_probs)
mean_pred_probs = np.mean(pred_probs, axis=0)
# print(mean_pred_probs)
pred_classes = np.argmax(pred_probs, axis=1)
# print(pred_classes)
pred_classes_one_hot = np.zeros_like(pred_probs)
pred_classes_one_hot[np.arange(len(pred_probs)), pred_classes] = 1
# print(pred_classes_one_hot)
pred_classes_count = np.sum(pred_classes_one_hot, axis=0)
# print(pred_classes_count)
mode_num = np.sum(pred_classes_count[:-1] > 0)
# print(mode_num)
return mean_pred_probs, mode_num, pred_classes_count
def Load_aux_classifier(dataset_config):
print("dataset_config", dataset_config)
aux_model_checkpoint_folder_list = glob.glob(os.path.join(aux_model_folder, f"{dataset_config}*"))
print("aux_model_folder", aux_model_folder)
print("dataset_config", dataset_config)
print("aux_model_checkpoint_folder_list", aux_model_checkpoint_folder_list)
aux_model_checkpoint_folder = aux_model_checkpoint_folder_list[0]
aux_model_checkpoint_path_list = glob.glob(os.path.join(aux_model_checkpoint_folder, f"*.pth"))
aux_model_checkpoint_path = aux_model_checkpoint_path_list[0]
""" load_models """
checkpoint = torch.load(aux_model_checkpoint_path)
args = checkpoint["args"]
rng =
|
np.random.RandomState(seed=args.seed)
|
numpy.random.RandomState
|
import numpy as np
import math
def house(v):
v = v.copy()
sigma = np.dot(v[1:], v[1:])
print('v = {}'.format(v))
x0 = v[0]
print('x0 = {}'.format(x0))
if sigma > 0:
mu = math.sqrt(x0*x0 + sigma)
print('mu = {}'.format(mu))
if x0 <= 0:
v0 = x0 - mu
else:
v0 = -sigma/(x0 + mu)
v02 = v0*v0
print('v02 = {}'.format(v02))
beta = 2*v02/(sigma + v02)
print('beta = {}'.format(beta))
v = v / v0
v[0] = 1
print('v = {}'.format(v))
elif x0 < 0:
beta = 2
v[0] = 1
else:
beta = 0
v[0] = 1
return beta, v
A = np.array([[1, -1],[1, 1]])
n = 2
A0 = A
beta, v0 = house(A0[:,0])
print("v0 = {}".format(v0))
v0 = v0.reshape((n,1))
print("v0 = {}".format(v0))
rho = np.dot(v0.transpose(),A[:,1:])
print("rho = {}".format(rho))
Q0 = np.eye(n) - beta * np.dot(v0, v0.transpose())
print("Q0 = {}".format(Q0))
A1 = np.dot(Q0, A0)
print("A1 = {}".format(A1))
beta, v1 = house(A1[1:,1])
print("v1 = {}".format(v1))
v1 =
|
np.vstack((0, v1))
|
numpy.vstack
|
#!/usr/bin/env python
from __future__ import print_function, division
import argparse
from multiprocessing import Pool, cpu_count
import numpy as np # linear algebra
import dicom
import os
import scipy.ndimage
from skimage import measure, morphology
from skimage.segmentation import clear_border
import time
from common import save, load
DESCRIPTION = """
Explain the script here
Following the tutorial given here: https://www.kaggle.com/gzuidhof/data-science-bowl-2017/full-preprocessing-tutorial
Date accessed: 3/7/17
"""
def make_arg_parser():
parser = argparse.ArgumentParser(description=DESCRIPTION)
parser.add_argument('-i', '--input', help='<PATH> The input folder', type=str, required=True)
parser.add_argument('--min_bound', type=int, default=-1000)
parser.add_argument('--max_bound', type=int, default=400)
parser.add_argument('--pixel_mean', type=float, default=.25)
parser.add_argument('-d', '--debug', type=bool, default=False)
parser.add_argument('-o', '--output', help='<PATH> The output folder', type=str, required=True)
return parser
# Load the scans in given folder path
def load_scan(path):
slices = [dicom.read_file(os.path.join(path, s)) for s in os.listdir(path)]
slices.sort(key=lambda x: float(x.ImagePositionPatient[2]))
slice_thickness = 0
index = 0
while slice_thickness == 0:
try:
slice_thickness = slices[index].SliceLocation - slices[index+1].SliceLocation
except AttributeError:
slice_thickness = slices[index].ImagePositionPatient[2] - slices[index+1].ImagePositionPatient[2]
index += 1
slice_thickness = np.abs(slice_thickness)
for s in slices:
s.SliceThickness = slice_thickness
return slices
def get_pixels_hu(slices):
image = np.stack([s.pixel_array for s in slices])
# Convert to int16 (from sometimes int16),
# should be possible as values should always be low enough (<32k)
image = image.astype(np.int16)
# Set outside-of-scan pixels to 0
# The intercept is usually -1024, so air is approximately 0
image[image == -2000] = 0
# Convert to Hounsfield units (HU)
for slice_number in range(len(slices)):
intercept = slices[slice_number].RescaleIntercept
slope = slices[slice_number].RescaleSlope
if slope != 1:
image[slice_number] = slope * image[slice_number].astype(np.float64)
image[slice_number] = image[slice_number].astype(np.int16)
image[slice_number] += np.int16(intercept)
return np.array(image, dtype=np.int16)
def largest_label_volume(im, bg=-1):
vals, counts = np.unique(im, return_counts=True)
counts = counts[vals != bg]
vals = vals[vals != bg]
if len(counts) > 0:
return vals[np.argmax(counts)]
else:
return None
def segment_lung_mask(image, fill_lung_structures=True):
# not actually binary, but 1 and 2.
# 0 is treated as background, which we do not want
binary_image = np.array(image > -400, dtype=np.int8) + 1
binary_image = np.array([clear_border(binary_image[i]) for i in range(binary_image.shape[0])])
labels = measure.label(binary_image)
# Pick the pixel in the very corner to determine which label is air.
# Improvement: Pick multiple background labels from around the patient
# More resistant to "trays" on which the patient lays cutting the air
# around the person in half
background_label = labels[0, 0, 0]
# Fill the air around the person
binary_image[background_label == labels] = 2
# Method of filling the lung structures (that is superior to something like
# morphological closing)
if fill_lung_structures:
# For every slice we determine the largest solid structure
for i, axial_slice in enumerate(binary_image):
axial_slice = axial_slice - 1
labeling = measure.label(axial_slice)
l_max = largest_label_volume(labeling, bg=0)
if l_max is not None: # This slice contains some lung
binary_image[i][labeling != l_max] = 1
binary_image -= 1 # Make the image actual binary
binary_image = 1 - binary_image # Invert it, lungs are now 1
# Remove other air pockets insided body
labels = measure.label(binary_image, background=0)
l_max = largest_label_volume(labels, bg=0)
if l_max is not None: # There are air pockets
binary_image[labels != l_max] = 0
return binary_image
# DO THIS ONLINE
# MIN_BOUND = -1000.0
# MAX_BOUND = 400.0
# PIXEL_MEAN = 0.25
def normalize(image, min_bound=-1000, max_bound=400):
image = (image - min_bound) / (max_bound - min_bound)
image[image > 1] = 1.
image[image < 0] = 0.
return image
# DO THIS OFFLINE
# pixel_corr = 350
def zero_center(image, pixel_mean=350):
image = image - pixel_mean
return image
def resize(img, shape=(50, 50, 20)):
img = img.transpose(2, 1, 0)
zoom_factors = [i/float(j) for i, j in zip(shape, img.shape)]
img = scipy.ndimage.interpolation.zoom(img, zoom=zoom_factors, order=1, mode='nearest')
return img
def add_zero_padding(ndarray):
max_dim = np.max(ndarray.shape)
zeros = np.zeros(shape=[max_dim]*3)
offsets = np.array((max_dim - ndarray.shape) / 2, dtype=np.int8)
zeros[offsets[0]:ndarray.shape[0]+offsets[0], offsets[1]:ndarray.shape[1]+offsets[1], offsets[2]:ndarray.shape[2]+offsets[2]] = ndarray
return zeros
def process_patient(fargs):
input_folder, outfile, args = fargs
t0 = time.clock()
patient = load_scan(input_folder)
curr_patient_pixels = get_pixels_hu(patient)
# DEBUG
# print(curr_patient_pixels.shape)
# if (np.array(curr_patient_pixels.shape) == 0).any():
# print(input_folder)
pix_resampled, spacing = resample(curr_patient_pixels, patient, [1, 1, 1])
del patient
del curr_patient_pixels
# Not sure exactly what that means
segmented_lungs_fill_masked = segment_lung_mask(pix_resampled, True)
print(np.sum(segmented_lungs_fill_masked) / float(np.prod(segmented_lungs_fill_masked.shape)))
# Take care of some edge cases
if np.sum(segmented_lungs_fill_masked) / float(
|
np.prod(segmented_lungs_fill_masked.shape)
|
numpy.prod
|
#!/usr/bin/env python
# coding: utf-8
# # MFRpred
#
# This is the MFRpred code runnning as a jupyter notebook, about the prediction of flux rope magnetic fields
#
# Authors: <NAME>, <NAME>, M. Reiss Space Research Institute IWF Graz, Austria
# Last update: July 2020
#
# How to predict the rest of the MFR if first 10, 20, 30, 40, 50% are seen?
# Everything should be automatically with a deep learning method or ML fit methods
#
# ---
# MIT LICENSE
#
# Copyright 2020, <NAME>, <NAME>, <NAME>
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#
# In[2]:
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib import cm
from scipy import stats
import scipy.io
import sunpy.time
import numpy as np
import time
import pickle
import seaborn as sns
import pandas as pd
import os
import sys
from sunpy.time import parse_time
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error, mean_squared_error, median_absolute_error, r2_score
from sklearn.feature_selection import SelectKBest, SelectPercentile, f_classif
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.linear_model import Ridge
from sklearn.linear_model import ElasticNet
from sklearn.linear_model import HuberRegressor
from sklearn.linear_model import Lars
from sklearn.linear_model import LassoLars
from sklearn.linear_model import PassiveAggressiveRegressor
from sklearn.linear_model import RANSACRegressor
from sklearn.linear_model import SGDRegressor
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from pandas.plotting import scatter_matrix
import warnings
warnings.filterwarnings('ignore')
#get all variables from the input.py file:
from input import feature_hours
#make new directory if it not exists
mfrdir='mfr_predict'
if os.path.isdir(mfrdir) == False: os.mkdir(mfrdir)
plotdir='plots'
if os.path.isdir(plotdir) == False: os.mkdir(plotdir)
os.system('jupyter nbconvert --to script mfrpred.ipynb')
# # 1 feature selection
#
#
# In[5]:
# sns.set_context("talk")
# sns.set_style("darkgrid")
sns.set_context("notebook", font_scale=0.4, rc={"lines.linewidth": 2.5})
#usage of script: python mfr_featureSelection.py wind_features.p sta_features.p stb_features.p --features
# if --features is set, then code will produce pickle-file with features and labels
# if --features is not set, then code will read from already existing pickle-file
# you only have to set features at the first run of the code, or if you changed something in the corresponding parts of the code
# then --features if features need to be determined again
# and --mfr if there are shall be no sheath features determined
features = True
if features: print("get features")
mfr = False
if mfr: print("only mfr")
# first three arguments need to be file names to save features into -
argv0='wind_features.p'
argv1='sta_features.p'
argv2='stb_features.p'
# ####################### functions ###############################################
def get_feature(sc_time, start_time, end_time, sc_ind, sc_feature, feature_hours, *VarArgs):
feature_mean = np.zeros(np.size(sc_ind))
feature_max = np.zeros(np.size(sc_ind))
feature_std = np.zeros(np.size(sc_ind))
for Arg in VarArgs:
if Arg == 'mean':
for p in np.arange(0, np.size(sc_ind)):
# extract values from MFR data
feature_temp = sc_feature[np.where(np.logical_and(sc_time > start_time[sc_ind[p]], sc_time < end_time[sc_ind[p]] + feature_hours / 24.0))]
# print(feature_temp)
feature_mean[p] = np.nanmean(feature_temp)
# print('mean')
elif Arg == 'std':
for p in np.arange(0, np.size(sc_ind)):
# extract values from MFR data
feature_temp = sc_feature[np.where(np.logical_and(sc_time > start_time[sc_ind[p]], sc_time < end_time[sc_ind[p]] + feature_hours / 24.0))]
# print(feature_temp)
feature_std[p] = np.nanstd(feature_temp)
elif Arg == 'max':
for p in np.arange(0, np.size(sc_ind)):
# extract values from MFR data
feature_temp = sc_feature[np.where(np.logical_and(sc_time > start_time[sc_ind[p]], sc_time < end_time[sc_ind[p]] + feature_hours / 24.0))]
# print(feature_temp)
feature_temp = feature_temp[np.isfinite(feature_temp)]
try:
feature_max[p] = np.max(feature_temp)
except ValueError: # raised if `y` is empty.
pass
# print('max')
if np.any(feature_mean) and np.any(feature_max) and np.any(feature_std):
# print('mean and std and max')
return feature_mean, feature_max, feature_std
elif np.any(feature_mean) and np.any(feature_max) and (not np.any(feature_std)):
# print('mean and max')
return feature_mean, feature_max
elif np.any(feature_mean) and (not np.any(feature_max)) and (not np.any(feature_std)):
# print('only mean')
return feature_mean
elif (not np.any(feature_mean)) and np.any(feature_max) and np.any(feature_std):
# print('max and std')
return feature_max, feature_std
elif (not
|
np.any(feature_mean)
|
numpy.any
|
#!/usr/bin/env python
"""This is the grow_tree.py module. This module contains code required to generate morphologically accurate tree
structures from data. Some of this code is specific to growing to fill well defined shapes. The code is not
optimised, and there are other tools developed by our group that can generate tree structures into more complex
shapes more rapidly, using precompiled code-bases. Please contact us for advice on using these tools.
"""
import numpy as np
from . import pg_utilities
from . import analyse_tree
def grow_large_tree(angle_max, angle_min, fraction, min_length, point_limit, volume, thickness, ellipticity,
datapoints, initial_geom, random_seed):
'''
:Function name: **grow_tree_large**
This function uses the volume filling branching algorithm to grow a tree structure toward an arbitrary set of
data points. At this stage the algorithm does not check whether the tree is within the volume at each growth
point. However, this functionality is available in other group softwares, please ask a group member to advise if
you wish to use these other softwares.
:inputs:
:inputs:
- angle_max: The maximum angle between two branches
- angle_min: The miniumum angle between two branches
- fraction: The fraction of distance between stem and datapoint centre of mass to grow
- min_length: Minimum length of a branch
- point_limit: Smallest number of datapoints assigned to a branch
- volume: Volume of ellipsoid
- thickness: Thickness of placenta
- ellipticity: The ratio of y to x dimensions of the placenta
- datapoints: A set of data points distributed within the placenta
- initial_geom: Branching geometry to grow from
:return:
- A geometric structure consisting of 'nodes', 'elems', 'elem_up', and 'elem_down'
- nodes: x,y,z coordinates of node location
- elems: Elements connecting the nodes
- elem_up and elem_down: The connectivity matrices for elements listing up and downstream elements for each
- A list of data point locations associated with terminal branches (useful for post-processing and defining
centre of terminal tissue units.
- tb_list: A list of elements in the tree that are associated with each data point
- tb_loc: The location of that datapoint
'''
np.random.seed(seed=random_seed) #so if you randomly perturb in growing you get repeatable results
if (volume==0) or (thickness==0) or (ellipticity==0):
check_in_ellipsoid = 0
else:
check_in_ellipsoid = 1
# Calulate axis dimensions of ellipsoid with given volume, thickness and ellipticity
if(check_in_ellipsoid):
radii = pg_utilities.calculate_ellipse_radii(volume, thickness, ellipticity)
z_radius = radii['z_radius']
x_radius = radii['x_radius']
y_radius = radii['y_radius']
print('z radius ' + str(z_radius))
print('x_radius ' + str(x_radius))
print('y_radius ' + str(y_radius))
# We can estimate the number of elements in the generated model based on the number of data (seed points) to
# pre-allocate data arrays.
est_generation = int(np.ceil(np.log(len(datapoints)) / np.log(2)))
total_estimated = 0
for i in range(0, est_generation + 1):
total_estimated = total_estimated + 2 ** i
print('total_estimated', total_estimated)
# Define the total number of nodes and elements prior to growing, plus the new number expected
num_elems_old = len(initial_geom["elems"])
num_nodes_old = len(initial_geom["nodes"])
num_elems_new = num_elems_old + total_estimated
num_nodes_new = num_nodes_old + total_estimated
print('Number of existing elements ' + str(num_elems_old))
print('Number of existing nodes ' + str(num_nodes_old))
print('Expected number of elements after growing ', str(num_elems_new))
print('Expected number of nodes after growing ', str(num_nodes_new))
original_data_length = len(datapoints)
# Pre-allocation of data arrays
# elem_directions = np.zeros((num_elems_new, 3))
# elem_order = np.zeros((num_elems_new, 3))
node_loc = np.zeros((num_nodes_new, 4))
node_loc[0:num_nodes_old][:] = initial_geom["nodes"]
elems = np.zeros((num_elems_new, 3), dtype=int)
elems[0:num_elems_old][:] = initial_geom["elems"]
elem_upstream = np.zeros((num_elems_new, 3), dtype=int)
elem_upstream[0:num_elems_old][:] = initial_geom['elem_up']
elem_downstream = np.zeros((num_elems_new, 3), dtype=int)
elem_downstream[0:num_elems_old][:] = initial_geom['elem_down']
# local arrays
nstem = np.zeros((num_elems_new, 2), dtype=int) # number of seeds per parent
map_seed_to_elem = np.zeros(len(datapoints), dtype=int) # seed to elem - initial array for groupings
tb_loc = np.zeros((2 * len(datapoints),4))
# Set initial values for local and global nodes and elements
ne = num_elems_old - 1 # current maximum element number
nnod = num_nodes_old - 1 # current maximum node number
numtb = 0 # count of terminals
parentlist = group_elem_parent_term(0, initial_geom['elem_down']) # master parent list
# Initialise LD array to map each seed point to a parent branch.
# For a single parent, all seed points will initially be mapped to
# it; for multiple parents data_to_mesh is called to calculate
# the closest parent end-point to each seed point.
map_seed_to_elem = map_seed_to_elem + parentlist[0]
map_seed_to_elem = data_to_mesh(map_seed_to_elem, datapoints, parentlist, node_loc, elems)
for npar in range(0,len(parentlist)):
print('Generating children for parent ' + str(npar) + '(elem #' + str(parentlist[npar]) + ') of a total of ' + str(len(parentlist)))
current_parent = parentlist[npar]
num_next_parents = 1
data_current_parent = np.zeros((len(datapoints), 3))
nd_for_parent = 0
for nd in range(0, len(datapoints)):
if map_seed_to_elem[nd] == current_parent:
data_current_parent[nd_for_parent] = datapoints[nd][:]
map_seed_to_elem[nd] = 0
datapoints[nd][:] = 0
nd_for_parent = nd_for_parent + 1
datapoints = datapoints[np.nonzero(map_seed_to_elem)] #remove the datapoints you are currently analysing from master list
map_seed_to_elem = map_seed_to_elem[np.nonzero(map_seed_to_elem)] #remove parent you are currently analysing from master list
data_current_parent.resize(nd_for_parent, 3,refcheck=False)
local_parent_temp = np.zeros(num_elems_new, dtype=int) # rezero local parent arrays
local_parent = np.zeros(num_elems_new, dtype=int)
local_parent[0] = current_parent
map_seed_to_elem_new = np.zeros(len(data_current_parent), dtype=int)
map_seed_to_elem_new = map_seed_to_elem_new + current_parent
remaining_data = len(data_current_parent)
original_data = len(data_current_parent)
# START OF BIFURCATING DISTRIBUTATIVE ALGORITHM
# could make this an optional output at a later date
#print(' newgens #brn total# #term #data')
ngen = 0 # for output, look to have each generation of elements recordded
while num_next_parents != 0:
# for ok in range(0,2):
ngen = ngen + 1 # increment generation from parent for output
num_parents = num_next_parents # update the number of current parents
num_next_parents = 0 # reset the number of local parents for next iteration
noelem_gen = 0
for m in range(0, num_parents):
ne_parent = local_parent[m]
com = mesh_com(ne_parent, map_seed_to_elem_new, data_current_parent)
np_start = int(elems[ne_parent][2])
np_prt_start = int(elems[ne_parent][1])
point1 = node_loc[np_start][1:4]
point2 = node_loc[np_prt_start][1:4]
length_parent = np.linalg.norm(point1 - point2)
# Split the seed points by the plane defined by the parent branch and the com of the
# seedpoints attached to it
colinear = pg_utilities.check_colinear(point1,point2, com)
if colinear:
#peturb COM slightly (exclude one data point)
com = mesh_com(ne_parent, map_seed_to_elem_new, data_current_parent[1:len(data_current_parent)])
split_data = data_splitby_plane(map_seed_to_elem_new, data_current_parent, com,
node_loc[np_prt_start][1:4],
node_loc[np_start][1:4], ne_parent, ne, point_limit)
too_short =0
too_long =0
not_in =0
# Check that there ar enough seedpoints in both groups to proceed
# Note long term one could allow one group to continue and the other not to
if split_data['enough_points'][0] and split_data['enough_points'][1]:
for n in range(0, 2):
branch = True
# Calculate centre of mass to grow toward
com = mesh_com(ne + 1, map_seed_to_elem_new, data_current_parent)
# location of start of new element
start_node_loc = node_loc[np_start][1:4]
# length of new branch
length_new = np.linalg.norm(fraction * (com - start_node_loc))
# check that the new branch is long enough and if not need to adjust length and remove associated data point
if length_new < min_length:
length_new = min_length
branch = False
too_short = 1
if(length_new > 2.0*length_parent and ngen > 4):
length_new = length_parent
branch = False
too_long = 1
# calculate location of end node
end_node_loc = start_node_loc + length_new * (com - start_node_loc) / np.linalg.norm(
(com - start_node_loc))
# Checks that branch angles are appropriate
end_node_loc = mesh_check_angle(angle_min, angle_max, node_loc[elems[ne_parent][1]][1:4],
start_node_loc, end_node_loc, ne_parent, ne + 1)
if(check_in_ellipsoid):
#Check end node is in the ellipsoid
in_ellipsoid = pg_utilities.check_in_ellipsoid(end_node_loc[0], end_node_loc[1], end_node_loc[2],
x_radius, y_radius, z_radius)
if(not in_ellipsoid):
branch = False #This should be the last branch here.
not_in = 1
count = 0
while(not in_ellipsoid and count <=50):
length_new = 0.95*length_new
# calculate location of end node
end_node_loc = start_node_loc + length_new * (com - start_node_loc) / np.linalg.norm(
(com - start_node_loc))
# Check end node is in the ellipsoid
in_ellipsoid = pg_utilities.check_in_ellipsoid(end_node_loc[0], end_node_loc[1],
end_node_loc[2],
x_radius, y_radius, z_radius)
count = count + 1
# Create new elements and nodes
elems[ne + 1][0] = ne + 1 # creating new element
elems[ne + 1][1] = np_start # starts at this node
elems[ne + 1][2] = nnod + 1 # ends at this node
elem_upstream[ne + 1][0] = 1 # The new element has one parent
elem_upstream[ne + 1][1] = ne_parent
elem_downstream[ne + 1][0] = 0 # the new element currently has no children
elem_downstream[ne_parent][0] = elem_downstream[ne_parent][
0] + 1 # the parent element gets this as a child
elem_downstream[ne_parent][elem_downstream[ne_parent][0]] = ne + 1
node_loc[nnod + 1][0] = nnod + 1
node_loc[nnod + 1][1:4] = end_node_loc
ne = ne + 1
nnod = nnod + 1
noelem_gen = noelem_gen + 1 # Only used for runtime output, number of new elements created in current generation
nstem[ne][0] = nstem[ne_parent][0]
if branch:
# We are making a new branch so this one becomes a parent for next time
local_parent_temp[num_next_parents] = ne
num_next_parents = num_next_parents + 1
else:
# Should not branch in the next generation but this is not implemented yet
tb_loc[numtb][0] = ne
count_data = 0
min_dist = 1.0e10
for nd in range(0, len(data_current_parent)):
dist = dist_two_vectors(data_current_parent[nd][:],node_loc[int(elems[ne][2])][1:4])
if dist < min_dist:
if map_seed_to_elem_new[nd] == ne:
count_data = count_data + 1
nd_min = nd
min_dist = dist
if count_data != 0: # If there were any data points associated
map_seed_to_elem_new[nd_min] = 0
remaining_data = remaining_data - 1
tb_loc[numtb][1:4] = data_current_parent[nd_min][:]
numtb = numtb + 1
else: # Not ss so no splitting
# Not enough seed points in the set during the split parent branch becomes a terminal
tb_loc[numtb][0] = ne_parent
min_dist = 1.0e10
count_data = 0
for nd in range(0, len(data_current_parent)):
if map_seed_to_elem_new[nd] != 0:
if map_seed_to_elem_new[nd] == ne + 1:
map_seed_to_elem_new[nd] = ne_parent # give back to parent
if map_seed_to_elem_new[nd] == ne + 2:
map_seed_to_elem_new[nd] = ne_parent
dist = dist_two_vectors(data_current_parent[nd][:], node_loc[int(elems[ne_parent][2])][1:4])
if dist < min_dist:
if map_seed_to_elem_new[nd] == ne_parent:
count_data = count_data + 1
nd_min = nd
min_dist = dist
if count_data != 0: # If there were any data points associated
map_seed_to_elem_new[nd_min] = 0
remaining_data = remaining_data - 1
tb_loc[numtb][1:4] = data_current_parent[nd_min][:]
else:
print('Warning: No datapoint assigned to element: ' + str(ne))
numtb = numtb + 1
# .......Copy the temporary list of branches to NE_OLD. These become the
# .......parent elements for the next branching
for n in range(0, num_next_parents):
local_parent[n] = local_parent_temp[n]
nstem[int(local_parent[n])][1] = 0 # initial count of data points
if remaining_data < original_data: # only need to reallocate data if we have lost some data points
original_data = remaining_data
# reallocate datapoints
map_seed_to_elem_new = reassign_data_to_mesh(map_seed_to_elem_new, data_current_parent,
local_parent[0:num_next_parents], node_loc,
elems)
# # Could make this an optional output at a later date
# print(' ' + str(ngen) + ' ' + str(noelem_gen) + ' ' + str(ne) +
# ' ' + str(numtb) + ' ' + str(remaining_data))
elems.resize(ne + 1, 3, refcheck=False)
elem_upstream.resize(ne + 1, 3, refcheck=False)
elem_downstream.resize(ne + 1, 3, refcheck=False)
node_loc.resize(nnod + 1, 4, refcheck=False)
tb_loc.resize(numtb, 4, refcheck=False)
print('Growing algorithm completed, number of terminal branches: ' + str(numtb))
return {'nodes': node_loc, 'elems': elems, 'elem_up': elem_upstream, 'elem_down': elem_downstream, 'term_loc': tb_loc}
def data_with_parent(current_parent, map_seed_to_elem, datapoints):
new_datapoints = np.zeros((len(datapoints), 3))
nd_for_parent = 0
for nd in range(0, len(datapoints)):
if map_seed_to_elem[nd] == current_parent:
new_datapoints[nd_for_parent] = datapoints[nd][:]
map_seed_to_elem[nd] = 0
datapoints[nd][:] = 0
nd_for_parent = nd_for_parent + 1
datapoints = datapoints[np.nonzero(map_seed_to_elem)]
map_seed_to_elem = map_seed_to_elem[np.nonzero(map_seed_to_elem)]
new_datapoints.resize(nd_for_parent, 3)
return new_datapoints
def grow_chorionic_surface(angle_max, angle_min, fraction, min_length, point_limit,
volume, thickness, ellipticity, datapoints, initial_geom, sorv):
"""
:Function name: **grow_chorionic_surface**
Grows a tree constrained to the surface of an semi-ellipsoid and based on data points defined on that surface.
Employs the space filling branching algorithm
:inputs:
- angle_max: The maximum angle between two branches
- angle_min: The miniumum angle between two branches
- fraction: The fraction of distance between stem and datapoint centre of mass to grow
- min_length: Minimum length of a branch
- point_limit: Smallest number of datapoints assigned to a branch
- volume: Volume of ellipsoid
- thickness: Thickness of placenta
- ellipticity: The ratio of y to x dimensions of the placenta
- datapoints: A set of data points distributed over the chorionic surface
- initial_geom: Branching geometry to grow from
- sorv: Surface or volume
:return:
A geometric structure consisting of 'nodes', 'elems', 'elem_up', and 'elem_down'
- nodes: x,y,z coordinates of node location
- elems: Elements connecting the nodes
- elem_up and elem_down: The connectivity matrices for elements listing up and downstream elements for each
"""
# Calulate axis dimensions of ellipsoid with given volume, thickness and ellipticity
radii = pg_utilities.calculate_ellipse_radii(volume, thickness, ellipticity)
z_radius = radii['z_radius']
x_radius = radii['x_radius']
y_radius = radii['y_radius']
# We can estimate the number of elements in the generated model based on the number of data (seed points) to
# pre-allocate data arrays.
est_generation = int(np.ceil(np.log(len(datapoints)) / np.log(2)))
total_estimated = 0
for i in range(0, est_generation + 1):
total_estimated = total_estimated + 2 ** i
# Define the total number of nodes and elements prior to growing, plus the new number expected
num_elems_old = len(initial_geom["elems"])
num_nodes_old = len(initial_geom["nodes"])
num_elems_new = num_elems_old + total_estimated
num_nodes_new = num_nodes_old + total_estimated
original_data = len(datapoints)
# Pre-allocation of data arrays
# elem_directions = np.zeros((num_elems_new, 3))
# elem_order = np.zeros((num_elems_new, 3))
node_loc = np.zeros((num_nodes_new, 4))
node_loc[0:num_nodes_old][:] = initial_geom["nodes"]
elems = np.zeros((num_elems_new, 3), dtype=int)
elems[0:num_elems_old][:] = initial_geom["elems"]
elem_upstream = np.zeros((num_elems_new, 3), dtype=int)
elem_upstream[0:num_elems_old][:] = initial_geom['elem_up']
elem_downstream = np.zeros((num_elems_new, 3), dtype=int)
elem_downstream[0:num_elems_old][:] = initial_geom['elem_down']
# local arrays
nstem = np.zeros((num_elems_new, 2), dtype=int)
local_parent_temp = np.zeros(num_elems_new, dtype=int)
local_parent = np.zeros(num_elems_new, dtype=int)
map_seed_to_elem = np.zeros(len(datapoints), dtype=int)
tb_list = np.zeros(2 * len(datapoints), dtype=int) # number of terminal bronchioles
# initialise local_parent (list of old terminals) to list of terminals in current geometry
parentlist = group_elem_parent_term(0, initial_geom['elem_down'])
local_parent[0:len(parentlist)] = parentlist
num_parents = len(parentlist) # Curerent number of terminals
num_next_parents = num_parents
for n in range(0, len(parentlist)):
nstem[n][0] = local_parent[n]
# Initialise LD array to map each seed point to a parent branch.
# For a single parent, all seed points will initially be mapped to
# it; for multiple parents data_to_mesh is called to calculate
# the closest parent end-point to each seed point.
map_seed_to_elem = map_seed_to_elem + local_parent[0]
map_seed_to_elem = data_to_mesh(map_seed_to_elem, datapoints, parentlist, node_loc, elems)
# Assign temporary arrays
for nd in range(0, len(datapoints)):
if map_seed_to_elem[nd] != 0:
ne_min = map_seed_to_elem[nd] # element associated with this seed
nstem[ne_min][1] = nstem[ne_min][1] + 1 # This element has x data pints
# Dealing with cases when there are no datapoints assigned with an element
num_parents = 0 # intialise number of parents
for n in range(0, len(parentlist)):
if nstem[parentlist[n]][1] != 0: # if parent has a data point allocated then its in local parent list
local_parent[num_parents] = parentlist[n]
num_parents = num_parents + 1
num_next_parents = num_parents
n_elm_temp = num_next_parents
# remove terminal elements with only one data point associated and corresponding data pomt
# from the group
numtb = 0
for n in range(0, num_next_parents):
ne_min = local_parent[n] # this is the parent in the local list (has at least one datapoint)
if nstem[ne_min][1] < 2: # If only one datapint
for nd in range(0, len(datapoints)):
if (map_seed_to_elem[nd] == ne_min):
map_seed_to_elem[nd] = 0 # remove datapoint from the list
local_parent[n] = 0 # Not a parent, wont branch
n_elm_temp = n_elm_temp - 1 #
tb_list[numtb] = ne_min
numtb = numtb + 1
for n in range(0, num_next_parents):
if local_parent[n] == 0:
i = 0
while (n + i < num_next_parents) and (local_parent[n + i] == 0):
i = i + 1
for m in range(n, num_next_parents - 1):
local_parent[m] = local_parent[m + i]
num_next_parents = n_elm_temp
remaining_data = 0
for nd in range(0, len(datapoints)):
if map_seed_to_elem[nd] > 0:
remaining_data = remaining_data + 1
# START OF BIFURCATING DISTRIBUTATIVE ALGORITHM
# Could potentially make this an optional output at a later date
# print(' newgens #brn total# #term #data')
# Set initial values for local and global nodes and elements
ne = num_elems_old - 1 # current maximum element number
nnod = num_nodes_old - 1 # current maximum node number
ngen = 0 # for output, look to have each generation of elements recordded
while num_next_parents != 0:
# for ok in range(0,2):
ngen = ngen + 1 # increment generation from parent for output
num_parents = num_next_parents # update the number of current parents
num_next_parents = 0 # reset the number of local parents for next iteration
noelem_gen = 0
for m in range(0, num_parents):
ne_parent = local_parent[m]
com = mesh_com(ne_parent, map_seed_to_elem, datapoints)
np_start = int(elems[ne_parent][2])
np_prt_start = int(elems[ne_parent][1])
# Split the seed points by the plane defined by the parent branch and the com of the
# seedpoints attached to it
if sorv == 'surface':
split_data = data_splitby_xy(map_seed_to_elem, datapoints, com, node_loc[np_start][1:3], ne_parent, ne,
point_limit)
else:
split_data = data_splitby_plane(map_seed_to_elem, datapoints, com, node_loc[np_prt_start][1:4],
node_loc[np_start][1:4], ne_parent, ne, point_limit)
# Check that there ar enough seedpoints in both groups to proceed
# Note long term one could allow one group to continue and the other not to
if split_data['enough_points'][0] and split_data['enough_points'][1]:
for n in range(0, 2):
branch = True
# Calculate centre of mass to grow toward
com = mesh_com(ne + 1, map_seed_to_elem, datapoints)
# location of start of new element
start_node_loc = node_loc[np_start][1:4]
# length of new branch
length_new = np.linalg.norm(fraction * (com - start_node_loc))
# check that the new branch is long enough and if not need to adjust length and remove associated data point
if length_new < min_length:
length_new = min_length
branch = False
# calculate location of end node
end_node_loc = start_node_loc + length_new * (com - start_node_loc) / np.linalg.norm(
(com - start_node_loc))
# Checks that branch angles are appropriate
if sorv == 'surface':
# first node is 1st parent node
node1 = np.array(
[node_loc[elems[ne_parent][1]][0], node_loc[elems[ne_parent][1]][1], 0])
# second parent node (start of new branch
node2 = np.array([start_node_loc[0], start_node_loc[1], 0])
# end of new branch
node3 = np.array([end_node_loc[0], end_node_loc[1], 0])
end_node = mesh_check_angle(angle_min, angle_max, node1, node2, node3, ne_parent, ne + 1)
end_node_loc[0:2] = end_node[0:2]
end_node_loc[2] = pg_utilities.z_from_xy(end_node[0], end_node[1], x_radius, y_radius, z_radius)
elif sorv == 'volume':
end_node_loc = mesh_check_angle(angle_min, angle_max, node_loc[elems[ne_parent][1]][1:4],
start_node_loc, end_node_loc, ne_parent, ne + 1)
# Create new elements and nodes
elems[ne + 1][0] = ne + 1 # creating new element
elems[ne + 1][1] = np_start # starts at this node
elems[ne + 1][2] = nnod + 1 # ends at this node
elem_upstream[ne + 1][0] = 1 # The new element has one parent
elem_upstream[ne + 1][1] = ne_parent
elem_downstream[ne + 1][0] = 0 # the new element currently has no children
elem_downstream[ne_parent][0] = elem_downstream[ne_parent][
0] + 1 # the parent element gets this as a child
elem_downstream[ne_parent][elem_downstream[ne_parent][0]] = ne + 1
node_loc[nnod + 1][0] = nnod + 1
node_loc[nnod + 1][1:4] = end_node_loc
ne = ne + 1
nnod = nnod + 1
noelem_gen = noelem_gen + 1 # Only used for runtime output, number of new elements created in current generation
nstem[ne][0] = nstem[ne_parent][0]
if branch:
# We are making a new branch so this one becomes a parent for next time
local_parent_temp[num_next_parents] = ne
num_next_parents = num_next_parents + 1
else:
# Note that this needs to be updated so that the branch and its datapoints get deleted from the list and dont grow nest time
# but for python speed reasons we should leave here for now
local_parent_temp[num_next_parents] = ne
num_next_parents = num_next_parents + 1
# numtb = numtb + 1
else: # Not ss so no splitting
# Not enough seed points in the set during the split parent branch becomes a terminal
tb_list[numtb] = ne_parent
numtb = numtb + 1
min_dist = 1.0e10
count_data = 0
for nd in range(0, len(datapoints)):
if map_seed_to_elem[nd] != 0:
if map_seed_to_elem[nd] == ne + 1:
map_seed_to_elem[nd] = ne_parent # give back to parent
if map_seed_to_elem[nd] == ne + 2:
map_seed_to_elem[nd] = ne_parent
dist = dist_two_vectors(datapoints[nd][:], node_loc[int(elems[ne_parent][2])][1:4])
if dist < min_dist:
if map_seed_to_elem[nd] == ne_parent:
count_data = count_data + 1
nd_min = nd
min_dist = dist
if count_data != 0: # If there were any data points associated
map_seed_to_elem[nd_min] = 0
remaining_data = remaining_data - 1
# .......Copy the temporary list of branches to NE_OLD. These become the
# .......parent elements for the next branching
for n in range(0, num_next_parents):
local_parent[n] = local_parent_temp[n]
nstem[int(local_parent[n])][1] = 0 # initialaw count of data points
if remaining_data < original_data: # only need to reallocate data if we have lost some data points
original_data = remaining_data
# reallocate datapoints
map_seed_to_elem = data_to_mesh(map_seed_to_elem, datapoints, local_parent[0:num_next_parents], node_loc,
elems)
# Could potentially make this an optional output at a later date
# print(' ' + str(ngen) + ' ' + str(noelem_gen) + ' ' + str(ne) +
# ' ' + str(numtb) + ' ' + str(remaining_data))
elems.resize(ne + 1, 3, refcheck=False)
elem_upstream.resize(ne + 1, 3, refcheck=False)
elem_downstream.resize(ne + 1, 3, refcheck=False)
node_loc.resize(nnod + 1, 4, refcheck=False)
return {'nodes': node_loc, 'elems': elems, 'elem_up': elem_upstream, 'elem_down': elem_downstream}
def refine_1D(initial_geom, from_elem,project):
'''
:Function name: **refine_1d**
Refines a 1D branching tree once along its major axis. Has the option to project to the surface of an ellipsoid.
:inputs:
- initial_geom: The branching structure to be refined
- from_elem: The element from which to start refining
- project: A data structure defining whether to project to the surface of an ellipsoid and ellipsoid properties
:return:
A geometric structure consisting of 'nodes', 'elems', 'elem_up', and 'elem_down'
- nodes: x,y,z coordinates of node location
- elems: Elements connecting the nodes
- elem_up and elem_down: The connectivity matrices for elements listing up and downstream elements for each
'''
# Estimate new number of nodes and elements
num_elems_old = len(initial_geom['elems'])
num_nodes_old = len(initial_geom['nodes'])
num_elems_new = 2 * num_elems_old - from_elem + 1
num_nodes_new = num_nodes_old + num_elems_old - from_elem + 1
elems_old = initial_geom['elems']
node_loc_old = initial_geom['nodes']
elem_upstream_old = initial_geom['elem_up']
elem_downstream_old = initial_geom['elem_down']
# allocate temporary arrays
elems = np.zeros((num_elems_new, 3), dtype=int)
node_loc = np.zeros((num_nodes_new, 4))
elem_upstream = np.zeros((num_elems_new, 3), dtype=int)
elem_downstream = np.zeros((num_elems_new, 3), dtype=int)
old_2_new = np.zeros((num_elems_old, 2), dtype=int)
for nnod in range(0, num_nodes_new):
node_loc[nnod][0] = nnod # will be a numeric list of nodes
# copy non-split elements and nodes into the arrays
if from_elem != 0: # nothing needs to be done if from elem is zero
node_loc[0][:] = initial_geom['nodes'][0][:]
elems[0:from_elem][:] = initial_geom['elems'][0:from_elem][:]
elem_upstream[0:from_elem][:] = initial_geom['elem_up'][0:from_elem][:]
elem_downstream[0:from_elem][:] = initial_geom['elem_down'][0:from_elem][:]
for ne in range(0, from_elem):
# grab second node from each non-split element
node_loc[elems_old[ne][2]][:] = node_loc_old[elems_old[ne][2]][:]
old_2_new[ne][0] = ne
old_2_new[ne][1] = ne
new_elems = from_elem - 1
nnod = from_elem
for ne in range(from_elem, num_elems_old):
# split element in two at half way point
old_2_new[ne][0] = new_elems + 1
old_2_new[ne][1] = new_elems + 2
in_node = elems[old_2_new[elem_upstream_old[ne][1]][1]][2]
in_point = node_loc_old[elems_old[ne][1]][1:4]
out_point = node_loc_old[elems_old[ne][2]][1:4]
mid_point = np.zeros(3)
for i in range(0, 3):
mid_point[i] = (in_point[i] + out_point[i]) / 2.0
if project['status']:
mid_point[2] = pg_utilities.z_from_xy(mid_point[0], mid_point[1], project['x_radius'], project['y_radius'], project['z_radius'])
# Create a new node at midpoint
nnod = nnod + 1
node_loc[nnod][1:4] = mid_point
# Next node is outpoint
nnod1 = nnod + 1
node_loc[nnod1][1:4] = out_point
# create first new element
new_elems = new_elems + 1
elems[new_elems][0] = new_elems
elems[new_elems][1] = in_node
elems[new_elems][2] = nnod
new_elems = new_elems + 1
elems[new_elems][0] = new_elems
elems[new_elems][1] = nnod
elems[new_elems][2] = nnod1
nnod = nnod1
node_loc.resize(nnod + 1, 4, refcheck=False)
elems.resize(new_elems + 1, 3, refcheck=False)
elem_connectivity = pg_utilities.element_connectivity_1D(node_loc, elems)
return {'nodes': node_loc, 'elems': elems, 'elem_up': elem_connectivity['elem_up'],
'elem_down': elem_connectivity['elem_down']}
def add_stem_villi(initial_geom, from_elem, sv_length, export_stem, stem_xy_file):
'''
:Function name: **add_stem_villi**
This function takes an initial, refined, branching geometry and adds stem villi, that point up into the placental volume at
close to 90 degrees from their stem branches. The function also exports the location of stem villi so that these
can later be used to generate boundary conditions for uteroplacental flow models.
:inputs:
- initial_geom: An initial branching geometry with node points where stem villi are to be added
- from_elem: Definition of the element from which stem villi are to be generated
- sv_length: Length of stem villi, in units consistent with your geometry
- export_stem: A logical defining whether or not to export the geometry
- stem_xy_file: Filename for export
:return:
A geometric structure consisting of 'nodes', 'elems', 'elem_up', and 'elem_down'
- nodes: x,y,z coordinates of node location
- elems: Elements connecting the nodes
- elem_up and elem_down: The connectivity matrices for elements listing up and downstream elements for each
'''
# Estimate new number of nodes and elements
num_elems_old = len(initial_geom['elems'])
num_nodes_old = len(initial_geom['nodes'])
elems_old = initial_geom['elems']
node_loc_old = initial_geom['nodes']
elem_upstream_old = initial_geom['elem_up']
elem_downstream_old = initial_geom['elem_down']
# calculate number pf new elements to add
num_2_add = 0
for ne in range(from_elem, num_elems_old):
if elem_downstream_old[ne][0] == 1:
num_2_add = num_2_add + 1
# Allocate arrays
num_elems_new = num_elems_old + num_2_add
num_nodes_new = num_nodes_old + num_2_add
elems = np.zeros((num_elems_new, 3), dtype=int)
node_loc = np.zeros((num_nodes_new, 4))
node_loc[0:num_nodes_old][:] = initial_geom['nodes']
elems[0:num_elems_old][:] = initial_geom['elems']
# Create new elements
nnod = num_nodes_old - 1
ne0 = num_elems_old - 1
for ne in range(from_elem, num_elems_old):
if elem_downstream_old[ne][0] == 1:
nnod = nnod + 1
ne0 = ne0 + 1
node_loc[nnod][0] = nnod
elems[ne0][0] = ne0
elems[ne0][1] = elems[ne][2]
elems[ne0][2] = nnod
node_loc[nnod][1:3] = node_loc[elems[ne][2]][1:3]
node_loc[nnod][3] = node_loc[elems[ne][2]][3] - sv_length
elem_connectivity = pg_utilities.element_connectivity_1D(node_loc, elems)
if(export_stem):
f = open(stem_xy_file, 'w')
strahler = analyse_tree.evaluate_orders(node_loc,elems)['strahler']
for ne in range(0,len(elems)):
if(strahler[ne] == 1):
nnod = elems[ne][2]
f.write("%s %s %s\n" % (node_loc[nnod][1], node_loc[nnod][2],ne+1))
f.close()
return {'nodes': node_loc, 'elems': elems, 'elem_up': elem_connectivity['elem_up'],
'elem_down': elem_connectivity['elem_down']}
def mesh_check_angle(angle_min, angle_max, node1, node2, node3, ne_parent, myno):
normal_to_plane = np.zeros(3)
vector_cross_n = np.zeros(3)
vector1 = (node2 - node1)
vector1_u = vector1 / np.linalg.norm(vector1)
vector2 = (node3 - node2)
vector2_u = vector2 / np.linalg.norm(vector2)
angle = pg_utilities.angle_two_vectors(vector1, vector2)
if angle <= 1.e-15:
length = np.linalg.norm(vector2)
node3[0] = node3[0] + np.random.uniform(-0.01 * length, 0.01 * length)
node3[1] = node3[1] + np.random.uniform(-0.01 * length, 0.01 * length)
node3[2] = node3[2] + np.random.uniform(-0.01 * length, 0.01 * length)
vector2 = node3 - node2
# want to rotate vector 2 wrt vector 1
angle = pg_utilities.angle_two_vectors(vector1, vector2)
normal_to_plane[0] = (vector2[1] * vector1[2] - vector2[2] * vector1[1])
normal_to_plane[1] = (vector2[0] * vector1[2] - vector2[2] * vector1[0])
normal_to_plane[2] = (vector2[0] * vector1[1] - vector2[1] * vector1[0])
normal_to_plane_u = normal_to_plane / np.linalg.norm(normal_to_plane)
vector_cross_n[0] = (vector1[1] * normal_to_plane[2] - vector1[2] * normal_to_plane[1])
vector_cross_n[1] = (vector1[0] * normal_to_plane[2] - vector1[2] * normal_to_plane[0])
vector_cross_n[2] = (vector1[0] * normal_to_plane[1] - vector1[1] * normal_to_plane[0])
dotprod = np.dot(vector2, vector_cross_n)
if dotprod < 0.:
angle = -1. * angle
if abs(angle) < angle_min:
# Need to adjust node3 to get a angle equal to angle_min
angle0 = abs(angle)
angle_rot = (angle0 - angle_min) # amount of angle to add
# need to rotate around axis normal to the plane that the original and the vector make
# unit vector normal to plane:
R = np.zeros((3, 3))
R[0][0] = np.cos(angle_rot) + normal_to_plane_u[0] ** 2 * (1 - np.cos(angle_rot))
R[0][1] = normal_to_plane_u[0] * normal_to_plane_u[1] * (1 - np.cos(angle_rot)) - normal_to_plane_u[2] * np.sin(
angle_rot)
R[0][2] = normal_to_plane_u[0] * normal_to_plane[2] * (1 - np.cos(angle_rot)) + normal_to_plane_u[1] * np.sin(
angle_rot)
R[1][0] = normal_to_plane_u[0] * normal_to_plane_u[1] * (1 - np.cos(angle_rot)) + normal_to_plane_u[2] * np.sin(
angle_rot)
R[1][1] = np.cos(angle_rot) + normal_to_plane_u[1] ** 2 * (1 - np.cos(angle_rot))
R[1][2] = normal_to_plane_u[1] * normal_to_plane_u[2] * (1 - np.cos(angle_rot)) - normal_to_plane_u[0] * np.sin(
angle_rot)
R[2][0] = normal_to_plane_u[0] * normal_to_plane[2] * (1 - np.cos(angle_rot)) - normal_to_plane_u[1] * np.sin(
angle_rot)
R[2][1] = normal_to_plane_u[1] * normal_to_plane_u[2] * (1 - np.cos(angle_rot)) + normal_to_plane_u[0] * np.sin(
angle_rot)
R[2][2] = np.cos(angle_rot) + normal_to_plane_u[2] ** 2 * (1 - np.cos(angle_rot))
nu_vec = np.zeros(3)
nu_vec[0] = R[0][0] * vector2[0] + R[0][1] * vector2[1] + R[0][2] * vector2[2]
nu_vec[1] = R[1][0] * vector2[0] + R[1][1] * vector2[1] + R[1][2] * vector2[2]
nu_vec[2] = R[2][0] * vector2[0] + R[2][1] * vector2[1] + R[2][2] * vector2[2]
node3 = node2 + nu_vec
elif abs(angle) > angle_max:
# Need to adjust node3 to get a angle equal to angle_max
angle0 = abs(angle)
angle_rot = (angle0 - angle_max) # amount of angle to add
# need to rotate around axis normal to the plane that the original and the vector make
# unit vector normal to plane:
R = np.zeros((3, 3))
R[0][0] = np.cos(angle_rot) + normal_to_plane_u[0] ** 2 * (1 - np.cos(angle_rot))
R[0][1] = normal_to_plane_u[0] * normal_to_plane_u[1] * (1 - np.cos(angle_rot)) - normal_to_plane_u[2] * np.sin(
angle_rot)
R[0][2] = normal_to_plane_u[0] * normal_to_plane[2] * (1 - np.cos(angle_rot)) + normal_to_plane_u[1] * np.sin(
angle_rot)
R[1][0] = normal_to_plane_u[0] * normal_to_plane_u[1] * (1 -
|
np.cos(angle_rot)
|
numpy.cos
|
# Eclipse SUMO, Simulation of Urban MObility; see https://eclipse.org/sumo
# Copyright (C) 2016-2020 German Aerospace Center (DLR) and others.
# SUMOPy module
# Copyright (C) 2012-2017 University of Bologna - DICAM
# This program and the accompanying materials are made available under the
# terms of the Eclipse Public License 2.0 which is available at
# https://www.eclipse.org/legal/epl-2.0/
# This Source Code may also be made available under the following Secondary
# Licenses when the conditions for such availability set forth in the Eclipse
# Public License 2.0 are satisfied: GNU General Public License, version 2
# or later which is available at
# https://www.gnu.org/licenses/old-licenses/gpl-2.0-standalone.html
# SPDX-License-Identifier: EPL-2.0 OR GPL-2.0-or-later
# @file results_mpl-01-preimportlib.py
# @author <NAME>
# @date
import os
import numpy as np
from collections import OrderedDict
#import matplotlib as mpl
#from matplotlib.patches import Arrow,Circle, Wedge, Polygon,FancyArrow
#from matplotlib.collections import PatchCollection
#import matplotlib.colors as colors
#import matplotlib.cm as cmx
#import matplotlib.pyplot as plt
#import matplotlib.image as image
from coremodules.misc.matplottools import *
import agilepy.lib_base.classman as cm
import agilepy.lib_base.arrayman as am
from agilepy.lib_base.geometry import *
from agilepy.lib_base.processes import Process
def init_plot():
plt.close("all")
fig = plt.figure()
ax = fig.add_subplot(111)
fig.tight_layout()
return ax
def plot_net(ax, net, color_edge="gray", width_edge=2, color_node=None,
alpha=0.5):
for shape in net.edges.shapes.get_value():
x_vec = np.array(shape)[:, 0]
y_vec = np.array(shape)[:, 1]
ax.plot(x_vec, y_vec, color=color_edge, lw=width_edge, alpha=alpha, zorder=-100)
# do nodes
if color_node is None:
is_nodefill = False
color_node = 'none'
else:
is_nodefill = True
#ax.scatter(x_vec[0], y_vec[0], s=np.pi * (10.0)**2, c=colors, alpha=0.5)
coords = net.nodes.coords.get_value()
radii = net.nodes.radii.get_value()
#ax.scatter(coords[:,0], coords[:,1], s=np.pi * (radii)**2, alpha=0.5)
#patches = []
for coord, radius in zip(coords, radii):
ax.add_patch(Circle(coord, radius=radius,
linewidth=width_edge,
edgecolor=color_edge,
facecolor=color_node,
fill=is_nodefill,
alpha=alpha,
zorder=-50))
def plot_maps(ax, maps, alpha=0.5):
# print 'plot_maps'
net = maps.parent.get_net()
rootdir = os.path.dirname(net.parent.get_rootfilepath())
for filename, bbox in zip(maps.filenames.get_value(), maps.bboxes.get_value()):
# print ' ',filename,
if filename == os.path.basename(filename):
# filename does not contain path info
filepath = os.path.join(rootdir, filename)
else:
# filename contains path info (can happen if interactively inserted)
filepath = filename
# print ' filepath',filepath
im = image.imread(filepath)
myaximage = ax.imshow(im, aspect='auto', extent=(
bbox[0, 0], bbox[1, 0], bbox[0, 1], bbox[1, 1]), alpha=alpha, zorder=-1000)
def plot_facilities(ax, facilities, color_building="gray",
color_outline='white', width_line=2,
alpha=0.5):
if color_building is None:
is_fill = False
color_building = 'none'
else:
is_fill = True
for shape in facilities.shapes.get_value():
#x_vec = np.array(shape)[:,0]
#y_vec = np.array(shape)[:,1]
# ax.plot(x_vec, y_vec, color = color_building, lw = width_line,
# alpha=alpha )
ax.add_patch(Polygon(np.array(shape)[:, :2],
linewidth=width_line,
edgecolor=color_outline,
facecolor=color_building,
fill=is_fill,
alpha=alpha,
zorder=-200))
def plot_edgevalues_lines(ax, ids_result, config_ids_edge, values,
width_max=10.0, alpha=0.8, printformat='%.2f',
color_outline=None, color_fill=None,
color_label='black', is_antialiased=True,
is_fill=True, is_widthvalue=True,
arrowshape='left', length_arrowhead=10.0,
headwidthstretch=1.3,
fontsize=32,
valuelabel=''):
head_width = headwidthstretch*width_max
fontsize_ticks = int(0.8*fontsize)
edges = config_ids_edge.get_linktab()
ids_edges = config_ids_edge[ids_result]
#values = config_values[ids_result]
values_norm = np.array(values, dtype=np.float32)/np.max(values)
patches = []
displacement = float(width_max)/2.0
if is_widthvalue:
linewidths = width_max*values_norm
else:
linewidths = width_max * np.ones(len(values_norm), np.float32)
deltaangle_text = -np.pi/2.0
displacement_text = displacement+width_max
jet = cm_jet = plt.get_cmap('jet')
c_norm = colors.Normalize(vmin=0, vmax=np.max(values))
# http://stackoverflow.com/questions/8342549/matplotlib-add-colorbar-to-a-sequence-of-line-plots/11558629#11558629
sm = cmx.ScalarMappable(norm=c_norm, cmap=jet)
sm.set_array(values_norm)
for id_edge, value, value_norm, linewidth in zip(ids_edges, values, values_norm, linewidths):
shape, angles_perb = get_resultshape(edges, id_edge, displacement)
x_vec = np.array(shape)[:, 0]
y_vec = np.array(shape)[:, 1]
deltax = x_vec[-1]-x_vec[0]
deltay = y_vec[-1]-y_vec[0]
# http://matplotlib.org/users/pyplot_tutorial.html
line = mpl.lines.Line2D(x_vec, y_vec, color=sm.to_rgba(value),
linewidth=linewidth,
antialiased=is_antialiased,
alpha=alpha,
solid_capstyle='round',
zorder=0,
)
ax.add_line(line)
if printformat is not '':
angles_text = np.arctan2(deltay, deltax)+deltaangle_text
# print ' angles_text',printformat%value,angles_text/(np.pi)*180,(angles_text>np.pi/2),(angles_text<3*np.pi/2)
if (angles_text > np.pi/2) | (angles_text < -np.pi/2):
angles_text += np.pi
x_label = x_vec[0]+0.66*deltax+displacement_text*np.cos(angles_text)
y_label = y_vec[0]+0.66*deltay+displacement_text*np.sin(angles_text)
ax.text(x_label, y_label, printformat % value,
rotation=angles_text/(np.pi)*180,
color=color_label,
fontsize=fontsize_ticks,
zorder=10,
)
if is_fill:
cbar = plt.colorbar(sm)
# mpl.setp(cbar.ax.yaxis.get_ticklabels(), fontsize=fontsize)#weight='bold',
# cb.ax.tick_params(labelsize=font_size)
if valuelabel != '':
cbar.ax.set_ylabel(valuelabel, fontsize=fontsize) # , weight="bold")
for l in cbar.ax.yaxis.get_ticklabels():
# l.set_weight("bold")
l.set_fontsize(fontsize_ticks)
def plot_edgevalues_arrows(ax, ids_result, config_ids_edge, values,
width_max=10.0, alpha=0.8, printformat='%.2f',
color_outline=None, color_fill=None,
color_label='black', is_antialiased=True,
is_fill=True, is_widthvalue=True,
arrowshape='left', length_arrowhead=10.0,
headwidthstretch=1.3,
fontsize=32,
valuelabel=''):
head_width = headwidthstretch*width_max
fontsize_ticks = int(0.8*fontsize)
edges = config_ids_edge.get_linktab()
ids_edges = config_ids_edge[ids_result]
#values = config_values[ids_result]
values_norm = np.array(values, dtype=np.float32)/np.max(values)
patches = []
displacement = float(width_max)/4.0
if is_widthvalue:
linewidths = width_max*values_norm
else:
linewidths = width_max * np.ones(len(values_norm), np.float32)
deltaangle_text = -np.pi/2.0
displacement_text = displacement+width_max
for id_edge, value, value_norm, linewidth in zip(ids_edges, values, values_norm, linewidths):
shape, angles_perb = get_resultshape(edges, id_edge, displacement)
x_vec = np.array(shape)[:, 0]
y_vec = np.array(shape)[:, 1]
deltax = x_vec[-1]-x_vec[0]
deltay = y_vec[-1]-y_vec[0]
if printformat is not '':
angles_text = np.arctan2(deltay, deltax)+deltaangle_text
if (angles_text > np.pi/2) | (angles_text < -np.pi/2):
angles_text += np.pi
x_label = x_vec[0]+0.66*deltax+displacement_text*np.cos(angles_text)
y_label = y_vec[0]+0.66*deltay+displacement_text*
|
np.sin(angles_text)
|
numpy.sin
|
# 本文用到的库
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
import base64
import streamlit as st
from sklearn import preprocessing
from dtreeviz.trees import *
from data import getDataSetOrigin,dataPreprocessing
import joblib
from DecisionTree import dt_param_selector
import numpy as np
import matplotlib.pyplot as plt
from data import dataPreprocessing
from sklearn.tree import DecisionTreeClassifier
import streamlit as st
def decisionTreeViz(clf):
df = dataPreprocessing()
X, y = df[df.columns[:-1]], df["label"]
viz = dtreeviz(
clf,
X,
y,
orientation="LR",
target_name="label",
feature_names=df.columns[:-1],
class_names=["good", "bad"], # need class_names for classifier
)
return viz
def svg_write(svg, center=True):
"""
Disable center to left-margin align like other objects.
"""
# Encode as base 64
b64 = base64.b64encode(svg.encode("utf-8")).decode("utf-8")
# Add some CSS on top
css_justify = "center" if center else "left"
css = (
f'<p style="text-align:center; display: flex; justify-content: {css_justify};">'
)
html = f'{css}<img src="data:image/svg+xml;base64,{b64}"/>'
# Write the HTML
st.write(html, unsafe_allow_html=True, width=800, caption="决策树")
def plotSurface():
st.set_option('deprecation.showPyplotGlobalUse', False)
# Parameters
n_classes = 2
plot_colors = "ryb"
plot_step = 0.02
# Load data
df = dataPreprocessing()
plt.figure(figsize=(8,4))
for pairidx, pair in enumerate([[1, 0], [1, 3], [1, 4], [1, 5],
[3, 0], [3, 2], [3, 4], [3, 5]]):
# We only take the two corresponding features
X, y = df[df.columns[:-1]].values[:, pair], df["label"]
# Train
clf = DecisionTreeClassifier().fit(X, y)
# Plot the decision boundary
fig=plt.subplot(2, 4, pairidx + 1)
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(
np.arange(x_min, x_max, plot_step),
|
np.arange(y_min, y_max, plot_step)
|
numpy.arange
|
import uuid
import re
import operator
import sys, getopt
import os
import pandas as p
import numpy as np
import numpy.ma as ma
import random
import scipy.stats as ss
import scipy as sp
import scipy.misc as spm
import scipy.special as sps
from scipy.special import psi as digamma
from scipy.stats import truncnorm
from scipy.special import erfc
from scipy.special import erf
from pygam import LinearGAM, s, f
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
from sklearn.preprocessing import PolynomialFeatures
from copy import deepcopy
from copy import copy
import math
from math import floor
import subprocess
from subprocess import Popen, PIPE, STDOUT
from operator import mul, truediv, eq, ne, add, ge, le, itemgetter
import networkx as nx
import argparse
import collections
from collections import deque
from collections import defaultdict
from collections import Counter
from numpy.random import RandomState
from BayesPaths.graph import Graph
from BayesPaths.UtilsFunctions import convertNodeToName
from BayesPaths.UtilsFunctions import elop
from BayesPaths.UtilsFunctions import expNormLogProb
from BayesPaths.UtilsFunctions import TN_vector_expectation
from BayesPaths.UtilsFunctions import TN_vector_variance
from BayesPaths.UtilsFunctions import readRefAssign
from BayesPaths.UnitigGraph import UnitigGraph
from BayesPaths.NMFM import NMF
from BayesPaths.NMF_VB import NMF_VB
from BayesPaths.bnmf_vb import bnmf_vb
from BayesPaths.ResidualBiGraph3 import ResidualBiGraph
from BayesPaths.ResidualBiGraph3 import FlowGraphML
from BayesPaths.ResidualBiGraph3 import FlowFitTheta
from BayesPaths.AugmentedBiGraph import AugmentedBiGraph
from BayesPaths.AugmentedBiGraph import gaussianNLL_F
from BayesPaths.AugmentedBiGraph import gaussianNLL_D
import subprocess
import shlex
import multiprocessing as mp
from multiprocessing.pool import ThreadPool
from multiprocessing import Pool
from pathos.multiprocessing import ProcessingPool
import logging
from subprocess import DEVNULL
def reject_outliers(data, m = 2.):
d = np.abs(data - np.median(data))
mdev = np.median(d)
s = d/mdev if mdev else 0.
return s<m
def call_proc(cmd):
""" This runs in a separate thread. """
#subprocess.call(shlex.split(cmd)) # This will block until cmd finishes
p = subprocess.Popen(shlex.split(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, err = p.communicate()
return (out, err)
def findSuperBubble(directedGraph, source, descendents, parents):
queue = deque([source])
seen = set()
visited = set()
sink = None
while queue:
node = queue.popleft()
visited.add(node)
if node in seen:
seen.remove(node)
nList = list(descendents(node))
if len(nList) > 0:
for child in nList:
if child == source:
break
seen.add(child)
childVisited = set(parents(child))
if childVisited.issubset(visited):
queue.append(child)
if len(queue) == 1 and len(seen) < 2:
if len(seen) == 0 or queue[0] in seen:
if not directedGraph.has_edge(queue[0],source):
sink = queue[0]
break
return (visited, sink)
"""
This module implements the Lowess function for nonparametric regression.
Functions:
lowess Fit a smooth nonparametric regression curve to a scatterplot.
For more information, see
<NAME>: "Robust locally weighted regression and smoothing
scatterplots", Journal of the American Statistical Association, December 1979,
volume 74, number 368, pp. 829-836.
<NAME> and <NAME>: "Locally weighted regression: An
approach to regression analysis by local fitting", Journal of the American
Statistical Association, September 1988, volume 83, number 403, pp. 596-610.
"""
# Authors: <NAME> <<EMAIL>>
#
# License: BSD (3-clause)
from math import ceil
import numpy as np
from scipy import linalg
def lowess(x, y, f=2. / 3., iter=3):
"""lowess(x, y, f=2./3., iter=3) -> yest
Lowess smoother: Robust locally weighted regression.
The lowess function fits a nonparametric regression curve to a scatterplot.
The arrays x and y contain an equal number of elements; each pair
(x[i], y[i]) defines a data point in the scatterplot. The function returns
the estimated (smooth) values of y.
The smoothing span is given by f. A larger value for f will result in a
smoother curve. The number of robustifying iterations is given by iter. The
function will run faster with a smaller number of iterations.
"""
n = len(x)
r = int(ceil(f * n))
h = [np.sort(np.abs(x - x[i]))[r] for i in range(n)]
w = np.clip(np.abs((x[:, None] - x[None, :]) / h), 0.0, 1.0)
w = (1 - w ** 3) ** 3
yest = np.zeros(n)
delta = np.ones(n)
for iteration in range(iter):
for i in range(n):
weights = delta * w[:, i]
b = np.array([np.sum(weights * y), np.sum(weights * y * x)])
A = np.array([[np.sum(weights), np.sum(weights * x)],
[np.sum(weights * x), np.sum(weights * x * x)]])
beta = linalg.solve(A, b)
yest[i] = beta[0] + beta[1] * x[i]
residuals = y - yest
s = np.median(np.abs(residuals))
delta = np.clip(residuals / (6.0 * s), -1, 1)
delta = (1 - delta ** 2) ** 2
return yest
formatter = logging.Formatter('%(asctime)s %(message)s')
def setup_logger(name, log_file, level=logging.INFO):
"""To setup as many loggers as you want"""
handler = logging.FileHandler(log_file)
handler.setFormatter(formatter)
logger = logging.getLogger(name)
logger.setLevel(level)
logger.addHandler(handler)
return logger
class AssemblyPathSVA():
""" Class for structured variational approximation on Assembly Graph"""
minW = 1.0e-3
minLogQGamma = 1.0e-100
minNoiseCov = 100.
minBeta = 1.0e-100
minVar = 1.0e-3
xRangeFixed = 100.
minStrainCoverage = 2.
def __init__(self, prng, logger, assemblyGraphs, source_maps, sink_maps, G = 2, logFile = None, maxFlux=2,
readLength = 100, epsilon = 1.0e5, epsilonNoise = 1.0e-3, alpha=1.0e-9,beta=1.0e-9,alpha0=1.0e-9,beta0=1.0e-9,
no_folds = 10, ARD = False, BIAS = True, NOISE = True, muTheta0 = 1.0, tauTheta0 = 100.0,
minIntensity = None, fgExePath="./runfg_source/", tauThresh = 0.1, nNmfIters=10, bLoess = True, bGam = True, tauType='auto', biasType = 'unitig',
working_dir="/tmp", minSumCov = None, fracCov = None, bARD2 = True):
self.prng = prng #random state to store
self.logger = logger
self.readLength = readLength #sequencing read length
self.assemblyGraphs = dict(assemblyGraphs)
self.source_maps = dict(source_maps)
self.sink_maps = dict(sink_maps)
self.fgExePath = fgExePath
self.factorGraphs = {} # dict of factorGraphs as pyfac Graphs
self.factorDiGraphs = {} # dict of factorGraphs as networkx diGraphs
self.unitigFactorNodes = {}
self.unitigFluxNodes = {}
self.maxFlux = 2
self.maxTotal = 16
self.working_dir = working_dir
#define dummy source and sink node names
self.sinkNode = 'sink+'
self.sourceNode = 'source+'
self.no_folds = no_folds
if minIntensity == None:
self.minIntensity = AssemblyPathSVA.minStrainCoverage/self.readLength
else:
self.minIntensity = minIntensity
#prior parameters for Gamma tau
self.alpha = alpha
self.beta = beta
self.ARD = ARD
self.bARD2 = bARD2
if self.ARD:
self.alpha0, self.beta0 = alpha0, beta0
self.BIAS = BIAS
if self.BIAS:
self.muTheta0 = muTheta0
self.tauTheta0 = tauTheta0
self.tauType = tauType
self.nNmfIters = nNmfIters
self.V = 0
self.mapIdx = {}
self.mapUnitigs = {}
self.adjLengths = {}
self.covMapAdj = {}
self.unitigs = []
self.genes = []
self.mapGeneIdx = collections.defaultdict(dict)
bFirst = True
self.nBubbles = 0
self.mapBubbles = {}
self.augmentedBiGraphs = {}
self.residualBiGraphs = {}
geneList = sorted(assemblyGraphs)
genesRemove = []
for gene in geneList:
self.logger.info('Construct factor graph for: %s', gene)
assemblyGraph = self.assemblyGraphs[gene]
source_names = [convertNodeToName(source) for source in source_maps[gene]]
sink_names = [convertNodeToName(sink) for sink in sink_maps[gene]]
assemblyGraph.setDirectedBiGraphSource(source_names,sink_names)
self.kFactor = self.readLength/(self.readLength - assemblyGraph.overlapLength + 1.)
try:
(factorGraph, unitigFactorNode, unitigFluxNode, factorDiGraph, bubble_map) = self.createFactorGraph(assemblyGraph, source_maps[gene], sink_maps[gene])
except ValueError as e:
print('COG ' + gene + ' too large not processing')
genesRemove.append(gene)
continue
self.augmentedBiGraphs[gene] = AugmentedBiGraph.createFromUnitigGraph(assemblyGraph)
self.residualBiGraphs[gene] = ResidualBiGraph.createFromUnitigGraph(assemblyGraph)
self.genes.append(gene)
unitigsDash = list(unitigFactorNode.keys())
unitigsDash.sort(key=int)
self.factorGraphs[gene] = factorGraph
self.factorDiGraphs[gene] = factorDiGraph
self.unitigFactorNodes[gene] = unitigFactorNode
self.unitigFluxNodes[gene] = unitigFluxNode
self.mapUnitigs[gene] = unitigsDash
unitigAdj = [gene + "_" + s for s in unitigsDash]
self.unitigs.extend(unitigAdj)
for (unitigNew, unitig) in zip(unitigAdj,unitigsDash):
if unitig.startswith('connect'):
self.adjLengths[unitigNew] = 0.0
else:
#self.adjLengths[unitigNew] = assemblyGraph.lengths[unitig] - 2.0*assemblyGraph.overlapLength + 2.0*self.readLength
self.adjLengths[unitigNew] = assemblyGraph.lengths[unitig] - 2.0*assemblyGraph.overlapLength + self.readLength
assert self.adjLengths[unitigNew] > 0
self.mapIdx[unitigNew] = self.V
self.mapGeneIdx[gene][unitig] = self.V
self.covMapAdj[unitigNew] = assemblyGraph.covMap[unitig] * float(self.adjLengths[unitigNew])*(self.kFactor/self.readLength)
if bFirst:
self.S = assemblyGraph.covMap[unitig].shape[0]
bFirst = False
self.mapBubbles[self.V] = bubble_map[unitig]
self.V += 1
for gene in genesRemove:
del self.assemblyGraphs[gene]
del self.sink_maps[gene]
del self.source_maps[gene]
self.cGraph = AugmentedBiGraph.combineGraphs(self.augmentedBiGraphs, self.genes)
self.biasMap = {}
self.nBias = 0
if biasType == 'bubble':
self.biasMap = self.mapBubbles
self.nBias = self.nBubbles
elif biasType == 'unitig':
self.nBias = self.V
self.biasMap = {v:v for v in range(self.V)}
elif biasType == 'gene':
self.nBias = len(self.genes)
gene_idx = 0
for gene, unitigs in self.mapUnitigs.items():
for unitig in unitigs:
v = self.mapGeneIdx[gene][unitig]
self.biasMap[v] = gene_idx
gene_idx += 1
else:
self.logger.error('Invalid bias type')
self.biasType = biasType
self.logger.info('Using bias type: %s', self.biasType)
#find degenerate unitig sequences
(self.degenSeq, self.MaskDegen) = self.flag_degenerate_sequences()
self.VDash = self.V - len(self.degenSeq.keys())
self.logger.info('Using %d of %d non-degenerate unitigs',self.VDash,self.V)
self.X = np.zeros((self.V,self.S))
self.XN = np.zeros((self.V,self.S))
self.lengths = np.zeros(self.V)
#note really need to remove unreachable nodes from calculations
self.logPhiPrior = np.zeros(self.V)
for gene, unitigFactorNode in self.unitigFactorNodes.items():
self.setPhiConstant(self.mapUnitigs[gene], self.mapGeneIdx[gene], unitigFactorNode)
idx = 0
for v in self.unitigs:
covName = None
if v in self.covMapAdj:
covName = self.covMapAdj[v]
else:
self.logger.error('Cannot get coverage for unitig: %s',v)
self.lengths[idx] = self.adjLengths[v]
self.X[idx,:] = covName
if self.lengths[idx] > 0.:
self.XN[idx,:] = covName/self.lengths[idx]
idx=idx+1
self.XD = np.floor(self.X).astype(int)
sumSourceCovs = Counter()
sumSinkCovs = Counter()
sumSourceCovsS = defaultdict(lambda:np.zeros(self.S))
sumSinkCovsS = defaultdict(lambda:np.zeros(self.S))
self.geneCovs = {}
self.geneDegenerate = {}
self.gene_maps = defaultdict(set)
for gene, sources in self.source_maps.items():
for source in sources:
sunitig = source[0]
sumSourceCovs[gene] += np.sum(self.assemblyGraphs[gene].covMap[sunitig])
sumSourceCovsS[gene] += self.assemblyGraphs[gene].covMap[sunitig]
vunitig = self.mapGeneIdx[gene][sunitig]
if vunitig in self.degenSeq:
mapv = self.degenSeq[vunitig]
mapGene = self.unitigs[mapv].split('_')[0]
self.gene_maps[mapGene].add(gene)
self.geneDegenerate[gene] = mapGene
for gene, sinks in self.sink_maps.items():
#print(gene)
for sink in sinks:
sunitig = sink[0]
if sunitig in self.mapGeneIdx[gene]:
sumSinkCovs[gene] += np.sum(self.assemblyGraphs[gene].covMap[sunitig])
sumSinkCovsS[gene] += self.assemblyGraphs[gene].covMap[sunitig]
#print(str(sunitig))
vunitig = self.mapGeneIdx[gene][sunitig]
if vunitig in self.degenSeq:
mapv = self.degenSeq[vunitig]
mapGene = self.unitigs[mapv].split('_')[0]
self.gene_maps[mapGene].add(gene)
self.geneDegenerate[gene] = mapGene
for gene, sinkCovs in sumSinkCovs.items():
tempMatrix = np.zeros((2,self.S))
tempMatrix[0,:] = sumSinkCovsS[gene]
tempMatrix[1,:] = sumSourceCovsS[gene]
self.geneCovs[gene] = np.mean(tempMatrix,axis=0)
self.maxSampleCov = 0.
if minSumCov is not None:
self.minSumCov = minSumCov
self.fracCov = 0.0
elif fracCov is not None:
self.fracCov = fracCov
self.estCov = np.mean(np.asarray(list(sumSourceCovs.values()) + list(sumSinkCovs.values())))
self.minSumCov = self.fracCov*self.estCov
self.meanSampleCov = np.mean(np.array(list(sumSourceCovsS.values()) + list(sumSinkCovsS.values())),axis=0)
self.maxSampleCov = self.fracCov*np.max(self.meanSampleCov)
else:
self.minSumCov = 0.0
self.fracCov = 0.0
# print("Minimum coverage: " + str(self.minSumCov))
if self.minSumCov > 0.0:
self.adjUncertain = np.max(self.meanSampleCov)/self.readLength
for gene, unitigFluxNode in self.unitigFluxNodes.items():
self.removeNoise(unitigFluxNode, self.mapUnitigs[gene], gene, self.minSumCov)
sumCov=np.sum(self.meanSampleCov)
self.sumCov = sumCov
#self.maxFlow = (5.0*sumCov)/self.readLength
self.maxFlow = 1.
