prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
"""Preprocess the data for model.""" import os import inspect import csv import numpy as np from PIL import Image import skvideo.io import scipy import tensorflow as tf import pandas as pd from .vgg16 import Vgg16 from .c3d import c3d class VideoVGGExtractor(object): """Select uniformly distributed frames and extract its VGG feature.""" def __init__(self, frame_num, sess): """Load VGG model. Args: frame_num: number of frames per video. sess: tf.Session() """ self.frame_num = frame_num self.inputs = tf.placeholder(tf.float32, [self.frame_num, 224, 224, 3]) self.vgg16 = Vgg16() self.vgg16.build(self.inputs) self.sess = sess def _select_frames(self, path): """Select representative frames for video. Ignore some frames both at begin and end of video. Args: path: Path of video. Returns: frames: list of frames. """ frames = list() # video_info = skvideo.io.ffprobe(path) video_data = skvideo.io.vread(path) total_frames = video_data.shape[0] # Ignore some frame at begin and end. for i in np.linspace(0, total_frames, self.frame_num + 2)[1:self.frame_num + 1]: frame_data = video_data[int(i)] img = Image.fromarray(frame_data) img = img.resize((224, 224), Image.BILINEAR) frame_data =
np.array(img)
numpy.array
# In[1]: # !pwd import numpy as np import time import matplotlib.pyplot as plt from IPython.display import display, Markdown import cat_utils def forward_progagate_2_layers(X, Y, W1, b1, W2, b2): """ X: [n_x, m] train data set Y: [n_y, m] label data W1:[n_1, n_x] weight for the first layer b1:[n_1, 1] bias for the first layer W2:[n_y, n_1] weight for the second layer b1:[n_y, 1] bias for the first layer returns: A1, A2 """ Z1 = np.dot(W1, X) + b1 # [n_1, m] <= [n_1, n_x] . [n_x, m] A1 = np.tanh(Z1) # [n_1, m] Z2 = np.dot(W2, A1) + b2 # [n_y, m] <= [n_y, n_1] . [n_1, m] A2 = 1.0 / (1.0 + np.exp(-Z2)) # [n_y, m] return A1, A2 def backward_propagate_2_layers(X, Y, A1, A2, W1, b1, W2, b2): """ X: [n_x, m] train data set Y: [n_y, m] label data A1: [n_1, m] first layer output A2: [1, m] second layer output W1: [n_1, n_x] weight for the first layer b1: [n_1, 1] bias for the first layer W2: [n_y, n_1] weight for the second layer b1: [n_y, 1] bias for the first layer returns: dW1, db1, dW2, db2 """ n_x, m = X.shape dZ2 = A2 - Y # [n_y, m] dW2 = np.dot(dZ2, A1.T) / m # [n_y, n_1] <= [n_y, m] . [n_1, m].T db2 = np.sum(dZ2, axis=1, keepdims=True) / m # [n_y, 1] <= [n_y, m] dgZ1 = 1 - np.power(A1, 2) # [n_1, m] dZ1 = np.multiply(np.dot(W2.T, dZ2), dgZ1) # [n_1, m] <= [n_y, n_1].T . [n_y, m] dW1 = np.dot(dZ1, X.T) / m # [n_1, n_x] <= [n_1, m] . [n_x, m].T db1 = np.sum(dZ1, axis=1, keepdims=True) / m # [n1, 1] <= [n_1, m] return dW1, db1, dW2, db2 def neural_network_2_layers(X, Y, n_1, num_iterations=10, learning_rate=0.01, early_stop_cost=0., msg_interval=1, print_interval=100): """ X: [n_x, m] train data set Y: [n_y, m] n_y=1 in this case n_1: first hidden layer dimension num_iterations: number iterations learning_rate: learning rate alpha early_stop_cost: early stop cost, if the cost small than this number, the train will stop returns: W1, b1, W2, b2, A2, msgs, costs (A2, is the output) """ n_x, m = X.shape n_y = 1 W1 = np.random.randn(n_1, n_x) * 0.01 b1 = np.zeros([n_1, 1]) W2 = np.random.randn(n_y, n_1) * 0.01 b2 = np.zeros([n_y, 1]) print("init weights", W1[0][0], W2[0][0]) msgs = [] start = time.time() for i in range(num_iterations): A1, A2 = forward_progagate_2_layers(X, Y, W1, b1, W2, b2) dW1, db1, dW2, db2 = backward_propagate_2_layers(X, Y, A1, A2, W1, b1, W2, b2) W1 = W1 - learning_rate * dW1 b1 = b1 - learning_rate * db1 W2 = W2 - learning_rate * dW2 b2 = b2 - learning_rate * db2 cost = np.sum(-(np.dot(Y, np.log(A2.T)) + np.dot(1-Y, np.log(1-A2.T)))) / m cost = np.squeeze(cost) if cost < early_stop_cost: break if i % msg_interval == 0: train_predict, train_accuracy, test_predict, test_accuracy = cat_utils.accuracy_2_layers( W1, b1, W2, b2, test_set_x, test_set_y, A2, train_set_y) msg = { "iterations": i, "dimensions": n_1, "learning_rate": learning_rate, "cost": cost, "train_accuracy": train_accuracy, "test_accuracy": test_accuracy, "training_time": time.time() - start} msgs.append(msg) if i % print_interval == 0: print(i, msg) if 'debug' in globals() and debug: print(i, " derivitive", dW1[0][0], dW2[0][0], db1[0][0], db2[0][0]) print(i, " weights", W1[0][0], W2[0][0]) print(i, msgs[-1]) return W1, b1, W2, b2, A2, msgs, train_predict, train_accuracy, test_predict, test_accuracy train_set_x, train_set_x_orig, train_set_y, test_set_x, test_set_x_orig, test_set_y, classes = cat_utils.load_normalized_dataset() print(train_set_x.shape) def train(params): n_1 = params["n_1"] num_iterations = params["num_iterations"] learning_rate = params["learning_rate"] early_stop_cost = params["early_stop_cost"] np.random.seed(1) # set seed, so that the result is comparable W1, b1, W2, b2, A2, msgs, train_predict, train_accuracy, test_predict, test_accuracy = neural_network_2_layers( train_set_x, train_set_y, n_1, num_iterations, learning_rate, early_stop_cost) return W1, b1, W2, b2, msgs, train_predict, train_accuracy, test_predict, test_accuracy markdown_rows = ["|iterations|n_1|learning_rate|stop_cost|train_accuracy|test_accuracy|training_time|", "|:--|:------------|:--------|:---------|:------------|:-------------|:------------|"] debug=False param = {"n_1": 100, "num_iterations": 2001, "learning_rate": 0.005, "early_stop_cost": 0.05} W1, b1, W2, b2, msgs, train_predict, train_accuracy, test_predict, test_accuracy = train(param) costs = [msg["cost"] for msg in msgs] plt.ioff() plt.plot(
np.squeeze(costs)
numpy.squeeze
import logging import random import time import matplotlib.pyplot as plt import numpy as np from shapely import geometry logger = logging.getLogger("polygone_2d_helper") # logger.setLevel("DEBUG") # logger.setLevel("INFO") if __name__ == "__main__": logging.basicConfig() np.set_printoptions(precision=6, suppress=True) # print(logger.getEffectiveLevel()) class Fcalculator: def __init__(self, points, epsilon=np.array(0.0001)): """points is list of tupel with x,y like [(x1,y1), (x2,y2), (x3,y3),...]""" self.epsilon = epsilon self.points = points def q_of_phi(self, phi): a_ = np.cos(phi, dtype=np.float128) b_ = np.sin(phi, dtype=np.float128) - 1.0 q = np.array([a_, b_]) logger.debug("q^2: {}".format(np.abs(q[0] ** 2 + q[1] ** 2))) return q def F_of_qs(self, q, p0_, p1_, c=0.0): p0 = np.array(p0_) p1 = np.array(p1_) c = np.array(c) q_cross = np.array([-q[1], q[0]]) p0p1 = p1 - p0 scale = 1.0 / np.abs(np.abs(q[0] ** 2 + q[1] ** 2)) if scale >= 1000.0 / self.epsilon: logger.debug("Scale == NONE") polygon = geometry.Polygon(self.points) area = np.array(polygon.area, dtype=np.complex) logger.debug("area: {}".format(area)) s_value = area / len(self.points) elif np.abs(np.dot(p0p1, q)) >= 0.0001: f_p0 = -1.0 * np.exp(1.0j * (np.dot(p0, q) + c)) f_p1 = -1.0 * np.exp(1.0j * (np.dot(p1, q) + c)) s_value = scale * np.dot(p0p1, q_cross) * (f_p1 - f_p0) / np.dot(p0p1, q) else: logger.debug("np.dot(p0p1, q) > epsilon") s_value = scale * np.dot(p0p1, q_cross) * -1.0j * np.exp(1.0j * (np.dot(p0, q) + c)) logger.debug("s_value: {:1.6f}".format(s_value)) return s_value def F_of_qs_arr(self, q, p0_, p1_, c=0.0): p0 = np.array(p0_) p1 = np.array(p1_) c = np.array(c) q_cross = np.array([-q[1], q[0]]) p0p1 = p1 - p0 # scale = 1.0 / np.abs(np.dot(q, q)) scale = 1.0 / np.abs(q[0] ** 2 + q[1] ** 2) f_p0 = -1.0 * np.exp(1.0j * (np.dot(p0, q) + c)) f_p1 = -1.0 * np.exp(1.0j * (np.dot(p1, q) + c)) case1_array = scale * np.dot(p0p1, q_cross) * (f_p1 - f_p0) / np.dot(p0p1, q) case2_array = scale * np.dot(p0p1, q_cross) * -1.0j * np.exp(1.0j * (np.dot(p0, q) + c)) # print("case1_array.shape", case1_array.shape) res_array = np.where(np.abs(np.dot(p0p1, q)) >= 0.0001, case1_array, case2_array) if np.max(scale) >= 1000.0 / self.epsilon: logger.debug("Scale == NONE") polygon = geometry.Polygon(self.points) area = np.array(polygon.area, dtype=np.complex) logger.debug("area: {}".format(area)) s_value = area / len(self.points) case3_array = np.ones_like(q[0]) * s_value res_array = np.where(scale >= 1000.0 / self.epsilon, case3_array, res_array) return res_array def F_of_phi(self, phi, c=0.0): logger.debug("###########################################") logger.info("phi: {}".format(phi)) sum_res = np.zeros_like(phi, dtype=np.complex256) q = self.q_of_phi(phi) for index in range(len(self.points)): logger.debug("index: {}".format(index)) p0 = self.points[index - 1] p1 = self.points[index] logger.debug("p0: {}; p1: {}".format(p0, p1)) sum_res += self.F_of_qs_arr(q, p0, p1, c=c) logger.debug("sum_res {}".format(sum_res)) final_res = sum_res logger.debug("sum_res.dtype: {}".format(sum_res.dtype)) logger.info("final value: {}".format(final_res)) return final_res def tuples_to_array(t): """converts a list of point-tuple into np.ndarray with shape (?,2)""" assert type(t) is list assert len(t) != 0 length = len(t) a = np.empty((length, 2)) for i_, tuple_ in enumerate(t): a[i_] = np.array([tuple_[0], tuple_[1]]) return a def array_to_tuples(a): """converts a numpy array (shape (?,2) )into a list where each element is a point-tuple""" assert type(a) == np.ndarray t = [] for i_ in range(a.shape[0]): t.append(tuple((a[i_, 0], a[i_, 1]))) return t def polygon_to_tuples(polygon): """point coordinates as tuple-list of a shapley.geometry.Polygon""" return [x for x in geometry.mapping(polygon)["coordinates"][0]] def get_spin(point_list): """sums all angles of a point_list/array (simple linear ring). If positive the direction is counter-clockwise and mathematical positive""" if type(point_list) == list: arr = tuples_to_array(point_list) else: arr = point_list direction = 0.0 # print(point_list) for index in range(len(point_list)): p0 = np.array(list(point_list[index - 2])) p1 = np.array(list(point_list[index - 1])) p2 = np.array(list(point_list[index])) s1 = p1 - p0 s1_norm = s1 / np.sqrt(np.dot(s1, s1)) s2 = p2 - p1 s2_norm = s2 / np.sqrt(np.dot(s2, s2)) s1_bar = (-s1_norm[1], s1_norm[0]) direction += np.dot(s1_bar, s2_norm) # print(direction) return direction def angle_between(p1, p2): ang1 = -np.arctan2(*p1[::-1]) ang2 =
np.arctan2(*p2[::-1])
numpy.arctan2
""" Item-based k-NN collaborative filtering. """ import pathlib import logging import pandas as pd import numpy as np import scipy.sparse as sps import scipy.sparse.linalg as spla from numba import njit, prange from lenskit import util, matrix from . import Predictor _logger = logging.getLogger(__name__) @njit(nogil=True) def _predict_weighted_average(model, nitems, nrange, ratings, targets): min_nbrs, max_nbrs = nrange scores = np.full(nitems, np.nan, dtype=np.float_) for i in prange(targets.shape[0]): iidx = targets[i] rptr = model.rowptrs[iidx] rend = model.rowptrs[iidx + 1] num = 0 denom = 0 nnbrs = 0 for j in range(rptr, rend): nidx = model.colinds[j] if np.isnan(ratings[nidx]): continue nnbrs = nnbrs + 1 num = num + ratings[nidx] * model.values[j] denom = denom + np.abs(model.values[j]) if max_nbrs > 0 and nnbrs >= max_nbrs: break if nnbrs < min_nbrs: continue scores[iidx] = num / denom return scores @njit(nogil=True) def _predict_sum(model, nitems, nrange, ratings, targets): min_nbrs, max_nbrs = nrange scores = np.full(nitems, np.nan, dtype=np.float_) for i in prange(targets.shape[0]): iidx = targets[i] rptr = model.rowptrs[iidx] rend = model.rowptrs[iidx + 1] score = 0 nnbrs = 0 for j in range(rptr, rend): nidx = model.colinds[j] if np.isnan(ratings[nidx]): continue nnbrs = nnbrs + 1 score = score + model.values[j] if max_nbrs > 0 and nnbrs >= max_nbrs: break if nnbrs < min_nbrs: continue scores[iidx] = score return scores _predictors = { 'weighted-average': _predict_weighted_average, 'sum': _predict_sum } class ItemItem(Predictor): """ Item-item nearest-neighbor collaborative filtering with ratings. This item-item implementation is not terribly configurable; it hard-codes design decisions found to work well in the previous Java-based LensKit code. Attributes: item_index_(pandas.Index): the index of item IDs. item_means_(numpy.ndarray): the mean rating for each known item. item_counts_(numpy.ndarray): the number of saved neighbors for each item. sim_matrix_(matrix.CSR): the similarity matrix. user_index_(pandas.Index): the index of known user IDs for the rating matrix. rating_matrix_(matrix.CSR): the user-item rating matrix for looking up users' ratings. """ def __init__(self, nnbrs, min_nbrs=1, min_sim=1.0e-6, save_nbrs=None, center=True, aggregate='weighted-average'): """ Args: nnbrs(int): the maximum number of neighbors for scoring each item (``None`` for unlimited) min_nbrs(int): the minimum number of neighbors for scoring each item min_sim(double): minimum similarity threshold for considering a neighbor save_nbrs(double): the number of neighbors to save per item in the trained model (``None`` for unlimited) center(bool): whether to normalize (mean-center) rating vectors. Turn this off when working with unary data and other data types that don't respond well to centering. aggregate: the type of aggregation to do. Can be ``weighted-average`` or ``sum``. """ self.nnbrs = nnbrs if self.nnbrs is not None and self.nnbrs < 1: self.nnbrs = -1 self.min_nbrs = min_nbrs if self.min_nbrs is not None and self.min_nbrs < 1: self.min_nbrs = 1 self.min_sim = min_sim self.save_nbrs = save_nbrs self.center = center self.aggregate = aggregate try: self._predict_agg = _predictors[aggregate] except KeyError: raise ValueError('unknown aggregator {}'.format(aggregate)) def fit(self, ratings): """ Train a model. The model-training process depends on ``save_nbrs`` and ``min_sim``, but *not* on other algorithm parameters. Args: ratings(pandas.DataFrame): (user,item,rating) data for computing item similarities. """ # Training proceeds in 2 steps: # 1. Normalize item vectors to be mean-centered and unit-normalized # 2. Compute similarities with pairwise dot products self._timer = util.Stopwatch() init_rmat, users, items = matrix.sparse_ratings(ratings) n_items = len(items) _logger.info('[%s] made sparse matrix for %d items (%d ratings from %d users)', self._timer, len(items), init_rmat.nnz, len(users)) rmat, item_means = self._mean_center(ratings, init_rmat, items) rmat = self._normalize(rmat) _logger.info('[%s] computing similarity matrix', self._timer) smat = self._compute_similarities(rmat) _logger.info('[%s] got neighborhoods for %d of %d items', self._timer, np.sum(np.diff(smat.rowptrs) > 0), n_items) _logger.info('[%s] computed %d neighbor pairs', self._timer, smat.nnz) self.item_index_ = items self.item_means_ = item_means self.item_counts_ = np.diff(smat.rowptrs) self.sim_matrix_ = smat self.user_index_ = users self.rating_matrix_ = init_rmat return self def _mean_center(self, ratings, rmat, items): if not self.center: return rmat, None item_means = ratings.groupby('item').rating.mean() item_means = item_means.reindex(items).values mcvals = rmat.values - item_means[rmat.colinds] nmat = matrix.CSR(rmat.nrows, rmat.ncols, rmat.nnz, rmat.rowptrs.copy(), rmat.colinds.copy(), mcvals) _logger.info('[%s] computed means for %d items', self._timer, len(item_means)) return nmat, item_means def _normalize(self, rmat): rmat = matrix.csr_to_scipy(rmat) # compute column norms norms = spla.norm(rmat, 2, axis=0) # and multiply by a diagonal to normalize columns recip_norms = norms.copy() is_nz = recip_norms > 0 recip_norms[is_nz] = np.reciprocal(recip_norms[is_nz]) norm_mat = rmat @ sps.diags(recip_norms) assert norm_mat.shape[1] == rmat.shape[1] # and reset NaN norm_mat.data[np.isnan(norm_mat.data)] = 0 _logger.info('[%s] normalized rating matrix columns', self._timer) return matrix.csr_from_scipy(norm_mat, False) def _compute_similarities(self, rmat): mkl = matrix.mkl_ops() if mkl is None: return self._scipy_similarities(rmat) else: return self._mkl_similarities(mkl, rmat) def _scipy_similarities(self, rmat): nitems = rmat.ncols sp_rmat = matrix.csr_to_scipy(rmat) _logger.info('[%s] multiplying matrix with scipy', self._timer) smat = sp_rmat.T @ sp_rmat smat = smat.tocoo() rows, cols, vals = smat.row, smat.col, smat.data rows = rows[:smat.nnz] cols = cols[:smat.nnz] vals = vals[:smat.nnz] rows, cols, vals = self._filter_similarities(rows, cols, vals) csr = self._select_similarities(nitems, rows, cols, vals) return csr def _mkl_similarities(self, mkl, rmat): nitems = rmat.ncols assert rmat.values is not None _logger.info('[%s] multiplying matrix with MKL', self._timer) smat = mkl.csr_syrk(rmat) rows = matrix.csr_rowinds(smat) cols = smat.colinds vals = smat.values rows, cols, vals = self._filter_similarities(rows, cols, vals) del smat nnz = len(rows) _logger.info('[%s] making matrix symmetric (%d nnz)', self._timer, nnz) rows = np.resize(rows, nnz * 2) cols = np.resize(cols, nnz * 2) vals = np.resize(vals, nnz * 2) rows[nnz:] = cols[:nnz] cols[nnz:] = rows[:nnz] vals[nnz:] = vals[:nnz] csr = self._select_similarities(nitems, rows, cols, vals) return csr def _filter_similarities(self, rows, cols, vals): "Threshold similarites & remove self-similarities." _logger.info('[%s] filtering %d similarities', self._timer, len(rows)) # remove self-similarity mask = rows != cols # remove too-small similarities if self.min_sim is not None: mask = np.logical_and(mask, vals >= self.min_sim) _logger.info('[%s] filter keeps %d of %d entries', self._timer, np.sum(mask), len(rows)) return rows[mask], cols[mask], vals[mask] def _select_similarities(self, nitems, rows, cols, vals): _logger.info('[%s] ordering similarities', self._timer) csr = matrix.csr_from_coo(rows, cols, vals, shape=(nitems, nitems)) csr.sort_values() if self.save_nbrs is None or self.save_nbrs <= 0: return csr _logger.info('[%s] picking %d top similarities', self._timer, self.save_nbrs) counts = csr.row_nnzs() _logger.debug('have %d rows in size range [%d,%d]', len(counts), np.min(counts), np.max(counts)) ncounts = np.fmin(counts, self.save_nbrs) _logger.debug('will have %d rows in size range [%d,%d]', len(ncounts), np.min(ncounts), np.max(ncounts)) assert np.all(ncounts <= self.save_nbrs) assert np.all(ncounts >= 0) nnz = np.sum(ncounts) rp2 = np.zeros_like(csr.rowptrs) rp2[1:] = np.cumsum(ncounts) ci2 = np.zeros(nnz, np.int32) vs2 = np.zeros(nnz) for i in range(nitems): sp1 = csr.rowptrs[i] sp2 = rp2[i] ep1 = sp1 + ncounts[i] ep2 = sp2 + ncounts[i] assert ep1 - sp1 == ep2 - sp2 ci2[sp2:ep2] = csr.colinds[sp1:ep1] vs2[sp2:ep2] = csr.values[sp1:ep1] return matrix.CSR(csr.nrows, csr.ncols, nnz, rp2, ci2, vs2) def predict_for_user(self, user, items, ratings=None): _logger.debug('predicting %d items for user %s', len(items), user) if ratings is None: if user not in self.user_index_: _logger.debug('user %s missing, returning empty predictions', user) return pd.Series(np.nan, index=items) upos = self.user_index_.get_loc(user) ratings = pd.Series(self.rating_matrix_.row_vs(upos), index=pd.Index(self.item_index_[self.rating_matrix_.row_cs(upos)])) # set up rating array # get rated item positions & limit to in-model items ri_pos = self.item_index_.get_indexer(ratings.index) m_rates = ratings[ri_pos >= 0] ri_pos = ri_pos[ri_pos >= 0] rate_v = np.full(len(self.item_index_), np.nan, dtype=np.float_) # mean-center the rating array if self.center: rate_v[ri_pos] = m_rates.values - self.item_means_[ri_pos] else: rate_v[ri_pos] = m_rates.values _logger.debug('user %s: %d of %d rated items in model', user, len(ri_pos), len(ratings)) assert np.sum(np.logical_not(np.isnan(rate_v))) == len(ri_pos) # set up item result vector # ipos will be an array of item indices i_pos = self.item_index_.get_indexer(items) i_pos = i_pos[i_pos >= 0] _logger.debug('user %s: %d of %d requested items in model', user, len(i_pos), len(items)) # scratch result array iscore = np.full(len(self.item_index_), np.nan, dtype=np.float_) # now compute the predictions iscore = self._predict_agg(self.sim_matrix_, len(self.item_index_), (self.min_nbrs, self.nnbrs), rate_v, i_pos) nscored = np.sum(np.logical_not(np.isnan(iscore))) if self.center: iscore += self.item_means_ assert np.sum(np.logical_not(np.isnan(iscore))) == nscored results = pd.Series(iscore, index=self.item_index_) results = results[results.notna()] results = results.reindex(items, fill_value=np.nan) assert results.notna().sum() == nscored _logger.debug('user %s: predicted for %d of %d items', user, results.notna().sum(), len(items)) return results def save(self, path): path = pathlib.Path(path) _logger.info('saving I-I model to %s', path) data = dict(items=self.item_index_.values, users=self.user_index_.values, means=self.item_means_) data.update(matrix.csr_save(self.sim_matrix_, 's_')) data.update(matrix.csr_save(self.rating_matrix_, 'r_'))