(self.cRGraph, cIdx) = ResidualBiGraph.combineGraphs(self.residualBiGraphs, self.genes,self.mapGeneIdx,self.maxFlow)
self.cGeneIdx = {}
self.cGeneIdx['gene'] = cIdx
self.logger.info('Read length used %d', self.readLength)
self.logger.info('Kmer coverage conversion factor %.3f', self.kFactor)
self.totalCov = sumCov*self.kFactor
self.logger.info('Total sum of sample coverages: %.3f', self.totalCov)
self.minIntensity = max(1.5,self.fracCov*self.totalCov)/self.readLength
self.logger.info('Set minimum intensity/cov for strain: %.3f,%.3f', self.minIntensity, self.minIntensity*self.readLength)
self.NOISE = NOISE
if self.totalCov < self.minNoiseCov:
self.NOISE = False
self.logger.info('Coverage < %.3f no noise', self.minNoiseCov)
self.logger.info('Applying noise: %s', str(self.NOISE))
if self.tauType == 'auto':
xRange = np.max(self.X) - np.min(self.X[self.X > 0])
self.logger.info('Automatically set precision')
if xRange < AssemblyPathSVA.xRangeFixed:
self.logger.info('Xrange %.3f < %.3f used fixed precision',xRange, AssemblyPathSVA.xRangeFixed)
self.tauType = 'fixed'
else:
self.logger.info('Xrange %.3f > %.3f used log-scaled precision',xRange, AssemblyPathSVA.xRangeFixed)
self.tauType = 'log'
if self.tauType == 'fixed':
self.bLogTau = False
self.bFixedTau = True
self.bPoissonTau = False
elif self.tauType == 'log':
self.bLogTau = True
self.bFixedTau = False
self.bPoissonTau = False
elif self.tauType == 'empirical':
self.bLogTau = False
self.bFixedTau = False
self.bPoissonTau = False
elif self.tauType == 'poisson':
self.bLogTau = False
self.bFixedTau = False
self.bPoissonTau = True
self.expTau = 1.0/(self.X + 0.5)
self.expLogTau = np.log(self.expTau)
else:
self.logger.error("Hmm... impossible tau strategy disturbing")
self.logger.info('Precision type: %s', self.tauType)
#create mask matrices
self.Identity = np.ones((self.V,self.S))
#Now initialise SVA parameters
self.G = G
if self.NOISE:
self.GDash = self.G + 1
self.epsilonNoise = epsilonNoise
if self.maxSampleCov > 0.:
self.epsilonNoise = self.maxSampleCov/self.readLength
else:
self.GDash = self.G
self.Omega = self.V*self.S
#list of mean assignments of strains to graph
self.expPhi = np.zeros((self.V,self.GDash))
self.expPhi2 = np.zeros((self.V,self.GDash))
self.HPhi = np.zeros((self.V,self.GDash))
if self.NOISE:
self.expPhi[:,self.G] = 1.
self.expPhi2[:,self.G] = 1.
self.epsilon = epsilon #parameter for gamma exponential prior
self.expGamma = np.zeros((self.GDash,self.S)) #expectation of gamma
self.expGamma2 = np.zeros((self.GDash,self.S))
self.muGamma = np.zeros((self.GDash,self.S))
self.tauGamma = np.zeros((self.GDash,self.S))
self.varGamma = np.zeros((self.GDash,self.S))
#current excitations on the graph
self.eLambda = np.zeros((self.V,self.S))
self.margG = dict()
for gene in self.genes:
self.margG[gene] = [dict() for x in range(self.G)]
if self.ARD:
self.alphak_s, self.betak_s = np.zeros(self.G), np.zeros(self.G)
self.exp_lambdak, self.exp_loglambdak = np.zeros(self.G), np.zeros(self.G)
for g in range(self.G):
self.alphak_s[g] = self.alpha0
self.betak_s[g] = self.beta0
self.update_exp_lambdak(g)
if self.BIAS:
self.expThetaCat = np.ones(self.nBias)
self.expThetaCat.fill(self.muTheta0)
self.expTheta2Cat = np.ones(self.nBias)
self.expTheta2Cat.fill(self.muTheta0*self.muTheta0)
self.muThetaCat = np.ones(self.nBias)
self.muThetaCat.fill(self.muTheta0)
self.tauThetaCat = np.ones(self.nBias)
self.tauThetaCat.fill(self.tauTheta0)
self.expTheta = np.ones(self.V)
self.expTheta.fill(self.muTheta0)
self.expTheta2 = np.ones(self.V)
self.expTheta2.fill(self.muTheta0*self.muTheta0)
self.muTheta = np.ones(self.V)
self.muTheta.fill(self.muTheta0)
self.tauTheta = np.ones(self.V)
self.tauTheta.fill(self.tauTheta0)
self.varTheta = 1.0/self.tauTheta
self.elbo = 0.
self.bLoess = bLoess
self.bGam = bGam
self.tauThresh = tauThresh
self.logX = np.log(self.X + 0.5)
self.expTau = np.full((self.V,self.S),self.alpha/self.beta)
self.expLogTau = np.full((self.V,self.S), digamma(self.alpha)- math.log(self.beta))
self.betaTau = np.full((self.V,self.S),self.beta)
self.alphaTau = np.full((self.V,self.S),self.alpha)
def flag_degenerate_sequences(self):
#First test for unitig overlaps
uniqSeqs = defaultdict(list)
for gene in sorted(self.assemblyGraphs):
assemblyGraph = self.assemblyGraphs[gene]
unitigs = self.mapUnitigs[gene]
for unitig in unitigs:
uniqSeqs[assemblyGraph.sequences[unitig]].append((gene,unitig))
maskMatrix = np.ones((self.V,self.S))
degenSeq = {}
for uniqSeq, hits in uniqSeqs.items():
if len(hits) > 1:
for hit in hits[1:]:
vmask = self.mapGeneIdx[hit[0]][hit[1]]
maskMatrix[vmask,:] = 0.
degenSeq[vmask] = self.mapGeneIdx[hits[0][0]][hits[0][1]]
return (degenSeq, maskMatrix)
def update_lambdak(self,k):
''' Parameter updates lambdak. '''
if self.bARD2:
self.alphak_s[k] = self.alpha0 + 0.5*self.S
self.betak_s[k] = self.beta0 + 0.5*self.expGamma2[k,:].sum()
else:
self.alphak_s[k] = self.alpha0 + self.S
self.betak_s[k] = self.beta0 + self.expGamma[k,:].sum()
def update_exp_lambdak(self,g):
''' Update expectation lambdak. '''
self.exp_lambdak[g] = self.alphak_s[g]/self.betak_s[g]
self.exp_loglambdak[g] = digamma(self.alphak_s[g]) - math.log(self.betak_s[g])
def writeNetworkGraph(self,networkGraph, fileName):
copyGraph = networkGraph.copy()
for (n,d) in copyGraph.nodes(data=True):
del d["code"]
nx.write_graphml(copyGraph,fileName)
def createFactorGraph(self, assemblyGraph, sources, sinks):
tempGraph = self.createTempGraph(assemblyGraph, assemblyGraph.unitigs)
self.addSourceSink(tempGraph, sources, sinks)
#use largest connected factor graph
tempUFactor = tempGraph.to_undirected()
compFactor = sorted(nx.connected_components(tempUFactor),key = len, reverse=True)
for c in compFactor:
if 'source+' in c and 'sink+' in c:
largestFactor = c
break
fNodes = list(tempGraph.nodes())
for node in fNodes:
if node not in largestFactor:
tempGraph.remove_node(node)
#self.writeNetworkGraph(tempGraph,"temp.graphml")
bubble_list = []
bidx = self.nBubbles
node = 'source+'
while node != 'sink+':
(visited,sink) = findSuperBubble(tempGraph,node,tempGraph.neighbors,tempGraph.predecessors)
if sink is not None:
bubble_list.append((node,sink,visited))
node = sink
else:
break
try:
(factorGraph, unitigFactorNodes, unitigFluxNodes) = self.generateFactorGraph(tempGraph, assemblyGraph.unitigs)
except ValueError as e:
print('Not using COG as factor graph too large')
raise
unitigsDash = list(unitigFactorNodes.keys())
bubble_map = {}
map_bubble = defaultdict(list)
for (node,sink,visited) in bubble_list:
unode = node[:-1]
if unode in unitigsDash:
bubble_map[unode] = bidx
map_bubble[bidx].append(unode)
bidx += 1
for visit in visited:
if visit != node:
uvisit = visit[:-1]
if uvisit in unitigsDash:
bubble_map[uvisit] = bidx
map_bubble[bidx].append(uvisit)
if len(map_bubble[bidx]) > 0:
bidx += 1
for unitig in unitigsDash:
if unitig not in bubble_map:
bubble_map[unitig] = bidx
map_bubble[bidx].append(unitig)
if len(map_bubble[bidx]) > 0:
bidx += 1
self.nBubbles = bidx
return (factorGraph, unitigFactorNodes, unitigFluxNodes, tempGraph,bubble_map)
def generateFactorGraph(self, factorGraph, unitigs):
probGraph = Graph()
for node in factorGraph:
if 'factor' not in factorGraph.nodes[node]:
print(str(node))
else:
if not factorGraph.nodes[node]['factor']:
#just add edge as variable
probGraph.addVarNode(node,self.maxFlux)
for node in factorGraph:
if factorGraph.nodes[node]['factor']:
inNodes = list(factorGraph.predecessors(node))
outNodes = list(factorGraph.successors(node))
nIn = len(inNodes)
nOut = len(outNodes)
Ntotal = nIn + nOut
if Ntotal < self.maxTotal:
factorMatrix = np.zeros([self.maxFlux]*Ntotal)
for indices, value in np.ndenumerate(factorMatrix):
fIn = sum(indices[0:nIn])
fOut = sum(indices[nIn:])
if node == self.sourceNode:
if fIn == fOut:
if fIn == 0:
factorMatrix[indices] = 1.0
else:
factorMatrix[indices] = 1.0
else:
if fIn == fOut:
factorMatrix[indices] = 1.0
mapNodeList = [probGraph.mapNodes[x] for x in inNodes + outNodes]
#mapNodes[node] = probGraph.addFacNode(factorMatrix, *mapNodeList)
probGraph.addFacNode(factorMatrix, *mapNodeList)
else:
raise ValueError('Too many inputs links to node')
unitigFacNodes = {}
unitigFluxNodes = {}
for unitig in unitigs:
plusNode = unitig + "+"
inNodesPlus = []
if plusNode in factorGraph:
inNodesPlus = list(factorGraph.predecessors(plusNode))
minusNode = unitig + "-"
inNodesMinus = []
if minusNode in factorGraph:
inNodesMinus = list(factorGraph.predecessors(minusNode))
nInPlus = len(inNodesPlus)
nInMinus = len(inNodesMinus)
Ntotal = nInPlus + nInMinus
if Ntotal > 0:
mapNodesF = [probGraph.mapNodes[x] for x in inNodesPlus + inNodesMinus]
nMax = Ntotal*(self.maxFlux - 1) + 1
probGraph.addVarNode(unitig,nMax)
dimF = [nMax] + [self.maxFlux]*Ntotal
fluxMatrix = np.zeros(dimF)
dummyMatrix = np.zeros([self.maxFlux]*Ntotal)
for indices, value in np.ndenumerate(dummyMatrix):
tIn = sum(indices)
fluxMatrix[tuple([tIn]+ list(indices))] = 1.0
unitigFluxNodes[unitig] = probGraph.addFacNode(fluxMatrix, *([probGraph.mapNodes[unitig]] + mapNodesF))
discreteMatrix = np.zeros((nMax,1))
unitigFacNodes[unitig] = probGraph.addFacNode(discreteMatrix, probGraph.mapNodes[unitig])
return (probGraph,unitigFacNodes, unitigFluxNodes)
def removeNoise(self, unitigFluxNodes, unitigs, gene, minSumCov):
for unitig in unitigs:
v_idx = self.mapGeneIdx[gene][unitig]
sumCov = np.sum(self.X[v_idx,:])
if sumCov < minSumCov:
unitigFluxNodes[unitig].P = np.zeros_like(unitigFluxNodes[unitig].P)
zeroth = next(np.ndindex(unitigFluxNodes[unitig].P.shape))
unitigFluxNodes[unitig].P[zeroth] = 1.
def createTempGraph(self, assemblyGraph, unitigs):
factorGraph = nx.DiGraph()
for node in unitigs:
#add positive and negative version of untig to factor graph
nodePlus = (node, True)
nodeMinus = (node, False)
nodePlusName = convertNodeToName(nodePlus)
nodeMinusName = convertNodeToName(nodeMinus)
if nodePlusName not in factorGraph:
factorGraph.add_node(nodePlusName, factor=True, code=nodePlus)
if nodeMinusName not in factorGraph:
factorGraph.add_node(nodeMinusName, factor=True, code=nodeMinus)
#get all links outgoing given +ve direction on node
for outnode, dirns in assemblyGraph.overlaps[node].items():
for dirn in dirns:
(start,end) = dirn
#add outgoing positive edge
if start:
addEdge = (nodePlus, (outnode, end))
else:
#reverse as incoming edge
addEdge = ((outnode,not end), (node, True))
edgeName = convertNodeToName(addEdge)
if edgeName not in factorGraph:
factorGraph.add_node(edgeName, factor=False, code=addEdge)
if start:
factorGraph.add_edge(nodePlusName, edgeName)
else:
factorGraph.add_edge(edgeName, nodePlusName)
#add negative edges
if start:
#reverse as incoming edge
addEdge = ((outnode, not end),(nodeMinus))
else:
addEdge = (nodeMinus, (outnode, end))
edgeName = convertNodeToName(addEdge)
if edgeName not in factorGraph:
factorGraph.add_node(edgeName, factor=False, code=addEdge)
if start:
factorGraph.add_edge(edgeName, nodeMinusName)
else:
factorGraph.add_edge(nodeMinusName, edgeName)
return factorGraph
def addSourceSink(self, tempGraph, sources, sinks):
#add sink factor and dummy flow out
if self.sinkNode not in tempGraph:
tempGraph.add_node(self.sinkNode, factor=True, code=('sink',True))
node_code = (('sink',True),('infty',True))
sinkEdge = convertNodeToName(node_code)
tempGraph.add_node(sinkEdge, factor=False, code=node_code)
tempGraph.add_edge(self.sinkNode, sinkEdge)
if self.sourceNode not in tempGraph:
tempGraph.add_node(self.sourceNode, factor=True, code=('source',True))
node_code = (('zero',True),('source',True))
sourceEdge = convertNodeToName(node_code)
tempGraph.add_node(sourceEdge, factor=False, code=node_code)
tempGraph.add_edge(sourceEdge, self.sourceNode)
for (sinkid,dirn) in sinks:
node_code = ((sinkid,dirn),('sink',True))
edgeName = convertNodeToName(node_code)
sinkName = convertNodeToName((sinkid,dirn))
tempGraph.add_node(edgeName, factor=False, code=node_code)
tempGraph.add_edge(sinkName,edgeName)
tempGraph.add_edge(edgeName,self.sinkNode)
for (sourceid,dirn) in sources:
node_code = (('source',True),(sourceid,dirn))
edgeName = convertNodeToName(node_code)
sourceName = convertNodeToName((sourceid,dirn))
tempGraph.add_node(edgeName, factor=False, code=node_code)
tempGraph.add_edge(edgeName,sourceName)
tempGraph.add_edge(self.sourceNode,edgeName)
def parseMargString(self, factorGraph, lines):
mapMarg = {}
lines = [x.strip() for x in lines]
for line in lines:
matchP = re.search(r'\((.*)\)',line)
if matchP is not None:
matchedP = matchP.group(1)
matchVar = re.search(r'\{x(.*?)\}',matchedP)
if matchVar is not None:
var = matchVar.group(1)
matchVals = re.search(r'\((.*?)\)',matchedP)
if matchVals is not None:
vals = matchVals.group(1).split(',')
floatVals = [float(i) for i in vals]
if int(var) >= len(factorGraph.varNames):
varName = "Debug"
else:
varName = factorGraph.varNames[int(var)]
if varName is not None:
mapMarg[varName] = np.asarray(floatVals)
return mapMarg
def parseFGString(self, factorGraph, lines):
mapVar = {}
lines = [x.strip() for x in lines]
#lines = outputString.split('\\n')
bFirst = True
for line in lines:
if not bFirst:
toks = line.split(',')
if len(toks) == 2:
varIdx = int(toks[0][1:])
varName = factorGraph.varNames[int(varIdx)]
varValue = int(toks[1])
mapVar[varName] = varValue
bFirst = False
return mapVar
def updateUnitigFactors(self, unitigs, unitigMap, unitigFacNodes, gidx, mask=None):
if mask is None:
mask = np.ones((self.V, self.S))
mapGammaG = self.expGamma[gidx,:]
mapGammaG2 = self.expGamma2[gidx,:]
#dSum2 = np.sum(mapGammaG2)
tPhi = np.delete(self.expPhi,gidx,1)
tGamma = np.delete(self.expGamma,gidx,0)
#import ipdb; ipdb.set_trace()
currNELambda = np.dot(tPhi,tGamma)
for unitig in unitigs:
if unitig in unitigFacNodes:
unitigFacNode = unitigFacNodes[unitig]
v_idx = unitigMap[unitig]
v_mask = mask[v_idx,]
P = unitigFacNode.P
tempMatrix = np.zeros_like(P)
currELambda = currNELambda[v_idx,:]*v_mask
lengthNode = self.lengths[v_idx]
nMax = unitigFacNode.P.shape[0]
dFac = -0.5*self.expTau[v_idx,:]*lengthNode #now S dim
if not self.BIAS:
T1 = mapGammaG*(lengthNode*currELambda - self.X[v_idx,:])
else:
T1 = mapGammaG*(lengthNode*currELambda*self.expTheta2[v_idx] - self.X[v_idx,:]*self.expTheta[v_idx])
dVal1 = 2.0*T1*v_mask
dVal2 = lengthNode*mapGammaG2*v_mask
if self.BIAS:
dVal2 *= self.expTheta2[v_idx]
for d in range(nMax):
tempMatrix[d] = np.sum(dFac*(dVal1*float(d) + dVal2*float(d*d)))
unitigFacNode.P = expNormLogProb(tempMatrix)
def updateUnitigFactorsN(self, unitigs, unitigMap, unitigFacNodes):
for unitig in unitigs:
if unitig in unitigFacNodes:
unitigFacNode = unitigFacNodes[unitig]
v_idx = unitigMap[unitig]
P = unitigFacNode.P
tempMatrix = np.zeros_like(P)
nMax = unitigFacNode.P.shape[0]
unitigFacNode.P = expNormLogProb(tempMatrix)
def updateUnitigFactorsW(self,unitigs, unitigMap, unitigFacNodes, W,gidx):
for unitig in unitigs:
if unitig in unitigFacNodes:
unitigFacNode = unitigFacNodes[unitig]
v_idx = unitigMap[unitig]
P = unitigFacNode.P
tempMatrix = np.zeros_like(P)
w = W[v_idx,gidx]
wmax = P.shape[0] - 1
tempMatrix.fill(self.minW)
if w > wmax:
w = wmax
iw = int(w)
difw = w - iw
tempMatrix[iw] = 1.0 - difw
if iw < wmax:
tempMatrix[iw + 1] = difw
unitigFacNode.P = tempMatrix
def updateUnitigFactorsMarg(self,unitigs, unitigMap, unitigFacNodes, marg):
for unitig in unitigs:
if unitig in unitigFacNodes:
unitigFacNode = unitigFacNodes[unitig]
v_idx = unitigMap[unitig]
P = unitigFacNode.P
if unitig in marg:
unitigFacNode.P = np.copy(marg[unitig])
def setPhiConstant(self,unitigs, unitigMap, unitigFacNodes):
dLogNPhi = 0.
for unitig in unitigs:
if unitig in unitigFacNodes:
unitigFacNode = unitigFacNodes[unitig]
v_idx = unitigMap[unitig]
P = unitigFacNode.P
wmax = P.shape[0]
self.logPhiPrior[v_idx] = math.log(1.0/wmax)
def updateUnitigFactorsRef(self, unitigs, unitigMap, unitigFacNodes, mapRef,ref):
for unitig in unitigs:
if unitig in unitigFacNodes:
unitigFacNode = unitigFacNodes[unitig]
v_idx = unitigMap[unitig]
P = unitigFacNode.P
tempMatrix = np.zeros_like(P)
if ref in mapRef[unitig]:
delta = mapRef[unitig][ref]
else:
delta = 10.0
tempMatrix[1] = 0.99*np.exp(-0.25*delta)
tempMatrix[0] = 1.0 - tempMatrix[1]
unitigFacNode.P = tempMatrix
def removeGamma(self,g_idx):
meanAss = self.expPhi[:,g_idx]
gammaG = self.expGamma[g_idx,:]
self.eLambda -= meanAss[:,np.newaxis]*gammaG[np.newaxis,:]
def addGamma(self,g_idx):
meanAss = self.expPhi[:,g_idx]
gammaG = self.expGamma[g_idx,:]
self.eLambda += meanAss[:,np.newaxis]*gammaG[np.newaxis,:]
def updateTheta(self, mask = None):
if mask is None:
mask = np.ones((self.V, self.S))
self.eLambda = np.dot(self.expPhi, self.expGamma)
denom = np.sum(self.expTau*self.exp_square_lambda_matrix()*mask,axis=1)*self.lengths*self.lengths
numer = self.lengths*np.sum(self.X*self.eLambda*self.expTau*mask,axis=1)
self.muThetaCat.fill(self.muTheta0*self.tauTheta0)
self.tauThetaCat.fill(self.tauTheta0)
for v in range(self.V):
b = self.biasMap[v]
self.muThetaCat[b] += numer[v]
self.tauThetaCat[b] += denom[v]
self.muThetaCat = self.muThetaCat/self.tauThetaCat
self.expThetaCat = np.asarray(TN_vector_expectation(self.muThetaCat,self.tauThetaCat))
self.varThetaCat = np.asarray(TN_vector_variance(self.muThetaCat,self.tauThetaCat))
self.expTheta2Cat = self.varThetaCat + self.expThetaCat*self.expThetaCat
for v in range(self.V):
b = self.biasMap[v]
self.muTheta[v] = self.muThetaCat[b]
self.expTheta[v] = self.expThetaCat[b]
self.varTheta[v] = self.varThetaCat[b]
self.expTheta2[v] = self.expTheta2Cat[b]
def updateGamma(self, g_idx, mask = None, bMaskDegen = False):
if mask is None:
mask = np.ones((self.V, self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
temp = np.delete(self.expGamma,g_idx,0)
temp2 = np.delete(self.expPhi,g_idx,1)
if not self.BIAS:
numer = (self.X - np.dot(temp2,temp)*self.lengths[:,np.newaxis])
else:
numer = (self.X*self.expTheta[:,np.newaxis] - np.dot(temp2,temp)*self.lengths[:,np.newaxis]*self.expTheta2[:,np.newaxis])
gphi = self.expPhi[:,g_idx]*self.lengths
numer = gphi[:,np.newaxis]*numer
denom = self.lengths*self.lengths*self.expPhi2[:,g_idx]#dimensions of V
if self.BIAS:
denom *= self.expTheta2
dSum = np.dot((self.expTau*mask).transpose(),denom)
numer=numer*self.expTau*mask
nSum = np.sum(numer,0)
if self.NOISE and g_idx == self.G:
lamb = 1.0/self.epsilonNoise
else:
lamb = 1.0/self.epsilon
if self.ARD:
if self.bARD2:
lamb = 0.
else:
lamb = self.exp_lambdak[g_idx]
nSum -= lamb
if self.ARD and self.bARD2:
if g_idx != self.G:
dSum += self.exp_lambdak[g_idx]
muGammaG = nSum/dSum
tauGammaG = dSum
expGammaG = np.asarray(TN_vector_expectation(muGammaG,tauGammaG))
varGammaG = np.asarray(TN_vector_variance(muGammaG,tauGammaG))
expGamma2G = varGammaG + expGammaG*expGammaG
self.expGamma[g_idx,:] = expGammaG
self.expGamma2[g_idx,:] = expGamma2G
self.tauGamma[g_idx,:] = tauGammaG
self.muGamma[g_idx,:] = muGammaG
self.varGamma[g_idx,:] = varGammaG
def updateTau(self,bFit=True, mask = None, bMaskDegen = True):
if self.bPoissonTau:
self.expTau = 1.0/(self.X + 0.5)
self.expLogTau = np.log(self.expTau)
return
if mask is None:
mask = np.ones((self.V, self.S))
if self.bFixedTau:
self.updateFixedTau(mask, bMaskDegen)
else:
if self.bLogTau:
self.updateLogTauX(bFit, mask, bMaskDegen)
else:
self.updateEmpTauX(bFit, mask, bMaskDegen)
def updateFixedTau(self, mask = None, bMaskDegen = True):
if mask is None:
mask = np.ones((self.V, self.S))
if bMaskDegen:
maskFit = self.MaskDegen*mask
else:
maskFit = mask
Omega = float(np.sum(maskFit))
square_diff_matrix = self.exp_square_diff_matrix()
betaTemp = self.beta + 0.5*np.sum(square_diff_matrix*maskFit)
alphaTemp = self.alpha + 0.5*Omega
tempTau = alphaTemp/betaTemp
tempLogTau = digamma(alphaTemp) - np.log(betaTemp)
self.betaTau.fill(betaTemp/Omega)
self.betaTau = mask*self.betaTau
self.alphaTau.fill(alphaTemp/Omega)
self.alphaTau = mask*self.alphaTau
self.expTau.fill(tempTau)
self.expTau = self.expTau*mask
self.expLogTau.fill(tempLogTau)
self.expLogTau = self.expLogTau*mask
def updateLogTauX(self,bFit = True, mask = None, bMaskDegen = True):
if mask is None:
mask = np.ones((self.V, self.S))
square_diff_matrix = self.exp_square_diff_matrix()
mX = np.ma.masked_where(mask==0, self.X)
X1D = np.ma.compressed(mX)
mSDM = np.ma.masked_where(mask==0, square_diff_matrix)
mBetaTau = self.beta*X1D + 0.5*np.ma.compressed(mSDM)
mBetaTau[mBetaTau < AssemblyPathSVA.minBeta] = AssemblyPathSVA.minBeta
mLogExpTau = digamma(self.alpha + 0.5) - np.log(mBetaTau)
if bMaskDegen:
maskFit = self.MaskDegen*mask
else:
maskFit = mask
mXFit = np.ma.masked_where(maskFit==0, self.X)
X1DFit = np.ma.compressed(mXFit)
mSDMFit = np.ma.masked_where(maskFit==0, square_diff_matrix)
mBetaTauFit = self.beta*X1DFit + 0.5*np.ma.compressed(mSDMFit)
mBetaTauFit[mBetaTauFit < AssemblyPathSVA.minBeta] = AssemblyPathSVA.minBeta
mLogExpTauFit = digamma(self.alpha + 0.5) - np.log(mBetaTauFit)
try:
if self.bLoess:
assert(bMaskDegen == False)
self.logger.info("Attemptimg Loess smooth")
yest_sm = lowess(X1D,mLogExpTau, f=0.75, iter=3)
elif self.bGam:
if bFit:
self.gam = LinearGAM(s(0,n_splines=5,constraints='monotonic_dec')).fit(X1DFit, mLogExpTauFit)
yest_sm = self.gam.predict(X1D)
else:
self.logger.info("Attemptimg linear regression")
model = LinearRegression()
poly_reg = PolynomialFeatures(degree=2)
X_poly = poly_reg.fit_transform(X1DFit.reshape(-1,1))
model.fit(X_poly, mLogExpTauFit)
X_poly_est = poly_reg.fit_transform(X1D.reshape(-1,1))
yest_sm = model.predict(X_poly_est)
except ValueError:
self.logger.info("Performing fixed tau")
self.updateFixedTau(mask,bMaskDegen)
return
np.place(self.expLogTau, mask == 1, yest_sm)
np.place(self.expTau, mask == 1, np.exp(yest_sm))
np.place(self.betaTau, mask == 1, mBetaTau)
def updateEmpTauX(self,bFit = True, mask = None, bMaskDegen = False):
if mask is None:
mask = np.ones((self.V, self.S))
square_diff_matrix = self.exp_square_diff_matrix()
if bMaskDegen:
maskFit = self.MaskDegen*mask
else:
maskFit = mask
mXFit = np.ma.masked_where(maskFit==0, self.X)
X1DFit = np.ma.compressed(mXFit)
logX1DFit = np.log(0.5 + X1DFit)
mSDMFit = np.ma.masked_where(maskFit==0, square_diff_matrix)
mFitFit = np.ma.compressed(mSDMFit)
logMFitFit = np.log(mFitFit + AssemblyPathSVA.minVar)
if bFit:
try:
self.gam = LinearGAM(s(0,n_splines=5,constraints='monotonic_inc')).fit(logX1DFit,logMFitFit)
except ValueError:
self.logger.info("Performing fixed tau")
self.updateFixedTau(mask)
return
mX = np.ma.masked_where(mask==0, self.X)
X1D = np.ma.compressed(mX)
logX1D = np.log(0.5 + X1D)
yest_sm = self.gam.predict(logX1D)
mBetaTau = self.beta*(X1D + 0.5) + 0.5*np.exp(yest_sm)
np.place(self.betaTau, mask == 1, mBetaTau)
mExpTau = (self.alpha + 0.5)/mBetaTau
np.place(self.expTau, mask == 1, mExpTau)
mLogTau = digamma(self.alpha + 0.5) - np.log(mBetaTau)
np.place(self.expLogTau, mask == 1, mLogTau)
def updateExpPhi(self,unitigs,mapUnitig,marg,g_idx):
for unitig in unitigs:
if unitig in marg:
v_idx = mapUnitig[unitig]
ND = marg[unitig].shape[0]
self.expPhi[v_idx,g_idx] = np.sum(marg[unitig]*np.arange(ND))
d2 = np.square(np.arange(ND))
self.expPhi2[v_idx,g_idx] = np.sum(marg[unitig]*d2)
self.HPhi[v_idx,g_idx] = ss.entropy(marg[unitig])
def writeFactorGraphs(self, g, drop_strain, relax_path, mask = None):
if mask is None:
mask = np.ones((self.V, self.S))
fgFileStubs = {}
for gene, factorGraph in self.factorGraphs.items():
if not drop_strain[gene][g]:
unitigs = self.assemblyGraphs[gene].unitigs
self.updateUnitigFactors(unitigs, self.mapGeneIdx[gene], self.unitigFactorNodes[gene], g, mask)
factorGraph.reset()
if relax_path:
factorGraph.var['zero+source+'].clear_condition()
factorGraph.var['sink+infty+'].clear_condition()
else:
factorGraph.var['zero+source+'].condition(1)
factorGraph.var['sink+infty+'].condition(1)
graphString = str(factorGraph)
graphFileStub = str(uuid.uuid4()) + 'graph_'+ str(g)
graphFileName = self.working_dir + "/" + graphFileStub + '.fg'
with open(graphFileName, "w") as text_file:
print(graphString, file=text_file)
fgFileStubs[gene] = graphFileStub
return fgFileStubs
def readMarginals(self, fgFileStubs, g, drop_strain):
for gene, factorGraph in self.factorGraphs.items():
if not drop_strain[gene][g]:
outFile = self.working_dir + "/" + fgFileStubs[gene] + '.out'
try:
inHandle = open(outFile, 'r')
outLines = inHandle.readlines()
inHandle.close()
margP = self.parseMargString(factorGraph, outLines)
if len(margP) > 0:
self.margG[gene][g] = margP
self.updateExpPhi(self.assemblyGraphs[gene].unitigs,self.mapGeneIdx[gene],self.margG[gene][g],g)
if os.path.exists(outFile):
os.remove(outFile)
fgFile = self.working_dir + "/" + fgFileStubs[gene] + '.fg'
if os.path.exists(fgFile):
os.remove(fgFile)
#raise FileNotFoundError('Debug')
except FileNotFoundError:
tempMap = {}
vt = 0
nU = len(self.unitigFactorNodes[gene])
tempEta = np.zeros(nU)
print('Attempting flow optimisation')
for unitig, factorNode in self.unitigFactorNodes[gene].items():
if factorNode.P.ndim > 1:
dVal = factorNode.P[1][0]
elif factorNode.P.ndim == 1:
dVal = factorNode.P[1]
else:
dVal = 0.5
tempMap[unitig] = vt
tempEta[vt] = dVal
vt += 1
flowFitTheta = FlowFitTheta(self.residualBiGraphs[gene], self.prng,tempEta, tempMap, True)
flowFitTheta.optimiseFlows(20, 1.0)
for unitig in self.assemblyGraphs[gene].unitigs:
if unitig in self.mapGeneIdx[gene]:
v_idx = self.mapGeneIdx[gene][unitig]
m_idx = tempMap[unitig]
self.expPhi[v_idx,g] = flowFitTheta.Eta[m_idx]
self.expPhi2[v_idx,g] = flowFitTheta.Eta[m_idx]*flowFitTheta.Eta[m_idx]
# if nx.is_directed_acyclic_graph(self.factorDiGraphs[gene]):
# self.logger.info("Attempt greedy path: " + str(g) + " " + gene + ":" + fgFileStubs[gene])
#greedyPath = self.sampleGreedyPath(gene, g)
# greedyPath = self.sampleMaxWeightPath(gene, g)
# for unitig in self.assemblyGraphs[gene].unitigs:
# if unitig in self.mapGeneIdx[gene]:
# v_idx = self.mapGeneIdx[gene][unitig]
# self.expPhi[v_idx,g] = 0.
# self.expPhi2[v_idx,g] = 0.
#for unitigd in greedyPath:
# unitig = unitigd[:-1]
# if unitig in self.mapGeneIdx[gene]:
# v_idx = self.mapGeneIdx[gene][unitig]
# self.expPhi[v_idx,g] = 1.
# self.expPhi2[v_idx,g] = 1.
#else:
# self.logger.warning("Cannot attempt greedy path")
fgFile = self.working_dir + "/" + fgFileStubs[gene] + '.fg'
if os.path.exists(fgFile):
os.remove(fgFile)
def update(self, maxIter, removeRedundant,mask=None, bMaskDegen = False, drop_strain=None,relax_path=False, uncertainFactor=None,minDiff=1.0e-3,bMulti=True):
if mask is None:
mask = np.ones((self.V, self.S))
if drop_strain is None:
drop_strain = {gene:[False]*self.G for gene in self.genes}
iter = 0
self.eLambda = np.dot(self.expPhi, self.expGamma)
self.updateTau(True, mask, bMaskDegen)
diffElbo = 1.0
currElbo=self.calc_elbo(mask, bMaskDegen)
self.logger.info("Iter, G, Div, DivF, total_elbo, diffElbo")
bChangeG = False
while iter <= 50 or (iter < maxIter and (diffElbo > minDiff or bChangeG)):
#update phi marginals
if removeRedundant:
if iter >= 50 and iter % 10 == 0:
if self.G > 1:
bChangeG = self.removeRedundant(self.minIntensity, 10,relax_path,uncertainFactor,mask,bMaskDegen)
for g in range(self.G):
#self.removeGamma(g)
fgFileStubs = {}
threads = []
fgFileStubs = self.writeFactorGraphs(g, drop_strain, relax_path, mask)
if bMulti:
pool = Pool(len(self.genes))
results = []
for gene, graphFileStub in fgFileStubs.items():
graphFileName = self.working_dir + '/' + graphFileStub + '.fg'
outFileName = self.working_dir + '/' + graphFileStub + '.out'
cmd = self.fgExePath + 'runfg_flex ' + graphFileName + ' ' + outFileName + ' 0 -1'
results.append(pool.apply_async(call_proc, (cmd,)))
pool.close()
pool.join()
for result in results:
out, err = result.get()
# print("out: {} err: {}".format(out, err))
else:
results = []
for gene, graphFileStub in fgFileStubs.items():
graphFileName = self.working_dir + '/' + graphFileStub + '.fg'
outFileName = self.working_dir + '/' + graphFileStub + '.out'
cmd = self.fgExePath + 'runfg_flex ' + graphFileName + ' ' + outFileName + ' 0 -1'
results.append(call_proc(cmd))
self.readMarginals(fgFileStubs, g, drop_strain)
#self.addGamma(g)
if self.ARD:
for g in range(self.G):
self.update_lambdak(g)
self.update_exp_lambdak(g)
for g in range(self.GDash):
self.updateGamma(g, mask, bMaskDegen)
self.eLambda = np.zeros((self.V,self.S))
for g in range(self.GDash):
self.addGamma(g)
#if iter % 10 == 0:
self.updateTau(True, mask, bMaskDegen)
if self.BIAS:
self.updateTheta(mask)
total_elbo = self.calc_elbo(mask, bMaskDegen)
diffElbo = abs(total_elbo - currElbo)
if np.isnan(diffElbo) or math.isinf(diffElbo):
diffElbo = 1.
currElbo = total_elbo
DivF = self.divF(mask)
Div = self.div(mask)
if iter % 10 == 0:
self.logger.info("%d, %d, %f, %f, %f, %f", iter, self.G, Div, DivF, total_elbo, diffElbo)
iter += 1
def get_outlier_cogs_sample(self, mCogFilter = 2.0, cogSampleFrac=0.95):
uniquegenes = list(set(self.geneCovs.keys()) ^ set(self.geneDegenerate.keys()))
nGenes = len(uniquegenes)
g = 0
geneSampleCovArray = np.zeros((nGenes,self.S))
for gene in uniquegenes:
geneSampleCovArray[g,:] = self.geneCovs[gene]
g = g + 1
outlierGeneSample = np.zeros((nGenes,self.S),dtype=bool)
for s in range(self.S):
outlierGeneSample[:,s] = reject_outliers(geneSampleCovArray[:,s], m = mCogFilter)
filterGenes = outlierGeneSample.sum(axis=1) < (self.S*cogSampleFrac)
filteredGenes = [i for (i, v) in zip(uniquegenes, filterGenes) if v]
for gene in filteredGenes:
filteredGenes.extend(self.gene_maps[gene])
return filteredGenes
def updateGammaFixed(self, maxIter, drop_strain=None, relax_path=False):
if drop_strain is None:
drop_strain = {gene:[False]*self.G for gene in self.genes}
iter = 0
self.eLambda = np.dot(self.expPhi, self.expGamma)
self.updateTau()
while iter < maxIter:
#update phi marginals
for g in range(self.G):
self.removeGamma(g)
fgFileStubs = {}
threads = []
fgFileStubs = self.writeFactorGraphs(g, drop_strain, relax_path)
pool = ThreadPool(len(self.genes))
results = []
for gene, graphFileStub in fgFileStubs.items():
graphFileName = self.working_dir + '/' + graphFileStub + '.fg'
outFileName = self.working_dir + '/' + graphFileStub + '.out'
cmd = self.fgExePath + 'runfg_flex ' + graphFileName + ' ' + outFileName + ' 0 -1'
results.append(pool.apply_async(call_proc, (cmd,)))
pool.close()
pool.join()
for result in results:
out, err = result.get()
# print("out: {} err: {}".format(out, err))
self.readMarginals(fgFileStubs, g, drop_strain)
self.addGamma(g)
if self.ARD:
for g in range(self.G):
self.update_lambdak(g)
self.update_exp_lambdak(g)
self.updateTau()
if self.BIAS:
self.updateTheta()
total_elbo = self.calc_elbo()
DivF = self.divF()
Div = self.div()
#print(str(iter)+ "," + str(Div) + "," + str(DivF)+ "," + str(total_elbo))
iter += 1
def updatePhiFixed(self, maxIter):
iter = 0
while iter < maxIter:
for g in range(self.G):
self.updateGamma(g)
self.eLambda = np.zeros((self.V,self.S))
for g in range(self.GDash):
self.addGamma(g)
#print(str(iter)+","+ str(self.divF()))
iter += 1
def div(self,M=None,bMaskDegen = False):
if M is None:
M = np.ones((self.V,self.S))
if bMaskDegen:
M = M*self.MaskDegen
"""Compute divergence of target matrix from its NMF estimate."""
Va = self.eLambda
if self.BIAS:
Va = self.expTheta[:,np.newaxis]*Va
return (M*(np.multiply(self.XN, np.log(elop(self.XN, Va, truediv))) + (Va - self.XN))).sum()
def divF(self,M=None, bMaskDegen = False):
if M is None:
M = np.ones((self.V,self.S))
if bMaskDegen:
M = M*self.MaskDegen
"""Compute squared Frobenius norm of a target matrix and its NMF estimate."""
if self.BIAS:
R = self.expTheta[:,np.newaxis]*self.eLambda - self.XN
else:
R = self.eLambda - self.XN
return (M*np.multiply(R, R)).sum()/np.sum(M)
def divF_matrix(self):
"""Compute squared Frobenius norm of a target matrix and its NMF estimate."""
if self.BIAS:
R = self.expTheta[:,np.newaxis]*self.eLambda - self.XN
else:
R = self.eLambda - self.XN
return np.multiply(R, R)
def divergenceN(self, XN, Va):
return (np.multiply(XN, np.log(elop(XN, Va, truediv))) - XN + Va).sum()
def sampleGreedyPath(self, gene, g):
path = []
current = self.sourceNode
biGraph = self.factorDiGraphs[gene]
assert nx.is_directed_acyclic_graph(biGraph)
while current != self.sinkNode:
outPaths = list(biGraph.successors(current))
destinations = [list(biGraph.successors(x))[0] for x in outPaths]
path.append(current)
NDest = len(destinations)
if NDest > 0:
n = 0
divN = np.zeros(NDest)
for dest in destinations:
unitig = dest[:-1]
if unitig in self.unitigFactorNodes[gene]:
unitigFacNode = self.unitigFactorNodes[gene][unitig]
divN[n] = unitigFacNode.P[1]
n = n+1
outPath = outPaths[np.argmax(divN)]
else:
break
current = list(biGraph.successors(outPath))[0]
#print(str(current))
return path
def sampleMaxWeightPath(self, gene, g):
unitigGraphGene = self.assemblyGraphs[gene]
# import ipdb; ipdb.set_trace()
if unitigGraphGene.directedUnitigBiGraphS is None:
sources_gene = self.source_maps[gene]
sinks_gene = self.sink_maps[gene]
source_names = [convertNodeToName(source) for source in sources_gene]
sink_names = [convertNodeToName(sink) for sink in sinks_gene]
unitigGraphGene.setDirectedBiGraphSource(source_names,sink_names)
unitigValueDir = defaultdict(lambda: float(-1000))
for unitig, factorNode in self.unitigFactorNodes[gene].items():
if factorNode.P.ndim > 1:
dVal = factorNode.P[1][0]
elif factorNode.P.ndim == 1:
dVal = factorNode.P[1]
else:
dVal = -1000.0
if np.log(dVal) > -1000.0:
unitigValueDir[unitig] = np.log(dVal)
unitigValueDir['source+'] = 0.
unitigValueDir['sink+'] = 0.
(maxPath, maxSeq) = unitigGraphGene.getHeaviestBiGraphPathUnitigNode(unitigValueDir, None, None)
return maxPath
def sampleMargPath(self,margP,biGraph):
path = []
visited = set()
current = self.sinkNode
while current != self.sourceNode:
inPaths = list(biGraph.predecessors(current))
NC = len(inPaths)
if NC > 0:
tempProb = np.zeros(NC)
for idx, inPath in enumerate(inPaths):
if inPath not in visited:
if inPath in margP:
tempProb[idx] = np.sum(margP[inPath][1:])
else:
tempProb[idx] = 0.
if np.sum(tempProb) > 0.:
tempProb = tempProb/np.sum(tempProb)
selectIn = self.prng.choice(np.arange(NC), 1, p=tempProb)
else:
selectIn = self.prng.choice(np.arange(NC),1)
path.append(current)
current = list(biGraph.predecessors(inPaths[selectIn[0]]))[0]
visited.add(inPaths[selectIn[0]])
else:
path.append(current)
self.logger.warning("Warning: Ended up in errorenous terminal node sampleMargPath")
break
path.reverse()
return path
def runFGMarginal(self, factorGraph, g):
graphString = str(factorGraph)
outFileStub = str(uuid.uuid4()) + 'graph_'+ str(g)
graphFileName = self.working_dir + '/' + outFileStub + '.fg'
outFileName = self.working_dir + '/' + outFileStub + ".out"
with open(graphFileName, "w") as text_file:
print(graphString, file=text_file)
cmd = self.fgExePath + 'runfg_flex ' + graphFileName + ' ' + outFileName + ' 0 -1'
p = Popen(cmd, stdout=PIPE,shell=True)
p.wait()
with open (outFileName, "r") as myfile:
outString=myfile.readlines()
os.remove(graphFileName)
os.remove(outFileName)
return self.parseMargString(factorGraph, outString)
def getPathDivergence(self, nSamples,drop_strain=None,relax_path=False):
divergence_mean = np.zeros(self.G)
(paths,haplotypes) = self.sampleNHaplotypes(nSamples, drop_strain, relax_path)
for g in range(self.G):
divergences = np.zeros(nSamples)
map_length = 0.
for s in range(nSamples):
div_s = 0
for gene, factorGraph in self.factorGraphs.items():
gMap = self.paths[gene][g]
if s == 0:
map_length += len(gMap)
div_s += len(set(gMap) ^ set(paths[s][gene][g]))
divergences[s] = div_s
divergence_mean[g] = np.mean(divergences)/map_length
return divergence_mean
def sampleNHaplotypes(self,nSamples,drop_strain=None,relax_path=False):
if drop_strain is None:
drop_strain = {gene:[False]*self.G for gene in self.genes}
self.eLambda = np.dot(self.expPhi,self.expGamma)
all_paths = []
all_haplotypes = []
for s in range(nSamples):
paths = defaultdict(list)
haplotypes = defaultdict(list)
for g in range(self.G):
for gene, factorGraph in self.factorGraphs.items():
if not drop_strain[gene][g]:
unitigs = self.assemblyGraphs[gene].unitigs
marginals = self.margG[gene][g] #self.runFGMarginal(factorGraph, g)
biGraph = self.factorDiGraphs[gene]
pathG = self.sampleMargPath(marginals,biGraph)
pathG.pop()
paths[gene].append(pathG)
if len(pathG) > 0:
unitig = self.assemblyGraphs[gene].getUnitigWalk(pathG)
haplotypes[gene].append(unitig)
else:
haplotypes[gene].append("")
paths[gene].append(None)
all_haplotypes.append(haplotypes)
all_paths.append(paths)
return (all_paths, all_haplotypes)
def convertMAPToPath(self,mapPath,factorGraph):
path = []
visited = set()
current = self.sourceNode
while current != self.sinkNode:
outPaths = list(factorGraph.successors(current))
for outPath in outPaths:
if mapPath[outPath] == 1 and outPath not in visited:
visited.add(outPath)
break
path.append(current)
if mapPath[outPath] == 1:
current = list(factorGraph.successors(outPath))[0]
else:
break
return path
def convertMAPMarg(self,MAP,mapNodes):
marg = {}
for unitig,assign in MAP.items():
if unitig in mapNodes:
unitigNode = mapNodes[unitig]
nN = unitigNode.dim
tempMatrix = np.zeros(nN)
tempMatrix[int(assign)] = 1.0
marg[unitig] = tempMatrix
return marg
def calcTreeWidths(self):
treeWidths = {}
for gene, factorGraph in self.factorGraphs.items():
unitigs = self.assemblyGraphs[gene].unitigs
self.updateUnitigFactorsN(unitigs, self.mapGeneIdx[gene], self.unitigFactorNodes[gene])
factorGraph.var['zero+source+'].condition(1)
factorGraph.var['sink+infty+'].condition(1)
graphString = str(factorGraph)
stubName = str(uuid.uuid4()) + 'graph_w'
graphFileName = self.working_dir + '/' + stubName + '.fg'
outFileName = self.working_dir + '/' + stubName + '.out'
with open(graphFileName, "w") as text_file:
print(graphString, file=text_file)
cmd = self.fgExePath + 'runfg_width ' + graphFileName + ' ' + outFileName
subprocess.run(cmd, shell=True,check=False)
treeWidths[gene] = -1
try:
inHandle = open(outFileName, 'r')
outLines = inHandle.readlines()
inHandle.close()
header = outLines[0]
matchW = re.search(r'treewidth: (.*) states:.*',header)
if matchW is not None:
treeWidths[gene] = int(matchW.group(1))
os.remove(graphFileName)
os.remove(outFileName)
except FileNotFoundError:
os.remove(graphFileName)
return treeWidths
def graphNormMatrix(self, uMap, BNMF, selectV):
gGamma = np.zeros((self.G,self.S))
gPhi = np.zeros((self.V,self.G))
for g in range(self.G):
xVals = {}
Lengths = {}
maxFlow = 0.
mapSedge = {}
for edge in self.cGraph.sEdges:
unitigd = edge[1][:-1]
v = self.mapIdx[unitigd]
if selectV[v]:
u = uMap[v]
xVals[edge] = BNMF.exp_U[u,g]
Lengths[edge] = 1.0
mapSedge[v] = edge
else:
u = uMap[self.degenSeq[v]]
xVals[edge] = BNMF.exp_U[u,g]
Lengths[edge] = 1.0
mapSedge[v] = edge
self.cGraph.X = xVals
self.cGraph.L = Lengths
self.cGraph.optimseFlows(self.logger, gaussianNLL_F, gaussianNLL_D, 200)
(maxFlow,maxFlows) = nx.maximum_flow(self.cGraph.diGraph, 'source+','sink+', capacity='flow')
#maxFlow = max(maxFlow,0.01)
#self.logger('%d %f',g,maxFlow)
if maxFlow > 1.0e-6:
gGamma[g,:] = BNMF.exp_V.T[g,:]*maxFlow
for v in range(self.V):
if v in mapSedge:
vedge = mapSedge[v]
fFlow = self.cGraph.diGraph[vedge[0]][vedge[1]]['flow']
gPhi[v,g] = fFlow/maxFlow
else:
gPhi[v,g] = 0.
#else:
# gPhi[:,g] = 0.
# gGamma[g,:] = 0.
return (gGamma, gPhi)
def graphNormMatrix2(self, uMap, NMF_VB, selectV):
gGamma = np.zeros((self.G,self.S))
gPhi = np.zeros((self.V,self.G))
allPaths = defaultdict(lambda: np.zeros(self.S))
for g in range(self.G):
xVals = {}
Lengths = {}
maxFlow = 0.
mapSedge = {}
for edge in self.cGraph.sEdges:
unitigd = edge[1][:-1]
v = self.mapIdx[unitigd]
if selectV[v]:
u = uMap[v]
xVals[edge] = NMF_VB.expPhi[u,g]
Lengths[edge] = 1.0
mapSedge[v] = edge
else:
u = uMap[self.degenSeq[v]]
xVals[edge] = NMF_VB.expPhi[u,g]
Lengths[edge] = 1.0
mapSedge[v] = edge
self.cGraph.X = xVals
self.cGraph.L = Lengths
self.logger.info("Graph norm for haplo: %d",g)
self.cGraph.optimseFlows(self.logger,gaussianNLL_F, gaussianNLL_D, 200)
copyGraph = self.cGraph.diGraph.copy()
(maxFlow,maxFlows) = nx.maximum_flow(copyGraph, 'source+','sink+', capacity='flow')
paths = self.cGraph.decomposeFlows()
for path, flow in paths.items():
if flow > 1.0e-9:
allPaths[path] += flow*NMF_VB.expGamma[g,:]
gGamma[g,:] = NMF_VB.expGamma[g,:]*maxFlow
for v in range(self.V):
if v in mapSedge:
vedge = mapSedge[v]
fFlow = copyGraph[vedge[0]][vedge[1]]['flow']
gPhi[v,g] = fFlow/maxFlow
else:
gPhi[v,g] = 0.
return (gGamma, gPhi, allPaths)
def graphNormMatrix3(self, uMap, NMF_VB, selectV):
gGamma = np.zeros((self.G,self.S))
gPhi = np.zeros((self.V,self.G))
for g in range(self.G):
xVals = {}
Lengths = {}
maxFlow = 0.
mapSedge = {}
for edge in self.cGraph.sEdges:
unitigd = edge[1][:-1]
v = self.mapIdx[unitigd]
if selectV[v]:
u = uMap[v]
xVals[edge] = NMF_VB.expPhi[u,g]
Lengths[edge] = 1.0
mapSedge[v] = edge
else:
u = uMap[self.degenSeq[v]]
xVals[edge] = NMF_VB.expPhi[u,g]
Lengths[edge] = 1.0
mapSedge[v] = edge
self.cGraph.X = xVals
self.cGraph.L = Lengths
self.logger.info("Graph norm for haplo: %d",g)
self.cGraph.optimseFlows(self.logger,gaussianNLL_F, gaussianNLL_D, 200)
copyGraph = self.cGraph.diGraph.copy()
(maxFlow,maxFlows) = nx.maximum_flow(copyGraph, 'source+','sink+', capacity='flow')
gGamma[g,:] = NMF_VB.expGamma[g,:]*maxFlow
for v in range(self.V):
if v in mapSedge:
vedge = mapSedge[v]
fFlow = copyGraph[vedge[0]][vedge[1]]['flow']
gPhi[v,g] = fFlow/maxFlow
else:
gPhi[v,g] = 0.
return (gGamma, gPhi)
# def __init__(self, X, lengths, G = 2, epsilon = 1.0e5, epsilonNoise = 1.0e-3,
# alpha=1.0e-9,beta=1.0e-9,alpha0=1.0e-9,beta0=1.0e-9, tauThresh = 0.1,
# maxSampleCov = 0., tauType='poisson', ARD = True, BIAS = False, NOISE = False):
def initNMFVB(self, mask = None, bMaskDegen = True, bScale = False, bARD = True):
if mask is None:
mask = np.ones((self.V, self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
selectV = np.sum(mask,axis=1) > 0
XC = self.X[selectV,:]
XCN = self.XN[selectV,:]
MC = mask[selectV,:]
LC = self.lengths[selectV]
no_runs = self.nNmfIters
bestGamma = None
bestErr = 1.0e10
bestPhi = None
uMap = {}
u = 0
for v in range(self.V):
if selectV[v]:
uMap[v] = u
u = u+1
n = 0
while n < no_runs:
hyperp = { 'alphatau':0.1, 'betatau':0.1, 'alpha0':1.0e-6, 'beta0':1.0e-6, 'lambdaU':1.0e-3, 'lambdaV':1.0e-3}
XSum = np.sum(XCN,axis=0)
if bScale:
XCNDash = (100*XCN)/XSum[np.newaxis,:]
BNMF = bnmf_vb(self.prng,self.logger,XCN,MC,self.G, ARD = bARD, hyperparameters=hyperp)
self.logger.info("Round: %d of NMF",n)
BNMF.initialise(init_UV='random')
BNMF.run(1000)
self.logger.info("Graph normalise NMF")
(gGamma, gPhi) = self.graphNormMatrix(uMap, BNMF, selectV)
if bScale:
gGamma = (gGamma*XSum[np.newaxis,:])/100.
XN_pred = np.dot(gPhi,gGamma)
err = (mask * (self.XN - XN_pred)**2).sum() / float(mask.sum())
self.logger.info("Error round %d of NMF: %f",n, err)
self.logger.info(str(n) + "," + str(err))
if err < bestErr:
bestGamma = gGamma
bestPhi = gPhi
bestErr = err
n += 1
self.logger.info("Best error: %f",bestErr)
self.expGamma[0:self.G,:] = bestGamma
self.expPhi[:,0:self.G] = bestPhi
self.expGamma2 = self.expGamma*self.expGamma
self.expPhi2 = self.expPhi*self.expPhi
def initFlowGraph(self, mask=None, bMaskDegen = False):
if mask is None:
maskF = np.ones((self.V))
else:
maskF = np.sum(mask,axis=1)
maskF[maskF >= 1.] = 1.
if bMaskDegen:
maskF = maskF*np.any(self.MaskDegen,axis=1)
XT = np.sum(self.X,axis=1) #self.maxFlow
XN = XT/self.lengths
maxN = np.max(XN)
XT = XT/maxN
self.tgenes = ['gene']
self.tCGraph = {}
self.tCGraph['gene'] = self.cRGraph
flowGraph = FlowGraphML(self.tCGraph, self.tgenes, self.prng, XT, self.lengths,self.cGeneIdx, maskF,False, 0.)
flowGraph.bLasso = False
flowGraph.fLambda = 0.
flowGraph.optimiseFlows(200,bKLDivergence = False)
eLambda = (flowGraph.phi + flowGraph.DELTA) * flowGraph.lengths
for v in range(flowGraph.V):
print(str(v) + ',' + str(flowGraph.X[v]) + ',' + str(flowGraph.phi[v]) + ',' + str(eLambda[v]))
paths = flowGraph.decomposeFlows()
minI = 3.0/(maxN*self.readLength)
fpaths = {k:v for (k,v) in paths['gene'].items() if v > minI}
sF = sorted(fpaths.items(), key=lambda x: -x[1])
nP = min(len(sF),self.G)
for g in range(nP):
pathU = sF[g][0]
for unitigp in pathU:
ud = unitigp[:-1]
if ud in flowGraph.mapGeneIdx['gene']:
vp = flowGraph.mapGeneIdx['gene'][ud]
self.expPhi[vp,g] = 1.
self.expPhi2[vp,g] = 1.
retained = np.ones(self.GDash,dtype=bool)
retained[nP:self.G] = False
self.filterHaplotypes(retained,20,mask,bMaskDegen)
if mask is None:
mask = np.ones((self.V, self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
covNMF = NMF(self.XN,mask,self.G,n_run = 20, prng = self.prng)
covNMF.random_initialize()
covNMF.W = self.expPhi[:,0:self.G]
covNMF.factorizeH()
#covNMF.train(1000,no_runs = 1)
#covNMF.factorizeG()
#covNMF.factorizeP()
self.expGamma[0:self.G,:] = np.copy(covNMF.H)
self.expGamma2 = self.expGamma*self.expGamma
#self.expGamma[0:self.G,:] = np.copy(covNMF.Ga
def initNMF(self, mask = None, bMaskDegen = True):
#import ipdb; ipdb.set_trace()
if mask is None:
mask = np.ones((self.V, self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
selectV = np.sum(mask,axis=1) > 0
XC = self.XN[selectV,:]
MC = mask[selectV,:]
LC = self.lengths[selectV]
covNMF = NMF(XC,MC,self.G,n_run = 20, prng = self.prng)
#covNMF = NMF_NNLS(XC,MC,self.G,LC)
#covNMF = NMF_NNLS(XC,MC,self.G)
covNMF.factorize()
covNMF.factorizeH()
#covNMF.train(1000,no_runs = 1)
#covNMF.factorizeG()
#covNMF.factorizeP()
self.expGamma[0:self.G,:] = np.copy(covNMF.H)
#self.expGamma[0:self.G,:] = np.copy(covNMF.Ga)
self.expGamma2 = self.expGamma*self.expGamma
covNMF.factorizeW()
initEta = np.zeros((self.V,self.G))
u = 0
for v in range(self.V):
if selectV[v]:
initEta[v,:] = covNMF.W[u,:]
u += 1
for v, vmap in self.degenSeq.items():
initEta[v,:] = initEta[vmap,:]
for g in range(self.G):
treeWidths = {}
for gene, factorGraph in self.factorGraphs.items():
unitigs = self.assemblyGraphs[gene].unitigs
self.updateUnitigFactorsW(unitigs, self.mapGeneIdx[gene], self.unitigFactorNodes[gene], initEta, g)
factorGraph.reset()
self.logger.info(gene)
factorGraph.var['zero+source+'].condition(1)
factorGraph.var['sink+infty+'].condition(1)
graphString = str(factorGraph)
stubName = str(uuid.uuid4()) + 'graph_'+ str(g)
graphFileName = self.working_dir + '/' + stubName + '.fg'
outFileName = self.working_dir + '/' + stubName + '.out'
with open(graphFileName, "w") as text_file:
print(graphString, file=text_file)
cmd = self.fgExePath + 'runfg_flex ' + graphFileName + ' ' + outFileName + ' 0 -1'
#subprocess.run('./runfg_marg_old ' + graphFileName + ' 0 > ' + outFileName, shell=True,check=True)
subprocess.run(cmd, shell=True,check=False)
#p = Popen(cmd, stdout=PIPE,shell=True)
treeWidths[gene] = -1
try:
inHandle = open(outFileName, 'r')
outLines = inHandle.readlines()
inHandle.close()
header = outLines[0]
matchW = re.search(r'.*twidth:(.*)',header)
if matchW is not None:
treeWidths[gene] = int(matchW.group(1))
self.margG[gene][g] = self.parseMargString(factorGraph,outLines)
self.updateExpPhi(unitigs,self.mapGeneIdx[gene],self.margG[gene][g],g)
os.remove(graphFileName)
os.remove(outFileName)
except FileNotFoundError:
os.remove(graphFileName)
if nx.is_directed_acyclic_graph(self.factorDiGraphs[gene]):
self.logger.info("Attempt greedy path: " + str(g) + " " + gene)
#greedyPath = self.sampleGreedyPath(gene, g)
greedyPath = self.sampleMaxWeightPath(gene, g)
for unitig in self.assemblyGraphs[gene].unitigs:
if unitig in self.mapGeneIdx[gene]:
v_idx = self.mapGeneIdx[gene][unitig]
self.expPhi[v_idx,g] = 0.
self.expPhi2[v_idx,g] = 0.
for unitigd in greedyPath:
unitig = unitigd[:-1]
if unitig in self.mapGeneIdx[gene]:
v_idx = self.mapGeneIdx[gene][unitig]
self.expPhi[v_idx,g] = 1.
self.expPhi2[v_idx,g] = 1.
else:
self.logger.warning("Cannot attempt greedy path")
self.addGamma(g)
self.logger.info("-1,"+ str(self.div()))
return treeWidths
def initNMFGamma(self,assCopyGamma):
gamma = np.copy(assCopyGamma.expGamma)
covNMF = NMF(self.XN,self.Identity,self.G,n_run = 10, prng = self.prng)
covNMF.random_initialize()
covNMF.H = np.copy(gamma[0:self.G,:])
covNMF.factorizeW()
self.eLambda = np.zeros((self.V,self.S))
initEta = covNMF.W
self.epsilon = assCopyGamma.epsilon #parameter for gamma exponential prior
self.expGamma = gamma #expectation of gamma
self.expGamma2 = np.copy(assCopyGamma.expGamma2)
self.muGamma = np.copy(assCopyGamma.muGamma)
self.tauGamma = np.copy(assCopyGamma.tauGamma)
self.varGamma = np.copy(assCopyGamma.varGamma)
for g in range(self.G):
for gene, factorGraph in self.factorGraphs.items():
unitigs = self.assemblyGraphs[gene].unitigs
self.updateUnitigFactorsW(unitigs, self.mapGeneIdx[gene], self.unitigFactorNodes[gene], initEta, g)
factorGraph.reset()
factorGraph.var['zero+source+'].condition(1)
factorGraph.var['sink+infty+'].condition(1)
graphString = str(factorGraph)
outFileStub = str(uuid.uuid4()) + 'graph_'+ str(g)
graphFileName = self.working_dir + '/' + outFileStub + '.fg'
outFileName = self.working_dir + '/' + outFileStub + '.out'
with open(graphFileName, "w") as text_file:
print(graphString, file=text_file)
cmd = self.fgExePath + 'runfg_flex ' + graphFileName + ' ' + outFileName + ' 0 -1'
#subprocess.run('./runfg_marg_old ' + graphFileName + ' 0 > ' + outFileName, shell=True,check=True)
subprocess.run(cmd, shell=True,check=True)
#p = Popen(cmd, stdout=PIPE,shell=True)
with open (outFileName, "r") as myfile:
outLines=myfile.readlines()
self.margG[gene][g] = self.parseMargString(factorGraph,outLines)
self.updateExpPhi(unitigs,self.mapGeneIdx[gene],self.margG[gene][g],g)
os.remove(graphFileName)
os.remove(outFileName)
self.addGamma(g)
self.logger.info("-1,"+ str(self.div()))
def exp_square_lambda(self):
''' Compute: sum_s E_q(phi,gamma) [ sum ( Phi_v Gamma_s )^2 ]. '''
eLambda2Sum = self.eLambda*self.eLambda
diagonal = np.dot(self.expPhi*self.expPhi,self.expGamma*self.expGamma)
return np.sum(eLambda2Sum - diagonal + np.dot(self.expPhi2,self.expGamma2), axis = 1)
def exp_square_lambda_matrix(self):
''' Compute: sum_s E_q(phi,gamma) [ sum ( Phi_v Gamma_s )^2 ]. '''
eLambda2Sum = self.eLambda*self.eLambda
diagonal = np.dot(self.expPhi*self.expPhi,self.expGamma*self.expGamma)
return eLambda2Sum - diagonal + np.dot(self.expPhi2,self.expGamma2)
def gene_mean_diff(self):
diff_matrix = self.divF_matrix()
gene_vals = defaultdict(list)
for gene in self.genes:
unitigs = self.mapUnitigs[gene]
for unitig in unitigs:
v_idx = self.mapGeneIdx[gene][unitig]
gene_vals[gene].append(np.mean(diff_matrix[v_idx,:]))
gene_means = {}
for gene in self.genes:
gene_means[gene] = np.mean(np.array(gene_vals[gene]))
return gene_means
def gene_MSE(self):
''' Predict missing values in R. '''
R_pred = self.lengths[:,np.newaxis]*np.dot(self.expPhi, self.expGamma)
if self.BIAS:
R_pred = R_pred*self.expTheta[:,np.newaxis]
diff_matrix = (self.X - R_pred)**2
gene_vals = defaultdict(list)
for gene in self.genes:
unitigs = self.mapUnitigs[gene]
for unitig in unitigs:
v_idx = self.mapGeneIdx[gene][unitig]
gene_vals[gene].extend(diff_matrix[v_idx,:].tolist())
gene_means = {}
for gene in self.genes:
gene_means[gene] = np.mean(np.array(gene_vals[gene]))
return gene_means
def mean_diff(self):
diff_matrix = self.divF_matrix()
return np.sum(diff_matrix)/self.V*self.S
def gene_mean_elbo(self):
gene_means = {}
for gene in self.genes:
unitigs = self.mapUnitigs[gene]
gene_elbo = self.calc_unitig_elbo(gene, unitigs)
gene_mean_elbo = gene_elbo/len(unitigs)
gene_means[gene] = gene_mean_elbo
return gene_means
def gene_mean_deviance(self):
deviance_matrix = self.calc_expdeviance_matrix()
gene_means = {}
for gene in self.genes:
unitigs = self.mapUnitigs[gene]
mean_dev = 0.
for unitig in unitigs:
v_idx = self.mapGeneIdx[gene][unitig]
mean_dev += np.mean(deviance_matrix[v_idx,:])
gene_means[gene] = mean_dev/len(unitigs)
return gene_means
def gene_mean_poisson(self, mask = None, bMaskDegen = False, bNoise = True):
if mask is None:
mask = np.ones((self.V,self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
# import ipdb; ipdb.set_trace()
poissonWeight = 1.0/(self.X + 0.5)
sd_matrix = self.exp_square_diff_matrix(bNoise = bNoise)
gene_means = {}
for gene in self.genes:
unitigs = self.mapUnitigs[gene]
mean_dev = 0.
v_ids = []
for unitig in unitigs:
v_idx = self.mapGeneIdx[gene][unitig]
v_ids.append(v_idx)
maskU = mask[v_ids,]
weightU = poissonWeight[v_ids,]
Omega = np.sum(maskU)
total_elbo = 0.5*(np.sum(weightU*maskU) - Omega*math.log(2*math.pi))
total_elbo -= 0.5*np.sum(maskU*weightU*sd_matrix[v_ids,])
gene_means[gene] = -total_elbo/Omega
return gene_means
def exp_square_diff_matrix_unitigs(self,unitig_idxs):
''' Compute: sum_Omega E_q(phi,gamma) [ ( Xvs - L_v Phi_v Gamma_s )^2 ]. '''
#return (self.M *( ( self.R - numpy.dot(self.exp_U,self.exp_V.T) )**2 + \
# ( numpy.dot(self.var_U+self.exp_U**2, (self.var_V+self.exp_V**2).T) - numpy.dot(self.exp_U**2,(self.exp_V**2).T) ) ) ).sum()
if self.BIAS:
R = self.X[unitig_idxs,:] - self.lengths[unitig_idxs,np.newaxis]*self.expTheta[unitig_idxs,np.newaxis]*self.eLambda[unitig_idxs,:]
else:
R = self.X[unitig_idxs,:] - self.lengths[unitig_idxs,np.newaxis]*self.eLambda[unitig_idxs,:]
t1 = np.dot(self.expPhi[unitig_idxs,:]*self.expPhi[unitig_idxs,:], self.expGamma*self.expGamma)
if self.BIAS:
eT2 = self.expTheta[unitig_idxs]*self.expTheta[unitig_idxs]
t1 = eT2[:,np.newaxis]*t1
diff = np.dot(self.expPhi2[unitig_idxs,:],self.expGamma2) - t1
L2 = self.lengths[unitig_idxs]*self.lengths[unitig_idxs]
if self.BIAS:
diff = np.dot(self.expPhi2[unitig_idxs,:],self.expGamma2)*self.expTheta2[unitig_idxs,np.newaxis] - t1
else:
diff = np.dot(self.expPhi2[unitig_idxs,:],self.expGamma2) - t1
diff2 = L2[:,np.newaxis]*diff
return R*R + diff2
def exp_square_diff_matrix(self, bNoise = True):
''' Compute: sum_Omega E_q(phi,gamma) [ ( Xvs - L_v Phi_v Gamma_s )^2 ]. '''
#return (self.M *( ( self.R - numpy.dot(self.exp_U,self.exp_V.T) )**2 + \
# ( numpy.dot(self.var_U+self.exp_U**2, (self.var_V+self.exp_V**2).T) - numpy.dot(self.exp_U**2,(self.exp_V**2).T) ) ) ).sum()
if bNoise:
tPhi = self.expPhi
tGamma = self.expGamma
tPhi2 = self.expPhi2
tGamma2 = self.expGamma2
else:
tPhi = self.expPhi[:,0:self.G]
tPhi2 = self.expPhi2[:,0:self.G]
tGamma = self.expGamma[0:self.G,:]
tGamma2 = self.expGamma2[0:self.G,:]
tLambda = np.dot(tPhi, tGamma)
if self.BIAS:
R = self.X - self.lengths[:,np.newaxis]*self.expTheta[:,np.newaxis]*tLambda
else:
R = self.X - self.lengths[:,np.newaxis]*tLambda
t1 = np.dot(tPhi*tPhi, tGamma*tGamma)
if self.BIAS:
eT2 = self.expTheta*self.expTheta
t1 = eT2[:,np.newaxis]*t1
diff = np.dot(tPhi2,tGamma2) - t1
L2 = self.lengths*self.lengths
if self.BIAS:
diff = np.dot(tPhi2,tGamma2)*self.expTheta2[:,np.newaxis] - t1
else:
diff = np.dot(tPhi2,tGamma2) - t1
diff2 = L2[:,np.newaxis]*diff
return R*R + diff2
def exp_square_diff(self):
''' Compute: sum_Omega E_q(phi,gamma) [ ( Xvs - L_v Phi_v Gamma_s )^2 ]. '''
#return (self.M *( ( self.R - numpy.dot(self.exp_U,self.exp_V.T) )**2 + \
# ( numpy.dot(self.var_U+self.exp_U**2, (self.var_V+self.exp_V**2).T) - numpy.dot(self.exp_U**2,(self.exp_V**2).T) ) ) ).sum()
if self.BIAS:
R = self.X - self.lengths[:,np.newaxis]*self.expTheta[:,np.newaxis]*self.eLambda
else:
R = self.X - self.lengths[:,np.newaxis]*self.eLambda
t1 = np.dot(self.expPhi*self.expPhi, self.expGamma*self.expGamma)
if self.BIAS:
eT2 = self.expTheta*self.expTheta
t1 = eT2[:,np.newaxis]*t1
if self.BIAS:
diff = np.dot(self.expPhi2,self.expGamma2)*self.expTheta2[:,np.newaxis] - t1
else:
diff = np.dot(self.expPhi2,self.expGamma2) - t1
L2 = self.lengths*self.lengths
diff2 = L2[:,np.newaxis]*diff
return np.sum(R*R + diff2)
def calc_strain_drop_elbo(self):
self.eLambda = np.dot(self.expPhi, self.expGamma)
current_gene_elbos = {}
for gene in self.genes:
current_gene_elbo = self.calc_unitig_elbo(gene, self.mapUnitigs[gene])
current_gene_elbos[gene] = current_gene_elbo
self.logger.info(gene + "," + str(current_gene_elbo) + "," + str(current_gene_elbo/float(len(self.mapUnitigs[gene]))))
diff_elbo = defaultdict(list)
for g in range(self.G):
self.removeGamma(g)
for gene in self.genes:
new_gene_elbo = self.calc_unitig_elbo(gene, self.mapUnitigs[gene])
diff_elbof = (new_gene_elbo - current_gene_elbos[gene])/float(len(self.mapUnitigs[gene]))
if diff_elbof < 0:
diff_elbo[gene].append(False)
else:
diff_elbo[gene].append(True)
self.logger.info(gene + "," + str(g) + "," + str(diff_elbof))
self.addGamma(g)
return diff_elbo
def drop_gene_strains(self, gene, g):
unitig_drops = [self.mapGeneIdx[gene][x] for x in self.mapUnitigs[gene]]
self.expPhi[unitig_drops,g] = 0.
self.expPhi2[unitig_drops,g] = 0.
def calc_unitig_elbo(self, gene, unitigs):
''' Compute the ELBO of a subset of unitigs. '''
unitig_idxs = [self.mapGeneIdx[gene][x] for x in unitigs]
nU = len(unitig_idxs)
total_elbo = 0.0
# Log likelihood
total_elbo += 0.5*(np.sum(self.expLogTau[unitig_idxs,:]) - nU*self.S*math.log(2*math.pi)) #first part likelihood
total_elbo -= 0.5*np.sum(self.expTau[unitig_idxs,:]*self.exp_square_diff_matrix_unitigs(unitig_idxs)) #second part likelihood
#Prior theta if using bias
if self.BIAS:
dS = np.sqrt(self.tauTheta0/2.0)*self.muTheta0
thetaConst = 0.5*np.log(self.tauTheta0/(2.0*np.pi)) -0.5*self.tauTheta0*self.muTheta0*self.muTheta0 - np.log(0.5*(1 + erf(dS)))
lnThetaPrior = nU*thetaConst
lnThetaPrior += np.sum(-0.5*self.tauTheta0*(self.expTheta2[unitig_idxs] - 2.0*self.expTheta[unitig_idxs]*self.muTheta0))
total_elbo += lnThetaPrior
#add phio prior assuming uniform
total_elbo += self.G*np.sum(self.logPhiPrior[unitig_idxs])
#add tau prior
total_elbo += nU*self.S*(self.alpha * math.log(self.beta) - sps.gammaln(self.alpha))
total_elbo += np.sum((self.alpha - 1.)*self.expLogTau[unitig_idxs,:] - self.beta*self.expTau[unitig_idxs,:])
if self.BIAS:
qTheta = -0.5*np.log(self.tauTheta[unitig_idxs]).sum() + 0.5*nU*math.log(2.*math.pi)
qTheta += np.log(0.5*sps.erfc(-self.muTheta[unitig_idxs]*np.sqrt(self.tauTheta[unitig_idxs])/math.sqrt(2.))).sum()
qTheta += (0.5*self.tauTheta[unitig_idxs] * (self.varTheta[unitig_idxs] + (self.expTheta[unitig_idxs] - self.muTheta[unitig_idxs])**2 ) ).sum()
total_elbo += qTheta
# q for tau
dTemp1 = np.sum((self.alpha + 0.5)*np.log(self.betaTau[unitig_idxs,:]) + sps.gammaln(self.alpha + 0.5))
dTemp2 = np.sum((self.alpha - 0.5)*self.expLogTau[unitig_idxs,:] + self.betaTau[unitig_idxs,:]*self.expTau[unitig_idxs,:])
total_elbo += - dTemp1
total_elbo += - dTemp2
# q for phi
total_elbo += np.sum(self.HPhi[unitig_idxs])
return total_elbo
def calc_expdeviance_matrix(self):
# Log likelihood
deviance_matrix = 0.5*self.expTau*self.exp_square_diff_matrix()
deviance_matrix -= 0.5*self.expLogTau
return deviance_matrix
def calc_expll(self, mask = None, bMaskDegen = False):
if mask is None:
mask = np.ones((self.V,self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
total_elbo = 0.
# Log likelihood
nTOmega = np.sum(mask)
total_elbo += 0.5*(np.sum(self.expLogTau*mask) - nTOmega*math.log(2*math.pi)) #first part likelihood
total_elbo -= 0.5*np.sum(mask*self.expTau*self.exp_square_diff_matrix()) #second part likelihood
return total_elbo
def calc_expll_poisson(self, mask = None, bMaskDegen = False, bNoise = True):
if mask is None:
mask = np.ones((self.V,self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
total_elbo = 0.
# Log likelihood
nTOmega = np.sum(mask)
poissonWeight = 1.0/(self.X + 0.5)
total_elbo += 0.5*(np.sum(poissonWeight*mask) - nTOmega*math.log(2*math.pi)) #first part likelihood
total_elbo -= 0.5*np.sum(mask*poissonWeight*self.exp_square_diff_matrix(bNoise = bNoise)) #second part likelihood
return total_elbo
def calc_expll_poisson_maximal(self, mask = None, bMaskDegen = False):
if mask is None:
mask = np.ones((self.V,self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
total_elbo = 0.
# Log likelihood
nTOmega = np.sum(mask)
poissonWeight = 1.0/(self.X + 0.5)
self.getMaximalUnitigs('Dummy', drop_strain=None,relax_path=False,writeSeq=False)
pPhi = np.zeros((self.V,self.G))
for gene, mapGene in self.mapGeneIdx.items():
for g in range(self.G):
for node in self.paths[gene][g]:
v_idx = mapGene[node[:-1]]
pPhi[v_idx,g] = 1.
R_pred = self.lengths[:,np.newaxis]*np.dot(pPhi, self.expGamma[0:self.G,:])
if self.BIAS:
R_pred = R_pred*self.expTheta[:,np.newaxis]
total_elbo += 0.5*(np.sum(poissonWeight*mask) - nTOmega*math.log(2*math.pi)) #first part likelihood
diff_matrix = (self.X - R_pred)**2
total_elbo -= 0.5*np.sum(mask*poissonWeight*diff_matrix) #second part likelihood
return total_elbo
def calc_expll_poisson2(self, mask = None, bMaskDegen = False):
if mask is None:
mask = np.ones((self.V,self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
R_pred = self.lengths[:,np.newaxis]*np.dot(self.expPhi[:,0:self.G], self.expGamma[0:self.G,:])
if self.BIAS:
R_pred = R_pred*self.expTheta[:,np.newaxis]
R2 = (self.X - R_pred)**2
total_elbo = 0.
# Log likelihood
nTOmega = np.sum(mask)
poissonWeight = 1.0/(self.X + 0.5)
total_elbo += 0.5*(np.sum(poissonWeight*mask) - nTOmega*math.log(2*math.pi)) #first part likelihood
total_elbo -= 0.5*np.sum(mask*poissonWeight*R2) #second part likelihood
return total_elbo
def calc_elbo(self, mask = None, bMaskDegen = False):
if mask is None:
mask = np.ones((self.V,self.S))
if bMaskDegen:
mask = mask*self.MaskDegen
''' Compute the ELBO. '''
total_elbo = 0.
# Log likelihood
nTOmega = np.sum(mask)
total_elbo += 0.5*(np.sum(self.expLogTau*mask) - nTOmega*math.log(2*math.pi)) #first part likelihood
total_elbo -= 0.5*np.sum(mask*self.expTau*self.exp_square_diff_matrix()) #second part likelihood
if self.NOISE:
if self.ARD:
total_elbo += self.alpha0 * math.log(self.beta0) - sp.special.gammaln(self.alpha0) \
+ (self.alpha0 - 1.)*self.exp_loglambdak.sum() - self.beta0 * self.exp_lambdak.sum()
total_elbo += self.S * np.log(self.exp_lambdak).sum() - (self.exp_lambdak[:,np.newaxis] * self.expGamma[0:self.G]).sum()
else:
total_elbo += np.sum(-math.log(self.epsilon) - self.expGamma[0:self.G]/self.epsilon)
total_elbo += np.sum(-math.log(self.epsilonNoise) - self.expGamma[self.G]/self.epsilonNoise)
else:
# Prior lambdak, if using ARD, and prior U, V
if self.ARD:
total_elbo += self.alpha0 * math.log(self.beta0) - sp.special.gammaln(self.alpha0) \
+ (self.alpha0 - 1.)*self.exp_loglambdak.sum() - self.beta0 * self.exp_lambdak.sum()
total_elbo += self.S * np.log(self.exp_lambdak).sum() - (self.exp_lambdak[:,np.newaxis] * self.expGamma).sum()
else:
total_elbo += np.sum(-math.log(self.epsilon) - self.expGamma/self.epsilon)
#Prior theta if using bias
if self.BIAS:
dS = np.sqrt(self.tauTheta0/2.0)*self.muTheta0
thetaConst = 0.5*np.log(self.tauTheta0/(2.0*np.pi)) -0.5*self.tauTheta0*self.muTheta0*self.muTheta0 - np.log(0.5*(1 + erf(dS)))
lnThetaPrior = self.V*thetaConst
#thetaMoment1 = np.array(TN_vector_expectation(self.expTheta,self.tauTheta))
#thetaVar = np.array(TN_vector_variance(self.expTheta,self.tauTheta))
#thetaMoment2 = thetaVar + 2.0*self.expTheta*thetaMoment1 - self.expTheta*self.expTheta
lnThetaPrior += np.sum(-0.5*self.tauTheta0*(self.expTheta2 - 2.0*self.expTheta*self.muTheta0))
total_elbo += lnThetaPrior
#add phio prior assuming uniform
total_elbo += self.G*np.sum(self.logPhiPrior)
#add tau prior
if self.bFixedTau:
total_elbo += nTOmega*(self.alpha * math.log(self.beta) - sps.gammaln(self.alpha))
total_elbo += np.sum((self.alpha - 1.)*self.expLogTau*mask - self.beta*self.expTau*mask)
# q for lambdak, if using ARD
if self.ARD:
total_elbo += - sum([v1*math.log(v2) for v1,v2 in zip(self.alphak_s,self.betak_s)]) + sum([sp.special.gammaln(v) for v in self.alphak_s]) \
- ((self.alphak_s - 1.)*self.exp_loglambdak).sum() + (self.betak_s * self.exp_lambdak).sum()
#add q for gamma
qGamma = -0.5*np.log(self.tauGamma).sum() + 0.5*self.GDash*self.S*math.log(2.*math.pi)
temp = sps.erfc(-self.muGamma*np.sqrt(self.tauGamma)/math.sqrt(2.))
temp[temp < AssemblyPathSVA.minLogQGamma] = AssemblyPathSVA.minLogQGamma
qGamma += np.log(0.5*temp).sum()
qGamma += (0.5*self.tauGamma * ( self.varGamma + (self.expGamma - self.muGamma)**2 ) ).sum()
total_elbo += qGamma
if self.BIAS:
qTheta = -0.5*np.log(self.tauTheta).sum() + 0.5*self.V*math.log(2.*math.pi)
qTheta += np.log(0.5*sps.erfc(-self.muTheta*np.sqrt(self.tauTheta)/math.sqrt(2.))).sum()
qTheta += (0.5*self.tauTheta * ( self.varTheta + (self.expTheta - self.muTheta)**2 ) ).sum()
total_elbo += qTheta
# q for tau
if self.bFixedTau:
dTemp1 = (self.alpha + 0.5)*np.sum(np.log(self.betaTau)*mask) - nTOmega*sps.gammaln(self.alpha + 0.5)
dTemp2 = np.sum((self.alpha - 0.5)*self.expLogTau*mask) + np.sum(self.betaTau*self.expTau*mask)
total_elbo += - dTemp1
total_elbo += - dTemp2
# q for phi
total_elbo += np.sum(self.HPhi)
return total_elbo
def predict(self, M_pred, bMaskDegen = False):
''' Predict missing values in R. '''
R_pred = self.lengths[:,np.newaxis]*np.dot(self.expPhi, self.expGamma)
if self.BIAS:
R_pred = R_pred*self.expTheta[:,np.newaxis]
if bMaskDegen:
M_pred = M_pred*self.MaskDegen
MSE = self.compute_MSE(M_pred, self.X, R_pred)
#R2 = self.compute_R2(M_pred, self.R, R_pred)
#Rp = self.compute_Rp(M_pred, self.R, R_pred)
return MSE
def predict_sqrt(self, M_pred, bMaskDegen = False):
''' Predict missing values in R. '''
R_pred = self.lengths[:,np.newaxis]*np.dot(self.expPhi, self.expGamma)
if self.BIAS:
R_pred = R_pred*self.expTheta[:,np.newaxis]
if bMaskDegen:
M_pred = M_pred*self.MaskDegen
MSE = self.compute_MSE(M_pred, np.sqrt(self.X), np.sqrt(R_pred))
#R2 = self.compute_R2(M_pred, self.R, R_pred)
#Rp = self.compute_Rp(M_pred, self.R, R_pred)
return MSE
def predictMaximal(self, M_pred, bMaskDegen = False):
''' Predict missing values in R. '''
self.getMaximalUnitigs('Dummy', drop_strain=None,relax_path=False,writeSeq=False)
pPhi = np.zeros((self.V,self.GDash))
for gene, mapGene in self.mapGeneIdx.items():
for g in range(self.G):
for node in self.paths[gene][g]:
v_idx = mapGene[node[:-1]]
pPhi[v_idx,g] = 1.
if self.NOISE:
pPhi[:,self.G] = 1.0
R_pred = self.lengths[:,np.newaxis]*np.dot(pPhi, self.expGamma)
if self.BIAS:
R_pred = R_pred*self.expTheta[:,np.newaxis]
if bMaskDegen:
M_pred = M_pred*self.MaskDegen
MSE = self.compute_MSE(M_pred, self.X, R_pred)
#R2 = self.compute_R2(M_pred, self.R, R_pred)
#Rp = self.compute_Rp(M_pred, self.R, R_pred)
return MSE
def meanMargMaximal(self):
''' Predict missing values in R. '''
self.getMaximalUnitigs('Dummy', drop_strain=None,relax_path=False,writeSeq=False)
meanMargMaximal = np.zeros(self.G)
countMargMaximal = np.zeros(self.G)
for gene, mapGene in self.mapGeneIdx.items():
for g in range(self.G):
for node in self.paths[gene][g]:
v_idx = mapGene[node[:-1]]
meanMargMaximal[g] += (1.0 - self.expPhi[v_idx,g])
countMargMaximal[g] += 1
return meanMargMaximal/countMargMaximal
''' Functions for computing MSE, R^2 (coefficient of determination), Rp (Pearson correlation) '''
def compute_MSE(self,M,R,R_pred):
''' Return the MSE of predictions in R_pred, expected values in R, for the entries in M. '''
return (M * (R-R_pred)**2).sum() / float(M.sum())
def calcPathDist(self, relax_path):
dist = np.zeros((self.G,self.G))
self.MAPs = defaultdict(list)
pathsg = defaultdict(dict)
for g in range(self.G):
for gene, factorGraph in self.factorGraphs.items():
unitigs = self.assemblyGraphs[gene].unitigs
self.updateUnitigFactorsMarg(unitigs, self.mapGeneIdx[gene], self.unitigFactorNodes[gene], self.margG[gene][g])
factorGraph.reset()
if not relax_path:
factorGraph.var['zero+source+'].condition(1)
factorGraph.var['sink+infty+'].condition(1)
else:
factorGraph.var['zero+source+'].clear_condition()
factorGraph.var['sink+infty+'].clear_condition()
maximals = self.runFGMaximal(factorGraph, g)
self.MAPs[gene].append(maximals)
biGraph = self.factorDiGraphs[gene]
if maximals is not None:
pathG = self.convertMAPToPath(self.MAPs[gene][g],biGraph)
pathG.pop(0)
pathsg[g][gene] = pathG
else:
pathsg[g][gene] = None
for g in range(self.G):
for h in range(g+1,self.G):
diff = 0
comp = 0
for gene in self.genes:
if pathsg[g][gene] is not None and pathsg[h][gene] is not None:
if len(set(pathsg[g][gene])) > 0 and len(set(pathsg[h][gene])) > 0:
comp += 1
diff += len(set(pathsg[g][gene]) ^ set(pathsg[h][gene]))
dist[g,h] = diff
dist[h,g] = diff
return dist
def filterHaplotypes(self,retained,gammaIter,mask=None,bMaskDegen=False):
nNewG = np.sum(retained[0:self.G])
if nNewG < self.G:
self.logger.info("New strain number " + str(nNewG))
oldG = self.G
if self.NOISE:
self.G = nNewG
self.GDash = self.G + 1
else:
self.G = nNewG
self.GDash = self.G
newPhi = self.expPhi[:,retained]
newPhi2 = self.expPhi2[:,retained]
newPhiH = self.HPhi[:,retained]
newExpGamma = self.expGamma[retained,:]
newExpGamma2 = self.expGamma2[retained,:]
newMuGamma = self.muGamma[retained,:]
newTauGamma = self.tauGamma[retained,:]
newVarGamma = self.varGamma[retained,:]
self.expPhi = newPhi
self.expPhi2 = newPhi2
self.HPhi = newPhiH
self.expGamma = newExpGamma
self.expGamma2 = newExpGamma2
self.muGamma = newMuGamma
self.tauGamma = newTauGamma
self.varGamma = newVarGamma
if self.ARD:
self.alphak_s = self.alphak_s[retained[0:oldG]]
self.betak_s = self.betak_s[retained[0:oldG]]
self.exp_lambdak = self.exp_lambdak[retained[0:oldG]]
self.exp_loglambdak = self.exp_loglambdak[retained[0:oldG]]
iter = 0
while iter < gammaIter:
if self.ARD:
for g in range(self.G):
self.update_lambdak(g)
self.update_exp_lambdak(g)
for g in range(self.GDash):
self.updateGamma(g, mask, bMaskDegen)
self.eLambda = np.zeros((self.V,self.S))
for g in range(self.GDash):
self.addGamma(g)
self.updateTau()
iter += 1
self.margG = dict()
for gene in self.genes:
self.margG[gene] = [dict() for x in range(self.G)]
''' Filters on uncertainty'''
def filterUncertain(self, maxUncertainty,relax_path,gammaIter=10):
self.getMaximalUnitigs("Temp",drop_strain=None, relax_path=relax_path, writeSeq = False)
mean_div = self.getPathDivergence(100,drop_strain=None,relax_path=relax_path)
removed = np.zeros(self.GDash,dtype=bool)
removed[0:self.G] = mean_div > maxUncertainty
retained = np.logical_not(removed)
if self.NOISE:
retained[self.G] = True
self.filterHaplotypes(retained,gammaIter)
''' Removes strain below a given total intensity and degenerate'''
def removeRedundant(self, minIntensity, gammaIter, relax_path, uncertainFactor=None, mask = None, bMaskDegen = False):
if uncertainFactor is not None:
self.getMaximalUnitigs("Temp",drop_strain=None, relax_path=relax_path,writeSeq=False)
#mean_div = self.getPathDivergence(100,drop_strain=None,relax_path=relax_path)
mean_div = self.meanMargMaximal()
#calculate number of good strains
nNewG = 0
nOldG = self.G
sumIntensity = np.sum(self.expGamma,axis=1)
if uncertainFactor is not None:
dTemp = min(1.0,np.exp(-uncertainFactor*np.max(mean_div)))
sumIntensity[np.argmax(mean_div)] *= dTemp
dist = self.calcPathDist(relax_path)
#first collapse degenerate clusters
clusters = defaultdict(list)
gSorted = np.argsort(-sumIntensity[0:self.G])
for g in gSorted.tolist():
found = False
hclust = -1
for clust, members in clusters.items():
if dist[g][clust] == 0:
found=True
hclust = clust
break
if not found:
clusters[g].append(g)
else:
clusters[hclust].append(g)
nClusts = len(list(clusters.keys()))
removed = np.zeros(self.GDash,dtype=bool)
removedClust = defaultdict(lambda: False)
if nClusts < self.G:
newGamma =
|
np.copy(self.expGamma)
|
numpy.copy
|
# coding=utf-8
# Copyright 2022 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# python3
"""NeuTra implementation."""
# pylint: disable=invalid-name,missing-docstring
import time
from typing import Any, Text, Tuple, NamedTuple
from absl import logging
import gin
import numpy as np
import tensorflow.compat.v2 as tf
import tensorflow_probability as tfp
from hmc_swindles import targets
from hmc_swindles import utils
from tensorflow.python.util import nest # pylint: disable=g-direct-tensorflow-import
# pylint: disable=g-import-not-at-top
USE_LOCAL_FUN_MC = True
if USE_LOCAL_FUN_MC:
from fun_mc import using_tensorflow as fun_mc # pylint: disable=reimported
tfd = tfp.distributions
tfb = tfp.bijectors
tfkl = tf.keras.layers
@gin.configurable("head_tail_bijector")
def MakeHeadTailBijectorFn(num_dims,
head_layers=(),
activation=tf.nn.elu,
train=False,
head_dims=3):
"""A RealNVP for stochastic volatility model."""
# pylint: disable=no-value-for-parameter
del train
tail_dims = num_dims - head_dims
@utils.MakeTFTemplate
def head_bijector_fn(x):
x.set_shape(list(x.shape)[:-1] + [head_dims])
input_shape = x.shape
for i, units in enumerate(head_layers):
x = utils.MaskedDense(
inputs=x,
units=units,
num_blocks=head_dims,
exclusive=True if i == 0 else False,
kernel_initializer=utils.L2HMCInitializer(factor=0.01),
activation=activation,
)
x = utils.MaskedDense(
inputs=x,
units=2 * head_dims,
num_blocks=head_dims,
activation=None,
kernel_initializer=utils.L2HMCInitializer(factor=0.01),
)
x = tf.reshape(x, shape=tf.concat([input_shape, [2]], axis=0))
shift, log_scale = tf.unstack(x, num=2, axis=-1)
return tfb.Chain([tfb.Shift(shift=shift), tfb.Scale(log_scale=log_scale)])
@utils.MakeTFTemplate
def head_to_tail_bijector_fn(x, _):
for units in head_layers:
x = tfkl.Dense(
units=units,
activation=activation,
kernel_initializer=utils.L2HMCInitializer(factor=0.01),
)(x,)
shift = tfkl.Dense(
units=1,
activation=None,
kernel_initializer=utils.L2HMCInitializer(factor=0.01),
)(x,)
return tfb.Chain(
[tfb.Shift(shift=shift), tfb.Scale(log_scale=tf.Variable(0.))])
@utils.MakeTFTemplate
def tail_to_head_bijector_fn(x, _):
x = tf.reduce_mean(x, axis=-1, keepdims=True)
for units in head_layers:
x = tfkl.Dense(units=units, activation=activation)(x)
shift = tfkl.Dense(units=head_dims, activation=None)(x)
return tfb.Chain(
[tfb.Shift(shift=shift),
tfb.Scale(log_scale=tf.Variable(tf.zeros(head_dims)))])
b = tfb.Identity()
b = tfb.Blockwise(
[
tfb.Invert(
tfb.MaskedAutoregressiveFlow(
bijector_fn=head_bijector_fn("head"))),
tfb.Identity(),
],
[head_dims, tail_dims],
)(b,)
b = tfb.RealNVP(
num_masked=head_dims,
bijector_fn=head_to_tail_bijector_fn("head_to_tail"))(
b)
b = tfb.Permute(list(reversed(range(num_dims))))(b)
b = tfb.RealNVP(
num_masked=tail_dims,
bijector_fn=tail_to_head_bijector_fn("tail_to_head"))(
b)
b = tfb.Permute(list(reversed(range(num_dims))))(b)
b = tfb.Blockwise(
[
tfb.Identity(),
tfb.Shift(shift=tf.Variable(tf.zeros([tail_dims])))
],
[head_dims, tail_dims],
)(b,)
# Construct the variables
_ = b.forward(tf.zeros([1, num_dims]))
return b
@gin.configurable("affine_bijector")
def MakeAffineBijectorFn(num_dims, train=False, use_tril=False):
mu = tf.Variable(tf.zeros([num_dims]), name="mean", trainable=train)
if use_tril:
tril_flat = tf.Variable(
tf.zeros([num_dims * (num_dims + 1) // 2]),
name="tril_flat",
trainable=train)
tril_raw = tfp.math.fill_triangular(tril_flat)
sigma = tf.nn.softplus(tf.linalg.diag_part(tril_raw))
tril = tf.linalg.set_diag(tril_raw, sigma)
return tfb.Shift(shift=mu)(tfb.ScaleMatvecTriL(scale_tril=tril))
else:
sigma = tf.nn.softplus(
tf.Variable(tf.zeros([num_dims]), name="invpsigma", trainable=train))
return tfb.Shift(shift=mu)(tfb.ScaleMatvecDiag(scale_diag=sigma))
@gin.configurable("rnvp_bijector")
def MakeRNVPBijectorFn(num_dims,
num_stages,
hidden_layers,
scale=1.0,
activation=tf.nn.elu,
train=False,
learn_scale=False,
dropout_rate=0.0):
swap = tfb.Permute(permutation=
|
np.arange(num_dims - 1, -1, -1)
|
numpy.arange
|
import csv
import importlib
import sys
sys.path.append('..')
import os
import json
import argparse
import copy
from enum import IntEnum
from datetime import datetime
import numpy as np
import scipy.integrate as solve
import scipy.optimize as opt
import matplotlib.pylab as plt
from scripts.tsv import parse as parse_tsv
from scripts.R0_estimator import get_Re_guess
# ------------------------------------------------------------------------
# Indexing enums
compartments = ['S', 'E1', 'E2', 'E3', 'I', 'H', 'C', 'D', 'R', 'T', 'NUM']
Sub = IntEnum('Sub', compartments, start=0)
groups = ['_0', '_1', '_2', '_3', '_4', '_5', '_6', '_7', '_8', 'NUM']
Age = IntEnum('Age', groups , start=0)
# ------------------------------------------------------------------------
# Default parameters
DefaultRates = {"latency":1/3.0, "logR0":1.0, "infection":1/3.0, "hospital":1/7.0, "critical":1/14, "imports":.1, "efficacy":0.5}
RateFields = list(DefaultRates.keys())
# ------------------------------------------------------------------------
# Organizational classes
class Data(object):
def __str__(self):
return str({k : str(v) for k, v in self.__dict__.items()})
class TimeRange(Data):
def __init__(self, day0, start, end, delta=1):
self.day0 = day0
self.start = start
self.end = end
self.delta = delta
class Params(Data):
"""
Parameters needed to run the model. Initialized to default values. No default value for logR0 as if it
is not set the self.infectivity function doesn't give proper values.
"""
def __init__(self, logR0, ages=None, size=None, containment_start=None, times=None,
logInitial=None, seroprevalence=0):
self.ages = ages
self.size = size
self.time = times
self.containment_start = containment_start
self.seroprevalence = seroprevalence
# Rates
self.latency = DefaultRates["latency"]
self.logR0 = logR0
self.infection = DefaultRates["infection"]
self.beta = np.exp(self.logR0) * self.infection
self.hospital = DefaultRates["hospital"]
self.critical = DefaultRates["critical"]
self.imports = DefaultRates["imports"]
self.efficacy = DefaultRates["efficacy"]
# Fracs
self.confirmed = np.array([5, 5, 10, 15, 20, 20, 25, 30, 40]) / 100
self.severe = np.array([1, 3, 3, 3, 6, 10, 25, 35, 50]) / 100
self.severe *= self.confirmed
self.palliative = np.array([0, 0, 0, 0, 0, 0, 5, 10, 20]) / 100
self.icu = np.array([5, 10, 10, 15, 20, 25, 30, 25, 15]) / 100
self.fatality = np.array([10, 10, 10, 10, 10, 20, 30, 40, 50]) / 100
self.recovery = 1 - self.severe
self.discharge = 1 - self.icu
self.stabilize = 1 - self.fatality
self.reported = 1/30
self.logInitial = logInitial or 1
# Make infection function
self.infectivity = lambda t,containment_start,eff,beta : beta if t<containment_start else beta*(1-eff)
# ------------------------------------------------------------------------
# Functions
def get_IFR(age_distribution):
params = Params(0)
ifr_by_age = params.severe*(params.palliative + params.icu*params.fatality)
return np.sum(age_distribution*ifr_by_age)
def get_reporting_fraction(cases, deaths, IFR, right_censoring=30, n_days=60):
left_index = max(0,len(cases) - right_censoring - n_days)
right_index = max(0,len(cases) - right_censoring)
n_cases = cases[right_index] - cases[left_index]
n_deaths = deaths[right_index] - deaths[left_index]
if n_deaths:
reported = IFR*n_cases/n_deaths
if np.isfinite(reported):
return reported
return 0.3
# ------------------------------------------
# Modeling
def make_evolve(params):
# Equations for coupled ODEs
def evolve(t, pop):
pop2d = np.reshape(pop, (Sub.NUM, Age.NUM))
fracI = pop2d[Sub.I, :].sum() / params.size
dpop =
|
np.zeros_like(pop2d)
|
numpy.zeros_like
|
import numpy as np
from screws.freeze.main import FrozenOnly
from screws.quadrature import Quadrature
from objects.CSCG._3d.mesh.domain.regions.region.interpolations.allocator import InterpolationAllocator
from objects.CSCG._3d.mesh.domain.regions.region.side_geometries.allocator import SideGeometryAllocator
from objects.CSCG._3d.mesh.domain.regions.region.types_wrt_metric.allocator import TypeWr2MetricAllocator
from objects.CSCG._3d.mesh.domain.regions.region.sides.main import Sides
from objects.CSCG._3d.mesh.domain.regions.region.sub_geometry.main import RegionSubGeometry
from objects.CSCG._3d.mesh.domain.regions.region.inheriting.topology import RegionTopology
from objects.CSCG._3d.mesh.domain.regions.region.IS import _3dCSCG_Region_IS
class Region(RegionTopology, FrozenOnly):
def __init__(self, ndim, name, cc, st, interpolator, domain_input):
"""
Parameters
----------
ndim : int
Must be 3.
name :
cc : corner coordinates
st : side type
interpolator :
domain_input :
The DomainInput, but its classname is not 'DomainInput'. It inherits the
class `DomainInput` but has personal name.
"""
assert ndim == 3, " < Region> "
self._ndim_ = ndim
self._name_ = name
self._volume_ = None
self._domain_input_ = domain_input # can not remove this line
self.___PRIVATE_set_corner_coordinates___(cc)
self.___PRIVATE_set_side_types___(st)
self.___PRIVATE_parse_side_types___()
self._type_wrt_metric_ = self.___PRIVATE_PARSE_type_wrt_metric___()
self._interpolation_ = InterpolationAllocator(interpolator)(self)
self.___is_orthogonal___ = None
self._sides_ = Sides(self)
self._sub_geometry_ = RegionSubGeometry(self)
self._IS_ = None
self._MAP_ = None
self._freeze_self_()
@property
def map(self):
return self._MAP_
@property
def type_wrt_metric(self):
return self._type_wrt_metric_
@property
def sides(self):
return self._sides_
@property
def name(self):
return self._name_
@property
def ndim(self):
return self._ndim_
@property
def interpolation(self):
return self._interpolation_
@property
def volume(self):
""" Return the volume of this region."""
if self._volume_ is None:
p = 20 # we use this many high order numerical quadrature.
qx, qy, qz, quad_weights = Quadrature([p, p, p], category='Gauss').quad_ndim_ravel
detJ = self.interpolation.Jacobian(qx, qy, qz)
self._volume_ =
|
np.sum(detJ * quad_weights)
|
numpy.sum
|
from lenstronomy.Analysis.image_reconstruction import MultiBandImageReconstruction
from lenstronomy.Data.pixel_grid import PixelGrid
from lenstronomy.Data.imaging_data import ImageData
from lenstronomy.Util import util
import numpy as np
import numpy.testing as npt
import copy
class MultiPatchReconstruction(MultiBandImageReconstruction):
"""
this class illustrates the model of disconnected multi-patch modeling with 'joint-linear' option in one single
array.
"""
def __init__(self, multi_band_list, kwargs_model, kwargs_params, multi_band_type='joint-linear',
kwargs_likelihood=None, kwargs_pixel_grid=None, verbose=True):
"""
:param multi_band_list: list of imaging data configuration [[kwargs_data, kwargs_psf, kwargs_numerics], [...]]
:param kwargs_model: model keyword argument list
:param kwargs_params: keyword arguments of the model parameters, same as output of FittingSequence() 'kwargs_result'
:param multi_band_type: string, option when having multiple imaging data sets modelled simultaneously. Options are:
- 'multi-linear': linear amplitudes are inferred on single data set
- 'linear-joint': linear amplitudes ae jointly inferred
- 'single-band': single band
:param kwargs_likelihood: likelihood keyword arguments as supported by the Likelihood() class
:param kwargs_pixel_grid: keyword argument of PixelGrid() class. This is optional and overwrites a minimal grid
Attention for consistent pixel grid definitions!
:param verbose: if True (default), computes and prints the total log-likelihood.
This can deactivated for speedup purposes (does not run linear inversion again), and reduces the number of prints.
"""
self._multi_band_list = multi_band_list
if not multi_band_type == 'joint-linear':
raise ValueError('MultiPatchPlot only works with multi_band_type="joint_linear". '
'Setting choice was %s. ' % multi_band_type)
MultiBandImageReconstruction.__init__(self, multi_band_list, kwargs_model, kwargs_params,
multi_band_type=multi_band_type, kwargs_likelihood=kwargs_likelihood,
verbose=verbose)
if kwargs_pixel_grid is not None:
self._pixel_grid_joint = PixelGrid(**kwargs_pixel_grid)
else:
self._pixel_grid_joint = self._joint_pixel_grid(multi_band_list)
@property
def pixel_grid_joint(self):
"""
:return: PixelGrid() class instance covering the entire window of the sky including all individual patches
"""
return self._pixel_grid_joint
@staticmethod
def _joint_pixel_grid(multi_band_list):
"""
Joint PixelGrid() class instance.
This routine only works when the individual patches have the same coordinate system orientation and pixel scale.
:param multi_band_list: list of imaging data configuration [[kwargs_data, kwargs_psf, kwargs_numerics], [...]]
:return: PixelGrid() class instance covering the entire window of the sky including all individual patches
"""
nx, ny = 0, 0
kwargs_data = copy.deepcopy(multi_band_list[0][0])
kwargs_pixel_grid = {'nx': 0, 'ny': 0,
'transform_pix2angle': kwargs_data['transform_pix2angle'],
'ra_at_xy_0': kwargs_data['ra_at_xy_0'],
'dec_at_xy_0': kwargs_data['dec_at_xy_0']}
pixel_grid = PixelGrid(**kwargs_pixel_grid)
Mpix2a = pixel_grid.transform_pix2angle
# set up joint coordinate system and pixel size to include all frames
for i in range(len(multi_band_list)):
kwargs_data = multi_band_list[i][0]
data_class_i = ImageData(**kwargs_data)
Mpix2a_i = data_class_i.transform_pix2angle
# check we are operating in the same coordinate system/rotation and pixel scale
npt.assert_almost_equal(Mpix2a, Mpix2a_i, decimal=5)
# evaluate pixel of zero point with the base coordinate system
ra0, dec0 = data_class_i.radec_at_xy_0
x_min, y_min = pixel_grid.map_coord2pix(ra0, dec0)
nx_i, ny_i = data_class_i.num_pixel_axes
nx, ny = _update_frame_size(nx, ny, x_min, y_min, nx_i, ny_i)
# select minimum in x- and y-axis
# transform back in RA/DEC and make this the new zero point of the base coordinate system
ra_at_xy_0_new, dec_at_xy_0_new = pixel_grid.map_pix2coord(np.minimum(x_min, 0), np.minimum(y_min, 0))
kwargs_pixel_grid['ra_at_xy_0'] = ra_at_xy_0_new
kwargs_pixel_grid['dec_at_xy_0'] = dec_at_xy_0_new
kwargs_pixel_grid['nx'] = nx
kwargs_pixel_grid['ny'] = ny
pixel_grid = PixelGrid(**kwargs_pixel_grid)
return pixel_grid
def image_joint(self):
"""
patch together the individual patches of data and models
:return: image_joint, model_joint, norm_residuals_joint
"""
nx, ny = self._pixel_grid_joint.num_pixel_axes
image_joint = np.zeros((ny, nx))
model_joint =
|
np.zeros((ny, nx))
|
numpy.zeros
|
# -*- coding: utf-8 -*-
"""
Created on Thu Jan 30 10:40:46 2020
@author: lealp
"""
import pandas as pd
pd.set_option('display.width', 50000)
pd.set_option('display.max_rows', 50000)
pd.set_option('display.max_columns', 5000)
import numpy as np
from dask.diagnostics import ProgressBar
import pymannkendall as mk
import xarray as xr
def apply_mk(x, alpha=0.05):
'''
The mannkendall test is described in:
1) http://www.scielo.br/pdf/eagri/v33n2/05.pdf
2) https://vsp.pnnl.gov/help/Vsample/Design_Trend_Mann_Kendall.htm
The algorithm is described in: https://pypi.org/project/pymannkendall/
Returns: 2d-tuple containing the condition value (True/False) of the pvalue<alpha
and the temporal trend coefficient
'''
result = mk.original_test(x, alpha=alpha)
if result[1] == True:
return
|
np.array([result[1], result[-1]])
|
numpy.array
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This is the "snake" Python module. It is the lower level module used to
analyze non-magnetic bright points.
It is assume that small UIO 3D boxes containing single nMBPs are given.
The goal of this module is to locate the 3D region in which nMBP forms.
The set of minima of density (layer by layer, at constant z) correponding
to the nMBP are first located. This set has the shape of a "snake", and
hence the name of the module. This "snake" defines the "eye" of the
nMBP, looking like the "eye" of a tornado.
At each layer, one has the "eye" of the nMBP. For a specific layer and from
the corresponding eye one then computes the region that contains the nMBP.
First step
----------
First step is to obtain candidates for the local minimum (of density), that
corresponds to the eye of the nMBP in a specific layer. For this purpose,
a minimum filter is used.
This introduces a free parameter, 'radius', or 'r'. Experimentally 3 is a
good value.
Unfortunately this gives many candidates and only one has to be selected.
Second step
-----------
The second step is to reduce the number of selected candidates.
The eye of the nMBP has a quite low density, but only around tau=1. For a
layer around tau=1, one can plot a histogram of density at local minima.
Experimentally one obtains that the steepest slope of the histogram
separates fairly well a small set of local minima (among which the nMBP)
from a set containing the biggest amount of irrelevant local minima.
This procedure works extremely well at tau=1, usually leading directly to
the single nMBP. Away from tau=1 it generally leaves a few other
candidates.
The candidates left are sorted by increasing density, and at most the first
three are kept.
Third step
----------
Third step is identifying THE nMBP among all remaining local minima. This
cannot be done generally from one single layer. The idea is to first
apply step two to a layer near tau=1 and for each candidate move up and
down to the nearest local minimum, thus identifying all possible "snakes".
At this point, one has as many snakes as initial candidates. One chooses
the longest, and if two snakes have identical length, one chooses the one
that is less twisted.
Getting the neighbourhood
-------------------------
One needs now to identify the neighbourhood of the nMBP. We proceed again
layer by layer. We look for a star domain whose centre is the already
computed eye.
The idea is to move radially in each direction away from the eye. Density
generally increases, and one always keep track of the maximum density.
When the density increases above a fraction (1.-threshold) of
rho_max - rho_eye, one decides it is the boundary of the star domain.
The threshold is experimentally taken to be 0.8. It is the other free
parameter of the algorithms used here. Note that the results are not
very sensitive to these free parameters.
Of course, the number of directions to explore radially increases with
the size of the domain, and for points near the eye there is a huge
redundancy.
The idea is to build a (discrete) spiral around the eye, parametrized so
that all points are more or less equidistant from the neighbours and that
the maximum distance does not exceed a fraction of the inter-cell
distance. This fraction is chosen so that the spiral covers all the mesh.
This spiral is an invertible mathematical function, and one can therefore
get for each point the neighbours that are in a radial direction,
allowing hence to move radially.
Because the mesh is discrete, the algorithm does not work perfectly
and the star domain found is in fact not even connected, but it seems
to be a very good choice of neighbourhood.
Getting the region containing the nMBP, its border, and the background
----------------------------------------------------------------------
Now one looks for a domain inside the neighbourhood, containing the
nMBP, and satisfying condition C defined by
|(rho_eye-<rho>)/<rho>| < 0.
This domain must be as big as possible satisfying these conditions.
The background is defined as the complementary part of this region with
respect to the neighbourhood.
This domain D is choosen consistently so that <rho> is the mean taken
over the background and such that the domain is connected. One proceeds
iterarively. A first approximation to D is given by the neighbourhood
itself.
A new approximation is computed applying D followed by a flood fill
algorithm (flood fill produces the biggest connected domain to the eye
and satisfying some condition).
Applying this condition over and over reduces the size of D. When the
size remains constant the algorithm is stopped.
"""
import numpy as np
import scipy
import scipy.ndimage as ndimage
import scipy.ndimage.filters as filters
try:
import matplotlib.pyplot as plt
except ImportError: print('Warning: matplotlib is missing.')
from flood_fill import flood_fill
def find_min(data, ng_sz=3, threshold=np.Inf, time=-1):
data_max = filters.maximum_filter(data, ng_sz)
maxima = (data == data_max)
data_min = filters.minimum_filter(data, ng_sz)
minima = (data == data_min)
diff = ((data_max - data_min)/np.abs(data_max) < threshold)
minima[diff == False] = False
labeled, num_objects = ndimage.label(minima)
slices = ndimage.find_objects(labeled)
#x, y = [], []
p = []
for dy, dx in slices:
x_center = .5*(dx.start+dx.stop-1)
#x.append(x_center)
y_center = .5*(dy.start+dy.stop-1)
#y.append(y_center)
if time >= 0: p.append((y_center,x_center,time))
else: p.append((y_center,x_center))
return p
def x_coords(p):
return [p0[0] for p0 in p]
def y_coords(p):
return [p0[1] for p0 in p]
def d2(p1,p2,periodX=0,periodY=0):
if periodX == 0: deltaX = p2[0]-p1[0]
else : deltaX = min(
|
np.abs(p2[0]-p1[0])
|
numpy.abs
|
import numpy as np
def generate_cosmic_rays(
shape, mean_cosmic_rays=1,
min_length=10, max_length=30, rng=None):
"""Generate a binary mask w/ cosmic rays.
This routine generates cosmic rays by choosing a random
position in the image, a random angle, and a random
length of the cosmic ray track. Then pixels along the line
determined by the length of the track, the position, and the angle
are marked. The width of the track is broadened a bit when
the row or column changes.
The total number of cosmic rays is Poisson distributed according to
`mean_cosmic_rays`.
The length of the track is chosen uniformly between `min_length` and
`max_length`.
Parameters
----------
shape : int or tuple of ints
The shape of the mask to generate.
mean_cosmic_rays : int, optional
The mean number of cosmic rays.
min_length : int, optional
The minimum length of the track.
max_length : int, optional
The maximum length of the track.
rng : np.random.RandomState or None, optional
An RNG to use. If none is provided, a new `np.random.RandomState`
state instance will be created.
Returns
-------
msk : np.ndarray, shape `shape`
A boolean mask marking the locations of the cosmic rays.
"""
msk = np.zeros(shape)
rng = rng or np.random.RandomState()
n_cosmic_rays = rng.poisson(mean_cosmic_rays)
for _ in range(n_cosmic_rays):
y = rng.randint(0, msk.shape[0]-1)
x = rng.randint(0, msk.shape[1]-1)
angle = rng.uniform() * 2.0 * np.pi
n_pix = rng.randint(min_length, max_length+1)
cosa = np.cos(angle)
sina = np.sin(angle)
_x_prev = None
_y_prev = None
for _ in range(n_pix):
_x = int(x + 0.5)
_y = int(y + 0.5)
if _y >= 0 and _y < msk.shape[0] and _x >= 0 and _x < msk.shape[1]:
if _x_prev is not None and _y_prev is not None:
if _x_prev != _x:
msk[_y, _x_prev] = 1
if _y_prev != _y:
msk[_y_prev, _x] = 1
msk[_y, _x] = 1
_x_prev = _x
_y_prev = _y
x += cosa
y += sina
return msk.astype(bool)
def generate_bad_columns(
shape, mean_bad_cols=1,
widths=(1, 2, 5, 10), p=(0.8, 0.1, 0.075, 0.025),
min_length_frac=(1, 1, 0.25, 0.25),
max_length_frac=(1, 1, 0.75, 0.75),
gap_prob=(0.30, 0.30, 0, 0),
min_gap_frac=(0.1, 0.1, 0, 0),
max_gap_frac=(0.3, 0.3, 0, 0),
rng=None):
"""Generate a binary mask w/ bad columns.
Parameters
----------
shape : int or tuple of ints
The shape of the mask to generate.
mean_bad_cols : float, optional
The mean of the Poisson distribution for the total number of
bad columns to generate.
widths : n-tuple of ints, optional
The possible widths of the bad columns.
p : n-tuple of floats, optional
The frequency of each of the bad column widths.
min_length_frac : n-tuple of floats, optional
The minimum fraction of the image the bad column spans. There should be
one entry per bad column width in `widths`.
max_length_frac : n-tuple of floats, optional
The maximum fraction of the image the bad column spans. There should be
one entry per bad column width in `widths`.
gap_prob : n-tuple of floats, optional
The probability that the bad column has a gap in it. There should be
one entry per bad column width in `widths`.
min_gap_frac : n-tuple of floats, optional
The minimum fraction of the image that the gap spans. There should be
one entry per bad column width in `widths`.
max_gap_frac : n-tuple of floats, optional
The maximum fraction of the image that the gap spans. There should be
one entry per bad column width in `widths`.
rng : np.random.RandomState or None, optional
An RNG to use. If none is provided, a new `np.random.RandomState`
state instance will be created.
Returns
-------
msk : np.ndarray, shape `shape`
A boolean mask marking the locations of the bad columns.
"""
p = np.array(p) / np.sum(p)
msk =
|
np.zeros(shape)
|
numpy.zeros
|
#!/usr/bin/env python
# cube2gesp, N atoms, M grid points
from ase.io.cube import read_cube_data
from ase.units import Bohr
from scipy.interpolate import RegularGridInterpolator
from scipy.interpolate import LinearNDInterpolator
import numpy as np
import io
import argparse
def main():
parser = argparse.ArgumentParser(description='Convert .cube format to'
' Fortran-RESP-readible .gesp format.')
parser.add_argument('infile_cube', metavar='infile.cube',
help="Input in .cube format (Bohr and Hartree)")
parser.add_argument('outfile_gesp', nargs='?', metavar='outfile.gesp',
default='outfile.gesp', help="Output in .gesp format")
parser.add_argument('-n', nargs='?',
metavar='N', default=-1, const=99999, type=int,
help="Maximum number of grid points")
args = parser.parse_args()
cube2gesp(args.infile_cube, args.outfile_gesp, args.n)
def cube2gesp(infile_cube, outfile_gesp, N = -1):
# cube file measures in Bohr, but ASE converts input to Angstrom
# however, field is not converted while distances are
cube_data, cube_atoms = read_cube_data(infile_cube)
# nX = cube_data.shape
# X = cube_atoms.cell.diagonal() # measures of cell in spatial dimensions
# x_grid = np.linspace(0,X[0],nX[0])
# y_grid = np.linspace(0,X[1],nX[1])
# z_grid = np.linspace(0,X[2],nX[2])
# x_grid3,y_grid3,z_grid3=np.meshgrid(x_grid,y_grid,z_grid)
# general approach for creating a grid of coordinates
# in 3 dimensions and N points in each spatial dimension,
# X.shape == (3, N, N, N)
dim = cube_data.ndim # usually 3
print("Read .cube file of shape {} in box {}.".format(cube_data.shape,cube_atoms.cell.diagonal()))
X_lin = []
X = np.empty((dim,) + cube_data.shape)
for i in range(0,dim):
X_lin.append( np.linspace(0, cube_atoms.cell[i,i], cube_data.shape[i]) )
X_list=np.meshgrid(*X_lin,indexing='ij')
X = np.asarray(X_list)
Unit_Cell = X[:,1,1,1].prod() # for uniform grid
Integral = cube_data.flatten().sum()*Unit_Cell
print("Reconstructed uniform grid of shape {}.".format(X.shape))
if N > 0:
print("Interpolate .cube data of shape {} and {} points in total onto grid"
" of less than {} points.".format(cube_data.shape,
np.prod(cube_data.shape), N) )
gridInterpolator = RegularGridInterpolator( tuple(X_lin), cube_data,
method="linear", bounds_error=True )
NX = np.asarray(cube_data.shape)
r = (N / np.prod(cube_data.shape))**(1/dim)
Nx = np.floor(r * NX)
x_lin = []
for i in range(0,dim):
x_lin.append( np.linspace(0, cube_atoms.cell[i,i], Nx[i]) )
x_list=
|
np.meshgrid(*x_lin,indexing='ij')
|
numpy.meshgrid
|
"""Collection of subsampling method on the neurons."""
import numpy as np
from McNeuron import Neuron
from McNeuron import Node
from numpy import linalg as LA
def find_sharpest_fork(nodes):
"""
Looks at the all branching point in the Nodes list, selects those which
both its children are end points and finds the closest pair of childern
(the distance between children).
Parameters
----------
Nodes: list
the list of Node
Returns
-------
sharpest_pair: array
the index of the pair of closest pair of childern
distance: float
Distance of the pair of children
"""
pair_list = []
Dis = np.array([])
for n in nodes:
if n.parent is not None:
if n.parent.parent is not None:
a = n.parent.children
if(isinstance(a, list)):
if(len(a)==2):
n1 = a[0]
n2 = a[1]
if(len(n1.children) == 0 and len(n2.children) == 0):
pair_list.append([n1 , n2])
dis = LA.norm(a[0].xyz - a[1].xyz,2)
Dis = np.append(Dis,dis)
if(len(Dis)!= 0):
(b,) = np.where(Dis == Dis.min())
sharpest_pair = pair_list[b[0]]
distance = Dis.min()
else:
sharpest_pair = [0,0]
distance = 0.
return sharpest_pair, distance
def random_subsample(neuron, num):
"""
randomly selects a few nodes from neuron and builds a new neuron with them. The location of these node in the new neuron
is the same as the original neuron and the morphology of them is such that if node A is parent (or grand parent) of node B
in the original neuron, it is the same for the new neuron.
Parameters
----------
num: int
number of nodes to be selected randomly.
Returns
-------
Neuron: the subsampled neuron
"""
I = np.arange(neuron.n_soma, neuron.n_node)
np.random.shuffle(I)
selected_index = I[0:num - 1]
selected_index = np.union1d([0], selected_index)
selected_index = selected_index.astype(int)
selected_index = np.unique(np.sort(selected_index))
return neuron_with_selected_nodes(neuron, selected_index)
def regular_subsample(neuron):
"""
Returning subsampled neuron with main nodes. i.e endpoints and branching
nodes.
Parameters
----------
neuron: Neuron
input neuron
Returns
-------
Neuron: the subsampled neuron
"""
# select all the main points
selected_index = get_index_of_main_nodes(neuron)
# Computing the parent id of the selected nodes
neuron = neuron_with_selected_nodes(neuron, selected_index)
return neuron
def prune_subsample(neuron, number):
main_point = subsample_main_nodes(neuron)
Nodes = main_point.nodes_list
rm = (main_point.n_node - number)/2.
for remove in range(int(rm)):
b, m = find_sharpest_fork(Nodes)
remove_pair_adjust_parent(Nodes, b)
return Neuron(input_format = 'only list of nodes', input_file = Nodes)
def get_index_of_main_nodes(neuron):
"""
Returning the index of branching points and end points.
Parameters
----------
neuron: Neuron
input neuron
Returns
-------
selected_index: array
the list of main point; branching points and end points
"""
branch_order = neuron.branch_order(neuron.parent_index)
(branch_index,) = np.where(branch_order[neuron.n_soma:] == 2)
(endpoint_index,) = np.where(branch_order[neuron.n_soma:] == 0)
selected_index = np.union1d(branch_index + neuron.n_soma,
endpoint_index + neuron.n_soma)
selected_index = np.append(range(neuron.n_soma), selected_index)
return selected_index
def neuron_with_axon(neuron):
"""
Parameters:
-----------
neuron
Return:
-------
neuron with axon (whitout dendrite)
"""
(basal,) = np.where(neuron.nodes_type != 3)
(apical,) = np.where(neuron.nodes_type != 4)
selected = np.intersect1d(basal, apical)
return neuron_with_selected_nodes(neuron, selected)
def neuron_with_dendrite(neuron):
(axon,) = np.where(neuron.nodes_type != 2)
return neuron_with_selected_nodes(neuron, axon)
def neuron_with_selected_nodes(neuron, selected_index):
"""
Giving back a new neuron made up with the selected_index nodes of self.
if node A is parent (or grand parent) of node B in the original neuron,
it is the same for the new neuron.
Parameters
----------
selected_index: numpy array
the index of nodes from original neuron for making new neuron.
Returns
-------
Neuron: the subsampled neuron.
"""
parent = parent_id(neuron, selected_index)
# making the list of nodes
n_list = []
for i in range(selected_index.shape[0]):
n = Node()
n.xyz = neuron.nodes_list[selected_index[i]].xyz
n.r = neuron.nodes_list[selected_index[i]].r
n.node_type = neuron.nodes_list[selected_index[i]].node_type
n_list.append(n)
# adjusting the childern and parents for the nodes.
for i in np.arange(1, selected_index.shape[0]):
j = parent[i]
n_list[i].parent = n_list[j]
n_list[j].add_child(n_list[i])
return Neuron(input_format='Matrix of swc without Node class', input_file=n_list)
def straigh_subsample(neuron, distance):
"""
Subsampling a neuron from original neuron. It has all the main points of the original neuron,
i.e endpoints or branching nodes, and meanwhile the distance of two consecutive nodes
of subsample neuron is around the 'distance'.
for each segment between two consecuative main points, a few nodes from the segment will be added to the selected node;
it starts from the far main point, and goes on the segment toward the near main point. Then the first node which is
going to add has the property that it is the farest node from begining on the segment such that its distance from begining is
less than 'distance'. The next nodes will be selected similarly. this procesure repeat for all the segments.
Parameters
----------
distance: float
the mean distance between pairs of consecuative nodes.
Returns
-------
Neuron: the subsampled neuron
"""
# Selecting the main points: branching nodes and end nodes
selected_index = get_index_of_main_nodes(neuron)
# for each segment between two consecuative main points, a few nodes from the segment will be added to the selected node.
# These new nodes will be selected base on the fact that neural distance of two consecuative nodes is around 'distance'.
# Specifically, it starts from the far main point, and goes on the segment toward the near main point. Then the first node which is
# going to add has the property that it is the farest node from begining on the segment such that its distance from begining is
# less than 'distance'. The next nodes will be selected similarly.
for i in selected_index:
upList = np.array([i], dtype=int)
index = neuron.parent_index[i]
dist = neuron.distance_from_parent[i]
while(~np.any(selected_index == index)):
upList = np.append(upList, index)
index = neuron.parent_index[index]
dist = np.append(dist, sum(neuron.distance_from_parent[upList]))
dist = np.append(0, dist)
(I,) = np.where(np.diff(np.floor(dist/distance)) > 0)
I = upList[I]
selected_index = np.append(selected_index, I)
selected_index = np.unique(selected_index)
neuron = neuron_with_selected_nodes(neuron, selected_index)
return neuron
def straight_subsample_with_fixed_number(neuron, num):
"""
Returning a straightened subsample neuron with fixed number of nodes.
Parameters
----------
num: int
number of nodes on the subsampled neuron
Returns
-------
distance: float
the subsampling distance
neuron: Neuron
the subsampled neuron
"""
l = sum(neuron.distance_from_parent)
branch_number = len(np.where(neuron.branch_order[neuron.n_soma:] == 2))
distance = l/(num - branch_number)
neuron = straigh_subsample(neuron, distance)
return neuron, distance
def parent_id2(neuron, selected_index):
"""
Return the parent id of all the selected_index of the neurons.
Parameters
----------
selected_index: numpy array
the index of nodes
Returns
-------
parent_id: the index of parent of each element in selected_index in
this array.
"""
parent_id = np.array([], dtype=int)
for i in selected_index:
p = neuron.parent_index[i]
while(~np.any(selected_index == p)):
p = neuron.parent_index[p]
(ind,) = np.where(selected_index == p)
parent_id = np.append(parent_id, ind)
return parent_id
def parent_id(neuron, selected_index):
"""
Return the parent id of all the selected_index of the neurons.
Parameters
----------
selected_index: numpy array
the index of nodes
Returns
-------
parent_id: the index of parent of each element in selected_index in
this array.
"""
length = len(neuron.nodes_list)
selected_length = len(selected_index)
adjacency = np.zeros([length,length])
adjacency[neuron.parent_index[1:], range(1,length)] = 1
full_adjacency = np.linalg.inv(np.eye(length) - adjacency)
selected_full_adjacency = full_adjacency[np.ix_(selected_index,selected_index)]
selected_adjacency = np.eye(selected_length) - np.linalg.inv(selected_full_adjacency)
selected_parent_id = np.argmax(selected_adjacency, axis=0)
return selected_parent_id
def prune(neuron,
number_of_nodes,
threshold):
"""
Pruning the neuron. It removes all the segments that thier length is less
than threshold unless the number of nodes becomes lower than lowest_number.
In the former case, it removes the segments until the number of nodes is
exactly the lowest_number.
Parameters
----------
neuron: Neuron
input neuron.
number_of_nodes: int
the number of nodes for output neuron.
Returns
-------
pruned_neuron: Neuron
The pruned neuron.
"""
n = len(neuron.nodes_list)
for i in range(n - number_of_nodes):
length, index = shortest_tips(neuron)
if(length < threshold):
neuron = remove_node(neuron, index)
else:
break
neuron.set_distance_from_parent()
return neuron
def remove_node(neuron, index):
neuron.n_node -= 1
node = neuron.nodes_list[index]
parent_index = neuron.get_index_for_no_soma_node(node.parent)
p = node.parent
node.parent.remove_child(node)
neuron.location = np.delete(neuron.location,index, axis = 1)
neuron.nodes_list.remove(node)
neuron.branch_order = np.delete(neuron.branch_order,index)
new_parent_index = neuron.get_index_for_no_soma_node(p)
neuron.branch_order[new_parent_index] -= 1
neuron.parent_index = np.delete(neuron.parent_index,index)
I = np.where(neuron.parent_index > index)
neuron.parent_index[I] -= 1
neuron.set_distance_from_parent()
return neuron
def shortest_tips(neuron):
"""
Returing the initial node of segment with the given end point.
The idea is to go up from the tip.
"""
(endpoint_index,) = np.where(neuron.branch_order[neuron.n_soma:] == 0)
(branch_index,) = np.where(neuron.branch_order[neuron.n_soma:] == 2)
selected_index = np.union1d(neuron.n_soma + endpoint_index,
neuron.n_soma + branch_index)
selected_index = np.append(0, selected_index)
par = parent_id(neuron, range(1,len(endpoint_index) + 1))
dist = neuron.location[:, endpoint_index] - neuron.location[:, par]
lenght = sum(dist**2,2)
index = np.argmin(lenght)
return np.sqrt(min(lenght)), endpoint_index[index] + neuron.n_soma
def straight_prune_subsample(neuron, number_of_nodes):
"""
Subsampling a neuron with straightening and pruning. At the first step, it
strighten the neuron with 200 nodes (if the number of nodes for the
neuron is less than 200, it doesn't change it). Then the neuron is pruned
with a twice the distance used for straightening. If the number of nodes
is less than 'number_of_nodes' the algorithm stops otherwise it increases
the previous distance by one number and does the same on the neuron.
Parameters
----------
neuron: Neuron
input neuron
number_of_nodes: int
the number of nodes for the output neuron
Returns
-------
sp_neuron: Neuron
the subsample neuron after straightening and pruning.
"""
if(neuron.n_node > 200):
neuron, distance = straight_subsample_with_fixed_number(neuron, 200)
sp_neuron = prune(neuron=neuron, number_of_nodes=number_of_nodes, threshold=2*distance)
while(len(sp_neuron.nodes_list)>number_of_nodes):
distance += 1
sp_neuron = straigh_subsample(sp_neuron, distance)
sp_neuron = prune(neuron=sp_neuron,
number_of_nodes=number_of_nodes,
threshold=2*distance)
return sp_neuron
def mesoscale_subsample(neuron, number):
main_point = subsample_main_nodes(neuron)
Nodes = main_point.nodes_list
rm = (main_point.n_node - number)/2.
for remove in range(int(rm)):
b, m = find_sharpest_fork(neuron, Nodes)
remove_pair_adjust_parent(neuron, Nodes, b)
neuron = Neuron(input_format = 'only list of nodes', input_file = Nodes)
if(neuron.n_node > number):
(I,) = np.where(neuron.branch_order == 0)
neuron = remove_node(neuron, I[0])
return neuron
def subsample_main_nodes(neuron):
"""
subsamples a neuron with its main node only; i.e endpoints and branching nodes.
Returns
-------
Neuron: the subsampled neuron
"""
# select all the main points
selected_index = get_index_of_main_nodes(neuron)
# Computing the parent id of the selected nodes
n = neuron_with_selected_nodes(neuron, selected_index)
return n
def find_sharpest_fork(neuron, Nodes):
"""
Looks at the all branching point in the Nodes list, selects those which both its children are end points and finds
the closest pair of childern (the distance between children).
Parameters
----------
Nodes: list
the list of Node
Returns
-------
sharpest_pair: array
the index of the pair of closest pair of childern
distance: float
Distance of the pair of children
"""
pair_list = []
Dis = np.array([])
for n in Nodes:
if n.parent is not None:
if n.parent.parent is not None:
a = n.parent.children
if(isinstance(a, list)):
if(len(a)==2):
n1 = a[0]
n2 = a[1]
if(len(n1.children) == 0 and len(n2.children) == 0):
pair_list.append([n1 , n2])
dis = LA.norm(a[0].xyz - a[1].xyz,2)
Dis = np.append(Dis,dis)
if(len(Dis)!= 0):
(b,) = np.where(Dis == Dis.min())
sharpest_pair = pair_list[b[0]]
distance = Dis.min()
else:
sharpest_pair = [0,0]
distance = 0.
return sharpest_pair, distance
def find_sharpest_fork_general(neuron, Nodes):
"""
Looks at the all branching point in the Nodes list, selects those which both its children are end points and finds
the closest pair of childern (the distance between children).
Parameters
----------
Nodes: list
the list of Node
Returns
-------
sharpest_pair: array
the index of the pair of closest pair of childern
distance: float
Distance of the pair of children
"""
pair_list = []
Dis = np.array([])
for n in Nodes:
if n.parent is not None:
if n.parent.parent is not None:
a = n.parent.children
if(isinstance(a, list)):
if(len(a)==2):
n1 = a[0]
n2 = a[1]
pair_list.append([n1 , n2])
dis = LA.norm(a[0].xyz - a[1].xyz,2)
Dis = np.append(Dis,dis)
if(len(Dis)!= 0):
(b,) = np.where(Dis == Dis.min())
sharpest_pair = pair_list[b[0]]
distance = Dis.min()
else:
sharpest_pair = [0,0]
distance = 0.
return sharpest_pair, distance
def remove_pair_replace_node(neuron, Nodes, pair):
"""
Removes the pair of nodes and replace it with a new node. the parent of new node is the parent of the pair of node,
and its location and its radius are the mean of removed nodes.
Parameters
----------
Nodes: list
the list of Nodes
pair: array
The index of pair of nodes. the nodes should be end points and have the same parent.
Returns
-------
The new list of Nodes which the pair are removed and a mean node is replaced.
"""
par = pair[0].parent
loc = pair[0].xyz + pair[1].xyz
loc = loc/2
r = pair[0].r + pair[1].r
r = r/2
Nodes.remove(pair[1])
Nodes.remove(pair[0])
n = McNeuron.Node()
n.xyz = loc
n.r = r
par.children = []
par.add_child(n)
n.parent = par
Nodes.append(n)
def remove_pair_adjust_parent(neuron, Nodes, pair):
"""
Removes the pair of nodes and adjust its parent. the location of the parent is the mean of the locaton of two nodes.
Parameters
----------
Nodes: list
the list of Nodes
pair: array
The index of pair of nodes. the nodes should be end points and have the same parent.
Returns
-------
The new list of Nodes which the pair are removed their parent is adjusted.
"""
par = pair[0].parent
loc = pair[0].xyz + pair[1].xyz
loc = loc/2
Nodes.remove(pair[1])
Nodes.remove(pair[0])
par.xyz = loc
par.children = []
def parent_id_for_extract(original_parent_id, selected_index):
"""
Return the parent id of all the selected_index of the neurons.
Parameters
----------
selected_index: numpy array
the index of nodes
Returns
-------
parent_id: the index of parent of each element in selected_index in
this array.
"""
length = len(original_parent_id)
selected_length = len(selected_index)
adjacency = np.zeros([length, length])
adjacency[original_parent_id[1:]-1, range(1, length)] = 1
full_adjacency = np.linalg.inv(np.eye(length) - adjacency)
selected_full_adjacency = full_adjacency[np.ix_(selected_index, selected_index)]
selected_adjacency = np.eye(selected_length) - np.linalg.inv(selected_full_adjacency)
selected_parent_id = np.argmax(selected_adjacency, axis=0)
return selected_parent_id
def parent_id_for_extract2(original_parent_id, selected_index):
parent_id = np.array([], dtype=int)
for i in selected_index[1:]:
p = original_parent_id[i]
while(~np.any(selected_index == p-1)):
p = original_parent_id[p-1]
(ind,) = np.where(selected_index == p-1)
parent_id = np.append(parent_id, ind)
parent_id = np.append(-1, parent_id)
return parent_id
def extract_main_neuron_from_swc(matrix, num = 300):
a, b = np.unique(matrix[:,6],return_counts=True)
(I,) = np.where(b==2)
branch_point = a[I]
end_point = np.setxor1d(np.arange(0,matrix.shape[0]), matrix[4:,6])
I = np.union1d(branch_point, end_point)
leng = matrix.shape[0]
lengi = len(I)
I = np.union1d(I, np.arange(0,n, int(n/(leng - lengi - 1))))
random_point = np.setxor1d(
|
np.arange(3,matrix.shape[0])
|
numpy.arange
|
from datetime import datetime
import json
import pytest
import traitlets as tl
import numpy as np
import xarray as xr
from numpy.testing import assert_equal
import podpac
from podpac.core.coordinates.utils import make_coord_array
from podpac.core.coordinates.array_coordinates1d import ArrayCoordinates1d
from podpac.core.coordinates.uniform_coordinates1d import UniformCoordinates1d
from podpac.core.coordinates.stacked_coordinates import StackedCoordinates
from podpac.core.coordinates.coordinates import Coordinates
class TestArrayCoordinatesInit(object):
def test_empty(self):
c = ArrayCoordinates1d([])
a = np.array([], dtype=float)
assert_equal(c.coordinates, a)
assert_equal(c.bounds, [np.nan, np.nan])
with pytest.raises(RuntimeError):
c.argbounds
assert c.size == 0
assert c.shape == (0,)
assert c.dtype is None
assert c.deltatype is None
assert c.is_monotonic is None
assert c.is_descending is None
assert c.is_uniform is None
assert c.start is None
assert c.stop is None
assert c.step is None
repr(c)
def test_numerical_singleton(self):
a = np.array([10], dtype=float)
c = ArrayCoordinates1d(10)
assert_equal(c.coordinates, a)
assert_equal(c.bounds, [10.0, 10.0])
assert c.coordinates[c.argbounds[0]] == c.bounds[0]
assert c.coordinates[c.argbounds[1]] == c.bounds[1]
assert c.size == 1
assert c.shape == (1,)
assert c.dtype == float
assert c.deltatype == float
assert c.is_monotonic == True
assert c.is_descending is None
assert c.is_uniform is None
assert c.start is None
assert c.stop is None
assert c.step is None
repr(c)
def test_numerical_array(self):
# unsorted
values = [1, 6, 0, 4.0]
a = np.array(values, dtype=float)
c = ArrayCoordinates1d(a)
assert_equal(c.coordinates, a)
assert_equal(c.bounds, [0.0, 6.0])
assert c.coordinates[c.argbounds[0]] == c.bounds[0]
assert c.coordinates[c.argbounds[1]] == c.bounds[1]
assert c.size == 4
assert c.shape == (4,)
assert c.dtype == float
assert c.deltatype == float
assert c.is_monotonic == False
assert c.is_descending is False
assert c.is_uniform == False
assert c.start is None
assert c.stop is None
assert c.step is None
repr(c)
# sorted ascending
values = [0, 1, 4, 6]
a = np.array(values, dtype=float)
c = ArrayCoordinates1d(values)
assert_equal(c.coordinates, a)
|
assert_equal(c.bounds, [0.0, 6.0])
|
numpy.testing.assert_equal
|
# -*- coding: utf-8 -*-
import numpy as np
from pytest import raises
from vispy import scene
from vispy.testing import (TestingCanvas, requires_application,
run_tests_if_main, requires_pyopengl)
from vispy.testing.image_tester import assert_image_approved
@requires_pyopengl()
def test_volume():
vol = np.zeros((20, 20, 20), 'float32')
vol[8:16, 8:16, :] = 1.0
# Create
V = scene.visuals.Volume(vol)
assert V.clim == (0, 1)
assert V.method == 'mip'
# Set wrong data
with raises(ValueError):
V.set_data(
|
np.zeros((20, 20), 'float32')
|
numpy.zeros
|
from __future__ import print_function
###################################################################################################
# Libraries
###################################################################################################
import os
import numpy as np
from pysam import Samfile, Fastafile
from Bio import motifs
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from scipy.signal import savgol_filter
from scipy.stats import scoreatpercentile
from argparse import SUPPRESS
import pyx
# Internal
from rgt.Util import GenomeData, AuxiliaryFunctions
from rgt.HINT.signalProcessing import GenomicSignal
from rgt.GenomicRegionSet import GenomicRegionSet
from rgt.HINT.biasTable import BiasTable
def plotting_args(parser):
# Parameters Options
parser.add_argument("--organism", type=str, metavar="STRING", default="hg19",
help=("Organism considered on the analysis. Check our full documentation for all available "
"options. All default files such as genomes will be based on the chosen organism "
"and the data.config file."))
parser.add_argument("--reads-file", type=str, metavar="FILE", default=None)
parser.add_argument("--region-file", type=str, metavar="FILE", default=None)
parser.add_argument("--reads-file1", type=str, metavar="FILE", default=None)
parser.add_argument("--reads-file2", type=str, metavar="FILE", default=None)
parser.add_argument("--motif-file", type=str, metavar="FILE", default=None)
parser.add_argument("--bias-table", type=str, metavar="FILE1_F,FILE1_R", default=None)
parser.add_argument("--bias-table1", type=str, metavar="FILE1_F,FILE1_R", default=None)
parser.add_argument("--bias-table2", type=str, metavar="FILE1_F,FILE1_R", default=None)
parser.add_argument("--window-size", type=int, metavar="INT", default=400)
# Hidden Options
parser.add_argument("--initial-clip", type=int, metavar="INT", default=50, help=SUPPRESS)
parser.add_argument("--downstream-ext", type=int, metavar="INT", default=1, help=SUPPRESS)
parser.add_argument("--upstream-ext", type=int, metavar="INT", default=0, help=SUPPRESS)
parser.add_argument("--forward-shift", type=int, metavar="INT", default=5, help=SUPPRESS)
parser.add_argument("--reverse-shift", type=int, metavar="INT", default=-5, help=SUPPRESS)
parser.add_argument("--k-nb", type=int, metavar="INT", default=6, help=SUPPRESS)
parser.add_argument("--y-lim", type=float, metavar="FLOAT", default=0.3, help=SUPPRESS)
# Output Options
parser.add_argument("--output-location", type=str, metavar="PATH", default=os.getcwd(),
help="Path where the output bias table files will be written.")
parser.add_argument("--output-prefix", type=str, metavar="STRING", default=None,
help="The prefix for results files.")