np.savez_compressed(path, **data)
numpy.savez_compressed
""" Filter ------ """ from typing import List from typing import Optional from typing import Tuple import numpy as np from anndata import AnnData # type: ignore import metacells.utilities as ut from metacells.tools.mask import combine_masks __all__ = [ "filter_data", ] @ut.logged() @ut.timed_call() def filter_data( # pylint: disable=dangerous-default-value adata: AnnData, obs_masks: List[str] = [], var_masks: List[str] = [], *, mask_obs: Optional[str] = None, mask_var: Optional[str] = None, invert_obs: bool = False, invert_var: bool = False, track_obs: Optional[str] = None, track_var: Optional[str] = None, name: Optional[str] = None, top_level: bool = True, ) -> Optional[Tuple[AnnData, ut.PandasSeries, ut.PandasSeries]]: """ Filter (slice) the data based on previously-computed masks. For example, it is useful to discard cell-cycle genes, cells which have too few UMIs for meaningful analysis, etc. In general, the "best" filter depends on the data set. This function makes it easy to combine different pre-computed per-observation (cell) and per-variable (gene) boolean mask annotations into a final overall inclusion mask, and slice the data accordingly, while tracking the base index of the cells and genes in the filtered data. **Input** Annotated ``adata``, where the observations are cells and the variables are genes. **Returns** An annotated data containing a subset of the observations (cells) and variables (genes). If no observations and/or no variables were selected by the filter, returns ``None``. If ``name`` is not specified, the returned data will be unnamed. Otherwise, if the name starts with a ``.``, it will be appended to the current name (if any). Otherwise, ``name`` is the new name. If ``mask_obs`` and/or ``mask_var`` are specified, store the mask of the selected data as a per-observation and/or per-variable annotation of the full ``adata``. If ``track_obs`` and/or ``track_var`` are specified, store the original indices of the selected data as a per-observation and/or per-variable annotation of the result data. **Computation Parameters** 1. Combine the masks in ``obs_masks`` and/or ``var_masks`` using :py:func:`metacells.tools.mask.combine_masks` passing it ``invert_obs`` and ``invert_var``, and ``mask_obs`` and ``mask_var`` as the ``to`` parameter. If either list of masks is empty, use the full mask. 2. If the obtained masks for either the observations or variables is empty, return ``None``. Otherwise, return a slice of the full data containing just the observations and variables specified by the final masks. """ if len(obs_masks) == 0: obs_mask = np.full(adata.n_obs, True, dtype="bool") if mask_obs is not None: ut.set_o_data(adata, mask_obs, obs_mask) else: mask = combine_masks(adata, obs_masks, invert=invert_obs, to=mask_obs) if mask is None: assert mask_obs is not None obs_mask = ut.get_o_numpy(adata, mask_obs, formatter=ut.mask_description) > 0 else: obs_mask = ut.to_numpy_vector(mask, only_extract=True) > 0 if len(var_masks) == 0: var_mask =
np.full(adata.n_vars, True, dtype="bool")
numpy.full
import os, sys from collections import defaultdict import numpy as np import gzip from dateutil import parser MEAN_DIFF_THRESHOLD = 5.0 # expected format # Sep 04 20:55:50.139 INFO Ping response, time: [rtt], local: 0.0.0.0:[srcport], from: ... def parse_udping(fname): if not os.path.isfile(fname): print(f"error: missing {fname}") return port_pings = defaultdict(list) min_time = None with gzip.open(fname) as f: for l in f: l = l.decode('utf-8') try: if 'Ping' in l: sp = l.strip().split(" ") time = parser.parse(' '.join(sp[:3])).timestamp() if min_time is None or time < min_time: min_time = time rtt = float(sp[7].replace(",","")) _, srcport = sp[9].replace(",","").split(":") port_pings[srcport].append((time, rtt)) except Exception as e: continue for port in port_pings: port_pings[port] = [(t - min_time, r) for t, r in port_pings[port]] return(port_pings) # expected format: # [iface] [rxrate_bytes] def parse_bmon(fname): if not os.path.isfile(fname): print(f"error: missing {fname}") return rates = [] with gzip.open(fname) as f: try: for l in f: _, rxrate = l.strip().split() rxrate = float(rxrate) * 8 rates.append(rxrate) except Exception as e: print(f"error: failed to parse bmon for {fname}: {e}") return rates if __name__ == "__main__": if len(sys.argv) != 2: print("usage: python parse.py [path/to/results_dir]") raise Exception() results_dir = sys.argv[1] ping = open('udping_results.out', 'w') ping.write("src dst time port Latency rtt\n") bmon = open('bmon_results.out', 'w') bmon.write("src dst Throughput bw\n") base_rtts = open('minrtts.out', 'w') base_rtts.write("src dst port Latency\n") paths = os.listdir(results_dir) for path in paths: sp = path.split('-') if not os.path.isdir(path) or len(sp) != 2 or 'ssh' in path: continue src, dst = sp control_pings = parse_udping(os.path.join(results_dir, path, 'control', 'udping.log.gz')) iperf_pings = parse_udping(os.path.join(results_dir, path, 'iperf', 'udping.log.gz')) bundler_pings = parse_udping(os.path.join(results_dir, path, 'bundler', 'udping.log.gz')) iperf_rates = parse_bmon(os.path.join(results_dir, path, 'iperf', 'bmon.log.gz')) bundler_rates = parse_bmon(os.path.join(results_dir, path, 'bundler', 'bmon.log.gz')) if control_pings is None: continue for srcport in control_pings.keys(): try: control = control_pings[srcport] for time, r in control: ping.write(f"{src} {dst} {time} {srcport} control {r}\n") except: continue if np.mean(control_pings[srcport]) > 50: base_rtts.write(f"{src} {dst} {srcport} {
np.mean(control_pings[srcport])
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Sep 3 12:07:34 2020 @author: konrad """ import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from scipy.interpolate import griddata import PhysicalCalculations as PC import VortexLine as VL # %% AoA = (0, 5, 10) weights = (.5, .5) Thr = .3 x_full, y_full, u_full, v_full, vort_full, u_std, v_std, Cont_full, Mom_full = \ PC.Read_Data(AoA) x, y, u, v, vort = PC.make_square(x_full, y_full, u_full, v_full, vort_full, 1000, step=1) x_OT = np.genfromtxt("../Data/OT_Results/{:.0f}_{:.0f}_{:.0f}_{:.2f}_{:.2f}_x.csv" .format(AoA[0], AoA[1], AoA[2], weights[0], weights[1]), delimiter=",") y_OT = np.genfromtxt("../Data/OT_Results/{:.0f}_{:.0f}_{:.0f}_{:.2f}_{:.2f}_y.csv" .format(AoA[0], AoA[1], AoA[2], weights[0], weights[1]), delimiter=",") vort_OT_pos = np.genfromtxt("../Data/OT_Results/{:.0f}_{:.0f}_{:.0f}_{:.2f}_{:.2f}_pos.csv" .format(AoA[0], AoA[1], AoA[2], weights[0], weights[1]), delimiter=",") vort_OT_neg = np.genfromtxt("../Data/OT_Results/{:.0f}_{:.0f}_{:.0f}_{:.2f}_{:.2f}_neg.csv" .format(AoA[0], AoA[1], AoA[2], weights[0], weights[1]), delimiter=",") sums = np.genfromtxt("../Data/OT_Results/{:.0f}_{:.0f}_{:.0f}_{:.2f}_{:.2f}_sums.csv" .format(AoA[0], AoA[1], AoA[2], weights[0], weights[1]), delimiter=",") vort_OT = vort_OT_pos*np.sum(weights*sums[0])\ - vort_OT_neg*np.sum(weights*sums[1]) # %% mask_OT = abs(vort_OT) > Thr * np.max(abs(vort_OT)) u_OT, v_OT = PC.u_omega(x_OT, y_OT, x_OT[mask_OT], y_OT[mask_OT], vort_OT[mask_OT], h=1) u_OT += 1 Mom_OT = PC.Momentum(vort_OT, u_OT, v_OT, np.gradient(x_OT[0, :]), np.gradient(y_OT[:, 0])) # %% x_arc, y_arc = PC.Gen_Arc(AoA[1]) Arc = VL.VortexLine(x_arc, y_arc) exvelo = lambda xt, yt: (griddata(np.vstack((x.flatten(), y.flatten())).transpose(), u_OT.flatten(), np.vstack((xt.flatten(), yt.flatten())).transpose()), griddata(np.vstack((x.flatten(), y.flatten())).transpose(), v_OT.flatten(), np.vstack((xt.flatten(), yt.flatten())).transpose())) gamma = Arc.solve_gamma(exvelo) unorm, vnorm = exvelo(Arc.xc, Arc.yc) u_gam, v_gam = Arc.velocity(gamma, Arc.xc, Arc.yc) u_indu, v_indu = Arc.velocity_ext(gamma, x, y) upw_uni = -unorm * Arc.sy + vnorm * Arc.sx upw_gamma = -(unorm - u_gam) * Arc.sy + (vnorm - v_gam) * Arc.sx # %% Motivation skip = 50 plt.figure() plt.contourf(x_full, y_full, np.sqrt(u_full[2]**2, + v_full[2]**2)) plt.quiver(x_full[::skip, ::skip], y_full[::skip, ::skip], u_full[2][::skip, ::skip], v_full[2][::skip, ::skip]) plt.xticks(()) plt.yticks(()) # %% Method Flowchart c_m = cm.RdBu_r ylim = .1 levs = np.linspace(-ylim, ylim, 51) plt.figure() plt.contourf(x, y, vort[0], cmap=c_m, extend='both', levels=levs) plt.colorbar() plt.xticks(()) plt.yticks(()) plt.axis('equal') plt.figure() plt.contourf(x, y, vort[2], cmap=c_m, extend='both', levels=levs) plt.colorbar() plt.xticks(()) plt.yticks(()) plt.axis('equal') plt.figure() plt.contourf(x_OT, y_OT, vort_OT, cmap=c_m, extend='both', levels=levs) plt.colorbar() plt.xticks(()) plt.yticks(()) plt.axis('equal') plt.figure() plt.contourf(x_OT, y_OT, Mom_OT, extend='both', levels=np.linspace(0, 1e-4, 51)) plt.colorbar() plt.xticks(()) plt.yticks(()) plt.axis('equal') # %% Interpolation Method plt.figure() plt.contourf(x, y,
np.ones_like(x)
numpy.ones_like
__author__ = '<NAME>' import numpy as np import statsmodels.api as sm from scipy.spatial import distance from collections import Counter from simulation_parameters import( TRANSMIT_POWER, CARRIER_FREQUENCY ) from pathloss import ( compute_pathloss_fspl, compute_pathloss_nyc_28_los ) def convert_km_to_m(km_distance): """Function that converts distance in km to m!""" _ = km_distance * 10**3 return _ def compute_distance_matrix(users, basestations): """Distances between all users and basestations is calculated. Args: users: (obj) list of users! basestations: (obj) list of basestations! Returns: (list of) numpy arrays containing the distance between a user and all basestations in km!. """ coords_list_ue = [getattr(ele, 'coordinates') for ele in users] coords_list_bs = [getattr(ele, 'coordinates') for ele in basestations] distance_matrix = [] count = 0 for _ in coords_list_ue: element = [coords_list_ue[count]] coords = element + coords_list_bs dist = distance.cdist(coords, coords, 'euclidean') new_dist = np.delete(dist[0], 0) distance_matrix.append(new_dist) count += 1 return np.array(distance_matrix) def compute_distance_matrix_m(distance_matrix_km): """Distance matrix is converted from km to m! Args: distance_matrix_km: (list of) numpy arrays containing the distance between a UE and all BSs in km! Returns: (list of) numpy arrays containing the distance between a user and all basestations in m!. """ distance_matrix_m = [convert_km_to_m(_) for _ in distance_matrix_km] return distance_matrix_m def compute_pathloss_matrix_fspl(_dist_matrix_m): """Pathlosses for all users is calculated. Args: _dist_matrix_m: (obj) list of users! Returns: (list of) numpy arrays containing the distance between a user and all basestations in km!. """ pl_matrix = [compute_pathloss_fspl(distance=_, frequency=CARRIER_FREQUENCY) for _ in _dist_matrix_m] return pl_matrix def compute_pathloss_matrix_nyc(_dist_matrix_m): """Pathlosses for all users is calculated. Args: _dist_matrix_m: (obj) list of users! Returns: (list of) numpy arrays containing the distance between a user and all basestations in km!. """ pl_matrix = [compute_pathloss_nyc_28_los(_) for _ in _dist_matrix_m] return pl_matrix def cell_associate(pathloss_matrix, users, basestations): """Associate a user with a basestation that provides the minimum pathloss. Args: pathloss_matrix: (list) of numpy arrays users: (obj) list of users! basestations: (obj) list of basestations! Returns: (list of) tuples containing the UE object and the BS it is associated to. """ index_list_min_pl = [] # List that contains tuple of (index(min(pathloss)), pathloss) for eacb UE! list_bs = [] # List of basestation objects associated with each UE in order! for _ in pathloss_matrix: index_list_min_pl.append(min(enumerate(_), key=(lambda x: x[1]))) for _ in index_list_min_pl: index = _[0] list_bs.append(basestations[index]) cell_associate_list = list(zip(users, list_bs)) # List that contains tuple: (ue_object, bs_associated)! return cell_associate_list def compute_count_for_bs(pathloss_matrix, basestations): """Computes the number of UEs associated with a BS object for BS. Args: pathloss_matrix: (list) of numpy arrays basestations: (obj) list of basestations! Returns: (list of) tuples containing the BS object and the number of UEs it is associated to. """ index_list_min_pl = [] # List that contains tuple of (index(min(pathloss)), pathloss) for eacb UE! list_bs = [] # List of basestation objects associated with each UE in order! for _ in pathloss_matrix: index_list_min_pl.append(min(enumerate(_), key=(lambda x: x[1]))) for _ in index_list_min_pl: index = _[0] list_bs.append(basestations[index]) bs_cnt = Counter(list_bs) bs_count = list(zip(bs_cnt.keys(), bs_cnt.values())) # List of tuples that contain BS objects and the number of UEs they are associated to! return bs_count def compute_total_ue_for_bs(_cell_associate, _bs_count): """Computes the number of UEs associated with a BS object for UE. Args: _cell_associate: (list) that contains tuple (ue_object, bs_associated)! _bs_count: (list) that contains tuple of BS objects and the number of UEs they are associated to! Returns: (list of) ints that correspond to the count of total number of UEs associated with a BS. """ other_ue_count_bs = [] # List of the total number of UEs associated with a BS for each UE! for x in _cell_associate: for y in _bs_count: if x[1] == y[0]: other_ue_count_bs.append(y[1]) return other_ue_count_bs def compute_distance_ue_bs(_cell_associate): """Computes the distance between the user and the basestation it is associated to. Args: _cell_associate: (list) that contains tuple (ue_object, bs_associated)! Returns: (list of) distances in metres between each UE and BS. """ distance_in_km = [distance.euclidean(_[0].coordinates, _[1].coordinates) for _ in _cell_associate] distance_in_m = [convert_km_to_m(_) for _ in distance_in_km] return distance_in_m def compute_rx_power(P_tx, G_tx, G_rx, PL): """ Link Budget! Args: P_tx: transmit output power (dBm) G_tx: transmitter antenna gain (dBi) G_rx: receiver antenna gain (dBi) PL: pathloss in (dB)! Returns: P_rx: received power (dB)!!! """ p_rx = P_tx + G_tx + G_rx - PL - 30 return p_rx # returns P_rx in dB! def calculate_snr(rx_power, noise_power): """ Function that calculates SNR in dB! Args: rx_power: (numpy array) received power in dB! noise_power: noise power in dB! Returns: snr: (numpy array) Signal-to-Noise ratio in dB! """ snr = rx_power - noise_power # rx_power and noise_power should be in dB! return snr # This gives SNR in dB! def calculate_log_2_factor(value): """ Function that calculates the logarithmic term!""" result = np.log2(1 + value) return result def calculate_prelog_term(bandwidth, number): """ Function that calculates the prelog term! Args: bandwidth: (int) bandwidth allocated to basestation which is can be exclusive or pooled! number: (numpy array) (N) which is the number of total users associated to every basestation for the basestation with which the UE of interest is associated to! Returns: prelog_term: (float) prelog_term is the ratio of the bandwidth and number! """ prelog_term = bandwidth / number return prelog_term def create_ecdf(metric_values): """Function to create ecdf (Empirical Cumulative Distribution Function!). Args: metric_values: (numpy array) of values that needs ecdf! Returns: x: (list of or numpy array) x values for ecdf! y: (list of or numpy array) y values for ecdf! """ ecdf = sm.distributions.ECDF(metric_values) x = np.linspace(min(metric_values), max(metric_values)) y = ecdf(x) return x, y def convert_dB_to_W(dB_value): """ Function that converts dB values into Watts!""" _ = 10 ** (dB_value / 10) return _ def convert_W_to_dB(W_value): """ Function that converts power values in Watts into dB values!""" _ = 10 * np.log10(W_value) return _ def calculate_sinr_exclusive(pathloss_matrix, rx_power, noise_power): """Function to calculate SINR in dB! Args: pathloss_matrix: (list of) numpy arrays! rx_power: (numpy array) received power in dB for each UE! noise_power: (constant term) noise power in dB! Returns: sinr: (numpy array) Signal-to-Interference-plus-Noise ratio in dB! """ pathloss_matrix_ = np.array(pathloss_matrix) with np.nditer(pathloss_matrix_, op_flags=['readwrite']) as it: for x in it: x[...] = compute_rx_power(P_tx=TRANSMIT_POWER, G_tx=0, G_rx=0, PL=x) rxpower_matrix = pathloss_matrix_ with np.nditer(rxpower_matrix, op_flags=['readwrite']) as it: for x in it: x[...] = convert_dB_to_W(x) rx_power_matrix_W = rxpower_matrix all_rx_power_W = np.sum(rx_power_matrix_W, axis=1) rx_power_W = np.fromiter((convert_dB_to_W(_) for _ in rx_power), rx_power.dtype) inter_cell_interference = all_rx_power_W - rx_power_W sum_factor = inter_cell_interference + convert_dB_to_W(noise_power) sinr_watts = rx_power_W / sum_factor sinr_dB = np.fromiter((convert_W_to_dB(_) for _ in sinr_watts), sinr_watts.dtype) return sinr_dB def calculate_sinr_pooled_ii(pathloss_matrix_A, pathloss_matrix_B, rx_power, noise_power): """Function to calculate SINR in dB! Args: pathloss_matrix_A: (list of) numpy arrays! pathloss_matrix_B: (list of) numpy arrays! rx_power: (numpy array) received power in dB for each UE! noise_power: (constant term) noise power in dB! Returns: sinr: (numpy array) Signal-to-Interference-plus-Noise ratio in dB! """ pathloss_matrix_A = np.array(pathloss_matrix_A) with np.nditer(pathloss_matrix_A, op_flags=['readwrite']) as it: for x in it: x[...] = compute_rx_power(P_tx=TRANSMIT_POWER, G_tx=0, G_rx=0, PL=x) rxpower_matrix_A = pathloss_matrix_A pathloss_matrix_B = np.array(pathloss_matrix_B) with np.nditer(pathloss_matrix_B, op_flags=['readwrite']) as it: for x in it: x[...] = compute_rx_power(P_tx=TRANSMIT_POWER, G_tx=0, G_rx=0, PL=x) rxpower_matrix_B = pathloss_matrix_B with np.nditer(rxpower_matrix_A, op_flags=['readwrite']) as it: for x in it: x[...] = convert_dB_to_W(x) rx_power_matrix_A_W = rxpower_matrix_A with np.nditer(rxpower_matrix_B, op_flags=['readwrite']) as it: for x in it: x[...] = convert_dB_to_W(x) rx_power_matrix_B_W = rxpower_matrix_B all_rx_power_A_W = np.sum(rx_power_matrix_A_W, axis=1) all_rx_power_B_W = np.sum(rx_power_matrix_B_W, axis=1) rx_power_W = np.fromiter((convert_dB_to_W(_) for _ in rx_power), rx_power.dtype) inter_cell_interference = all_rx_power_A_W + all_rx_power_B_W - rx_power_W sum_factor = inter_cell_interference + convert_dB_to_W(noise_power) sinr_watts = rx_power_W / sum_factor sinr_dB = np.fromiter((convert_W_to_dB(_) for _ in sinr_watts), sinr_watts.dtype) return sinr_dB def calculate_sinr_pooled_iii(pathloss_matrix_A, pathloss_matrix_B, pathloss_matrix_C, rx_power, noise_power): """Function to calculate SINR in dB! Args: pathloss_matrix_A: (list of) numpy arrays! pathloss_matrix_B: (list of) numpy arrays! pathloss_matrix_C: (list of) numpy arrays! rx_power: (numpy array) received power in dB for each UE! noise_power: (constant term) noise power in dB! Returns: sinr: (numpy array) Signal-to-Interference-plus-Noise ratio in dB! """ pathloss_matrix_A = np.array(pathloss_matrix_A) with np.nditer(pathloss_matrix_A, op_flags=['readwrite']) as it: for x in it: x[...] = compute_rx_power(P_tx=TRANSMIT_POWER, G_tx=0, G_rx=0, PL=x) rxpower_matrix_A = pathloss_matrix_A pathloss_matrix_B = np.array(pathloss_matrix_B) with np.nditer(pathloss_matrix_B, op_flags=['readwrite']) as it: for x in it: x[...] = compute_rx_power(P_tx=TRANSMIT_POWER, G_tx=0, G_rx=0, PL=x) rxpower_matrix_B = pathloss_matrix_B pathloss_matrix_C = np.array(pathloss_matrix_C) with np.nditer(pathloss_matrix_C, op_flags=['readwrite']) as it: for x in it: x[...] = compute_rx_power(P_tx=TRANSMIT_POWER, G_tx=0, G_rx=0, PL=x) rxpower_matrix_C = pathloss_matrix_C with np.nditer(rxpower_matrix_A, op_flags=['readwrite']) as it: for x in it: x[...] = convert_dB_to_W(x) rx_power_matrix_A_W = rxpower_matrix_A with np.nditer(rxpower_matrix_B, op_flags=['readwrite']) as it: for x in it: x[...] = convert_dB_to_W(x) rx_power_matrix_B_W = rxpower_matrix_B with np.nditer(rxpower_matrix_C, op_flags=['readwrite']) as it: for x in it: x[...] = convert_dB_to_W(x) rx_power_matrix_C_W = rxpower_matrix_C all_rx_power_A_W = np.sum(rx_power_matrix_A_W, axis=1) all_rx_power_B_W = np.sum(rx_power_matrix_B_W, axis=1) all_rx_power_C_W =
np.sum(rx_power_matrix_C_W, axis=1)
numpy.sum
"""Converts dynamic object annotations to KITTI format.""" import argparse import glob import json import os from datetime import datetime from os.path import join, basename from typing import List, Callable import numpy as np from pyquaternion import Quaternion from tqdm import tqdm from calibration import ( load_calib_from_json, get_3d_transform_camera_lidar, rigid_transform_3d, transform_rotation, ) from constants import TIME_FORMAT, SIZE, LOCATION, ROTATION from plot_objects_on_image import ObjectAnnotationHandler IMAGE_DIMS = np.array([3848, 2168]) # width, height OCCLUSION_MAP = { "None": 0, "Light": 1, "Medium": 1, "Heavy": 2, "VeryHeavy": 2, "Undefined": 2, # If undefined we assume the worst } def _parse_class(obj_properties): obj_cls = obj_properties["class"] if obj_cls not in ("VulnerableVehicle", "Vehicle", "Pedestrian"): # Remove Animals, Debris, Movers and any other unwanted classes return None elif obj_properties["unclear"] or obj_properties["object_type"] == "Inconclusive": # Ignore unclear and inconclusive objects obj_cls = "DontCare" elif obj_cls == "VulnerableVehicle": # Rename the VulnerableVehicle class to Cyclist to match KITTI obj_cls = "Cyclist" # Remove stuff without rider if obj_properties.get("with_rider", "True") == "False": return None # Ignore everything that's not a bicyclist or motorbicyclist elif obj_properties["object_type"] not in ("Bicycle", "Motorcycle"): obj_cls = "DontCare" elif obj_cls == "Vehicle": # Ignore more exotic vehicle classes (HeavyEquip, TramTrain, Other) if obj_properties["object_type"] not in ("Car", "Van", "Truck", "Trailer", "Bus"): obj_cls = "DontCare" elif obj_cls == "Pedestrian": # No special treatment for pedestrians pass return obj_cls def _convert_to_kitti( objects: List[ObjectAnnotationHandler], yaw_func: Callable[[Quaternion], float] ) -> List[str]: kitti_annotation_lines = [] for obj in objects: class_name = _parse_class(obj.properties) if class_name is None: continue # discard object truncation, xmax, xmin, ymax, ymin = _parse_bbox_2d(obj.outer_points) if obj.marking3d is None: size, location, yaw, alpha = [0, 0, 0], [0, 0, 0], 0, 0 else: size = obj.marking3d[SIZE][::-1] # H,W,L not L,W,H location = obj.marking3d[LOCATION] # x,y,z yaw = yaw_func(obj.marking3d[ROTATION]) alpha = 0 # TODO: calculate this! if class_name != "DontCare" and "occlusion_ratio" not in obj.properties: print("Missing occlusion for obj: ", obj) kitti_obj = " ".join( map( str, [ class_name, truncation, OCCLUSION_MAP[obj.properties.get("occlusion_ratio", "Undefined")], alpha, xmin, ymin, xmax, ymax, *size, *location, yaw, ], ) ) kitti_annotation_lines.append(kitti_obj) return kitti_annotation_lines def _parse_bbox_2d(outer_points): xmin_nonclip, ymin_nonclip = np.min(outer_points, axis=0) xmax_nonclip, ymax_nonclip = np.max(outer_points, axis=0) xmin, ymin =
np.clip([xmin_nonclip, ymin_nonclip], a_min=0, a_max=IMAGE_DIMS)
numpy.clip
import pytest import torch import numpy as np import librosa import audtorch.transforms.functional as F xfail = pytest.mark.xfail a11 = np.array([1, 2, 3, 4], dtype=float) a12 = np.array([5, 6, 7, 8], dtype=float) a21 = np.array([9, 10, 11, 12], dtype=float) a22 = np.array([13, 14, 15, 16], dtype=float) ones = np.ones(4) zeros = np.zeros(4) A = np.array([[a11, a12], [a21, a22]]) # Tensor of shape (2, 2, 4) # Ratio in dB to add two inputs to yield 1.5 magnitude _half_ratio = -10 * np.log10(0.5 ** 2) def _mean(input, axis): """Return mean along axis and preserve number of dimensions.""" return np.expand_dims(np.mean(input, axis=axis), axis=axis) def _pad(vector, padding, value): """Add padding to a vector using np.pad.""" return np.pad(vector, padding, 'constant', constant_values=value) @pytest.mark.parametrize('input,idx,axis,expected_output', [ (A, (0, 2), -1, np.array([[a11[:2], a12[:2]], [a21[:2], a22[:2]]])), (A, (1, 2), -2,
np.array([[a12], [a22]])
numpy.array
# -*- coding: utf-8 -*- """ Package: iads Fichier: Classifiers.py Année: semestre 2 - 2018-2019, Sorbonne Université """ # Import de packages externes import numpy as np import pandas as pd from iads import LabeledSet as ls import random import math # --------------------------- class Classifier: """ Classe pour représenter un classifieur Attention: cette classe est une classe abstraite, elle ne peut pas être instanciée. """ #TODO: A Compléter def __init__(self, input_dimension): """ Constructeur de Classifier Argument: - intput_dimension (int) : dimension d'entrée des exemples Hypothèse : input_dimension > 0 """ raise NotImplementedError("Please Implement this method") def predict(self, x): """ rend la prediction sur x (-1 ou +1) """ raise NotImplementedError("Please Implement this method") def train(self, labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ raise NotImplementedError("Please Implement this method") def accuracy(self, dataset): """ Permet de calculer la qualité du système """ per=0 for i in range(dataset.size()): if self.predict(dataset.getX(i)) == dataset.getY(i): per+=1 return float(per)/dataset.size() # --------------------------- class ClassifierLineaireRandom(Classifier): """ Classe pour représenter un classifieur linéaire aléatoire Cette classe hérite de la classe Classifier """ #TODO: A Compléter def __init__(self, input_dimension): """ Constructeur de Classifier Argument: - intput_dimension (int) : dimension d'entrée des exemples Hypothèse : input_dimension > 0 """ self.input_dimension = input_dimension self.w = 2*np.random.rand(input_dimension)-1 def predict(self, x): """ rend la prediction sur x (-1 ou +1) """ s = 0 for i in range(len(x)): s += x[i]*self.w[i] return (1 if s>=0 else -1) def train(self, labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ print(" no trainning for this model") # --------------------------- class ClassifierKNN(Classifier): """ Classe pour représenter un classifieur par K plus proches voisins. Cette classe hérite de la classe Classifier """ #TODO: A Compléter def __init__(self, input_dimension,output_dimension, k): """ Constructeur de Classifier Argument: - intput_dimension (int) : dimension d'entrée des exemples - k (int) : nombre de voisins à considérer Hypothèse : input_dimension > 0 """ self.input_dimension = input_dimension self.output_dimension = output_dimension self.k= k def predict(self, x): """ rend la prediction sur x (-1 ou +1) """ #construit la matrice des distance de x tab = [] for i in range(self.trainingSet.size()): #calcul de la distance entre x et tainningSet[i] tab.append(np.linalg.norm(x - self.trainingSet.getX(i))) tab = np.argsort(tab) s = 0 r = [0 for i in range(self.output_dimension)] for i in range(len(r)): zero, un = 0,0 for j in range(self.k): if self.trainingSet.getY(tab[j])[i] == 1: un += 1 else: zero+=1 r[i] = 0 if zero > un else 1 return r def train(self, labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ self.trainingSet = labeledSet def accuracy(self, Set): somme = 0 for j in range(Set.size()): baelor = 1 for i in range(len(Set.getY(j))): if Set.getY(j)[i] != self.predict(Set.getX(j))[i]: baelor = 0 somme += 1 if (baelor == 0) else 0 return (float(somme)/Set.size() ) # --------------------------- class ClassifierPerceptronRandom(Classifier): def __init__(self, input_dimension): """ Argument: - input_dimension (int) : dimension d'entrée des exemples Hypothèse : input_dimension > 0 """ v = np.random.rand(input_dimension) # vecteur aléatoire à input_dimension dimensions self.w = (2* v - 1) / np.linalg.norm(v) # on normalise par la norme de v def predict(self, x): """ rend la prediction sur x (-1 ou +1) """ z = np.dot(x, self.w) return z def train(self,labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ print("No training needed") class ClassifierPerceptron(Classifier): """ Perceptron de Rosenblatt """ def __init__(self,input_dimension,learning_rate): """ Argument: - intput_dimension (int) : dimension d'entrée des exemples - learning_rate : Hypothèse : input_dimension > 0 """ ##TODO self.input_dimension = input_dimension self.learning_rate = learning_rate #w i j == poids entre le noeud d'entréej et neurone j self.w = (2* np.random.rand(self.input_dimension))-1 def predict(self,x): """ rend la prediction sur x (-1 ou +1) """ ##TODO return 1 if np.dot(self.w, x)>0 else -1 def train(self,labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ ##TODO self.out = 0 self.trainingSet = labeledSet r = list(range(self.trainingSet.size())) np.random.shuffle(r) for i in r: out = self.predict(self.trainingSet.getX(i)) if out * self.trainingSet.getY(i) <0: self.w = self.w + self.learning_rate *self.trainingSet.getY(i) *self.trainingSet.getX(i) class ClassifierPerceptronRandom(Classifier): def __init__(self, input_dimension): """ Argument: - input_dimension (int) : dimension d'entrée des exemples Hypothèse : input_dimension > 0 """ v = np.random.rand(input_dimension) # vecteur aléatoire à input_dimension dimensions self.w = (2* v - 1) / np.linalg.norm(v) # on normalise par la norme de v def predict(self, x): """ rend la prediction sur x (-1 ou +1) """ z = np.dot(x, self.w) return z def train(self,labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ print("No training needed") class ClassifierPerceptron(Classifier): """ Perceptron de Rosenblatt """ def __init__(self,input_dimension,learning_rate): """ Argument: - intput_dimension (int) : dimension d'entrée des exemples - learning_rate : Hypothèse : input_dimension > 0 """ ##TODO self.input_dimension = input_dimension self.learning_rate = learning_rate #w i j == poids entre le noeud d'entréej et neurone j self.w = (2* np.random.rand(self.input_dimension))-1 def predict(self,x): """ rend la prediction sur x (-1 ou +1) """ ##TODO return 1 if np.dot(self.w, x)>0 else -1 def train(self,labeledSet): """ Permet d'entrainer le modele sur l'ensemble donné """ ##TODO self.out = 0 self.trainingSet = labeledSet r = list(range(self.trainingSet.size())) np.random.shuffle(r) for i in r: out = self.predict(self.trainingSet.getX(i)) if out * self.trainingSet.getY(i) <0: self.w = self.w + self.learning_rate *self.trainingSet.getY(i) *self.trainingSet.getX(i) class KernelBias: def transform(self,x): y=np.asarray([x[0],x[1],1]) return y class ClassifierPerceptronKernel(Classifier): def __init__(self,dimension_kernel,learning_rate,kernel): self.input_dimension = dimension_kernel self.learning_rate = learning_rate self.w = (2* np.random.rand(dimension_kernel))-1 self.k = kernel def predict(self,x): return 1 if np.dot(self.w, self.k.transform(x))>0 else -1 def train(self,labeledSet): self.out = 0 self.trainingSet = labeledSet for i in range(self.trainingSet.size()): out = self.predict(self.trainingSet.getX(i)) if out * self.trainingSet.getY(i) <0: self.w = self.w + self.learning_rate *self.trainingSet.getY(i) *self.k.transform(self.trainingSet.getX(i)) class KernelPoly: def transform(self,x): ##TODO y=np.asarray([1, x[0],x[1],x[0]*x[0], x[1]*x[1], x[0]*x[1]]) return y def classe_majoritaire(the_set): a = [0,0] for i in range(the_set.size()): if the_set.getY(i) == 1: a[0]+=1 else: a[1]+=1 p = np.argmax(a) return 1 if p== 0 else -1 def entropie(L): #calcul des distributions de probas a =
np.zeros(2)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt from pre_processing import pre_processing,re_sampling,moving_avg from rejectBlink_PCA import rejectBlink_PCA import json import os from pixel_size import pixel_size,pixel2angle import warnings import matplotlib.patches as patches import pandas as pd from makeEyemetrics import makeMicroSaccade,draw_heatmap from zeroInterp import zeroInterp from tqdm import tqdm # from scipy.stats import gamma # import scipy.stats as stats warnings.simplefilter('ignore') #%% ### initial settings ################### cfg={ 'SAMPLING_RATE':500, 'center':[1920, 1080], 'DOT_PITCH':0.369, 'VISUAL_DISTANCE':80, 'acceptMSRange':2.81, # 'acceptMSRange':3, 'windowL':10, 'TIME_START':-1, 'TIME_END':4, 'WID_ANALYSIS':4, 'WID_BASELINE':np.array([-0.2,0]), 'WID_FILTER':np.array([]), 'METHOD':1, #subtraction 'FLAG_LOWPASS':False, 'THRES_DIFF':0.04 } saveFileLocs = './data/' f = open(os.path.join(str('./data/data_original.json'))) dat = json.load(f) f.close() mmName = list(dat.keys()) # v = np.diff(np.array(dat['PDR'])).reshape(-1) # plt.hist(v,bins=100) # sigma = np.nanstd(v) # ramda = 6 # upsilon = ramda*sigma y,rejectNum = pre_processing(np.array(dat['PDR']),cfg) y = np.delete(y,rejectNum,axis=0) for mm in mmName: dat[mm] = [d for i,d in enumerate(dat[mm]) if not i in rejectNum] #%% ### figure plot ########################## x = np.linspace(cfg['TIME_START'],cfg['TIME_END'],y.shape[1]) plt.figure() x = np.linspace(cfg['TIME_START'],cfg['TIME_END'],y.shape[1]-1) plt.subplot(1,2,1) plt.plot(x,np.diff(y).T) plt.xlim([cfg['TIME_START'],cfg['TIME_END']]) plt.ylim([-cfg['THRES_DIFF'] ,cfg['THRES_DIFF'] ]) plt.xlabel('Time from response queue') x = np.linspace(cfg['TIME_START'],cfg['TIME_END'],y.shape[1]) plt.subplot(1,2,2) plt.plot(x,y.T) plt.xlim([cfg['TIME_START'],cfg['TIME_END']]) plt.xlabel('Time from response queue') plt.ylabel('Changes in pupil size') #%% ### PCA ########################## pc,rejectNumPCA = rejectBlink_PCA(y) y = np.delete(y,rejectNumPCA,axis=0) for mm in mmName: dat[mm] = [d for i,d in enumerate(dat[mm]) if not i in rejectNumPCA] #%% ### rejection of outlier(interplation failed trial) ######### # max_val = [max(abs(y[i,])) for i in np.arange(y.shape[0])] # fx = np.diff(y) # rejectOutlier = [] # for i in np.arange(len(y)): # if len(np.unique(np.round(fx[i,],5))) < 20: # rejectOutlier.append(i) # y = np.delete(y,rejectOutlier,axis=0) # for mm in mmName: # dat[mm] = [d for i,d in enumerate(dat[mm]) if not i in rejectOutlier] #%% ### reject gaze position ### gazeX = np.array(dat['gazeX']) gazeY = np.array(dat['gazeY']) gazeX = zeroInterp(gazeX.copy(),cfg['SAMPLING_RATE'],5) gazeX = gazeX['pupilData'][:,cfg['SAMPLING_RATE']:] gazeY = zeroInterp(gazeY.copy(),cfg['SAMPLING_RATE'],5) gazeY = gazeY['pupilData'][:,cfg['SAMPLING_RATE']:] gv = [list(np.gradient(g)*cfg['SAMPLING_RATE']) for g in gazeX.tolist()] gacc = [list(np.gradient(np.gradient(g))*(cfg['SAMPLING_RATE']**2)) for g in gazeX.tolist()] thFix = pixel_size(cfg['DOT_PITCH'],30,cfg['VISUAL_DISTANCE']) # changes in velocity of x > 30°/sec thAccFix = thFix*400 # changes in acceration of x > 1200°/sec endFix = [] for iTrial,d in enumerate(tqdm(dat['endFix'])): # if len(d)==0: sigma = np.std(gv[iTrial]) sigma = sigma*3 sigma_acc = np.std(gacc[iTrial]) sigma_acc = sigma_acc*3 ind = np.argwhere(abs(np.array(gv[iTrial])) > sigma).reshape(-1) ind_acc = np.argwhere(abs(np.array(gacc[iTrial])) > sigma_acc).reshape(-1) # ind_acc = ind_acc[np.argwhere(np.diff(np.r_[0, ind_acc]) > 10)].reshape(-1) # ind = np.unique(np.r_[ind,ind_acc]) if len(ind) > 0: if np.max(np.diff(np.r_[0, ind])) > 1: eFixTime = ind[np.argwhere(np.diff(np.r_[0, ind]) > 10)].reshape(-1) if len(eFixTime) == 0: eFixTime = ind[0] eFixTime = np.r_[eFixTime,len(gv[iTrial])] sFixTime = ind[np.r_[np.argwhere(np.diff(np.r_[0, ind]) > 10)[1:].reshape(-1)-1,len(ind)-1]] sFixTime = np.r_[0,sFixTime] tmp_endFix = [] for iFix in np.arange(len(sFixTime)): tmp_endFix.append([0,0,0, gazeX[iTrial,np.arange(sFixTime[iFix],eFixTime[iFix])].mean(), gazeY[iTrial,np.arange(sFixTime[iFix],eFixTime[iFix])].mean(), 0]) else: sFixTime = ind[0].tolist() eFixTime = ind[-1].tolist() tmp_endFix.append([0,0,0, gazeX[iTrial,np.arange(sFixTime,eFixTime)].mean(), gazeY[iTrial,np.arange(sFixTime,eFixTime)].mean(), 0]) dat['endFix'][iTrial] = tmp_endFix else: dat['endFix'][iTrial] = [] # endFix.append(tmp_endFix) rangeWin = pixel_size(cfg['DOT_PITCH'],cfg['acceptMSRange'],cfg['VISUAL_DISTANCE']) center = np.array(cfg['center'])/2 gazeX = [] gazeY = [] for iTrial,fixTrial in enumerate(dat['endFix']): tmp_gx=[] tmp_gy=[] if len(fixTrial)>0: for gx in fixTrial: tmp_gx.append(float(gx[3])) tmp_gy.append(float(gx[4])) gazeX.append(np.mean(tmp_gx)) gazeY.append(np.mean(tmp_gy)) else: gazeX.append(0) gazeY.append(0) gazeX = np.array(gazeX)-np.array(dat['gazeX']).mean(axis=1) gazeY = np.array(gazeY)-np.array(dat['gazeY']).mean(axis=1) # gazeX_p = np.array(gazeX)-center[0] # gazeY_p = np.array(gazeY)-center[1] # gazeX_p=pixel2angle(cfg['DOT_PITCH'],gazeX_p.tolist(),cfg['VISUAL_DISTANCE']) # gazeY_p=pixel2angle(cfg['DOT_PITCH'],gazeY_p.tolist(),cfg['VISUAL_DISTANCE']) # gazeX = np.mean(gazeX-center[0],axis=1) # gazeY = np.mean(gazeY-center[1],axis=1) a = rangeWin**2 b = rangeWin**2 tmp_x = gazeX**2 tmp_y = gazeY**2 P = (tmp_x/a)+(tmp_y/b)-1 rejectGaze = np.argwhere(P > 0).reshape(-1) fig = plt.figure() ax = plt.axes() e = patches.Ellipse(xy=(0,0), width=rangeWin*2, height=rangeWin*2, fill=False, ec='r') ax.add_patch(e) plt.plot(gazeX,gazeY,'.') plt.plot(gazeX[rejectGaze],gazeY[rejectGaze],'r.') plt.axis('equal') plt.xlim([-rangeWin-20,rangeWin+20]) plt.ylim([-rangeWin-20,rangeWin+20]) rejectGaze2 = np.argwhere(np.isnan(gazeX)).reshape(-1) rejectGaze = np.unique(np.r_[rejectGaze,rejectGaze2]) y = np.delete(y,rejectGaze,axis=0) for mm in mmName: dat[mm] = [d for i,d in enumerate(dat[mm]) if not i in rejectGaze] dat['PDR'] = y.tolist() #%% ### participants reject ### reject=[] NUM_TRIAL = 150 numOftrials = [] rejectedTrial = [] for iSub in np.arange(1,int(max(dat['sub']))+1): ind = [i for i, sub in enumerate(dat['sub']) if sub == iSub] numOftrials.append(len(ind)) rejectedTrial.append(NUM_TRIAL - len(ind)) if numOftrials[iSub-1] < NUM_TRIAL * 0.5: reject.append(iSub) print('# of trials = ' + str(numOftrials)) print('Averaged # of trials = ' + str(np.round(np.mean(numOftrials),2))) print('SD # of trials = ' + str(np.round(np.std(numOftrials),2))) n, bins, patches = plt.hist(np.array(rejectedTrial)) # a_hat, loc_hat, scale_hat = gamma.fit(n) # ps_hat = stats.gamma.pdf(bins, a_hat, loc=loc_hat, scale=scale_hat) # plt.figure() # plt.plot(ps_hat) th = np.round(np.std(rejectedTrial),2) # np.round(np.median(rejectedTrial),2) # for iSub in np.arange(1,int(max(dat['sub']))+1): # if rejectedTrial[iSub-1] > th: # reject.append(iSub) rejectSub = [i for i,d in enumerate(dat['sub']) if d in reject] print('rejected subject = ' + str(reject)) y = np.delete(y,rejectSub,axis=0) for mm in mmName: dat[mm] = [d for i,d in enumerate(dat[mm]) if not i in rejectSub] rejectedTrial = [d for i,d in enumerate(rejectedTrial) if not i+1 in reject] ave = np.array(rejectedTrial)/NUM_TRIAL print('rejected num ave = ' + str(round(np.mean(ave),3)) + ', sd = ' + str(round(np.std(ave),3))) #%% PC events ------------------------------------------- events = {'sub':[], 'condition':[], 'PDR':[], 'min':[] } for iSub in np.unique(dat['sub']): for iCond in np.unique(dat['condition']): ind = np.argwhere((dat['sub'] == iSub ) & (dat['condition'] == np.int64(iCond) )).reshape(-1) tmp_y = y[ind,:] tmp_y = moving_avg(tmp_y, 10) tmp_y = tmp_y.mean(axis=0) events['sub'].append(iSub) events['condition'].append(iCond) events['PDR'].append(tmp_y.tolist()) plt.figure() time_min = 0.3 time_max = 4 dat['min'] = [] dat['events'] = [] dat['events_p'] = [] x_t = x[np.argwhere((x>time_min) & (x<time_max))] for iSub in np.unique(dat['sub']): ind = np.argwhere((events['sub'] == iSub)).reshape(-1) tmp_p =
np.array(events['PDR'])
numpy.array
import unittest import numpy as np import fastpli.simulation import fastpli.analysis import fastpli.tools import fastpli.objects # TODO: test rofl, not simpli.apply_rofl class MainTest(unittest.TestCase): def test_simple_rofl(self): simpli = fastpli.simulation.Simpli() simpli.omp_num_threads = 1 simpli.voxel_size = 60 # in micro meter simpli.dim = [1, 1, 1] # single voxel tissue = np.ones((1, 1, 1), dtype=np.int32) optical_axis = np.zeros((1, 1, 1, 3), dtype=np.float32) optical_axis[:] = [np.cos(np.deg2rad(45)), 0, np.sin(np.deg2rad(45))] tissue_properties = np.array([[0, 0], [-0.001, 0]]) # Simulate PLI Measurement ### simpli.filter_rotations = np.deg2rad([0, 30, 60, 90, 120, 150]) simpli.light_intensity = 26000 # a.u. simpli.interpolate = 'Slerp' simpli.untilt_sensor_view = False simpli.wavelength = 525 # in nm simpli.step_size = 1 # in voxel_size simpli.tilts = np.deg2rad([(0, 0), (5.5, 0), (5.5, 90), (5.5, 180), (5.5, 270)]) tilting_stack = [None] * 5 for t, (theta, phi) in enumerate(simpli.tilts): simpli.step_size = 1 / np.cos(theta) images = simpli.run_simulation(tissue, optical_axis, tissue_properties, theta, phi) # calculate modalities tilting_stack[t] = images simpli.noise_model = lambda x: np.random.negative_binomial( x / (3 - 1), 1 / 3) rofl_direction, rofl_incl, rofl_t_rel, _ = simpli.apply_rofl( tilting_stack, grad_mode=False) t_rel = 4 * simpli.voxel_size * abs( tissue_properties[1][0]) / (simpli.wavelength / 1e3) self.assertTrue( abs(rofl_direction.flatten()[0] - np.deg2rad(0)) < 1e-10 or abs(rofl_direction.flatten()[0] - np.deg2rad(180)) < 1e-10) self.assertTrue( abs(rofl_incl.flatten()[0] -
np.deg2rad(45)
numpy.deg2rad
from causal_world.envs.robot.action import TriFingerAction from causal_world.envs.robot.observations import TriFingerObservations from causal_world.utils.env_utils import clip import numpy as np import pybullet from causal_world.configs.world_constants import WorldConstants class TriFingerRobot(object): def __init__(self, action_mode, observation_mode, skip_frame, normalize_actions, normalize_observations, simulation_time, pybullet_client_full_id, pybullet_client_w_goal_id, pybullet_client_w_o_goal_id, revolute_joint_ids, finger_tip_ids, cameras=None, camera_indicies=np.array([0, 1, 2])): """ This class provides the functionalities of the robot itself :param action_mode: (str) defines the action mode of the robot whether its joint_positions, end_effector_positions or joint_torques. :param observation_mode: (str) defines the observation mode of the robot if cameras or structured. :param skip_frame: (int) the low level controller is running @250Hz which corresponds to skip frame of 1, a skip frame of 250 corresponds to frequency of 1Hz :param normalize_actions: (bool) this is a boolean which specifies whether the actions passed to the step function are normalized or not. :param normalize_observations: (bool) this is a boolean which specifies whether the observations returned should be normalized or not. :param simulation_time: (float) the time for one action step in the pybullet simulation. :param pybullet_client_full_id: (int) pybullet client full mode id :param pybullet_client_w_goal_id: (int) pybullet client with goal mode id :param pybullet_client_w_o_goal_id: (int) pybullet client without goal mode id :param revolute_joint_ids: (list) joint ids in the urdf :param finger_tip_ids: (list) finger tip ids in the urdf :param cameras: (list) Camera objects list :param camera_indicies: (list) maximum of 3 elements where each element is from 0 to , specifies which cameras to return in the observations and the order as well. """ self._pybullet_client_full_id = pybullet_client_full_id self._pybullet_client_w_goal_id = pybullet_client_w_goal_id self._pybullet_client_w_o_goal_id = pybullet_client_w_o_goal_id self._revolute_joint_ids = revolute_joint_ids self._finger_tip_ids = finger_tip_ids self._normalize_actions = normalize_actions self._normalize_observations = normalize_observations self._action_mode = action_mode self._observation_mode = observation_mode self._skip_frame = skip_frame self._simulation_time = simulation_time self._dt = self._simulation_time * self._skip_frame #TODO: for some reason this is needed self._control_index = -1 self._position_gains = np.array([10.0, 10.0, 10.0] * 3) self._velocity_gains = np.array([0.1, 0.3, 0.001] * 3) self._safety_kd = np.array([0.08, 0.08, 0.04] * 3) self._max_motor_torque = 0.36 self._robot_actions = TriFingerAction(action_mode, normalize_actions) if self._pybullet_client_w_goal_id is not None: self._set_finger_state_in_goal_image() self._tool_cameras = cameras self._camera_indicies = camera_indicies self._robot_observations = TriFingerObservations( observation_mode, normalize_observations, cameras=self._tool_cameras, camera_indicies=self._camera_indicies) self._last_action = None self._last_clipped_action = None if action_mode != "joint_torques": self._last_applied_joint_positions = None self._latest_full_state = None self._state_size = 18 self._disable_velocity_control() return def get_link_names(self): """ :return: (list) returns the link names in the urdf """ return WorldConstants.LINK_IDS def get_control_index(self): """ :return: (int) returns the current control index """ return self._control_index def get_full_env_state(self): """ :return: returns the current state variables and their values in the environment wrt to the robot. """ return self.get_current_variable_values() def set_full_env_state(self, env_state): """ This function is used to set the env state through interventions on the environment itself :param env_state: (dict) specifies the state variables and its values to intervene on. :return: None """ self.apply_interventions(env_state) return def update_latest_full_state(self): """ Updates the latest full state in terms of joint positions, velocities, torques..etc :return: None """ if self._pybullet_client_full_id is not None: current_joint_states = pybullet.\ getJointStates( WorldConstants.ROBOT_ID, self._revolute_joint_ids, physicsClientId=self._pybullet_client_full_id ) else: current_joint_states = pybullet.\ getJointStates( WorldConstants.ROBOT_ID, self._revolute_joint_ids, physicsClientId=self._pybullet_client_w_o_goal_id ) current_position = np.array( [joint[0] for joint in current_joint_states]) current_velocity = np.array( [joint[1] for joint in current_joint_states]) current_torques =
np.array([joint[3] for joint in current_joint_states])
numpy.array
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import operator import random import math import json import threading import numpy as np import tensorflow as tf import tensorflow_hub as hub import h5py import util from util import * import time from tqdm import tqdm class PronounCorefKGModel(object): def __init__(self, config, model='Train'): self.config = config self.context_embeddings = util.EmbeddingDictionary(config["context_embeddings"]) self.head_embeddings = util.EmbeddingDictionary(config["head_embeddings"], maybe_cache=self.context_embeddings) self.char_embedding_size = config["char_embedding_size"] self.char_dict = util.load_char_dict(config["char_vocab_path"]) self.max_span_width = config["max_span_width"] self.genres = {g: i for i, g in enumerate(config["genres"])} self.softmax_threshold = config['softmax_threshold'] if config["lm_path"]: self.lm_file = h5py.File(self.config["lm_path"], "r") else: self.lm_file = None self.kg_lm_file = h5py.File(self.config["kg_lm_path"], "r") self.lm_layers = self.config["lm_layers"] self.lm_size = self.config["lm_size"] self.eval_data = None # Load eval data lazily. print('Start to load the eval data') st = time.time() # self.load_kg('final_kg.json') self.kg_embedding_size = 300 self.load_simple_kg('final_kg.json') self.load_eval_data() self.load_test_data() print("Finished in {:.2f}".format(time.time() - st)) input_props = [] input_props.append((tf.string, [None, None])) # Tokens. input_props.append((tf.float32, [None, None, self.context_embeddings.size])) # Context embeddings. input_props.append((tf.float32, [None, None, self.head_embeddings.size])) # Head embeddings. input_props.append((tf.float32, [None, None, self.lm_size, self.lm_layers])) # LM embeddings. input_props.append((tf.int32, [None, None, None])) # Character indices. input_props.append((tf.int32, [None])) # Text lengths. input_props.append((tf.int32, [None])) # Speaker IDs. input_props.append((tf.int32, [])) # Genre. input_props.append((tf.bool, [])) # Is training. input_props.append((tf.int32, [None])) # gold_starts. input_props.append((tf.int32, [None])) # gold_ends. input_props.append((tf.float32, [None, None, None])) # related kg embeddings. input_props.append((tf.int32, [None, None])) # candidate_positions. input_props.append((tf.int32, [None, None])) # pronoun_positions. input_props.append((tf.bool, [None, None])) # labels input_props.append((tf.float32, [None, None])) # candidate_masks self.queue_input_tensors = [tf.placeholder(dtype, shape) for dtype, shape in input_props] dtypes, shapes = zip(*input_props) queue = tf.PaddingFIFOQueue(capacity=10, dtypes=dtypes, shapes=shapes) self.enqueue_op = queue.enqueue(self.queue_input_tensors) self.input_tensors = queue.dequeue() self.predictions, self.loss = self.get_predictions_and_loss(*self.input_tensors) self.global_step = tf.Variable(0, name="global_step", trainable=False) self.reset_global_step = tf.assign(self.global_step, 0) learning_rate = tf.train.exponential_decay(self.config["learning_rate"], self.global_step, self.config["decay_frequency"], self.config["decay_rate"], staircase=True) trainable_params = tf.trainable_variables() gradients = tf.gradients(self.loss, trainable_params) gradients, _ = tf.clip_by_global_norm(gradients, self.config["max_gradient_norm"]) optimizers = { "adam": tf.train.AdamOptimizer, "sgd": tf.train.GradientDescentOptimizer } optimizer = optimizers[self.config["optimizer"]](learning_rate) self.train_op = optimizer.apply_gradients(zip(gradients, trainable_params), global_step=self.global_step) def start_enqueue_thread(self, session): with open(self.config["train_path"]) as f: train_examples = [json.loads(jsonline) for jsonline in f.readlines()] def _enqueue_loop(): while True: random.shuffle(train_examples) for example in train_examples: tensorized_example = self.tensorize_pronoun_example(example, is_training=True) feed_dict = dict(zip(self.queue_input_tensors, tensorized_example)) session.run(self.enqueue_op, feed_dict=feed_dict) enqueue_thread = threading.Thread(target=_enqueue_loop) enqueue_thread.daemon = True enqueue_thread.start() def restore(self, session, log_path=None): # Don't try to restore unused variables from the TF-Hub ELMo module. vars_to_restore = [v for v in tf.global_variables() if "module/" not in v.name] saver = tf.train.Saver(vars_to_restore) if log_path: checkpoint_path = os.path.join(log_path, "model.max.ckpt") else: checkpoint_path = os.path.join(self.config["log_dir"], "model.max.ckpt") print("Restoring from {}".format(checkpoint_path)) session.run(tf.global_variables_initializer()) saver.restore(session, checkpoint_path) def load_lm_embeddings(self, doc_key): if self.lm_file is None: return
np.zeros([0, 0, self.lm_size, self.lm_layers])
numpy.zeros