# plot type
parser.add_argument("--seq-logo", default=False, action='store_true')
parser.add_argument("--bias-raw-bc-line", default=False, action='store_true')
parser.add_argument("--raw-bc-line", default=False, action='store_true')
parser.add_argument("--strand-line", default=False, action='store_true')
parser.add_argument("--unstrand-line", default=False, action='store_true')
parser.add_argument("--bias-line", default=False, action='store_true')
parser.add_argument("--atac-dnase-line", default=False, action='store_true')
parser.add_argument("--bias-raw-bc-strand-line2", default=False, action='store_true')
parser.add_argument("--fragment-raw-size-line", default=False, action='store_true')
parser.add_argument("--fragment-bc-size-line", default=False, action='store_true')
def plotting_run(args):
if args.seq_logo:
seq_logo(args)
if args.bias_raw_bc_line:
bias_raw_bc_strand_line(args)
if args.strand_line:
strand_line(args)
if args.unstrand_line:
unstrand_line(args)
if args.raw_bc_line:
raw_bc_line(args)
if args.bias_raw_bc_strand_line2:
bias_raw_bc_strand_line2(args)
if args.fragment_raw_size_line:
fragment_size_raw_line(args)
if args.fragment_bc_size_line:
fragment_size_bc_line(args)
def seq_logo(args):
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm_file = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_dict = dict(
[("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size),
("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)])
genome_data = GenomeData(args.organism)
fasta_file = Fastafile(genome_data.get_genome())
bam = Samfile(args.reads_file, "rb")
regions = GenomicRegionSet("Peaks")
regions.read(args.region_file)
for region in regions:
for r in bam.fetch(region.chrom, region.initial, region.final):
if not r.is_reverse:
cut_site = r.pos - 1
p1 = cut_site - int(args.window_size / 2)
else:
cut_site = r.aend + 1
p1 = cut_site - int(args.window_size / 2)
p2 = p1 + args.window_size
# Fetching k-mer
currStr = str(fasta_file.fetch(region.chrom, p1, p2)).upper()
if r.is_reverse: continue
for i in range(0, len(currStr)):
pwm_dict[currStr[i]][i] += 1
with open(pwm_file, "w") as f:
for e in ["A", "C", "G", "T"]:
f.write(" ".join([str(int(c)) for c in pwm_dict[e]]) + "\n")
pwm = motifs.read(open(pwm_file), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False, yaxis_scale=args.y_lim)
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size).tolist()
fig = plt.figure(figsize=(8, 2))
ax = fig.add_subplot(111)
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_position(('outward', 15))
ax.tick_params(direction='out')
ax.xaxis.set_ticks(map(int, x))
x1 = map(int, x)
ax.set_xticklabels(map(str, x1), rotation=90)
ax.set_xlabel("Coordinates from Read Start", fontweight='bold')
ax.set_ylim([0, args.y_lim])
ax.yaxis.set_ticks([0, args.y_lim])
ax.set_yticklabels([str(0), str(args.y_lim)], rotation=90)
ax.set_ylabel("bits", rotation=90)
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.5, 1.5, logo_fname, width=18.8, height=3.5))
c.writeEPSfile(output_fname)
os.system("epstopdf " + output_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def bias_raw_bc_line(args):
signal = GenomicSignal(args.reads_file)
signal.load_sg_coefs(slope_window_size=9)
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size),
("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size),
("N", [0.0] * args.window_size)])
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
mean_signal_bias_f = np.zeros(args.window_size)
mean_signal_bias_r = np.zeros(args.window_size)
mean_signal_raw = np.zeros(args.window_size)
mean_signal_raw_f = np.zeros(args.window_size)
mean_signal_raw_r = np.zeros(args.window_size)
mean_signal_bc = np.zeros(args.window_size)
mean_signal_bc_f = np.zeros(args.window_size)
mean_signal_bc_r = np.zeros(args.window_size)
motif_len = 0
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by window_size
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
motif_len = region.final - region.initial
signal_bias_f, signal_bias_r, raw, raw_f, raw_r, bc, bc_f, bc_r = \
signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam,
fasta=fasta, bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
strand=True)
num_sites += 1
mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f))
mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r))
mean_signal_raw = np.add(mean_signal_raw, np.array(raw))
mean_signal_raw_f = np.add(mean_signal_raw_f, np.array(raw_f))
mean_signal_raw_r = np.add(mean_signal_raw_r, np.array(raw_r))
mean_signal_bc = np.add(mean_signal_bc, np.array(bc))
mean_signal_bc_f = np.add(mean_signal_bc_f, np.array(bc_f))
mean_signal_bc_r = np.add(mean_signal_bc_r, np.array(bc_r))
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
if region.orientation == "+":
for i in range(len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
mean_signal_bias_f = mean_signal_bias_f / num_sites
mean_signal_bias_r = mean_signal_bias_r / num_sites
mean_signal_raw = mean_signal_raw / num_sites
mean_signal_bc = mean_signal_bc / num_sites
mean_signal_bc_f = mean_signal_bc_f / num_sites
mean_signal_bc_r = mean_signal_bc_r / num_sites
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_bias_f))) + "\n")
f.write("\t".join((map(str, mean_signal_bias_r))) + "\n")
f.write("\t".join((map(str, mean_signal_raw))) + "\n")
f.write("\t".join((map(str, mean_signal_bc))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(8, 6))
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
if motif_len % 2 == 0:
x1 = int(- (motif_len / 2))
x2 = int(motif_len / 2)
else:
x1 = int(-(motif_len / 2) - 1)
x2 = int((motif_len / 2) + 1)
############################################################
# bias signal per strand
fp_score = sum(mean_signal_raw[args.window_size / 2 + x1: args.window_size / 2 + x2])
shoulder_l = sum(mean_signal_raw[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1])
shoulder_r = sum(mean_signal_raw[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len])
sfr = (shoulder_l + shoulder_r) / (2 * fp_score)
min_ax1 = min(mean_signal_raw)
max_ax1 = max(mean_signal_raw)
ax1.plot(x, mean_signal_raw, color='blue', label='Uncorrected')
ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom',
horizontalalignment='right', transform=ax1.transAxes, fontweight='bold')
ax1.text(0.35, 0.15, 'SFR = {}'.format(round(sfr, 2)), verticalalignment='bottom',
horizontalalignment='right', transform=ax1.transAxes, fontweight='bold')
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_position(('outward', 15))
ax1.spines['bottom'].set_position(('outward', 5))
ax1.tick_params(direction='out')
ax1.set_xticks([start, 0, end])
ax1.set_xticklabels([str(start), 0, str(end)])
ax1.set_yticks([min_ax1, max_ax1])
ax1.set_yticklabels([str(round(min_ax1, 2)), str(round(max_ax1, 2))], rotation=90)
ax1.set_title(args.output_prefix, fontweight='bold')
ax1.set_xlim(start, end)
ax1.set_ylim([min_ax1, max_ax1])
ax1.legend(loc="lower right", frameon=False)
####################################################################
#####################################################################
# Bias corrected, non-bias corrected (not strand specific)
fp_score = sum(mean_signal_bc[args.window_size / 2 + x1: args.window_size / 2 + x2])
shoulder_l = sum(mean_signal_bc[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1])
shoulder_r = sum(mean_signal_bc[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len])
sfr = (shoulder_l + shoulder_r) / (2 * fp_score)
min_ax2 = min(mean_signal_bc)
max_ax2 = max(mean_signal_bc)
ax2.plot(x, mean_signal_bc, color='red', label='Corrected')
ax2.text(0.35, 0.15, 'SFR = {}'.format(round(sfr, 2)), verticalalignment='bottom',
horizontalalignment='right', transform=ax2.transAxes, fontweight='bold')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_position(('outward', 15))
ax2.tick_params(direction='out')
ax2.set_xticks([start, 0, end])
ax2.set_xticklabels([str(start), 0, str(end)])
ax2.set_yticks([min_ax2, max_ax2])
ax2.set_yticklabels([str(round(min_ax2, 2)), str(round(max_ax2, 2))], rotation=90)
ax2.set_xlim(start, end)
ax2.set_ylim([min_ax2, max_ax2])
ax2.legend(loc="lower right", frameon=False)
fp_score_f = sum(mean_signal_bc_f[args.window_size / 2 + x1: args.window_size / 2 + x2])
shoulder_l_f = sum(mean_signal_bc_f[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1])
shoulder_r_f = sum(mean_signal_bc_f[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len])
sfr_f = (shoulder_l_f + shoulder_r_f) / (2 * fp_score_f)
fp_score_r = sum(mean_signal_bc_r[args.window_size / 2 + x1: args.window_size / 2 + x2])
shoulder_l_r = sum(mean_signal_bc_r[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1])
shoulder_r_r = sum(mean_signal_bc_r[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len])
sfr_r = (shoulder_l_r + shoulder_r_r) / (2 * fp_score_r)
min_ax3 = min(min(mean_signal_bc_f), min(mean_signal_bc_r))
max_ax3 = max(max(mean_signal_bc_f), max(mean_signal_bc_r))
ax3.plot(x, mean_signal_bc_f, color='purple', label='Forward')
ax3.plot(x, mean_signal_bc_r, color='green', label='Reverse')
ax3.text(0.35, 0.15, 'SFR_f = {}'.format(round(sfr_f, 2)), verticalalignment='bottom',
horizontalalignment='right', transform=ax3.transAxes, fontweight='bold')
ax3.text(0.35, 0.05, 'SFR_r = {}'.format(round(sfr_r, 2)), verticalalignment='bottom',
horizontalalignment='right', transform=ax3.transAxes, fontweight='bold')
ax3.xaxis.set_ticks_position('bottom')
ax3.yaxis.set_ticks_position('left')
ax3.spines['top'].set_visible(False)
ax3.spines['right'].set_visible(False)
ax3.spines['left'].set_position(('outward', 15))
ax3.tick_params(direction='out')
ax3.set_xticks([start, 0, end])
ax3.set_xticklabels([str(start), 0, str(end)])
ax3.set_yticks([min_ax3, max_ax3])
ax3.set_yticklabels([str(round(min_ax3, 2)), str(round(max_ax3, 2))], rotation=90)
ax3.set_xlim(start, end)
ax3.set_ylim([min_ax3, max_ax3])
ax3.legend(loc="lower right", frameon=False)
ax3.spines['bottom'].set_position(('outward', 40))
ax1.axvline(x=x1, ymin=-0.3, ymax=1, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False)
ax1.axvline(x=x2, ymin=-0.3, ymax=1, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False)
ax2.axvline(x=x1, ymin=-0.5, ymax=1.2, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False)
ax2.axvline(x=x2, ymin=-0.5, ymax=1.2, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False)
###############################################################################
# merge the above figures
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def raw_bc_line(args):
signal = GenomicSignal(args.reads_file)
signal.load_sg_coefs(slope_window_size=9)
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size),
("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size),
("N", [0.0] * args.window_size)])
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
mean_signal_raw = np.zeros(args.window_size)
mean_signal_bc = np.zeros(args.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by window_size
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
signal_bias_f, signal_bias_r, raw, raw_f, raw_r, bc, bc_f, bc_r = \
signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam,
fasta=fasta, bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
strand=True)
num_sites += 1
mean_signal_raw = np.add(mean_signal_raw, np.array(raw))
mean_signal_bc = np.add(mean_signal_bc, np.array(bc))
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
if region.orientation == "+":
for i in range(len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
mean_signal_raw = mean_signal_raw / num_sites
mean_signal_bc = mean_signal_bc / num_sites
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_raw))) + "\n")
f.write("\t".join((map(str, mean_signal_bc))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
fig = plt.figure(figsize=(8, 4))
ax = fig.add_subplot(111)
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
############################################################
min_ = min(min(mean_signal_raw), min(mean_signal_bc))
max_ = max(max(mean_signal_raw), max(mean_signal_bc))
ax.plot(x, mean_signal_raw, color='red', label='Uncorrected')
ax.plot(x, mean_signal_bc, color='blue', label='Corrected')
ax.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom',
horizontalalignment='right', transform=ax.transAxes, fontweight='bold')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_position(('outward', 15))
ax.spines['bottom'].set_position(('outward', 5))
ax.tick_params(direction='out')
ax.set_xticks([start, 0, end])
ax.set_xticklabels([str(start), 0, str(end)])
ax.set_yticks([min_, max_])
ax.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax.set_title(args.output_prefix, fontweight='bold')
ax.set_xlim(start, end)
ax.set_ylim(min_, max_)
ax.legend(loc="lower right", frameon=False)
ax.spines['bottom'].set_position(('outward', 40))
###############################################################################
# merge the above figures
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def bias_raw_bc_strand_line(args):
signal = GenomicSignal(args.reads_file)
signal.load_sg_coefs(slope_window_size=9)
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size),
("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size),
("N", [0.0] * args.window_size)])
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
mean_signal_bias_f = np.zeros(args.window_size)
mean_signal_bias_r = np.zeros(args.window_size)
mean_signal_raw = np.zeros(args.window_size)
mean_signal_bc = np.zeros(args.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
signal_bias_f, signal_bias_r, signal_raw, signal_bc = \
signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam,
fasta=fasta, bias_table=table,
forward_shift=args.forward_shift, reverse_shift=args.reverse_shift)
num_sites += 1
mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f))
mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r))
mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw))
mean_signal_bc = np.add(mean_signal_bc, np.array(signal_bc))
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom,
p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
mean_signal_bias_f = mean_signal_bias_f / num_sites
mean_signal_bias_r = mean_signal_bias_r / num_sites
mean_signal_raw = mean_signal_raw / num_sites
mean_signal_bc = mean_signal_bc / num_sites
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_bias_f))) + "\n")
f.write("\t".join((map(str, mean_signal_bias_r))) + "\n")
f.write("\t".join((map(str, mean_signal_raw))) + "\n")
f.write("\t".join((map(str, mean_signal_bc))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
fig, (ax1, ax2) = plt.subplots(2, figsize=(8, 4))
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
############################################################
# bias signal per strand
min_ = min(min(mean_signal_bias_f), min(mean_signal_bias_r))
max_ = max(max(mean_signal_bias_f), max(mean_signal_bias_r))
ax1.plot(x, mean_signal_bias_f, color='purple', label='Forward')
ax1.plot(x, mean_signal_bias_r, color='green', label='Reverse')
ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom',
horizontalalignment='right', transform=ax1.transAxes, fontweight='bold')
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_position(('outward', 15))
ax1.spines['bottom'].set_position(('outward', 5))
ax1.tick_params(direction='out')
ax1.set_xticks([start, 0, end])
ax1.set_xticklabels([str(start), 0, str(end)])
ax1.set_yticks([min_, max_])
ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax1.set_title(args.output_prefix, fontweight='bold')
ax1.set_xlim(start, end)
ax1.set_ylim([min_, max_])
ax1.legend(loc="upper right", frameon=False)
####################################################################
#####################################################################
# Bias corrected, non-bias corrected (not strand specific)
min_ = min(min(mean_signal_raw), min(mean_signal_bc))
max_ = max(max(mean_signal_raw), max(mean_signal_bc))
ax2.plot(x, mean_signal_raw, color='blue', label='Uncorrected')
ax2.plot(x, mean_signal_bc, color='red', label='Corrected')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_position(('outward', 15))
ax2.tick_params(direction='out')
ax2.set_xticks([start, 0, end])
ax2.set_xticklabels([str(start), 0, str(end)])
ax2.set_yticks([min_, max_])
ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax2.set_xlim(start, end)
ax2.set_ylim([min_, max_])
ax2.legend(loc="upper right", frameon=False)
ax2.spines['bottom'].set_position(('outward', 40))
###############################################################################
# merge the above figures
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def bias_raw_bc_strand_line2(args):
signal = GenomicSignal(args.reads_file)
signal.load_sg_coefs(slope_window_size=9)
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size),
("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size),
("N", [0.0] * args.window_size)])
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
mean_signal_bias_f = np.zeros(args.window_size)
mean_signal_bias_r = np.zeros(args.window_size)
mean_signal_raw = np.zeros(args.window_size)
mean_signal_raw_f = np.zeros(args.window_size)
mean_signal_raw_r = np.zeros(args.window_size)
mean_signal_bc = np.zeros(args.window_size)
mean_signal_bc_f = np.zeros(args.window_size)
mean_signal_bc_r = np.zeros(args.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
signal_bias_f, signal_bias_r, signal_raw, signal_raw_f, signal_raw_r, signal_bc, signal_bc_f, signal_bc_r = \
signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam,
fasta=fasta, bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
strand=True)
num_sites += 1
mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f))
mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r))
mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw))
mean_signal_raw_f = np.add(mean_signal_raw_f, np.array(signal_raw_f))
mean_signal_raw_r = np.add(mean_signal_raw_r, np.array(signal_raw_r))
mean_signal_bc = np.add(mean_signal_bc, np.array(signal_bc))
mean_signal_bc_f = np.add(mean_signal_bc_f, np.array(signal_bc_f))
mean_signal_bc_r = np.add(mean_signal_bc_r, np.array(signal_bc_r))
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom,
p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
mean_signal_bias_f = mean_signal_bias_f / num_sites
mean_signal_bias_r = mean_signal_bias_r / num_sites
mean_signal_raw = mean_signal_raw / num_sites
mean_signal_raw_f = mean_signal_raw_f / num_sites
mean_signal_raw_r = mean_signal_raw_r / num_sites
mean_signal_bc = mean_signal_bc / num_sites
mean_signal_bc_f = mean_signal_bc_f / num_sites
mean_signal_bc_r = mean_signal_bc_r / num_sites
# mean_signal_raw = rescaling(mean_signal_raw)
# mean_signal_bc = rescaling(mean_signal_bc)
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_bias_f))) + "\n")
f.write("\t".join((map(str, mean_signal_bias_r))) + "\n")
f.write("\t".join((map(str, mean_signal_raw))) + "\n")
f.write("\t".join((map(str, mean_signal_raw_f))) + "\n")
f.write("\t".join((map(str, mean_signal_raw_r))) + "\n")
f.write("\t".join((map(str, mean_signal_bc))) + "\n")
f.write("\t".join((map(str, mean_signal_bc_f))) + "\n")
f.write("\t".join((map(str, mean_signal_bc_r))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
# fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, figsize=(8, 8))
fig, (ax1, ax4) = plt.subplots(2, figsize=(8, 4))
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
############################################################
# bias signal per strand
min_ = min(min(mean_signal_bias_f), min(mean_signal_bias_r))
max_ = max(max(mean_signal_bias_f), max(mean_signal_bias_r))
ax1.plot(x, mean_signal_bias_f, color='purple', label='Forward')
ax1.plot(x, mean_signal_bias_r, color='green', label='Reverse')
ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom',
horizontalalignment='right', transform=ax1.transAxes, fontweight='bold')
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_position(('outward', 15))
ax1.spines['bottom'].set_position(('outward', 5))
ax1.tick_params(direction='out')
ax1.set_xticks([start, 0, end])
ax1.set_xticklabels([str(start), 0, str(end)])
ax1.set_yticks([min_, max_])
ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax1.set_title(args.output_prefix, fontweight='bold')
ax1.set_xlim(start, end)
ax1.set_ylim([min_, max_])
ax1.legend(loc="upper right", frameon=False)
####################################################################
#####################################################################
# Bias corrected, non-bias corrected (not strand specific)
# min_ = min(min(mean_signal_raw_f), min(mean_signal_raw_r))
# max_ = max(max(mean_signal_raw_f), max(mean_signal_raw_r))
# ax2.plot(x, mean_signal_raw_f, color='red', label='Forward')
# ax2.plot(x, mean_signal_raw_r, color='green', label='Reverse')
# ax2.xaxis.set_ticks_position('bottom')
# ax2.yaxis.set_ticks_position('left')
# ax2.spines['top'].set_visible(False)
# ax2.spines['right'].set_visible(False)
# ax2.spines['left'].set_position(('outward', 15))
# ax2.tick_params(direction='out')
# ax2.set_xticks([start, -1, 0, 1, end])
# ax2.set_xticklabels([str(start), -1, 0,1, str(end)])
# ax2.set_yticks([min_, max_])
# ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
# ax2.set_xlim(start, end)
# ax2.set_ylim([min_, max_])
# ax2.legend(loc="upper right", frameon=False)
#####################################################################
# Bias corrected and strand specific
# min_ = min(min(mean_signal_bc_f), min(mean_signal_bc_r))
# max_ = max(max(mean_signal_bc_f), max(mean_signal_bc_r))
# ax3.plot(x, mean_signal_bc_f, color='red', label='Forward')
# ax3.plot(x, mean_signal_bc_r, color='green', label='Reverse')
# ax3.xaxis.set_ticks_position('bottom')
# ax3.yaxis.set_ticks_position('left')
# ax3.spines['top'].set_visible(False)
# ax3.spines['right'].set_visible(False)
# ax3.spines['left'].set_position(('outward', 15))
# ax3.tick_params(direction='out')
# ax3.set_xticks([start, 0, end])
# ax3.set_xticklabels([str(start), 0, str(end)])
# ax3.set_yticks([min_, max_])
# ax3.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
# ax3.set_xlim(start, end)
# ax3.set_ylim([min_, max_])
# ax3.legend(loc="upper right", frameon=False)
#####################################################################
# Bias corrected, non-bias corrected (not strand specific)
min_ = min(min(mean_signal_raw), min(mean_signal_bc))
max_ = max(max(mean_signal_raw), max(mean_signal_bc))
ax4.plot(x, mean_signal_raw, color='blue', label='Uncorrected')
ax4.plot(x, mean_signal_bc, color='red', label='Corrected')
ax4.xaxis.set_ticks_position('bottom')
ax4.yaxis.set_ticks_position('left')
ax4.spines['top'].set_visible(False)
ax4.spines['right'].set_visible(False)
ax4.spines['left'].set_position(('outward', 15))
ax4.tick_params(direction='out')
ax4.set_xticks([start, 0, end])
ax4.set_xticklabels([str(start), 0, str(end)])
ax4.set_yticks([min_, max_])
ax4.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax4.set_xlim(start, end)
ax4.set_ylim([min_, max_])
ax4.legend(loc="upper right", frameon=False)
ax4.spines['bottom'].set_position(('outward', 40))
###############################################################################
# merge the above figures
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def strand_line(args):
genomic_signal = GenomicSignal(args.reads_file)
genomic_signal.load_sg_coefs(slope_window_size=9)
table = None
if args.bias_table is not None:
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
mean_signal_f = np.zeros(args.window_size)
mean_signal_r = np.zeros(args.window_size)
pwm_dict = None
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by 50 bp
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
if args.bias_table is not None:
signal_f, signal_r = genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1,
end=p2, bam=bam, fasta=fasta,
bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift)
else:
signal_f, signal_r = genomic_signal.get_raw_signal_by_fragment_length(ref=region.chrom, start=p1,
end=p2,
bam=bam,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift)
num_sites += 1
mean_signal_f = np.add(mean_signal_f, signal_f)
mean_signal_r = np.add(mean_signal_r, signal_r)
# Update pwm
if pwm_dict is None:
pwm_dict = dict([("A", [0.0] * (p2 - p1)), ("C", [0.0] * (p2 - p1)),
("G", [0.0] * (p2 - p1)), ("T", [0.0] * (p2 - p1)),
("N", [0.0] * (p2 - p1))])
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom,
p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
elif region.orientation == "-":
for i in range(0, len(dna_seq_rev)):
pwm_dict[dna_seq_rev[i]][i] += 1
mean_norm_signal_f = genomic_signal.boyle_norm(mean_signal_f)
perc = scoreatpercentile(mean_norm_signal_f, 98)
std = np.std(mean_norm_signal_f)
mean_norm_signal_f = genomic_signal.hon_norm_atac(mean_norm_signal_f, perc, std)
mean_norm_signal_r = genomic_signal.boyle_norm(mean_signal_r)
perc = scoreatpercentile(mean_norm_signal_r, 98)
std = np.std(mean_norm_signal_r)
mean_norm_signal_r = genomic_signal.hon_norm_atac(mean_norm_signal_r, perc, std)
mean_slope_signal_f = genomic_signal.slope(mean_norm_signal_f, genomic_signal.sg_coefs)
mean_slope_signal_r = genomic_signal.slope(mean_norm_signal_r, genomic_signal.sg_coefs)
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_norm_signal_f))) + "\n")
f.write("\t".join((map(str, mean_slope_signal_f))) + "\n")
f.write("\t".join((map(str, mean_norm_signal_r))) + "\n")
f.write("\t".join((map(str, mean_slope_signal_r))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
fig = plt.figure(figsize=(8, 4))
ax = fig.add_subplot(111)
min_signal = min(min(mean_signal_f), min(mean_signal_r))
max_signal = max(max(mean_signal_f), max(mean_signal_r))
ax.plot(x, mean_signal_f, color='red', label='Forward')
ax.plot(x, mean_signal_r, color='green', label='Reverse')
ax.set_title(args.output_prefix, fontweight='bold')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_position(('outward', 15))
ax.tick_params(direction='out')
ax.set_xticks([start, 0, end])
ax.set_xticklabels([str(start), 0, str(end)])
ax.set_yticks([min_signal, max_signal])
ax.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90)
ax.set_xlim(start, end)
ax.set_ylim([min_signal, max_signal])
ax.legend(loc="upper right", frameon=False)
ax.spines['bottom'].set_position(('outward', 40))
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.37, 0.89, logo_fname, width=18.5, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
# os.remove(pwm_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def unstrand_line(args):
genomic_signal = GenomicSignal(args.reads_file)
genomic_signal.load_sg_coefs(slope_window_size=9)
table = None
if args.bias_table is not None:
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1])
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
mean_signal = np.zeros(args.window_size)
pwm_dict = None
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
with open(output_fname, "w") as output_f:
for region in mpbs_regions:
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
if args.bias_table is not None:
signal = genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
strand=False)
else:
signal = genomic_signal.get_raw_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
strand=False)
if region.orientation == "-":
signal = np.flip(signal)
name = "{}_{}_{}".format(region.chrom, str(region.initial), str(region.final))
output_f.write(name + "\t" + "\t".join(map(str, map(int, signal))) + "\n")
num_sites += 1
mean_signal = np.add(mean_signal, signal)
# Update pwm
if pwm_dict is None:
pwm_dict = dict([("A", [0.0] * (p2 - p1)), ("C", [0.0] * (p2 - p1)),
("G", [0.0] * (p2 - p1)), ("T", [0.0] * (p2 - p1)),
("N", [0.0] * (p2 - p1))])
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(
str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
elif region.orientation == "-":
for i in range(0, len(dna_seq_rev)):
pwm_dict[dna_seq_rev[i]][i] += 1
mean_signal = mean_signal / num_sites
# Output PWM and create logo
pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
fig = plt.figure(figsize=(8, 4))
ax = fig.add_subplot(111)
min_signal = min(mean_signal)
max_signal = max(mean_signal)
ax.plot(x, mean_signal, color='red')
ax.set_title(args.output_prefix, fontweight='bold')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_position(('outward', 15))
ax.tick_params(direction='out')
ax.set_xticks([start, 0, end])
ax.set_xticklabels([str(start), 0, str(end)])
ax.set_yticks([min_signal, max_signal])
ax.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90)
ax.set_xlim(start, end)
ax.set_ylim([min_signal, max_signal])
ax.legend(loc="upper right", frameon=False)
ax.spines['bottom'].set_position(('outward', 40))
figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.31, 0.89, logo_fname, width=18.5, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix)))
# os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix)))
os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix)))
def fragment_size_raw_line(args):
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
bam = Samfile(args.reads_file, "rb")
signal_f_max_145 = np.zeros(args.window_size)
signal_r_max_145 = np.zeros(args.window_size)
signal_f_146_307 = np.zeros(args.window_size)
signal_r_146_307 = np.zeros(args.window_size)
signal_f_min_307 = np.zeros(args.window_size)
signal_r_min_307 = np.zeros(args.window_size)
signal_f = np.zeros(args.window_size)
signal_r = np.zeros(args.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by 50 bp
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
# Fetch raw signal
for read in bam.fetch(region.chrom, p1, p2):
# All reads
if not read.is_reverse:
cut_site = read.pos + args.forward_shift
if p1 <= cut_site < p2:
signal_f[cut_site - p1] += 1.0
else:
cut_site = read.aend + args.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r[cut_site - p1] += 1.0
# length <= 145
if abs(read.template_length) <= 145:
if not read.is_reverse:
cut_site = read.pos + args.forward_shift
if p1 <= cut_site < p2:
signal_f_max_145[cut_site - p1] += 1.0
else:
cut_site = read.aend + args.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r_max_145[cut_site - p1] += 1.0
# length > 145 and <= 307
if 145 < abs(read.template_length) <= 307:
if not read.is_reverse:
cut_site = read.pos + args.forward_shift
if p1 <= cut_site < p2:
signal_f_146_307[cut_site - p1] += 1.0
else:
cut_site = read.aend + args.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r_146_307[cut_site - p1] += 1.0
# length > 307
if abs(read.template_length) > 307:
if not read.is_reverse:
cut_site = read.pos + args.forward_shift
if p1 <= cut_site < p2:
signal_f_min_307[cut_site - p1] += 1.0
else:
cut_site = read.aend + args.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r_min_307[cut_site - p1] += 1.0
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, signal_f))) + "\n")
f.write("\t".join((map(str, signal_r))) + "\n")
f.write("\t".join((map(str, signal_f_max_145))) + "\n")
f.write("\t".join((map(str, signal_r_max_145))) + "\n")
f.write("\t".join((map(str, signal_f_146_307))) + "\n")
f.write("\t".join((map(str, signal_r_146_307))) + "\n")
f.write("\t".join((map(str, signal_f_min_307))) + "\n")
f.write("\t".join((map(str, signal_r_min_307))) + "\n")
f.close()
# find out the linker position
pos_f_1, pos_r_1, pos_f_2, pos_r_2 = get_linkers_position(signal_f_146_307,
signal_r_146_307,
signal_f_min_307,
signal_r_min_307)
p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2
p2 = p1 + 180
p3 = args.window_size - p2
p4 = args.window_size - p1
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8))
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end]
update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2,
p3, p4)
update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2,
p3, p4)
update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2,
p3, p4)
update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2,
p3, p4)
figure_name = os.path.join(args.output_location, "{}.pdf".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="pdf", dpi=300)
def fragment_size_bc_line(args):
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(args.motif_file)
genomic_signal = GenomicSignal(args.reads_file)
genomic_signal.load_sg_coefs(11)
bam = Samfile(args.reads_file, "rb")
genome_data = GenomeData(args.organism)
fasta = Fastafile(genome_data.get_genome())
bias_table = BiasTable()
bias_table_list = args.bias_table.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
signal_f_max_145 = np.zeros(args.window_size)
signal_r_max_145 = np.zeros(args.window_size)
signal_f_146_307 = np.zeros(args.window_size)
signal_r_146_307 = np.zeros(args.window_size)
signal_f_min_307 = np.zeros(args.window_size)
signal_r_min_307 = np.zeros(args.window_size)
signal_f = np.zeros(args.window_size)
signal_r = np.zeros(args.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
mid = (region.initial + region.final) / 2
p1 = mid - (args.window_size / 2)
p2 = mid + (args.window_size / 2)
# All reads
signal_bc_f, signal_bc_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
min_length=None, max_length=None,
strand=True)
# length <= 145
signal_bc_max_145_f, signal_bc_max_145_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
min_length=None, max_length=145,
strand=True)
# length > 145 and <= 307
signal_bc_146_307_f, signal_bc_146_307_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
min_length=145, max_length=307,
strand=True)
# length > 307
signal_bc_min_307_f, signal_bc_min_307_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=args.forward_shift,
reverse_shift=args.reverse_shift,
min_length=307, max_length=None,
strand=True)
signal_f = np.add(signal_f, np.array(signal_bc_f))
signal_r = np.add(signal_r, np.array(signal_bc_r))
signal_f_max_145 = np.add(signal_f_max_145, np.array(signal_bc_max_145_f))
signal_r_max_145 = np.add(signal_r_max_145, np.array(signal_bc_max_145_r))
signal_f_146_307 = np.add(signal_f_146_307, np.array(signal_bc_146_307_f))
signal_r_146_307 = np.add(signal_r_146_307, np.array(signal_bc_146_307_r))
signal_f_min_307 = np.add(signal_f_min_307, np.array(signal_bc_min_307_f))
signal_r_min_307 = np.add(signal_r_min_307, np.array(signal_bc_min_307_r))
# Output the norm and slope signal
output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, signal_f))) + "\n")
f.write("\t".join((map(str, signal_r))) + "\n")
f.write("\t".join((map(str, signal_f_max_145))) + "\n")
f.write("\t".join((map(str, signal_r_max_145))) + "\n")
f.write("\t".join((map(str, signal_f_146_307))) + "\n")
f.write("\t".join((map(str, signal_r_146_307))) + "\n")
f.write("\t".join((map(str, signal_f_min_307))) + "\n")
f.write("\t".join((map(str, signal_r_min_307))) + "\n")
f.close()
# find out the linker position
pos_f_1, pos_r_1, pos_f_2, pos_r_2 = get_linkers_position(signal_f_146_307,
signal_r_146_307,
signal_f_min_307,
signal_r_min_307)
p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2
p2 = p1 + 180
p3 = args.window_size - p2
p4 = args.window_size - p1
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8))
start = -(args.window_size / 2)
end = (args.window_size / 2) - 1
x = np.linspace(start, end, num=args.window_size)
x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end]
update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4)
update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2,
p3, p4)
update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2,
p3, p4)
update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2,
p3, p4)
figure_name = os.path.join(args.output_location, "{}.pdf".format(args.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="pdf", dpi=300)
def update_axes_for_fragment_size_line(ax, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4):
max_signal = max(max(signal_f), max(signal_r))
min_signal = min(min(signal_f), min(signal_r))
ax.plot(x, signal_f, color='red', label='Forward')
ax.plot(x, signal_r, color='green', label='Reverse')
ax.xaxis.set_ticks_position('bottom')
ax.yaxis.set_ticks_position('left')
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_position(('outward', 15))
ax.tick_params(direction='out')
ax.set_xticks(x_ticks)
ax.set_xticklabels(map(str, x_ticks))
ax.set_xlim(start, end)
ax.set_yticks([min_signal, max_signal])
ax.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90)
ax.set_ylim([min_signal, max_signal])
ax.legend().set_visible(False)
f_1, r_1 = sum(signal_f[:p1]) / sum(signal_r), sum(signal_r[:p1]) / sum(signal_r)
f_2, r_2 = sum(signal_f[p1:p2]) / sum(signal_r), sum(signal_r[p1:p2]) / sum(signal_r)
f_3, r_3 = sum(signal_f[p2:500]) / sum(signal_r), sum(signal_r[p2:500]) / sum(signal_r)
f_4, r_4 = sum(signal_f[500:p3]) / sum(signal_r), sum(signal_r[500:p3]) / sum(signal_r)
f_5, r_5 = sum(signal_f[p3:p4]) / sum(signal_r), sum(signal_r[p3:p4]) / sum(signal_r)
f_6, r_6 = sum(signal_f[p4:]) / sum(signal_r), sum(signal_r[p4:]) / sum(signal_r)
text_x_1 = ((p1 - 0) / 2.0 + 0) / 1000
text_x_2 = ((p2 - p1) / 2.0 + p1) / 1000
text_x_3 = ((500 - p2) / 2.0 + p2) / 1000
text_x_4 = ((p3 - 500) / 2.0 + 500) / 1000
text_x_5 = ((p4 - p3) / 2.0 + p3) / 1000
text_x_6 = ((1000 - p4) / 2.0 + p4) / 1000
ax.text(text_x_1, 1.0, str(round(f_1, 2)), verticalalignment='center', color='red',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_1, 0.9, str(round(r_1, 2)), verticalalignment='center', color='green',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_2, 1.0, str(round(f_2, 2)), verticalalignment='center', color='red',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_2, 0.9, str(round(r_2, 2)), verticalalignment='center', color='green',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_3, 1.0, str(round(f_3, 2)), verticalalignment='center', color='red',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_3, 0.9, str(round(r_3, 2)), verticalalignment='center', color='green',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_4, 1.0, str(round(f_4, 2)), verticalalignment='center', color='red',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_4, 0.9, str(round(r_4, 2)), verticalalignment='center', color='green',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_5, 1.0, str(round(f_5, 2)), verticalalignment='center', color='red',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_5, 0.9, str(round(r_5, 2)), verticalalignment='center', color='green',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_6, 1.0, str(round(f_6, 2)), verticalalignment='center', color='red',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
ax.text(text_x_6, 0.9, str(round(r_6, 2)), verticalalignment='center', color='green',
horizontalalignment='center', transform=ax.transAxes, fontsize=12)
def get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307):
smooth_signal_f_146_307 = savgol_filter(signal_f_146_307, window_length=51, polyorder=2)
smooth_signal_r_146_307 = savgol_filter(signal_r_146_307, window_length=51, polyorder=2)
smooth_signal_f_min_307 = savgol_filter(signal_f_min_307, window_length=51, polyorder=2)
smooth_signal_r_min_307 = savgol_filter(signal_r_min_307, window_length=51, polyorder=2)
position_f_1 = np.argmax(smooth_signal_f_146_307[:400])
position_f_2 = np.argmax(smooth_signal_f_min_307[:position_f_1])
position_r_1 = np.argmax(smooth_signal_r_146_307[600:]) + 600
position_r_2 = np.argmax(smooth_signal_r_min_307[position_r_1:]) + position_r_1
return position_f_1, position_r_1, position_f_2, position_r_2
def rescaling(vector):
maxN = max(vector)
minN = min(vector)
return [(e - minN) / (maxN - minN) for e in vector]
class Plot:
def __init__(self, organism, reads_file, motif_file, window_size,
downstream_ext, upstream_ext, forward_shift, reverse_shift,
initial_clip, bias_table, k_nb, output_loc, output_prefix):
self.organism = organism
self.reads_file = reads_file
self.motif_file = motif_file
self.window_size = window_size
self.downstream_ext = downstream_ext
self.upstream_ext = upstream_ext
self.forward_shift = forward_shift
self.reverse_shift = reverse_shift
self.initial_clip = initial_clip
self.bias_table = bias_table
self.k_nb = k_nb
self.output_loc = output_loc
self.output_prefix = output_prefix
def line3(self, bias_table1, bias_table2):
signal = GenomicSignal(self.reads_file)
signal.load_sg_coefs(slope_window_size=9)
bias_table = BiasTable()
bias_table_list = bias_table1.split(",")
table1 = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
bias_table = BiasTable()
bias_table_list = bias_table2.split(",")
table2 = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
genome_data = GenomeData(self.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size),
("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size),
("N", [0.0] * self.window_size)])
num_sites = 0
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(self.motif_file)
bam = Samfile(self.reads_file, "rb")
mean_signal_raw = np.zeros(self.window_size)
mean_signal_bc1 = np.zeros(self.window_size)
mean_signal_bc2 = np.zeros(self.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by window_size
mid = (region.initial + region.final) / 2
p1 = mid - (self.window_size / 2)
p2 = mid + (self.window_size / 2)
signal_raw, signal_bc1 = \
self.get_signal3(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table1)
signal_raw, signal_bc2 = \
self.get_signal3(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table2)
num_sites += 1
mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw))
mean_signal_bc1 = np.add(mean_signal_bc1, np.array(signal_bc1))
mean_signal_bc2 = np.add(mean_signal_bc2, np.array(signal_bc2))
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(
str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
elif region.orientation == "-":
for i in range(0, len(dna_seq_rev)):
pwm_dict[dna_seq_rev[i]][i] += 1
mean_signal_raw = mean_signal_raw / num_sites
mean_signal_bc1 = mean_signal_bc1 / num_sites
mean_signal_bc2 = mean_signal_bc2 / num_sites
mean_signal_raw = self.rescaling(mean_signal_raw)
mean_signal_bc1 = self.rescaling(mean_signal_bc1)
mean_signal_bc2 = self.rescaling(mean_signal_bc2)
# Output the norm and slope signal
output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_raw))) + "\n")
f.write("\t".join((map(str, mean_signal_bc1))) + "\n")
f.write("\t".join((map(str, mean_signal_bc2))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
fig, (ax1, ax2) = plt.subplots(2)
start = -(self.window_size / 2)
end = (self.window_size / 2) - 1
x = np.linspace(start, end, num=self.window_size)
############################################################
# bias signal per strand
min_ = min(mean_signal_raw)
max_ = max(mean_signal_raw)
ax1.plot(x, mean_signal_raw, color='red')
ax1.xaxis.set_ticks_position('bottom')
ax1.yaxis.set_ticks_position('left')
ax1.spines['top'].set_visible(False)
ax1.spines['right'].set_visible(False)
ax1.spines['left'].set_position(('outward', 15))
ax1.spines['bottom'].set_position(('outward', 5))
ax1.tick_params(direction='out')
ax1.set_xticks([start, 0, end])
ax1.set_xticklabels([str(start), 0, str(end)])
ax1.set_yticks([min_, max_])
ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax1.set_title(self.output_prefix, fontweight='bold')
ax1.set_xlim(start, end)
ax1.set_ylim([min_, max_])
ax1.legend(loc="upper right", frameon=False)
ax1.set_ylabel("Raw Signal", rotation=90, fontweight='bold')
####################################################################
#####################################################################
# Bias corrected, non-bias corrected (not strand specific)
min_ = min(min(mean_signal_bc1), min(mean_signal_bc2))
max_ = max(max(mean_signal_bc1), max(mean_signal_bc2))
ax2.plot(x, mean_signal_bc1, color='red', label='VOM_8_NonNaked')
ax2.plot(x, mean_signal_bc2, color='green', label='KMER_6_NonNaked')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_position(('outward', 15))
ax2.tick_params(direction='out')
ax2.set_xticks([start, 0, end])
ax2.set_xticklabels([str(start), 0, str(end)])
ax2.set_yticks([min_, max_])
ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90)
ax2.set_xlim(start, end)
ax2.set_ylim([min_, max_])
ax2.legend(loc="lower right", frameon=False)
ax2.spines['bottom'].set_position(('outward', 40))
ax2.set_xlabel("Coordinates from Motif Center", fontweight='bold')
ax2.set_ylabel("Bias Corrected Signal", rotation=90, fontweight='bold')
###################################################################################
###############################################################################
# merge the above figures
figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(2.0, 1.39, logo_fname, width=13.8, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)))
def line4(self):
genome_data = GenomeData(self.organism)
fasta = Fastafile(genome_data.get_genome())
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(self.motif_file)
bam = Samfile(self.reads_file, "rb")
pwm_dict = None
signal_raw_f = None
signal_raw_r = None
num_sites = 0
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by 50 bp
mid = (region.initial + region.final) / 2
p1 = mid - (self.window_size / 2)
p2 = mid + (self.window_size / 2)
# p1 = region.initial - (self.window_size / 2)
# p2 = region.final + (self.window_size / 2)
size = p2 - p1
if pwm_dict is None:
pwm_dict = dict([("A", [0.0] * size), ("C", [0.0] * size),
("G", [0.0] * size), ("T", [0.0] * size),
("N", [0.0] * size)])
if signal_raw_f is None:
signal_raw_f = np.zeros(size)
if signal_raw_r is None:
signal_raw_r = np.zeros(size)
# Fetch raw signal
for read in bam.fetch(region.chrom, p1, p2):
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1 <= cut_site < p2:
signal_raw_f[cut_site - p1] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1 <= cut_site < p2:
signal_raw_r[cut_site - p1] += 1.0
num_sites += 1
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom,
p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
elif region.orientation == "-":
for i in range(0, len(dna_seq_rev)):
pwm_dict[dna_seq_rev[i]][i] += 1
# mean_signal_raw_f = self.rescaling(signal_raw_f)
# mean_signal_raw_r = self.rescaling(signal_raw_r)
mean_signal_raw_f = signal_raw_f
mean_signal_raw_r = signal_raw_r
# Output the norm and slope signal
output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_raw_f))) + "\n")
f.write("\t".join((map(str, mean_signal_raw_r))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
start = -(size / 2)
end = (size / 2) - 1
x = np.linspace(start, end, num=size)
fig = plt.figure(figsize=(8, 4))
ax2 = fig.add_subplot(111)
min_signal = min(min(mean_signal_raw_f), min(mean_signal_raw_r))
max_signal = max(max(mean_signal_raw_f), max(mean_signal_raw_r))
ax2.plot(x, mean_signal_raw_f, color='red', label='Forward')
ax2.plot(x, mean_signal_raw_r, color='green', label='Reverse')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_position(('outward', 15))
ax2.tick_params(direction='out')
ax2.set_title(self.output_prefix, fontweight='bold')
ax2.set_xticks([start, 0, end])
ax2.set_xticklabels([str(start), 0, str(end)])
ax2.set_yticks([min_signal, max_signal])
ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90)
ax2.set_xlim(start, end)
ax2.set_ylim([min_signal, max_signal])
ax2.legend(loc="upper right", frameon=False)
ax2.spines['bottom'].set_position(('outward', 40))
# ax2.set_xlabel("Coordinates from Motif Center", fontweight='bold')
# ax2.set_ylabel("Average Signal", rotation=90, fontweight='bold')
figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.48, 0.92, logo_fname, width=18.5, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)))
def atac_dnase_bc_line(self, reads_file1, reads_file2, bias_table1, bias_table2):
genome_data = GenomeData(self.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size),
("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size),
("N", [0.0] * self.window_size)])
bias_table = BiasTable()
bias_table_list = bias_table1.split(",")
table1 = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
bias_table_list = bias_table2.split(",")
table2 = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(self.motif_file)
bam_atac = Samfile(reads_file1, "rb")
bam_dnase = Samfile(reads_file2, "rb")
mean_signal_atac = np.zeros(self.window_size)
mean_signal_dnase = np.zeros(self.window_size)
num_sites = 0
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by 50 bp
mid = (region.initial + region.final) / 2
p1 = mid - (self.window_size / 2)
p2 = mid + (self.window_size / 2)
# Fetch raw signal
signal_atac = self.get_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam_atac,
fasta=fasta, bias_table=table1,
forward_shift=5, reverse_shift=-4)
signal_dnase = self.get_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam_dnase,
fasta=fasta, bias_table=table2,
forward_shift=0, reverse_shift=0)
num_sites += 1
mean_signal_atac = np.add(mean_signal_atac, np.array(signal_atac))
mean_signal_dnase = np.add(mean_signal_dnase, np.array(signal_dnase))
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom,
p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
elif region.orientation == "-":
for i in range(0, len(dna_seq_rev)):
pwm_dict[dna_seq_rev[i]][i] += 1
mean_signal_atac = self.rescaling(mean_signal_atac)
mean_signal_dnase = self.rescaling(mean_signal_dnase)
# Output the norm and slope signal
output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_atac))) + "\n")
f.write("\t".join((map(str, mean_signal_dnase))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
start = -(self.window_size / 2)
end = (self.window_size / 2) - 1
x = np.linspace(start, end, num=self.window_size)
fig = plt.figure(figsize=(8, 4))
ax2 = fig.add_subplot(111)
min_signal = min(min(mean_signal_atac), min(mean_signal_dnase))
max_signal = max(max(mean_signal_atac), max(mean_signal_dnase))
ax2.plot(x, mean_signal_atac, color='red', label='ATAC-seq')
ax2.plot(x, mean_signal_dnase, color='green', label='DNase-seq')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_position(('outward', 15))
ax2.tick_params(direction='out')
ax2.set_title(self.output_prefix, fontweight='bold')
ax2.set_xticks([start, 0, end])
ax2.set_xticklabels([str(start), 0, str(end)])
ax2.set_yticks([min_signal, max_signal])
ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90)
ax2.set_xlim(start, end)
ax2.set_ylim([min_signal, max_signal])
ax2.legend(loc="upper right", frameon=False)
# ax2.legend(loc="lower right", frameon=False)
ax2.spines['bottom'].set_position(('outward', 40))
figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)))
def get_bc_signal(self, ref, start, end, bam, fasta, bias_table, forward_shift, reverse_shift):
# Parameters
window = 50
defaultKmerValue = 1.0
# Initialization
fBiasDict = bias_table[0]
rBiasDict = bias_table[1]
k_nb = len(fBiasDict.keys()[0])
p1 = start
p2 = end
p1_w = p1 - (window / 2)
p2_w = p2 + (window / 2)
p1_wk = p1_w - int(k_nb / 2.)
p2_wk = p2_w + int(k_nb / 2.)
currStr = str(fasta.fetch(ref, p1_wk, p2_wk - 1)).upper()
currRevComp = AuxiliaryFunctions.revcomp(str(fasta.fetch(ref, p1_wk + 1, p2_wk)).upper())
# Iterating on sequence to create the bias signal
signal_bias_f = []
signal_bias_r = []
for i in range(int(k_nb / 2.), len(currStr) - int(k_nb / 2) + 1):
fseq = currStr[i - int(k_nb / 2.):i + int(k_nb / 2.)]
rseq = currRevComp[len(currStr) - int(k_nb / 2.) - i:len(currStr) + int(k_nb / 2.) - i]
try:
signal_bias_f.append(fBiasDict[fseq])
except Exception:
signal_bias_f.append(defaultKmerValue)
try:
signal_bias_r.append(rBiasDict[rseq])
except Exception:
signal_bias_r.append(defaultKmerValue)
# Raw counts
signal_raw_f = [0.0] * (p2_w - p1_w)
signal_raw_r = [0.0] * (p2_w - p1_w)
for read in bam.fetch(ref, p1_w, p2_w):
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1_w <= cut_site < p2_w:
signal_raw_f[cut_site - p1_w] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1_w <= cut_site < p2_w:
signal_raw_r[cut_site - p1_w] += 1.0
# Smoothed counts
Nf = []
Nr = []
fSum = sum(signal_raw_f[:window])
rSum = sum(signal_raw_r[:window])
fLast = signal_raw_f[0]
rLast = signal_raw_r[0]
for i in range((window / 2), len(signal_raw_f) - (window / 2)):
Nf.append(fSum)
Nr.append(rSum)
fSum -= fLast
fSum += signal_raw_f[i + (window / 2)]
fLast = signal_raw_f[i - (window / 2) + 1]
rSum -= rLast
rSum += signal_raw_r[i + (window / 2)]
rLast = signal_raw_r[i - (window / 2) + 1]
# Calculating bias and writing to wig file
fSum = sum(signal_bias_f[:window])
rSum = sum(signal_bias_r[:window])
fLast = signal_bias_f[0]
rLast = signal_bias_r[0]
signal_bc = []
for i in range((window / 2), len(signal_bias_f) - (window / 2)):
nhatf = Nf[i - (window / 2)] * (signal_bias_f[i] / fSum)
nhatr = Nr[i - (window / 2)] * (signal_bias_r[i] / rSum)
signal_bc.append(nhatf + nhatr)
fSum -= fLast
fSum += signal_bias_f[i + (window / 2)]
fLast = signal_bias_f[i - (window / 2) + 1]
rSum -= rLast
rSum += signal_bias_r[i + (window / 2)]
rLast = signal_bias_r[i - (window / 2) + 1]
return signal_bc
def atac_dnase_raw_line(self, reads_file1, reads_file2):
genome_data = GenomeData(self.organism)
fasta = Fastafile(genome_data.get_genome())
pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size),
("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size),
("N", [0.0] * self.window_size)])
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(self.motif_file)
bam_atac = Samfile(reads_file1, "rb")
bam_dnase = Samfile(reads_file2, "rb")
mean_signal_atac = np.zeros(self.window_size)
mean_signal_dnase = np.zeros(self.window_size)
num_sites = 0
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by 50 bp
mid = (region.initial + region.final) / 2
p1 = mid - (self.window_size / 2)
p2 = mid + (self.window_size / 2)
# Fetch raw signal
for read in bam_atac.fetch(region.chrom, p1, p2):
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1 <= cut_site < p2:
mean_signal_atac[cut_site - p1] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1 <= cut_site < p2:
mean_signal_atac[cut_site - p1] += 1.0
# Fetch raw signal
for read in bam_dnase.fetch(region.chrom, p1, p2):
if not read.is_reverse:
cut_site = read.pos
if p1 <= cut_site < p2:
mean_signal_dnase[cut_site - p1] += 1.0
else:
cut_site = read.aend - 1
if p1 <= cut_site < p2:
mean_signal_dnase[cut_site - p1] += 1.0
num_sites += 1
# Update pwm
aux_plus = 1
dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper()
if (region.final - region.initial) % 2 == 0:
aux_plus = 0
dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom,
p1 + aux_plus, p2 + aux_plus)).upper())
if region.orientation == "+":
for i in range(0, len(dna_seq)):
pwm_dict[dna_seq[i]][i] += 1
elif region.orientation == "-":
for i in range(0, len(dna_seq_rev)):
pwm_dict[dna_seq_rev[i]][i] += 1
mean_signal_atac = self.rescaling(mean_signal_atac)
mean_signal_dnase = self.rescaling(mean_signal_dnase)
# Output the norm and slope signal
output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, mean_signal_atac))) + "\n")
f.write("\t".join((map(str, mean_signal_dnase))) + "\n")
f.close()
# Output PWM and create logo
pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix))
pwm_file = open(pwm_fname, "w")
for e in ["A", "C", "G", "T"]:
pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n")
pwm_file.close()
logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))
pwm = motifs.read(open(pwm_fname), "pfm")
pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size),
color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="",
show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="",
show_fineprint=False, show_ends=False)
start = -(self.window_size / 2)
end = (self.window_size / 2) - 1
x = np.linspace(start, end, num=self.window_size)
fig = plt.figure(figsize=(8, 4))
ax2 = fig.add_subplot(111)
min_signal = min(min(mean_signal_atac), min(mean_signal_dnase))
max_signal = max(max(mean_signal_atac), max(mean_signal_dnase))
ax2.plot(x, mean_signal_atac, color='red', label='ATAC-seq')
ax2.plot(x, mean_signal_dnase, color='green', label='DNase-seq')
ax2.xaxis.set_ticks_position('bottom')
ax2.yaxis.set_ticks_position('left')
ax2.spines['top'].set_visible(False)
ax2.spines['right'].set_visible(False)
ax2.spines['left'].set_position(('outward', 15))
ax2.tick_params(direction='out')
ax2.set_title(self.output_prefix, fontweight='bold')
ax2.set_xticks([start, 0, end])
ax2.set_xticklabels([str(start), 0, str(end)])
ax2.set_yticks([min_signal, max_signal])
ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90)
ax2.set_xlim(start, end)
ax2.set_ylim([min_signal, max_signal])
ax2.legend(loc="upper right", frameon=False)
ax2.spines['bottom'].set_position(('outward', 40))
figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="eps", dpi=300)
# Creating canvas and printing eps / pdf with merged results
output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))
c = pyx.canvas.canvas()
c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0))
c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75))
c.writeEPSfile(output_fname)
os.system("epstopdf " + figure_name)
os.system("epstopdf " + logo_fname)
os.system("epstopdf " + output_fname)
os.remove(pwm_fname)
os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix)))
os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)))
def fragment_size_raw_line(self):
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(self.motif_file)
bam = Samfile(self.reads_file, "rb")
signal_f_max_145 = np.zeros(self.window_size)
signal_r_max_145 = np.zeros(self.window_size)
signal_f_146_307 = np.zeros(self.window_size)
signal_r_146_307 = np.zeros(self.window_size)
signal_f_min_307 = np.zeros(self.window_size)
signal_r_min_307 = np.zeros(self.window_size)
signal_f = np.zeros(self.window_size)
signal_r = np.zeros(self.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
# Extend by 50 bp
mid = (region.initial + region.final) / 2
p1 = mid - (self.window_size / 2)
p2 = mid + (self.window_size / 2)
# Fetch raw signal
for read in bam.fetch(region.chrom, p1, p2):
# All reads
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1 <= cut_site < p2:
signal_f[cut_site - p1] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r[cut_site - p1] += 1.0
# length <= 145
if abs(read.template_length) <= 145:
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1 <= cut_site < p2:
signal_f_max_145[cut_site - p1] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r_max_145[cut_site - p1] += 1.0
# length > 145 and <= 307
if 145 < abs(read.template_length) <= 307:
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1 <= cut_site < p2:
signal_f_146_307[cut_site - p1] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r_146_307[cut_site - p1] += 1.0
# length > 307
if abs(read.template_length) > 307:
if not read.is_reverse:
cut_site = read.pos + self.forward_shift
if p1 <= cut_site < p2:
signal_f_min_307[cut_site - p1] += 1.0
else:
cut_site = read.aend + self.reverse_shift - 1
if p1 <= cut_site < p2:
signal_r_min_307[cut_site - p1] += 1.0
# Output the norm and slope signal
output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, signal_f))) + "\n")
f.write("\t".join((map(str, signal_r))) + "\n")
f.write("\t".join((map(str, signal_f_max_145))) + "\n")
f.write("\t".join((map(str, signal_r_max_145))) + "\n")
f.write("\t".join((map(str, signal_f_146_307))) + "\n")
f.write("\t".join((map(str, signal_r_146_307))) + "\n")
f.write("\t".join((map(str, signal_f_min_307))) + "\n")
f.write("\t".join((map(str, signal_r_min_307))) + "\n")
f.close()
# find out the linker position
pos_f_1, pos_r_1, pos_f_2, pos_r_2 = self.get_linkers_position(signal_f_146_307,
signal_r_146_307,
signal_f_min_307,
signal_r_min_307)
p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2
p2 = p1 + 180
p3 = self.window_size - p2
p4 = self.window_size - p1
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8))
start = -(self.window_size / 2)
end = (self.window_size / 2) - 1
x = np.linspace(start, end, num=self.window_size)
x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end]
self.update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2,
p3, p4)
self.update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2,
p3, p4)
self.update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2,
p3, p4)
self.update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2,
p3, p4)
figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix))
fig.subplots_adjust(bottom=.2, hspace=.5)
fig.tight_layout()
fig.savefig(figure_name, format="pdf", dpi=300)
def fragment_size_bc_line(self, bias_table_files):
mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites")
mpbs_regions.read(self.motif_file)
genomic_signal = GenomicSignal(self.reads_file)
genomic_signal.load_sg_coefs(11)
bam = Samfile(self.reads_file, "rb")
genome_data = GenomeData(self.organism)
fasta = Fastafile(genome_data.get_genome())
bias_table = BiasTable()
bias_table_list = bias_table_files.split(",")
table = bias_table.load_table(table_file_name_F=bias_table_list[0],
table_file_name_R=bias_table_list[1])
signal_f_max_145 = np.zeros(self.window_size)
signal_r_max_145 = np.zeros(self.window_size)
signal_f_146_307 = np.zeros(self.window_size)
signal_r_146_307 = np.zeros(self.window_size)
signal_f_min_307 = np.zeros(self.window_size)
signal_r_min_307 = np.zeros(self.window_size)
signal_f = np.zeros(self.window_size)
signal_r = np.zeros(self.window_size)
for region in mpbs_regions:
if str(region.name).split(":")[-1] == "Y":
mid = (region.initial + region.final) / 2
p1 = mid - (self.window_size / 2)
p2 = mid + (self.window_size / 2)
# All reads
signal_bc_f, signal_bc_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=self.forward_shift,
reverse_shift=self.reverse_shift,
min_length=None, max_length=None,
strand=True)
# length <= 145
signal_bc_max_145_f, signal_bc_max_145_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=self.forward_shift,
reverse_shift=self.reverse_shift,
min_length=None, max_length=145,
strand=True)
# length > 145 and <= 307
signal_bc_146_307_f, signal_bc_146_307_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=self.forward_shift,
reverse_shift=self.reverse_shift,
min_length=145, max_length=307,
strand=True)
# length > 307
signal_bc_min_307_f, signal_bc_min_307_r = \
genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2,
bam=bam, fasta=fasta,
bias_table=table,
forward_shift=self.forward_shift,
reverse_shift=self.reverse_shift,
min_length=307, max_length=None,
strand=True)
signal_f = np.add(signal_f, np.array(signal_bc_f))
signal_r = np.add(signal_r, np.array(signal_bc_r))
signal_f_max_145 = np.add(signal_f_max_145, np.array(signal_bc_max_145_f))
signal_r_max_145 = np.add(signal_r_max_145, np.array(signal_bc_max_145_r))
signal_f_146_307 = np.add(signal_f_146_307, np.array(signal_bc_146_307_f))
signal_r_146_307 = np.add(signal_r_146_307, np.array(signal_bc_146_307_r))
signal_f_min_307 = np.add(signal_f_min_307, np.array(signal_bc_min_307_f))
signal_r_min_307 = np.add(signal_r_min_307, np.array(signal_bc_min_307_r))
# Output the norm and slope signal
output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix))
f = open(output_fname, "w")
f.write("\t".join((map(str, signal_f))) + "\n")
f.write("\t".join((map(str, signal_r))) + "\n")
f.write("\t".join((map(str, signal_f_max_145))) + "\n")
f.write("\t".join((map(str, signal_r_max_145))) + "\n")
f.write("\t".join((map(str, signal_f_146_307))) + "\n")
f.write("\t".join((map(str, signal_r_146_307))) + "\n")
f.write("\t".join((map(str, signal_f_min_307))) + "\n")
f.write("\t".join((map(str, signal_r_min_307))) + "\n")
f.close()
# find out the linker position
pos_f_1, pos_r_1, pos_f_2, pos_r_2 = self.get_linkers_position(signal_f_146_307,
signal_r_146_307,
signal_f_min_307,
signal_r_min_307)
p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2
p2 = p1 + 180
p3 = self.window_size - p2
p4 = self.window_size - p1
fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8))
start = -(self.window_size / 2)
end = (self.window_size / 2) - 1
x =
|
np.linspace(start, end, num=self.window_size)
|
numpy.linspace
|
import math
import os
import numpy as np
import pygame
from gym import spaces
from gym.utils import seeding
from scipy.spatial import distance as ssd
from .._utils import Agent
FPS = 15
class Archea(Agent):
def __init__(self, idx, radius, n_sensors, sensor_range, max_accel, speed_features=True):
self._idx = idx
self._radius = radius
self._n_sensors = n_sensors
self._sensor_range = sensor_range
self._max_accel = max_accel
# Number of observation coordinates from each sensor
self._sensor_obscoord = 5
if speed_features:
self._sensor_obscoord += 3
self._sensor_obs_coord = self._n_sensors * self._sensor_obscoord
self._obs_dim = self._sensor_obs_coord + 2 # +1 for is_colliding_evader, +1 for is_colliding_poison
self._position = None
self._velocity = None
# Generate self._n_sensors angles, evenly spaced from 0 to 2pi
# We generate 1 extra angle and remove it because linspace[0] = 0 = 2pi = linspace[-1]
angles = np.linspace(0., 2. * np.pi, self._n_sensors + 1)[:-1]
# Convert angles to x-y coordinates
sensor_vectors = np.c_[np.cos(angles), np.sin(angles)]
self._sensors = sensor_vectors
@property
def observation_space(self):
return spaces.Box(low=np.float32(-np.sqrt(2)), high=np.float32(2 * np.sqrt(2)), shape=(self._obs_dim,),
dtype=np.float32)
@property
def action_space(self):
return spaces.Box(low=np.float32(-self._max_accel), high=np.float32(self._max_accel), shape=(2,),
dtype=np.float32)
@property
def position(self):
assert self._position is not None
return self._position
@property
def velocity(self):
assert self._velocity is not None
return self._velocity
def set_position(self, pos):
assert pos.shape == (2,)
self._position = pos
def set_velocity(self, velocity):
assert velocity.shape == (2,)
self._velocity = velocity
@property
def sensors(self):
assert self._sensors is not None
return self._sensors
def sensed(self, object_coord, object_radius, same=False):
"""Whether object would be sensed by the pursuers"""
relative_coord = object_coord - np.expand_dims(self.position, 0)
# Projection of object coordinate in direction of sensor
sensorvals = self.sensors.dot(relative_coord.T)
# Set sensorvals to np.inf when object should not be seen by sensor
distance_squared = (relative_coord ** 2).sum(axis=1)[None, :]
sensorvals[
(sensorvals < 0) # Wrong direction (by more than 90 degrees in both directions)
| (sensorvals - object_radius > self._sensor_range) # Outside sensor range
| (distance_squared - sensorvals ** 2 > object_radius ** 2) # Sensor does not intersect object
] = np.inf
if same:
# Set sensors values for sensing the current object to np.inf
sensorvals[:, self._idx - 1] = np.inf
return sensorvals
def sense_barriers(self, min_pos=0, max_pos=1):
sensor_vectors = self.sensors * self._sensor_range
# Let's try a different method---polar!
# The key insight is that there is a triangle formed when the particle moves outside of the circle
# Namely, the triangle with vertices---center, particle, and intersection
# So the sides are---position vector, velocity vector, and radius
# TODO: get rid of magic number 0.5
position = self.position - 0.5
# We first need the angle formed by center, particle, and particle movement direction
# For vectorized calculation, I will use reshape so that all sensors could be calculated together
unit_vector_1 = (position / np.linalg.norm(position)).reshape(-1, 1)
unit_vector_2 = sensor_vectors / np.linalg.norm(sensor_vectors)
dot_product = unit_vector_2 @ unit_vector_1
theta_two = np.arccos(dot_product)
# Now we apply the sine law once and find the other angle that we can know
theta_one = np.arcsin(np.linalg.norm(position) * np.sin(theta_two) / 0.5)
# Finally, we find the last angle
# As well as the corresponding triangle side because that tells us where the particle will end up
theta_three = np.pi - theta_one - theta_two
max_length = np.linalg.norm(position) * np.sin(theta_three) / np.sin(theta_one)
clipped_vectors = max_length / np.linalg.norm(sensor_vectors, axis=1).reshape(self._n_sensors,
1) * sensor_vectors
# Find the ratio of the clipped sensor vector to the original sensor vector
# Scaling the vector by this ratio will limit the end of the vector to the barriers
ratios = np.divide(clipped_vectors, sensor_vectors, out=np.ones_like(clipped_vectors),
where=np.abs(sensor_vectors) > 0.00000001)
# Find the minimum ratio (x or y) of clipped endpoints to original endpoints
minimum_ratios = np.amin(ratios, axis=1)
# Convert to 2d array of size (n_sensors, 1)
sensor_values = np.expand_dims(minimum_ratios, 0)
# Set values beyond sensor range to infinity
does_sense = minimum_ratios < (1.0 - 1e-4)
does_sense = np.expand_dims(does_sense, 0)
sensor_values[np.logical_not(does_sense)] = np.inf
# Convert -0 to 0
sensor_values[sensor_values == -0] = 0
return sensor_values.T
class MAWaterWorld():
def __init__(self, n_pursuers=5, n_evaders=5, n_poison=10, n_coop=2, n_sensors=30, sensor_range=0.2,
radius=0.015, obstacle_radius=0.2, obstacle_coord=(0.5, 0.5),
pursuer_max_accel=0.01, evader_speed=0.01, poison_speed=0.01, poison_reward=-1.0,
food_reward=10.0, encounter_reward=0.01, thrust_penalty=-0.5, local_ratio=1.0,
speed_features=True, max_cycles=500):
"""
n_pursuers: number of pursuing archea (agents)
n_evaders: number of evader archea
n_poison: number of poison archea
n_coop: number of pursuing archea (agents) that must be touching food at the same time to consume it
n_sensors: number of sensors on all pursuing archea (agents)
sensor_range: length of sensor dendrite on all pursuing archea (agents)
radius: archea base radius. Pursuer: radius, evader: 2 x radius, poison: 3/4 x radius
obstacle_radius: radius of obstacle object
obstacle_coord: coordinate of obstacle object. Can be set to `None` to use a random location
pursuer_max_accel: pursuer archea maximum acceleration (maximum action size)
evader_speed: evading archea speed
poison_speed: poison archea speed
poison_reward: reward for pursuer consuming a poison object (typically negative)
food_reward:reward for pursuers consuming an evading archea
encounter_reward: reward for a pursuer colliding with an evading archea
thrust_penalty: scaling factor for the negative reward used to penalize large actions
local_ratio: Proportion of reward allocated locally vs distributed globally among all agents
speed_features: toggles whether pursuing archea (agent) sensors detect speed of other archea
max_cycles: After max_cycles steps all agents will return done
"""
self.seed()
self.n_pursuers = n_pursuers
self.n_evaders = n_evaders
self.n_coop = n_coop
self.n_poison = n_poison
self.obstacle_radius = obstacle_radius
obstacle_coord = np.array(obstacle_coord)
self.initial_obstacle_coord = self.np_random.uniform(0, 1, 2) if obstacle_coord is None else obstacle_coord
self.pursuer_max_accel = pursuer_max_accel
self.evader_speed = evader_speed
self.poison_speed = poison_speed
self.radius = radius
self.n_sensors = n_sensors
self.sensor_range = np.ones(self.n_pursuers) * min(sensor_range, (math.ceil(math.sqrt(2) * 100) / 100.0))
self.poison_reward = poison_reward
self.food_reward = food_reward
self.thrust_penalty = thrust_penalty
self.encounter_reward = encounter_reward
self.last_rewards = [np.float64(0) for _ in range(self.n_pursuers)]
self.control_rewards = [0 for _ in range(self.n_pursuers)]
self.last_dones = [False for _ in range(self.n_pursuers)]
self.last_obs = [None for _ in range(self.n_pursuers)]
self.n_obstacles = 1
self.local_ratio = local_ratio
self._speed_features = speed_features
self.max_cycles = max_cycles
# TODO: Look into changing hardcoded radius ratios
self._pursuers = [
Archea(pursuer_idx + 1, self.radius, self.n_sensors, sensor_range, self.pursuer_max_accel,
speed_features=self._speed_features)
for pursuer_idx in range(self.n_pursuers)
]
self._evaders = [
Archea(evader_idx + 1, self.radius * 2, self.n_pursuers, 0, self.evader_speed)
for evader_idx in range(self.n_evaders)
]
self._poisons = [
Archea(poison_idx + 1, self.radius * 3 / 4, self.n_poison, 0, self.poison_speed)
for poison_idx in range(self.n_poison)
]
self.num_agents = self.n_pursuers
self.action_space = [agent.action_space for agent in self._pursuers]
self.observation_space = [
agent.observation_space for agent in self._pursuers]
self.renderOn = False
self.pixel_scale = 30 * 25
self.cycle_time = 1.0 * 15. / FPS
self.frames = 0
self.reset()
def close(self):
if self.renderOn:
# pygame.event.pump()
pygame.display.quit()
pygame.quit()
@property
def agents(self):
return self._pursuers
def get_param_values(self):
return self.__dict__
def seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _generate_coord(self, radius):
# sample points in the circle
# I use the length-angle method of sampling
# There needs to be both a lower bound and upper bound on the length
# because we don't want the object to go outside or start where the obstacle is
# TODO: get rid of magic numbers here: 0.5 is radius of circle
length = self.np_random.uniform(10 * self.radius * (2 ** (1 / 2)), 0.5 - radius * 2)
angle = np.pi * self.np_random.uniform(0, 2)
x = length * np.cos(angle)
y = length * np.sin(angle)
coord = np.array([self.initial_obstacle_coord[0] + x, self.initial_obstacle_coord[1] + y])
# Create random coordinate that avoids obstacles
while ssd.cdist(coord[None, :], self.obstacle_coords) <= radius * 2 + self.obstacle_radius:
length = self.np_random.uniform(10 * self.radius * (2 ** (1 / 2)), 0.5 - radius * 2)
angle = np.pi * self.np_random.uniform(0, 2)
x = length * np.cos(angle)
y = length * np.sin(angle)
coord = np.array([self.initial_obstacle_coord[0] + x, self.initial_obstacle_coord[1] + y])
return coord
def reset(self):
self.frames = 0
# Initialize obstacles
if self.initial_obstacle_coord is None:
# Generate obstacle positions in range [0, 1)
self.obstacle_coords = self.np_random.rand(self.n_obstacles, 2)
else:
self.obstacle_coords = self.initial_obstacle_coord[None, :]
# Set each obstacle's velocity to 0
# TODO: remove if obstacles should never move
self.obstacle_speeds = np.zeros((self.n_obstacles, 2))
# Initialize pursuers
for pursuer in self._pursuers:
pursuer.set_position(self._generate_coord(pursuer._radius))
pursuer.set_velocity(np.zeros(2))
# Initialize evaders
for evader in self._evaders:
evader.set_position(self._generate_coord(evader._radius))
# Generate velocity such that speed <= self.evader_speed
velocity = self.np_random.rand(2) - 0.5
speed = np.linalg.norm(velocity)
if speed > self.evader_speed:
# Limit speed to self.evader_speed
velocity = velocity / speed * self.evader_speed
evader.set_velocity(velocity)
# Initialize poisons
for poison in self._poisons:
poison.set_position(self._generate_coord(poison._radius))
# Generate both velocity components from range [-self.poison_speed, self.poison_speed)
# Generate velocity such that speed <= self.poison_speed
velocity = self.np_random.rand(2) - 0.5
speed = np.linalg.norm(velocity)
if speed > self.poison_speed:
# Limit speed to self.poison_speed
velocity = velocity / speed * self.poison_speed
poison.set_velocity(velocity)
rewards = np.zeros(self.n_pursuers)
sensor_features, collided_pursuer_evader, collided_pursuer_poison, rewards \
= self.collision_handling_subroutine(rewards, True)
obs_list = self.observe_list(
sensor_features, collided_pursuer_evader, collided_pursuer_poison)
self.last_rewards = [np.float64(0) for _ in range(self.n_pursuers)]
self.control_rewards = [0 for _ in range(self.n_pursuers)]
self.last_dones = [False for _ in range(self.n_pursuers)]
self.last_obs = obs_list
return obs_list[0]
def _caught(self, is_colliding_x_y, n_coop):
""" Check whether collision results in catching the object
This is because you need `n_coop` agents to collide with the object to actually catch it
"""
# Number of collisions for each y
n_collisions = is_colliding_x_y.sum(axis=0)
# List of y that have been caught
caught_y = np.where(n_collisions >= n_coop)[0]
# Boolean array indicating which x caught any y in caught_y
did_x_catch_y = is_colliding_x_y[:, caught_y]
# List of x that caught corresponding y in caught_y
x_caught_y = np.where(did_x_catch_y >= 1)[0]
return caught_y, x_caught_y
def _closest_dist(self, closest_object_idx, input_sensorvals):
"""Closest distances according to `idx`"""
sensorvals = []
for pursuer_idx in range(self.n_pursuers):
sensors = np.arange(self.n_sensors) # sensor indices
objects = closest_object_idx[pursuer_idx, ...] # object indices
sensorvals.append(input_sensorvals[pursuer_idx, ..., sensors, objects])
return np.c_[sensorvals]
def _extract_speed_features(self, object_velocities, object_sensorvals, sensed_mask):
# sensed_mask is a boolean mask of which sensor values detected an object
sensorvals = []
for pursuer in self._pursuers:
relative_speed = object_velocities - np.expand_dims(pursuer.velocity, 0)
sensorvals.append(pursuer.sensors.dot(relative_speed.T))
sensed_speed = np.c_[sensorvals] # Speeds in direction of each sensor
speed_features = np.zeros((self.n_pursuers, self.n_sensors))
sensorvals = []
for pursuer_idx in range(self.n_pursuers):
sensorvals.append(
sensed_speed[pursuer_idx, :, :][np.arange(self.n_sensors), object_sensorvals[pursuer_idx, :]]
)
# Set sensed values, all others remain 0
speed_features[sensed_mask] = np.c_[sensorvals][sensed_mask]
return speed_features
def collision_handling_subroutine(self, rewards, is_last):
# Stop pursuers upon hitting a wall
for pursuer in self._pursuers:
# Here we are trying to clip based on a circle, not a square
# Given the current position of the pursuer (outside of the circle) and its velocity,
# we want to "pull it back" along the direction of the velocity vector into the circle again
# TODO: get rid of the 0.5 magic number
# The code below will make a lot more sense if you reference this website
# https://codereview.stackexchange.com/questions/86421/line-segment-to-circle-collision-algorithm
# The code is optimized so that we find the intersection between the velocity vector and the circle
# using vector calculus, and that intersection will be where the pursuer tangents the circle
distance = abs(pursuer.position - 0.5) + pursuer._radius
# if we are outside the circle
if (distance[0] ** 2 + distance[1] ** 2 > 0.5 ** 2):
# again, you should reference the link above to make sure this velocity vector makes sense
# We are treating the pursuer position as the starting point of the velocity vector
if (pursuer.velocity[0] == 0 and pursuer.velocity[1] == 0) or (
pursuer.velocity[0] == -0 and pursuer.velocity[1] == -0):
# If this happens then we have no velocity to rely on.
# In that case, we just bring the particle back directly towards the center
v = 0.5 - pursuer.position
else:
v = -1 * pursuer.velocity
# The determinant of this quadratic equation must always be non-negative because
# there will always be an intersection between the velocity and the circle
# In fact, there will always be two intersections
# We are looking for the closest one, hence the t with the smaller absolute value
q = self.initial_obstacle_coord
p = pursuer.position
a = v.dot(v)
b = 2 * v.dot(p - q)
c = p.dot(p) + q.dot(q) - 2 * p.dot(q) - 0.5 ** 2
disc = b ** 2 - 4 * a * c
assert disc >= 0
sqrt_disc = math.sqrt(disc)
sol = [(-b + sqrt_disc) / (2 * a), (-b - sqrt_disc) / (2 * a)]
abs_sol = [abs(number) for number in sol]
min_abs = min(abs_sol)
idx = abs_sol.index(min_abs)
t = sol[idx]
# The last term is because the pursuer has a radius that we need to account for
pursuer.set_position(
pursuer.position + t * v + 2 * pursuer._radius / np.linalg.norm(0.5 - pursuer.position) * (
0.5 - pursuer.position))
pursuer.set_velocity(v)
def rebound_particles(particles, n):
collisions_particle_obstacle = np.zeros(n)
# Particles rebound on hitting an obstacle
for idx, particle in enumerate(particles):
# We find whether the particle is colliding with any of the four sides our hourglass obstacle
# In graphics the four corners are actually 10 * self.radius
# However, the collision needs to account for an extra radius length
center = self.obstacle_coords[0]
topleft = np.array([center[0] - 11 * self.radius, center[1] - 11 * self.radius])
topright = np.array([center[0] + 11 * self.radius, center[1] - 11 * self.radius])
bottomleft =
|
np.array([center[0] - 11 * self.radius, center[1] + 11 * self.radius])
|
numpy.array
|
import torchtext, random, torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from tqdm import tqdm
global use_cuda
use_cuda = torch.cuda.is_available()
device = 0 if use_cuda else -1
TEXT = torchtext.data.Field()
train, val, test = torchtext.datasets.LanguageModelingDataset.splits(path=".", train="train.txt", validation="valid.txt", test="valid.txt", text_field=TEXT)
TEXT.build_vocab(train, max_size=1000) if False else TEXT.build_vocab(train)
TEXT.vocab.load_vectors('glove.840B.300d')
train_iter, val_iter, test_iter = torchtext.data.BPTTIterator.splits((train, val, test), batch_size=10, device=device, bptt_len=32, repeat=False)
class LSTMLanguageModel(nn.Module):
""" lstm with uniform parameter initialization and dropout as per Zaremba et al. 2014 """
def __init__(self, hidden_dim = 100, TEXT = TEXT, batch_size = 10):
super(LSTMLanguageModel, self).__init__()
self.hidden_dim = hidden_dim
self.batch_size = batch_size
vocab_size, embedding_dim = TEXT.vocab.vectors.shape
self.embeddings = nn.Embedding(vocab_size, embedding_dim)
self.embeddings.weight.data.copy_(TEXT.vocab.vectors)
self.lstm = nn.LSTM(input_size = embedding_dim, hidden_size = self.hidden_dim, dropout = 0.50)
self.linear = nn.Linear(in_features = self.hidden_dim, out_features = vocab_size)
self.drop = nn.Dropout(p = 0.50)
self.init_lstm_params_uniformly(bound = 0.04)
def init_lstm_params_uniformly(self, bound):
for layer_params in self.lstm._all_weights:
for param in layer_params:
if 'weight' in param:
init.uniform(self.lstm.__getattr__(param), -bound, bound)
def init_hidden(self):
direction = 2 if self.lstm.bidirectional else 1
if use_cuda:
return (Variable(torch.zeros(direction*self.lstm.num_layers, self.batch_size, self.hidden_dim)).cuda(),
Variable(torch.zeros(direction*self.lstm.num_layers, self.batch_size, self.hidden_dim)).cuda())
else:
return (Variable(torch.zeros(direction*self.lstm.num_layers, self.batch_size, self.hidden_dim)),
Variable(torch.zeros(direction*self.lstm.num_layers, self.batch_size, self.hidden_dim)))
def detach_hidden(self, hidden):
""" util function to keep down number of graphs """
return tuple([h.detach() for h in hidden])
def forward(self, x, hidden, train = True):
""" predict, return hidden state so it can be used to intialize the next hidden state """
embedded = self.embeddings(x)
embedded = self.drop(embedded) if train else embedded
lstm_output, hdn = self.lstm(embedded, hidden)
reshaped = lstm_output.view(-1, lstm_output.size(2))
dropped = self.drop(reshaped) if train else reshaped
decoded = self.linear(dropped)
logits = F.log_softmax(decoded, dim = 1)
return logits, self.detach_hidden(hdn)
class Trainer:
def __init__(self, train_iter, val_iter):
self.train_iter = train_iter
self.val_iter = val_iter
def string_to_batch(self, string):
relevant_split = string.split() # last two words, ignore ___
ids = [self.word_to_id(word) for word in relevant_split]
if use_cuda:
return Variable(torch.LongTensor(ids)).cuda()
else:
return Variable(torch.LongTensor(ids))
def word_to_id(self, word, TEXT = TEXT):
return TEXT.vocab.stoi[word]
def batch_to_input(self, batch):
ngrams = self.collect_batch_ngrams(batch)
x = Variable(torch.LongTensor([ngram[:-1] for ngram in ngrams]))
y = Variable(torch.LongTensor([ngram[-1] for ngram in ngrams]))
if use_cuda:
return x.cuda(), y.cuda()
else:
return x, y
def collect_batch_ngrams(self, batch, n = 3):
data = batch.text.view(-1).data.tolist()
return [tuple(data[idx:idx + n]) for idx in range(0, len(data) - n + 1)]
def train_model(self, model, num_epochs):
parameters = filter(lambda p: p.requires_grad, model.parameters())
optimizer = torch.optim.Adam(params = parameters, lr=1e-3)
criterion = nn.NLLLoss()
for epoch in tqdm_notebook(range(num_epochs)):
epoch_loss = []
hidden = model.init_hidden()
model.train()
for batch in tqdm_notebook(train_iter):
x, y = batch.text, batch.target.view(-1)
if use_cuda: x, y = x.cuda(), y.cuda()
optimizer.zero_grad()
y_pred, hidden = model.forward(x, hidden, train = True)
loss = criterion(y_pred, y)
loss.backward()
torch.nn.utils.clip_grad_norm(model.lstm.parameters(), 1)
optimizer.step()
epoch_loss.append(loss.data[0])
model.eval()
train_ppl = np.exp(np.mean(epoch_loss))
val_ppl = self.validate(model)
print('Epoch {0} | Loss: {1} | Train PPL: {2} | Val PPL: {3}'.format(epoch+1, np.mean(epoch_loss), train_ppl, val_ppl))
print('Model trained.')
self.write_kaggle(model)
print('Output saved.')
def validate(self, model):
criterion = nn.NLLLoss()
hidden = model.init_hidden()
aggregate_loss = []
for batch in val_iter:
y_p, _ = model.forward(batch.text, hidden, train = False)
y_t = batch.target.view(-1)
loss = criterion(y_p, y_t)
aggregate_loss.append(loss.data[0])
val_ppl = np.exp(
|
np.mean(aggregate_loss)
|
numpy.mean
|
import unittest
import numpy as np
from girth.factoranalysis import sparsify_loadings
from girth.common import procrustes_rotation
class TestRotation(unittest.TestCase):
"""Test fixture for testing Rotation."""
def test_rotation_orthogonal(self):
"""Testing recovery of orthogonal rotation."""
rotation_angle = np.radians(37.4)
cos_theta, sin_theta = np.cos(rotation_angle), np.sin(rotation_angle)
rotation = np.array([[cos_theta, -sin_theta], [sin_theta, cos_theta]])
# Uncorrelated Loadings
real_loadings = np.array([1, 0] * 5 + [0, 1]* 5).reshape(10, 2)
rotated_loadings = real_loadings @ rotation
loadings, bases = sparsify_loadings(rotated_loadings, seed=51743549,
orthogonal=True)
procrust_adjustment = procrustes_rotation(real_loadings, loadings)
rotation_determinate = np.linalg.det(procrust_adjustment)
self.assertAlmostEqual(rotation_determinate, 1.0, 5)
|
np.testing.assert_allclose(bases, rotation @ procrust_adjustment, rtol=1e-4, atol=1e-4)
|
numpy.testing.assert_allclose
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import numpy as np # type: ignore
import onnx
from ..base import Base
from . import expect
class ReduceMean(Base):
@staticmethod
def export_do_not_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 0
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[12.5, 1.5]
# [35., 1.5]
# [57.5, 1.5]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_do_not_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_do_not_keepdims_random')
@staticmethod
def export_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = [1]
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
axes=axes,
keepdims=keepdims)
data = np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
#print(reduced)
#[[[12.5, 1.5]]
# [[35., 1.5]]
# [[57.5, 1.5]]]
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_keepdims_example')
np.random.seed(0)
data = np.random.uniform(-10, 10, shape).astype(np.float32)
reduced = np.mean(data, axis=tuple(axes), keepdims=keepdims == 1)
expect(node, inputs=[data], outputs=[reduced], name='test_reduce_mean_keepdims_random')
@staticmethod
def export_default_axes_keepdims(): # type: () -> None
shape = [3, 2, 2]
axes = None
keepdims = 1
node = onnx.helper.make_node(
'ReduceMean',
inputs=['data'],
outputs=['reduced'],
keepdims=keepdims)
data =
|
np.array([[[5, 1], [20, 2]], [[30, 1], [40, 2]], [[55, 1], [60, 2]]], dtype=np.float32)
|
numpy.array
|
# Copyright 2013 <NAME>
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from SparseArray import SparseArray
import json
import os
import gzip
def line_iterator(filename):
if filename.endswith(".gz"):
f = gzip.GzipFile(filename)
else:
try:
f = open(filename, encoding='utf8')
except TypeError:
f = open(filename)
while True:
line = f.readline()
# Test the type of the line and encode it if neccesary...
if type(line) is bytes:
try:
line = str(line, encoding='utf8')
except TypeError:
line = str(line)
# If the line is empty, we are done...
if len(line) == 0:
break
line = line.strip()
# If line is empty, jump to next...
if len(line) == 0:
continue
yield line
# Close the file...
f.close()
def json_iterator(filename):
for line in line_iterator(filename):
yield json.loads(line)
def tonparray(a):
return np.array(a.full_array())
def BER(y, yh):
u = np.unique(y)
b = 0
for cl in u:
m = y == cl
b += (~(y[m] == yh[m])).sum() / float(m.sum())
return (b / float(u.shape[0])) * 100.
def RSE(x, y):
return ((x - y)**2).sum() / ((x - x.mean())**2).sum()
params_fname = os.path.join(os.path.dirname(__file__), 'conf', 'parameter_values.json')
with open(params_fname, 'r') as fpt:
PARAMS = json.loads(fpt.read())
class Inputs(object):
def __init__(self):
self._word2id = {}
self._label2id = {}
@property
def word2id(self):
return self._word2id
@property
def label2id(self):
return self._label2id
@word2id.setter
def word2id(self, s):
self._word2id = s
@label2id.setter
def label2id(self, s):
self._label2id = s
@staticmethod
def _num_terms(a):
if 'num_terms' in a:
num_terms = a['num_terms']
else:
num_terms = len(a)
if 'klass' in a:
num_terms -= 1
return num_terms
def convert(self, x):
try:
return float(x)
except ValueError:
if x not in self.word2id:
self.word2id[x] = len(self.word2id)
return self.word2id[x]
def convert_label(self, x):
try:
x = float(x)
if
|
np.isfinite(x)
|
numpy.isfinite
|
# Copyright 2018 The Exoplanet ML Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Beam DoFns for running Box Least Squares and processing the output."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertools
import apache_beam as beam
from apache_beam.metrics import Metrics
import numpy as np
from box_least_squares import box_least_squares_pb2 as bls_pb2
from box_least_squares.python import box_least_squares
from experimental.beam.transit_search import bls_scorer
from light_curve import light_curve_pb2
def _max_duration(period, density_star):
return (period * 365.25**2 / (np.pi**3 * density_star * 215**3))**(1 / 3)
class GeneratePeriodogramDoFn(beam.DoFn):
"""Generates the BLS periodogram for a light curve."""
def __init__(self, all_periods, all_nbins, weight_min_factor,
duration_density_min, duration_min_days, duration_density_max,
duration_min_fraction):
"""Initializes the DoFn."""
self.all_periods = all_periods
self.all_nbins = all_nbins
self.max_nbins = max(self.all_nbins)
self.weight_min_factor = weight_min_factor
self.duration_density_min = duration_density_min
self.duration_min_days = duration_min_days
self.duration_density_max = duration_density_max
self.duration_min_fraction = duration_min_fraction
def process(self, inputs):
"""Generates the BLS periodogram for a light curve.