import io import centrosome.propagate import numpy import scipy.stats import cellprofiler_core.image import cellprofiler_core.measurement import cellprofiler_core.module from cellprofiler_core.constants.measurement import COLTYPE_FLOAT import cellprofiler.modules.measureobjectintensitydistribution import cellprofiler_core.object import cellprofiler_core.pipeline import cellprofiler_core.preferences import cellprofiler_core.setting import cellprofiler_core.workspace import tests.modules cellprofiler_core.preferences.set_headless() OBJECT_NAME = "objectname" CENTER_NAME = "centername" IMAGE_NAME = "imagename" HEAT_MAP_NAME = "heatmapname" def feature_frac_at_d(bin, bin_count, image_name=IMAGE_NAME): if bin == bin_count + 1: return "_".join( [ cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, cellprofiler.modules.measureobjectintensitydistribution.F_FRAC_AT_D, image_name, cellprofiler.modules.measureobjectintensitydistribution.FF_OVERFLOW, ] ) return ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY + "_" + cellprofiler.modules.measureobjectintensitydistribution.FF_FRAC_AT_D % (image_name, bin, bin_count) ) def feature_mean_frac(bin, bin_count, image_name=IMAGE_NAME): if bin == bin_count + 1: return "_".join( [ cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, cellprofiler.modules.measureobjectintensitydistribution.F_MEAN_FRAC, image_name, cellprofiler.modules.measureobjectintensitydistribution.FF_OVERFLOW, ] ) return ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY + "_" + cellprofiler.modules.measureobjectintensitydistribution.FF_MEAN_FRAC % (image_name, bin, bin_count) ) def feature_radial_cv(bin, bin_count, image_name=IMAGE_NAME): if bin == bin_count + 1: return "_".join( [ cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, cellprofiler.modules.measureobjectintensitydistribution.F_RADIAL_CV, image_name, cellprofiler.modules.measureobjectintensitydistribution.FF_OVERFLOW, ] ) return ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY + "_" + cellprofiler.modules.measureobjectintensitydistribution.FF_RADIAL_CV % (image_name, bin, bin_count) ) def test_please_implement_a_test_of_the_new_version(): assert ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution.variable_revision_number == 6 ) def test_load_v2(): data = """CellProfiler Pipeline: http://www.cellprofiler.org Version:2 DateRevision:20120126174947 MeasureObjectIntensityDistribution:[module_num:8|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\x5D|batch_state:array(\x5B\x5D, dtype=uint8)] Hidden:2 Hidden:2 Hidden:2 Select an image to measure:EnhancedGreen Select an image to measure:OrigBlue Select objects to measure:Nuclei Object to use as center?:These objects Select objects to use as centers:Cells Select objects to measure:Nuclei Object to use as center?:Other objects Select objects to use as centers:Cells Scale bins?:No Number of bins:4 Maximum radius:200 Scale bins?:Yes Number of bins:5 Maximum radius:50 """ pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(io.StringIO(data)) assert len(pipeline.modules()) == 1 module = pipeline.modules()[0] assert isinstance( module, cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution, ) assert module.object_count.value == 2 assert module.bin_counts_count.value == 2 assert {"OrigBlue", "EnhancedGreen"}.issubset(module.images_list.value) assert module.objects[0].object_name == "Nuclei" assert ( module.objects[0].center_choice == cellprofiler.modules.measureobjectintensitydistribution.C_SELF ) assert module.objects[0].center_object_name == "Cells" assert ( module.objects[1].center_choice == cellprofiler.modules.measureobjectintensitydistribution.C_CENTERS_OF_OTHER ) assert module.objects[1].center_object_name == "Cells" assert module.bin_counts[0].bin_count == 4 assert not module.bin_counts[0].wants_scaled assert module.bin_counts[0].maximum_radius == 200 assert module.bin_counts[1].bin_count == 5 assert module.bin_counts[1].wants_scaled assert module.bin_counts[1].maximum_radius == 50 def test_load_v3(): file = tests.modules.get_test_resources_directory( "measureobjectintensitydistribution/v3.pipeline" ) with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(io.StringIO(data)) assert len(pipeline.modules()) == 1 module = pipeline.modules()[0] assert isinstance( module, cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution, ) assert module.object_count.value == 3 assert module.bin_counts_count.value == 2 assert {"OrigBlue", "EnhancedGreen"}.issubset(module.images_list.value) assert module.objects[0].object_name == "Nuclei" assert ( module.objects[0].center_choice == cellprofiler.modules.measureobjectintensitydistribution.C_SELF ) assert module.objects[0].center_object_name == "Cells" assert ( module.objects[1].center_choice == cellprofiler.modules.measureobjectintensitydistribution.C_CENTERS_OF_OTHER ) assert module.objects[1].center_object_name == "Cells" assert ( module.objects[2].center_choice == cellprofiler.modules.measureobjectintensitydistribution.C_EDGES_OF_OTHER ) assert module.objects[2].center_object_name == "Cells" assert module.bin_counts[0].bin_count == 4 assert not module.bin_counts[0].wants_scaled assert module.bin_counts[0].maximum_radius == 200 assert module.bin_counts[1].bin_count == 5 assert module.bin_counts[1].wants_scaled assert module.bin_counts[1].maximum_radius == 50 assert len(module.heatmaps) == 0 def test_load_v4(): file = tests.modules.get_test_resources_directory( "measureobjectintensitydistribution/v4.pipeline" ) with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(io.StringIO(data)) assert len(pipeline.modules()) == 1 module = pipeline.modules()[0] assert isinstance( module, cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution, ) assert ( module.wants_zernikes == cellprofiler.modules.measureobjectintensitydistribution.Z_NONE ) assert module.zernike_degree == 9 assert len(module.images_list.value) == 2 assert {"CropGreen", "CropRed"}.issubset(module.images_list.value) assert len(module.objects) == 2 for group, (object_name, center_choice, center_object_name) in zip( module.objects, ( ( "Nuclei", cellprofiler.modules.measureobjectintensitydistribution.C_SELF, "Ichthyosaurs", ), ( "Cells", cellprofiler.modules.measureobjectintensitydistribution.C_EDGES_OF_OTHER, "Nuclei", ), ), ): assert group.object_name.value == object_name assert group.center_choice.value == center_choice assert group.center_object_name == center_object_name assert len(module.bin_counts) == 2 for group, (bin_count, scale, max_radius) in zip( module.bin_counts, ((5, True, 100), (4, False, 100)) ): assert group.wants_scaled == scale assert group.bin_count == bin_count assert group.maximum_radius == max_radius for ( group, ( image_name, object_name, bin_count, measurement, colormap, wants_to_save, output_image_name, ), ) in zip( module.heatmaps, ( ( "CropRed", "Cells", 5, cellprofiler.modules.measureobjectintensitydistribution.A_FRAC_AT_D, "Default", True, "Heat", ), ( "CropGreen", "Nuclei", 4, cellprofiler.modules.measureobjectintensitydistribution.A_MEAN_FRAC, "Spectral", False, "A", ), ( "CropRed", "Nuclei", 5, cellprofiler.modules.measureobjectintensitydistribution.A_RADIAL_CV, "Default", False, "B", ), ), ): assert group.image_name.value == image_name assert group.object_name.value == object_name assert int(group.bin_count.value) == bin_count assert group.measurement == measurement assert group.colormap == colormap assert group.wants_to_save_display == wants_to_save assert group.display_name == output_image_name def test_load_v5(): file = tests.modules.get_test_resources_directory( "measureobjectintensitydistribution/v5.pipeline" ) with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(io.StringIO(data)) assert len(pipeline.modules()) == 2 module = pipeline.modules()[0] assert isinstance( module, cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution, ) assert ( module.wants_zernikes == cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES ) assert module.zernike_degree == 7 assert len(module.images_list.value) == 2 assert {"CropGreen", "CropRed"}.issubset(module.images_list.value) assert len(module.objects) == 2 for group, (object_name, center_choice, center_object_name) in zip( module.objects, ( ( "Nuclei", cellprofiler.modules.measureobjectintensitydistribution.C_SELF, "Ichthyosaurs", ), ( "Cells", cellprofiler.modules.measureobjectintensitydistribution.C_EDGES_OF_OTHER, "Nuclei", ), ), ): assert group.object_name.value == object_name assert group.center_choice.value == center_choice assert group.center_object_name == center_object_name assert len(module.bin_counts) == 2 for group, (bin_count, scale, max_radius) in zip( module.bin_counts, ((5, True, 100), (4, False, 100)) ): assert group.wants_scaled == scale assert group.bin_count == bin_count assert group.maximum_radius == max_radius for ( group, ( image_name, object_name, bin_count, measurement, colormap, wants_to_save, output_image_name, ), ) in zip( module.heatmaps, ( ( "CropRed", "Cells", 5, cellprofiler.modules.measureobjectintensitydistribution.A_FRAC_AT_D, "Default", True, "Heat", ), ( "CropGreen", "Nuclei", 4, cellprofiler.modules.measureobjectintensitydistribution.A_MEAN_FRAC, "Spectral", False, "A", ), ( "CropRed", "Nuclei", 5, cellprofiler.modules.measureobjectintensitydistribution.A_RADIAL_CV, "Default", False, "B", ), ), ): assert group.image_name.value == image_name assert group.object_name.value == object_name assert int(group.bin_count.value) == bin_count assert group.measurement == measurement assert group.colormap == colormap assert group.wants_to_save_display == wants_to_save assert group.display_name == output_image_name module = pipeline.modules()[1] assert ( module.wants_zernikes == cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES_AND_PHASE ) def test_01_get_measurement_columns(): module = ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution() ) module.images_list.value = "DNA, Cytoplasm, Actin" for i, object_name, center_name in ( (0, "Nucleii", None), (1, "Cells", "Nucleii"), (2, "Cytoplasm", "Nucleii"), ): if i: module.add_object() module.objects[i].object_name.value = object_name if center_name is None: module.objects[ i ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_SELF ) else: module.objects[ i ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_CENTERS_OF_OTHER ) module.objects[i].center_object_name.value = center_name for i, bin_count in enumerate((4, 5, 6)): if i: module.add_bin_count() module.bin_counts[i].bin_count.value = bin_count module.bin_counts[2].wants_scaled.value = False columns = module.get_measurement_columns(None) column_dictionary = {} for object_name, feature, coltype in columns: key = (object_name, feature) assert not (key in column_dictionary) assert coltype == COLTYPE_FLOAT column_dictionary[key] = (object_name, feature, coltype) for object_name in [x.object_name.value for x in module.objects]: for image_name in module.images_list.value: for bin_count, wants_scaled in [ (x.bin_count.value, x.wants_scaled.value) for x in module.bin_counts ]: for bin in range(1, bin_count + (1 if wants_scaled else 2)): for feature_fn in ( feature_frac_at_d, feature_mean_frac, feature_radial_cv, ): measurement = feature_fn(bin, bin_count, image_name) key = (object_name, measurement) assert key in column_dictionary del column_dictionary[key] assert len(column_dictionary) == 0 def test_02_get_zernike_columns(): module = ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution() ) for wants_zernikes, ftrs in ( ( cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES, ( cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_MAGNITUDE, ), ), ( cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES_AND_PHASE, ( cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_MAGNITUDE, cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_PHASE, ), ), ): module.wants_zernikes.value = wants_zernikes module.zernike_degree.value = 2 module.images_list.value = "DNA, Cytoplasm, Actin" for i, object_name, center_name in ( (0, "Nucleii", None), (1, "Cells", "Nucleii"), (2, "Cytoplasm", "Nucleii"), ): if i: module.add_object() module.objects[i].object_name.value = object_name columns = module.get_measurement_columns(None) for image_name in "DNA", "Cytoplasm", "Actin": for object_name in "Nucleii", "Cells", "Cytoplasm": for n, m in ((0, 0), (1, 1), (2, 0), (2, 2)): for ftr in ftrs: name = "_".join( ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ftr, image_name, str(n), str(m), ) ) col = ( object_name, name, COLTYPE_FLOAT, ) assert col in columns def test_01_get_measurements(): module = ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution() ) module.images_list.value = "DNA, Cytoplasm, Actin" for i, object_name, center_name in ( (0, "Nucleii", None), (1, "Cells", "Nucleii"), (2, "Cytoplasm", "Nucleii"), ): if i: module.add_object() module.objects[i].object_name.value = object_name if center_name is None: module.objects[ i ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_SELF ) else: module.objects[ i ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_CENTERS_OF_OTHER ) module.objects[i].center_object_name.value = center_name for i, bin_count in ((0, 4), (0, 5), (0, 6)): if i: module.add_bin_count() module.bin_counts[i].bin_count.value = bin_count for object_name in [x.object_name.value for x in module.objects]: assert tuple(module.get_categories(None, object_name)) == ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ) for feature in cellprofiler.modules.measureobjectintensitydistribution.F_ALL: assert feature in module.get_measurements( None, object_name, cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ) for image_name in module.images_list.value: for ( feature ) in cellprofiler.modules.measureobjectintensitydistribution.F_ALL: assert image_name in module.get_measurement_images( None, object_name, cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, feature, ) for bin_count in [x.bin_count.value for x in module.bin_counts]: for bin in range(1, bin_count + 1): for ( feature ) in cellprofiler.modules.measureobjectintensitydistribution.F_ALL: assert "%dof%d" % ( bin, bin_count, ) in module.get_measurement_scales( None, object_name, cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, feature, image_name, ) def test_02_get_zernike_measurements(): module = ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution() ) for wants_zernikes, ftrs in ( ( cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES, ( cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_MAGNITUDE, ), ), ( cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES_AND_PHASE, ( cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_MAGNITUDE, cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_PHASE, ), ), ): module.wants_zernikes.value = wants_zernikes module.zernike_degree.value = 2 module.images_list.value = "DNA, Cytoplasm, Actin" for i, object_name, center_name in ( (0, "Nucleii", None), (1, "Cells", "Nucleii"), (2, "Cytoplasm", "Nucleii"), ): if i: module.add_object() module.objects[i].object_name.value = object_name if center_name is None: module.objects[ i ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_SELF ) else: module.objects[ i ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_CENTERS_OF_OTHER ) module.objects[i].center_object_name.value = center_name for object_name in "Nucleii", "Cells", "Cytoplasm": result = module.get_measurements( None, object_name, cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ) for ftr in ftrs: assert ftr in result iresult = module.get_measurement_images( None, object_name, cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ftr, ) for image in "DNA", "Cytoplasm", "Actin": assert image in iresult sresult = module.get_measurement_scales( None, object_name, cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ftr, image, ) for n, m in ((0, 0), (1, 1), (2, 0), (2, 2)): assert "%d_%d" % (n, m) in sresult def test_default_heatmap_values(): module = ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution() ) module.add_heatmap() module.heatmaps[0].image_name.value = IMAGE_NAME module.heatmaps[0].object_name.value = OBJECT_NAME module.heatmaps[0].bin_count.value = 10 module.images_list.value = "Bar" module.objects[0].object_name.value = "Foo" module.bin_counts[0].bin_count.value = 2 assert module.heatmaps[0].image_name.get_image_name() == "Bar" assert not module.heatmaps[0].image_name.is_visible() assert module.heatmaps[0].object_name.get_objects_name() == "Foo" assert not module.heatmaps[0].object_name.is_visible() assert module.heatmaps[0].get_number_of_bins() == 2 module.images_list.value = "Bar, MoreBar" assert module.heatmaps[0].image_name.is_visible() assert module.heatmaps[0].image_name.get_image_name() == IMAGE_NAME module.add_object() assert module.heatmaps[0].object_name.is_visible() assert module.heatmaps[0].object_name.get_objects_name() == OBJECT_NAME module.add_bin_count() assert module.heatmaps[0].get_number_of_bins() == 10 def run_module( image, labels, center_labels=None, center_choice=cellprofiler.modules.measureobjectintensitydistribution.C_CENTERS_OF_OTHER, bin_count=4, maximum_radius=100, wants_scaled=True, wants_workspace=False, wants_zernikes=cellprofiler.modules.measureobjectintensitydistribution.Z_NONE, zernike_degree=2, ): """Run the module, returning the measurements image - matrix representing the image to be analyzed labels - labels matrix of objects to be analyzed center_labels - labels matrix of alternate centers or None for self centers bin_count - # of radial bins """ module = ( cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution() ) module.wants_zernikes.value = wants_zernikes module.zernike_degree.value = zernike_degree module.images_list.value = IMAGE_NAME module.objects[0].object_name.value = OBJECT_NAME object_set = cellprofiler_core.object.ObjectSet() main_objects = cellprofiler_core.object.Objects() main_objects.segmented = labels object_set.add_objects(main_objects, OBJECT_NAME) if center_labels is None: module.objects[ 0 ].center_choice.value = ( cellprofiler.modules.measureobjectintensitydistribution.C_SELF ) else: module.objects[0].center_choice.value = center_choice module.objects[0].center_object_name.value = CENTER_NAME center_objects = cellprofiler_core.object.Objects() center_objects.segmented = center_labels object_set.add_objects(center_objects, CENTER_NAME) module.bin_counts[0].bin_count.value = bin_count module.bin_counts[0].wants_scaled.value = wants_scaled module.bin_counts[0].maximum_radius.value = maximum_radius module.add_heatmap() module.add_heatmap() module.add_heatmap() for i, (a, f) in enumerate( ( ( cellprofiler.modules.measureobjectintensitydistribution.A_FRAC_AT_D, cellprofiler.modules.measureobjectintensitydistribution.F_FRAC_AT_D, ), ( cellprofiler.modules.measureobjectintensitydistribution.A_MEAN_FRAC, cellprofiler.modules.measureobjectintensitydistribution.F_MEAN_FRAC, ), ( cellprofiler.modules.measureobjectintensitydistribution.A_RADIAL_CV, cellprofiler.modules.measureobjectintensitydistribution.F_RADIAL_CV, ), ) ): module.heatmaps[i].image_name.value = IMAGE_NAME module.heatmaps[i].object_name.value = OBJECT_NAME module.heatmaps[i].bin_count.value = str(bin_count) module.heatmaps[i].wants_to_save_display.value = True display_name = HEAT_MAP_NAME + f module.heatmaps[i].display_name.value = display_name module.heatmaps[i].colormap.value = "gray" module.heatmaps[i].measurement.value = a pipeline = cellprofiler_core.pipeline.Pipeline() measurements = cellprofiler_core.measurement.Measurements() image_set_list = cellprofiler_core.image.ImageSetList() image_set = measurements img = cellprofiler_core.image.Image(image) image_set.add(IMAGE_NAME, img) workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, object_set, measurements, image_set_list ) module.run(workspace) if wants_workspace: return measurements, workspace return measurements def test_zeros_self(): """Test the module on an empty labels matrix, self-labeled""" m = run_module( numpy.zeros((10, 10)), numpy.zeros((10, 10), int), wants_zernikes=cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES_AND_PHASE, zernike_degree=2, ) for bin in range(1, 5): for feature in ( feature_frac_at_d(bin, 4), feature_mean_frac(bin, 4), feature_radial_cv(bin, 4), ): assert feature in m.get_feature_names(OBJECT_NAME) data = m.get_current_measurement(OBJECT_NAME, feature) assert len(data) == 0 for ftr in ( cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_MAGNITUDE, cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_PHASE, ): for n_, m_ in ((0, 0), (1, 1), (2, 0), (2, 2)): feature = "_".join( ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, ftr, IMAGE_NAME, str(n_), str(m_), ) ) assert feature in m.get_feature_names(OBJECT_NAME) assert len(m[OBJECT_NAME, feature]) == 0 def test_circle(): """Test the module on a uniform circle""" i, j = numpy.mgrid[-50:51, -50:51] labels = (numpy.sqrt(i * i + j * j) <= 40).astype(int) m, workspace = run_module( numpy.ones(labels.shape), labels, wants_workspace=True, wants_zernikes=True, zernike_degree=2, ) assert isinstance(workspace, cellprofiler_core.workspace.Workspace) bins = labels * (1 + (numpy.sqrt(i * i + j * j) / 10).astype(int)) for bin in range(1, 5): data = m.get_current_measurement(OBJECT_NAME, feature_frac_at_d(bin, 4)) assert len(data) == 1 area = (float(bin) * 2.0 - 1.0) / 16.0 assert data[0] > area - 0.1 assert data[0] < area + 0.1 heatmap = workspace.image_set.get_image( HEAT_MAP_NAME + cellprofiler.modules.measureobjectintensitydistribution.F_FRAC_AT_D ).pixel_data data = data.astype(heatmap.dtype) assert scipy.stats.mode(heatmap[bins == bin])[0][0] == data[0] data = m.get_current_measurement(OBJECT_NAME, feature_mean_frac(bin, 4)) assert len(data) == 1 assert round(abs(data[0] - 1), 2) == 0 heatmap = workspace.image_set.get_image( HEAT_MAP_NAME + cellprofiler.modules.measureobjectintensitydistribution.F_MEAN_FRAC ).pixel_data data = data.astype(heatmap.dtype) assert scipy.stats.mode(heatmap[bins == bin])[0][0] == data[0] data = m.get_current_measurement(OBJECT_NAME, feature_radial_cv(bin, 4)) assert len(data) == 1 assert round(abs(data[0] - 0), 2) == 0 heatmap = workspace.image_set.get_image( HEAT_MAP_NAME + cellprofiler.modules.measureobjectintensitydistribution.F_RADIAL_CV ).pixel_data data = data.astype(heatmap.dtype) assert scipy.stats.mode(heatmap[bins == bin])[0][0] == data[0] module = workspace.module assert isinstance( module, cellprofiler.modules.measureobjectintensitydistribution.MeasureObjectIntensityDistribution, ) data = m[OBJECT_NAME, module.get_zernike_magnitude_name(IMAGE_NAME, 0, 0)] assert len(data) == 1 assert abs(data[0] - 1) < 0.001 for n_, m_ in ((1, 1), (2, 0), (2, 2)): data = m[OBJECT_NAME, module.get_zernike_magnitude_name(IMAGE_NAME, n_, m_)] assert abs(data[0] - 0) < 0.001 def test_01_half_circle(): """Test the module on a circle and an image that's 1/2 zeros The measurements here are somewhat considerably off because the propagate function uses a Manhattan distance with jaywalking allowed instead of the Euclidean distance. """ i, j = numpy.mgrid[-50:51, -50:51] labels = (numpy.sqrt(i * i + j * j) <= 40).astype(int) image = numpy.zeros(labels.shape) image[i > 0] = (numpy.sqrt(i * i + j * j) / 100)[i > 0] image[j == 0] = 0 image[i == j] = 0 image[i == -j] = 0 # 1/2 of the octants should be pretty much all zero and 1/2 # should be all one x = [0, 0, 0, 0, 1, 1, 1, 1] expected_cv = numpy.std(x) / numpy.mean(x) m = run_module(image, labels) bin_labels = (numpy.sqrt(i * i + j * j) * 4 / 40.001).astype(int) mask = i * i + j * j <= 40 * 40 total_intensity = numpy.sum(image[mask]) for bin in range(1, 5): data = m.get_current_measurement(OBJECT_NAME, feature_frac_at_d(bin, 4)) assert len(data) == 1 bin_count = numpy.sum(bin_labels[mask] == bin - 1) frac_in_bin = float(bin_count) / numpy.sum(mask) bin_intensity = numpy.sum(image[mask & (bin_labels == bin - 1)]) expected = bin_intensity / total_intensity assert numpy.abs(expected - data[0]) < 0.2 * expected data = m.get_current_measurement(OBJECT_NAME, feature_mean_frac(bin, 4)) assert len(data) == 1 expected = expected / frac_in_bin assert numpy.abs(data[0] - expected) < 0.2 * expected data = m.get_current_measurement(OBJECT_NAME, feature_radial_cv(bin, 4)) assert len(data) == 1 assert numpy.abs(data[0] - expected_cv) < 0.2 * expected_cv def test_02_half_circle_zernike(): i, j = numpy.mgrid[-50:50, -50:50] ii, jj = [_.astype(float) + 0.5 for _ in (i, j)] labels = (numpy.sqrt(ii * ii + jj * jj) <= 40).astype(int) image = numpy.zeros(labels.shape) image[ii > 0] = 1 m = run_module( image, labels, wants_zernikes=cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES_AND_PHASE, zernike_degree=2, ) for n_, m_, expected, delta in ( (0, 0, 0.5, 0.001), (1, 1, 0.225, 0.1), (2, 0, 0, 0.01), (2, 2, 0, 0.01), ): ftr = "_".join( ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_MAGNITUDE, IMAGE_NAME, str(n_), str(m_), ) ) assert abs(m[OBJECT_NAME, ftr][0] - expected) < delta ftr = "_".join( ( cellprofiler.modules.measureobjectintensitydistribution.M_CATEGORY, cellprofiler.modules.measureobjectintensitydistribution.FF_ZERNIKE_PHASE, IMAGE_NAME, "1", "1", ) ) phase_i_1_1 = m[OBJECT_NAME, ftr][0] image = numpy.zeros(labels.shape) image[jj > 0] = 1 m = run_module( image, labels, wants_zernikes=cellprofiler.modules.measureobjectintensitydistribution.Z_MAGNITUDES_AND_PHASE, zernike_degree=1, ) phase_j_1_1 = m[OBJECT_NAME, ftr][0] assert numpy.abs(numpy.abs(phase_i_1_1 - phase_j_1_1) - numpy.pi / 2) == 0 def test_line(): """Test the alternate centers with a line""" labels = numpy.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] ) centers = numpy.zeros(labels.shape, int) centers[2, 1] = 1 distance_to_center = numpy.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 0], [0, 0, 1, 2, 3, 4, 5, 6, 7, 0], [0, 1, 1.4, 2.4, 3.4, 4.4, 5.4, 6.4, 7.4, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] ) distance_to_edge = numpy.array( [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 1, 2, 2, 2, 2, 2, 2, 2, 0], [0, 1, 1, 1, 1, 1, 1, 1, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] ) numpy.random.seed(0) image = numpy.random.uniform(size=labels.shape) m = run_module(image, labels, centers) total_intensity = numpy.sum(image[labels == 1]) normalized_distance = distance_to_center / ( distance_to_center + distance_to_edge + 0.001 ) bin_labels = (normalized_distance * 4).astype(int) for bin in range(1, 5): data = m.get_current_measurement(OBJECT_NAME, feature_frac_at_d(bin, 4)) assert len(data) == 1 bin_intensity = numpy.sum(image[(labels == 1) & (bin_labels == bin - 1)]) expected = bin_intensity / total_intensity assert numpy.abs(expected - data[0]) < 0.1 * expected data = m.get_current_measurement(OBJECT_NAME, feature_mean_frac(bin, 4)) expected = ( expected * numpy.sum(labels == 1) / numpy.sum((labels == 1) & (bin_labels == bin - 1)) ) assert numpy.abs(data[0] - expected) < 0.1 * expected data = m.get_current_measurement(OBJECT_NAME, feature_radial_cv(bin, 4)) assert len(data) == 1 def test_no_scaling(): i, j = numpy.mgrid[-40:40, -40:40] # # I'll try to calculate the distance the same way as propagate # jaywalk min(i,j) times and go straight abs(i - j) times # jaywalks = numpy.minimum(numpy.abs(i), numpy.abs(j)) straights = numpy.abs(numpy.abs(i) - numpy.abs(j)) distance = jaywalks * numpy.sqrt(2) + straights labels = (distance <= 35).astype(int) r = numpy.random.RandomState() r.seed(35) image = r.uniform(size=i.shape) total_intensity = numpy.sum(image[labels == 1]) bin_labels = (distance / 5).astype(int) bin_labels[bin_labels > 4] = 4 m = run_module(image, labels, bin_count=4, maximum_radius=20, wants_scaled=False) for bin in range(1, 6): data = m.get_current_measurement(OBJECT_NAME, feature_frac_at_d(bin, 4)) assert len(data) == 1 bin_intensity = numpy.sum(image[(labels == 1) & (bin_labels == bin - 1)]) expected = bin_intensity / total_intensity assert round(abs(expected - data[0]), 4) == 0 data = m.get_current_measurement(OBJECT_NAME, feature_mean_frac(bin, 4)) expected = ( expected * numpy.sum(labels == 1) / numpy.sum((labels == 1) & (bin_labels == bin - 1)) ) assert round(abs(data[0] - expected), 4) == 0 data = m.get_current_measurement(OBJECT_NAME, feature_radial_cv(bin, 4)) assert len(data) == 1 def test_edges_of_objects(): r = numpy.random.RandomState() r.seed(36) i, j = numpy.mgrid[-20:21, -20:21] labels = ((i > -19) & (i < 19) & (j > -19) & (j < 19)).astype(int) centers = numpy.zeros(labels.shape, int) centers[(i > -5) * (i < 5) & (j > -5) & (j < 5)] = 1 image = r.uniform(size=labels.shape) m = run_module( image, labels, center_labels=centers, center_choice=cellprofiler.modules.measureobjectintensitydistribution.C_EDGES_OF_OTHER, bin_count=4, maximum_radius=8, wants_scaled=False, ) _, d_from_center = centrosome.propagate.propagate( numpy.zeros(labels.shape), centers, (labels > 0), 1 ) good_mask = (labels > 0) & (centers == 0) d_from_center = d_from_center[good_mask] bins = (d_from_center / 2).astype(int) bins[bins > 4] = 4 bin_counts = numpy.bincount(bins) image_sums = numpy.bincount(bins, image[good_mask]) frac_at_d = image_sums / numpy.sum(image_sums) for i in range(1, 6): data = m.get_current_measurement(OBJECT_NAME, feature_frac_at_d(i, 4)) assert len(data) == 1 assert round(abs(data[0] - frac_at_d[i - 1]), 7) == 0 def test_two_circles(): i, j = numpy.mgrid[-50:51, -50:51] i, j = [numpy.hstack((x, x)) for x in (i, j)] d = numpy.sqrt(i * i + j * j) labels = (d <= 40).astype(int) labels[:, (j.shape[1] // 2) :] *= 2 img = numpy.zeros(labels.shape) img[labels == 1] = 1 img[labels == 2] = d[labels == 2] / 40 m, workspace = run_module(img, labels, wants_workspace=True) assert isinstance(workspace, cellprofiler_core.workspace.Workspace) bins = (labels != 0) * (1 + (
numpy.sqrt(i * i + j * j)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Apr 25 18:13:25 2020 @author: rdamseh """ import numpy as np from tqdm import tqdm from VirtualMRI.MRI.Sequence import Sequence from VirtualMRI.MRI.DiffusionGradient import DiffusionGradient import scipy.io as sio from time import time class DiffusionSignal: def __init__(self, binary_image, delta_B, T2_image, # ms vx_image, # mm/s vy_image, # mm/s vz_image, # mm/s grad_image=None, # this is to model the propagation vel_image=None, # mm/s n_protons=int(1e6), n_protons_all=1, T1on = False, T2on = True, TR = 1000.0, compute_phase = 0.0, compute_A = 0.0, dt = 0.2, # ms T1 = 1590.0, # ms TE = 5.0, # ms echo_spacing = 1.0, delta_big=2.0, delta_small=1.0, b_value=10.0, phi=45, theta=45, gamma=2.675e5, # rad/Tesla/msec (gyromagenatic ratio) diff_coeff=0.8, apply_spin_labeling=False, apply_diffusion=True, exp_name='MRIexp', savepath=''): #Le Bihan 2013 Assumed isotropic; %Proton (water) diffusion coefficient(um2/msec) self.binary_image = binary_image self.delta_B = delta_B # should be in sec self.T2_image = T2_image self.vx_image = vx_image self.vy_image = vy_image self.vz_image = vz_image self.vel_image = vel_image self.n_protons = n_protons self.n_protons_init = n_protons self.n_protons_all = n_protons_all self.T1on = T1on self.T2on = T2on self.TR = TR self.compute_phase = compute_phase self.compute_A = compute_A self.dt = dt self.T1 = T1 self.TE = TE self.echo_spacing = echo_spacing self.delta_big = delta_big self.delta_small = delta_small self.b_value = b_value self.phi = phi self.theta = theta self.gamma = gamma self.diff_coeff = diff_coeff self.apply_spin_labeling = apply_spin_labeling self.apply_diffusion=apply_diffusion self.diff_sigma=np.sqrt(2*self.diff_coeff*self.dt) self.map_size=self.T2_image.shape #### timing and sequence self.sequence=Sequence(Type='DiffSE', TE=self.TE, echo_spacing=self.echo_spacing, delta_big=self.delta_big, delta_small=self.delta_small, dt=self.dt).Sequence self.sequence_toplot=Sequence(Type='DiffSE', TE=self.TE, echo_spacing=self.echo_spacing, delta_big=self.delta_big, delta_small=self.delta_small, dt=.001).Sequence self.signals=[] self.b_values=[] self.phi_values=[] self.theta_values=[] self.mean_phase=[] self.name=exp_name self.shape=np.shape(self.binary_image) self.center=np.array(self.shape)/2.0 self.labels=[] # get boundary and flow gradients if grad_image is not None: grad_image_boundary=self.get_gradimage(self.binary_image) grad_image_vessel=self.get_gradimage(grad_image) # normalized boundary gradients self.boundary=self.get_norm(grad_image_boundary)>0 self.grad_image_boundary=self.get_normgrad(grad_image_boundary) # normalized vessel gradients grad_image_vessel=self.get_normgrad(grad_image_vessel) grad_image=[self.grad_image_boundary[i]+grad_image_vessel[i] for i in [0,1,2]] self.grad_image=self.get_normgrad(grad_image) def get_gradimage(self, x): ''' compute image gradients ''' return(np.gradient(x)) def get_norm(self, gr): ''' computre norm o gradients ''' return(np.sqrt(np.sum(np.array([i**2 for i in gr]), axis=0))) def get_normgrad(self, gr, boundary=False): ''' compute normal gradients at the boundary of vessels to be applied for relecting moving spins if hits vessels wall ''' normal=self.get_norm(gr) if boundary: b=normal>0 normal[normal==0]=1 ret=[i/normal for i in gr] if boundary: return ret, b else: return ret def InitiateSpins(self): if self.apply_spin_labeling: self.InitiateSpinsSL() else: np.random.seed(999) self.pos_protons=np.random.rand(int(self.n_protons_init), 3)*np.array(self.map_size) # protons positions self.n_protons=len(self.pos_protons) print('Number of protons: ', self.n_protons) def InitiateSpinsSL(self): self.pos_protons=np.empty((0, 3)) idx=0 while len(self.pos_protons)<self.n_protons_init: np.random.seed(999+10*idx) idx+=1 pos_protons=np.random.rand(int(1e7), 3)*np.array(self.map_size) # protons positions ind=tuple([pos_protons[:,i].astype(int) for i in [0,1,2]]) valid_pos_ind=(self.binary_image[ind]>0) pos_protons=pos_protons[valid_pos_ind] left=int(self.n_protons_init)-len(self.pos_protons) if left>1e7: left=int(1e7) self.pos_protons=np.vstack((self.pos_protons, pos_protons[0:left])) self.pos_protons_copy=self.pos_protons.copy() def InitiateGradient(self, b_value=None, phi=None, theta=None): if b_value is not None: self.b_value=b_value if phi is not None: self.phi=phi if theta is not None: self.theta=theta #### Diffusion gradient self.DiffusionGradient=DiffusionGradient(shape=self.map_size, b=self.b_value, delta_big=self.delta_big, #ms delta_small=self.delta_small, #ms gamma=self.gamma) self.gradient=self.DiffusionGradient.GetGradient(phi=self.phi, theta=self.theta) print('max delta_B: ', self.delta_B.max()) print('max gradient: ', self.gradient.max()) def __UpdateSpinsPos(self, vx, vy, vz, ret=False): # dt should be in sec self.shift=np.array([vx, vy, vz]).T*self.dt*1e-3 # shift vectors valid_pos=np.less_equal(self.pos_protons+self.shift, np.array(self.map_size)) # check if new pos do not exceed space borders valid_pos=valid_pos[:,0]*valid_pos[:,1]*valid_pos[:,2] self.pos_protons+=self.shift*valid_pos[:,None] # update positions if ret: return self.shift def __UpdateSpinsPosWithReplacement(self, vx, vy, vz, ret=False): # def randpos_invessel(im, n): # # shape=np.array(im.shape) # cont =1 # pos=np.zeros((n,3)) # ind1=0 # while cont: # p=np.random.rand(n, 3)*shape[None,:] # p=p.astype(int) # ind=(p[:,0],p[:,1],p[:,2]) # check=im[ind].ravel() # p=p[check>0] # l=len(p) # if l+ind1>n: # l=n-ind1 # pos[ind1:ind1+l]=p[:l] # ind1=ind1+l # if ind1==n: # cont=0 # dt should be in sec self.shift=np.array([vx, vy, vz]).T*self.dt*1e-3 # shift vectors valid_pos=np.less_equal(self.pos_protons+self.shift, np.array(self.map_size)) # check if new pos do not exceed space borders valid_pos=valid_pos[:,0]*valid_pos[:,1]*valid_pos[:,2] self.pos_protons+=self.shift*valid_pos[:, None] # update positions novalid_pos=np.bitwise_not(valid_pos) np.random.shuffle(self.pos_protons_copy) self.pos_protons[novalid_pos>0]= self.pos_protons_copy[:sum(novalid_pos>0)]# update positions if ret: return self.shift def __UpdateSpinsPosNew(self, imageind, ret=False): # dt should be in sec self.shift=np.array([self.grad_image[0][imageind], self.grad_image[1][imageind], self.grad_image[2][imageind]]).T*self.vel_image[imageind][:, None]*self.dt*1e-3 # shift vectors valid_pos=np.less_equal(self.pos_protons+self.shift, np.array(self.map_size)) # check if new pos do not exceed space borders valid_pos=valid_pos[:,0]*valid_pos[:,1]*valid_pos[:,2] self.pos_protons+=self.shift*valid_pos[:,None] # update positions if ret: return self.shift def __UpdateSpinsPosOneReflection(self, vx, vy, vz, ret=False): def Update(shift): # valid if wihtin image domain newpos=self.pos_protons+shift valid1=np.less_equal(newpos, np.array(self.map_size)) valid1=valid1[:,0]*valid1[:,1]*valid1[:,2] # valid if within vessles boundary ind=tuple([newpos[valid1][:, i].astype(int) for i in [0,1,2]]) valid2=self.binary_image[ind]>0 valid=valid1.copy() valid[valid]=valid2 # protons that need reflectance toreflect=valid1.copy() toreflect[toreflect]=
np.bitwise_not(valid2)
numpy.bitwise_not