Args:
inputs: A tuple (key, light_curve_pb2.LightCurve)
Yields:
A tuple (key, box_least_squares_pb2.Periodogram)
"""
Metrics.counter(self.__class__.__name__, "inputs-seen").inc()
# Unpack the light curve.
lc = inputs["light_curve"]
time =
|
np.array(lc.light_curve.time, dtype=np.float)
|
numpy.array
|
import json
from pprint import pprint
import jsonlines
import numpy as np
def classify_entail_cnfd(logits_a, logits_b):
return np.sign(logits_a[:, 0] - logits_b[:, 0])
def classify_contra_cnfd(logits_a, logits_b):
return
|
np.sign(logits_b[:, 2] - logits_a[:, 2])
|
numpy.sign
|
# coding=utf-8
"""
This module contains methods for accessing a static simulator mocked through a data
file.
"""
from typing import Dict, Any, List, Tuple, Optional
from warnings import warn
import numpy as np
from acnportal.acnsim.interface import (
Interface,
SessionInfo,
InfrastructureInfo,
Constraint,
)
from acnportal.algorithms import infrastructure_constraints_feasible
class TestingInterface(Interface):
""" Static interface based on an attributes dict for testing algorithms without a
full environment.
"""
data: Dict[str, Any]
def __init__(self, data: Dict[str, Any]) -> None:
super().__init__(None)
self.data = data
def _get_or_error(self, field: str) -> Any:
if field in self.data:
return self.data[field]
else:
raise NotImplementedError(f"No data provided for {field}.")
@property
def last_applied_pilot_signals(self) -> Dict[str, float]:
""" Return the pilot signals that were applied in the last _iteration of the
simulation for all active EVs.
Does not include EVs that arrived in the current _iteration.
Returns:
Dict[str, number]: A dictionary with the session ID as key and the pilot
signal as value.
"""
return self._get_or_error("last_applied_pilot_signals")
@property
def last_actual_charging_rate(self) -> Dict[str, float]:
""" Return the actual charging rates in the last period for all active EVs.
Returns:
Dict[str, number]: A dictionary with the session ID as key and actual
charging rate as value.
"""
return self._get_or_error("last_actual_charging_rate")
@property
def current_time(self) -> int:
""" Get the current time (the current _iteration) of the simulator.
Returns:
int: The current _iteration of the simulator.
"""
return self._get_or_error("current_time")
@property
def period(self) -> float:
""" Return the length of each timestep in the simulation.
Returns:
int: Length of each time interval in the simulation. [minutes]
"""
return self._get_or_error("period")
def active_sessions(self) -> List[SessionInfo]:
""" Return a list of SessionInfo objects describing the currently charging EVs.
Returns:
List[SessionInfo]: List of currently active charging sessions.
"""
active_sessions = self._get_or_error("active_sessions")
return [
SessionInfo(current_time=self.current_time, **session)
for session in active_sessions
]
def infrastructure_info(self) -> InfrastructureInfo:
""" Returns an InfrastructureInfo object generated from interface.
Returns:
InfrastructureInfo: A description of the charging infrastructure.
"""
infrastructure = self._get_or_error("infrastructure_info")
return InfrastructureInfo(
np.array(infrastructure["constraint_matrix"]),
np.array(infrastructure["constraint_limits"]),
np.array(infrastructure["phases"]),
np.array(infrastructure["voltages"]),
infrastructure["constraint_ids"],
infrastructure["station_ids"],
np.array(infrastructure["max_pilot"]),
np.array(infrastructure["min_pilot"]),
[np.array(allowable) for allowable in infrastructure["allowable_pilots"]],
np.array(infrastructure["is_continuous"]),
)
def allowable_pilot_signals(self, station_id: str) -> Tuple[bool, List[float]]:
""" Returns the allowable pilot signal levels for the specified EVSE.
One may assume an EVSE pilot signal of 0 is allowed regardless
of this function's return values.
Args:
station_id (str): The ID of the station for which the allowable rates
should be returned.
Returns:
bool: If the range is continuous or not
list[float]: The sorted set of acceptable pilot signals. If continuous this
range will have 2 values the min and the max acceptable values. [A]
"""
infrastructure = self._get_or_error("infrastructure_info")
i = infrastructure["station_ids"].index(station_id)
return (
infrastructure["is_continuous"][i],
infrastructure["allowable_pilots"][i],
)
def max_pilot_signal(self, station_id: str) -> float:
""" Returns the maximum allowable pilot signal level for the specified EVSE.
Args:
station_id (str): The ID of the station for which the allowable rates
should be returned.
Returns:
float: the maximum pilot signal supported by this EVSE. [A]
"""
infrastructure = self._get_or_error("infrastructure_info")
i = infrastructure["station_ids"].index(station_id)
return infrastructure["max_pilot"][i]
def min_pilot_signal(self, station_id: str) -> float:
""" Returns the minimum allowable pilot signal level for the specified EVSE.
Args:
station_id (str): The ID of the station for which the allowable rates
should be returned.
Returns:
float: the minimum pilot signal supported by this EVSE. [A]
"""
infrastructure = self._get_or_error("infrastructure_info")
i = infrastructure["station_ids"].index(station_id)
return infrastructure["min_pilot"][i]
def evse_voltage(self, station_id: str) -> float:
""" Returns the voltage of the EVSE.
Args:
station_id (str): The ID of the station for which the allowable rates
should be returned.
Returns:
float: voltage of the EVSE. [V]
"""
infrastructure = self._get_or_error("infrastructure_info")
i = infrastructure["station_ids"].index(station_id)
return infrastructure["voltages"][i]
def evse_phase(self, station_id: str) -> float:
""" Returns the phase angle of the EVSE.
Args:
station_id (str): The ID of the station for which the allowable rates
should be returned.
Returns:
float: phase angle of the EVSE. [degrees]
"""
infrastructure = self._get_or_error("infrastructure_info")
i = infrastructure["station_ids"].index(station_id)
return infrastructure["phases"][i]
def get_constraints(self) -> Constraint:
""" Get the constraint matrix and corresponding EVSE ids for the network.
Returns:
np.ndarray: Matrix representing the constraints of the network. Each row is
a constraint and each
"""
infrastructure = self._get_or_error("infrastructure_info")
return Constraint(
|
np.array(infrastructure["constraint_matrix"])
|
numpy.array
|
""" Classes and functions for generalized q-sampling """
import numpy as np
import dipy.reconst.recspeed as rp
from dipy.data import get_sphere
import os
from os.path import join as opj
class GeneralizedQSampling():
""" Implements Generalized Q-Sampling
Generates a model-free description for every voxel that can
be used from simple to very complicated configurations like
quintuple crossings if your datasets support them.
You can use this class for every kind of DWI image but it will
perform much better when you have a balanced sampling scheme.
Implements equation [9] from Generalized Q-Sampling as
described in <NAME>, <NAME>, <NAME>.
Generalized Q-Sampling Imaging. IEEE TMI, 2010.
Parameters
-----------
data : array,
shape(X,Y,Z,D)
bvals : array,
shape (N,)
gradients : array,
shape (N,3) also known as bvecs
Lambda : float,
smoothing parameter - diffusion sampling length
Key Properties
---------------
QA : array, shape(X,Y,Z,5), quantitative anisotropy
IN : array, shape(X,Y,Z,5), indices of QA, qa unit directions
fwd : float, normalization parameter
Notes
-------
In order to reconstruct the spin distribution function a nice symmetric evenly distributed sphere is provided using 362 or 642 points. This is usually
sufficient for most of the datasets.
See also
----------
dipy.tracking.propagation.EuDX, dipy.reconst.dti.Tensor, dipy.data.get_sphere
"""
def __init__(self,data,bvals,gradients,Lambda=1.2,odfsphere=None,mask=None):
""" Generates a model-free description for every voxel that can
be used from simple to very complicated configurations like
quintuple crossings if your datasets support them.
You can use this class for every kind of DWI image but it will
perform much better when you have a balanced sampling scheme.
Implements equation [9] from Generalized Q-Sampling as
described in <NAME>, <NAME>, <NAME>.
Generalized Q-Sampling Imaging. IEEE TMI, 2010.
Parameters
-----------
data: array, shape(X,Y,Z,D)
bvals: array, shape (N,)
gradients: array, shape (N,3) also known as bvecs
Lambda: float, smoothing parameter - diffusion sampling length
Key Properties
---------------
QA : array, shape(X,Y,Z,5), quantitative anisotropy
IN : array, shape(X,Y,Z,5), indices of QA, qa unit directions
fwd : float, normalization parameter
Notes
-------
In order to reconstruct the spin distribution function a nice symmetric evenly distributed sphere is provided using 362 points. This is usually
sufficient for most of the datasets.
See also
----------
dipy.tracking.propagation.EuDX, dipy.reconst.dti.Tensor, dipy.data.__init__.get_sphere
"""
if odfsphere == None:
eds = eds=np.load(get_sphere('symmetric362'))
odf_vertices=eds['vertices']
odf_faces=eds['faces']
self.odf_vertices=odf_vertices
# 0.01506 = 6*D where D is the free water diffusion coefficient
# l_values sqrt(6 D tau) D free water diffusion coefficient and
# tau included in the b-value
scaling = np.sqrt(bvals*0.01506)
tmp=
|
np.tile(scaling, (3,1))
|
numpy.tile
|
'''
@author: <NAME>
'''
import numpy as np
import random
import pandas as pd
import gensim
import nltk
from gensim.utils import simple_preprocess
from gensim.parsing.preprocessing import STOPWORDS
from nltk.stem import WordNetLemmatizer, SnowballStemmer
from nltk.stem.porter import *
import ssl
from scipy.stats import *
from scipy.special import gamma, gammaln, psi
import sys
from sys import argv
from pathlib import Path
import time
import json
from resource import getrusage as resource_usage, RUSAGE_SELF
from functools import reduce
import matplotlib.pyplot as plt
from statistics import mode
from itertools import chain
import csv
def getopts(argv):
opts = {}
while argv:
if argv[0] == '-docpath':
opts[argv[0][1:]] = argv[1]
elif argv[0] == '-idpath':
opts[argv[0][1:]] = argv[1]
elif argv[0] == '-K':
opts[argv[0][1:]] = int(argv[1])
elif argv[0] == '-alpha':
opts[argv[0][1:]] = float(argv[1])
elif argv[0] == '-beta':
opts[argv[0][1:]] = float(argv[1])
elif argv[0] == '-num_samples':
opts[argv[0][1:]] = int(argv[1])
elif argv[0] == '-ident':
opts[argv[0][1:]] = argv[1]
elif argv[0] == '-num_warmup':
opts[argv[0][1:]] = argv[1]
argv = argv[1:]
return opts
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
return json.JSONEncoder.default(self, obj)
def gibbs_sampling(num_iter, num_warmup, num_topic, num_vocab, documents, alpha, eta):
num_doc = len(documents)
topicAssignments = {}
# initialize counter
c_tw = np.zeros([num_topic, num_vocab]) # count topic to words
c_dt = np.zeros([num_doc, num_topic]) # count docs to topics
c_t = np.zeros(num_topic) # accumulative c_tw (helper count: can be calculated from c_tw np.sum(c_dt[t,:]))
c_d = np.zeros(num_doc) # accumulative c_dt (helper count: can be calculated from c_dt np.sum(c_dt[d,:]))
# initialize the parameters of distributions
theta = []
sample_theta = np.zeros([num_doc, num_topic])
beta = []
sample_beta = np.zeros([num_topic, num_vocab])
topic_assignments = []
# Calculate counts and sample topic assignment (cat) randomly
for i, d in enumerate(documents):
doc_size = len(documents[d])
cat = np.random.randint(0,num_topic, size = doc_size)
topicAssignments[i] = cat
for j, w in enumerate(documents[d]):
c_t[cat[j]] += 1
c_d[i] += 1
c_tw[cat[j],w] += 1
c_dt[i, cat[j]] += 1
likelihood = 0
for i, _ in enumerate(documents):
likelihood += ((gammaln(num_topic*alpha) + np.sum(gammaln(c_dt[i] + alpha))) -
(num_topic * gammaln(alpha) + gammaln(np.sum(c_dt[i] + alpha))))
for t in range(num_topic):
likelihood += ((gammaln(num_vocab*eta) + np.sum(gammaln(c_tw[t] + eta)))-
(num_vocab * gammaln(eta) + gammaln(
|
np.sum(c_tw[t] + eta)
|
numpy.sum
|
#generic import
import numpy as np
import sys
#mne import
from mne import Epochs, pick_types
from mne.io import concatenate_raws
from mne.io.edf import read_raw_edf
from mne.datasets import eegbci
from mne.event import find_events
from mne.decoding import CSP
#pyriemann import
from pyriemann.classification import MDM,FgMDM
from pyriemann.tangentspace import TangentSpace
from pyriemann.estimation import covariances
#sklearn imports
from sklearn.cross_validation import cross_val_score, KFold
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.lda import LDA
###############################################################################
## Set parameters and read data
# avoid classification of evoked responses by using epochs that start 1s after
# cue onset.
tmin, tmax = 1., 2.
event_id = dict(hands=2, feet=3)
subject = 7
runs = [6, 10, 14] # motor imagery: hands vs feet
raw_files = [read_raw_edf(f, preload=True) for f in eegbci.load_data(subject, runs)]
raw = concatenate_raws(raw_files)
picks = pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False,
exclude='bads')
#subsample elecs
picks = picks[::2]
# Apply band-pass filter
raw.filter(7., 35., method='iir',picks=picks)
events = find_events(raw, shortest_event=0, stim_channel='STI 014')
# Read epochs (train will be done only between 1 and 2s)
# Testing will be done with a running classifier
epochs = Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks,
baseline=None, preload=True, add_eeg_ref=False,verbose = False)
labels = epochs.events[:, -1] - 2
# cross validation
cv = KFold(len(labels),10, shuffle=True, random_state=42)
# get epochs
epochs_data_train = epochs.get_data()
# compute covariance matrices
cov_data_train = covariances(epochs_data_train)
###############################################################################
# Classification with Minimum distance to mean
mdm = MDM()
# Use scikit-learn Pipeline with cross_val_score function
scores = cross_val_score(mdm, cov_data_train, labels, cv=cv, n_jobs=1)
# Printing the results
class_balance = np.mean(labels == labels[0])
class_balance = max(class_balance, 1. - class_balance)
print("MDM Classification accuracy: %f / Chance level: %f" % (np.mean(scores),
class_balance))
###############################################################################
# Classification with Tangent Space Logistic Regression
ts = TangentSpace(metric='riemann')
lr = LogisticRegression(penalty='l2')
clf = Pipeline([('TS', ts), ('LR', lr)])
# Use scikit-learn Pipeline with cross_val_score function
scores = cross_val_score(clf, cov_data_train, labels, cv=cv, n_jobs=1)
# Printing the results
class_balance = np.mean(labels == labels[0])
class_balance = max(class_balance, 1. - class_balance)
print("TS + LR Classification accuracy: %f / Chance level: %f" % (np.mean(scores),
class_balance))
###############################################################################
# Classification with CSP + linear discrimant analysis
# Assemble a classifier
lda = LDA()
csp = CSP(n_components=4, reg='lws', log=True)
clf = Pipeline([('CSP', csp), ('LDA', lda)])
scores = cross_val_score(clf, epochs_data_train, labels, cv=cv, n_jobs=1)
# Printing the results
class_balance =
|
np.mean(labels == labels[0])
|
numpy.mean
|
import numpy as np
import numpy.linalg as la
import pdb
class Map():
"""map object
Attributes:
getGlobalPosition: convert position from (s, ey) to (X,Y)
"""
def __init__(self, halfWidth):
"""Initialization
halfWidth: track halfWidth
Modify the vector spec to change the geometry of the track
"""
# Goggle-shaped track
# self.slack = 0.15
# self.halfWidth = halfWidth
# spec = np.array([[60 * 0.03, 0],
# [80 * 0.03, -80 * 0.03 * 2 / np.pi],
# # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2
# [20 * 0.03, 0],
# [80 * 0.03, -80 * 0.03 * 2 / np.pi],
# [40 * 0.03, +40 * 0.03 * 10 / np.pi],
# [60 * 0.03, -60 * 0.03 * 5 / np.pi],
# [40 * 0.03, +40 * 0.03 * 10 / np.pi],
# [80 * 0.03, -80 * 0.03 * 2 / np.pi],
# [20 * 0.03, 0],
# [80 * 0.03, -80 * 0.03 * 2 / np.pi]])
# L-shaped track
self.halfWidth = 0.45
self.slack = 0.45
lengthCurve = 4.5
spec = np.array([[1.0, 0],
[lengthCurve, lengthCurve / np.pi],
# Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2
[lengthCurve / 2, -lengthCurve / np.pi],
[lengthCurve, lengthCurve / np.pi],
[lengthCurve / np.pi * 2, 0],
[lengthCurve / 2, lengthCurve / np.pi]])
# spec = np.array([[1.0, 0],
# [lengthCurve, lengthCurve / np.pi],
# # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2
# [lengthCurve / 4, lengthCurve / (2 * np.pi)],
# [lengthCurve / 4, - lengthCurve / (2 * np.pi)],
# [lengthCurve / np.pi * 2, 0],
# [lengthCurve / 2, lengthCurve / np.pi]])
# Oval track
# spec = np.array([[2.0, 0],
# [4.5, -4.5 / np.pi],
# # Note s = 1 * np.pi / 2 and r = -1 ---> Angle spanned = np.pi / 2
# [4.0, 0],
# [4.5, -4.5 / np.pi],
# [2.0, 0]])
# Now given the above segments we compute the (x, y) points of the track and the angle of the tangent vector (psi) at
# these points. For each segment we compute the (x, y, psi) coordinate at the last point of the segment. Furthermore,
# we compute also the cumulative s at the starting point of the segment at signed curvature
# PointAndTangent = [x, y, psi, cumulative s, segment length, signed curvature]
########################################################
#SS: Need to do something to mark the coordinate points of the lane boundaries.
#SS: Use OpenCV to measure attitude of the car w.r.t. the lane boundary angle.
#########################################################
PointAndTangent = np.zeros((spec.shape[0] + 1, 6))
for i in range(0, spec.shape[0]):
if spec[i, 1] == 0.0: # If the current segment is a straight line
l = spec[i, 0] # Length of the segments
if i == 0:
ang = 0 # Angle of the tangent vector at the starting point of the segment
x = 0 + l * np.cos(ang) # x coordinate of the last point of the segment
y = 0 + l * np.sin(ang) # y coordinate of the last point of the segment
else:
ang = PointAndTangent[i - 1, 2] # Angle of the tangent vector at the starting point of the segment
x = PointAndTangent[i-1, 0] + l * np.cos(ang) # x coordinate of the last point of the segment
y = PointAndTangent[i-1, 1] + l * np.sin(ang) # y coordinate of the last point of the segment
psi = ang # Angle of the tangent vector at the last point of the segment
if i == 0:
NewLine = np.array([x, y, psi, PointAndTangent[i, 3], l, 0])
else:
NewLine = np.array([x, y, psi, PointAndTangent[i-1, 3] + PointAndTangent[i-1, 4], l, 0])
PointAndTangent[i, :] = NewLine # Write the new info
else:
l = spec[i, 0] # Length of the segment
r = spec[i, 1] # Radius of curvature
if r >= 0:
direction = 1
else:
direction = -1
if i == 0:
ang = 0 # Angle of the tangent vector at the
# starting point of the segment
CenterX = 0 \
+ np.abs(r) * np.cos(ang + direction * np.pi / 2) # x coordinate center of circle
CenterY = 0 \
+ np.abs(r) * np.sin(ang + direction * np.pi / 2) # y coordinate center of circle
else:
ang = PointAndTangent[i - 1, 2] # Angle of the tangent vector at the
# starting point of the segment
CenterX = PointAndTangent[i-1, 0] \
+ np.abs(r) * np.cos(ang + direction * np.pi / 2) # x coordinate center of circle
CenterY = PointAndTangent[i-1, 1] \
+ np.abs(r) * np.sin(ang + direction * np.pi / 2) # y coordinate center of circle
spanAng = l / np.abs(r) # Angle spanned by the circle
psi = wrap(ang + spanAng * np.sign(r)) # Angle of the tangent vector at the last point of the segment
angleNormal = wrap((direction * np.pi / 2 + ang))
angle = -(np.pi - np.abs(angleNormal)) * (sign(angleNormal))
x = CenterX + np.abs(r) * np.cos(
angle + direction * spanAng) # x coordinate of the last point of the segment
y = CenterY + np.abs(r) * np.sin(
angle + direction * spanAng) # y coordinate of the last point of the segment
if i == 0:
NewLine = np.array([x, y, psi, PointAndTangent[i, 3], l, 1 / r])
else:
NewLine = np.array([x, y, psi, PointAndTangent[i-1, 3] + PointAndTangent[i-1, 4], l, 1 / r])
PointAndTangent[i, :] = NewLine # Write the new info
# plt.plot(x, y, 'or')
xs = PointAndTangent[-2, 0]
ys = PointAndTangent[-2, 1]
xf = 0
yf = 0
psif = 0
# plt.plot(xf, yf, 'or')
# plt.show()
l = np.sqrt((xf - xs) ** 2 + (yf - ys) ** 2)
NewLine = np.array([xf, yf, psif, PointAndTangent[-2, 3] + PointAndTangent[-2, 4], l, 0])
PointAndTangent[-1, :] = NewLine
self.PointAndTangent = PointAndTangent
self.TrackLength = PointAndTangent[-1, 3] + PointAndTangent[-1, 4]
#######################
#SS: Dont need this section. Save actual coordinate position of the car.
#SS: Save ey, s,
#######################
def getGlobalPosition(self, s, ey):
"""coordinate transformation from curvilinear reference frame (s, ey) to inertial reference frame (X, Y)
(s, ey): position in the curvilinear reference frame
"""
# wrap s along the track
while (s > self.TrackLength):
s = s - self.TrackLength
# Compute the segment in which system is evolving
PointAndTangent = self.PointAndTangent
index = np.all([[s >= PointAndTangent[:, 3]], [s < PointAndTangent[:, 3] + PointAndTangent[:, 4]]], axis=0)
i = int(np.where(np.squeeze(index))[0])
if PointAndTangent[i, 5] == 0.0: # If segment is a straight line
# Extract the first final and initial point of the segment
xf = PointAndTangent[i, 0]
yf = PointAndTangent[i, 1]
xs = PointAndTangent[i - 1, 0]
ys = PointAndTangent[i - 1, 1]
psi = PointAndTangent[i, 2]
# Compute the segment length
deltaL = PointAndTangent[i, 4]
reltaL = s - PointAndTangent[i, 3]
# Do the linear combination
x = (1 - reltaL / deltaL) * xs + reltaL / deltaL * xf + ey * np.cos(psi + np.pi / 2)
y = (1 - reltaL / deltaL) * ys + reltaL / deltaL * yf + ey * np.sin(psi + np.pi / 2)
else:
r = 1 / PointAndTangent[i, 5] # Extract curvature
ang = PointAndTangent[i - 1, 2] # Extract angle of the tangent at the initial point (i-1)
# Compute the center of the arc
if r >= 0:
direction = 1
else:
direction = -1
CenterX = PointAndTangent[i - 1, 0] \
+ np.abs(r) * np.cos(ang + direction * np.pi / 2) # x coordinate center of circle
CenterY = PointAndTangent[i - 1, 1] \
+ np.abs(r) * np.sin(ang + direction * np.pi / 2) # y coordinate center of circle
spanAng = (s - PointAndTangent[i, 3]) / (np.pi * np.abs(r)) * np.pi
angleNormal = wrap((direction * np.pi / 2 + ang))
angle = -(np.pi - np.abs(angleNormal)) * (sign(angleNormal))
x = CenterX + (np.abs(r) - direction * ey) * np.cos(
angle + direction * spanAng) # x coordinate of the last point of the segment
y = CenterY + (np.abs(r) - direction * ey) * np.sin(
angle + direction * spanAng) # y coordinate of the last point of the segment
return x, y
def getLocalPosition(self, x, y, psi):
"""coordinate transformation from inertial reference frame (X, Y) to curvilinear reference frame (s, ey)
(X, Y): position in the inertial reference frame
"""
PointAndTangent = self.PointAndTangent
CompletedFlag = 0
for i in range(0, PointAndTangent.shape[0]):
if CompletedFlag == 1:
break
if PointAndTangent[i, 5] == 0.0: # If segment is a straight line
# Extract the first final and initial point of the segment
xf = PointAndTangent[i, 0]
yf = PointAndTangent[i, 1]
xs = PointAndTangent[i - 1, 0]
ys = PointAndTangent[i - 1, 1]
psi_unwrap = np.unwrap([PointAndTangent[i - 1, 2], psi])[1]
epsi = psi_unwrap - PointAndTangent[i - 1, 2]
# Check if on the segment using angles
if (la.norm(np.array([xs, ys]) -
|
np.array([x, y])
|
numpy.array
|
import pyglet
from pyglet import gl
import numpy as np
from luminate import utility
from luminate import datasource as ds
class AbstractWidget:
_numPoints = 500
def __init__(self, window, x, y, width, height):
self._window = window
self.x = x
self.y = y
self.width = width
self.height = height
def draw(self):
gl.glTranslatef(self.x, self.y, 0)
gl.glPushMatrix()
self._draw_impl()
gl.glPopMatrix()
def _draw_impl(self):
pass
def update(self, dt):
pass
num_textures = 0
class TextureWidget(AbstractWidget):
def __init__(self, window, x, y, width, height, alpha=1.0, data_source=None):
super().__init__(window, x, y, width, height)
self._alpha = alpha
if data_source is None:
tex_data_2d = np.zeros((width, height, 3))
mid_grey =
|
np.array((0.5, 0.5, 0.5))
|
numpy.array
|
import math
import colorsys
import cv2 as cv
import numpy as np
import progressbar
import pyvista as pv
import tensorflow as tf
def progbar(n):
bar = progressbar.ProgressBar(
maxval=n,
widgets=[
progressbar.Bar('=', '[', ']'), ' ',
progressbar.Percentage(), ' | ',
progressbar.SimpleProgress(), ' | ',
progressbar.AdaptiveETA()
]
)
return bar
def crop_bbox(in_pc, bbox):
out_pc = in_pc[
(in_pc[:, 0] >= bbox[0]) & (in_pc[:, 0] <= bbox[3]) &
(in_pc[:, 1] >= bbox[1]) & (in_pc[:, 1] <= bbox[4]) &
(in_pc[:, 2] >= bbox[2]) & (in_pc[:, 2] <= bbox[5])
]
return out_pc
def check_occupancy(obj_points, bbox):
occupied_pts = obj_points[
(obj_points[:, 0]>= bbox[0]) & (obj_points[:, 0]<= bbox[3]) &
(obj_points[:, 1]>= bbox[1]) & (obj_points[:, 1]<= bbox[4]) &
(obj_points[:, 2]>= bbox[2]) & (obj_points[:, 2]<= bbox[5])
]
return occupied_pts.shape[0]
def euc_dist(a, b):
return np.sqrt(np.sum((a - b)**2))
def bounding_box(pc):
""" Calculate bounding box as [xmin, ymin, ..., zmax] """
bbox = [
np.min(pc[:, 0]), np.min(pc[:, 1]), np.min(pc[:, 2]),
np.max(pc[:, 0]), np.max(pc[:, 1]), np.max(pc[:, 2])
]
return np.array(bbox)
def bbox_overlap(pc_a, pc_b):
bbox_a = bounding_box(pc_a)
bbox_b = bounding_box(pc_b)
if (
bbox_a[3] >= bbox_b[0] and bbox_b[3] >= bbox_a[0] and
bbox_a[4] >= bbox_b[1] and bbox_b[4] >= bbox_a[1] and
bbox_a[5] >= bbox_b[2] and bbox_b[5] >= bbox_a[2]
):
overlap = True
else:
overlap = False
return overlap
def rotate_boxes(boxes, centers, theta):
pts_out = np.zeros((boxes.shape[0], 8, 3), np.float32)
for i, (b, c, r) in enumerate(zip(boxes, centers, theta)):
t = np.arctan2(r[1], r[0])
pts = np.array([
[b[0], b[1], b[2]],
[b[3], b[1], b[2]],
[b[3], b[4], b[2]],
[b[0], b[4], b[2]],
[b[0], b[1], b[5]],
[b[3], b[1], b[5]],
[b[3], b[4], b[5]],
[b[0], b[4], b[5]]
])
for j, p in enumerate(pts):
pts_out[i, j][0] = c[0] + ((p[1]-c[1])*np.sin(t) + (p[0]-c[0])*np.cos(t))
pts_out[i, j][1] = c[1] + ((p[1]-c[1])*np.cos(t) - (p[0]-c[0])*np.sin(t))
pts_out[i, j][2] = p[2]
return pts_out
def rotate_box(b, c, r):
pts_out = np.zeros((8, 3), np.float32)
t = np.arctan2(r[1], r[0])
pts = np.array([
[b[0], b[1], b[2]],
[b[3], b[1], b[2]],
[b[3], b[4], b[2]],
[b[0], b[4], b[2]],
[b[0], b[1], b[5]],
[b[3], b[1], b[5]],
[b[3], b[4], b[5]],
[b[0], b[4], b[5]]
])
for j, p in enumerate(pts):
pts_out[j][0] = c[0] + ((p[1]-c[1])*np.sin(t) + (p[0]-c[0])*np.cos(t))
pts_out[j][1] = c[1] + ((p[1]-c[1])*np.cos(t) - (p[0]-c[0])*np.sin(t))
pts_out[j][2] = p[2]
return pts_out
def make_lines(pts):
lines = [
pv.Line(pts[0], pts[1]), pv.Line(pts[1], pts[2]), pv.Line(pts[2], pts[3]), pv.Line(pts[3], pts[0]),
pv.Line(pts[4], pts[5]), pv.Line(pts[5], pts[6]), pv.Line(pts[6], pts[7]), pv.Line(pts[7], pts[4]),
pv.Line(pts[0], pts[4]), pv.Line(pts[1], pts[5]), pv.Line(pts[2], pts[6]), pv.Line(pts[3], pts[7]),
]
return lines
def rotate_euler(in_pc, theta):
out_pc = np.zeros_like((in_pc))
cosval = np.cos(theta)
sinval = np.sin(theta)
R = np.array([
[np.cos(theta), -np.sin(theta), 0.0],
[np.sin(theta), np.cos(theta), 0.0],
[0.0, 0.0, 1.0]
])
for idx, p in enumerate(in_pc):
out_pc[idx] = np.dot(R, p)
return out_pc
def get_fixed_pts(in_pts, n_pts):
out_pts = in_pts.copy()
ret = True
if out_pts.shape[0] == 0:
out_pts = np.zeros((n_pts, 6))
ret = False
elif out_pts.shape[0] < n_pts:
dup_idx = np.arange(out_pts.shape[0])
np.random.shuffle(dup_idx)
dup_idx = dup_idx[0:n_pts-out_pts.shape[0]]
out_pts = np.vstack((
out_pts,
out_pts[dup_idx]
))
if in_pts.shape[0] < n_pts/2:
out_pts = np.pad(out_pts, [[0, n_pts-out_pts.shape[0]], [0, 0]])
else:
s_idx = np.arange(out_pts.shape[0])
np.random.shuffle(s_idx)
out_pts = out_pts[s_idx[0:n_pts]]
return ret, out_pts
def iou(a, b):
xx1 = np.maximum(a[0], b[0])
yy1 = np.maximum(a[1], b[1])
zz1 = np.maximum(a[2], b[2])
xx2 = np.minimum(a[3], b[3])
yy2 = np.minimum(a[4], b[4])
zz2 = np.minimum(a[5], b[5])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
d = np.maximum(0.0, zz2 - zz1)
inter = w * h * d
area_a = (a[3] - a[0]) * (a[4] - a[1]) * (a[5] - a[2])
area_b = (b[3] - b[0]) * (b[4] - b[1]) * (b[5] - b[2])
return inter / float(area_a + area_b - inter)
def make_boxes(xyz, extent):
out_boxes = np.zeros((extent.shape[0], extent.shape[1], 6))
for b in range(xyz.shape[0]):
centers = xyz[b, :, :3]
hwd = extent[b, :, :3]
theta = extent[b, :, 3:5]
boxes_min = centers - (hwd / 2.)
boxes_max = centers + (hwd / 2.)
boxes = np.hstack((boxes_min, boxes_max))
boxes = rotate_boxes(boxes, centers, theta)
for i, box in enumerate(boxes):
out_boxes[b, i, 0] = np.min(box[:, 0])
out_boxes[b, i, 1] = np.min(box[:, 1])
out_boxes[b, i, 2] = np.min(box[:, 2])
out_boxes[b, i, 3] = np.max(box[:, 0])
out_boxes[b, i, 4] =
|
np.max(box[:, 1])
|
numpy.max
|
"""
Module implements a binned maximum likelihood analysis with a flexible, energy-dependent ROI based
on the PSF.
$Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/like/roi_analysis.py,v 1.132 2013/05/07 04:17:43 lande Exp $
author: <NAME>, <NAME>, <NAME>
"""
import numpy as np
import math, pickle, collections
import numbers
from . import roi_bands, roi_localize , specfitter
from . pointspec_helpers import PointSource,get_default_diffuse_mapper
from . roi_diffuse import ROIDiffuseModel,DiffuseSource
from . roi_extended import ExtendedSource,BandFitExtended,ROIExtendedModel
from . import roi_extended
from . import roi_printing
from . import roi_modify
from . import roi_save
from . import roi_image
from . import sed_plotter
from . import roi_upper_limits
from . import mapplots
from uw.utilities import keyword_options
from uw.utilities import xml_parsers
from uw.utilities import region_writer
from uw.utilities import results_writer
from scipy.optimize import fmin,fmin_powell,fmin_bfgs
from . import roi_plotting
from . import counts_plotter
# special function to replace or extend a docstring from that of another function
def decorate_with(other_func, append=False, append_init=False):
""" append_init: If decorating with an object (which has an __init__ function),
then append the doc for the __init__ after the doc for the
overall class. """
def decorator(func):
if append: func.__doc__ += other_func.__doc__
else: func.__doc__ = other_func.__doc__
if append_init and hasattr(other_func,'__init__'):
func.__doc__ += other_func.__init__.__doc__
return func
return decorator
class ROIAnalysis(object):
defaults = (
("fit_emin",None,"""a two-element list giving front/back minimum energy.
Independent energy ranges for front and back. 0th position is for event class 0.
If not specified, default is read from SpectralAnalysis."""),
("fit_emax",None,"A two-element list giving front/back maximum energy. Same qualifications as fit_emax."),
("conv_type",-1,"Integer specifying front(0), back(1), or all(-1) events"),
("quiet",False,'Set True to suppress (some) output'),
("catalog_aperture",-1,"Pulsar catalog analysis only -- deprecate"),
("phase_factor",1.,"Pulsar phase. A correction that can be made if the data has undergone a phase selection -- between 0 and 1"),
("bracketing_function",None,"A function by which to multiply the counts in each band, e.g. 1.2 for a 20% 'high' IRF. It should be a function taking as arguments energy and conversion type."),
("skip_setup", False, "Set True to instantiate with data only" ),
)
@keyword_options.decorate(defaults)
def __init__(self,roi_dir,ps_manager,ds_manager,spectral_analysis,**kwargs):
""" roi_dir -- the center of the ROI
ps_manager -- an instance of ROIPointSourceManager
ds_manager -- an instance of ROIDiffuseManager
"""
keyword_options.process(self, kwargs)
self.__dict__.update(**kwargs)
self.roi_dir = roi_dir
self.psm = ps_manager
self.dsm = ds_manager
self.bgm = self.dsm ### bgm is deprecated, set here for convenience of interactive access
self.sa = spectral_analysis
self.logl = None
self.prev_logl = None
self.__setup_bands__()
self.__warn_about_binning__()
self.bin_centers = np.sort(list(set([b.e for b in self.bands])))
self.bin_edges = np.sort(list(set([b.emin for b in self.bands] + [b.emax for b in self.bands])))
self.param_state, self.param_vals = None,None
if self.skip_setup:
if not self.quiet: print ('No likelihood setup done: skip_setup is set')
return
self.__pre_fit__()
self.logl = self.prev_logl =-self.logLikelihood(self.get_parameters()) # make sure everything initialized
def setup(self):
""" stuff that would not be done if skip_setup was set"""
self.__setup_counts__()
self.__pre_fit__()
self.logl = self.prev_logl =-self.logLikelihood(self.get_parameters()) # make sure everything initialized
def __setup_bands__(self):
if self.fit_emin is None: self.fit_emin = self.sa.emin
if self.fit_emax is None: self.fit_emax = self.sa.emax
if isinstance(self.fit_emin,numbers.Real):
self.fit_emin = [self.fit_emin]*2
if isinstance(self.fit_emax,numbers.Real):
self.fit_emax = [self.fit_emax]*2
self.bands = collections.deque()
band_kwargs = {'catalog_aperture':self.catalog_aperture,
'bracketing_function':self.bracketing_function,
'phase_factor':self.phase_factor}
for band in self.sa.pixeldata.dmap:
evcl = band.event_class() & 1 # protect high bits
if ((band.emin() + 1) >= self.fit_emin[evcl] and
(band.emax() - 1) < self.fit_emax[evcl] and
(self.conv_type==-1 or self.conv_type==evcl)) :
self.bands.append(roi_bands.ROIBand(band,self.sa,
self.roi_dir,**band_kwargs))
self.bands = np.asarray(self.bands)
if not self.skip_setup: self.__setup_counts__()
def __setup_counts__(self):
self.psm.setup_initial_counts(self.bands)
self.dsm.setup_initial_counts(self.bands)
def __warn_about_binning__(self):
""" Add a user friendly warning if the binning selected
by emin & emin in DataSpecification is inconsistent with
the energy bins selected using fit_emin and fit_emax. """
if self.quiet: return
for ct in [0,1]:
if len([b for b in self.bands if b.ct==ct]) == 0:
print ("Warning: No conversion type %s photons were selected." % ct)
continue
actual_emin=min(b.emin for b in self.bands if b.ct==ct)
actual_emax=max(b.emax for b in self.bands if b.ct==ct)
requested_emin,requested_emax=self.fit_emin[ct],self.fit_emax[ct]
if
|
np.abs(actual_emin-requested_emin)
|
numpy.abs
|
import unittest
import pandas as pd
import numpy as np
import random
from cem.match import ExactMatching, Stratum
class StratumTest(unittest.TestCase):
def test_difference_calculation(self):
s = Stratum(0, [0,1,2], [1,2,3])
delta = s.get_difference()
self.assertEqual(delta, 1)
def test_ci(self):
correct, total = 0., 0.
for i in range(5000):
mu_1, mu_0 = np.random.normal(0, 10, 2)
s_1, s_0 = np.abs(np.random.normal(0, 10, 2))
N = 1000
x_1 = np.random.normal(mu_1, s_1, N)
x_0 = np.random.normal(mu_0, s_0, N)
s = Stratum(0, x_0, x_1)
l, u = s.get_difference_confint(.05)
if l <= (mu_1 - mu_0) <= u:
correct += 1
total += 1
self.assertEqual(round(correct / total, 2), 1. - .05)
# Simulate a difference in mean: mu_1, mu_0, sigma_1, sigma_0; confirm that CI contains true mean alpha percent of the time
class MatchTest(unittest.TestCase):
def test_simple_match_one_stratum(self):
X = pd.DataFrame({'match_var': ['A']*6})
t = [0, 0, 0, 1, 1, 1]
y = [0, 0, 0, 1, 1, 1]
m = ExactMatching()
m.match(X, t, y)
strata = m.get_strata()
self.assertEqual(len(strata), 1)
self.assertEqual(strata[('A',)].get_difference(), 1)
self.assertEqual(m.get_att(), 1)
self.assertEqual(m.get_atc(), 1)
self.assertEqual(m.get_ate(), 1)
def test_simple_match_two_stratum(self):
pass
@unittest.skip('make this faster')
def test_confounding(self):
def _sim_t(x):
p = .25 if x == 1 else 0.75
return np.random.binomial(1, p, 1)
def _sim_y(t, x):
p = .4 if x == 1 else .6
if t == 1:
p += 0.05
return np.random.binomial(1, p, 1)
N = 100000
X = pd.DataFrame({'match_var':
|
np.random.binomial(1, 0.45, N)
|
numpy.random.binomial
|
import numpy
import functools
class LayerTMMO():
'''
Construct the layer information for the simulation.
LayerTMMO(n, thickness=numpy.nan, layer_type="GT", n_wavelength_0=-eps)
n: Index of refraction
thickness: Thickness in nm for the "GT". Defaults to nan for semiinfinite layers
layer_type: "GT" (geometrical thickness), or "OT" (optical thickness)
n_wavelength_0: Central or reference lambda (mostly for multilayer structures)
If it is not declared, it will default to numpy.mean(beam.wavelength)
'''
def __init__(
self, n,
thickness=numpy.nan, layer_type="GT", n_wavelength_0=-numpy.finfo(float).eps
):
self.index_refraction = n
self.thickness = thickness
self.layer_type = layer_type
self.n_wavelength_0 = n_wavelength_0
class TMMOptics():
'''
Defines the structures for the results.
'''
def __init__(self) -> None:
pass
def beam_parameters(
self, wavelength,
angle_incidence=0.0, polarisation=0.5, wavelength_0=-numpy.finfo(float).eps,
) -> None:
assert(0.0 <= polarisation <= 1.0), "the polarisation should be between 0 and 1"
if isinstance(wavelength, int) or isinstance(wavelength, float) or isinstance(wavelength, range) or isinstance(wavelength, list):
wavelength = numpy.array([wavelength]).reshape(-1)
assert(wavelength.all() > 0.0), "the wavelength should be > 0"
if isinstance(angle_incidence, int) or isinstance(angle_incidence, float) or isinstance(angle_incidence, range) or isinstance(angle_incidence,list):
angle_incidence = numpy.array([angle_incidence]).reshape(-1)
assert(0.0 <= angle_incidence.all() <= 90.0), "the angle of incidence should be between 0 and 90 degrees"
self.wavelength = wavelength
self.angle_inc_deg = angle_incidence
self.angle_inc_rad = angle_incidence*numpy.pi/180.0
self.polarisation = polarisation
# Check if wavelength_0 is inside beam.wavelength
self.wavelength_0 = _check_wavelength_0(self, wavelength_0)
# Find beam.wavelength closest to wavelength_0
self.wavelength_0_idx = find_closest(wavelength_0, self.wavelength)
def tmm_spectra(self, layers):
'''
Calculates the reflectance and transmittance spectra.
'''
# Build the sequence of n and d depending on the input
self = _add_gt_thickness(self, layers)
self = _transfer_matrix_spectra(self, layers)
return self
def tmm_emf(self, layers, layers_split=10):
'''
Calculates the electromagnetic field distribution.
'''
# Build the sequence of n and d depending on the input
self = _add_gt_thickness(self, layers)
self = _transfer_matrix_emf(self, layers, layers_split)
self = _layers_depth(self, layers, layers_split)
return self
def tmm_spectra_emf(self, layers, layers_split=10):
'''
Calculates the reflectance and transmittance spectra, and also the electromagnetic field distribution.
'''
# Build the sequence of n and d depending on the input
self = _add_gt_thickness(self, layers)
self = _transfer_matrix_spectra_emf(self, layers, layers_split)
self = _layers_depth(self, layers, layers_split)
return self
def photonic_dispersion(self, layers):
assert(len(layers) > 3), "the number of layers must be greater than 3."
d = self.physical_thickness[1:3]
n = [
layers[1].index_refraction[self.wavelength_0_idx],
layers[2].index_refraction[self.wavelength_0_idx],
]
self.crystal_period = numpy.sum(d)
self.wavevector_qz =
|
numpy.sin(self.angle_inc_rad)
|
numpy.sin
|
import os
import nibabel as nib
import numpy as np
import pandas as pd
from .harmonizationApply import applyModelOne
def createMaskNIFTI(paths, threshold=0.0, output_path='thresholded_mask.nii.gz'):
"""
Creates a binary mask from a list of NIFTI images. Image intensities will be
averaged, then thresholded across the entire dataset. Result will have the
same affine matrix as the first image in the dataset.
Arguments
---------
paths : a pandas DataFrame
must contain a single column "PATH" with file paths to NIFTIs
dimensions must be identical for all images
threshold : a float, default 0.0
the threshold at which to binarize the mask
average intensity must be greater than threshold to be included in mask
output_path : str, default "thresholded_mask.nii.gz"
the output file path, must include extension (.nii.gz)
Returns
-------
nifti_avg : a numpy array
array of average image intensities
dimensions are identical to images in `paths`
nifti_mask : a numpy array
array of binarized mask (1=include, 0=exclude)
dimensions are identical to images in `paths`
affine : a numpy array
affine matrix used to save mask
"""
# count number of images
n_images = paths.shape[0]
# begin summing image intensities
i = 0
nifti_i = nib.load(paths.PATH[i])
affine_0 = nifti_i.affine
hdr_0 = nifti_i.header
nifti_sum = nifti_i.get_fdata()
# iterate over all images
for i in range(0, n_images):
nifti_i = nib.load(paths.PATH[i])
nifti_sum += nifti_i.get_fdata()
if (i==500):
print('\n[neuroHarmonize]: loaded %d of %d images...' % (i, n_images))
# compute average intensities
nifti_avg = nifti_sum / n_images
# apply threshold
nifti_avg[nifti_avg<threshold] = 0.0
# create mask and save as NIFTI image
nifti_mask = nifti_avg.copy()
nifti_mask[nifti_mask>0.0] = 1.0
img = nib.Nifti1Image(nifti_mask, affine_0,hdr_0)
img.to_filename(output_path)
return nifti_avg, nifti_mask, affine_0, hdr_0
def flattenNIFTIs(paths, mask_path, output_path='flattened_NIFTI_array.npy'):
"""
Flattens a dataset of NIFTI images to a 2D array.
Arguments
---------
paths : a pandas DataFrame
must contain a single column "PATH" with file paths to NIFTIs
dimensions must be identical for all images
mask_path : a str
file path to the mask, must be created with `createMaskNIFTI`
output_path : a str, default "flattened_NIFTI_array.npy"
Returns
-------
nifti_array : a numpy array
array of flattened image intensities
dimensions are N_Images x N_Masked_Voxels
"""
print('\n[neuroHarmonize]: Flattening NIFTIs will consume large amounts of memory. Down-sampling may help.')
# load mask (1=GM tissue, 0=Non-GM)
# nifti_mask = (nib.load(mask_path).get_fdata().astype(int)==1)
nifti_mask = (nib.load(mask_path).get_fdata().round().astype(int)==1) # fix bug
n_voxels_flattened = np.sum(nifti_mask)
n_images = paths.shape[0]
# initialize empty container
nifti_array =
|
np.zeros((n_images, n_voxels_flattened))
|
numpy.zeros
|
import numpy as np
array = np.array([5, 9, 4, 4, 7, 6, 3])
newarray = np.sort(array)
print(newarray)
# [3 4 4 5 6 7 9]
array = np.array(["cars","apple","bannana"])
newarray =
|
np.sort(array)
|
numpy.sort
|
"""!
#######################################################################
@author <NAME>
@date February 10, 2022
@brief Utilities for extracting colors from the image.
#######################################################################
"""
# ---- IMPORTS ----
import numpy
import random
from . import constants as const
def extract_ratios(hsl_img_array):
"""!
@brief Extracts the ratios of hues per pixel.
@param hsl_img_array 2D Array of pixels in hsl array format.
@return Dictionary of hue ratios (percentage) in set [0.000, 100.000]
"""
pixels = 0
red_pixel = 0
yellow_pixel = 0
green_pixel = 0
cyan_pixel = 0
blue_pixel = 0
magenta_pixel = 0
for pixel in hsl_img_array:
pixels += 1
hue = pixel[0]
if ((const.RED_HUE_RANGE_MAX[0] <= hue < const.RED_HUE_RANGE_MAX[1])
or (const.RED_HUE_RANGE_MIN[0] <= hue < const.RED_HUE_RANGE_MIN[1])):
red_pixel += 1
elif const.YELLOW_HUE_RANGE[0] <= hue < const.YELLOW_HUE_RANGE[1]:
yellow_pixel += 1
elif const.GREEN_HUE_RANGE[0] <= hue < const.GREEN_HUE_RANGE[1]:
green_pixel += 1
elif const.CYAN_HUE_RANGE[0] <= hue < const.CYAN_HUE_RANGE[1]:
cyan_pixel += 1
elif const.BLUE_HUE_RANGE[0] <= hue < const.BLUE_HUE_RANGE[1]:
blue_pixel += 1
elif const.MAGENTA_HUE_RANGE[0] <= hue < const.MAGENTA_HUE_RANGE[1]:
magenta_pixel += 1
# Calculate ratios.
red_ratio = round((red_pixel / pixels) * 100, 3)
yellow_ration = round((yellow_pixel / pixels) * 100, 3)
green_ration = round((green_pixel / pixels) * 100, 3)
cyan_ratio = round((cyan_pixel / pixels) * 100, 3)
blue_ratio = round((blue_pixel / pixels) * 100, 3)
magenta_ratio = round((magenta_pixel / pixels) * 100, 3)
# Assign the ratio dictionary.
ratio_dict = {'Red': red_ratio, 'Yellow': yellow_ration, 'Green': green_ration,
'Cyan': cyan_ratio, 'Blue': blue_ratio, 'Magenta': magenta_ratio}
return ratio_dict
# ***********************************************************************
# ***********************************************************************
def construct_base_color_dictionary(hsl_img_array):
"""!
@brief Constructs dictionary of base colors from array of hsl pixel values.
@param hsl_img_array 2D Array of pixels in hsl array format.
@return Dictionary of base colors.
"""
# Using index slicing since array is sorted, and it's much faster.
start_idx, end_idx = 0, 0
while end_idx < len(hsl_img_array) and (
const.RED_HUE_RANGE_MIN[0] <= hsl_img_array[end_idx][0] < const.RED_HUE_RANGE_MIN[1]):
end_idx += 1
red = hsl_img_array[start_idx:end_idx]
start_idx = end_idx
while end_idx < len(hsl_img_array) and (
const.YELLOW_HUE_RANGE[0] <= hsl_img_array[end_idx][0] < const.YELLOW_HUE_RANGE[1]):
end_idx += 1
yellow = hsl_img_array[start_idx:end_idx]
start_idx = end_idx
while end_idx < len(hsl_img_array) and (
const.GREEN_HUE_RANGE[0] <= hsl_img_array[end_idx][0] < const.GREEN_HUE_RANGE[1]):
end_idx += 1
green = hsl_img_array[start_idx:end_idx]
start_idx = end_idx
while end_idx < len(hsl_img_array) and (
const.CYAN_HUE_RANGE[0] <= hsl_img_array[end_idx][0] < const.CYAN_HUE_RANGE[1]):
end_idx += 1
cyan = hsl_img_array[start_idx:end_idx]
start_idx = end_idx
while end_idx < len(hsl_img_array) and (
const.BLUE_HUE_RANGE[0] <= hsl_img_array[end_idx][0] < const.BLUE_HUE_RANGE[1]):
end_idx += 1
blue = hsl_img_array[start_idx:end_idx]
start_idx = end_idx
while end_idx < len(hsl_img_array) and (
const.MAGENTA_HUE_RANGE[0] <= hsl_img_array[end_idx][0] < const.MAGENTA_HUE_RANGE[1]):
end_idx += 1
magenta = hsl_img_array[start_idx:end_idx]
red =
|
numpy.concatenate([red, hsl_img_array[end_idx:]])
|
numpy.concatenate
|
"""
Tests for snn.Weight.
"""
import unittest
from unit_tests import ModuleTest
import numpy as np
from spikey.snn import weight
def weight_generator(shape):
matrix = np.random.uniform(0, 9999, size=shape)
return np.ma.array(matrix, mask=(matrix == 0), fill_value=0)
class TestWeight(unittest.TestCase, ModuleTest):
"""
Tests for snn.Weight.
"""
TYPES = [weight.Manual, weight.Random]
BASE_CONFIG = {
"n_inputs": 10,
"n_neurons": 10,
"max_weight": 1,
"force_unidirectional": False,
"matrix": weight_generator((10 + 10, 10)),
"weight_generator": weight_generator,
"matrix_mask": None,
}
def _check_matrix_types(self, weights):
self.assertIsInstance(weights._matrix, np.ndarray)
self.assertIsInstance(weights.matrix, np.ndarray)
self.assertTrue(hasattr(weights._matrix, "mask"))
self.assertTrue(not hasattr(weights.matrix, "mask"))
self.assertEqual(weights._matrix.fill_value, 0)
def _assert_clipped(self, weights):
self.assertTrue(
np.all(weights.matrix >= 0)
& np.all(weights.matrix <= self.BASE_CONFIG["max_weight"])
)
@ModuleTest.run_all_types
def test_arith(self):
w_shape = (
self.BASE_CONFIG["n_inputs"] + self.BASE_CONFIG["n_neurons"],
self.BASE_CONFIG["n_neurons"],
)
weights = self.get_obj(
max_weight=2, matrix=np.ma.array(np.ones(w_shape)), weight_generator=np.ones
)
self.assertTrue(np.mean(weights._matrix.mask) <= 0.05)
weights += np.ones((w_shape[0], 1))
self.assertTrue(np.mean(weights._matrix == 2) >= 0.95)
self.assertTrue(np.mean(weights.matrix == 2) >= 0.95)
weights = self.get_obj(
max_weight=2, matrix=np.zeros(w_shape), weight_generator=np.zeros
)
self.assertTrue(np.all(weights._matrix.mask))
weights += np.ones((w_shape[0], 1))
self.assertTrue(np.all(weights.matrix == 0))
@ModuleTest.run_all_types
def test_usage(self):
weights = self.get_obj()
self._check_matrix_types(weights)
self._assert_clipped(weights)
spike_shape = (self.BASE_CONFIG["n_inputs"] + self.BASE_CONFIG["n_neurons"], 1)
weights * np.random.uniform(0, 1, spike_shape)
weights / np.random.uniform(0, 1, spike_shape)
weights + np.random.uniform(0, 1, spike_shape)
weights - np.random.uniform(0, 1, spike_shape)
weights *= np.random.uniform(0, 1, spike_shape)
weights /= np.random.uniform(0, 1, spike_shape)
weights += np.random.uniform(0, 1, spike_shape)
weights -= np.random.uniform(0, 1, spike_shape)
weights.matrix
self._check_matrix_types(weights)
self._check_matrix_types(weights.copy())
layers = [np.ones((10, 5)), np.ones((4, 4)),
|
np.ones((1, 1))
|
numpy.ones
|
from typing import Any, Union
import numpy as np
import random
import math
from numba import njit
from scipy.signal import find_peaks
from scipy.optimize import curve_fit
def get_rand_int_from_exp_distribution(mean):
return np.round(np.random.exponential(mean)).astype(int)
def get_rand_int_from_triangular_distribution(left, mode, right):
return np.round(np.random.triangular(left, mode, right)).astype(int)
def get_rand_n_ints_from_triangular_distribution(left, mode, right, n):
vals = np.random.triangular(left, mode, right, n).round()
return np.array(vals, dtype=np.int32)
def get_S_and_exponents_for_sym_hist(bins: int) -> tuple[Union[int, Any], np.ndarray]:
"""Calculate values needed to create symmetrical histogram.
Parameters
----------
bins : int
Number of bins in desired histogram.
Returns
-------
S : int
Surface of histogram. Bar width == 1, smallest bar height == 1.
Example: bins=7 --> counts == [1, 2, 4, 8, 4 2, 1] --S-> 1+2+4+8+4+2+1=22
exponents : np.ndarray
Palindrom list of length = `bins` starting with 0.
This list represents exponents which doubles of halves
previous values.
Example: bins=5 --> [0, 1, 2, 1, 0] --exp-> [1, 2, 4, 2, 1].
"""
if bins <= 0:
raise ValueError(f"Number of bins must even positive integer,"
f" while {bins} were passed!")
if not bins % 2:
raise ValueError(f"Number of bins must be odd to create histogram with single peak,"
f" while {bins} were given!")
if not isinstance(bins, int):
raise ValueError(f"Number of bins must even positive integer,"
f" while {bins} were passed!")
n = bins // 2
S = 2 * sum(2 ** i for i in range(n))
S += 2 ** n
exponents = np.array([], dtype=int)
first = list(range(bins // 2))
exponents = np.append(exponents, first)
exponents = np.append(exponents, bins // 2)
exponents = np.append(exponents, list(reversed(first)))
return S, exponents
@njit(cache=True)
def int_from_hist(mean: int, bins: int, S: int, exponents: np.ndarray):
norm_sum = 0
r = random.random()
for i in range(bins):
if norm_sum <= r < norm_sum + (2 ** exponents[i]) / S:
return i + mean - bins//2
else:
norm_sum += (2 ** exponents[i]) / S
def get_needed_number_of_processes(num_of_cores, total_num_of_iterations):
if total_num_of_iterations < num_of_cores:
return total_num_of_iterations
else:
return num_of_cores
@njit(cache=True)
def nearest_neighbours(y, x):
if x == y == 1:
return 0
elif x*y == 2:
return 1
elif (y == 1 and x >= 3) or (x == 1 and y >= 3) or x == y == 2:
return 2
elif x*y >= 6 and (x == 2 or y == 2):
return 3
else:
return 4
# Signature of a function to fit
def unknown_exp_func(t, A, tau):
return A * np.exp(-t/tau)
def calc_tau(x_data, y_data):
# Find peaks
peak_pos_indexes = find_peaks(y_data)[0]
peak_pos = x_data[peak_pos_indexes]
peak_height = y_data[peak_pos_indexes]
# Initial guess for the parameters
initial_guess = [np.max(y_data), 50]
# Perform curve-fit
try:
popt, pcov = curve_fit(unknown_exp_func, peak_pos, peak_height, initial_guess)
except ValueError('fit_exp_to_peaks function cannot perform fitting'):
raise
return popt[0], popt[1] # returns (A, tau)
def calc_exec_time(grid_size, N, household_size, max_steps, iterations, betas, mortalities, visibilities):
coef = (2100 / (20*20*1000*400*20*4*4*5)) / 60
runs = iterations*betas*mortalities*visibilities
household_factor = 0.4*household_size + 0.6
coef = coef*household_factor
val = int(grid_size[0]*grid_size[1]) * int(N*max_steps*runs)
calc_time_minutes = val * coef
if calc_time_minutes > 60:
hours = calc_time_minutes // 60
minutes = round(calc_time_minutes % 60, 1)
else:
hours = 0
minutes = round(calc_time_minutes, 1)
print(f'It will take {hours} hours and {minutes} minutes to evaluate {runs} simulations')
def sort_df_indices_by_col(df, column) -> dict:
"""
Returns dict in which keys are indices of dataframe and val is pos of that index
in df sorted by specified column
"""
df = df.sort_values(by=column)
return {df_index: i for i, df_index in enumerate(df.index)}
def sort_dict_by_values(dictionary):
return dict(sorted(dictionary.items(), key=lambda key_val: key_val[1]))
def window_derivative(y, half_win_size):
x = np.arange(len(y))
y_prime = np.zeros_like(y)
for i in range(len(y)):
left = max(0, i - half_win_size)
right = min(len(y) - 1, i + half_win_size)
dy = y[right] - y[left]
dx = x[right] - x[left]
y_prime[i] = dy / dx
return y_prime
def complete_missing_data(values: np.ndarray):
"""
Completes nans in array of floats by interpolation.
Example: [0, 1, 2, np.NaN, 4, np.NaN, np.NaN, 7] --> [0, 1, 2, 3, 4, 5, 6, 7]
Returns completed copy of passed array.
Note: if 'values' ends with np.NaN, then last sequence of nans
is not modified e.g. [0, np.NaN, 2, np.NaN] --> [0, 1, 2, np.NaN].
:param values: numpy array of floats with missing entries.
:type values: np.ndarray
"""
# copy values (not modify passed array)
completed = np.copy(values)
# iterate over all values in array
for i, val in enumerate(completed):
# is first value NaN?
if math.isnan(val) and i == 0:
completed[i] = 0
# is any other value NaN?
elif math.isnan(val):
# iterate over array items right after NaN appeared
# to find out where NaN sequence ends
for j in range(i + 1, len(completed)):
# if NaN sequence ended, interpolate and fill 'completed'
if not math.isnan(completed[j]):
min_val = completed[i - 1]
max_val = completed[j]
delta_y = max_val - min_val
delta_x = j - i + 1
dy = delta_y / delta_x
complementary_indices = np.arange(i, j)
complementary_values = [min_val + dy * step for step in range(1, delta_x)]
# print('delta_y', delta_y)
# print('delta_x', delta_x)
# print('dy', dy)
# print('min value', min_val)
# print('complementary indices', complementary_indices)
# print('complementary values', complementary_values)
# print()
completed[complementary_indices] = complementary_values
break
return completed
def get_indices_of_missing_data(data: np.ndarray):
"""
Returns indices of nans in data array of floats by interpolation.
Output is 2D list where each entry is an array of uninterrupted sequence of nans.
Example: [0, 1, 2, np.NaN, 4, np.NaN, np.NaN, 7] --> [[3], [5, 6]]
Note: if 'data' ends with np.NaN, then last sequence of nans
is not returned e.g. [0, np.NaN, 2, 3, np.NaN] --> [[1]].
Implementation detail: I will iterate over data elem by elem if they
are not nans. If I get nan I will start iterate from its index until I get
first not nan value. From here I get uninterrupted sequence of nans.
To not duplicate sequences I fill nans with zeros and continue top level
iteration. To not modify data function operates on copy of passed data.
:param data: numpy array of floats with missing entries.
:type data: np.ndarray
:return: list of np.ndarray, each np.ndarray contains uninterrupted sequence
of indices nans
:rtype: list
"""
# It will be filled and returned
missing_indices = []
completed =
|
np.copy(data)
|
numpy.copy
|
import os
import time
import math
from glob import glob
import tensorflow as tf
import numpy as np
import h5py
import cv2
import mcubes
import datetime
from ops import *
from pointnet_plusplus_encoder import get_pointNet_code_of_singlePart
from func_utils import *
import random
import time
from partAE_model import PAE
from tensorflow.python.tools.inspect_checkpoint import print_tensors_in_checkpoint_file
from tensorflow.contrib.framework.python.framework import checkpoint_utils
from distutils.dir_util import copy_tree
class JSM(object):
def __init__(self, sess, pointSampleDim, is_training = False, \
dataset_name='default', checkpoint_dir=None, data_dir='./data', rdDisplaceRange=0.0, rdScaleRange=0.1, num_of_parts=4, FLAGS=None ):
self.PAE_list = []
for partLabel in range(1, num_of_parts+1):
print("============================================================")
print("=========== intialize PAE for part ", partLabel)
pae = PAE(
sess,
pointSampleDim,
FLAGS,
is_training = False,
dataset_name=dataset_name,
checkpoint_dir=checkpoint_dir,
data_dir=data_dir,
rdDisplaceRange=rdDisplaceRange,
rdScaleRange=rdScaleRange,
partLabel=partLabel,
loadDataset=False,
shapeBatchSize=1 )
could_load, checkpoint_counter = pae.load(pae.checkpoint_dir)
if could_load:
print( "part ", partLabel, ", checpoint load success: epoch " , checkpoint_counter)
else:
print( "part ", partLabel, ", checpoint load failed!!!!!!!" )
self.PAE_list.append( pae )
self.workdir = os.path.split( data_dir )[0]
if self.workdir[:2] == "./":
self.workdir = self.workdir[2:]
print("self.workdir = ", self.workdir)
part_name_list, part_mesh_dir = getMeshInfo( self.workdir, data_dir)
self.part_name_list = part_name_list
self.part_mesh_dir = part_mesh_dir
print( "self.part_name_list = ", self.part_name_list )
print( "self.part_mesh_dir = ", self.part_mesh_dir )
self.sess = sess
self.ptsSampDim = pointSampleDim
self.input_dim = pointSampleDim
self.dataset_name = dataset_name
self.checkpoint_dir = self.workdir + '/' + checkpoint_dir + "_jointSynthesis"
self.res_sample_dir = self.checkpoint_dir + "/res_sample/"
self.test_res_dir = self.workdir + '/' + "test_res_jointSynthesis/"
self.data_dir = data_dir
self.rdDisplaceRange = rdDisplaceRange
self.rdScaleRange = rdScaleRange
self.num_of_parts = num_of_parts
self.is_training = is_training
if not os.path.exists( self.workdir ):
os.makedirs( self.workdir )
if not os.path.exists( self.checkpoint_dir ):
os.makedirs( self.checkpoint_dir )
if not os.path.exists( self.res_sample_dir ):
os.makedirs( self.res_sample_dir )
if not os.path.exists( self.test_res_dir ):
os.makedirs( self.test_res_dir )
if os.path.exists(self.data_dir+'/'+self.dataset_name+'.hdf5') :
self.data_dict = h5py.File(self.data_dir+ "/" + self.dataset_name+'.hdf5', 'r')
self.ptsBatchSize = FLAGS.ptsBatchSize
points_shape = self.data_dict['points_'+str(self.ptsSampDim)+'_aroundjoint'][:, :self.ptsBatchSize, :].shape
self.trainSize = int( points_shape[0] * 0.8 )
trainSize = self.trainSize
self.testSize = points_shape[0] - trainSize
self.batch_size = self.ptsBatchSize
print( "self.num_of_parts = ", self.num_of_parts )
print( "self.ptsBatchSize = ", self.ptsBatchSize )
print( "self.trainSize = ", self.trainSize )
print( "self.trainSize = ", self.trainSize )
# load obj list
self.objlist_path = self.data_dir+'/'+self.dataset_name+'_obj_list.txt'
if os.path.exists( self.objlist_path ):
text_file = open(self.objlist_path, "r")
self.objlist = text_file.readlines()
for i in range(len(self.objlist)):
self.objlist[i] = self.objlist[i].rstrip('\r\n')
text_file.close()
else:
print("error: cannot load "+ self.objlist_path)
exit(0)
######################## extract datasets
if is_training:
self.data_points_wholeShape = self.data_dict['points_'+str(self.ptsSampDim) + '_aroundjoint'][:trainSize, :self.ptsBatchSize, :]
self.data_values_wholeShape = self.data_dict['jointValues_'+str(self.ptsSampDim) + '_aroundjoint'][:trainSize, :self.ptsBatchSize, :]
self.allpartPts2048_ori = self.data_dict['allpartPts2048_ori_sorted'][:trainSize]
self.allpartPts2048_ori_normal = self.data_dict['allpartPts2048_ori_normal_sorted'][:trainSize]
self.allpartPts2048_ori_dis = self.data_dict['allpartPts2048_ori_dis_sorted'][:trainSize]
self.objlist = self.objlist[:trainSize]
self.data_examples_dir = self.checkpoint_dir + "/train_examples_10/"
else:
self.data_points_wholeShape = self.data_dict['points_'+str(self.ptsSampDim) + '_aroundjoint'][trainSize:, :self.ptsBatchSize, :]
self.data_values_wholeShape = self.data_dict['jointValues_'+str(self.ptsSampDim) + '_aroundjoint'][trainSize:, :self.ptsBatchSize, :]
self.allpartPts2048_ori = self.data_dict['allpartPts2048_ori_sorted'][trainSize:]
self.allpartPts2048_ori_normal = self.data_dict['allpartPts2048_ori_normal_sorted'][trainSize:]
self.allpartPts2048_ori_dis = self.data_dict['allpartPts2048_ori_dis_sorted'][trainSize:]
self.objlist = self.objlist[trainSize:]
self.data_examples_dir = self.checkpoint_dir + "/test_examples_10/"
self.data_voxels_128 = self.data_dict['voxels_128' ][trainSize:]
######################## ouput samples of traing or test data
print( "self.data_points_wholeShape.shape = ", self.data_points_wholeShape.shape )
print( "self.data_values_wholeShape.shape = ", self.data_values_wholeShape.shape )
print( "self.allpartPts2048_ori.shape = ", self.allpartPts2048_ori.shape )
#print( "self.singlePartPoints2048.shape = ", self.singlePartPoints2048.shape )
outputExamples = 1
if outputExamples:
if not os.path.exists( self.data_examples_dir ):
os.makedirs( self.data_examples_dir )
for t in range(5):
print(self.objlist[t])
lables = np.ones( self.num_of_parts*2048, dtype=np.uint8 )
for lb in range(1, self.num_of_parts+1):
lables[(lb-1)*2048 : lb*2048 ] = lb
self.allpartPts2048_labels = lables
write_colored_ply( self.data_examples_dir + self.objlist[t]+"_samples.ply", \
intGridNodes_2_floatPoints( self.data_points_wholeShape[t], self.ptsSampDim ), None, (
|
np.squeeze(self.data_values_wholeShape[t])
|
numpy.squeeze
|
'''Base class for LogisticRegression type methods'''
import numpy as np
import time
import scipy.sparse
import scipy
import pandas as pd
import warnings
from sklearn import preprocessing
class LogisticBase(object):
def __init__(self, rho, accelerated=True, max_iter = 2000, tol = 10**-4, beta=0.5,
fit_intercept = True, intercept_scaling = 1, feature_scaling = 1, verbosity=0, solver='lbfgs', var_init_type=1):
# initialized member variables
self.rho = float(rho)
self.accelerated = accelerated
self.max_iter = max_iter
self.tol = float(tol)
self.beta = float(beta)
self.is_sparse = False
self.fit_intercept = fit_intercept
self.intercept_scaling = float(intercept_scaling)
self.solver = solver # agm, lbfgs
self.var_init_type = var_init_type
self.feature_scaling = feature_scaling
# uninitialized member variables
self.coef_ = None
self.labels = None
# member variables for debugging
self.iteration_objectives = []
self.verbosity = verbosity
def _initialize_variables(self, shape):
if self.var_init_type == 0:
W = np.zeros(*shape)
W_prev = np.zeros(*shape)
warnings.warn("Initializing weights to zeros causes slow convergence")
elif self.var_init_type == 1:
W = np.random.randn(*shape)
W_prev = np.random.randn(*shape)
W[0] = W[0]/self.intercept_scaling
W_prev[0] = W_prev[0]/self.intercept_scaling
return W, W_prev
def _check_data(self, y):
class_labels = np.unique(y)
num_tasks = len(class_labels)
num_examples = y.shape[0]
"""
if num_tasks == 1:
raise ValueError("The number of classes has to be greater than one.")
elif num_tasks == 2:
if 1 in class_labels and -1 in class_labels:
num_tasks = 1
class_labels = np.array([-1, 1])
elif 1 in class_labels and 0 in class_labels:
num_tasks = 1
class_labels = np.array([0, 1])
else:
raise ValueError("Unable to decide postive label")
"""
if num_tasks == 2:
if 1 in class_labels and -1 in class_labels:
num_tasks = 1
class_labels = np.array([-1, 1])
elif 1 in class_labels and 0 in class_labels:
num_tasks = 1
class_labels = np.array([0, 1])
lbin = preprocessing.LabelBinarizer(neg_label=-1, pos_label=1)
lbin.fit(class_labels)
y_bin = lbin.transform(y)
return y_bin, class_labels, num_tasks
def optimize_objective_lbfgs(self, X, y):
'''Train the model'''
X = self.append_unit_column(X)
Y, self.labels, num_tasks = self._check_data(y)
num_examples, num_features = X.shape
W = self._initialize_variables((num_features,num_tasks))[0].flatten()
W, fvalue, d = scipy.optimize.fmin_l_bfgs_b(
self._function_value,
W,
fprime=self._gradient,
args = (X, Y))
W.shape = (num_features, num_tasks)
if self.fit_intercept:
self.coef_ = W[1:,:]
self.intercept_ = W[0,:]*self.intercept_scaling
else:
self.coef_ = W
self.intercept_ = 0
if hasattr(self, 'feature_scaling') and self.feature_scaling != 1:
self.coef_ *= self.feature_scaling
if num_tasks == 1:
self.coef_ = self.coef_.flatten()
if self.verbosity == 2:
print(d)
def optimize_objective_agm(self, X, y):
'''Train the model'''
X = self.append_unit_column(X)
Y, self.labels, num_tasks = self._check_data(y)
inv_step_size = 1
n_term_check = 5
W, W_prev = self._initialize_variables((X.shape[1], Y.shape[1]))
iterations_info_df = pd.DataFrame(columns = ["objective", "grad_W_norm", "step_size", "step_time", "obj_S", "grad_S"])
iterations_info_df.loc[0] = [self._function_value(W, X, Y), -1, 1, 0, 0, 0]
for k in range(1,self.max_iter+1):
iter_start_time = time.time()
if self.accelerated:
theta = (k-1)*1.0/(k+2)
S = W + theta*(W-W_prev)
else:
S = W
inv_step_size_temp = inv_step_size*(self.beta)
grad_S = self._gradient(S, X, Y)
func_value_S = self._function_value(S, X, Y)
grad_S_norm = np.linalg.norm(grad_S)
# convergence check
# objective has not changed much in the last n_term_check iterations
if k > n_term_check:
if iterations_info_df.objective[-n_term_check:].std() < self.tol:
break
# backtracking line search
while True:
diff_US = -1*grad_S/inv_step_size_temp
C = S + diff_US
try:
# apply proximal step if required
U = self._prox(C, 1.0/inv_step_size)
except AttributeError:
U = C
func_value_U = self._function_value(U, X, Y)
quad_approx_U = func_value_S - 0.5/inv_step_size_temp*grad_S_norm**2
if func_value_U <= quad_approx_U:
inv_step_size = inv_step_size_temp
W, W_prev = U, W
break
else:
inv_step_size_temp = inv_step_size_temp/self.beta
grad_W_norm = np.linalg.norm(self._gradient(W, X, Y)) if self.verbosity == 2 else -1
iterations_info_df.loc[k] = [func_value_U, grad_W_norm, 1.0/inv_step_size, time.time() - iter_start_time, func_value_S, grad_S_norm]
if self.fit_intercept:
self.coef_ = W[1:,:]
self.intercept_ = W[0,:]*self.intercept_scaling
else:
self.coef_ = W
self.intercept_ = 0
if hasattr(self, 'feature_scaling') and self.feature_scaling != 1:
self.coef_ *= self.feature_scaling
if num_tasks == 1:
self.coef_ = self.coef_.flatten()
if self.verbosity == 2:
self._print_full_df(iterations_info_df.astype(float))
def _print_full_df(self, dataframe):
pd.set_option('display.max_rows', len(dataframe))
print(dataframe)
pd.reset_option('display.max_rows')
def append_unit_column(self, X):
'''Add unit column in the first position'''
if hasattr(self,'feature_scaling'):
X = self.feature_scaling*X
if self.fit_intercept:
unit_col = self.intercept_scaling*np.ones((X.shape[0], 1))
newX = (scipy.sparse.hstack((unit_col, X))).tocsr()
return newX
def sparsify(self):
self.coef_ = scipy.sparse.csc_matrix(self.coef_)
self.is_sparse = True
def decision_function(self, X):
'''scores of each instance w.r.t. each class'''
score = X.dot(self.coef_) + self.intercept_
if isinstance(score, (scipy.sparse.csc_matrix, scipy.sparse.csr_matrix)):
score = score.todense().A
if len(self.labels) == 2:
score = score.flatten()
return score
def predict(self, X):
'''predict the labels of each instance'''
scores = self.decision_function(X)
if len(self.labels) == 2:
# binary case
y_index = (scores > 0).astype(int)
y_pred = self.labels[y_index]
else:
# multiclass case
y_index = np.argmax(scores, 1)
y_pred = self.labels[y_index]
return y_pred.flatten()
def score(self, X, y):
'''Returns the mean accuracy on the given test data and labels.'''
y_pred = self.predict(X)
y_arr = np.array(y)
return np.mean(y_arr == y_pred)
def predict_proba(self, X):
"""Probability estimation for OvR logistic regression.