# -*- coding: utf-8 -*- """ gpd_lite_toolboox @author: mthh """ import shapely.ops import numpy as np import pandas as pd from sklearn.cluster import KMeans from shapely.geometry import Point, Polygon, MultiPolygon from geopandas import GeoDataFrame from sklearn.metrics.pairwise import pairwise_distances from .utils import ( db_connect, Borderiz, dbl_range, ftouches_byid, l_shared_border, make_index, nrepeat, mparams, dorling_radius, dorling_radius2, ) __all__ = ('get_borders', 'find_borders', 'transform_cartogram', 'dissolve', 'intersects_byid', 'multi_to_single', 'dumb_multi_to_single', 'snap_to_nearest', 'read_spatialite', 'match_lines', 'mean_coordinates', 'non_contiguous_cartogram', 'make_grid', 'gridify_data', 'random_pts_on_surface', 'access_isocrone') def match_lines(gdf1, gdf2, method='cheap_hausdorff', limit=None): """ Return a pandas.Series (with the length of *gdf1*) with each row containing the id of the matching feature in *gdf2* (i.e the closest based on the computation of a "hausdorff-distance-like" between the two lines or the most similar based on some geometry properties) or nothing if nothing is found according to the *limit* argument. If a *limit* is given, features situed far from this distance will not be taken into account (in order to avoid retrieving the id of too far located segments, even if the closest when no one seems to be matching). Parameters ---------- gdf1: GeoDataFrame of LineStrings (the reference dataset). gdf2: GeoDataFrame of LineStrings (the dataset to match). limit: Integer The maximum distance, where it is sure that segments couldn't match. Returns ------- match_table: pandas.Series containing the matching table (with index based on *gdf1*) """ if 'cheap_hausdorff' in method: if limit: return (gdf1.geometry.apply( lambda x: [fh_dist_lines(x, gdf2.geometry[i]) for i in range(len(gdf2))] )).apply(lambda x: [nb for nb, i in enumerate(x) if i == min(x) and i < limit]) else: return (gdf1.geometry.apply( lambda x: [fh_dist_lines(x, gdf2.geometry[i]) for i in range(len(gdf2))] )).apply(lambda x: [nb for nb, i in enumerate(x) if i == min(x)]) elif 'cluster' in method: return match_line_cluster(gdf1, gdf2) else: raise ValueError('Incorrect matching method\nMethod should ' 'be \'cheap_hausdorff\' or \'cluster\'.') def match_line_cluster(gdf1, gdf2): """ Try to match two layers of linestrings with KMeans cluster analysis based on a triplet of descriptive attributes : (centroid coords., rounded length, approximate bearing) Parameters ---------- gdf1: GeoDataFrame The reference dataset. gdf2: GeoDataFrame The collection of LineStrings to match. Returns ------- matching_table: pandas.Series A table (index-based on *gdf1*) containing the id of the matching feature found in *gdf2*. """ param1, param2 = list(map(mparams, [gdf1, gdf2])) k_means = KMeans(init='k-means++', n_clusters=len(gdf1), n_init=10, max_iter=1000) k_means.fit(np.array((param1+param2))) df1 = pd.Series(k_means.labels_[len(gdf1):]) df2 = pd.Series(k_means.labels_[len(gdf1):]) # gdf1['fid_layer2'] = \ # df1.apply(lambda x: df2.where(gdf2['key'] == x).notnull().nonzero()[0][0]) return pd.DataFrame( index=list(range(len(gdf1))), data=df1.apply( lambda x: df2.where(df2 == x).notnull().nonzero()) ) def fh_dist_lines(li1, li2): """ Compute a cheap distance (based on hausdorff-distance) between *li1* and *li2*, two LineString. Parameters ---------- li1: shapely.geometry.LineString li2: shapely.geometry.LineString Returns ------- max_dist: Float of the distance between li1 and li2. """ coord_li1 = np.array([i for i in zip(li1.coords.xy[0], li1.coords.xy[1])]) coord_li2 = np.array([i for i in zip(li2.coords.xy[0], li2.coords.xy[1])]) if len(coord_li2) > len(coord_li2): coord_li1, coord_li2 = coord_li2, coord_li1 dist_mat = pairwise_distances( coord_li1, coord_li2, metric='euclidean', n_jobs=2 ) chkl = round(len(coord_li1)/len(coord_li2)) return max( [dist_mat[i, j] for i, j in zip( list(range(len(coord_li1))), list(nrepeat(range(len(coord_li2)), chkl))[:len(coord_li1)])] ) def get_borders(gdf, tol=1, col_name='id'): """ Get the lines corresponding to the border between each polygon from the dataset, each line containing the *col_name* of the two polygons around (quicker computation than :py:func:`find_borders`). Likely a minimalist python port of cartography::getBorders R function from https://github.com/Groupe-ElementR/cartography/blob/master/R/getBorders.R Parameters ---------- gdf: :py:class: `geopandas.GeoDataFrame` Input collection of polygons. tol: int, default=1 The tolerance (in units of :py:obj:`gdf`). col_name: str, default='id' The field name of the polygon to yield. Returns ------- borders: GeoDataFrame A GeoDataFrame of linestrings corresponding to the border between each polygon from the dataset, each line containing the *col_name* of the two polygon around. """ buff = gdf.geometry.buffer(tol) intersect_table = intersects_byid(buff, buff) attr, new_geoms = [], [] for i in range(len(gdf)): tmp1 = gdf.iloc[i] buff_geom1 = buff[i] for j in intersect_table[i]: if not i == j: tmp2 = gdf.iloc[j] buff_geom2 = buff[j] new_geoms.append( (buff_geom1.intersection(buff_geom2)).boundary ) attr.append(tmp1[col_name] + '-' + tmp2[col_name]) return GeoDataFrame(attr, geometry=new_geoms, columns=[col_name]) def find_borders(gdf, tol=1, col_name='id'): """ Parameters ---------- gdf: :py:class::`geopandas.GeoDataFrame` Input collection of polygons. tol: int, default=1 The tolerance (in units of :py:obj:`gdf`). col_name: str, default='id' The field name of the polygon to yield. Returns ------- borders: GeoDataFrame Return lines corresponding to the border between each polygon of the dataset, each line containing the id of the two polygon around it. This function is slower/more costly than :py:func:`get_borders`. """ if col_name not in gdf.columns: raise ValueError("Column name error : can't find {}".format(col_name)) bor = Borderiz(gdf) return bor.run(tol, col_name) def transform_cartogram(gdf, field_name, iterations=5, inplace=False): """ Make a continuous cartogram on a geopandas.GeoDataFrame collection of Polygon/MultiPolygon (wrapper to call the core functions written in cython). Based on the transformation of Dougenik and al.(1985). Parameters ---------- gdf: geopandas.GeoDataFrame The GeoDataFrame containing the geometry and a field to use for the transformation. field_name: String The label of the field containing the value to use. iterations: Integer, default 5 The number of iteration to make. inplace, Boolean, default False Append in place if True. Otherwhise return a new :py:obj:GeoDataFrame with transformed geometry. Returns ------- GeoDataFrame: A new GeoDataFrame (or None if inplace=True) References ---------- ``<NAME>, <NAME>, and <NAME>. 1985. "An algorithm to construct continuous cartograms." Professional Geographer 37:75-81`` """ from gpd_lite_toolbox.cycartogram import make_cartogram return make_cartogram(gdf, field_name, iterations, inplace) def intersects_byid(geoms1, geoms2): """ Return a table with a row for each features of *geoms1*, containing the id of each *geoms2* intersecting features (almost like an intersecting matrix). Parameters ---------- geoms1: GeoSeries or GeoDataFrame Collection on which the intersecting table will be based. geoms2: GeoSeries or GeoDataFrame Collection to test on intersects. Returns ------- intersect_table: pandas.Series A Series with the same index id as geoms1, each row containg the ids of the features of geoms2 intersecting it. """ return geoms1.geometry.apply( lambda x: [i for i in range(len(geoms2.geometry)) if x.intersects(geoms2.geometry[i])] ) def dissolve(gdf, colname, inplace=False): """ Parameters ---------- gdf: GeoDataFrame The geodataframe to dissolve colname: String The label of the column containg the common values to use to dissolve the collection. Returns ------- Return a new :py:obj:`geodataframe` with dissolved features around the selected columns. """ if not inplace: gdf = gdf.copy() df2 = gdf.groupby(colname) gdf.set_index(colname, inplace=True) gdf['geometry'] = df2.geometry.apply(shapely.ops.unary_union) gdf.reset_index(inplace=True) gdf.drop_duplicates(colname, inplace=True) gdf.set_index(pd.Int64Index([i for i in range(len(gdf))]), inplace=True) if not inplace: return gdf def multi_to_single(gdf): """ Return a new geodataframe with exploded geometries (where each feature has a single-part geometry). Parameters ---------- gdf: GeoDataFrame The input GeoDataFrame to explode to single part geometries. Returns ------- gdf: GeoDataFrame The exploded result. See-also -------- The method GeoDataFrame.explode() in recent versions of **geopandas**. """ values = gdf[[i for i in gdf.columns if i != 'geometry']] geom = gdf.geometry geoms, attrs = [], [] for i in range(len(gdf)): try: for single_geom in geom.iloc[i]: geoms.append(single_geom) attrs.append(values.iloc[i]) except: geoms.append(geom.iloc[i]) attrs.append(values.iloc[i]) return GeoDataFrame(attrs, index=[i for i in range(len(geoms))], geometry=geoms, columns=[i for i in gdf.columns if i != 'geometry']) def snap_to_nearest(pts_ref, target_layer, inplace=False, searchframe=50, max_searchframe=500): """ Snap each point from :py:obj:`pts_ref` on the nearest line-segment/polygon-vertex of :py:obj:`target_layer` according to a *searchframe* defined in units of both two input layers. Append inplace or return a new object. (A larger search frame can be set in *max_searchframe* : the search frame will be progressivly increased from *searchframe* to *max_searchframe* in order to snap the maximum of points without using a large orginal search frame) Parameters ---------- pts_ref: GeoDataFrame The collection of points to snap on *target_layer*. target_layer: GeoDataFrame The collection of LineString or Polygon on which *pts_ref* will be snapped, according to the *max_searchframe*. inplace: Boolean, default=False Append inplace or return a new GeoDataFrame containing moved points. searchframe: Integer or float, default=50 The original searchframe (in unit of the two inputs GeoDataFrame), which will be raised to *max_searchframe* if there is no objects to snap on. max_searchframe: Integer or float, default=500 The maximum searchframe around each features of *pts_ref* to search in. Returns ------- snapped_pts: GeoDataFrame The snapped collection of points (or None if inplace=True, where points are moved in the original geodataframe). """ new_geoms = pts_ref.geometry.values.copy() target_geoms = target_layer.geometry.values start_buff = searchframe index = make_index([i.bounds for i in target_geoms]) for id_pts_ref in range(len(new_geoms)): while True: try: tmp = { (new_geoms[id_pts_ref].distance(target_geoms[fid])): fid for fid in list(index.intersection( new_geoms[id_pts_ref].buffer(searchframe).bounds, objects='raw')) } road_ref = tmp[min(tmp.keys())] break except ValueError as err: searchframe += (max_searchframe-start_buff)/3 if searchframe > max_searchframe: break try: res = {new_geoms[id_pts_ref].distance(Point(x, y)): Point(x, y) for x, y in zip(*target_geoms[road_ref].coords.xy)} new_geoms[id_pts_ref] = res[min(res.keys())] except NameError as err: print(err, 'No value for {}'.format(id_pts_ref)) if inplace: pts_ref.set_geometry(new_geoms, drop=True, inplace=True) else: result = pts_ref.copy() result.set_geometry(new_geoms, drop=True, inplace=True) return result def dumb_multi_to_single(gdf): """ A "dumb" (but sometimes usefull) multi-to-single function, returning a GeoDataFrame with the first single geometry of each multi-part geometry (and also return single geometry features untouched), so the returned GeoDataFrame will have the same number of features. Parameters ---------- gdf: GeoDataFrame The input collection of features. Returns ------- gdf: GeoDataFrame The exploded result. """ values = gdf[[i for i in gdf.columns if i != 'geometry']] geom = gdf.geometry geoms, attrs = [], [] for i in range(len(gdf)): try: for single_geom in geom.iloc[i]: geoms.append(single_geom) attrs.append(values.iloc[i]) break except: geoms.append(geom.iloc[i]) attrs.append(values.iloc[i]) return GeoDataFrame(attrs, index=[i for i in range(len(geoms))], geometry=geoms, columns=[i for i in gdf.columns if i != 'geometry']) def read_spatialite(sql, conn, geom_col='geometry', crs=None, index_col=None, coerce_float=True, params=None, db_path=None): """ Wrap :py:func:`geopandas.read_postgis()` and allow to read from spatialite. Returns ------- gdf: GeoDataframe Example ------- >>> # With a connection object (conn) already instancied : >>> gdf = read_spatialite("SELECT PK_UID, pop_t, gdp FROM countries", conn, geom_col="GEOM") >>> # Without being already connected to the database : >>> gdf = read_spatialite("SELECT PK_UID, pop_t, gdp FROM countries", None, geom_col="GEOM", db_path='/home/mthh/tmp/db.sqlite') """ from geopandas import read_postgis if '*' in sql: raise ValueError('Column names have to be specified') if not conn and db_path: conn = db_connect(db_path) elif not conn: raise ValueError( 'A connection object or a path to the DB have to be provided') if sql.lower().find('select') == 0 and sql.find(' ') == 6: sql = sql[:7] \ + "HEX(ST_AsBinary({0})) as {0}, ".format(geom_col) + sql[7:] else: raise ValueError( 'Unable to understand the query') return read_postgis( sql, conn, geom_col=geom_col, crs=crs, index_col=index_col, coerce_float=coerce_float, params=params ) def mean_coordinates(gdf, id_field=None, weight_field=None): """ Compute the (weighted) mean coordinate(s) of a set of points. If provided the point(s) will be located according to *weight_field* (numérical field). If an *id_field* is given, a mean coordinate pt will be calculated for each subset of points differencied by this *id_field*. Parameters ---------- gdf: GeoDataFrame The input collection of Points. id_field: String, optional The label of the field containing a value to weight each point. weight_field: String, optional The label of the field which differenciate features of *gdf* in subsets in order to get multiples mean points returned. Returns ------- mean_points: GeoDataFrame A new GeoDataFrame with the location of the computed point(s). """ assert 'Multi' not in gdf.geometry.geom_type, \ "Multipart geometries aren't allowed" fields = ['geometry'] if id_field: assert id_field in gdf.columns fields.append(id_field) if weight_field: assert weight_field in gdf.columns fields.append(weight_field) else: weight_field = 'count' tmp = gdf[fields].copy() tmp['x'] = tmp.geometry.apply(lambda x: x.coords.xy[0][0]) tmp['y'] = tmp.geometry.apply(lambda x: x.coords.xy[1][0]) tmp.x = tmp.x * tmp[weight_field] tmp.y = tmp.y * tmp[weight_field] tmp['count'] = 1 if id_field: tmp = tmp.groupby(id_field).sum() else: tmp = tmp.sum() tmp = tmp.T tmp.x = tmp.x / tmp[weight_field] tmp.y = tmp.y / tmp[weight_field] tmp['geometry'] = [Point(i[0], i[1]) for i in tmp[['x', 'y']].values] return GeoDataFrame(tmp[weight_field], geometry=tmp['geometry'], index=tmp.index).reset_index() def random_pts_on_surface(gdf, coef=1, nb_field=None): """ For each polygon, return a point (or a set of points, according to *nb_field* and *coef*), lying on the polygon surface. Parameters ---------- gdf: GeoDataFrame A collection of polygons on which generate points. coef: Integer, default 1 The multiplicant, which applies to each feature of *gdf*, If used, the values contained on *nb_field* will also be multiplicated. nb_field: String, optional The name of the field to read, containing an integer which will be used as the number of points to create. Returns ------- rand_points: GeoDataFrame A collection of points, located on *gdf*, accordingly to *coef* and values contained in *nb_field* if used. """ nb_ft = len(gdf) if nb_field: nb_pts = gdf[nb_field].values * coef else: nb_pts = np.array([coef for i in range(nb_ft)]) res = [] for i in range(nb_ft): pts_to_create = round(nb_pts[i]) (minx, miny, maxx, maxy) = gdf.geometry[i].bounds while True: xpt = \ (maxx-minx) * np.random.random_sample((pts_to_create,)) + minx ypt = \ (maxy-miny) *
np.random.random_sample((pts_to_create,))
numpy.random.random_sample
import numpy as np from scipy.integrate import odeint from scipy.special import legendre, chebyt import sys sys.path.append('../src') from sindy_utils import library_size from data_manage import DataStruct import pdb class Lorenz: def __init__(self, option='delay', coefficients=[10, 8/3, 28.], noise=0.0, input_dim=128, normalization=[1/40, 1/40, 1/40], linear=False, poly_order=3): self.option = option self.sigma = coefficients[0] self.beta = coefficients[1] self.rho = coefficients[2] self.noise = noise self.input_dim = input_dim self.normalization = np.array(normalization) if normalization is not None else np.array([1, 1, 1]) self.linear = linear self.poly_order = poly_order def get_solution(self, n_ics, tend, dt, ic_means=[0, 0, 25], ic_widths=[36, 48, 41], tau=None): """ Generate a set of Lorenz training data for multiple random initial conditions. Arguments: n_ics - Integer specifying the number of initial conditions to use. noise_strength - Amount of noise to add to the data. Return: data - Dictionary containing elements of the dataset. See generate_lorenz_data() doc string for list of contents. """ t = np.arange(0, tend, dt) n_steps = len(t) - self.input_dim if tau is not None: n_steps = len(t) - self.input_dim * int(tau/dt) ic_means = np.array(ic_means) ic_widths = 2 * np.array(ic_widths) # training data ics = ic_widths*(np.random.rand(n_ics, 3)-.5) + ic_means data = self.generate_data(ics, t, tau=tau) data.x = data.x.reshape((n_steps*n_ics, self.input_dim)) \ + self.noise * np.random.randn(n_steps * n_ics, self.input_dim) data.dx = data.dx.reshape((n_steps*n_ics, self.input_dim)) \ + self.noise * np.random.randn(n_steps * n_ics, self.input_dim) data.ddx = data.ddx.reshape((n_steps*n_ics, self.input_dim)) \ + self.noise * np.random.randn(n_steps * n_ics, self.input_dim) full_z = data.z[0, :-self.input_dim, :] full_dz = data.dz[0, :-self.input_dim, :] full_ddz = data.ddz[0, :-self.input_dim, :] for i in range(1, data.z.shape[0]): full_z = np.concatenate((full_z, data.z[i, :-self.input_dim, :]), axis=0) full_dz = np.concatenate((full_dz, data.dz[i, :-self.input_dim, :]), axis=0) full_ddz = np.concatenate((full_ddz, data.ddz[i, :-self.input_dim, :]), axis=0) data.z = full_z data.dz = full_dz data.ddz = full_ddz return data def simulate_lorenz(self, z0, t): """ Simulate the Lorenz dynamics. Arguments: z0 - Initial condition in the form of a 3-value list or array. t - Array of time points at which to simulate. sigma, beta, rho - Lorenz parameters Returns: z, dz, ddz - Arrays of the trajectory values and their 1st and 2nd derivatives. """ f = lambda z,t : [self.sigma*(z[1] - z[0]), z[0]*(self.rho - z[2]) - z[1], z[0]*z[1] - self.beta*z[2]] df = lambda z,dz,t : [self.sigma*(dz[1] - dz[0]), dz[0]*(self.rho - z[2]) + z[0]*(-dz[2]) - dz[1], dz[0]*z[1] + z[0]*dz[1] - self.beta*dz[2]] z = odeint(f, z0, t) dt = t[1] - t[0] dz = np.zeros(z.shape) ddz = np.zeros(z.shape) for i in range(t.size): dz[i] = f(z[i],dt*i) ddz[i] = df(z[i], dz[i], dt*i) return z, dz, ddz def generate_data(self, ics, t, tau=None): """ Generate high-dimensional Lorenz data set. Arguments: ics - Nx3 array of N initial conditions t - array of time points over which to simulate n_points - size of the high-dimensional dataset created linear - Boolean value. If True, high-dimensional dataset is a linear combination of the Lorenz dynamics. If False, the dataset also includes cubic modes. normalization - Optional 3-value array for rescaling the 3 Lorenz variables. sigma, beta, rho - Parameters of the Lorenz dynamics. Returns: data - Dictionary containing elements of the dataset. This includes the time points (t), spatial mapping (y_spatial), high-dimensional modes used to generate the full dataset (modes), low-dimensional Lorenz dynamics (z, along with 1st and 2nd derivatives dz and ddz), high-dimensional dataset (x, along with 1st and 2nd derivatives dx and ddx), and the true Lorenz coefficient matrix for SINDy. """ n_ics = ics.shape[0] n_steps = t.size - self.input_dim # careful consistency dt = t[1]-t[0] d = 3 z = np.zeros((n_ics, t.size, d)) dz =