Positive class probabilities are computed as
1. / (1. + np.exp(-self.decision_function(X)));
multiclass is handled by normalizing that over all classes.
"""
prob = self.decision_function(X)
prob *= -1
np.exp(prob, prob)
prob += 1
np.reciprocal(prob, prob)
if len(prob.shape) == 1:
return
|
np.vstack([1 - prob, prob])
|
numpy.vstack
|
#!/usr/bin/env python3
import math
import spiceypy
import logging
import os
import numpy as np
try:
# Try import SpiceNOFRAMECONNECT exception from spiceypy 3.1.1
from spiceypy.utils.exceptions import SpiceNOFRAMECONNECT as SpiceNOFRAMECONNECT
except ImportError:
# Otherwise consider a SpiceNOFRAMECONNECT exception as an SpiceyError, for spiceypy 2.3.2
from spiceypy.utils.support_types import SpiceyError as SpiceNOFRAMECONNECT
from spiceypy.utils.support_types import *
from spiops.utils import time
from spiops.utils.utils import plot
from spiops.utils.utils import plot_attitude_error
from spiops.utils.utils import target2frame
from spiops.utils.utils import findIntersection
from spiops.utils.utils import findNearest
from spiops.utils.files import download_file
from spiops.utils.files import list_files_from_ftp
from spiops.utils.files import get_aem_quaternions
from spiops.utils.files import get_aocs_quaternions
from spiops.utils.files import download_tm_data
from spiops.utils.naif import optiks # Do not remove, called from spival
from spiops.utils.naif import brief # Do not remove, called from spival
from spiops.classes.observation import TimeWindow # Do not remove, called from spival
from spiops.classes.body import Target # Do not remove, called from spival
from spiops.classes.body import Observer # Do not remove, called from spival
import imageio
import matplotlib as mpl
import matplotlib.pyplot as plt
from spiceypy import support_types as stypes
from bokeh.plotting import figure, output_file, output_notebook, show
from bokeh.models import ColumnDataSource, DatetimeTickFormatter, LabelSet
from spiops.utils.time import et_to_datetime
# from spiops.utils.webmust.webmust_handler import WebmustHandler
"""
The MIT License (MIT)
Copyright (c) [2015-2017] [<NAME>]
Copyright (c) [2015-2017] [<NAME>]
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
def load(mk):
return spiceypy.furnsh(mk)
def adcsng_fill_template(template,
file,
replacements,
cleanup=False):
#
# If the temp late file is equal to the output file then we need to create a temporary template - which will be
# a duplicate - in order to write in the file. A situation where we would like to have them be the same is
# for example if we call this function several times in a row, replacing keywords in the template in steps
#
if template == file:
with open(file, "r") as f:
with open('fill_template.temp', "w+") as t:
for line in f:
t.write(line)
template = 'fill_template.temp'
with open(file, "w+") as f:
#
# Items are replaced as per correspondance in between the replacements dictionary
#
with open(template, "r+") as t:
for line in t:
if '{' in line:
for k, v in replacements.items():
if '{' + k + '}' in line: line = line.replace('{' + k + '}', v)
f.write(line)
#
# If the option cleanup is set as true, we remove the keyword assignments in the filled templated which are
# unfilled (they should be optional)
#
if cleanup:
with open(file, "r") as f:
with open('fill_template.temp', "w+") as t:
for line in f:
t.write(line)
template = 'fill_template.temp'
with open(file, "w+") as f:
with open('fill_template.temp', "r") as t:
for line in t:
if '{' not in line:
f.write(line)
#
# The temporary files are removed
#
if os.path.isfile('fill_template.temp'):
os.remove('fill_template.temp')
# Originally an adcsng funtion, needs to be re-arranged in adcsng to be made
# more generic
def adcsng_hk_quaternions2ck_reader(tm_file,
input_time_format='UTC',
input_time_field_number='1',
delimiter=',',
input_processing=False,
qs_col=1, qx_col=2, qy_col=3, qz_col=4):
#
# We obtain the number of data fields and its correspondance
#
input_data_field_numbers = [qx_col, qy_col, qz_col, qs_col]
tm_list = []
previous_row_time = ''
sclk_partition = '1'
sclk_delimiter = '.'
filter_flag = False
index = 0
row_prev = []
sclk_fraction_prev = ''
with open(tm_file, 'r') as t:
for line in t:
#
# TODO: Main difference from fucntion from adcsng
#
if '#' not in line and 'Date' not in line and input_time_format not in line:
index += 1
row_data = []
# We need to remove the end of line character:
line = line.split('\n')[0]
try:
if ',' in delimiter:
if input_time_format == 'SCLK':
if ',' in input_time_field_number:
row_time = sclk_partition + '/' + str(line.split(delimiter)[
int(input_time_field_number[0]) - 1]) + \
sclk_delimiter + str(line.split(delimiter)[
int(input_time_field_number[2]) - 1])
else:
input_time_field_number = int(input_time_field_number)
row_time = str(line.split(delimiter)[
input_time_field_number - 1])
else:
row_time = str(line.split(delimiter)[input_time_field_number-1])
if (' ' in row_time):
if input_time_format == 'SCLK':
row_time = row_time.replace(' ','')
else:
row_time = row_time.replace(' ','T')
for data_element_field_number in input_data_field_numbers:
row_data.append(float(line.split(',')[data_element_field_number-1]))
else:
proc_line = line.strip()
row_time = str(proc_line.split(delimiter)[input_time_field_number - 1])
for data_element_field_number in input_data_field_numbers:
#
# We need to check that
#
row_data.append(float(line.split()[data_element_field_number-1]))
except:
logging.info(' HM TM Processing: Found incomplete data line in line {}:'.format(index))
logging.info(' {}'.format(line))
continue
row = row_time + ' '
# As indicated by <NAME> in an e-mail "ROS and MEX "measured" CKs"
# sometimes the scalar value is negative and the sign of the rest of the
# components of the quaternions needs to be changed!
if row_data[-1] < 0:
neg_data = [-x for x in row_data]
logging.info(' HM TM Processing: Found negative QS on input line {}:'.format(row_data))
logging.info(' ' + neg_data)
row_data = neg_data
for element in row_data:
row += str(element) + ' '
# We filter out "bad quaternions"
row += '\n'
# We remove the latest entry if a time is duplicated
if row_time == previous_row_time:
logging.info(
' HM TM Processing: Found duplicate time at {}'.format(
row_time))
else:
# We do not include the entry if one element equals 1 or gt 1
append_bool = True
for quaternion in row_data:
if quaternion >= 1.0:
append_bool = False
logging.info(
' HM TM Processing: Found quaternion GT 1 on input line {}:'.format(
row_data))
logging.info(' ' + str(row))
# This is a special filter that has been set for ExoMars2016
# More explanations in [1]
if input_processing:
sclk_fraction = line.split(':')[-1].split(' ')[0]
if filter_flag:
if sclk_fraction == sclk_fraction_prev:
row_prev.append(row)
elif len(row_prev) <= 5 and sclk_fraction == sclk_initial:
logging.info(
' HM TM Processing: Coarse quaternion: Spurious SCLK fractions before input line {}:'.format(
index))
for element in row_prev:
logging.info(' ' + str(element).split('\n')[0])
tm_list.remove(element)
filter_flag = False
tm_list = []
row_prev = []
sclk_fraction_prev = sclk_fraction
else:
row_prev = []
filter_flag = False
if sclk_fraction_prev and sclk_fraction != sclk_fraction_prev and not filter_flag:
filter_flag = True
row_prev.append(row)
sclk_initial = sclk_fraction_prev
sclk_fraction_prev = sclk_fraction
if append_bool:
tm_list.append(row)
previous_row_time = row_time
# We remove the carriage return from the last line
last_line = tm_list[-1].split('\n')[0]
tm_list = tm_list[:-1]
tm_list.append(last_line)
return(tm_list)
def fov_illum(mk, sensor, time=None, angle='DEGREES', abcorr='LT+S',
report=False, unload=False):
"""
Determine the Illumination of a given FoV (for light scattering computations
for example). This function is based on the following SPICE APIs:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/getfov_c.html
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/spkezp_c.html
:param mk: Meta-kernel to load the computation scenario
:type mk: str
:param sensor: Sensor ID code or name
:type sensor: Union[str, int]
:param time: Time to compute the quantity
:type time: Union[str, float]
:param angle: Angular unit; it can be 'DEGREES' or 'RADIANS'. Default is 'DEGREES'
:type angle: str
:param abcorr: Aberration correction. Default and recommended is 'LT+S'
:type abcorr: str
:param report: If True prints the resulting illumination angle on the screen
:type report: bool
:param unload: If True it will unload the input meta-kernel
:type unload: bool
:return: Angle in between a sensor's boresight and the sun-sc direction
:rtype: float
"""
room = 99
shapelen = 1000
framelen = 1000
angle = angle.upper()
spiceypy.furnsh(mk)
if time:
time = spiceypy.utc2et(time)
else:
time = spiceypy.utc2et('2016-08-10T00:00:00')
if angle != 'DEGREES' and angle != 'RADIANS':
print('angle should be either degrees or radians')
if isinstance(sensor, str):
instid = spiceypy.bodn2c(sensor)
else:
instid = sensor
shape, frame, bsight, n, bounds = spiceypy.getfov(instid, room, shapelen, framelen)
rotation = spiceypy.pxform(frame, 'J2000', time)
bsight = spiceypy.mxv(rotation, bsight)
# The following assumes that the IDs of the given S/C FK have been defined
# according to the NAIF/ESS standards:
#
# -NXXX
#
# where:
# N is the SC id and can consist on a given number of digits
# XXX are three digits that identify the sensor
sc_id = int(str(instid)[:-3])
ptarg, lt = spiceypy.spkezp(10, time, 'J2000', abcorr, sc_id)
fov_illumination = spiceypy.vsep(bsight, ptarg)
if unload:
spiceypy.unload(mk)
if angle == 'DEGREES':
fov_illumination = math.degrees(fov_illumination)
if report:
print('Illumination angle of {} is {} [{}]'.format(sensor,
fov_illumination,
angle))
return fov_illumination
def cov_spk_obj(mk, object, time_format='TDB', global_boundary=False,
report=False, unload=False):
"""
Provides time coverage summary for a given object for a list of
binary SPK files provided in a meta-kernel. Several options are
available. This function is based on the following SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/spkcov_c.html
The NAIF utility BRIEF can be used for the same purpose.
:param mk: Meta-kernel to load the computation scenario
:type mk: str
:param object: Ephemeris Object to obtain the coverage from
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB in calendar format) or 'TDB'. Default is 'TDB'
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the coverage windows or only the absolute start and finish coverage times
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen
:type report: bool
:param unload: If True it will unload the input meta-kernel
:type unload: bool
:return: Returns a list with the coverage intervals
:rtype: list
"""
spiceypy.furnsh(mk)
boundaries_list = []
et_boundaries_list = []
object_id = spiceypy.bodn2c(object)
maxwin = 2000
spk_count = spiceypy.ktotal('SPK') - 1
while spk_count >= 0:
spk_kernel = spiceypy.kdata(spk_count, 'SPK', 155, 155, 155)
spk_ids = spiceypy.spkobj(spk_kernel[0])
for id in spk_ids:
if id == object_id:
object_cov = SPICEDOUBLE_CELL(maxwin)
spiceypy.spkcov(spk_kernel[0], object_id, object_cov)
boundaries = time.cov_int(object_cov=object_cov,
object_id=object_id,
kernel=spk_kernel[0],
global_boundary=global_boundary,
time_format=time_format,
report=report)
boundaries_list.append(boundaries)
#
# We need to have the boundaries in TDB in order to sort out the
# min and max to obtain the global ones for multiple kernels
#
if global_boundary:
et_boundaries_list.append(time.cov_int(
object_cov=object_cov,
object_id=object_id,
kernel=spk_kernel[0],
global_boundary=True,
time_format='TDB',
report=False))
spk_count -= 1
if global_boundary:
start_time = min(et_boundaries_list)[0]
finish_time = max(et_boundaries_list)[1]
boundaries_list = time.et2cal([start_time, finish_time],
format=time_format)
if report:
print("Global Coverage for {} [{}]: {} - {}".format(
str(spiceypy.bodc2n(object_id)), time_format, boundaries_list[0],
boundaries_list[1]))
if unload:
spiceypy.unload(mk)
return boundaries_list
def cov_spk_ker(spk, object=False, time_format='TDB', support_ker ='',
report=False, unload=True):
"""
Provides time coverage summary for a given object for a given SPK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/spkcov_c.html
The NAIF utility BRIEF can be used for the same purpose.
:param spk: SPK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least it should be a leapseconds kernel (LSK) and optionally a meta-kernel (MK)
:type support_ker: Union[str, list]
:param object: Ephemeris Object or list of objects to obtain the coverage from
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' or 'SPICE' (for TDB in calendar format) or 'TDB'. Default is 'TDB'
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the coverage windows or only the absolute start and finish coverage times
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen
:type report: bool
:param unload: If True it will unload the input meta-kernel
:type unload: bool
:return: Returns a list with the coverage intervals
:rtype: list
"""
spiceypy.furnsh(spk)
object_id = []
boundaries = []
if object and not isinstance(object, list):
object = [object]
if support_ker:
if isinstance(support_ker, str):
support_ker = [support_ker]
for ker in support_ker:
spiceypy.furnsh(ker)
maxwin = 2000
spk_ids = spiceypy.spkobj(spk)
if not object:
object_id = spk_ids
object = []
for id in spk_ids:
object.append(spiceypy.bodc2n(id))
else:
for element in object:
object_id.append(spiceypy.bodn2c(element))
for id in object_id:
if id in spk_ids:
object_cov = SPICEDOUBLE_CELL(maxwin)
spiceypy.spkcov(spk, id, object_cov)
cov = time.cov_int(object_cov=object_cov,
object_id=id,
kernel=spk,
time_format=time_format,
report=report)
else:
if report:
print('{} with ID {} is not present in {}.'.format(object,
id, spk))
if unload:
spiceypy.unload(spk)
if support_ker:
if isinstance(support_ker, str):
support_ker = [support_ker]
for ker in support_ker:
spiceypy.unload(ker)
return False
if time_format == 'SPICE':
boundaries.append(object_cov)
else:
boundaries.append(cov)
if unload:
spiceypy.unload(spk)
if support_ker:
if isinstance(support_ker, str):
support_ker = [support_ker]
for ker in support_ker:
spiceypy.unload(ker)
return boundaries
def spkVsOem(sc, spk, plot_style='line', notebook=True):
spiceypy.timdef('SET', 'SYSTEM', 10, 'TDB')
spiceypy.furnsh(spk)
if sc == 'MPO':
file = spk.split('/')[-1].replace('\n', '').replace('bc_mpo_fcp_', '').split('_')[0]
file = 'BCCruiseOrbit__' + file + '.bc'
download_file("data/ANCDR/BEPICOLOMBO/fdy", file)
else:
print('Unsupported spacecraft: ' + sc)
return None, None
print('OEM file: ' + file)
if not os.path.isfile(file):
print('OEM file cannot be downloaded!')
return None, None
oemfile = open(file)
error = []
pos_norm_error = []
vel_norm_error = []
data_list = []
for line in oemfile.readlines():
if 'CENTER_NAME' in line:
center = line.split('= ')[1].replace('\n', '')
if line[:2] == '20':
data = line.replace('\n', '').split()
data_list.append(data)
for i in range(0, len(data_list)-1, 1):
#
# skip OEM lines with repeated time tags (typically at the end of a
# segment) as are superseeded by the latest line with that time tag
#
if data_list[i][0] != data_list[i+1][0]:
data = data_list[i]
et = spiceypy.str2et(data[0])
state = spiceypy.spkezr(sc, et, 'J2000', 'NONE', center)[0]
curr_error = [et,
abs(state[0] - float(data[1])),
abs(state[1] - float(data[2])),
abs(state[2] - float(data[3])),
abs(state[3] - float(data[4])),
abs(state[4] - float(data[5])),
abs(state[5] - float(data[6]))]
error.append(curr_error)
pos = np.asarray(curr_error[1:4])
vel = np.asarray(curr_error[4:7])
pos_norm_error.append(spiceypy.vnorm(pos))
vel_norm_error.append(spiceypy.vnorm(vel))
max_pos_norm_error = max(pos_norm_error)
max_vel_norm_error = max(vel_norm_error)
error = np.asarray(error)
print('Avg position error [km]: ' + str(np.mean(pos_norm_error)) +
' , max position error [km]: ' + str(max_pos_norm_error))
print('Avg velocity error [km/s]: ' + str(np.mean(vel_norm_error)) +
' , max velocity error [km/s]: ' + str(max_vel_norm_error))
plot(error[:, 0],
[error[:, 1], error[:, 2], error[:, 3]],
yaxis_name=['X', 'Y', 'Z'],
title='Source OEM to generated SPK position difference',
format=plot_style,
yaxis_units='Position error Km',
notebook=notebook)
plot(error[:, 0],
[error[:, 4], error[:, 5], error[:, 6]],
yaxis_name=['VX', 'VY', 'VZ'],
title='Source OEM to generated SPK velocity difference',
format=plot_style,
yaxis_units='Km/s',
notebook=notebook)
os.remove(file)
spiceypy.timdef('SET', 'SYSTEM', 10, 'UTC')
spiceypy.unload(spk)
return max_pos_norm_error, max_vel_norm_error
def ckVsAEM(sc, ck, plot_style='line', notebook=True):
spiceypy.timdef('SET', 'SYSTEM', 10, 'TDB')
spiceypy.furnsh(ck)
if sc == 'MPO':
file = ck.split('/')[-1].replace('\n', '').split('_')[4]
file = 'AttitudePredictionST__' + file + '.bc'
download_file("data/ANCDR/BEPICOLOMBO/fdy", file)
else:
print('Unsupported spacecraft: ' + sc)
return None
print('AEM file: ' + file)
if not os.path.isfile(file):
print('AEM file cannot be downloaded!')
return None
aem_guats = get_aem_quaternions(file)
if len(aem_guats):
# If any quaternion inserted, remove the first element to create a
# margin with the start of the CK
aem_guats.pop(0)
error, max_ang_error = get_quats_ang_error(aem_guats, sc)
plot_attitude_error(np.asarray(error),
max_ang_error,
'Source AEM Quaternions to generated CK orientation difference',
plot_style,
notebook)
os.remove(file)
spiceypy.unload(ck)
return max_ang_error
def ckVsAocs(sc, ck, plot_style='line', notebook=True):
spiceypy.timdef('SET', 'SYSTEM', 10, 'UTC')
spiceypy.furnsh(ck)
if sc == 'MPO':
file = ck.split('/')[-1].replace('\n', '').split('_')[5]
file = 'mpo_raw_hk_aocs_measured_attitude_' + file + '.tab'
download_file("data/ANCDR/BEPICOLOMBO/hkt", file)
else:
print('Unsupported spacecraft: ' + sc)
return None
print('AOCS tab file: ' + file)
if not os.path.isfile(file):
print('AOCS tab file cannot be downloaded!')
return None
aocs_quats = get_aocs_quaternions(file)
error, max_ang_error = get_quats_ang_error(aocs_quats, sc)
plot_attitude_error(error,
max_ang_error,
'Source AOCS Measured Quaternions to generated CK orientation difference',
plot_style,
notebook)
os.remove(file)
spiceypy.unload(ck)
return max_ang_error
def get_quats_ang_error(quats, sc):
error = []
max_ang_error = 0
for quat in quats:
et = quat[0]
q_spice = spiceypy.m2q(spiceypy.pxform('J2000', sc + '_SPACECRAFT', et))
if quat[1] < 0:
q_spice[0] *= -1
q_spice[1] *= -1
q_spice[2] *= -1
q_spice[3] *= -1
quat[2] *= -1
quat[3] *= -1
quat[4] *= -1
q_error = [abs(q_spice[0] - quat[1]),
abs(q_spice[1] - quat[2]),
abs(q_spice[2] - quat[3]),
abs(q_spice[3] - quat[4])]
mrot_spice = spiceypy.q2m(q_spice)
mrot_quats = spiceypy.q2m(quat[1:5])
vz_spice = spiceypy.mxv(mrot_spice, [0, 0, 1])
vz_quats = spiceypy.mxv(mrot_quats, [0, 0, 1])
ang_error = spiceypy.vsep(vz_spice, vz_quats)
max_ang_error = max(max_ang_error, abs(ang_error))
curr_error = [et]
curr_error.extend(q_error)
error.append(curr_error)
max_ang_error = np.rad2deg(max_ang_error) * 1000
return np.asarray(error), max_ang_error
def saa_vs_hk_sa_position(sc, plot_style='line', notebook=True):
spiceypy.timdef('SET', 'SYSTEM', 10, 'UTC')
sa_angles = [] # Read angles from TM, List of items as [et, angle_deg]
if sc == 'MPO':
# Set some mission specific constants
sadm_frame = 'MPO_SA' # SA Rotating Frame
sadm_ref_frame = 'MPO_SA_SADM' # SA Fixed Frame
ref_vector = np.asarray([0, 0, 1]) # SA Rotating Plane normal
ref_cross_vector = np.asarray([0, 1, 0]) # Common rotation vector btw SA Rotating Frm and Fixed Frm
# For MPO SA the TM files are given in daily basis, so we need to
# concatenate N of them to obtain a greater period coverage.
hkt_path = "data/ANCDR/BEPICOLOMBO/hkt/"
hkt_expression = 'mpo_raw_hk_sa_position_????????.tab'
num_sa_files = 7 # Compare last week
# Determine files to use to fetch TM data
sa_files = list_files_from_ftp(hkt_path, hkt_expression)
sa_files = sa_files[-num_sa_files:]
# For each file, download it, add data to array, and remove it
sa_angles = download_tm_data(sa_files, hkt_path, ",", [2], [180.0 / math.pi])
if not len(sa_angles):
print("Cannot obtain required TM data, aborting.")
return None
elif sc == 'MTM':
# Set some mission specific constants
sadm_frame = 'MTM_SA+X' # SA Rotating Frame
sadm_ref_frame = 'MTM_SA+X_ZERO' # SA Fixed Frame
ref_vector = np.asarray([0, 1, 0]) # SA Rotating Plane normal
ref_cross_vector = np.asarray([1, 0, 0]) # Common rotation vector btw SA Rotating Frm and Fixed Frm
# For MTM SA the TM files are given in daily basis, so we need to
# concatenate N of them to obtain a greater period coverage.
hkt_path = "data/ANCDR/BEPICOLOMBO/hkt/"
hkt_expression = 'mtm_raw_hk_sa_position_????????.tab'
num_sa_files = 7 # Compare last week
# Determine files to use to fetch TM data
sa_files = list_files_from_ftp(hkt_path, hkt_expression)
sa_files = sa_files[-num_sa_files:]
# For each file, download it, add data to array, and remove it
sa_angles = download_tm_data(sa_files, hkt_path, ",", [2], [180.0 / math.pi])
if not len(sa_angles):
print("Cannot obtain required TM data, aborting.")
return None
else:
print('Unsupported spacecraft: ' + sc)
return None
# Compare with SPICE SA Angles
error = []
max_ang_error = 0
num_gaps = 0
for sa_angle in sa_angles:
try:
et = sa_angle[0]
hk_sa_angle = sa_angle[1]
# Determine the rotation matrix to pass from the SA Rotating Frame
# to the SA Fixed frame
sadm_rot = spiceypy.pxform(sadm_frame, sadm_ref_frame, et)
# Covert the SA reference vector in the rotating frame into
# the SA fixed frame
sadm_vector = spiceypy.mxv(sadm_rot, ref_vector)
sadm_angle = np.rad2deg(spiceypy.vsep(ref_vector, sadm_vector))
# Because vsep always is positive, we are going to get the cross product to
# determine if is a positive or negative rotation
sadm_cross_vector = np.cross(ref_vector, sadm_vector)
# The dot product of the normalised vectors shall be or 1 or -1.
sadm_angle = np.dot(spiceypy.unorm(ref_cross_vector)[0], spiceypy.unorm(sadm_cross_vector)[0]) * sadm_angle
ang_error = abs(sadm_angle - hk_sa_angle) * 1000 # mdeg
max_ang_error = max(max_ang_error, ang_error)
error.append([et, ang_error])
except SpiceNOFRAMECONNECT:
# There is a gap in the CK file, ignore this SA sample.
num_gaps += 1
continue
# Plot error
if len(error):
error = np.asarray(error)
print('Max angular error [mdeg]: ' + str(max_ang_error))
plot(error[:, 0],
[error[:, 1]],
yaxis_name=['Angular error'],
title=sc + " SA angular error between TM and SPICE",
format=plot_style,
yaxis_units='mdeg',
notebook=notebook)
return max_ang_error
else:
print('Angular error cannot be computed. Found ' + str(num_gaps) + ' of ' + str(len(sa_angles)) + ' samples without data.')
return None
"""
def sadmCkVsMust(sc, start_time, end_time, plot_style='line', notebook=True):
# TODO: METHOD NOT FINISHED!!!
if sc == 'MPO':
must_sadm_param = 'NCADAF41' # TODO: Set correct parameter for SADM
sadm_frame = 'MPO_SA'
sadm_ref_frame = 'MPO_SA_SADM'
ref_vector = np.asarray([0, 0, 1])
mission_phase = 'BEPICRUISE'
else:
print('Unsupported spacecraft: ' + sc)
return None
et_start = spiceypy.utc2et(start_time)
et_end = spiceypy.utc2et(end_time)
start_time = et_to_datetime(et_start).strftime('%Y-%b-%d %H:%M:%S')
end_time = et_to_datetime(et_end).strftime('%Y-%b-%d %H:%M:%S')
error = []
max_ang_error = 0
tm = WebmustHandler(mission_phase=mission_phase)
df_0 = tm.get_tm([must_sadm_param], start_time, end_time)
for row in df_0:
utc = row[0]
must_angle = row[1] # TODO: Must be in degrees
et = spiceypy.utc2et(utc)
sadm_rot = spiceypy.pxform(sadm_ref_frame, sadm_frame, et)
sadm_vector = spiceypy.mxv(sadm_rot, ref_vector)
sadm_angle = np.rad2deg(spiceypy.vsep(ref_vector, sadm_vector))
ang_error = abs(sadm_angle - must_angle) * 1000 # mdeg
max_ang_error = max(max_ang_error, ang_error)
error.append([et, ang_error])
# Plot error
error = np.asarray(error)
print('Max angular error [mdeg]: ' + str(max_ang_error))
plot(error[:, 0],
[error[:, 1]],
yaxis_name=['Angular error'],
title=sc + " SA angular error between WebMUST and SPICE",
format=plot_style,
yaxis_units='mdeg',
notebook=notebook)
return max_ang_error
"""
def cov_ck_obj(mk, object, time_format= 'UTC', global_boundary=False,
report=False, unload=False):
"""
Provides time coverage summary for a given object for a list of
binary CK files provided in a meta-kernel. Several options are
available. This function is based on the following SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param mk: Meta-kernel to load the computation scenario.
:type mk: str
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB in calendar format) or 'TDB'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
spiceypy.furnsh(mk)
boundaries_list = []
et_boundaries_list = []
object_id = spiceypy.namfrm(object)
MAXIV = 2000
ck_count = spiceypy.ktotal('CK') - 1
WINSIZ = 2 * MAXIV
MAXOBJ = 10000
while ck_count >= 0:
ck_ids = spiceypy.support_types.SPICEINT_CELL(MAXOBJ)
ck_kernel = spiceypy.kdata(ck_count, 'CK', 155, 155, 155)
try:
ck_ids = spiceypy.ckobj(ck=ck_kernel[0], outCell=ck_ids)
except:
ck_ids = spiceypy.ckobj(ck=ck_kernel[0])
for id in ck_ids:
if id == object_id:
object_cov = spiceypy.support_types.SPICEDOUBLE_CELL(WINSIZ)
object_cov = spiceypy.ckcov(ck=ck_kernel[0], idcode=object_id,
needav=False, level='SEGMENT',
tol=0.0, timsys='TDB',
cover=object_cov)
boundaries = time.cov_int(object_cov=object_cov,
object_id=object_id,
kernel=ck_kernel[0],
global_boundary=global_boundary,
time_format=time_format,
report=report)
boundaries_list.append(boundaries)
#
# We need to have the boundaries in TDB in order to sort out the
# min and max to obtain the global ones for multiple kernels
#
if global_boundary:
et_boundaries_list.append(time.cov_int(
object_cov=object_cov,
object_id=object_id,
kernel=ck_kernel[0],
global_boundary=True,
time_format='TDB',
report=False))
ck_count -= 1
if global_boundary:
start_time = min(et_boundaries_list)[0]
finish_time = max(et_boundaries_list)[1]
boundaries_list = time.et2cal([start_time, finish_time],
format=time_format)
if report:
try:
body_name = spiceypy.bodc2n(object_id)
except:
body_name = spiceypy.frmnam(object_id, 60)
print("Global Coverage for {} [{}]: {} - {}".format(
body_name, time_format, boundaries_list[0],
boundaries_list[1]))
if unload:
spiceypy.unload(mk)
return boundaries_list
def cov_ck_ker(ck, object, support_ker=list(), time_format='UTC',
report=False, unload=True):
"""
Provides time coverage summary for a given object for a given CK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param ck: CK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least
it should be a leapseconds kernel (LSK) and a Spacecraft clock kernel
(SCLK) optionally a meta-kernel (MK) which is highly recommended. It
is optional since the kernels could have been already loaded.
:type support_ker: Union[str, list]
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB
in calendar format), 'TDB' or 'SPICE'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the
coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
spiceypy.furnsh(ck)
if support_ker:
if isinstance(support_ker, str):
support_ker = [support_ker]
for ker in support_ker:
spiceypy.furnsh(ker)
object_id = spiceypy.namfrm(object)
MAXIV = 200000
WINSIZ = 2 * MAXIV
MAXOBJ = 100000
ck_ids = spiceypy.support_types.SPICEINT_CELL(MAXOBJ)
try:
ck_ids = spiceypy.ckobj(ck, outCell=ck_ids)
except:
ck_ids = spiceypy.ckobj(ck)
if object_id in ck_ids:
object_cov = spiceypy.support_types.SPICEDOUBLE_CELL(WINSIZ)
spiceypy.scard, 0, object_cov
object_cov = spiceypy.ckcov(ck=ck, idcode=object_id,
needav=False, level='INTERVAL',
tol=0.0, timsys='TDB',
cover=object_cov)
else:
#print('{} with ID {} is not present in {}.'.format(object,
# object_id, ck))
if unload:
spiceypy.unload(ck)
if support_ker:
if isinstance(support_ker, str):
support_ker = [support_ker]
for ker in support_ker:
spiceypy.unload(ker)
return False
if time_format == 'SPICE':
boundaries = object_cov
else:
boundaries = time.cov_int(object_cov=object_cov,
object_id=object_id,
kernel=ck,
time_format=time_format, report=report)
if unload:
spiceypy.unload(ck)
if support_ker:
if isinstance(support_ker, str):
support_ker = [support_ker]
for ker in support_ker:
spiceypy.unload(ker)
return boundaries
def time_correlation(sc, ck, plot_style='line', notebook=True):
# Downloads a telemetry file of a given CK and computes
# the time difference between the UTC time (1st column)
# and the clock string (2nd column) in milliseconds
spiceypy.timdef('SET', 'SYSTEM', 10, 'UTC')
if sc == 'MPO':
file = ck.split('/')[-1].replace('\n', '').split('_')[5]
file = 'mpo_raw_hk_aocs_measured_attitude_' + file + '.tab'
download_file("data/ANCDR/BEPICOLOMBO/hkt", file)
else:
print('Unsupported spacecraft: ' + sc)
return None
print('AOCS tab file: ' + file)
if not os.path.isfile(file):
print('AOCS tab file cannot be downloaded!')
return None
tabfile = open(file)
times = []
time_diff = []
try:
sc_id = spiceypy.bodn2c(sc)
except Exception as e:
print('Spacecraft not found: ' + sc + ", err: " + str(e))
return None
for line in tabfile.readlines():
data = line.replace('\n', '').replace(',', ' ').split()
utc_et = spiceypy.str2et(data[0].replace('Z', ''))
scs_et = spiceypy.scs2e(sc_id, data[1])
times.append(utc_et)
time_diff.append((utc_et - scs_et) * 1000)
time_diff = np.abs(np.asarray(time_diff))
max_time_diff = np.max(time_diff)
print('Avg time difference [ms]: ' + str(np.mean(time_diff)))
print('Max time difference [ms]: ' + str(max_time_diff))
plot(times, time_diff,
yaxis_name='Time diff (UTC - SCS)',
title='Time difference between UTC and Clock String in milliseconds',
format=plot_style,
yaxis_units='milliseconds',
notebook=notebook)
os.remove(file)
return max_time_diff
def flyby_ca_altitudes(sc, target, spk_expression, num_spk_files, from_date, to_date,
distance_flyby, num_samples, plot_style='line', notebook=True, plot_prefix=""):
spiceypy.timdef('SET', 'SYSTEM', 10, 'TDB')
target = target.upper()
target_frame = "IAU_" + target
start_time = spiceypy.utc2et(from_date)
stop_time = spiceypy.utc2et(to_date)
times = np.linspace(start_time, stop_time, num_samples)
maxwin = 200000
if sc == 'MPO':
spk_path = "data/SPICE/BEPICOLOMBO/kernels/spk/"
else:
print('Unsupported spacecraft: ' + sc)
return None
# Download num_spk_files and find the flyby for each one
spk_files = list_files_from_ftp(spk_path, spk_expression)
spk_files = spk_files[-num_spk_files:]
flybys_spks = []
flybys_ets = []
flybys_alts = []
flybys_alt_list = []
for spk_file in spk_files:
# Download spk file
download_file(spk_path, spk_file)
if not os.path.isfile(spk_file):
print('OEM file cannot be downloaded!')
return None
# Obtain the flyby data
spiceypy.furnsh(spk_file)
cnfine = SPICEDOUBLE_CELL(maxwin)
result = SPICEDOUBLE_CELL(maxwin)
spiceypy.scard(0, cnfine)
spiceypy.wninsd(start_time, stop_time, cnfine)
spiceypy.gfdist(target=target,
abcorr='NONE',
obsrvr=sc,
relate='<',
refval=distance_flyby,
step=spiceypy.spd() / 4.,
nintvls=maxwin,
cnfine=cnfine,
adjust=0.0,
result=result)
final = SPICEDOUBLE_CELL(maxwin)
spiceypy.gfdist(target=target,
abcorr='NONE',
obsrvr=sc,
relate='LOCMIN',
refval=distance_flyby,
step=spiceypy.spd() / 4.,
nintvls=maxwin,
cnfine=result,
adjust=0.0,
result=final)
number_of_results = spiceypy.wncard(final)
if number_of_results == 0:
print('No ' + target + ' flyby found for that period at SPK: ' + spk_file)
return None
if number_of_results > 1:
print('Error: Multiple ' + target + ' flybys found for that period at SPK: ' + spk_file)
return None
# Get the flyby closest approach time and distance
flyby_et = spiceypy.wnfetd(final, 0)[0]
(state, lt) = spiceypy.spkezr(target, flyby_et, target_frame, 'NONE', sc)
spoint = spiceypy.sincpt('ELLIPSOID', target, flyby_et, target_frame,
'NONE', sc, target_frame, state[:3])[0]
flyby_altitude = spiceypy.vnorm(spoint + state[:3])
flybys_spks.append(spk_file)
flybys_ets.append(flyby_et)
flybys_alts.append(flyby_altitude)
# Get the flyby closest approach distance evolution
altitudes = []
for et in times:
(state, lt) = spiceypy.spkezr(target, et, target_frame, 'NONE', sc)
spoint = spiceypy.sincpt('ELLIPSOID', target, et, target_frame,
'NONE', sc, target_frame, state[:3])[0]
altitudes.append(spiceypy.vnorm(spoint + state[:3]))
flybys_alt_list.append(altitudes)
# Unload and clean spk file
spiceypy.unload(spk_file)
os.remove(spk_file)
# Reduce the SPK names to only the SPK number to reduce the legend size
spk_numbers = []
if sc == 'MPO':
for spk in flybys_spks:
spk_number = int(spk.split("_")[3])
spk_numbers.append(spk_number)
if len(plot_prefix):
plot_prefix = plot_prefix + " "
# Plot Flyby CA altitude vs spk number
plot(spk_numbers,
flybys_alts,
title=plot_prefix + target + ' Flyby CA altitude vs spk number',
format="scatter",
xaxis_name='SPK Number',
yaxis_name=['Altitude'],
yaxis_units='Km',
notebook=notebook)
# Plot Flyby CA time vs spk number
plot(flybys_ets,
spk_numbers,
title=plot_prefix + target + ' Flyby CA spk number vs time',
format="scatter",
yaxis_name=['SPK Number'],
yaxis_units='SPK Number',
notebook=notebook)
# Plot Flyby altitude evolution vs time per SPK
plot(times,
flybys_alt_list,
yaxis_name=spk_numbers,
title=plot_prefix + target + ' Flyby altitude evolution vs time',
format=plot_style,
yaxis_units='Km',
plot_height=400,
notebook=notebook)
return np.max(flybys_alts)
def fk_body_ifj2000(mission, body, pck, body_spk, frame_id, report=False,
unload=False, file=True):
"""
Generates a given Solar System Natural Body Inertial frame at J2000. This
function is based on a FORTRAN subroutine provided by <NAME>
(NAIF/JPL)
The frame definition would be as follows:
{Body} Inertial Frame at J2000 ({MISSION}_{BODY}_IF_J2000)
Definition:
The {body} Inertial Frame at J2000 is defined as follows:
- +Z axis is parallel to {body} rotation axis
at J2000, pointing toward the North side of the
invariable plane;
- +X axis is aligned with the ascending node of the {Body}
orbital plane with the {Body} equator plane at J2000;
- +Y axis completes the right-handed system;
- the origin of this frame is the center of mass of {Body}.
All vectors are geometric: no aberration corrections are used.
Remarks:
This frame is defined as a fixed offset frame using constant vectors
as the specification method. The fixed offset for these vectors were
based on the following directions (that also define a two-vector
frame):
- +Z axis along Right Ascension (RA) and Declination (DEC) of {Body}
pole at J2000 epoch in J2000 inertial frame;
- +X axis along the RA/DEC of {Body} instantaneous orbital plane
ascending node on {Body} equator at J2000 epoch in J2000
inertial frame;
This frame has been defined based on the IAU_{BODY} frame, whose
evaluation was based on the data included in the loaded PCK file.
In addition {body_spk} ephemeris have been used to compute the {Body}
instantaneous orbital plane ascending node on {Body} equator at
J2000 epoch in J2000 inertial frame.
:param mission: Name of the mission to use the frame
:type mission: str
:param body: Natural body for which the frame is defined
:type body: str§
:param pck: Planetary Constants Kernel to be used to extract the Pole information from
:type pck: str
:param body_spk: SPK kernels that contain the ephemeris of the Natural body
:type body_spk: Union[str, list]
:param frame_id: ID for the new frame. It is recommended to follow the convention recommended by NAIF: -XYYY where X is the ID of the mission S/C and YYY is a number between 900 and 999.
:type frame_id: str
:param report: If True prints some intermediate results.
:type report: bool
:param unload: If True it will unload the input PCK and SPK.
:type unload: bool
:param file: If True it generates the frame definition in a file with the following name: {MISSION}_{BODY}_IF_J2000.tf
:type file: bool
:return: Returns the Euler angles to transform the computed frame with J2000. Only if parameter file is False
:rtype: str
"""
body = body.upper()
mission = mission.upper()
spiceypy.furnsh(pck)
#
# This can actually be a list of bodies.
#
spiceypy.furnsh(body_spk)
#
# Get instantaneous Body state at J2000 and compute instantaneous
# orbital normal.
#
state, lt = spiceypy.spkezr(body, 0.0, 'J2000', 'NONE', 'SUN')
normal = spiceypy.ucrss(state[0:3:1], state[3:6:1])
#
# Get J2000 -> IAU_{BODY} rotation at J2000 and compute Body pole
# direction in J2000 at J2000.
#
mat = spiceypy.pxform('IAU_{}'.format(body), 'J2000', 0.0)
z = spiceypy.vpack(0.0, 0.0, 1.0)
pole = spiceypy.mxv(mat, z)
#
# Compute direction Body orbit's ascending node on Body equator at
# J2000 in J2000 and print it and Body pole as RA/DEC in J2000 in
# degrees
#
ascnod = spiceypy.ucrss(pole, normal)
r, ra, dec = spiceypy.recrad(pole)
if report:
print('POLE RA/DEC = {}/{}'.format(ra*spiceypy.dpr(), dec*spiceypy.dpr()))
r, ra, dec = spiceypy.recrad(ascnod)
if report:
print('ASCNOD RA/DEC = {}/{}'.format(ra * spiceypy.dpr(), dec * spiceypy.dpr()))
#
# Build two vector from a with POLE as Z and ASNOD as X and print rotation
# from that frame to J200 as Euler angles.
#
mat = spiceypy.twovec(pole, 3, ascnod, 1)
matxp = spiceypy.xpose(mat)
r3, r2, r1 = spiceypy.m2eul(matxp, 3, 2, 3)
if file:
body_id = spiceypy.bodn2c(body)
with open('{}_{}_IF_J2000.tf'.format(mission, body), 'w+') as f:
f.write(r"\begindata")
f.write('\n \n')
f.write(' FRAME_{}_{}_IF_J2000 = {}\n'.format(mission, body,
frame_id))
f.write(" FRAME_{}_NAME = '{}_{}_IF_J2000'\n".format(
frame_id, mission, body))
f.write(' FRAME_{}_CLASS = 4\n'.format(frame_id))
f.write(' FRAME_{}_CLASS_ID = {}\n'.format(frame_id,
frame_id))
f.write(' FRAME_{}_CENTER = {}\n'.format(frame_id,
body_id))
f.write('\n')
f.write(" TKFRAME_{}_SPEC = 'ANGLES'\n".format(frame_id))
f.write(" TKFRAME_{}_RELATIVE = 'J2000'\n".format(frame_id))
f.write(' TKFRAME_{}_ANGLES = (\n'.format(frame_id))
f.write(' {}\n'.format(r3 *
spiceypy.dpr()))
f.write(' {}\n'.format(r2 *
spiceypy.dpr()))
f.write(' {}\n'.format(r1 *
spiceypy.dpr()))
f.write(' )\n')
f.write(' TKFRAME_{}_AXES = (\n'.format(frame_id))
f.write(' 3,\n')
f.write(' 2,\n')
f.write(' 3\n')
f.write(' )\n')
f.write(" TKFRAME_{}_UNITS = 'DEGREES'\n".format(frame_id))
f.write('\n')
f.write(r"\begintext")
else:
return '{}_IF->J2000 (3-2-3): {} - {} - {}'.format(body,
r3 * spiceypy.dpr(),
r2 * spiceypy.dpr(),
r1 * spiceypy.dpr())
if unload:
spiceypy.unload(pck)
spiceypy.unload(body_spk)
return
def eul_angle_report(et_list, eul_ck1, eul_ck2, eul_num, tolerance, name=''):
eul_error = list(numpy.degrees(abs(numpy.array(eul_ck1) - numpy.array(eul_ck2))))
count = 0
interval_bool = False
eul_tol_list = []
with open('euler_angle_{}_{}_report.txt'.format(eul_num, name), 'w+') as f:
f.write('EULER ANGLE {} REPORT \n'.format(eul_num))
f.write('==================== \n')
for element in eul_error:
if element >= tolerance:
if interval_bool:
eul_tol_list.append(element)
else:
interval_bool = True
eul_tol_list.append(element)
utc_start = spiceypy.et2utc(et_list[count], 'ISOC', 2)
else:
if interval_bool:
utc_finish = spiceypy.et2utc(et_list[count], 'ISOC', 2)
f.write('TOLERANCE of ' + str(tolerance) + ' DEG exceeded from ' + utc_start + ' until ' +
utc_finish + ' with an average angle of ' + str(numpy.mean(eul_tol_list)) + ' DEG \n')
interval_bool = False
count += 1
f.write('\nMAX Error: {} DEG\n'.format(str(max(eul_error))))
f.write('MIN Error: {} DEG\n'.format(str(min(eul_error))))
f.write('MEAN Error: {} DEG\n'.format(str(numpy.mean(eul_error))))
return
def attitude_error_report(et_list, ang_ck1, ang_ck2, tolerance, name=''):
ang_error = list(abs(numpy.array(ang_ck1) - numpy.array(ang_ck2)))
count = 0
interval_bool = False
ang_tol_list = []
with open('attitude_error_{}_report.txt'.format(name), 'w+') as f:
f.write('ATTITUDE ERROR REPORT \n')
f.write('==================== \n')
for element in ang_error:
if element >= tolerance:
if interval_bool:
ang_tol_list.append(element)
else:
interval_bool = True
ang_tol_list.append(element)
utc_start = spiceypy.et2utc(et_list[count], 'ISOC', 2)
else:
if interval_bool:
utc_finish = spiceypy.et2utc(et_list[count], 'ISOC', 2)
f.write('TOLERANCE of ' + str(tolerance) + ' DEG exceeded from ' + utc_start + ' until ' +
utc_finish + ' with an average angle of ' + str(numpy.mean(ang_tol_list)) + ' DEG \n')
interval_bool = False
count += 1
f.write('\nMAX Error: {} ARCSECONDS\n'.format(str(max(ang_error))))
f.write('MIN Error: {} ARCSECONDS\n'.format(str(min(ang_error))))
f.write('MEAN Error: {} ARCSECONDS\n'.format(str(numpy.mean(ang_error))))
return
def state_report(et_list, pos_spk1, pos_spk2, vel_spk1, vel_spk2, pos_tolerance,
vel_tolerance, name=''):
pos_error = list(abs(numpy.array(pos_spk1) - numpy.array(pos_spk2)))
vel_error = list(abs(numpy.array(vel_spk1) - numpy.array(vel_spk2)))
count = 0
interval_bool = False
pos_tol_list = []
with open('state_{}_report.txt'.format(name), 'w+') as f:
f.write('STATE REPORT \n')
f.write('============ \n')
for element in pos_error:
if element >= pos_tolerance:
if interval_bool:
pos_tol_list.append(element)
else:
interval_bool = True
pos_tol_list.append(element)
utc_start = spiceypy.et2utc(et_list[count], 'ISOC', 2)
else:
if interval_bool:
utc_finish = spiceypy.et2utc(et_list[count], 'ISOC', 2)
f.write('TOLERANCE of ' + str(pos_tolerance) + ' KM exceeded from ' + utc_start + ' until ' +
utc_finish + ' with an average distance of ' + str(numpy.mean(pos_tol_list)) + ' KM \n')
interval_bool = False
count += 1
count = 0
interval_bool = False
vel_tol_list = []
for element in vel_error:
if element >= vel_tolerance:
if interval_bool:
vel_tol_list.append(element)
else:
interval_bool = True
vel_tol_list.append(element)
utc_start = spiceypy.et2utc(et_list[count], 'ISOC', 2)
else:
if interval_bool:
utc_finish = spiceypy.et2utc(et_list[count], 'ISOC', 2)
f.write('TOLERANCE of ' + str(vel_tolerance) + ' KM/S exceeded from ' + utc_start + ' until ' +
utc_finish + ' with an average velocity of ' + str(numpy.mean(vel_tol_list)) + ' KM/S \n')
count += 1
f.write('\nMAX Error: {} KM\n'.format(str(max(pos_error))))
f.write('MIN Error: {} KM\n'.format(str(min(pos_error))))
f.write('MEAN Error: {} KM\n'.format(str(numpy.mean(pos_error))))
f.write('\nMAX Error: {} KM/S\n'.format(str(max(vel_error))))
f.write('MIN Error: {} KM/S\n'.format(str(min(vel_error))))
f.write('MEAN Error: {} KM/S\n'.format(str(numpy.mean(vel_error))))
return
def ckdiff_euler(mk, ck1, ck2, spacecraft_frame, target_frame, resolution, tolerance,
utc_start='', utc_finish='', plot_style='line', report=True,
notebook=False):
"""
Provides time coverage summary for a given object for a given CK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param ck: CK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least
it should be a leapseconds kernel (LSK) and a Spacecraft clock kernel
(SCLK) optionally a meta-kernel (MK) which is highly recommended.
:type support_ker: Union[str, list]
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB
in calendar format) or 'TDB'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the
coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
# Compute time windows
spiceypy.furnsh(mk)
windows_ck1 = cov_ck_ker(ck1, object=spacecraft_frame, time_format='SPICE')
spiceypy.unload(ck1)
windows_ck2 = cov_ck_ker(ck2, object=spacecraft_frame, time_format='SPICE')
spiceypy.unload(ck2)
windows_intersected = spiceypy.wnintd(windows_ck1, windows_ck2)
number_of_intervals = list(range(spiceypy.wncard(windows_intersected)))
et_boundaries_list = []
for element in number_of_intervals:
et_boundaries = spiceypy.wnfetd(windows_intersected, element)
et_boundaries_list.append(et_boundaries[0])
et_boundaries_list.append(et_boundaries[1])
start = True
for et_start, et_finish in zip(et_boundaries_list[0::2], et_boundaries_list[1::2]):
if start:
et_list = numpy.arange(et_start, et_finish, resolution)
start = False
et_list = numpy.append(et_list, numpy.arange(et_start, et_finish, resolution))
if utc_start:
et_start = spiceypy.utc2et(utc_start)
if utc_finish:
et_finish = spiceypy.utc2et(utc_finish)
et_list = numpy.arange(et_start, et_finish, resolution)
# Process CK1
spiceypy.furnsh(ck1)
eul1_ck1 = []
eul2_ck1 = []
eul3_ck1 = []
for et in et_list:
rot_mat = spiceypy.pxform(spacecraft_frame, target_frame, et)
euler = (spiceypy.m2eul(rot_mat, 1, 2, 3))
eul1_ck1.append(math.degrees(euler[0]))
eul2_ck1.append(math.degrees(euler[1]))
eul3_ck1.append(math.degrees(euler[2]))
spiceypy.unload(ck1)
# Process CK2
spiceypy.furnsh(ck2)
eul1_ck2 = []
eul2_ck2 = []
eul3_ck2 = []
for et in et_list:
rot_mat = spiceypy.pxform(spacecraft_frame, target_frame, et)
euler = (spiceypy.m2eul(rot_mat, 1, 2, 3))
eul1_ck2.append(math.degrees(euler[0]))
eul2_ck2.append(math.degrees(euler[1]))
eul3_ck2.append(math.degrees(euler[2]))
spiceypy.unload(ck2)
# Plot angles
ck1_filename = ck1.split('/')[-1].split('.')[0]
ck2_filename = ck2.split('/')[-1].split('.')[0]
eul1_name = '{}_{}'.format(ck1_filename, ck2_filename)
eul2_name = '{}_{}'.format(ck1_filename, ck2_filename)
eul3_name = '{}_{}'.format(ck1_filename, ck2_filename)
plot(et_list, [eul1_ck1, eul1_ck2], yaxis_name=['Euler Angle 1 CK1',
'Euler Angle 1 CK2'],
title='Euler Angle 1 {}'.format(eul1_name),
format=plot_style,
notebook=notebook)
plot(et_list, [eul2_ck1, eul2_ck2], yaxis_name=['Euler Angle 2 CK1',
'Euler Angle 2 CK2'],
title='Euler Angle 2 {}'.format(eul2_name),
format=plot_style,
notebook=notebook)
plot(et_list, [eul3_ck1, eul3_ck2], yaxis_name=['Euler Angle 3 CK1',
'Euler Angle 3 CK2'],
title='Euler Angle 3 {}'.format(eul3_name),
format=plot_style,
notebook=notebook)
# Generate reports
if report:
eul_angle_report(et_list, eul1_ck1, eul1_ck2, 1, tolerance, name=eul1_name)
eul_angle_report(et_list, eul2_ck1, eul2_ck2, 2, tolerance, name=eul2_name)
eul_angle_report(et_list, eul3_ck1, eul3_ck2, 3, tolerance, name=eul3_name)
return
def ckdiff(ck1, ck2, spacecraft_frame, target_frame, resolution, tolerance,
utc_start='', utc_finish='', mk='', output='boresight', boresight = [0,0,1],
plot_style='line', report=False, notebook=False):
"""
Provides time coverage summary for a given object for a given CK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param ck: CK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least
it should be a leapseconds kernel (LSK) and a Spacecraft clock kernel
(SCLK) optionally a meta-kernel (MK) which is highly recommended.
:type support_ker: Union[str, list]
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB
in calendar format) or 'TDB'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the
coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
if mk:
spiceypy.furnsh(mk)
windows_ck1 = cov_ck_ker(ck1, object=spacecraft_frame, time_format='SPICE')
spiceypy.unload(ck1)
windows_ck2 = cov_ck_ker(ck2, object=spacecraft_frame, time_format='SPICE')
spiceypy.unload(ck2)
windows_intersected = spiceypy.wnintd(windows_ck1, windows_ck2)
number_of_intervals = list(range(spiceypy.wncard(windows_intersected)))
et_boundaries_list = []
for element in number_of_intervals:
et_boundaries = spiceypy.wnfetd(windows_intersected, element)
et_boundaries_list.append(et_boundaries[0])
et_boundaries_list.append(et_boundaries[1])
start = True
for et_start, et_finish in zip(et_boundaries_list[0::2], et_boundaries_list[1::2]):
if start:
et_list = numpy.arange(et_start, et_finish, resolution)
start = False
et_list = numpy.append(et_list, numpy.arange(et_start, et_finish, resolution))
if utc_start:
et_start = spiceypy.utc2et(utc_start)
if utc_finish:
et_finish = spiceypy.utc2et(utc_finish)
et_list = numpy.arange(et_start, et_finish, resolution)
spiceypy.furnsh(ck1)
eul1_ck1 = []
eul2_ck1 = []
eul3_ck1 = []
bsight_ck1 = []
for et in et_list:
rot_mat = spiceypy.pxform(spacecraft_frame, target_frame, et)
euler = (spiceypy.m2eul(rot_mat, 1, 2, 3))
eul1_ck1.append(math.degrees(euler[0]))
eul2_ck1.append(math.degrees(euler[1]))
eul3_ck1.append(math.degrees(euler[2]))
bsight = spiceypy.mxv(rot_mat, boresight)
bsight_ang = spiceypy.vsep(bsight, boresight)
bsight_ck1.append(bsight_ang*spiceypy.dpr())
spiceypy.unload(ck1)
spiceypy.furnsh(ck2)
eul1_ck2 = []
eul2_ck2 = []
eul3_ck2 = []
bsight_ck2 = []
for et in et_list:
rot_mat = spiceypy.pxform(spacecraft_frame, target_frame, et)
euler = (spiceypy.m2eul(rot_mat, 1, 2, 3))
eul1_ck2.append(math.degrees(euler[0]))
eul2_ck2.append(math.degrees(euler[1]))
eul3_ck2.append(math.degrees(euler[2]))
bsight = spiceypy.mxv(rot_mat, boresight)
bsight_ang = spiceypy.vsep(bsight, boresight)
bsight_ck2.append(bsight_ang*spiceypy.dpr())
spiceypy.unload(ck2)
ck1_filename = ck1.split('/')[-1].split('.')[0]
ck2_filename = ck2.split('/')[-1].split('.')[0]
title_name = '{}_{}'.format(ck1_filename, ck2_filename)
if output == 'euler_angles':
plot(et_list, [eul1_ck1,eul1_ck2], yaxis_name=['Degrees', 'Degrees'],
title='Euler Angle 1 {}'.format(title_name),
format=plot_style,
notebook=notebook)
plot(et_list, [eul2_ck1,eul2_ck2], yaxis_name=['Degrees', 'Degrees'],
title='Euler Angle 2 {}'.format(title_name),
format=plot_style,
notebook=notebook)
plot(et_list, [eul3_ck1,eul3_ck2], yaxis_name=['Degrees', 'Degrees'],
title='Euler Angle 3 {}'.format(title_name),
format=plot_style,
notebook=notebook)
else:
plot(et_list, [bsight_ck1], yaxis_name=['Degrees', 'Degrees'],
title='+Z Axis Angle Difference {}'.format(title_name),
format=plot_style,
notebook=notebook)
if report:
eul_angle_report(et_list, eul1_ck1, eul1_ck2, 1, tolerance, name=title_name)
eul_angle_report(et_list, eul2_ck1, eul2_ck2, 2, tolerance, name=title_name)
eul_angle_report(et_list, eul3_ck1, eul3_ck2, 3, tolerance, name=title_name)
return
def get_euler_boresights_angles(ck, et_list, spacecraft_frame,
target_frame, boresight):
spiceypy.furnsh(ck)
eul1 = []
eul2 = []
eul3 = []
bsights = []
angles = []
for et in et_list:
rot_mat = spiceypy.pxform(spacecraft_frame, target_frame, et)
euler = (spiceypy.m2eul(rot_mat, 1, 2, 3))
eul1.append(math.degrees(euler[0]))
eul2.append(math.degrees(euler[1]))
eul3.append(math.degrees(euler[2]))
bsight = spiceypy.mxv(rot_mat, boresight)
bsight_ang = spiceypy.vsep(bsight, boresight)
bsights.append(spiceypy.convrt(bsight_ang, 'RADIANS', 'ARCSECONDS'))
(rot_axis, rot_angle) = spiceypy.raxisa(rot_mat)
angles.append(spiceypy.convrt(rot_angle, 'RADIANS', 'ARCSECONDS'))
spiceypy.unload(ck)
return eul1, eul2, eul3, bsights, angles
def ckdiff_error(ck1, ck2, spacecraft_frame, target_frame, resolution, tolerance,
mk='', utc_start='', utc_finish='', output='',
boresight=[0,0,1], plot_style='line', report=False,
notebook=False):
"""
Provides time coverage summary for a given object for a given CK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param ck: CK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least
it should be a leapseconds kernel (LSK) and a Spacecraft clock kernel
(SCLK) optionally a meta-kernel (MK) which is highly recommended.
:type support_ker: Union[str, list]
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB
in calendar format) or 'TDB'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the
coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
if mk:
spiceypy.furnsh(mk)
try:
windows_ck1 = cov_ck_ker(ck1, object=spacecraft_frame, time_format='SPICE')
spiceypy.unload(ck1)
windows_ck2 = cov_ck_ker(ck2, object=spacecraft_frame, time_format='SPICE')
spiceypy.unload(ck2)
except:
print('WARNING: No Time Window could be determined')
return None
windows_intersected = spiceypy.wnintd(windows_ck1, windows_ck2)
number_of_intervals = list(range(spiceypy.wncard(windows_intersected)))
if not len(number_of_intervals):
print('WARNING: No Time Windows intersected')
return None
et_boundaries_list = []
for element in number_of_intervals:
et_boundaries = spiceypy.wnfetd(windows_intersected, element)
et_boundaries_list.append(et_boundaries[0])
et_boundaries_list.append(et_boundaries[1])
start = True
for et_start, et_finish in zip(et_boundaries_list[0::2], et_boundaries_list[1::2]):
if start:
et_list = numpy.arange(et_start, et_finish, resolution)
start = False
et_list = numpy.append(et_list, numpy.arange(et_start, et_finish, resolution))
if utc_start:
et_start = spiceypy.utc2et(utc_start)
if utc_finish:
et_finish = spiceypy.utc2et(utc_finish)
et_list = numpy.arange(et_start, et_finish, resolution)
if not len(et_list):
print('WARNING: No valid time period')
return None
eul1_ck1, eul2_ck1, eul3_ck1, bsight_ck1, angle_ck1 = get_euler_boresights_angles(ck1, et_list, spacecraft_frame,
target_frame, boresight)
eul1_ck2, eul2_ck2, eul3_ck2, bsight_ck2, angle_ck2 = get_euler_boresights_angles(ck2, et_list, spacecraft_frame,
target_frame, boresight)
angle_diff = [abs(i - j) for i, j in zip(angle_ck1, angle_ck2)]
if output == 'euler_angles':
eul1_diff = [i - j for i, j in zip(eul1_ck1, eul1_ck2)]
eul2_diff = [i - j for i, j in zip(eul2_ck1, eul2_ck2)]
eul3_diff = [i - j for i, j in zip(eul3_ck1, eul3_ck2)]
plot(et_list, [eul1_diff, eul2_diff, eul3_diff],
yaxis_name=['Degrees', 'Degrees', 'Degrees'],
title='Euler Angle Differences',
format=plot_style, yaxis_units='deg',
notebook=notebook)
elif output == 'boresight':
bsight_diff = [np.abs(i - j) for i, j in zip(bsight_ck1, bsight_ck2)]
plot(et_list, bsight_diff,
yaxis_name='',
title='Boresight Angle Difference',
format=plot_style, yaxis_units='arcsec',
notebook=notebook)
# Attitude Error
else:
plot(et_list, angle_diff,
yaxis_name='ang_diff',
title='Attitude Error',
format=plot_style, yaxis_units='arcsec',
notebook=notebook)
if report:
ck1_filename = ck1.split('/')[-1].split('.')[0]
ck2_filename = ck2.split('/')[-1].split('.')[0]
bsight_name = '{}_{}'.format(ck1_filename, ck2_filename)
attitude_error_report(et_list, bsight_ck1, bsight_ck2, tolerance, name=bsight_name)
if output == 'euler_angles':
eul1_name = '{}_{}'.format(ck1_filename, ck2_filename)
eul2_name = '{}_{}'.format(ck1_filename, ck2_filename)
eul3_name = '{}_{}'.format(ck1_filename, ck2_filename)
eul_angle_report(et_list, eul1_ck1, eul1_ck2, 1, tolerance, name=eul1_name)
eul_angle_report(et_list, eul2_ck1, eul2_ck2, 2, tolerance, name=eul2_name)
eul_angle_report(et_list, eul3_ck1, eul3_ck2, 3, tolerance, name=eul3_name)
elif output == 'rotaxis':
rotaxis_name = '{}_{}'.format(ck1_filename, ck2_filename)
attitude_error_report(et_list, angle_ck1, angle_ck2, tolerance, name=rotaxis_name)
if mk:
spiceypy.unload(mk)
return np.max(angle_diff)
def ckplot(ck1, spacecraft_frame, target_frame, resolution,
mk = '', utc_start='', utc_finish='', notebook=False,
plot_style='circle'):
"""
Provides time coverage summary for a given object for a given CK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param ck: CK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least
it should be a leapseconds kernel (LSK) and a Spacecraft clock kernel
(SCLK) optionally a meta-kernel (MK) which is highly recommended.
:type support_ker: Union[str, list]
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB
in calendar format) or 'TDB'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the
coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
if mk:
spiceypy.furnsh(mk)
spiceypy.furnsh(ck1)
et_boundaries_list = cov_ck_ker(ck1, support_ker=mk, object=spacecraft_frame,
time_format='TDB')
start = True
for et_start, et_finish in zip(et_boundaries_list[0::2], et_boundaries_list[1::2]):
if start:
et_list = numpy.arange(et_start, et_finish, resolution)
start = False
et_list = numpy.append(et_list, numpy.arange(et_start, et_finish, resolution))
# TODO: if we want to really use start and end times and intersect it with the available intervals we need to develop this
if utc_start:
et_start = spiceypy.utc2et(utc_start)
if utc_finish:
et_finish = spiceypy.utc2et(utc_finish)
et_list = numpy.arange(et_start, et_finish, resolution)
eul1 = []
eul2 = []
eul3 = []
for et in et_list:
rot_mat = spiceypy.pxform(spacecraft_frame, target_frame,et)
euler = spiceypy.m2eul(rot_mat, 1, 2, 3)
eul1.append(math.degrees(euler[0]))
eul2.append(math.degrees(euler[1]))
eul3.append(math.degrees(euler[2]))
spiceypy.unload(ck1)
plot(et_list, [eul1,eul2,eul3],
yaxis_name=['Euler Angle 1', 'Euler Angle 2', 'Euler Angle 3'],
title='Euler Angles for {}'.format(ck1.split('/')[-1]), notebook=notebook, format=plot_style)
return
def spkdiff(mk, spk1, spk2, spacecraft, target, resolution, pos_tolerance,
vel_tolerance, target_frame='', utc_start='', utc_finish='',
plot_style='line', report=True):
"""
Provides time coverage summary for a given object for a given CK file.
Several options are available. This function is based on the following
SPICE API:
http://naif.jpl.nasa.gov/pub/naif/toolkit_docs/C/spiceypy/ckcov_c.html
The NAIF utility CKBRIEF can be used for the same purpose.
:param ck: CK file to be used
:type mk: str
:param support_ker: Support kernels required to run the function. At least
it should be a leapseconds kernel (LSK) and a Spacecraft clock kernel
(SCLK) optionally a meta-kernel (MK) which is highly recommended.
:type support_ker: Union[str, list]
:param object: Ephemeris Object to obtain the coverage from.
:type object: str
:param time_format: Output time format; it can be 'UTC', 'CAL' (for TDB
in calendar format) or 'TDB'. Default is 'TDB'.
:type time_format: str
:param global_boundary: Boolean to indicate whether if we want all the
coverage windows or only the absolute start and finish coverage times.
:type global_boundary: bool
:param report: If True prints the resulting coverage on the screen.
:type report: bool
:param unload: If True it will unload the input meta-kernel.
:type unload: bool
:return: Returns a list with the coverage intervals.
:rtype: list
"""
if not target_frame:
target_frame = 'IAU_{}'.format(target.upper())
spiceypy.furnsh(mk)
windows_spk1 = cov_spk_ker(spk1, object=spacecraft, time_format='SPICE')
spiceypy.unload(spk1)
windows_spk2 = cov_spk_ker(spk2, object=spacecraft, time_format='SPICE')
spiceypy.unload(spk2)
windows_intersected = spiceypy.wnintd(windows_spk1, windows_spk2)
number_of_intervals = list(range(spiceypy.wncard(windows_intersected)))
et_boundaries_list = []
for element in number_of_intervals:
et_boundaries = spiceypy.wnfetd(windows_intersected, element)
et_boundaries_list.append(et_boundaries[0])
et_boundaries_list.append(et_boundaries[1])
start = True
for et_start, et_finish in zip(et_boundaries_list[0::2], et_boundaries_list[1::2]):
if start:
et_list = np.arange(et_start, et_finish, resolution)
start = False
et_list = numpy.append(et_list, numpy.arange(et_start, et_finish, resolution))
if utc_start:
et_start = spiceypy.utc2et(utc_start)
if utc_finish:
et_finish = spiceypy.utc2et(utc_finish)
et_list = numpy.arange(et_start, et_finish, resolution)
spiceypy.furnsh(spk1)
state_spk1 = []
state_spk2 = []
pos_spk1 = []
pos_spk2 = []
vel_spk1 = []
vel_spk2 = []
for et in et_list:
state = spiceypy.spkezr(target, et, target_frame, 'NONE', spacecraft)[0]
state_spk1.append(state)
pos_spk1.append(np.sqrt(state[0]*state[0] +
state[1]*state[1] +
state[2]*state[2]))
vel_spk1.append(np.sqrt(state[3]*state[3] +
state[4]*state[4] +
state[5]*state[5]))
spiceypy.unload(spk1)
spiceypy.furnsh(spk2)
for et in et_list:
state = spiceypy.spkezr(target, et, target_frame, 'NONE', spacecraft)[0]
state_spk2.append(state)
pos_spk2.append(np.sqrt(state[0]*state[0] +
state[1]*state[1] +
state[2]*state[2]))
vel_spk2.append(np.sqrt(state[3]*state[3] +
state[4]*state[4] +
state[5]*state[5]))
plot(et_list, [pos_spk1, pos_spk2], yaxis_name=['Position SPK1',
'Position SPK2'],
title='Position of {} w.r.t {} ({})'.format(spacecraft, target, target_frame),
format=plot_style)
spiceypy.unload(spk2)
if report:
spk1_filename = spk1.split('/')[-1].split('.')[0]
spk2_filename = spk2.split('/')[-1].split('.')[0]
state_report(et_list, pos_spk1, pos_spk2, vel_spk1, vel_spk2, pos_tolerance, vel_tolerance,
name='{}_{}'.format(spk1_filename, spk2_filename))
return
def pck_body_placeholder(bodies):
"""
:param bodies:
:type bodies:
:return:
:rtype:
"""
with open('update_to_pck.tpc', 'w+') as f:
pl_id = 517
for body in bodies:
#
# Get body NAIF ID.
#
try:
id = spiceypy.bodn2c(str(body.upper))
except:
id = pl_id
pl_id += 1
f.write(' {0} {1} 1 1 1 - Placeholder radii\n'.format(id, body[:1].upper() + body[1:].lower()))
f.write('\n\n')
pl_id = 517
for body in bodies:
#
# Get body NAIF ID.
#
try:
id = spiceypy.bodn2c(str(body.upper))
except:
id = pl_id
pl_id += 1
f.write('BODY{}_RADII = (1 1 1 )\n'.format(id))
f.write('\n\n')
pl_id = 517
for body in bodies:
#
# Get body NAIF ID.
#
try:
id = spiceypy.bodn2c(str(body.upper))
except:
id = pl_id
pl_id += 1
f.write(" FRAME_IAU_{0} = {1}\n".format(body.upper(), id))
f.write(" FRAME_{0}_NAME = 'IAU_{1}'\n".format(id, body.upper()))
f.write(" FRAME_{}_CLASS = 2\n".format(id))
f.write(" FRAME_{0}_CLASS_ID = {0}\n".format(id))
f.write(" FRAME_{0}_CENTER = {0}\n".format(id))
f.write(" BODY{}_POLE_RA = ( 0. 0. 0. )\n".format(id))
f.write(" BODY{}_POLE_DEC = ( 90. 0. 0. )\n".format(id))
f.write(" BODY{}_PM = ( -90. 0. 0. )\n".format(id))
f.write(" BODY{}_LONG_AXIS = ( 0. )\n\n".format(id))
return
def read_ik_with_sectors(sensor_name):
#
# Since all IK variable names contain NAIF ID of the instrument,
# the input sensor acronym, NNN, needs to be expanded into its
# full name, ROS_RPC_NNN, which then can be used to find the
# sensor's NAIF ID code.
#
sensnm = sensor_name
secsiz = 0
secsis = 0
try:
sensid = spiceypy.bodn2c(sensnm)
except:
print('Cannot determine NAIF ID for {}'.format(sensnm))
return sensnm, 0, 0, secsiz, secsis, '', []
#
# No IK routines can be used to retrieve loaded data. First,
# retrieve the number of sectors provided in the
# INS-NNNNNN_NUMBER_OF_SECTORS keyword (here -NNNNNN is the NAIF ID
# of the sensor.)
#
ikkwd = 'INS#_NUMBER_OF_SECTORS'
ikkwd = spiceypy.repmi(ikkwd, "#", sensid)
try:
secnum = spiceypy.gipool(ikkwd, 0, 2)
except:
print('Loaded IK does not contain {}.'.format(ikkwd))
return sensnm, sensid, 0, secsiz, secsis, '', []
#
# Second, retrieve the sector size provided in the
# INS-NNNNNN_SECTOR_SIZE or INS-NNNNNN_SECTOR_SIZES keyword.
#
ikkwd = 'INS#_SECTOR_SIZES'
ikkwd = spiceypy.repmi(ikkwd, '#', sensid)
try:
secsis = spiceypy.gdpool(ikkwd, 0, 2)
#
# We need to search for INS-NNNNNN_SECTOR_SIZE in the second place
# for it would also be found by INS-NNNNNN_SECTOR_SIZES
#
except:
ikkwd = 'INS#_SECTOR_SIZE'
ikkwd = spiceypy.repmi(ikkwd, '#', sensid)
try:
room = int(secnum[0]*secnum[1]*2)
secsiz = spiceypy.gdpool(ikkwd, 0, room)
except:
print('Loaded IK does not contain {}.'.format(ikkwd))
return sensnm, sensid, secnum, secsiz, secsis, '', []
#
# Third, retrieve the frame in which sector view direction are
# defined. It is provided in the INS-NNNNNN_FRAME keyword.
#
ikkwd = 'INS#_FRAME'
ikkwd = spiceypy.repmi(ikkwd, '#', sensid)
try:
secfrm = spiceypy.gcpool(ikkwd, 0, 1)
except:
print('Loaded IK does not contain {}.'.format(ikkwd))
return sensnm, sensid, secnum, secsiz, secsis, secfrm, []
#
# Last, retrieve the sector view directions provided in the
# INS-NNNNNN_SECTOR_DIRECTIONS keyword.
#
ikkwd = 'INS#_SECTOR_DIRECTIONS'
ikkwd = spiceypy.repmi(ikkwd, '#', sensid)
try:
room = int(secnum[0]*secnum[1]*3)
secdir = spiceypy.gdpool(ikkwd, 0, room)
#
# Re-arrange the secdir list into a list of lists in which each
# individual list is a sector direction vector
#
secdir_list = []
secdir_line = []
count = 0
for element in secdir: # Start counting from 1
secdir_line.append(element)
count += 1
if count % 3 == 0:
secdir_list.append(secdir_line)
secdir_line = []
count = 0
secdir = secdir_list
except:
print('Loaded IK does not contain {}.'.format(ikkwd))
return sensnm, sensid, secnum, secsiz, secsis, secfrm, []
return sensnm, sensid, secnum, secsiz, secsis, secfrm, secdir
#def mex_tgo_occultations(interval, refval):
# (out, radii) = spiceypy.bodvrd('MARS', 'RADII', 3)
#
# # Compute flattening coefficient.
# re = radii[0]
# rp = radii[2]
# f = (re - rp) / re
#
# a = re
# b = radii[1]
# c = rp
#
# MAXIVL = 10000
# MAXWIN = 2 * MAXIVL
# TDBFMT = 'YYYY MON DD HR:MN:SC.### (TDB) ::TDB'
#
# # Initialize the "confinement" window with the interval
# # over which we'll conduct the search.
# cnfine = stypes.SPICEDOUBLE_CELL(2)
# spiceypy.wninsd(interval.start, interval.finish, cnfine)
#
# #
# # In the call below, the maximum number of window
# # intervals gfposc can store internally is set to MAXIVL.
# # We set the cell size to MAXWIN to achieve this.
# #
# riswin = stypes.SPICEDOUBLE_CELL(MAXWIN)
#
# #
# # Now search for the time period, within our confinement
# # window, during which the apparent target has elevation
# # at least equal to the elevation limit.
# #
# # VARIABLE I/O DESCRIPTION
# # --------------- --- -------------------------------------------------
# # SPICE_GF_CNVTOL P Convergence tolerance.
# # occtyp I Type of occultation.
# # front I Name of body occulting the other.
# # fshape I Type of shape model used for front body.
# # fframe I Body-fixed, body-centered frame for front body.
# # back I Name of body occulted by the other.
# # bshape I Type of shape model used for back body.
# # bframe I Body-fixed, body-centered frame for back body.
# # abcorr I Aberration correction flag.
# # obsrvr I Name of the observing body.
# # step I Step size in seconds for finding occultation
# # events.
# # cnfine I-O SPICE window to which the search is restricted.
# # result O SPICE window containing results.
# #
# spiceypy.gfoclt('ANY', 'MARS', 'ELLIPSOID', 'IAU_MARS', 'MEX',
# 'POINT', '', 'NONE', 'TGO', 60, cnfine, riswin)
#
# #
# # Now we perform another search to constrain the number of occultations by a
# # distance criteria
# #
# cnfine = riswin
#
# riswin = stypes.SPICEDOUBLE_CELL(MAXWIN)
#
# #
# # We're not using the adjustment feature, so
# # we set `adjust' to zero.
# #
# adjust = 0.0
#
# #
# # We use a step size of 1 hour
# #
# step = 60 * 60
#
# # nintvls = 2*n + ( m / step )
# #
# # where
# #
# # n is the number of intervals in the confinement
# # window
# #
# # m is the measure of the confinement window, in
# # units of seconds
# #
# # step is the search step size in seconds
# #
# ndays = 100
# nintvls = int(2 * 1 + (ndays * 24 * 60 * 60 / step))
#
# #
# # Now search for the time period, within our confinement
# # window, during which the apparent target has elevation
# # at least equal to the elevation limit.
# #
# # VARIABLE I/O DESCRIPTION
# # --------------- --- ------------------------------------------------
# # SPICE_GF_CNVTOL P Convergence tolerance
# # target I Name of the target body.
# # abcorr I Aberration correction flag.
# # obsrvr I Name of the observing body.
# # relate I Relational operator.
# # refval I Reference value.
# # adjust I Adjustment value for absolute extrema searches.
# # step I Step size used for locating extrema and roots.
# # nintvls I Workspace window interval count.
# #
# # cnfine I-O SPICE window to which the search is confined.
# # result O SPICE window containing results.
# #
# spiceypy.gfdist('MEX', 'NONE', 'TGO', '<', refval, adjust, step, nintvls,
# cnfine, riswin)
#
# #
# # The function wncard returns the number of intervals
# # in a SPICE window.
# #
# winsiz = spiceypy.wncard(riswin)
#
# lat_mid_list = []
# lon_mid_list = []
# dist_mid_list = []
#
# lat_list = []
# lon_list = []
# dist_list = []
#
# x, y, z = [], [], []
#
# if winsiz == 0:
# print('No events were found.')
#
# else:
#
# #
# # Display the visibility time periods.
# #
# print(
# 'Occultation times of {0:s} as seen from {1:s} when the distance is '
# 'less than {2:f} km:\n'.format('MEX', 'TGO', refval))
#
# for i in range(winsiz):
# #
# # Fetch the start and stop times of
# # the ith interval from the search result
# # window riswin.
# #
# [intbeg, intend] = spiceypy.wnfetd(riswin, i)
#
# #
# # Convert the rise time to a TDB calendar string.
# #
# timstr = spiceypy.timout(intbeg, TDBFMT)
# et_rise = intbeg
#
# #
# # Write the string to standard output.
# #
# # if i == 0:
# #
# # print('Occultation start time:'
# # ' {:s}'.format(timstr))
# # else:
# #
# # print('Occultation start time:'
# # ' {:s}'.format(timstr))
# #
# #
# # Convert the set time to a TDB calendar string.
# #
# timstr = spiceypy.timout(intend, TDBFMT)
# et_set = intend
#
# #
# # Write the string to standard output.
# #
# # if i == (winsiz - 1):
# #
# # print('Occultation or window stop time: '
# # ' {:s}'.format(timstr))
# # else:
# #
# # print('Occultation stop time: '
# # ' {:s}'.format(timstr))
# #
# # print(' ')
#
# #
# # Generate a Time Window with the rise and set times
# #
# utc_rise = spiceypy.et2utc(et_rise, 'ISOC', 3)
# utc_set = spiceypy.et2utc(et_set, 'ISOC', 3)
#
# time_window = spiops.TimeWindow(utc_rise, utc_set, resolution=1)
#
# interval = time_window.window
# num = 0
# for et in interval:
#
# num += 1
#
# (linept, lt) = spiceypy.spkpos('MARS', et, 'IAU_MARS', 'NONE',
# 'TGO')
# (linedr, lt) = spiceypy.spkpos('MEX', et, 'IAU_MARS', 'NONE',
# 'TGO')
#
# #
# # Variable I/O Description
# # -------- --- --------------------------------------------------
# # a I Length of ellipsoid's semi-axis in the x direction
# # b I Length of ellipsoid's semi-axis in the y direction
# # c I Length of ellipsoid's semi-axis in the z direction
# # linept I Point on line
# # linedr I Direction vector of line
# # pnear O Nearest point on ellipsoid to line
# # dist O Distance of ellipsoid from line
# #
# (pnear, dist) = spiceypy.npedln(a, b, c, linept, linedr)
#
# (lon, lat, alt) = spiceypy.recpgr('MARS', pnear, re, f)
#
# lon = spiceypy.dpr() * lon
# lat = spiceypy.dpr() * lat
#
# lon_list.append(lon)
# lat_list.append(lat)
# dist_list.append(spiceypy.vnorm(linedr))
#
# if num == int(len(interval) / 2):
# lon_mid_list.append(lon)
# lat_mid_list.append(lat)
# dist_mid_list.append(spiceypy.vnorm(linedr))
#
# spiops.plot(lon_mid_list, [lat_mid_list],
# xaxis_name='Longitude [deg]',
# yaxis_name=['Latitude [deg]'],
# title='TGO-MEX Occultation Groundtrack for MEX-TGO Distance < {}km'.format(
# refval),
# plot_height=500,
# plot_width=900,
# format='circle',
# background_image=True,
# line_width=6)
#
# spiops.plot(lon_list, [lat_list],
# xaxis_name='Longitude [deg]',
# yaxis_name=['Latitude [deg]'],
# title='TGO-MEX Occultation Groundtrack for MEX-TGO Distance < {}km'.format(
# refval),
# plot_height=500,
# plot_width=900,
# format='circle',
# background_image=True,
# line_width=1)
#
# return
def sensor_with_sectors(sensor, mk, fk=''):
#
# Load ROS FK and RPC IK files.
#
spiceypy.furnsh(mk)
if fk:
spiceypy.furnsh(fk)
#
# Get ELS IK data.
#
sensnm, sensid, secnum, secsiz, secsis, secfrm, secdir = read_ik_with_sectors(sensor)
#
# Report ELS IK data.
#
print('SENSOR NAIF NAME: {}'.format(sensnm))
print('SENSOR NAIF ID: {}'.format(sensid))
print('NUMBER OF SECTORS: {}'.format(secnum))
#if secsiz != 0:
# print('SECTOR SIZE: {}'.format(secsiz))
#else:
# print('SECTOR SIZES: {}'.format(secsis))
print('REFERENCE FRAME: {}'.format(secfrm))
print('SECTOR DIRECTIONS: {}'.format(secdir))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for element in secdir:
x = element[0]
y = element[1]
z = element[2]
ax.scatter(x, y, z, c='r', marker='o')
ax.set_xlabel('X Axis')
ax.set_ylabel('Y Axis')
ax.set_zlabel('Z Axis')
ax.autoscale(tight=True)
plt.show()
return
def get_angle(frame1, frame2, et):
angle = 0
angle_bool = False
try:
# Get the rotation matrix between two frames
cmat = spiceypy.pxform(frame1, frame2, et)
(angle3, angle2, angle1) = spiceypy.m2eul(cmat, 3, 2, 1)
for tmp_angle in [angle3, angle2, angle1]:
if np.around(tmp_angle, 2) != 0:
angle = np.rad2deg(tmp_angle)
angle_bool = True
except ValueError as e:
print(e)
return angle, angle_bool
def get_earth_angle(frame, et, obs):
try:
(earth_vec, lt) = spiceypy.spkezr('EARTH', et, frame, 'LT+S', obs)
return np.rad2deg(spiceypy.vsep([0, 0, 1], earth_vec[:3]))
except:
return 0
def hga_angles(sc, et):
hga_el_frame = sc + '_HGA_EL'
hga_az_frame = sc + '_HGA_AZ'
hga_frame = sc + '_HGA'
if sc == 'MPO':
# First azimuth and then the elevation
hga_az, hga_az_bool = get_angle('MPO_HGA_APM', hga_az_frame, et)
if hga_az_bool:
hga_az = -hga_az + 180 # Invert azimuth and add half revolution
hga_el, hga_el_bool = get_angle(hga_az_frame, hga_el_frame, et)
elif sc == 'MTM':
return []
else:
hga_zero_frame = sc + '_SPACECRAFT'
# First elevation and then the azimuth
hga_el, hga_el_bool = get_angle(hga_zero_frame, hga_el_frame, et)
hga_az, hga_az_bool = get_angle(hga_el_frame, hga_az_frame, et)
hga_earth = get_earth_angle(hga_frame, et, sc)
return [hga_az, hga_el], hga_earth
def mga_angles(sc, et):
if sc == 'MPO':
# First azimuth and then the elevation
mga_az, mga_az_bool = get_angle('MPO_MGA_BOOM-H', 'MPO_MGA_BOOM', et)
mga_el, mga_el_bool = get_angle('MPO_MGA_ZERO', 'MPO_MGA', et)
mga_earth = get_earth_angle('MPO_MGA', et, 'MPO')
return [mga_az, mga_el], mga_earth
return [0, 0], 0
def solar_aspect_angles(sc, time):
sa_frame = ''
if sc == 'TGO':
sa_p_frame = sc+'_SA+Z'
sa_n_frame = sc+'_SA-Z'
elif sc == 'MPO':
sa_frame = sc+'_SA'
elif sc == 'MTM':
sa_p_frame = sc + '_SA+X'
sa_n_frame = sc + '_SA-X'
else:
sa_p_frame = sc+'_SA+Y'
sa_n_frame = sc+'_SA-Y'
sc_id = spiceypy.bodn2c(sc)
try:
# If there is only one Solar Array e.g.: BEPICOLOMBO MPO
if sa_frame:
(sun_vec, lt) = spiceypy.spkezp(10, time, sa_frame, 'NONE', sc_id)
saa_sa = np.rad2deg(spiceypy.vsep([1, 0, 0], sun_vec))
else:
(sun_vec, lt) = spiceypy.spkezp(10, time, sa_p_frame, 'NONE', sc_id)
saa_sa_p = np.rad2deg(spiceypy.vsep([1, 0, 0], sun_vec))
(sun_vec, lt) = spiceypy.spkezp(10, time, sa_n_frame, 'NONE', sc_id)
saa_sa_n = np.rad2deg(spiceypy.vsep([1, 0, 0], sun_vec))
(sun_vec, lt) = spiceypy.spkezp(10, time, sc+'_SPACECRAFT', 'NONE', sc_id)
saa_sc_x = np.rad2deg(spiceypy.vsep([1, 0, 0], sun_vec))
saa_sc_y = np.rad2deg(spiceypy.vsep([0, 1, 0], sun_vec))
saa_sc_z = np.rad2deg(spiceypy.vsep([0, 0, 1], sun_vec))
except:
#print('No CK information for {}'.format(time))
saa_sa, saa_sa_p, saa_sa_n, saa_sc_x, saa_sc_y, saa_sc_z = 0,0,0,0,0,0
if sa_frame:
return([saa_sa], [saa_sc_x, saa_sc_y, saa_sc_z])
else:
return ([saa_sa_p, saa_sa_n], [saa_sc_x, saa_sc_y, saa_sc_z])
def solar_array_angles(sa_frame, time):
# Rotation axis must be angle 3 to have a range of [-pi, pi], the
# rotation axis is derived from the FK.
if 'MPO' in sa_frame:
sa_zero_frame = 'MPO_SA_SADM'
elif 'MEX' in sa_frame:
sa_zero_frame = sa_frame + '_GIMBAL'
else:
sa_zero_frame = sa_frame + '_ZERO'
try:
#TODO This works for JUICE only in principle.
# Get the rotation matrix between two frames
cmat = spiceypy.pxform(sa_frame, sa_zero_frame, time)
(angle3, angle2, angle1) = spiceypy.m2eul(cmat, 2, 3, 1)
except:
# print('No CK information for {}'.format(time))
angle3 = 0
angle2 = 0
angle1 = 0
return(np.round(angle3*spiceypy.dpr(),3),
np.round(angle2*spiceypy.dpr(),3),
np.round(angle1*spiceypy.dpr(),3))
def structures_position(sc_frame, kernel, time):
return
def body_distance_to_plane(body_distance, body_plane, time):
body_1 = body_plane
body_2 = body_distance
if isinstance(time, str):
time = spiceypy.utc2et(time)
id_1 = spiceypy.bodn2c(body_1)
id_2 = spiceypy.bodn2c(body_2)
mat = spiceypy.pxform('MEX_SIDING_SPRING_PLANE','IAU_MARS', time)
vec1_1 = spiceypy.mxv(mat, [1,0,0])
vec2_1 = spiceypy.mxv(mat, [0,1,0])
state_1 = spiceypy.spkgeo(id_2, time, 'IAU_MARS', id_1)[0]
pos_1 = state_1[0:3]
vel_1 = state_1[2:5]
pos_2 = [0,0,0]
norm_1 = np.cross(vec1_1,vec2_1)
norm_1 = norm_1/np.linalg.norm(norm_1)
# https://mathinsight.org/distance_point_plane
a1, b1, c1 = norm_1[0], norm_1[1], norm_1[2]
d1 = -1*norm_1[0]*pos_1[0] - norm_1[1]*pos_1[1] - norm_1[2]*pos_1[2]
dist_1 = abs(a1 * pos_2[0] + b1 * pos_2[1] + c1 * pos_2[2] + d1) / np.sqrt(
np.square(a1) + np.square(b1) +
|
np.square(c1)
|
numpy.square
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.4'
# jupytext_version: 1.1.4
# kernelspec:
# display_name: Python 3
# language: python
# name: python3
# ---
# # s_order_imbal_signal [<img src="https://www.arpm.co/lab/icons/icon_permalink.png" width=30 height=30 style="display: inline;">](https://www.arpm.co/lab/redirect.php?code=s_order_imbal_signal&codeLang=Python)
# For details, see [here](https://www.arpm.co/lab/redirect.php?permalink=eb-signals-order-imbalance).
# +
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
from arpym.tools import trade_quote_processing, add_logo
# -
# ## [Input parameters](https://www.arpm.co/lab/redirect.php?permalink=s_order_imbal_signal-parameters)
k_0 = 0 # index of the first trade within the time window
k_1 = 192 # index of the last trade within the time window
# ## [Step 0](https://www.arpm.co/lab/redirect.php?permalink=s_order_imbal_signal-implementation-step00): Load data
# +
path = '../../../databases/global-databases/high-frequency/' + \
'db_US_10yr_Future_quotestrades/'
quotes = pd.read_csv(path + 'quotes.csv', index_col=0, parse_dates=True)
trades = pd.read_csv(path + 'trades.csv', index_col=0, parse_dates=True)
dates_quotes = pd.to_datetime(quotes.index).date
# time vector of quotes
t = np.array(list(map(lambda x: x.timestamp(), pd.to_datetime(quotes.index))))
p_bid = np.array(quotes.loc[:, 'bid']) # best bids
p_ask = np.array(quotes.loc[:, 'ask']) # best asks
q_bid = np.array(quotes.loc[:, 'bsiz']) # bid sizes
q_ask = np.array(quotes.loc[:, 'asiz']) # ask sizes
dates_trades = pd.to_datetime(trades.index).date
# time vector of trades
t_k = np.array(list(map(lambda x: x.timestamp(),
pd.to_datetime(trades.index))))
p_last = np.array(trades.loc[:, 'price']) # last transaction values
delta_q = np.array(trades.loc[:, 'siz']) # flow of traded contracts' sizes
delta_sgn = np.array(trades.loc[:, 'aggress']) # trade sign flow
match = np.array(trades.loc[:, 'mtch']) # match events
# -
# ## [Step 1](https://www.arpm.co/lab/redirect.php?permalink=s_order_imbal_signal-implementation-step01): Process the database
t, _, q_ask, p_ask, q_bid, p_bid, t_k, _, p_last, _, _,\
_ = trade_quote_processing(t, dates_quotes, q_ask, p_ask, q_bid,
p_bid, t_k, dates_trades, p_last, delta_q,
delta_sgn, match)
# ## [Step 2](https://www.arpm.co/lab/redirect.php?permalink=s_order_imbal_signal-implementation-step02): Compute the traded price, the bid/ask prices, the bid/ask sizes and the microprice
# +
tick_time = np.arange(len(p_last[k_0:k_1+1])+1)
i_ = len(tick_time)
# last transaction value within the time window as a function of tick time
p_last_k = p_last[k_0:k_1]
# indexes of bid/ask prices near to the traded prices
ti =
|
np.zeros(i_, dtype=int)
|
numpy.zeros
|
#-*- coding:utf-8 -*-
'''
目的:
用于对复杂网络相关的分析,创建网络,计算网络特征等
结合了networkx, igraph, pygrahistry的接口
方法:
* 从边数据生成网络 - get_graph_from_edgedata
* 从边数据获取节点 - get_nodes_from_edgedata
* 将有向边转化为无向边 - as_undirected_edgedata
* 合并两个网络 - merge_edgedata
* 计算网络的特征 - calculate_graph_features
* 计算节点的特征 - calculate_node_features
* 根据度来过滤网络 - degree_filter
* 计算模块度 - modularity
* 社区发现 - community_detect
* 社区结构的相似度度量 - partition_similarity
* 绘制网络 - draw_graph
主要数据:
edgedata:
DataFrame;
网络中边的信息,包含[Source,Target,Weight]信息,也可以是没有权重的
cluster_result
DataFrame;
社区划分的结果,形式为['Id','modularity_class']
gephi导出的结果为['id','modularity_class'],注意
备注:
* 2017.10.10
- 增加计算模块度方法和社区发现方法
- 增加 networkx2pandas方法
* 2017.10.17 - 增加计算节点特征的方法
* 2017.12.25 - 增加两种社区划分结果的相似度度量
* 2018.1.9 - 增加了合并边数据的方法,merge_edgedata!
需要改进:
* 将有向图转化为无向图的方法还需要改!
'''
import pandas as pd
import numpy as np
import networkx as nx
class NetworkUnity():
def __init__(self):
pass
@staticmethod
def as_undirected_edgedata(edgedata):
#将有向边转化为无向边
index_droped = []
edgedata_directed = edgedata.copy()
for ind in edgedata.index:
source = edgedata.ix[ind, 'Source']
target = edgedata.ix[ind, 'Target']
if ind not in index_droped:
'''
如果该边没有被丢弃过--例如之前在A-B这条边时,发现存在B-A,
那么B-A这条边的index会被记录,之后会被丢弃
'''
data_target_as_source = edgedata[edgedata['Source'] == target]
if len(data_target_as_source) >= 1:
if source in data_target_as_source['Target'].values:
index_2 = data_target_as_source[data_target_as_source['Target'] == source].index[0]
edgedata_directed.ix[ind, 'Weight'] += edgedata_directed.ix[index_2, 'Weight']
index_droped.append(index_2)
#被丢弃的边数据
# data_droped = edgedata.ix[index_droped,:]
edgedata_directed.drop(index_droped, axis=0, inplace=True)
return edgedata_directed
@staticmethod
def networkx2pandas(graph):
'''
:param graph: networkx.Graph/DiGraph
:return: edgedata, DataFrame
'''
def _getedges(g):
for es in list(g.edges(data=True)):
yield dict({'Source': es[0], 'Target': es[1]}, **es[2])
edgedata = pd.DataFrame(_getedges(graph))
return edgedata
@staticmethod
def nodes_from_edgedata(edgedata,return_df=True):
'''
:param edgedata: 边的数据
:param return_df: 是否返回Series,默认True,否则为list
:return: 节点数据
'''
source = set(edgedata['Source'])
target = set(edgedata['Target'])
nodes = list(source.union(target))
if return_df:
nodes = pd.DataFrame(nodes,columns=['Id'])
return nodes
@staticmethod
def graph_from_edgedata(edgedata, attr='Weight', directed=True,connected_component=False):
'''
:param edgedata: 边的数据
:param attr: string 或 list; 边的属性数据,如果没有权重,设置attr=None,
:param directed: 有向图还是无向图
:param connected_component: 返回最大联通子图,默认为True,对于有向图为weakly_connected
未开发
:return: networkx.Graph 或 DiGraph
'''
if len(edgedata) < 1:
if directed:
return nx.DiGraph()
else:
return nx.Graph()
if directed:
graph = nx.from_pandas_dataframe(edgedata, 'Source', 'Target',
edge_attr=attr, create_using=nx.DiGraph())
if connected_component:
#返回最大联通子图
graph = max(nx.weakly_connected_component_subgraphs(graph), key=len)
else:
graph = nx.from_pandas_dataframe(edgedata, 'Source', 'Target',
edge_attr=attr, create_using=nx.Graph())
if connected_component:
graph = max(nx.connected_component_subgraphs(graph), key=len)
print('Directed Graph :', graph.is_directed())
return graph
@staticmethod
def merge_edgedata(edgedata_1, edgedata_2, dirceted=True, accumulate_attr='all'):
'''
合并2个图(edges),思路如下
有向边:
------
直接用Dataframe的append, 拼接在后面,然后根据重复的边,累加属性值
无向边:
------
图2中的边分为2类:
原图(edgedata1)中存在的边:
又分为2类,正向存在的(图1种是3-4 和 图2中是3-4)
反向存在的(如图1中是3-5,图2中5-3)
-- 找到图2中这类边,将反向的边,source和target互换
-- 然后append这些边
原图(edgedata1)中不存在的边:
直接append
累加属性:
--------
根据source 和 target 找到重复的数据,然后累加
:param edgedata_1: Dataframe, 边数据1
:param edgedata_2: Dataframe, 边数据2
:param dirceted: bool,是否为有向
:param accumulate_attr: 需要累加的属性,str 或 list
:return: Dataframe,合并以后的数据
'''
def _merge_directed(edgedata1, edgedata2):
edgedata_merge = pd.concat([edgedata1, edgedata2],
axis=0,
ignore_index=True)
return edgedata_merge
def _merge_undirected(edgedata1, edgedata2):
def _add_edge(edgedata_):
edgedata = edgedata_.copy()
source_str = edgedata['Source'].astype(dtype=str)
target_str = edgedata['Target'].astype(dtype=str)
edgedata['edges_pd'] = source_str + '-' + target_str
edgedata['edges_nd'] = target_str + '-' + source_str
return edgedata
edgedata1 = _add_edge(edgedata1)
edgedata2 = _add_edge(edgedata2)
# 原edge中已经存在的边
idx_pd = edgedata2['edges_pd'].isin(edgedata1['edges_pd'])
idx_nd = edgedata2['edges_nd'].isin(edgedata1['edges_pd'])
idx_exist = idx_nd | idx_pd
idx_new = ~ idx_exist
# 反向的边先转为正向
tmp = edgedata2.loc[idx_nd, 'Target'].copy()
edgedata2.loc[idx_nd, 'Target'] = edgedata2.loc[idx_nd, 'Source']
edgedata2.loc[idx_nd, 'Source'] = tmp
edge_exist = edgedata2[idx_exist]
edge_new = edgedata2[idx_new]
# 合并
edgedata_merge = edgedata1.append([edge_exist, edge_new],
ignore_index=True)
edgedata_merge = edgedata_merge.drop(['edges_pd', 'edges_nd'],
axis=1)
return edgedata_merge
if accumulate_attr == 'all':
accumulate_attr = edgedata_1.columns.copy()
accumulate_attr = accumulate_attr.drop(['Source', 'Target'])
elif isinstance(accumulate_attr, str):
accumulate_attr = [accumulate_attr, ]
# 合并边
if dirceted:
edgedata_merge = _merge_directed(edgedata_1, edgedata_2)
else:
edgedata_merge = _merge_undirected(edgedata_1, edgedata_2)
# 处理属性
if len(accumulate_attr) > 0:
# ---------------找到重复边-----------------
duplicated_last = edgedata_merge[edgedata_merge.duplicated(subset=['Source', 'Target'],
keep='first')].copy()
duplicated_first = edgedata_merge[edgedata_merge.duplicated(subset=['Source', 'Target'],
keep='last')].copy()
# ----------------累加属性------------------
index_first = list(duplicated_first.index)
duplicated_last.index = index_first
edgedata_merge.loc[index_first, accumulate_attr] += duplicated_last[accumulate_attr]
# ---------------去掉重复边------------------------------
edgedata_merge = edgedata_merge.drop_duplicates(subset=['Source', 'Target'])
return edgedata_merge
@staticmethod
def calculate_graph_features(graph,centrality=False,save_path=None):
'''
:param graph: graph对象,应该是连通的!
:param centrality: 是否计算中心度信息
:param save_path: 信息保存地址
:return: graph的各种网络特征,pd.Series
用来计算图的各种网络特征,计算时间跟图的大小相关
大部分特征都是不加权计算的。
用字典来记载可能更好
'''
def _average(node_dic):
if len(node_dic) < 1:
return 0
else:
return np.average(list(node_dic.values()))
features = {}
NODE_NUM = graph.number_of_nodes()
if NODE_NUM < 1:
print('Graph is empty')
return pd.Series()
features['Node'] = NODE_NUM
features['Edge'] = graph.number_of_edges()
features['Density'] = nx.density(graph)
features['AveDegree'] = _average(graph.degree())
# features['Diameter'] = nx.diameter(graph)
# 有向图和无向图
if not graph.is_directed():
features['Directed'] = 0
features['AveClusterCoefficent'] = nx.average_clustering(graph)
features['AveShortestPathLength'] = nx.average_shortest_path_length(graph)
else:
features['Directed'] = 1
features['AveInDegree'] = _average(graph.in_degree())
features['AveOutDegree'] = _average(graph.out_degree())
# 中心性指标
if centrality:
# 度中心性
node_degree_centrality = nx.degree_centrality(graph)
ave_degree_centrality = _average(node_degree_centrality)
# 特征向量中心度
node_eigenvector_centrality = nx.eigenvector_centrality_numpy(graph)
ave_eigenvector_centrality = _average(node_eigenvector_centrality)
#介数中心度
node_betweenness = nx.betweenness_centrality(graph)
ave_betweenness_centrality = _average(node_betweenness)
#接近中心度
node_closeness = nx.closeness_centrality(graph)
ave_closeness_centrality = _average(node_closeness)
features['AveDegreeCentrality'] = ave_degree_centrality
features['AveEigenvectorCentrality'] = ave_eigenvector_centrality
features['AveBetweennessCentrality'] = ave_betweenness_centrality
features['AveClosenessCentrality'] = ave_closeness_centrality
graph_info = pd.Series(features)
if save_path is not None:
graph_info.to_csv(save_path,index=True,header=None)
print('File Saved : ', save_path)
return graph_info
@staticmethod
def calculate_node_features(graph,weight=None,centrality=False, save_path=None):
'''
:param graph: networkx.Graph \ Digraph
:param weight: str, 某些指标是否使用边的权重,weight = 'Weight'
:param centrality: 是否计算中心性指标
:param save_path: 保存地址
:return: DataFrame, node_features
'''
if graph.number_of_nodes() < 1:
return pd.DataFrame()
features = {}
features['Degree'] = nx.degree(graph)
if graph.is_directed():
features['InDegree'] = graph.in_degree()
features['OutDegree'] = graph.out_degree()
if centrality:
features['DegreeCentrality'] = nx.degree_centrality(graph)
features['BetweennessCentrality'] = nx.betweenness_centrality(graph)
features['EigenvectorCentrality'] = nx.eigenvector_centrality_numpy(graph)
features['ClosenessCentrality'] = nx.closeness_centrality(graph)
if weight is not None:
features['WeightedDegree'] = nx.degree(graph,weight=weight)
if graph.is_directed():
features['WeightedInDegree'] = graph.in_degree(weight=weight)
features['WeightedOutDegree'] = graph.out_degree(weight=weight)
if centrality:
features['WeightedBetweennessCentrality'] = nx.betweenness_centrality(graph,weight=weight)
features['WeightedEigenvectorCentrality'] = nx.eigenvector_centrality_numpy(graph,weight=weight)
node_features = pd.DataFrame(features)
node_features['Id'] = node_features.index
if save_path is not None:
node_features.to_csv(save_path,header=None)
print('File Saved : ', save_path)
return node_features
@staticmethod
def degree_filter(graph,lower=None,upper=None):
'''
:param graph: Networkx.Graph/DiGraph
:param lower: int/float,the lower limitation of degree
:param upper: int/float,the upper limitation of degree
:return: graph after filter
'''
node_degree = graph.degree()
nodes_all = list(graph.nodes())
print('Node num: ',graph.number_of_nodes())
data = pd.DataFrame(list(node_degree.items()),columns=['Id','Degree'])
if lower is not None:
data = data[data['Degree'] >= lower]
if upper is not None:
data = data[data['Degree'] <= upper]
nodes_saved = list(data['Id'])
nodes_drop = set(nodes_all).difference(nodes_saved)
graph.remove_nodes_from(nodes_drop)
print('Node num: ',graph.number_of_nodes())
return graph
@staticmethod
def draw_graph(graph,nodes=None):
'''
采用pygraphistry 来绘制网络图,节点颜色目前还不能超过12种
:param graph: networkx.Graph/DiGraph
:param nodes: DataFrame,如果需要按社区颜色绘制,请传入带有社区信息的节点表, ['Id','modulraity_class']
:return: None
'''
import graphistry
graphistry.register(key='contact pygraphistry for api key')
ploter = graphistry.bind(source='Source', destination='Target').graph(graph)
if nodes is not None:
ploter = ploter.bind(node='Id', point_color='modularity_class').nodes(nodes)
ploter.plot()
return None
@staticmethod
def community_detect(graph=None,edgedata=None,directed=True,
use_method=1, use_weight=None):
'''
:param edgedata: DataFrame, 边的数据
:param graph: Networkx.Graph/DiGraph,与edgedata给定一个就行
:param directed: Bool, 是否有向
:param use_method: Int, 使用方法
:param weight_name: String, 社区发现算法是否使用边权重,如果使用,例如weight_name='Weight'
:return: 带有社区信息的节点表格
'''
#创建igraph.Graph类
if graph is None and edgedata is not None:
graph = NetworkUnity.get_graph_from_edgedata(edgedata,
attr=use_weight,
directed=directed,
connected_component=True)
gr = graphistry.bind(source='Source', destination='Target', node='Id', edge_weight='Weight').graph(graph)
edgedata = NetworkUnity.networkx2pandas(graph)
ig = gr.pandas2igraph(edgedata, directed=directed)
#--------------------------------------------------------
#如果使用边的数据edgedata
# gr = graphistry.bind(source='Source',destination='Target',edge_weight='Weight').edges(edgedata)
# nodes = NetworkUnity.get_nodes_from_edgedata(edgedata)
# gr = gr.bind(node='Id').nodes(nodes)
# ig = gr.pandas2igraph(edgedata,directed=directed)
# --------------------------------------------------------
'''
关于聚类的方法,
参考http://pythonhosted.org/python-igraph/igraph.Graph-class.html
希望以后可以对每一个算法添加一些简单的介绍
'''
method_dict = {
0:'''ig.community_fastgreedy(weights='%s')'''%str(use_weight),
1:'''ig.community_infomap(edge_weights='%s',trials=10)'''%str(use_weight),
2:'''ig.community_leading_eigenvector_naive(clusters=10)''',
3:'''ig.community_leading_eigenvector(clusters=10)''',
4:'''ig.community_label_propagation(weights='%s')'''%str(use_weight),
5:'''ig.community_multilevel(weights='%s')'''%str(use_weight),
6:'''ig.community_optimal_modularity()''',
7:'''ig.community_edge_betweenness()''',
8:'''ig.community_spinglass()''',
}
detect_method = method_dict.get(use_method)
if use_weight is None:
#如果为None,需要把公式里面的冒号去掉,注意如果有多个None,这个方法需要重新写
detect_method= detect_method.replace('\'','')
# -------------开始实施社区发现算法-----------
print('社区发现方法: ',detect_method)
res_community = eval(detect_method)
#将社区信息保存到节点信息中
ig.vs['modularity_class'] = res_community.membership
#将节点信息转化为Dataframe表
edgedata_,nodedata = gr.igraph2pandas(ig)
modularity = res_community.modularity
print(res_community.summary())
print('community size:\n', res_community.sizes())
print('modularity:\n', modularity)
return nodedata
@staticmethod
def modularity(cluster_result,edgedata=None,graph=None,
directed=True, edge_weight='Weight'):
'''
:param cluster_result: 聚类结果,参考gephi输出的表,[Id,modulraity_class]
:param edgedata: 边数据,与graph给定其中一个
:param graph: networkx中的Graph/DiGraph
:param directed: 是否为有向图
:param edge_weight:
None/str, 计算模块度是否使用边的权重,如果使用,给定边权重的name
例如edge_weight='Weight'
如果不使用,请给定为None
:return: Q值
ps:
1.edgedata 和 graph 至少要给定一个
2.与gephi中计算的模块度结果已经对比过了,结果一致
'''
import graphistry
if edgedata is None and graph is not None:
edgedata = NetworkUnity.networkx2pandas(graph)
gr = graphistry.bind(source='Source', destination='Target',
node='Id',edge_weight=edge_weight)
ig = gr.pandas2igraph(edgedata,directed=directed)
nodes = pd.DataFrame(list(ig.vs['Id']), columns=['Id'])
community_data = pd.merge(nodes, cluster_result, left_on='Id', right_on='Id', how='left')
if edge_weight is None:
Q = ig.modularity(list(community_data['modularity_class']),weights=None)
else:
Q = ig.modularity(list(community_data['modularity_class']),weights=list(ig.es[edge_weight]))
return Q
@staticmethod
def get_confusion_matrix(result_1, result_2, return_df=True):
'''
计算两个社区划分的混淆矩阵
:param result_1: 划分结果1,包含[Id,modularity_class]; DataFrame;
:param result_2: 划分结果2,形式同result_1; DataFrame
:param return_df: 是否返回DataFrame形式
:return: confusition matrix based on two classify result
'''
result_1.columns = ['Id', 'modularity_class']
result_2.columns = ['Id', 'modularity_class']
clusters_1 = pd.unique(result_1['modularity_class'])
clusters_2 = pd.unique(result_2['modularity_class'])
NUM_1 = len(clusters_1)
NUM_2 = len(clusters_2)
clusters_1.sort()
clusters_2.sort()
def _get_matrix():
for cluster_1 in clusters_1:
for cluster_2 in clusters_2:
nodes_1 = result_1.loc[result_1['modularity_class'] == cluster_1, 'Id']
nodes_2 = result_2.loc[result_2['modularity_class'] == cluster_2, 'Id']
union_nodes = np.intersect1d(nodes_1, nodes_2)
yield len(union_nodes)
matrix = list(_get_matrix())
matrix = np.reshape(np.asarray(matrix), newshape=(NUM_1, NUM_2))
if return_df:
matrix = pd.DataFrame(matrix, index=clusters_1, columns=clusters_2)
return matrix
@staticmethod
def normalized_mutual_info_similarity(confusion_matrix):
'''
# 计算社区划分的相似度,以及规范化的互信息
# Ref. Comparing community structure identification @<NAME>
结果验证:
跟sklearn.metric.normalized_mutual_info_score 的结果一致!!
那你写这玩意有啥用!!
:param confusion_matrix: 混淆矩阵
:return: 社区划分的相似度
'''
confusion_matrix = np.asarray(confusion_matrix)
NUM_NODES = np.sum(confusion_matrix, axis=None)
nums_a = np.sum(confusion_matrix, axis=1) # 按列相加
nums_b = np.sum(confusion_matrix, axis=0) # 按行相加
print(np.all(nums_a), np.all(nums_b), NUM_NODES)
def _cal_entropy(info):
print(np.all(info / NUM_NODES))
return np.sum(np.multiply(info, np.log(info / NUM_NODES)))
# 分母计算
entropy_a = _cal_entropy(nums_a)
entropy_b = _cal_entropy(nums_b)
# 分子计算
both_info = np.dot(np.asmatrix(nums_a).T, np.asmatrix(nums_b))
joint_mat = np.multiply(confusion_matrix,
np.log(confusion_matrix / both_info * NUM_NODES + 1e-10))
mutual_info =
|
np.sum(joint_mat, axis=None)
|
numpy.sum
|
import sys
import os
import re
import numpy as np
evtth = .1 # 100 eV for WFI Geant4 simulations
splitth = evtth # same as evtth for WFI Geant4 simulations
xydep_min = -513
xydep_max = 513
# hash of codes indexed by particle type indexed
ptypes = {
'proton': 0, 'gamma': 1, 'electron': 2, 'neutron': 3,
'pi+': 4, 'e+': 5, 'pi-': 6, 'nu_mu': 7,
'anti_nu_mu': 8, 'nu_e': 9, 'kaon+': 10, 'mu+': 11,
'deuteron': 12, 'kaon0L': 13, 'lambda': 14, 'kaon-': 15,
'mu-': 16, 'kaon0S': 17, 'alpha': 18, 'anti_proton': 19,
'triton': 20, 'anti_neutron': 21, 'sigma-': 22,
'sigma+': 23, 'He3': 24, 'anti_lambda': 25, 'anti_nu_e': 26,
'anti_sigma-': 27, 'xi0': 28, 'anti_sigma+': 29, 'xi-': 30,
'anti_xi0': 31, 'C12': 32, 'anti_xi-': 33, 'Li6': 34,
'Al27': 35, 'O16': 36, 'Ne19': 37, 'Mg24': 38,
'Li7': 39, 'He6': 40, 'Be8': 41, 'Be10': 42
}
def match(regex: str, string: str):
return re.compile(regex).search(string)
def flow_test1(rf_name = 'flow_test1.txt'):
with open(rf_name, 'r') as FH:
f = FH.readlines()
g = []
with open(infile, 'r') as dec:
for line in dec:
if match('^\s*#', line): #skip comments
continue
if match('^\s*$', line): #skip blank lines:
continue
if not match(',', line):
continue
g.append(line)
fields = line.rstrip().split(',')
if match('[a-zA-Z]', fields[0]):
g.append("if\n")
else:
g.append("else\n")
if len(f) != len(g):
raise ValueError(f"The outputs had different number of lines {len(f)} vs {len(g)}")
for i in range(len(g)):
if f[i] != g[i]:
raise ValueError(f"Different values found at index {i}: {f[i]}, {g[i]}")
print("All good python")
def flow_test2(rf_name = 'flow_test2.txt'):
with open(rf_name, 'r') as FH:
f = FH.readlines()
g = []
with open(infile, 'r') as dec:
for line in dec:
if match('^\s*#', line): #skip comments
continue
if match('^\s*$', line): #skip blank lines:
continue
if not match(',', line):
continue
g.append(line)
fields = line.rstrip().split(',')
if match('[a-zA-Z]', fields[0]):
g.append("if\n")
else:
if float(fields[2]) <= splitth:
continue
tmp_x, tmp_y = int(fields[0]), int(fields[1])
if tmp_x<xydep_min or tmp_y<xydep_min or tmp_x>xydep_max or tmp_y>xydep_max:
continue # skip it if it's outside the 512x512 region of a quad
g.append("else\n")
if len(f) != len(g):
raise TypeError
for i in range(len(g)):
if f[i] != g[i]:
raise ValueError(f"Different values found at index {i}: {f[i]}, {g[i]}")
print("All good python")
def flow_test3(rf_name = 'flow_test3.txt'):
state = 0
f = []
perl_ptype = {}
perl_cproc = {}
with open(rf_name, 'r') as FH:
for line in FH:
#print(line, end = '')
if line == "next\n":
state += 1
continue
if state == 0:
f.append(line)
if state == 1:
a = line.split()
a[0] = a[0][1:]
a[-1] = a[-1][:-1]
perl_eid = np.array(a, dtype = int)
if state == 2:
key, value = line.split(',')
perl_ptype[int(key)] = value.rstrip()
if state == 3:
key, value = line.split(',')
perl_cproc[int(key)] = value.rstrip()
if state == 4:
deps = line.split(',')[:-1]
perl_xdep = np.array(deps, dtype = int)
if state == 5:
deps = line.split(',')[:-1]
perl_ydep = np.array(deps, dtype = int)
if state == 6:
deps = line.split(',')[:-1]
perl_endep = np.array(deps, dtype = float)
if state == 7:
deps = line.split(',')[:-1]
perl_rundep = np.array(deps, dtype = int)
if state == 8:
deps = line.split(',')[:-1]
perl_detectordep = np.array(deps, dtype = int)
if state == 9:
deps = line.split(',')[:-1]
perl_eiddep = np.array(deps, dtype = int)
if state == 10:
deps = line.split(',')[:-1]
perl_framedep = np.array(deps, dtype = int)
if state == 11:
deps = line.split(',')[:-1]
perl_piddep = np.array(deps, dtype = int)
if state == 12:
deps = line.split(',')[:-1]
perl_ptypedep = np.array(deps, dtype = int)
if state == 13:
ids = line.split(',')[:-1]
perl_blobid = np.array(ids, dtype = int)
eid = np.zeros(0, dtype=int) # primary ID
xdep = np.zeros(0, dtype=int)
ydep = np.zeros(0, dtype=int)
endep = np.zeros(0, dtype=float)
rundep = np.zeros(0, dtype=int)
detectordep = np.zeros(0, dtype=int)
eiddep = np.zeros(0, dtype=int)
framedep = np.zeros(0, dtype=int)
piddep = np.zeros(0, dtype=int)
ptypedep = np.zeros(0, dtype=int)
blobid =
|
np.zeros(0, dtype=int)
|
numpy.zeros
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import gr3
import faulthandler
from PyQt5 import QtCore, QtGui, QtWidgets
import sys
import os
import gr
import signal
from . import spinVis_camera
from . import spinVis_coor
from PyQt5.QtWidgets import (QHBoxLayout, QCheckBox, QRadioButton, QButtonGroup, QLineEdit, QVBoxLayout, QPushButton,
QLabel, QTableWidgetItem) # Import der versch. QtWidgets
from PyQt5.QtCore import Qt
import math
import numpy as np
class MainWindow(QtWidgets.QWidget): #Class MainWindow is the overall window, consisting of a GUI and a canvas part
def __init__(self,ladestyle , *args, **kwargs):
super().__init__(**kwargs) #Takes data from parent
self.inputstyle = ladestyle #Shows if data comes from pipe or file selection
self.initUI() #Initialize User Interfaces
pass
def initUI(self):
self.setWindowTitle('SpinVis2 by PGI/JCNS-TA')
self.draw_window = GLWidget() #Initialisation of the canvas window
self.gui_window = GUIWindow(
self.draw_window, self.inputstyle) #Initialisation of the GUI with the GLWindow as an parameter
self.draw_window.setMinimumSize(700, 700) #Size 700x700 is the biggest window possible for the laptop display of a MacBook Pro
self.gui_window.setSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred)
self.gui_window.setFocusPolicy(Qt.ClickFocus)
self.complete_window_hbox = QHBoxLayout() # Horizontales Layout umd beides nebeneinander zulegen
self.complete_window_hbox.addWidget(self.draw_window)
self.complete_window_hbox.addWidget(self.gui_window)
self.complete_window_hbox.setContentsMargins(0, 0, 0, 0)
self.complete_window_hbox.setSpacing(0) # Abstand 0 setzen um beides direkt nebeneinander zu haben
self.setLayout(self.complete_window_hbox)
def keyPressEvent(self, QKeyEvent):
#self.gui_window.p_win.perspective_check.setFocusPolicy(Qt.NoFocus)
#self.gui_window.p_win.orthographic_check.setFocusPolicy(Qt.NoFocus)
if QKeyEvent.key() == QtCore.Qt.Key_Right:
self.draw_window.rotate_right()
if QKeyEvent.key() == QtCore.Qt.Key_Left:
self.draw_window.rotate_left()
if QKeyEvent.key() == QtCore.Qt.Key_Up:
self.draw_window.rotate_up()
if QKeyEvent.key() == QtCore.Qt.Key_Down:
self.draw_window.rotate_down()
if QKeyEvent.key() == QtCore.Qt.Key_A:
self.draw_window.move_left()
if QKeyEvent.key() == QtCore.Qt.Key_D:
self.draw_window.move_right()
if QKeyEvent.key() == QtCore.Qt.Key_W:
self.draw_window.move_up()
if QKeyEvent.key() == QtCore.Qt.Key_S:
self.draw_window.move_down()
if QKeyEvent.key() == QtCore.Qt.Key_Z:
spinVis_camera.zoom(0.1, self.draw_window.width(), self.draw_window.height())
if QKeyEvent.key() == QtCore.Qt.Key_X:
spinVis_camera.zoom(- 0.1, self.draw_window.width(), self.draw_window.height())
self.draw_window.update()
class GUIWindow(
QtWidgets.QScrollArea): # GUI Window setzt sich aus einzelnen Windows die vertikal unteieinander gelegt wurden zusammen
def __init__(self,glwindow, ladestyle, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebergabe des GLwindows als lokale private variable
self.ladestyle = ladestyle
self.initUI()
pass
def initUI(self):
self.parent_widget = QtWidgets.QWidget()
self.pgroup = QtWidgets.QGroupBox()
self.p_win = ProjectionWindow(self._glwindow)
self.slide_win = AngleWindow(self._glwindow) #Slider Boxlayout fuer Kamerasteuerung per Slider
self.t_win = TranslationWindow(self._glwindow)
self.bond_win = BondWindow(self._glwindow)
self.screen_win = ScreenWindow(self._glwindow) # Screen Boxlayout fuer Screenshot steuerung
self.cs_win = SpinColorWindow(self._glwindow)
self.l_win = DataLoadWindow(self._glwindow, self.ladestyle, self.cs_win) # Lade Boxlayout um neuen Datensatz zu laden
self.c_win = ColorWindow(self._glwindow, self.cs_win) # Color Boxlayout um Farbe für Hintergrund und Spins zu setzen
self.v_win = VideoWindow(self._glwindow)
self.vbox = QVBoxLayout()
self.vbox.addWidget(self.p_win)
self.vbox.addWidget(self.slide_win)
self.vbox.addWidget(self.t_win)
self.vbox.addWidget(self.bond_win)
self.vbox.addWidget(self.screen_win)
self.vbox.addWidget(self.l_win)
self.vbox.addWidget(self.cs_win)
self.vbox.addWidget(self.c_win)
self.vbox.addWidget(self.v_win)
self.vbox.addStretch(1)
self.parent_widget.setLayout(self.vbox)
self.setWidget(self.parent_widget)
self.setWidgetResizable(True)
self.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff)
class ProjectionWindow(QtWidgets.QWidget): #
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebergabe des GLwindows als lokale private variable
self.initUI()
pass
def initUI(self):
self.projectiongroup = QtWidgets.QGroupBox("Projection Window")
self.projectiongroup.setTitle("Projection Window")
self.projectiongroup.setToolTip("The projectiontype defines how a 3D object is pictured on a 2D screen. \n"
"The perspektive projection is simulating the effects of the real world. Objects \n"
"farther away appear smaller. The orthographic projection depicts every object \n"
"with the same size. It may reveal patterns in the data, that would else remain hidden")
self.groupbox = QtWidgets.QVBoxLayout()
self.groupbox.addWidget(self.projectiongroup)
self.projection_box = QHBoxLayout() # Eine grosse HBox die ein Label und eine weite HBox beinhaltet. In der sind 2 VBoxLayouts mit jeweils einem HLabel und einem RadioButton
# self.projection_box.addStretch(1)
self.projection_label = QtWidgets.QLabel()
self.projection_label.setText("Choose a perspective type:") # Pop-Up das Hilftext anzeigt
self.checkboxbox = QHBoxLayout() # Checkboxbox beinhaltet 2 HBoxen, die je ein Label und ein Radiobutton haben
self.perspective_box = QHBoxLayout()
self.perspective_check = QRadioButton()
self.perspective_check.setFocusPolicy(Qt.NoFocus)
self.perspective_label = QLabel()
self.perspective_label.setText("Perspektive")
# self.perspective_check.toggle()
self.perspective_box.addWidget(self.perspective_label)
self.perspective_box.addWidget(self.perspective_check)
self.checkboxmanagment = QButtonGroup() # Mit der Buttongroup werden die Radiobuttons auf exklusiv gestellt
self.orthographic_box = QHBoxLayout()
self.orthographic_check = QRadioButton()
self.orthographic_check.setChecked(True)
self.orthographic_check.setFocusPolicy(Qt.NoFocus)
self.orthographic_label = QLabel()
self.orthographic_label.setText("Orthographic")
self.perspective_box.addWidget(self.orthographic_label)
self.perspective_box.addWidget(self.orthographic_check)
self.checkboxbox.addLayout(self.perspective_box)
self.checkboxbox.addLayout(self.orthographic_box)
self.orthographic_check.clicked.connect(self.radio_clicked)
self.perspective_check.clicked.connect(self.radio_clicked)
self.projection_box.addWidget(self.projection_label)
self.projection_box.addLayout(self.checkboxbox)
self.projectiongroup.setLayout(self.projection_box)
self.groupbox.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.groupbox)
pass
def radio_clicked(self):
if self.orthographic_check.isChecked():
spinVis_camera.is_orthograpghic = True
spinVis_camera.set_projection_type_orthographic()
else:
spinVis_camera.is_orthograpghic = False
spinVis_camera.set_projection_type_perspective()
self._glwindow.update()
def is_orthographic_projection(self):
if self.orthographic_check.isChecked():
return True
else:
return False
class SpinColorWindow(QtWidgets.QWidget):
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung
self.initUI()
pass
def initUI(self):
self.spincolorgroup = QtWidgets.QGroupBox("Spin Color Window")
self.spincolorgroup.setTitle("Spin Color Window")
self.spincolorgroup.setToolTip("Click on the cell under the symbol of the spins you want to change color.\n"
"If you use the feature further down to change the color of all spins or \n"
"change the data set that is in use, the selection will be reseted. \n"
"If you want to load a color scheme, it must have the same list of symbols \n"
"like the one you have loaded right now. A saved color scheme can be found \n"
"under spinvis_color_save.txt")
self.groupbox = QtWidgets.QVBoxLayout()
self.groupbox.addWidget(self.spincolorgroup)
self.table_box = QtWidgets.QHBoxLayout()
self.button_box = QtWidgets.QVBoxLayout()
self.load_scheme_button = QtWidgets.QPushButton("Load scheme")
self.load_scheme_button.setFixedSize(130,30)
self.load_scheme_button.clicked.connect(self.load_color)
self.save_scheme_button = QtWidgets.QPushButton("Save scheme")
self.save_scheme_button.setFixedSize(130,30)
self.save_scheme_button.clicked.connect(self.save_color)
self.button_box.addWidget(self.save_scheme_button)
self.button_box.addWidget(self.load_scheme_button)
self.color_table = QtWidgets.QTableWidget(0, 0)
self.color_table.setFixedHeight(70)
self.color_table.setFocusPolicy(Qt.ClickFocus)
self.table_box.addWidget(self.color_table)
self.table_box.addLayout(self.button_box)
self.color_table.clicked.connect(self.on_click)
self.spincolorgroup.setLayout(self.table_box)
self.groupbox.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.groupbox)
def load_color(self):
options = QtWidgets.QFileDialog.Options() # File Dialog zum auswählen der Daten-Datei
options |= QtWidgets.QFileDialog.DontUseNativeDialog
input, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Choose your data", "",
"All Files (*);;", options=options)
list = []
if (not input):
pass # Falls nichts ausgewählt wird, wird kein neuer Datensatz gewählt
else:
if not (input.endswith(".txt")):
print("Please make sure that your file is a '.txt'")
return
try: # Es wird probiert den Pfad zu öffnen um eine Exception, bei nicht vorhandener Datei abzufangen (mit Path-Dialog eeigentlich unnötig)
with open(input, 'r') as f:
pass
except FileNotFoundError:
print("This path does not exist, please try again")
return
with open(input,
'r') as infile: # Fuer den Bereich die Datei oeffnen, fuer jede Zeile das ganze in 3 Tupel schreiben
for line in infile.readlines():
line = line.strip()
list.append(line)
if len(list) == self.color_table.columnCount():
i= 0
for line in list:
helf = line.split() # Leerzeichen als Trennzeichen
if helf[0] == self.color_table.horizontalHeaderItem(i).text().title():
rgb_list = [int(helf[1]), int(helf[2]), int(helf[3])]
rgb = QtGui.QColor.fromRgb(rgb_list[0], rgb_list[1], rgb_list[2])
self.color_table.item(0, i).setBackground(rgb)
spinVis_camera.set_symbol_spin_color([helf[1], helf[2], helf[3]], self.color_table.horizontalHeaderItem(
i).text().title())
i = i+1
def save_color(self):
f = open("spinvis_color_save.txt", "w")
for i in range(self.color_table.columnCount()):
symbol = self.color_table.horizontalHeaderItem(i).text().title()
rgbtuple = self.color_table.item(0, i).background().color().getRgb()
print(symbol + "\t" + str(rgbtuple[0]) + "\t" + str(rgbtuple[1]) + "\t" + str(rgbtuple[2]), file=f)
f.close()
def on_click(self):
spin_rgb = [c * 255 for c in
spinVis_camera.spin_rgb] # Umrechnung der momentanen Farbe als Stndardwert, Multiplikation der Werte von 0-1 auf 0-255
for currentQTableWidgetItem in self.color_table.selectedItems():
currentQTableWidgetItem.setSelected(False)
selectedColor = QtWidgets.QColorDialog.getColor(QtGui.QColor.fromRgb(*spin_rgb))
if selectedColor.isValid():
self.color_table.item(currentQTableWidgetItem.row(), currentQTableWidgetItem.column()).setBackground(selectedColor)
spinVis_camera.set_symbol_spin_color(selectedColor.getRgb(), self.color_table.horizontalHeaderItem(currentQTableWidgetItem.column()).text().title())
self._glwindow.update()
def fillTable(self, list):
symbol_list = np.array(list)
self.color_table.setRowCount(1)
f = open("listtest.txt", 'w')
for e in symbol_list:
print(e, file=f)
self.color_table.setColumnCount(len(symbol_list))
i = 0
symbol_list_int = symbol_list.tolist()
for e in symbol_list_int:
self.color_table.setHorizontalHeaderItem(i, QTableWidgetItem(str(e)))
self.color_table.setItem(0, i, QTableWidgetItem(""))
c = spinVis_camera.get_symbol_color(e)
self.color_table.item(0, i).setBackground(QtGui.QColor.fromRgb(int(c[0]), int(c[1]), int(c[2])))
i = i+1
def color_all_spins(self, rgb):
for e in range(self.color_table.columnCount().__int__()):
self.color_table.item(0, e).setBackground(QtGui.QColor.fromRgb(rgb[0], rgb[1], rgb[2]))
class DataLoadWindow(QtWidgets.QWidget):
def __init__(self, glwindow, ladestyle, spin_colour_win,*args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung
self.lade_style = ladestyle
self.spin_colour_win = spin_colour_win
self.initUI()
pass
def initUI(self):
self.loadgroup = QtWidgets.QGroupBox("Data Load Window")
self.loadgroup.setTitle("Data Load Window")
self.loadgroup.setToolTip("Please choose a '.txt' file to load that has the following structure: \n"
"the position of the center of the spin, the direction of the spin, a symbol. \n"
"For example: -1.819 6.300 -25.500 0.022 -0.075 0.355 54. \n"
"Its important that the individual numbers are seperated by tabs. \n"
"But you can also save a data file. If you do so you can find it under \n"
"spinvis_save_data.txt.")
self.groupbox = QtWidgets.QVBoxLayout()
self.groupbox.addWidget(self.loadgroup)
self.load_label = QtWidgets.QLabel()
self.load_label.setText("Load new set of spins from a txt file:")
self.load_button = QPushButton('Load set', self)
self.load_button.setFixedSize(130, 30)
self.load_button.clicked.connect(self.load_file)
self.save_button = QPushButton('Save set', self)
self.save_button.setFixedSize(130, 30)
self.save_button.clicked.connect(self.save_data)
self.hbox = QHBoxLayout() # HBox mit einem Label und einem Knopf zum Laden
#self.hbox.addStretch(1)
self.hbox.addWidget(self.load_label)
self.hbox.addWidget(self.save_button)
self.hbox.addWidget(self.load_button)
self.loadgroup.setLayout(self.hbox)
self.groupbox.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.groupbox)
def save_data(self):
spinVis_camera.save_file()
def load_file(self):
options = QtWidgets.QFileDialog.Options() # File Dialog zum auswählen der Daten-Datei
options |= QtWidgets.QFileDialog.DontUseNativeDialog
input, _ = QtWidgets.QFileDialog.getOpenFileName(self, "Choose your data", "",
"All Files (*);;", options=options)
if (not input):
pass # Falls nichts ausgewählt wird, wird kein neuer Datensatz gewählt
else:
self._glwindow.data_path = input # So wird der Eingabestring verwendet und der neue Datensatz gewählt
#try:
self._glwindow.setDataSet()
''' except TypeError:
typ_err_box = QtWidgets.QMessageBox()
typ_err_box.setIcon(2) # Gives warning Icon
typ_err_box.setText("Error ocurred while trying to load a data set!")
typ_err_box.setInformativeText(
"Something went wrong trying to open the data file. Please make sure that the the selected file is a '.txt'-file with the schematic"
" described in the tooltip.")
typ_err_box.exec_()'''
self.spin_colour_win.fillTable(spinVis_camera.fill_table())
class ColorWindow(QtWidgets.QWidget):
def __init__(self, glwindow,spin_color_window, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung
self._spin_color_win = spin_color_window
self.initUI()
pass
def initUI(self):
self.colorgroup = QtWidgets.QGroupBox("Color Window")
self.colorgroup.setTitle("Color Window")
self.colorgroup.setToolTip("Click on either button to open a window where you can choose a color \n"
"for either the background or the spins. This color will be saved for \n"
"how long the app is running. However it will be reset if you restart \n"
"the app.")
self.groupbox = QtWidgets.QVBoxLayout()
self.groupbox.addWidget(self.colorgroup)
self.color_hbox = QHBoxLayout() # Hbox mt 2 Knöpfen und einem Label
self.color_label = QLabel()
self.color_label.setText("Choose a color:")
self.sphere_switch = QtWidgets.QPushButton()
self.sphere_switch.setText("Switch spheres")
self.sphere_switch.clicked.connect(self.switch_sphere)
self.bg_color_button = QPushButton('Background', self)
self.bg_color_button.setFixedSize(100, 30)
self.bg_color_button.clicked.connect(self.get_bg_color)
self.spin_color_button = QPushButton('Spins', self)
self.spin_color_button.setFixedSize(100, 30)
self.spin_color_button.clicked.connect(self.get_spin_color)
self.color_dialog = QtWidgets.QColorDialog() # Dialog Picker zum Farben auswählen
self.color_hbox.addWidget(self.color_label)
self.color_hbox.addWidget(self.sphere_switch)
self.color_hbox.addWidget(self.bg_color_button)
self.color_hbox.addWidget(self.spin_color_button)
self.colorgroup.setLayout(self.color_hbox)
self.groupbox.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.groupbox)
def switch_sphere(self):
if self._glwindow._issphere:
self._glwindow._issphere = False
else:
self._glwindow._issphere = True
self._glwindow.spinDraw()
self._glwindow.update()
def get_bg_color(self):
bg_rgb = [c * 255 for c in
spinVis_camera.bg_rgb] # Umrechnung der momentanen Farbe als Stndardwert, Multiplikation der Werte von 0-1 auf 0-255
selectedColor = QtWidgets.QColorDialog.getColor(QtGui.QColor.fromRgb(
*bg_rgb)) # Speichert die Auswahl des Farbendialogs und setzt Standardwert auf vorher umgewandelte Farben
if selectedColor.isValid():
self._glwindow.set_bg_color(selectedColor.getRgb())
def get_spin_color(self):
spin_rgb = [c * 255 for c in
spinVis_camera.spin_rgb] # Umrechnung der momentanen Farbe als Stndardwert, Multiplikation der Werte von 0-1 auf 0-255
selectedColor = QtWidgets.QColorDialog.getColor(QtGui.QColor.fromRgb(
*spin_rgb)) # Speichert die Auswahl des Farbendialogs und setzt Standardwert auf vorher umgewandelte Farben
if selectedColor.isValid():
self._spin_color_win.color_all_spins(selectedColor.getRgb())
spin_rgb[0] = selectedColor.getRgb()[0] / 255
spin_rgb[1] = selectedColor.getRgb()[1] / 255
spin_rgb[2] = selectedColor.getRgb()[2] / 255
self._glwindow.set_spin_color(selectedColor.getRgb())
class VideoWindow(QtWidgets.QWidget):
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung
self.initUI()
pass
def initUI(self):
self.vidgroup = QtWidgets.QGroupBox("Video Window")
self.vidgroup.setTitle("Video Window")
self.vidgroup.setToolTip("Create a video by clicking once on the 'Make a video' button. Pressing a second time\n"
"will finish the video. The default parameters are 1920*1920 pixels and 60 fps.\n"
"But if you enter valid value, they will be used instead. The default name is spinvis_output.mp4")
self.groupbox = QtWidgets.QVBoxLayout()
self.vidbox = QHBoxLayout()
self.vidlabel = QLabel()
self.vidlabel.setText("Create a video: ")
self.groupbox.addWidget(self.vidgroup)
self.namebox = QVBoxLayout()
self.namelabel = QLabel()
self.namelabel.setText("Name the video:")
self.vidname = QtWidgets.QTextEdit()
self.vidname.setFixedSize(100,25)
self.namebox.addWidget(self.vidlabel)
self.namebox.addWidget(self.vidname)
self.fpsbox = QVBoxLayout()
self.fpslabel = QLabel()
self.fpslabel.setText("FPS:")
self.validator = QtGui.QIntValidator(1, 120, self)
self.fpscounter = QtWidgets.QLineEdit()
self.fpscounter.setValidator(self.validator)
self.fpscounter.setFixedSize(25,25)
self.fpsbox.addWidget(self.fpslabel)
self.fpsbox.addWidget(self.fpscounter)
self.resolution_validator = QtGui.QIntValidator(1, 4000, self)
self.widthbox = QVBoxLayout()
self.widthlabel = QLabel()
self.widthlabel.setText("Width: ")
self.vidwidth = QtWidgets.QLineEdit()
self.vidwidth.setValidator(self.resolution_validator)
self.vidwidth.setFixedSize(50, 25)
self.widthbox.addWidget(self.widthlabel)
self.widthbox.addWidget(self.vidwidth)
self.heighthbox = QVBoxLayout()
self.heightlabel = QLabel()
self.heightlabel.setText("Height: ")
self.vidheight = QtWidgets.QLineEdit()
self.vidheight.setValidator(self.resolution_validator)
self.vidheight.setFixedSize(50, 25)
self.heighthbox.addWidget(self.heightlabel)
self.heighthbox.addWidget(self.vidheight)
self.vidbutton = QPushButton("Make a video")
self.vidbutton.clicked.connect(self.doVideo)
self.vidbox.addLayout(self.namebox)
self.vidbox.addLayout(self.fpsbox)
self.vidbox.addLayout(self.widthbox)
self.vidbox.addLayout(self.heighthbox)
self.vidbox.addWidget(self.vidbutton)
self.vidgroup.setLayout(self.vidbox)
self.groupbox.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.groupbox)
def doVideo(self):
self._glwindow.make_video(self.vidname.toPlainText().title(), self.fpscounter.text().title(),
self.vidwidth.text().title(), self.vidheight.text().title())
pass
class ScreenWindow(QtWidgets.QWidget):
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebernahme des GLWindows zur Slidersteuerung
self.initUI()
pass
def initUI(self):
self.screengroup = QtWidgets.QGroupBox("Screenshot Window")
self.screengroup.setTitle("Screenshot Window")
self.screengroup.setToolTip("Click the button to generate a screenshot. This screenshot contains only the\n"
"coloured part of the window, not the gui. Currently length is the fixed size \n"
"of 1000 * 1000px, but we are working on a setting for that. The screenshot can \n"
"either be in the PNG or the HTML-format. Latter can be opend with your browser")
self.outer_box = QVBoxLayout() # Position the screengroup on the widget (self)
self.outer_box.addWidget(self.screengroup)
self.fullbox = QHBoxLayout() # Fullbox beinhaltet Screenshotknopf, Radiobuttons und Eingabe Zeile, jeweils in VBox mit Labeln
self.screenbox = QVBoxLayout() # Screenbox beinhaltet das Label und den Knopf names Screenshot
self.lbl = QLabel()
self.screenbutton = QPushButton('Screenshot', self)
self.screenbutton.setFixedSize(100, 30)
self.screenbutton.clicked.connect(self.doScreenshot)
self.lbl.setText("Screenshot")
self.lbl.setFixedSize(100, 30)
self.screenbox.addWidget(self.lbl)
self.screenbox.addWidget(self.screenbutton)
self.fileVBox = QVBoxLayout() # Filebox beinhaltet die Eingabezeile und das Label
self.fileName = QLineEdit()
self.fileName.setFocusPolicy(Qt.ClickFocus)
self.fileLabel = QLabel()
self.fileLabel.setText("Filename:")
self.fileVBox.addWidget(self.fileLabel)
self.fileVBox.addWidget(self.fileName)
self.checkboxbox = QHBoxLayout() # Checkboxbox beinhaltet 2 HBoxen, die je ein Label und ein Radiobutton haben
self.pngbox = QVBoxLayout()
self.pngcheck = QRadioButton()
self.pngcheck.setChecked(True)
self.pnglabel = QLabel()
self.pnglabel.setText("PNG")
self.pngcheck.toggle()
self.pngbox.addWidget(self.pnglabel)
self.pngbox.addWidget(self.pngcheck)
self.checkboxmanagment = QButtonGroup() # Mit der Buttongroup werden die Radiobuttons auf exklusiv gestellt
self.povbox = QVBoxLayout()
self.povcheck = QRadioButton()
self.povcheck.setChecked(False)
self.povlabel = QLabel()
self.povlabel.setText("POV")
self.htmlbox = QVBoxLayout()
self.htmlcheck = QRadioButton()
self.htmlcheck.setChecked(False)
self.htmllabel = QLabel()
self.htmllabel.setText("HTML")
# self.pngcheck..connect(self.pngChange)
# self.htmlcheck.stateChanged.connect(self.htmlChange)
self.checkboxmanagment.addButton(
self.pngcheck) # Hinzufuegen der Radiobuttons und dann das setzen der Gruppe auf exklusiv
self.checkboxmanagment.addButton(self.povcheck)
self.checkboxmanagment.addButton(self.htmlcheck)
self.checkboxmanagment.setExclusive(True) # Exklusiv, sodass immer nur genau ein Knopf an sein kann
self.povbox.addWidget(self.povlabel)
self.povbox.addWidget(self.povcheck)
self.htmlbox.addWidget(self.htmllabel)
self.htmlbox.addWidget(self.htmlcheck)
self.checkboxbox.addLayout(self.pngbox)
self.checkboxbox.addLayout(self.povbox)
self.checkboxbox.addLayout(self.htmlbox)
self.fullbox.addLayout(self.screenbox) # Hinzufuegen der einzelnen Boxen zu der Gesamtbox
self.fullbox.addLayout(self.checkboxbox)
self.fullbox.addLayout(self.fileVBox)
self.screengroup.setLayout(self.fullbox)
self.outer_box.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.outer_box)
self.warning_box = QtWidgets.QMessageBox()
self.warning_box.setText("The name must be at least one character long")
pass
def doScreenshot(self):
if self.pngcheck.isChecked(): # Wenn die Png Box an ist dann wird der Dateiname auf Variable gesetzt und das ganze anf das
dataname = self.fileName.text() # glwindw uebergeben, da ansonsten zu fehlern kommt
if dataname != "":
self._glwindow.export(dataname)
else:
self.warning_box.show()
else:
if self.htmlcheck.isChecked():
format = "html"
else:
format = "pov"
filename = spinVis_camera.make_screenshot(self.fileName.text(), format, 1920,
1920) # Test.screenshot ruft gr3.export mit html/pov auf
spinVis_camera.render_povray(filename, block=False)
self._glwindow.update()
self.update()
pass
class AngleWindow(QtWidgets.QWidget):
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebergabe des glwindow
self.initUI()
pass
def initUI(self):
self.anglegroup = QtWidgets.QGroupBox("Angle Window")
self.anglegroup.setTitle("Angle Window")
self.anglegroup.setToolTip("These 3 angles allow you to set a specific camera position. While phi and thete\n"
"depict your camera position, is alpha used to show the rotation of the upvector.\n"
"Any tripel you enter gives a unique view. ")
self.groupbox = QtWidgets.QHBoxLayout()
self.groupbox.addWidget(self.anglegroup)
self.anglebox = QHBoxLayout()
self.theta_box = QHBoxLayout()
self.theta_lbl = QLabel()
self.theta_lbl.setText("Theta: ")
self.theta_input = QtWidgets.QLineEdit()
self.theta_input.setFocusPolicy(Qt.ClickFocus)
self.theta_input.setFixedSize(70,25)
self.theta_box.addWidget(self.theta_lbl)
self.theta_box.addWidget(self.theta_input)
#self.theta_validator = QtGui.QDoubleValidator(-1/2 * math.pi, math.pi/2,5, self)
#self.theta_input.setValidator(self.theta_validator)
self.phi_box = QHBoxLayout()
self.phi_lbl = QLabel()
self.phi_lbl.setText("Phi: ")
self.phi_input = QtWidgets.QLineEdit()
self.phi_input.setFocusPolicy(Qt.ClickFocus)
self.phi_input.setFixedSize(75,25)
self.phi_box.addWidget(self.phi_lbl)
self.phi_box.addWidget(self.phi_input)
#self.phi_validator = QtGui.QDoubleValidator(-1* math.pi, math.pi,5, self)
#self.phi_input.setValidator(self.phi_validator)
self.up_box = QHBoxLayout()
self.up_lbl = QLabel()
self.up_lbl.setText("Alpha: ")
self.up_input = QtWidgets.QLineEdit()
self.up_input.setFocusPolicy(Qt.ClickFocus)
self.up_input.setFixedSize(75, 25)
self.up_box.addWidget(self.up_lbl)
self.up_box.addWidget(self.up_input)
self.angle_button = QPushButton("Set camera")
self.angle_button.setMaximumSize(150, 25)
self.angle_button.clicked.connect(self.camera_change_from_angle)
euler_norm = np.linalg.norm(spinVis_coor.camera_koordinates)
euler_theta = math.acos(spinVis_coor.camera_koordinates[2] / euler_norm)
euler_phi = np.arctan2(spinVis_coor.camera_koordinates[1], spinVis_coor.camera_koordinates[0])
self.theta_input.setText(str(round(euler_theta, 5)))
self.phi_input.setText(str(round(euler_phi, 5)))
r = np.array([-math.sin(euler_phi), math.cos(euler_phi), 0])
v = np.array([-math.cos(euler_phi) * math.cos(euler_theta), -math.sin(euler_phi) * math.cos(euler_theta),
math.sin(euler_theta)])
alpha = math.atan2(-1 * np.dot(spinVis_camera.up_vector, r), np.dot(spinVis_camera.up_vector, v))
self.up_input.setText(str(round(alpha, 5)))
self.anglebox.addLayout(self.theta_box)
self.anglebox.addLayout(self.phi_box)
self.anglebox.addLayout(self.up_box)
self.anglebox.addWidget(self.angle_button)
self.anglegroup.setLayout(self.anglebox)
self._glwindow.register(self.theta_input)
self._glwindow.register(self.phi_input)
self._glwindow.register(self.up_input)
self.groupbox.setContentsMargins(0,0,0,0)
self.setLayout(self.groupbox)
def keyPressEvent(self, QKeyEvent):
if QKeyEvent.key() == QtCore.Qt.Key_Return or QKeyEvent.key() == QtCore.Qt.Key_Enter:
self.camera_change_from_angle()
def camera_change_from_angle(self):
try:
theta = float(self.theta_input.text().__str__())
phi = float(self.phi_input.text().__str__())
input_up = float(self.up_input.text().__str__())
r = np.array([-math.sin(phi), math.cos(phi), 0])
v = np.array([-math.cos(phi) * math.cos(theta), -math.sin(phi) * math.cos(theta), math.sin(theta)])
self._glwindow.new_up_v = v * math.cos(input_up) - r * math.sin(input_up)
spinVis_coor.euler_angles_to_koordinates(theta, phi, np.linalg.norm(spinVis_coor.camera_koordinates),
input_up)
self._glwindow.update()
except ValueError:
val_err_box = QtWidgets.QMessageBox()
val_err_box.setIcon(2) # Gives warning Icon
val_err_box.setText("Error ocurred while trying to recalculate the camera position!")
val_err_box.setInformativeText("Your entred value was not a floating number. Please make sure that your input is right, before trying to change the camera.")
val_err_box.exec_()
class BondWindow(QtWidgets.QWidget):
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._distance_threshold = 0.0
self._glwindow = glwindow # Uebergabe des glwindow
self.initUI()
spinVis_camera.bond_distance_threshold_callback = lambda value: self.threshold_input.setText(str(round(value, 5)))
def initUI(self):
self.bondgroup = QtWidgets.QGroupBox("Bond Window")
self.bondgroup.setTitle("Bond Window")
self.bondgroup.setToolTip("Set a distance threshold for bond calculation. The default value is 150 per cent\n"
"of the minimum distance between the centers of two spins.")
self.groupbox = QtWidgets.QHBoxLayout()
self.groupbox.addWidget(self.bondgroup)
self.bondbox = QHBoxLayout()
self.threshold_box = QHBoxLayout()
self.threshold_checkbox = QCheckBox("Show bonds")
self.threshold_checkbox.stateChanged.connect(self.update_bond_distance_threshold)
self.threshold_lbl = QLabel()
self.threshold_lbl.setText("Distance threshold: ")
self.threshold_input = QtWidgets.QLineEdit()
self.threshold_input.setFocusPolicy(Qt.ClickFocus)
self.threshold_input.setFixedSize(70, 25)
self.threshold_input.returnPressed.connect(self.update_bond_distance_threshold)
self.threshold_box.addWidget(self.threshold_checkbox)
self.threshold_box.addWidget(self.threshold_lbl)
self.threshold_box.addWidget(self.threshold_input)
self.bond_button = QPushButton("Set threshold")
self.bond_button.setMaximumSize(150, 25)
self.bond_button.clicked.connect(self.update_bond_distance_threshold)
self.bondbox.addLayout(self.threshold_box)
self.bondbox.addWidget(self.bond_button)
self.bondgroup.setLayout(self.bondbox)
self.groupbox.setContentsMargins(0, 0, 0, 0)
self.setLayout(self.groupbox)
def update_bond_distance_threshold(self):
try:
if self.threshold_input.text().strip() != "":
threshold = float(self.threshold_input.text())
spinVis_camera.bond_distance_threshold = threshold
else:
spinVis_camera.bond_distance_threshold = None
spinVis_camera.bond_is_activated = self.threshold_checkbox.isChecked()
self._glwindow.spinDraw()
self._glwindow.update()
except ValueError:
val_err_box = QtWidgets.QMessageBox()
val_err_box.setIcon(2) # Gives warning Icon
val_err_box.setText("Error ocurred while trying to recalculate the bonds!")
val_err_box.setInformativeText("Your entred value was not a floating number. Please make sure that your input is right, before trying to change the bond distance threshold.")
val_err_box.exec_()
class TranslationWindow(QtWidgets.QWidget):
def __init__(self, glwindow, *args, **kwargs):
super().__init__(*args, **kwargs)
self._camera_angle = 0.0
self._glwindow = glwindow # Uebergabe des glwindow
self.initUI()
pass
def initUI(self):
self.translationgroup = QtWidgets.QGroupBox("Angle Window")
self.translationgroup.setTitle("Translation Window")
self.translationgroup.setToolTip("These 3 angles allow you to set a specific camera position. While phi and thete\n"
"depict your camera position, is alpha used to show the rotation of the upvector.\n"
"Any tripel you enter gives a unique view. ")
self.groupbox = QtWidgets.QHBoxLayout()
self.groupbox.addWidget(self.translationgroup)
self.translationbox = QHBoxLayout()
self.x_box = QHBoxLayout()
self.x_lbl = QLabel()
self.x_lbl.setText("X: ")
self.x_input = QtWidgets.QLineEdit()
self.x_input.setFocusPolicy(Qt.ClickFocus)
self.x_input.setFixedSize(70,25)
self.x_box.addWidget(self.x_lbl)
self.x_box.addWidget(self.x_input)
#self.theta_validator = QtGui.QDoubleValidator(-1/2 * math.pi, math.pi/2,5, self)
#self.theta_input.setValidator(self.theta_validator)
self._glwindow._focus_observer.append(self.x_input.setText)
self.y_box = QHBoxLayout()
self.y_lbl = QLabel()
self.y_lbl.setText("Y: ")
self.y_input = QtWidgets.QLineEdit()
self.y_input.setFocusPolicy(Qt.ClickFocus)
self.y_input.setFixedSize(75,25)
self.y_box.addWidget(self.y_lbl)
self.y_box.addWidget(self.y_input)
self._glwindow._focus_observer.append(self.y_input.setText)
#self.phi_validator = QtGui.QDoubleValidator(-1* math.pi, math.pi,5, self)
#self.phi_input.setValidator(self.phi_validator)
self.z_box = QHBoxLayout()
self.z_lbl = QLabel()
self.z_lbl.setText("Z: ")
self.z_input = QtWidgets.QLineEdit()
self.z_input.setFocusPolicy(Qt.ClickFocus)
self.z_input.setFixedSize(75, 25)
self.z_box.addWidget(self.z_lbl)
self.z_box.addWidget(self.z_input)
self._glwindow._focus_observer.append(self.z_input.setText)
self.translation_button = QPushButton("Translate focus")
self.translation_button.setMaximumSize(150, 25)
self.translation_button.clicked.connect(self.change_focus_point)
self.x_input.setText(str(0))
self.y_input.setText(str(0))
self.z_input.setText(str(0))
self.translationbox.addLayout(self.x_box)
self.translationbox.addLayout(self.y_box)
self.translationbox.addLayout(self.z_box)
self.translationbox.addWidget(self.translation_button)
self.translationgroup.setLayout(self.translationbox)
self.groupbox.setContentsMargins(0,0,0,0)
self.setLayout(self.groupbox)
def keyPressEvent(self, QKeyEvent):
if QKeyEvent.key() == QtCore.Qt.Key_Return or QKeyEvent.key() == QtCore.Qt.Key_Enter:
self.change_focus_point()
def change_focus_point(self):
spinVis_camera.focus_point = np.array([float(self.x_input.text()), float(self.y_input.text()), float(self.z_input.text())])
spinVis_camera.grLookAt()
self._glwindow.update()
class GLWidget(QtWidgets.QOpenGLWidget):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._first_paint = True
self._make_video = False
self._camera_angle = 0.0
self._draw_spin = True # Verhindert das bei jeder Kamerabewegung die Spins neu gezeichnet werden
self._export_screen = False # exportScreen wird beim Knopfdruck auf True gestellt und triggert so export()
self.point_c_vektor = np.array([spinVis_coor.camera_koordinates[0], spinVis_coor.camera_koordinates[1],
spinVis_coor.camera_koordinates[
2]]) # Ortsvektor des Punktes andem die Kamerabewegung aufhört
self.current_camera_vector = np.array([spinVis_coor.camera_koordinates[0], spinVis_coor.camera_koordinates[1],
spinVis_coor.camera_koordinates[2]]) # Kameravektor
self.camera_vektor_length = np.linalg.norm(spinVis_coor.camera_koordinates) # Norm des Kameravektors
self.point_a_vektor = np.array([spinVis_coor.camera_koordinates[0], spinVis_coor.camera_koordinates[1],
spinVis_coor.camera_koordinates[
2]]) # Ortsvektor des Punktes andem die Kamerabewegung startet
self._radius = 2 # Radius des Arcballs
self.focus_point = np.array([0.0, 0.0, 0.0]) # Fokuspunkt
self.new_up_v =
|
np.array([0.0, 0.0, 1.0])
|
numpy.array
|
#emcee analysis for GRB afterglow
#
#<NAME> 01/10/2018 <EMAIL>
from multiprocessing import Pool
import tqdm
import numpy as np
import corner
import emcee
from os.path import join
from astropy.table import Table, Column
import joelib.physics.jethead_expansion as Exp
from joelib.constants.constants import *
#I'VE LEFT THE DATA IN HERE, YOU CAN USE THIS TO TEST AGAINST YOUR OUTPUT - NOTE THAT THERE ARE FOUR(4) FREQUENCIES - BUT I'M SURE YOU CAN FIGURE IT OUT.
#ALTERNATIVELY, JUST USE THE DATA YOU HAVE HOWEVER IS EASIEST ;-)
time = np.array([ 9.2, 14.9, 16.4, 17.4, 18.3, 18.7, 19.4, 21.4, 22.4,
23.4, 24.2, 31.3, 35.3, 39.2, 46.3, 53.3, 54.3, 57.2,
65.9, 66.6, 67.2, 72.2, 75.5, 75.5, 77.6, 79.2, 80.1,
92.4, 93.1, 93.1, 93.2, 97.1, 107. , 107. , 109. , 109. ,
111. , 112. , 115. , 115. , 115. , 125. , 125. , 126. , 133. ,
137. , 149. , 150. , 152. , 158. , 161. , 163. , 163. , 163. ,
163. , 165. , 167. , 170. , 172. , 183. , 197. , 197. , 207. ,
209. , 216. , 217. , 217. , 217. , 217. , 218. , 218. , 222. ,
229. , 252. , 257. , 259. , 261. , 267. , 267. , 273. , 273. ,
289. , 289. , 294. , 297. , 298. , 320. , 324. , 328. , 357. ,
359. , 362. , 380. , 489. , 545. , 580. , 581. , 741. , 767. ,
938. ])
data = np.array([5.66e-04, 6.58e-04, 1.87e+01, 1.51e+01, 1.45e+01, 1.54e+01, 1.59e+01, 1.36e+01, 2.25e+01, 2.00e+01, 2.56e+01, 3.40e+01, 4.40e+01, 2.28e+01, 4.40e+01, 3.20e+01, 4.80e+01, 6.10e+01,
1.48e+02, 9.80e+01, 4.26e+01, 5.80e+01, 3.59e+01, 3.96e+01, 7.70e+01, 4.50e+01, 4.17e+01, 3.17e+01, 9.80e+01, 7.00e+01, 2.60e+01, 1.99e+02, 1.27e+02, 5.32e+01, 2.96e-03, 1.09e-01,
1.11e-01, 6.29e+01, 9.62e+01, 5.12e+01, 4.12e+01, 5.82e+01, 1.28e+02, 2.21e+02, 3.37e-03, 8.40e-02, 6.06e+01, 9.00e+01, 1.84e+02, 3.03e-03, 2.66e-03, 9.73e+01, 6.73e+01, 4.74e+01,
3.96e+01, 9.10e-02, 5.79e+01, 1.13e-01, 8.50e-02, 2.11e+02, 7.59e+01, 8.93e+01, 4.20e+01, 8.20e-02, 3.63e+01, 6.05e+01, 4.17e+01, 3.26e+01, 2.47e+01, 6.47e+01, 6.30e-02, 3.97e+01,
4.80e+01, 7.13e+01, 4.32e+01, 1.55e-03, 6.26e+01, 2.50e+01, 4.03e+01, 3.48e+01, 2.72e+01, 3.63e+01, 2.70e+01, 3.12e+01, 4.40e-02, 2.34e+01, 2.31e+01, 4.72e+01, 3.40e-02, 9.70e-04,
1.55e+01, 2.70e-02, 3.79e+01, 1.48e+01, 5.90e+00, 1.80e+01, 3.54e-04, 2.68e-04, 4.90e+00, 1.95e-04])
freq = np.array([2.41e+17, 2.41e+17, 3.00e+09, 3.00e+09, 3.00e+09, 7.25e+09,
6.20e+09, 6.20e+09, 3.00e+09, 6.00e+09, 3.00e+09, 3.00e+09,
1.50e+09, 6.00e+09, 3.00e+09, 6.00e+09, 3.00e+09, 3.00e+09,
6.70e+08, 1.30e+09, 6.00e+09, 4.50e+09, 7.35e+09, 7.35e+09,
1.40e+09, 4.50e+09, 6.00e+09, 7.25e+09, 1.50e+09, 3.00e+09,
1.50e+10, 6.70e+08, 1.30e+09, 1.30e+09, 2.41e+17, 3.80e+14,
5.06e+14, 6.00e+09, 3.00e+09, 1.00e+10, 1.50e+10, 7.25e+09,
1.30e+09, 6.70e+08, 2.41e+17, 5.06e+14, 7.25e+09, 5.10e+09,
1.30e+09, 2.41e+17, 2.41e+17, 3.00e+09, 6.00e+09, 1.00e+10,
1.50e+10, 5.06e+14, 7.25e+09, 3.80e+14, 5.06e+14, 6.50e+08,
3.00e+09, 1.30e+09, 5.00e+09, 5.06e+14, 1.00e+10, 3.00e+09,
6.00e+09, 1.00e+10, 1.50e+10, 3.00e+09, 5.06e+14, 7.25e+09,
4.50e+09, 1.30e+09, 3.00e+09, 2.41e+17, 1.30e+09, 7.25e+09,
3.00e+09, 3.00e+09, 6.00e+09, 3.00e+09, 6.00e+09, 3.00e+09,
5.06e+14, 7.25e+09, 7.25e+09, 1.30e+09, 5.06e+14, 2.41e+17,
7.25e+09, 5.06e+14, 1.30e+09, 3.00e+09, 6.00e+09, 7.25e+09,
2.41e+17, 2.41e+17, 3.00e+09, 2.41e+17])
err = np.array([1.70e-04, 1.30e-04, 6.30e+00, 3.90e+00, 3.70e+00, 4.80e+00,
5.50e+00, 2.90e+00, 3.40e+00, 3.10e+00, 2.90e+00, 3.60e+00,
1.00e+01, 2.60e+00, 4.00e+00, 4.00e+00, 6.00e+00, 9.00e+00,
2.20e+01, 2.00e+01, 4.10e+00, 5.00e+00, 4.30e+00, 7.00e+00,
1.90e+01, 7.00e+00, 4.70e+00, 4.30e+00, 1.40e+01, 5.70e+00,
4.40e+00, 1.60e+01, 1.80e+01, 4.50e+00, 2.60e-04, 1.70e-02,
1.90e-02, 3.20e+00, 8.00e+00, 3.40e+00, 1.90e+00, 5.00e+00,
2.10e+01, 1.90e+01, 4.00e-04, 1.80e-02, 4.30e+00, 3.00e+01,
1.90e+01, 2.60e-04, 2.70e-04, 1.13e+01, 4.10e+00, 3.60e+00,
2.00e+00, 1.60e-02, 6.90e+00, 1.90e-02, 1.70e-02, 3.40e+01,
5.20e+00, 1.39e+01, 1.20e+01, 2.00e-02, 3.60e+00, 7.50e+00,
7.50e+00, 4.00e+00, 3.10e+00, 2.70e+00, 1.80e-02, 7.20e+00,
6.00e+00, 6.70e+00, 5.80e+00, 1.90e-04, 7.00e+00, 4.10e+00,
2.70e+00, 4.90e+00, 2.10e+00, 3.90e+00, 2.80e+00, 3.60e+00,
1.40e-02, 4.20e+00, 4.00e+00, 1.28e+01, 1.10e-02, 1.90e-04,
5.00e+00, 7.00e-03, 1.18e+01, 2.90e+00, 1.90e+00, 4.20e+00,
9.00e-05, 9.00e-05, 1.80e+00, 7.00e-05])
print(np.shape(time),np.shape(freq), np.shape(data), np.shape(err))
#freqs = np.array([3.00e9, 6.00e9, 2.41e17, 5.06e14])
#fil = [(freq==3.00e9) | (freq==6.00e9) | (freq==2.41e17) | (freq==5.06e14)]
#time = time[fil]
#data = data[fil]
#freq = freq[fil]
#err = err[fil]
freqs = np.unique(freq)
data_ord = np.array([])
err_ord = np.array([])
time_ord = np.array([])
for frequency in freqs:
print(frequency)
data_ord = np.concatenate([data_ord, data[freq==frequency]])
err_ord = np.concatenate([err_ord, err[freq==frequency]])
time_ord = np.concatenate([time_ord, time[freq==frequency]])
print(np.shape(err_ord), np.shape(data_ord))
#The model afterglow --- Put your afterglow scipt here
def lnlike(prior, time, data_ord, freq, err_ord):
E1, G1, thc1, incl1, EB1, Ee1, n1, p = prior
incl1 = np.arccos(incl1)
#model parameters
EB, Ee, pp, nn, Eps0, G0 = 10.**EB1, 10.**Ee1, p, 10.**n1, 10.**E1, G1
#microphysical magnetic EB, microphysical electric Ee, particle index p
#ambient number density n, isotropic kinetic energy Eiso, Lorentz factor Gc
#THESE ^ ARE THE MCMC PRIOR PARAMETERS
#USE THESE TO FEED AN ITERATION OF YOUR CODE
#PUT YOUR FIXED PARAMETERS HERE (I FIX THETA_J) AND CALL YOUR SCRIPT
jet = Exp.jetHeadGauss(Eps0, G0, nn, Ee, EB, pp, 500, 1e14, 1e22, "peer", 50, 30.*pi/180., thc1, aa=1, withSpread=False)
tt, lc, _, _ = Exp.light_curve_peer_SJ(jet, pp, incl1, freqs, 41.3e6*pc, "discrete", time, 1)
LC= np.array([])
for frequency in freqs:
LC = np.concatenate([LC, lc[freqs==frequency,time_ord[freq==frequency]]])
#RETURN AN ARRAY OF FLUX VALUES AT TIMES AND FREQUENCIES THAT ARE THE SAME AS THE OBSERVATIONS
#I CALLED THIS flx AND IT IS IN THE SAME UNITS AS THE data AND err ARRAYS ABOVE
flx = LC*1.e29 #erg/s/cm^2/Hz to mJy
#THIS IS THE LIKLIHOOD FUNCTION - DON'T OVER THINK IT, WE JUST NEED TO MINIMISE THE ERROR, NOTHING FANCY -- IT USES THE data AND err WITH THE SCRIPT flx VALUES
like = -0.5*(np.sum(((data_ord-flx)/err_ord)**2.))#+np.log(err**2)
return like
def lnprior(prior):
E1, G1, thc1, incl1, EB1, Ee1, n1, p = prior
#THESE ARE THE PRIOR LIMITS -- NOTE THAT SOME OF THESE ARE LOGARITHMIC (see line 37 above, or in cosine space)
if 47. <= E1 <= 54. and 2. <= G1 <= 1000. and 0.0175 <= thc1 <= 0.4363 and 0.9004 <= incl1 <= 0.9689 and -5.<= EB1 <= -0.5 and -5. <= Ee1 <= -0.5 and -6. <= n1 <= 0. and 2.01 <= p <= 2.99:
return 0
return -np.inf
def lnprob(prior, time, data_ord, freq, err_ord):
lp = lnprior(prior)
if np.isinf(lp):
return -np.inf
return lp+lnlike(prior, time, data_ord, freq, err_ord)
if __name__ == "__main__":
nwalkers = 32 # minimum is 2*ndim, more the merrier
ndim = 8 #THIS IS THE NUMBER OF FREE PARAMETERS THAT YOU ARE FITTING
burnsteps = 1000
nsteps = 10000 # MCMC steps, should be >1e3
thin = 1 #THIS REMOVES SOME OF THE SAMPLE ie thin = 2 WOULD ONLY SAMPLE EVERY SECOND POSTERIOR (GOOD FOR VERY LARGE DATA SETS)
p0 = np.zeros([nwalkers,ndim],float)
# Initial parameter guess
print ("Initial parameter guesses")
p0[:, 0] = 51 + np.random.randn(nwalkers)*0.1 # sample E1
p0[:, 1] = 100 + np.random.randn(nwalkers)*10 # sample G1
p0[:, 2] = 0.12 + np.random.randn(nwalkers)*0.01 # sample thc1
p0[:, 3] = 0.91 + np.random.randn(nwalkers)*0.01 # sample cos(incl1)
p0[:, 4] = -2.1 +
|
np.random.randn(nwalkers)
|
numpy.random.randn
|
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.optim import Adam, SGD
from Renderer.model import *
from DRL.rpm import rpm
from DRL.actor import *
from DRL.critic import *
from DRL.wgan import *
from utils.util import *
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
coord = torch.zeros([1, 2, 128, 128])
for i in range(128):
for j in range(128):
coord[0, 0, i, j] = i / 127.
coord[0, 1, i, j] = j / 127.
coord = coord.to(device)
criterion = nn.MSELoss()
Decoder = FCN()
Decoder.load_state_dict(torch.load('renderer.pkl'))
def decode(x, canvas): # b * (10 + 3)
x = x.view(-1, 10 + 3)
stroke = 1 - Decoder(x[:, :10])
stroke = stroke.view(-1, 128, 128, 1)
color_stroke = stroke * x[:, -3:].view(-1, 1, 1, 3)
stroke = stroke.permute(0, 3, 1, 2)
color_stroke = color_stroke.permute(0, 3, 1, 2)
stroke = stroke.view(-1, 5, 1, 128, 128)
color_stroke = color_stroke.view(-1, 5, 3, 128, 128)
for i in range(5):
canvas = canvas * (1 - stroke[:, i]) + color_stroke[:, i]
return canvas
def cal_trans(s, t):
return (s.transpose(0, 3) * t).transpose(0, 3)
class TD3(object):
def __init__(self, batch_size=64, env_batch=1, max_step=40, \
tau=0.001, discount=0.9, rmsize=800, \
writer=None, resume=None, output_path=None):
self.max_step = max_step
self.env_batch = env_batch
self.batch_size = batch_size
self.actor = ResNet(9, 18, 65) # target, canvas, stepnum, coordconv 3 + 3 + 1 + 2
self.actor_target = ResNet(9, 18, 65)
self.critic = ResNet_wobn(3 + 9, 18, 1) # add the last canvas for better prediction
self.critic_target = ResNet_wobn(3 + 9, 18, 1)
print (self.critic)
self.actor_optim = Adam(self.actor.parameters(), lr=1e-2)
self.critic_optim = Adam(self.critic.parameters(), lr=1e-2)
if (resume != None):
self.load_weights(resume)
hard_update(self.actor_target, self.actor)
hard_update(self.critic_target, self.critic)
# Create replay buffer
self.memory = rpm(rmsize * max_step)
# Hyper-parameters
self.tau = tau
self.discount = discount
self.actor_update_freq = 3
self.actor_update_cur_iter = 0
# Tensorboard
self.writer = writer
self.log = 0
self.state = [None] * self.env_batch # Most recent state
self.action = [None] * self.env_batch # Most recent action
self.choose_device()
def play(self, state, target=False):
state = torch.cat((state[:, :6].float() / 255, state[:, 6:7].float() / self.max_step, coord.expand(state.shape[0], 2, 128, 128)), 1)
if target:
return self.actor_target(state)
else:
return self.actor(state)
def update_gan(self, state):
canvas = state[:, :3]
gt = state[:, 3 : 6]
fake, real, penal = update(canvas.float() / 255, gt.float() / 255)
if self.log % 20 == 0:
self.writer.add_scalar('train/gan_fake', fake, self.log)
self.writer.add_scalar('train/gan_real', real, self.log)
self.writer.add_scalar('train/gan_penal', penal, self.log)
def evaluate(self, state, action, target=False):
T = state[:, 6 : 7]
gt = state[:, 3 : 6].float() / 255
canvas0 = state[:, :3].float() / 255
canvas1 = decode(action, canvas0)
gan_reward = cal_reward(canvas1, gt) - cal_reward(canvas0, gt)
# L2_reward = ((canvas0 - gt) ** 2).mean(1).mean(1).mean(1) - ((canvas1 - gt) ** 2).mean(1).mean(1).mean(1)
coord_ = coord.expand(state.shape[0], 2, 128, 128)
merged_state = torch.cat([canvas0, canvas1, gt, (T + 1).float() / self.max_step, coord_], 1)
# canvas0 is not necessarily added
if target:
Q1, Q2 = self.critic_target(merged_state)
Q = torch.min(Q1, Q2)
return (Q + gan_reward), gan_reward
else:
Q1, Q2 = self.critic(merged_state)
#Q = torch.min(Q1, Q2)
if self.log % 20 == 0:
self.writer.add_scalar('train/expect_reward', Q1.mean(), self.log)
self.writer.add_scalar('train/gan_reward', gan_reward.mean(), self.log)
return (Q1 + gan_reward), (Q2 + gan_reward), gan_reward
def update_policy(self, lr):
self.log += 1
for param_group in self.critic_optim.param_groups:
param_group['lr'] = lr[0]
for param_group in self.actor_optim.param_groups:
param_group['lr'] = lr[1]
# Sample batch
state, action, reward, \
next_state, terminal = self.memory.sample_batch(self.batch_size, device)
self.update_gan(next_state)
with torch.no_grad():
next_action = self.play(next_state, True)
target_q, _ = self.evaluate(next_state, next_action, True)
target_q = self.discount * ((1 - terminal.float()).view(-1, 1)) * target_q
cur_q1, cur_q2, step_reward = self.evaluate(state, action)
target_q += step_reward.detach()
value_loss = criterion(cur_q1, target_q) + criterion(cur_q2, target_q)
self.critic.zero_grad()
value_loss.backward(retain_graph=True)
self.critic_optim.step()
action = self.play(state)
pre_q, _, _ = self.evaluate(state.detach(), action)
policy_loss = -pre_q.mean()
if self.actor_update_cur_iter % self.actor_update_freq == 0:
self.actor.zero_grad()
policy_loss.backward(retain_graph=True)
self.actor_optim.step()
soft_update(self.actor_target, self.actor, self.tau)
self.actor_update_cur_iter += 1
soft_update(self.critic_target, self.critic, self.tau)
# Target update
return -policy_loss, value_loss
def observe(self, reward, state, done, step):
s0 = torch.tensor(self.state, device='cpu')
a = to_tensor(self.action, "cpu")
r = to_tensor(reward, "cpu")
s1 = torch.tensor(state, device='cpu')
d = to_tensor(done.astype('float32'), "cpu")
for i in range(self.env_batch):
self.memory.append([s0[i], a[i], r[i], s1[i], d[i]])
self.state = state
def noise_action(self, noise_factor, state, action):
noise = np.zeros(action.shape)
for i in range(self.env_batch):
action[i] = action[i] +
|
np.random.normal(0, self.noise_level[i], action.shape[1:])
|
numpy.random.normal
|
import functools
from typing import Any, Callable, Optional, Tuple, TypeVar
import numpy as np
import pandas as pd
from multimethod import multimethod
from scipy.stats import chisquare
from pandas_profiling.config import Settings
T = TypeVar("T")
def func_nullable_series_contains(fn: Callable) -> Callable:
@functools.wraps(fn)
def inner(
config: Settings, series: pd.Series, state: dict, *args, **kwargs
) -> bool:
if series.hasnans:
series = series.dropna()
if series.empty:
return False
return fn(config, series, state, *args, **kwargs)
return inner
def histogram_compute(
config: Settings,
finite_values: np.ndarray,
n_unique: int,
name: str = "histogram",
weights: Optional[np.ndarray] = None,
) -> dict:
stats = {}
bins = config.plot.histogram.bins
bins_arg = "auto" if bins == 0 else min(bins, n_unique)
stats[name] = np.histogram(finite_values, bins=bins_arg, weights=weights)
max_bins = config.plot.histogram.max_bins
if bins_arg == "auto" and len(stats[name][1]) > max_bins:
stats[name] = np.histogram(finite_values, bins=max_bins, weights=None)
return stats
def chi_square(
values: Optional[np.ndarray] = None, histogram: Optional[np.ndarray] = None
) -> dict:
if histogram is None:
histogram, _ = np.histogram(values, bins="auto")
return dict(chisquare(histogram)._asdict())
def series_hashable(
fn: Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]
) -> Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]:
@functools.wraps(fn)
def inner(
config: Settings, series: pd.Series, summary: dict
) -> Tuple[Settings, pd.Series, dict]:
if not summary["hashable"]:
return config, series, summary
return fn(config, series, summary)
return inner
def series_handle_nulls(
fn: Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]
) -> Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]:
"""Decorator for nullable series"""
@functools.wraps(fn)
def inner(
config: Settings, series: pd.Series, summary: dict
) -> Tuple[Settings, pd.Series, dict]:
if series.hasnans:
series = series.dropna()
return fn(config, series, summary)
return inner
def named_aggregate_summary(series: pd.Series, key: str) -> dict:
summary = {
f"max_{key}": np.max(series),
f"mean_{key}":
|
np.mean(series)
|
numpy.mean
|
import matplotlib.pyplot as plt
import numpy as np
from . import pretty_plot
def plot_butterfly(evoked, ax=None, sig=None, color=None, ch_type=None):
from mne import pick_types
if ch_type is not None:
picks = pick_types(evoked.info, ch_type)
evoked = evoked.copy()
evoked = evoked.pick_types(ch_type)
sig = sig[picks, :] if sig is not None else None
times = evoked.times * 1e3
data = evoked.data
ax = plt.gca() if ax is None else ax
ax.plot(times, data.T, color='k', alpha=.5)
gfp = np.vstack((data.max(0), data.min(0)))
if sig is not None:
sig = np.array(np.sum(sig, axis=0) > 0., dtype=int)
ax.fill_between(np.hstack((times, times[::-1])),
np.hstack((sig * gfp[0, :] + (1 - sig) * gfp[1, :],
gfp[1, ::-1])),
facecolor=color, edgecolor='none', alpha=.5,
zorder=len(data) + 1)
ax.axvline(0, color='k')
ax.set_xlabel('Times (ms)')
ax.set_xlim(min(times), max(times))
xticks = np.arange(np.ceil(min(times)/1e2) * 1e2,
np.floor(max(times)/1e2) * 1e2 + 1e-10, 100)
ax.set_xticks(xticks)
ax.set_xticklabels(['%i' % t if t in [xticks[0], xticks[-1], 0]
else '' for t in xticks])
ax.set_yticks([np.min(data), np.max(data)])
ax.set_ylim(np.min(data), np.max(data))
ax.set_xlim(np.min(times), np.max(times))
pretty_plot(ax)
return ax
def plot_gfp(evoked, ax=None, sig=None, color=None, ch_type='mag'):
from mne import pick_types
if ch_type is not None:
picks = pick_types(evoked.info, ch_type)
evoked = evoked.copy()
evoked = evoked.pick_types(ch_type)
sig = sig[picks, :] if sig is not None else None
times = evoked.times * 1e3
gfp = np.std(evoked.data, axis=0)
ax = plt.gca() if ax is None else ax
ax.plot(times, gfp, color='k', alpha=.5)
if sig is not None:
sig = np.array(np.sum(sig, axis=0) > 0., dtype=int)
ax.fill_between(np.hstack((times, times[::-1])),
np.hstack((sig * gfp,
|
np.zeros_like(gfp)
|
numpy.zeros_like
|
import libmist as pld
import numpy as np
import pytest
from multiprocessing import cpu_count
def test_parallel_2():
filename = "sample_data.csv"
cpus = cpu_count()
total_ranks = cpus * 2
ranks_per = cpus
# non-parallel
mist = pld.Search()
mist.load_file_column_major(filename)
mist.tuple_size = 3
res = mist.start()
# first ranks
mist = pld.Search()
mist.load_file_column_major(filename)
mist.tuple_size = 3
mist.ranks = ranks_per
mist.total_ranks = total_ranks
res1 = mist.start()
# second ranks
mist = pld.Search()
mist.load_file_column_major(filename)
mist.tuple_size = 3
mist.ranks = ranks_per
mist.total_ranks = total_ranks
mist.start_rank = ranks_per
res2 = mist.start()
res_sort = np.sort(res, axis=0)
res_parallel = np.concatenate([res1, res2])
res_parallel_sort = np.sort(res_parallel, axis=0)
assert(res.shape[0] == res_parallel_sort.shape[0])
assert(res.shape[1] == res_parallel_sort.shape[1])
np.testing.assert_array_equal(res_sort, res_parallel_sort)
def test_parallel_3_same_obj():
filename = "sample_data.csv"
cpus = cpu_count()
total_ranks = cpus * 3
ranks_per = cpus
# non-parallel
mist = pld.Search()
mist.load_file_column_major(filename)
mist.tuple_size = 3
res = mist.start()
# first ranks
mist.ranks = ranks_per
mist.total_ranks = total_ranks
res1 = mist.start()
# second ranks
mist.ranks = ranks_per
mist.total_ranks = total_ranks
mist.start_rank = ranks_per
res2 = mist.start()
# third ranks
mist.ranks = ranks_per
mist.total_ranks = total_ranks
mist.start_rank = ranks_per * 2
res3 = mist.start()
res_sort = np.sort(res, axis=0)
res12 = np.concatenate([res1, res2])
res_parallel = np.concatenate([res12, res3])
res_parallel_sort =
|
np.sort(res_parallel, axis=0)
|
numpy.sort
|
"""Situation Awareness Module"""
import enum
import operator
import time
import numpy as np
from sklearn.cluster import DBSCAN
from driver_awareness_msgs.msg import ROI, SA
class SituationAwareness:
"""Class to calculate the situation awareness"""
def __init__(self, punishment_model):
self.__optimal_sa = 0
self.__actual_sa = 0
self.__punishment = punishment_model
@property
def sa_msg(self):
sa_msg = SA()
sa_msg.optimal_sa = self.__optimal_sa
sa_msg.actual_sa = self.__actual_sa
return sa_msg
def calculate_sa(self, se_array, non_roi_gazes):
type_weights = [situation_element.type_weight for situation_element in se_array]
classifications = [
situation_element.classification_value for situation_element in se_array
]
self.__optimal_sa = sum(type_weights)
actual_sa = sum(list(map(operator.mul, type_weights, classifications)))
self.__actual_sa = actual_sa - self.__punishment.punishment(non_roi_gazes)
self.__actual_sa = max(0.0, self.__actual_sa)
class PunishmentModel:
"""Class to calculate the punishment score"""
def __init__(
self, dbscan_max_distance_px, dbscan_min_samples, punishment_factor=0.25
):
self.__dbscan = DBSCAN(
eps=float(dbscan_max_distance_px),
min_samples=dbscan_min_samples,
)
self.__punishment_factor = punishment_factor
def punishment(self, non_roi_gazes):
if not non_roi_gazes:
return 0.0
gaze_coordinates = [
(gaze.gaze_pixel.x, gaze.gaze_pixel.y) for gaze in non_roi_gazes
]
labels = self.__dbscan.fit_predict(gaze_coordinates)
num_clusters = len(set(labels)) - (1 if -1 in labels else 0)
return self.__punishment_factor * num_clusters
class GazeBuffer:
"""Buffer for gaze data"""
def __init__(self):
self.__data = []
self.__current_gaze = (0, 0)
@property
def data(self):
return self.__data
@property
def current_gaze(self):
return self.__current_gaze
def push_array(self, gaze_array):
self.__data.extend(gaze_array)
self.__current_gaze = (gaze_array[-1].gaze_pixel.x, gaze_array[-1].gaze_pixel.y)
def clear(self):
self.__data = []
class SituationAwarenessParameter:
"""Collection of Parameter for detection/comprehension decisions"""
def __init__(
self, comprehension_alive_time, num_gaze_comprehended, num_gaze_detected
):
self.__comprehension_alive_time = comprehension_alive_time
self.__num_gaze_comprehended = num_gaze_comprehended
self.__num_gaze_detected = num_gaze_detected
@property
def num_gaze_detected(self):
return self.__num_gaze_detected
@property
def num_gaze_comprehended(self):
return self.__num_gaze_comprehended
@property
def comprehension_alive_time(self):
return self.__comprehension_alive_time
class SituationElement:
"""Situation Element"""
class TypeWeight:
"""Defines the type weights for situation elements"""
REQUIRED = 2.0
DESIRED = 1.0
class ClassificationWeight:
"""Defines the classification weights for situation elements"""
COMPREHENDED = 1.0
DETECTED = 0.5
UNDETECTED = 0.0
class Classification(enum.Enum):
"""Defines classification types for situation elements"""
COMPREHENDED = "comprehended"
DETECTED = "detected"
SE_ALIVE_COUNTER = 1
def __init__(self, roi_msg, sa_parameter):
self.__msg = roi_msg
self.__sa_parameter = sa_parameter
self.__changed = True
self.__alive_counter = self.SE_ALIVE_COUNTER
self.__time_last_looked = time.time()
self.__num_gazes_inside = 0
@property
def roi_msg(self):
return self.__msg
@property
def is_alive(self):
return self.__alive_counter > 0
@property
def has_changed(self):
return self.__changed
def is_gaze_inside(self, gaze_data):
return (
pow(gaze_data.gaze_pixel.x - self.roi_msg.roi.center.x, 2)
+ pow(gaze_data.gaze_pixel.y - self.roi_msg.roi.center.y, 2)
) <= pow(self.roi_msg.roi.radius, 2)
def is_comprehension_expired(self):
return (
time.time() - self.__time_last_looked
> self.__sa_parameter.comprehension_alive_time
and self.roi_msg.classification
== SituationElement.Classification.COMPREHENDED
)
def update_msg(self, roi_msg):
self.__msg.roi = roi_msg.roi
self.__msg.type = roi_msg.type
self.__changed = True
self.__alive_counter = self.SE_ALIVE_COUNTER
def update(self, num_gazes_inside):
self.__time_last_looked = time.time()
self.__num_gazes_inside += num_gazes_inside
if self.__num_gazes_inside > self.__sa_parameter.num_gaze_comprehended:
self.__msg.classification = SituationElement.Classification.COMPREHENDED
elif self.__num_gazes_inside >= self.__sa_parameter.num_gaze_detected:
self.__msg.classification = SituationElement.Classification.DETECTED
if self.is_comprehension_expired():
self.__num_gazes_inside = self.__sa_parameter.num_gaze_detected
self.__msg.classification = SituationElement.Classification.DETECTED
if self.__changed:
self.__changed = False
return
self.__alive_counter -= 1
@property
def classification_value(self):
if self.__msg.classification == self.Classification.COMPREHENDED:
return self.ClassificationWeight.COMPREHENDED
if self.__msg.classification == self.Classification.DETECTED:
return self.ClassificationWeight.DETECTED
return self.ClassificationWeight.UNDETECTED
@property
def type_weight(self):
return (
self.TypeWeight.DESIRED
if self.__msg.type == ROI.DESIRED
else self.TypeWeight.REQUIRED
)
def distance_to(self, roi_msg):
roi_center =
|
np.array([roi_msg.roi.center.x, roi_msg.roi.center.y])
|
numpy.array
|
# -*- coding: utf-8 -*-
"""Copy of rnn.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1hw5VX0w03qnA-pD4YmOck-HAmzP9_fO8
# Recurrent Neural Network
## Part 1 - Data Preprocessing
### Importing the libraries
"""
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
"""### Importing the training set"""
dataset_train = pd.read_csv('Google_Stock_Price_Train.csv')
training_set = dataset_train.iloc[:, 1:2].values #creates numpy array
#only numpy arrays can be used as inputs to keras neural networks
"""### Feature Scaling"""
#check difference between stardarization and normalizaton
#in RNN, whenever there is sigmoid function in the output layer of the RNN,
#normalization is recommended
from sklearn.preprocessing import MinMaxScaler
sc = MinMaxScaler(feature_range = (0, 1)) #creating object of the MinMaxScaler class
# with feature range
training_set_scaled = sc.fit_transform(training_set)
"""### Creating a data structure with 60 timesteps and 1 output"""
#creation of time step is important
# wrong timestep can leaad to overfiting
# the 60 time steps correspond to the past 60 inputs at any particular time step.
# hence X_train has 60 previous stock prices and Y_train has the next daay stock price, which is what
# we want from the network, hence its the output to be estimated.
X_train = []
y_train = []
for i in range(60, 1258): #hence the range starts from 60 and goes to end of the list
X_train.append(training_set_scaled[i-60:i, 0])
y_train.append(training_set_scaled[i, 0])
X_train, y_train = np.array(X_train), np.array(y_train)
"""### Reshaping"""
#reshaping so that the array dimensions are compatible with the inputs layer of the RNN
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) # the 1 in the end is the number of indicators i.e. dependent vars
# new dimensions are also added to include more dependent variables.
"""## Part 2 - Building and Training the RNN
### Importing the Keras libraries and packages
"""
# explore keras documentation on the internet
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Dropout
"""### Initialising the RNN"""
regressor = Sequential() # we are making our RNN to be sequential. check documentations for the terms
"""### Adding the first LSTM layer and some Dropout regularisation"""
regressor.add(LSTM(units = 50, return_sequences = True, input_shape = (X_train.shape[1], 1)))
# return sequences == True, for back propagation, in last layer..it is false
# units == neurons
# input shape == last two dimensions of X_train
regressor.add(Dropout(0.2))
# this is to add dropout regularization i.e. to drop the percent of neruons, for more info check internet
"""### Adding a second LSTM layer and some Dropout regularisation"""
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
"""### Adding a third LSTM layer and some Dropout regularisation"""
regressor.add(LSTM(units = 50, return_sequences = True))
regressor.add(Dropout(0.2))
"""### Adding a fourth LSTM layer and some Dropout regularisation"""
regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))
"""### Adding the output layer"""
regressor.add(Dense(units = 1))
"""### Compiling the RNN"""
regressor.compile(optimizer = 'adam', loss = 'mean_squared_error')
"""### Fitting the RNN to the Training set"""
regressor.fit(X_train, y_train, epochs = 100, batch_size = 32)
"""## Part 3 - Making the predictions and visualising the results
### Getting the real stock price of 2017
"""
dataset_test = pd.read_csv('Google_Stock_Price_Test.csv')
real_stock_price = dataset_test.iloc[:, 1:2].values
"""### Getting the predicted stock price of 2017"""
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values
inputs = inputs.reshape(-1,1)
inputs = sc.transform(inputs)
X_test = []
for i in range(60, 80):
X_test.append(inputs[i-60:i, 0])
X_test =
|
np.array(X_test)
|
numpy.array
|
"""
Spatial correlation of elevation measurement errors
===================================================
Digital elevation models have elevation measurement errors that can vary with terrain or instrument-related variables
(see :ref:`sphx_glr_auto_examples_plot_nonstationary_error.py`), but those measurement errors are also often
`correlated in space <https://en.wikipedia.org/wiki/Spatial_analysis#Spatial_auto-correlation>`_.
While many DEM studies have been using short-range `variogram <https://en.wikipedia.org/wiki/Variogram>`_ to
estimate the correlation of elevation measurement errors (e.g., `Howat et al. (2008) <https://doi.org/10.1029/2008GL034496>`_
, `W<NAME> (2015) <https://doi.org/10.3390/rs70810117>`_), recent studies show that variograms of multiple ranges
provide larger, more reliable estimates of spatial correlation for DEMs (e.g., `Dehecq et al. (2020) <https://doi.org/10.3389/feart.2020.566802>`_
, `Hugonnet et al. (2021) <https://doi.org/10.1038/s41586-021-03436-z>`_).
Quantifying the spatial correlation in elevation measurement errors is essential to integrate measurement errors over
an area of interest (e.g, to estimate the error of a mean or sum of samples). Once the spatial correlations are quantified,
several methods exist to derive the related measurement error integrated in space (`Rolstad et al. (2009) <https://doi.org/10.3189/002214309789470950>`_
, Hugonnet et al. (in prep)). More details are available in :ref:`spatialstats`.
Here, we show an example in which we estimate spatially integrated elevation measurement errors for a DEM difference at
Longyearbyen, demonstrated in :ref:`sphx_glr_auto_examples_plot_nuth_kaab.py`. We first quantify the spatial
correlations using :func:`xdem.spatialstats.sample_empirical_variogram` based on routines of `scikit-gstat
<https://mmaelicke.github.io/scikit-gstat/index.html>`_. We then model the empirical variogram using a sum of variogram
models using :func:`xdem.spatialstats.fit_sum_model_variogram`.
Finally, we integrate the variogram models for varying surface areas to estimate the spatially integrated elevation
measurement errors using :func:`xdem.spatialstats.neff_circ`, and empirically validate the improved robustness of
our results using :func:`xdem.spatialstats.patches_method`, an intensive Monte-Carlo sampling approach.
"""
# sphinx_gallery_thumbnail_number = 6
import matplotlib.pyplot as plt
import numpy as np
import xdem
import geoutils as gu
# %%
# We start by loading example files including a difference of DEMs at Longyearbyen and the outlines to rasterize
# a glacier mask.
# Prior to differencing, the DEMs were aligned using :ref:`coregistration_nuthkaab` as shown in
# the :ref:`sphx_glr_auto_examples_plot_nuth_kaab.py` example. We later refer to those elevation differences as *dh*.
dh = xdem.DEM(xdem.examples.get_path("longyearbyen_ddem"))
glacier_outlines = gu.Vector(xdem.examples.get_path("longyearbyen_glacier_outlines"))
mask_glacier = glacier_outlines.create_mask(dh)
# %%
# We remove values on glacier terrain in order to isolate stable terrain, our proxy for elevation measurement errors.
dh.data[mask_glacier] = np.nan
# %%
# We estimate the average per-pixel elevation measurement error on stable terrain, using both the standard deviation
# and normalized median absolute deviation. For this example, we do not account for the non-stationarity in elevation
# measurement errors quantified in :ref:`sphx_glr_auto_examples_plot_nonstationary_error.py`.
print('STD: {:.2f} meters.'.format(np.nanstd(dh.data)))
print('NMAD: {:.2f} meters.'.format(xdem.spatialstats.nmad(dh.data)))
# %%
# The two measures of dispersion are quite similar showing that, on average, there is a small influence of outliers on the
# elevation differences. The per-pixel precision is about :math:`\pm` 2.5 meters.
# **Does this mean that every pixel has an independent measurement error of** :math:`\pm` **2.5 meters?**
# Let's plot the elevation differences to visually check the quality of the data.
plt.figure(figsize=(8, 5))
_ = dh.show(ax=plt.gca(), cmap='RdYlBu', vmin=-4, vmax=4, cb_title='Elevation differences (m)')
# %%
# We clearly see that the residual elevation differences on stable terrain are not random. The positive and negative
# differences (blue and red, respectively) appear correlated over large distances. These correlated errors are what
# we aim to quantify.
# %%
# Additionally, we notice that the elevation differences are still polluted by unrealistically large elevation
# differences near glaciers, probably because the glacier inventory is more recent than the data, and the outlines are too small.
# To remedy this, we filter large elevation differences outside 4 NMAD.
dh.data[np.abs(dh.data) > 4 * xdem.spatialstats.nmad(dh.data)] = np.nan
# %%
# We plot the elevation differences after filtering to check that we successively removed the reminaing glacier signals.
plt.figure(figsize=(8, 5))
_ = dh.show(ax=plt.gca(), cmap='RdYlBu', vmin=-4, vmax=4, cb_title='Elevation differences (m)')
# %%
# To quantify the spatial correlation of the data, we sample an empirical variogram.
# The empirical variogram describes the variance between the elevation differences of pairs of pixels depending on their
# distance. This distance between pairs of pixels if referred to as spatial lag.
#
# To perform this procedure effectively, we use improved methods that provide efficient pairwise sampling methods for
# large grid data in `scikit-gstat <https://mmaelicke.github.io/scikit-gstat/index.html>`_, which are encapsulated
# conveniently by :func:`xdem.spatialstats.sample_empirical_variogram`:
df = xdem.spatialstats.sample_empirical_variogram(
values=dh.data, gsd=dh.res[0], subsample=50, runs=30, n_variograms=10, random_state=42)
# %%
# *Note: in this example, we add a* ``random_state`` *argument to yield a reproducible random sampling of pixels within
# the grid, and a* ``runs`` *argument to reduce the computing time of* ``sgstat.MetricSpace.RasterEquidistantMetricSpace``
# *which, by default, samples more data for robustness.*
# %%
# We plot the empirical variogram:
xdem.spatialstats.plot_vgm(df)
# %%
# With this plot, it is hard to conclude anything! Properly visualizing the empirical variogram is one of the most
# important step. With grid data, we expect short-range correlations close to the resolution of the grid (~20-200
# meters), but also possibly longer range correlation due to instrument noise or alignment issues (~1-50 km) (Hugonnet et al., in prep).
#
# To better visualize the variogram, we can either change the axis to log-scale, but this might make it more difficult
# to later compare to variogram models. # Another solution is to split the variogram plot into subpanels, each with
# its own linear scale. Both are shown below.
# %%
# **Log scale:**
xdem.spatialstats.plot_vgm(df, xscale='log')
# %%
# **Subpanels with linear scale:**
xdem.spatialstats.plot_vgm(df, xscale_range_split=[100, 1000, 10000])
# %%
# We identify:
# - a short-range (i.e., correlation length) correlation, likely due to effects of resolution. It has a large partial sill (correlated variance), meaning that the elevation measurement errors are strongly correlated until a range of ~100 m.
# - a longer range correlation, with a smaller partial sill, meaning the part of the elevation measurement errors remain correlated over a longer distance.
#
# In order to show the difference between accounting only for the most noticeable, short-range correlation, or adding the
# long-range correlation, we fit this empirical variogram with two different models: a single spherical model, and
# the sum of two spherical models (two ranges). For this, we use :func:`xdem.spatialstats.fit_sum_model_variogram`, which
# is based on `scipy.optimize.curve_fit <https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html>`_:
fun, params1 = xdem.spatialstats.fit_sum_model_variogram(['Sph'], empirical_variogram=df)
fun2, params2 = xdem.spatialstats.fit_sum_model_variogram(['Sph', 'Sph'], empirical_variogram=df)
xdem.spatialstats.plot_vgm(df,list_fit_fun=[fun, fun2],list_fit_fun_label=['Single-range model', 'Double-range model'],
xscale_range_split=[100, 1000, 10000])
# %%
# The sum of two spherical models fits better, accouting for the small partial sill at longer ranges. Yet this longer
# range partial sill (correlated variance) is quite small...
#
# **So one could ask himself: is it really important to account for this small additional "bump" in the variogram?**
#
# To answer this, we compute the precision of the DEM integrated over a certain surface area based on spatial integration of the
# variogram models using :func:`xdem.spatialstats.neff_circ`, with areas varying from pixel size to grid size.
# Numerical and exact integration of variogram is fast, allowing us to estimate errors for a wide range of areas radidly.
areas = np.linspace(20**2, 10000**2, 1000)
list_stderr_singlerange, list_stderr_doublerange, list_stderr_empirical = ([] for i in range(3))
for area in areas:
# Number of effective samples integrated over the area for a single-range model
neff_singlerange = xdem.spatialstats.neff_circ(area, [(params1[0], 'Sph', params1[1])])
# For a double-range model
neff_doublerange = xdem.spatialstats.neff_circ(area, [(params2[0], 'Sph', params2[1]),
(params2[2], 'Sph', params2[3])])
# Convert into a standard error
stderr_singlerange = np.nanstd(dh.data)/np.sqrt(neff_singlerange)
stderr_doublerange = np.nanstd(dh.data)/np.sqrt(neff_doublerange)
list_stderr_singlerange.append(stderr_singlerange)
list_stderr_doublerange.append(stderr_doublerange)
# %%
# We add an empirical error based on intensive Monte-Carlo sampling ("patches" method) to validate our results
# (Dehecq et al. (2020), Hugonnet et al., in prep). This method is implemented in :func:`xdem.spatialstats.patches_method`.
# Here, we sample fewer areas to avoid for the patches method to run over long processing times, increasing from areas
# of 5 pixels to areas of 10000 pixels exponentially.
areas_emp = [10 * 400 * 2 ** i for i in range(10)]
for area_emp in areas_emp:
# First, sample intensively circular patches of a given area, and derive the mean elevation differences
df_patches = xdem.spatialstats.patches_method(dh.data.data, gsd=dh.res[0], area=area_emp, n_patches=200, random_state=42)
# Second, estimate the dispersion of the means of each patch, i.e. the standard error of the mean
stderr_empirical = np.nanstd(df_patches['nanmedian'].values)
list_stderr_empirical.append(stderr_empirical)
fig, ax = plt.subplots()
plt.plot(np.asarray(areas)/1000000, list_stderr_singlerange, label='Single-range spherical model')
plt.plot(np.asarray(areas)/1000000, list_stderr_doublerange, label='Double-range spherical model')
plt.scatter(np.asarray(areas_emp)/1000000, list_stderr_empirical, label='Empirical estimate', color='black', marker='x')
plt.xlabel('Averaging area (km²)')
plt.ylabel('Uncertainty in the mean elevation difference (m)')
plt.xscale('log')
plt.yscale('log')
plt.legend()
plt.show()
# %%
# *Note: in this example, we add a* ``random_state`` *argument to the patches method to yield a reproducible random
# sampling, and set* ``n_patches`` *to limit computing time.*
# %%
# Using a single-range variogram highly underestimates the measurement error integrated over an area, by over a factor
# of ~100 for large surface areas. Using a double-range variogram brings us closer to the empirical error.
#
# **But, in this case, the error is still too small. Why?**
# The small size of the sampling area against the very large range of the noise implies that we might not verify the
# assumption of second-order stationarity (see :ref:`spatialstats`). Longer range correlations might be omitted by
# our analysis, due to the limits of the variogram sampling. In other words, a small part of the variance could be
# fully correlated over a large part of the grid: a vertical bias.
#
# As a first guess for this, let's examine the difference between mean and median to gain some insight on the central
# tendency of our sample:
diff_med_mean = np.nanmean(dh.data.data)-np.nanmedian(dh.data.data)
print('Difference mean/median: {:.3f} meters.'.format(diff_med_mean))
# %%
# If we now express it as a percentage of the dispersion:
print('{:.1f} % of STD.'.format(diff_med_mean/
|
np.nanstd(dh.data.data)
|
numpy.nanstd
|
"""
AE.py (author: <NAME> / git: ankonzoid)
Autoencoder class (for both simple & convolutional)
"""
from .AE_base import AEBase
import datetime, os, platform, pylab, time
import numpy as np
import matplotlib.pyplot as plt
from keras.layers import Input, Dense
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D
from keras.models import Model, load_model
class AE(AEBase):
def __init__(self):
# ======================================
# Necessary parameters
# ======================================
# For model architecture and weights (used for load/save)
self.autoencoder = None
self.autoencoder_input_shape = None
self.autoencoder_output_shape = None
self.encoder = None
self.encoder_input_shape = None
self.encoder_output_shape = None
self.decoder = None
self.decoder_input_shape = None
self.decoder_output_shape = None
# Some sanity parameters to be used in the middle of the run
self.is_compiled = None
# Encoding/decoding functions
self.encode = None
self.decode = None
self.encoder_decode = None
# Report text
self.start_time = None
self.current_time = None
# ======================================
# Parameters for architecture
# ======================================
self.model_name = None
# ======================================
# Parameters for report
# ======================================
super().__init__()
### ====================================================================
###
### Training
###
### ====================================================================
"""
Train the autoencoder
"""
def train(self, x_train, x_test, n_epochs=50, batch_size=256):
self.autoencoder.fit(x_train, x_train,
epochs = n_epochs,
batch_size = batch_size,
shuffle = True,
validation_data = (x_test, x_test))
### ====================================================================
###
### Encoding / Decoding
###
### ====================================================================
"""
Encode the image (using trained encoder)
"""
def encode(self, img):
if not self.is_compiled:
raise Exception("Not compiled yet!")
x_encoded = self.encoder.predict(img)
return x_encoded
"""
Decode the encoded image (using trained decoder)
"""
def decode(self, x_encoded):
if not self.is_compiled:
raise Exception("Not compiled yet!")
img_decoded = self.decoder.predict(x_encoded)
return img_decoded
"""
Encode then decode
"""
def encode_decode(self, img):
if not self.is_compiled:
raise Exception("Not compiled yet!")
x_encoded = self.encoder.predict(img)
img_decoded = self.decoder.predict(x_encoded)
return img_decoded
### ====================================================================
###
### Model IO
###
### ====================================================================
"""
Load model architecture and weights of autoencoder, encoder, and decoded
"""
def load_model(self, dictfn):
print("Loading models...")
# Set model filenames
autoencoder_filename = dictfn["autoencoder_filename"]
encoder_filename = dictfn["encoder_filename"]
decoder_filename = dictfn["decoder_filename"]
# Load autoencoder architecture + weights + shapes
self.autoencoder = load_model(autoencoder_filename)
self.autoencoder_input_shape = self.autoencoder.input_shape # set input shape from loaded model
self.autoencoder_output_shape = self.autoencoder.output_shape # set output shape from loaded model
# Load encoder architecture + weights + shapes
self.encoder = load_model(encoder_filename)
self.encoder_input_shape = self.encoder.input_shape # set input shape from loaded model
self.encoder_output_shape = self.encoder.output_shape # set output shape from loaded model
# Load decoder architecture + weights + shapes
self.decoder = load_model(decoder_filename)
self.decoder_input_shape = self.decoder.input_shape # set input shape from loaded model
self.decoder_output_shape = self.decoder.output_shape # set output shape from loaded model
"""
Save model architecture and weights to file
"""
def save_model(self, dictfn):
print("Saving models...")
self.autoencoder.save(dictfn["autoencoder_filename"])
self.encoder.save(dictfn["encoder_filename"])
self.decoder.save(dictfn["decoder_filename"])
### ====================================================================
###
### Architecture compilation
###
### ====================================================================
"""
Set name
"""
def configure(self, model_name=None):
self.model_name = model_name
"""
Set neural network architecture
"""
def set_arch(self, input_shape=None, output_shape=None):
###
### Create layers based on model name
###
if self.model_name == "simpleAE":
encode_dim = 128 # only single hidden layer
### Encoding hidden layers ###
input_img = Input(shape=input_shape)
encoded = Dense(encode_dim, activation='relu')(input_img)
### Decoding hidden layers ###
decoded = Dense(output_shape[0], activation='sigmoid')(encoded)
elif self.model_name == "convAE":
n_hidden_1 = 16 # 1st hidden layer
n_hidden_2 = 8 # 2nd hidden layer
n_hidden_3 = 8 # 3rd hidden layer
convkernel = (3, 3) # convolution (uses filters): n_filters_1 -> n_filters_2
poolkernel = (2, 2) # pooling (down/up samples image): ypix -> ypix/ypoolkernel, xpix -> xpix/ypoolkernel
### Encoding hidden layers ###
input_img = Input(shape=input_shape) # input layer (ypixels, xpixels, n_channels)
x = Conv2D(n_hidden_1, convkernel, activation='relu', padding='same')(input_img)
x = MaxPooling2D(poolkernel, padding='same')(x)
x = Conv2D(n_hidden_2, convkernel, activation='relu', padding='same')(x)
x = MaxPooling2D(poolkernel, padding='same')(x)
x = Conv2D(n_hidden_3, convkernel, activation='relu', padding='same')(x)
encoded = MaxPooling2D(poolkernel, padding='same')(x) # encoding layer
### Decoding hidden layers ###
x = Conv2D(n_hidden_3, convkernel, activation='relu', padding='same')(encoded)
x = UpSampling2D(poolkernel)(x)
x = Conv2D(n_hidden_2, convkernel, activation='relu', padding='same')(x)
x = UpSampling2D(poolkernel)(x)
x = Conv2D(n_hidden_1, convkernel, activation='relu')(x)
x = UpSampling2D(poolkernel)(x)
decoded = Conv2D(output_shape[2], convkernel, activation='sigmoid', padding='same')(x) # output layer
else:
raise Exception("Invalid model name given!")
###
### Create models
###
### Create autoencoder model ###
autoencoder = Model(input_img, decoded)
print("\n\nautoencoder.summary():")
print(autoencoder.summary())
# Set encoder input/output dimensions
input_autoencoder_shape = autoencoder.layers[0].input_shape[1:]
output_autoencoder_shape = autoencoder.layers[-1].output_shape[1:]
### Create encoder model ###
encoder = Model(input_img, encoded) # set encoder
print("\n\nencoder.summary():")
print(encoder.summary())
# Set encoder input/output dimensions
input_encoder_shape = encoder.layers[0].input_shape[1:]
output_encoder_shape = encoder.layers[-1].output_shape[1:]
### Create decoder model ###
decoded_input = Input(shape=output_encoder_shape)
if self.model_name == 'simpleAE':
decoded_output = autoencoder.layers[-1](decoded_input) # single layer
elif self.model_name == 'convAE':
decoded_output = autoencoder.layers[-7](decoded_input) # Conv2D
decoded_output = autoencoder.layers[-6](decoded_output) # UpSampling2D
decoded_output = autoencoder.layers[-5](decoded_output) # Conv2D
decoded_output = autoencoder.layers[-4](decoded_output) # UpSampling2D
decoded_output = autoencoder.layers[-3](decoded_output) # Conv2D
decoded_output = autoencoder.layers[-2](decoded_output) # UpSampling2D
decoded_output = autoencoder.layers[-1](decoded_output) # Conv2D
else:
raise Exception("Invalid model name given!")
decoder = Model(decoded_input, decoded_output)
print("\n\ndecoder.summary():")
print(decoder.summary())
# Set encoder input/output dimensions
input_decoder_shape = decoder.layers[0].input_shape[1:]
output_decoder_shape = decoder.layers[-1].output_shape[1:]
###
### Assign models
###
self.autoencoder = autoencoder # untrained
self.encoder = encoder # untrained
self.decoder = decoder # untrained
# Set model input/output dimensions
# We provide two options for getting these numbers:
# - via the individual layers
# - via the models
if 1:
self.autoencoder_input_shape = input_autoencoder_shape
self.autoencoder_output_shape = output_autoencoder_shape
self.encoder_input_shape = input_encoder_shape
self.encoder_output_shape = output_encoder_shape
self.decoder_input_shape = input_decoder_shape
self.decoder_output_shape = output_decoder_shape
else:
self.autoencoder_input_shape = autoencoder.input_shape
self.autoencoder_output_shape = autoencoder.output_shape
self.encoder_input_shape = encoder.input_shape
self.encoder_output_shape = encoder.output_shape
self.decoder_input_shape = decoder.input_shape
self.decoder_output_shape = decoder.output_shape
"""
Compile the model before training
"""
def compile(self, loss="binary_crossentropy", optimizer="adam"):
self.autoencoder.compile(optimizer=optimizer, loss=loss)
self.is_compiled = True
### ====================================================================
###
### Naming conventions
###
### ====================================================================
"""
Naming conventions of filenames
"""
def generate_naming_conventions(self, model_name, output_dir):
autoencoder_filename = os.path.join(output_dir, model_name + "_autoencoder.h5")
encoder_filename = os.path.join(output_dir, model_name + "_encoder.h5")
decoder_filename = os.path.join(output_dir, model_name + "_decoder.h5")
plot_filename_pdf = os.path.join(output_dir, model_name + "_plot.pdf")
plot_filename_png = os.path.join(output_dir, model_name + "_plot.png")
report_filename = os.path.join(output_dir, model_name + "_report.txt")
dictfn = {
"autoencoder_filename": autoencoder_filename,
"encoder_filename": encoder_filename,
"decoder_filename": decoder_filename,
"plot_filename_pdf": plot_filename_pdf,
"plot_filename_png": plot_filename_png,
"report_filename": report_filename
}
return dictfn
### ====================================================================
###
### Saving plots
###
### ====================================================================
def plot_save_reconstruction(self, x_data_test, img_shape, dictfn, n_plot=10):
ypixels = img_shape[0]
xpixels = img_shape[1]
n_channels = 3
# Extract the subset of test data to reconstruct and plot
n = min(len(x_data_test), n_plot)
x_data_test_plot = x_data_test[
|
np.arange(n)
|
numpy.arange
|
import logging
import math
import warnings
import numpy as np
import pandas as pd
import pytest
import scipy.stats
from dask import array as da, dataframe as dd
from distributed.utils_test import ( # noqa: F401
captured_logger,
cluster,
gen_cluster,
loop,
)
from sklearn.linear_model import SGDClassifier
from dask_ml._compat import DISTRIBUTED_2_5_0
from dask_ml.datasets import make_classification
from dask_ml.model_selection import (
HyperbandSearchCV,
IncrementalSearchCV,
SuccessiveHalvingSearchCV,
)
from dask_ml.model_selection._hyperband import _get_hyperband_params
from dask_ml.utils import ConstantFunction
from dask_ml.wrappers import Incremental
pytestmark = pytest.mark.skipif(not DISTRIBUTED_2_5_0, reason="hangs")
@pytest.mark.parametrize(
"array_type, library, max_iter",
[
("dask.array", "dask-ml", 9),
("numpy", "sklearn", 9),
("numpy", "ConstantFunction", 15),
("numpy", "ConstantFunction", 20),
],
)
def test_basic(array_type, library, max_iter):
@gen_cluster(client=True)
def _test_basic(c, s, a, b):
rng = da.random.RandomState(42)
n, d = (50, 2)
# create observations we know linear models can fit
X = rng.normal(size=(n, d), chunks=n // 2)
coef_star = rng.uniform(size=d, chunks=d)
y = da.sign(X.dot(coef_star))
if array_type == "numpy":
X, y = yield c.compute((X, y))
params = {
"loss": ["hinge", "log", "modified_huber", "squared_hinge", "perceptron"],
"average": [True, False],
"learning_rate": ["constant", "invscaling", "optimal"],
"eta0": np.logspace(-2, 0, num=1000),
}
model = SGDClassifier(
tol=-np.inf, penalty="elasticnet", random_state=42, eta0=0.1
)
if library == "dask-ml":
model = Incremental(model)
params = {"estimator__" + k: v for k, v in params.items()}
elif library == "ConstantFunction":
model = ConstantFunction()
params = {"value": np.linspace(0, 1, num=1000)}
search = HyperbandSearchCV(model, params, max_iter=max_iter, random_state=42)
classes = c.compute(da.unique(y))
yield search.fit(X, y, classes=classes)
if library == "dask-ml":
X, y = yield c.compute((X, y))
score = search.best_estimator_.score(X, y)
assert score == search.score(X, y)
assert 0 <= score <= 1
if library == "ConstantFunction":
assert score == search.best_score_
else:
# These are not equal because IncrementalSearchCV uses a train/test
# split and we're testing on the entire train dataset, not only the
# validation/test set.
assert abs(score - search.best_score_) < 0.1
assert type(search.best_estimator_) == type(model)
assert isinstance(search.best_params_, dict)
num_fit_models = len(set(search.cv_results_["model_id"]))
num_pf_calls = sum(
[v[-1]["partial_fit_calls"] for v in search.model_history_.values()]
)
models = {9: 17, 15: 17, 20: 17, 27: 49, 30: 49, 81: 143}
pf_calls = {9: 69, 15: 101, 20: 144, 27: 357, 30: 379, 81: 1581}
assert num_fit_models == models[max_iter]
assert num_pf_calls == pf_calls[max_iter]
best_idx = search.best_index_
if isinstance(model, ConstantFunction):
assert search.cv_results_["test_score"][best_idx] == max(
search.cv_results_["test_score"]
)
model_ids = {h["model_id"] for h in search.history_}
if math.log(max_iter, 3) % 1.0 == 0:
# log(max_iter, 3) % 1.0 == 0 is the good case when max_iter is a
# power of search.aggressiveness
# In this case, assert that more models are tried then the max_iter
assert len(model_ids) > max_iter
else:
# Otherwise, give some padding "almost as many estimators are tried
# as max_iter". 3 is a fudge number chosen to be the minimum; when
# max_iter=20, len(model_ids) == 17.
assert len(model_ids) + 3 >= max_iter
assert all("bracket" in id_ for id_ in model_ids)
_test_basic()
@pytest.mark.parametrize("max_iter,aggressiveness", [(27, 3), (30, 4)])
def test_hyperband_mirrors_paper_and_metadata(max_iter, aggressiveness):
@gen_cluster(client=True)
def _test_mirrors_paper(c, s, a, b):
X, y = make_classification(n_samples=10, n_features=4, chunks=10)
model = ConstantFunction()
params = {"value":
|
np.random.rand(max_iter)
|
numpy.random.rand
|
import Torture
import random
import os
import torch
import numpy as np
import torch.optim as optim
import torch.nn.functional as F
import torch.nn as nn
import torchvision
import MI
from Torture.Models import resnet_3layer as resnet
from Torture.Models import resnet as resnet_imagenet
from MI import pgd
from PIL import Image
from Utils.checkpoints import plot_image, save_context
from Utils import flags
#torch.manual_seed(1234)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
#np.random.seed(12345)
EVALUATE_EPOCH = 1
SAVE_EPOCH = 5
HYPERPARAMETERS = None
DEFAULT_RESULTS_FOLDER_ARGUMENT = "Not Valid"
DEFAULT_RESULTS_FOLDER = "~/results/"
FILES_TO_BE_SAVED = ["./", "./Torture", "./Torture/Models", "./Utils", "MI"]
KEY_ARGUMENTS = ["batch_size", "model", "data"]
config = {
"DEFAULT_RESULTS_FOLDER": DEFAULT_RESULTS_FOLDER,
"FILES_TO_BE_SAVED": FILES_TO_BE_SAVED,
"KEY_ARGUMENTS": KEY_ARGUMENTS
}
flags.DEFINE_argument("-gpu", "--gpu", default="-1")
flags.DEFINE_argument("--results-folder",
default=DEFAULT_RESULTS_FOLDER_ARGUMENT)
flags.DEFINE_argument("-k", "-key", "--key", default="")
flags.DEFINE_argument("-data", "--data", default="cifar10")
flags.DEFINE_boolean("-o", "--overwrite-results", default=False)
flags.DEFINE_argument("-bs",
"-batch_size",
"--batch_size",
type=int,
default=50)
flags.DEFINE_argument("-nw",
"-num_workers",
"--num_workers",
type=int,
default=4)
flags.DEFINE_argument("-oldmodel", "--oldmodel", default=None)
flags.DEFINE_argument("-model", "--model", default="resnet34")
flags.DEFINE_boolean("-targeted", "--targeted", default=False)
flags.DEFINE_argument("-num_sample", type=int, default=30)
flags.DEFINE_argument("-nbiter", type=int, default=10)
flags.DEFINE_argument("-baseline", default="gaussian")
flags.DEFINE_argument("-sigma", type=float, default=0.05)
flags.DEFINE_argument("-Xielower", type=int, default=20)
flags.DEFINE_argument("-Xieupper", type=int, default=28)
flags.DEFINE_argument("-Guolower", type=int, default=20)
flags.DEFINE_argument("-Guoupper", type=int, default=28)
flags.DEFINE_argument("-Raffprobability", type=float, default=0.2)
flags.DEFINE_argument("-Rotation", type=int, default=10)
flags.DEFINE_argument("-Kurakin", type=float, default=0.1)
flags.DEFINE_argument("-JPEGquality", type=int, default=75)
flags.DEFINE_argument("-eps", type=float, default=8.)
flags.DEFINE_argument("-numtest", type=int, default=50000)
FLAGS = flags.FLAGS
num_test = FLAGS.numtest
#num of times to sample for MI
num_sample = FLAGS.num_sample
logger, MODELS_FOLDER, SUMMARIES_FOLDER = save_context(__file__, FLAGS, config)
logger.info("build dataloader")
def onehot(ind, num_cla):
vector = np.zeros([num_cla])
vector[ind] = 1
return vector.astype(np.float32)
eps_ = 2.
img_size = 32
clip_min, clip_max = -1., 1.
if FLAGS.data.lower() in ["cifar10"]:
train_trans, test_trans = Torture.Models.transforms.cifar_transform()
trainset = torchvision.datasets.CIFAR10(
root='/home/LargeData/cifar/',
train=False,
download=True,
transform=train_trans,
target_transform=lambda x: onehot(x, 10))
testset = torchvision.datasets.CIFAR10(
root='/home/LargeData/cifar/',
train=False,
download=True,
transform=test_trans,
target_transform=lambda x: onehot(x, 10))
num_classes = 10
model_set = resnet
num_worker = 4
num_s = 10
elif FLAGS.data.lower() in ["cifar100"]:
train_trans, test_trans = Torture.Models.transforms.cifar_transform()
trainset = torchvision.datasets.CIFAR100(
root='/home/LargeData/cifar/',
train=False,
download=True,
transform=train_trans,
target_transform=lambda x: onehot(x, 100))
testset = torchvision.datasets.CIFAR100(
root='/home/LargeData/cifar/',
train=False,
download=True,
transform=test_trans,
target_transform=lambda x: onehot(x, 100))
num_classes = 100
model_set = resnet
num_worker = 4
num_s = 100
elif FLAGS.data.lower() in ["imagenet"]:
train_trans, test_trans = Torture.Models.transforms.imagenet_transform()
trainset = torchvision.datasets.ImageNet(
root='/home/LargeData/ImageNet/',
split='train',
download=True,
transform=train_trans,
target_transform=lambda x: onehot(x, 1000))
testset = torchvision.datasets.ImageNet(
root='/home/LargeData/ImageNet/',
split='val',
download=True,
transform=test_trans,
target_transform=lambda x: onehot(x, 1000))
model_set = resnet_imagenet
num_classes = 1000
num_worker = 64
num_s = 1000
clip_min, clip_max = -2.118, 2.64
eps_ = 1.
img_size = 224 # for resnet-50
dataloader_train = torch.utils.data.DataLoader(
trainset,
# batch_size=FLAGS.batch_size,
batch_size=1,
shuffle=True,
num_workers=2)
dataloader_test = torch.utils.data.DataLoader(
testset,
# batch_size=FLAGS.batch_size,
batch_size=1,
shuffle=False,
num_workers=2)
if FLAGS.model.lower() in model_set.model_dict:
CLASSIFIER = model_set.model_dict[FLAGS.model.lower()]
else:
raise ValueError("unknown model name")
classifier = CLASSIFIER(num_classes=num_classes)
if FLAGS.data.lower() in ["imagenet"]:
classifier = nn.DataParallel(classifier)
device = torch.device("cuda:0")
classifier = classifier.to(device)
logger.info("Load model from" + FLAGS.oldmodel)
classifier.load_state_dict(torch.load(FLAGS.oldmodel))
def accu(pred, label):
_, predicted = torch.max(pred.data, 1)
_, label_ind = torch.max(label.data, 1)
result = (predicted == label_ind).type(torch.float)
return result.mean().item()
pgd_kwargs = {
"eps": FLAGS.eps / 255. * (clip_max - clip_min),
"eps_iter": eps_ / 255. * (clip_max - clip_min),
"nb_iter": FLAGS.nbiter,
"norm": np.inf,
"clip_min": clip_min,
"clip_max": clip_max,
"loss_fn": None,
}
logger.info("Start Attack")
classifier.eval()
accu_adv, accu_clean = [], []
accu_adv_mixup, accu_clean_mixup = [], []
cle_con_all, cle_con_mixup_all = [], []
adv_con_all, adv_con_mixup_all = [], []
soft_max = nn.Softmax(dim=-1)
classifier.load_state_dict(torch.load(FLAGS.oldmodel))
classifier.eval()
if FLAGS.targeted is True:
pgd_kwargs.update({'targeted': True})
for i, data_batch in enumerate(dataloader_test):
# get the inputs; data is a list of [inputs, labels]
img_batch_cpu, label_batch_cpu = data_batch
# Craft random y_target that not equal to the true labels
if FLAGS.targeted is True:
label_target = torch.zeros(label_batch_cpu.shape[0], dtype=torch.int64)
for j in range(label_batch_cpu.shape[0]):
l =
|
np.random.randint(num_classes)
|
numpy.random.randint
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.