np.zeros(z.shape)
numpy.zeros
#!/usr/bin/env python """ This contains some of what is common to all of the peak finding algorithms. Note on handling RQE differences: 1) The images are corrected at loading for RQE differences, which is done by dividing the image be the measured camera RQE. 2) The peak finding classes use this corrected image. I think this is not quite correct from a statistical perspective, but is simple and works well for the small RQE differences (~5%) that are usually encountered. "Works well" means that the finder is noticeably biased against localizations in areas with lower than average RQE. 3) The peak fitting (C library) undoes the RQE correction, it multiplies the image it receives by the RQE correction. This way the fitting is correct, at least in a statistical sense. Hazen 06/19 """ import numpy import os import tifffile import storm_analysis.sa_library.i3dtype as i3dtype import storm_analysis.sa_library.ia_utilities_c as iaUtilsC import storm_analysis.sa_library.matched_filter_c as matchedFilterC import storm_analysis.sa_library.parameters as params import storm_analysis.sa_library.sa_h5py as saH5Py import storm_analysis.simulator.draw_gaussians_c as dg # # Functions. # def gaussianPSF(shape, sigma): """ Return a normalized 2D Gaussian, usually used for creating MatchedFilter objects. """ psf = dg.drawGaussiansXY(shape, numpy.array([0.5*shape[0]]), numpy.array([0.5*shape[1]]), sigma = sigma) return psf/numpy.sum(psf) def getPeakLocations(peak_filename, margin, pixel_size, sigma): """ This is for if you already know where your want fitting to happen, as for example in a bead calibration movie and you just want to use the approximate locations as inputs for fitting. There are two choices for peak_locations file format: 1. A text file with the peak x, y, height and background values as white spaced columns (x and y positions are in pixels as determined using visualizer). 1.0 2.0 1000.0 100.0 10.0 5.0 2000.0 200.0 ... 2. An HDF5 format localization file. This is treated in a similar fashion to the text file in that all of the locations are loaded. If the fields 'xsigma' or 'ysigma' exist they will be used for the initial X/Y sigma values of the localization. """ if os.path.exists(peak_filename): print("Using peak starting locations specified in", peak_filename) elif os.path.exists(os.path.basename(peak_filename)): peak_filename = os.path.basename(peak_filename) print("Using peak starting locations specified in", peak_filename) # Check if the file is a storm-analysis HDF5 file. # if saH5Py.isSAHDF5(peak_filename): peak_locations_type = "hdf5" peak_locations = saH5Py.loadLocalizations(peak_filename) if not "ysigma" in peak_locations: if not "xsigma" in peak_locations: peak_locations["xsigma"] = numpy.ones(peak_locations["x"].size) * sigma peak_locations["ysigma"] = peak_locations["xsigma"].copy() else: peak_locations_type = "text" # Load peak x,y locations. peak_locs = numpy.loadtxt(peak_filename, ndmin = 2) # Create peak dictionary. peak_locations = {"background" : peak_locs[:,3], "height" : peak_locs[:,2], "x" : peak_locs[:,0], "y" : peak_locs[:,1]} peak_locations["xsigma"] = numpy.ones(peak_locations["x"].size) * sigma peak_locations["ysigma"] = numpy.ones(peak_locations["x"].size) * sigma peak_locations["z"] = numpy.zeros(peak_locations["x"].size) # Adjust positions for finding/fitting margin. peak_locations["x"] += margin peak_locations["y"] += margin print("Loaded", peak_locations["x"].size, "peak locations") # # We return is_text as the caller might want to do different things if # the file is text, like initialize the Z value. # return [peak_locations, peak_locations_type] def padArray(ori_array, pad_size): """ Pads out an array to a large size. ori_array - A 2D numpy array. pad_size - The number of elements to add to each of the "sides" of the array. The padded 2D numpy array. """ if (pad_size > 0): [x_size, y_size] = ori_array.shape lg_array = numpy.ones((x_size+2*pad_size,y_size+2*pad_size)) lg_array[pad_size:(x_size+pad_size),pad_size:(y_size+pad_size)] = ori_array.astype(numpy.float64) lg_array[0:pad_size,:] = numpy.flipud(lg_array[pad_size:2*pad_size,:]) lg_array[(x_size+pad_size):(x_size+2*pad_size),:] = numpy.flipud(lg_array[x_size:(x_size+pad_size),:]) lg_array[:,0:pad_size] = numpy.fliplr(lg_array[:,pad_size:2*pad_size]) lg_array[:,(y_size+pad_size):(y_size+2*pad_size)] = numpy.fliplr(lg_array[:,y_size:(y_size+pad_size)]) return lg_array else: return ori_array def peakMask(shape, parameters, margin): """ Return the array that is used to mask the image to reduce the ROI where peaks can be found. """ peak_mask = numpy.ones(shape) # Check for circular AOI. if parameters.hasAttr("x_center"): assert parameters.hasAttr("y_center"), "Y center must be specified." assert parameters.hasAttr("aoi_radius"), "AOI radius must be specified." rr = parameters.getAttr("aoi_radius") xc = parameters.getAttr("x_center") + margin yc = parameters.getAttr("y_center") + margin rr = rr*rr xr = numpy.arange(peak_mask.shape[0]) - xc yr = numpy.arange(peak_mask.shape[0]) - yc xv, yv = numpy.meshgrid(xr, yr) peak_mask[((xv*xv + yv*yv) > rr)] = 0 # This catches 'y_center' without 'x_center'. elif parameters.hasAttr("y_center"): assert parameters.hasAttr("x_center"), "X center must be specified." # This catches 'aoi_radius' without 'x_center'. elif parameters.hasAttr("aoi_radius"): assert parameters.hasAttr("x_center"), "X center must be specified." # Check for square AOI else: if parameters.hasAttr("x_start"): peak_mask[:,0:parameters.getAttr("x_start")+margin] = 0.0 if parameters.hasAttr("x_stop"): peak_mask[:,parameters.getAttr("x_stop")+margin:-1] = 0.0 if parameters.hasAttr("y_start"): peak_mask[0:parameters.getAttr("y_start")+margin,:] = 0.0 if parameters.hasAttr("y_stop"): peak_mask[parameters.getAttr("y_stop")+margin:-1,:] = 0.0 return peak_mask # # Classes. # def FittingException(Exception): pass class PeakFinder(object): """ Base class for peak finding. This handles identification of peaks in an image. If you want to modify this with a custom peak finder or an alternative way to estimate the background, the recommended approach is to sub-class this class and then modify backgroundEstimator(), newImage() and peakFinder(). """ def __init__(self, parameters = None, **kwds): """ This is called once at the start of analysis to initialize the parameters that will be used for peak fitting. parameters - A parameters object. """ super(PeakFinder, self).__init__(**kwds) # Initialized from parameters. self.find_max_radius = parameters.getAttr("find_max_radius") # Radius (in pixels) over which the maxima is maximal. self.iterations = parameters.getAttr("iterations") # Maximum number of cycles of peak finding, fitting and subtraction to perform. self.sigma = parameters.getAttr("sigma") # Peak sigma (in pixels). self.threshold = parameters.getAttr("threshold") # Peak minimum threshold in units of sigma (as in "3 sigma effect"). self.check_mode = parameters.getAttr("check_mode") # Other member variables. self.background = None # Current estimate of the image background. self.bg_filter = None # Background MatchedFilter object. self.camera_variance = None # Camera variance, only relevant for a sCMOS camera. #self.check_mode = True #False # Run in diagnostic mode. Only useful for debugging. self.image = None # The original image. self.margin = None # Size of the unanalyzed "edge" around the image. self.mfinder = None # The maxima finder. self.parameters = parameters # Keep access to the parameters object. self.peak_locations = None # Initial peak locations, as explained below. self.peak_locations_type = None # Initial peak locations type. self.peak_mask = None # Mask for limiting peak identification to a particular AOI. self.pf_iterations = 0 # Keep track of the total number of iterations that were performed. # Print warning about check mode if self.check_mode: print("Warning! Running in check mode!") # Only do one cycle of peak finding as we'll always return the same locations. if parameters.hasAttr("peak_locations"): if (self.iterations != 1): print("WARNING: setting number of iterations to 1!") self.iterations = 1 def backgroundEstimator(self, image): """ This method does the actual background estimation. It is just a simple low pass filter. Override this if you want to change how the background is estimated. FIXME: Convolution should be weighted by the camera variance if it is not uniform? """ return self.bg_filter.convolve(image) def cleanUp(self): print(" ", self.pf_iterations, "peak finding iterations.") print() if self.bg_filter is not None: self.bg_filter.cleanup() def estimateBackground(self, fit_peaks_image, bg_estimate): """ Estimate the background for the image. fit_peaks_image - The current best fit image. bg_estimate - An estimate of the background. Returns the current background estimate. """ # If we are provided with an estimate of the background then just use it. if bg_estimate is not None: self.background = bg_estimate # Otherwise make our own estimate. else: image = self.image - fit_peaks_image self.background = self.backgroundEstimator(image) if self.check_mode: with tifffile.TiffWriter("bg_estimate.tif") as tf: tf.save(self.background.astype(numpy.float32)) return self.background def findPeaks(self, fit_peaks_image): """ Finds the peaks in the image. fit_peaks_image - The current fit image. Return [new peaks, new peak type, done] """ self.pf_iterations += 1 # Use pre-specified peak locations if available, e.g. bead calibration. if self.peak_locations is not None: return [self.peak_locations, self.peak_locations_type, True] # Otherwise, identify local maxima in the image. new_peaks = self.peakFinder(fit_peaks_image) # Update new peak identification threshold (if necessary). # Also, while threshold is greater than min_threshold we # are automatically not done. if (self.cur_threshold > self.threshold): self.cur_threshold -= 1.0 return [new_peaks, "finder", False] # If we did not find any new peaks then we may be done. if (new_peaks["x"].size == 0): return [new_peaks, "finder", True] else: return [new_peaks, "finder", False] def newImage(self, new_image): """ This is called once at the start of the analysis of a new image. new_image - A 2D numpy array. """ # Make a copy of the starting image. # # FIXME: Is this copy necessary? We're not doing this in multiplane. # self.image = numpy.copy(new_image) # Initialize new peak minimum threshold. If we are doing more # than one iteration we start a bit higher and come down to # the specified threshold. if(self.iterations>4): self.cur_threshold = self.threshold + 4.0 else: self.cur_threshold = self.threshold + float(self.iterations) # Create mask to limit peak finding to a user defined sub-region of the image. if self.peak_mask is None: self.peak_mask = peakMask(new_image.shape, self.parameters, self.margin) # Create filter objects if necessary. if self.bg_filter is None: # Create matched filter for background. bg_psf = gaussianPSF(new_image.shape, self.parameters.getAttr("background_sigma")) self.bg_filter = matchedFilterC.MatchedFilter(bg_psf, fftw_estimate = self.parameters.getAttr("fftw_estimate"), memoize = True, max_diff = 1.0e-3) # Reset maxima finder. self.mfinder.resetTaken() def padArray(self, np_array): """ Return a version of array padded to the correct size. """ return padArray(np_array, self.margin) def peakFinder(self, fit_peaks_image): """ Sub-classes must provide this method. """ raise FittingException("Finder had no peakFinder() method.") def setVariance(self, camera_variance): """ Set the camera variance, usually used in sCMOS analysis. """ self.camera_variance = self.padArray(camera_variance) return self.camera_variance class PeakFinderGaussian(PeakFinder): """ This is the peak finder for 3D-DAOSTORM and sCMOS, it handles Gaussian shaped peaks. """ def __init__(self, parameters = None, **kwds): """ This is called once at the start of analysis to initialize the parameters that will be used for peak fitting. parameters - A parameters object. """ kwds["parameters"] = parameters super(PeakFinderGaussian, self).__init__(**kwds) # Figure out what margin and ROI to use. if (self.parameters.getAttr("roi_size", -1) != -1): self.roi_size = parameters.getAttr("roi_size") else: # Calculate roi size based on sigma. self.roi_size = int(8.0 * self.sigma) # Make it even larger for variable width fitters. if(parameters.getAttr("model") != "2dfixed"): self.roi_size = int(1.5 * self.roi_size) self.margin = int(self.roi_size/2 + 2) # Initialized from parameters. self.z_value = self.parameters.getAttr("z_value", 0.0) # The starting z value to use for peak fitting. # Other member variables. self.fg_mfilter = None # Foreground MatchedFilter object (may be None). self.fg_vfilter = None # Foreground variance MatchedFilter object, will # be none if self.fg_mfilter is None. # Configure maxima finder. # self.mfinder = iaUtilsC.MaximaFinder(margin = self.margin, radius = self.find_max_radius, threshold = self.threshold, z_values = [self.z_value]) # Load peak locations if specified. # # FIXME: The starting z value is always 0.0. Not sure why we don't use # self.z_value for this. Though I guess it would only really be # relevant for the 'Z' fitting model. # if parameters.hasAttr("peak_locations"): [self.peak_locations, self.peak_locations_type] = getPeakLocations(parameters.getAttr("peak_locations"), self.margin, parameters.getAttr("pixel_size"), self.sigma) def cleanUp(self): super(PeakFinderGaussian, self).cleanUp() if self.fg_mfilter is not None: self.fg_mfilter.cleanup() self.fg_vfilter.cleanup() def getROISize(self): return self.roi_size def newImage(self, new_image): super(PeakFinderGaussian, self).newImage(new_image) # # Create matched filter for foreground as well as a matched filter # for calculating the expected variance of the background if it was # smoothed on the same scale as the foreground. # if (self.fg_mfilter is None) and self.parameters.hasAttr("foreground_sigma"): if (self.parameters.getAttr("foreground_sigma") > 0.0): fg_psf = gaussianPSF(new_image.shape, self.parameters.getAttr("foreground_sigma")) self.fg_mfilter = matchedFilterC.MatchedFilter(fg_psf, fftw_estimate = self.parameters.getAttr("fftw_estimate"), memoize = True, max_diff = 1.0e-3) self.fg_vfilter = matchedFilterC.MatchedFilter(fg_psf * fg_psf, fftw_estimate = self.parameters.getAttr("fftw_estimate"), memoize = True, max_diff = 1.0e-3) def peakFinder(self, fit_peaks_image): """ This method does the actual peak finding. """ # Calculate background variance. # # Note the assumption here that we are working in units of photo-electrons # so Poisson statistics applies, variance = mean. # bg_var = self.background + fit_peaks_image # Add camera variance if set. if self.camera_variance is not None: bg_var += self.camera_variance # Calculate weighted variance if the image is being smoothed. if self.fg_vfilter is not None: bg_var = self.fg_vfilter.convolve(bg_var) if self.check_mode: with tifffile.TiffWriter("variances.tif") as tf: tf.save(bg_var.astype(numpy.float32)) # Remove problematic values. # mask = (bg_var <= 0.1) if (numpy.sum(mask) > 0): if self.check_mode: print("Warning! small and/or negative values detected in background variance!") bg_var[mask] = 0.1 # Convert to standard deviation. bg_std = numpy.sqrt(bg_var) # Calculate foreground. foreground = self.image - self.background - fit_peaks_image # Calculate smoothed image if we have a foreground filter. if self.fg_mfilter is not None: foreground = self.fg_mfilter.convolve(foreground) if self.check_mode: with tifffile.TiffWriter("foreground.tif") as tf: tf.save(foreground.astype(numpy.float32)) # Calculate foreground in units of signal to noise. foreground = foreground/bg_std if self.check_mode: with tifffile.TiffWriter("fg_bg_ratio.tif") as tf: tf.save(foreground.astype(numpy.float32)) # Mask the image so that peaks are only found in the AOI. masked_image = foreground * self.peak_mask # Identify local maxima in the masked image. [x, y, z] = self.mfinder.findMaxima([masked_image]) return {"x" : x, "y" : y, "z" : z, "sigma" :
numpy.ones(x.size)
numpy.ones
import matplotlib.pyplot as plt import numpy as np from matplotlib.axes import Axes def exponential(a: float, b: float): def wrapper(xs): return a * np.exp(b * xs) return wrapper def exponential_sketch(ax, a, b, xlabel, ylabel): ax.plot(xs, exponential(a, b)(xs)) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.tick_params( bottom=False, labelbottom=False, right=False, left=False, labelleft=False ) def interaction(ax: Axes): return exponential_sketch(ax, 10, 0.7, "distance", "Number of interactions") def probability(ax: Axes): return exponential_sketch( ax, 0.088, -1.5, "distance", "Infection chance per interaction" ) xs =
np.arange(0, 3, 0.1)
numpy.arange
import numpy as np from ektelo import matrix from scipy import sparse from collections import OrderedDict from functools import reduce from mbi import Factor, FactoredInference import argparse import benchmarks import time """ Script for running MWEM and MWEM+PGM on adult dataset. Note that pure MWEM fails after a few iterations, requiring too much memory to proceed, while MWEM+PGM is able to run until completion. <NAME>, <NAME>, and <NAME>. "A simple and practical algorithm for differentially private data release." In Advances in Neural Information Processing Systems, pp. 2339-2347. 2012. Note that we run the ordinary version of MWEM that selects a single query at each iteration. An enhanced version of MWEM can select an entire marginal to measure at once (because the queriess in the marginal compose in parallel), but this version doesn't apply directly because the workload consists ofrange-marginals. """ class ProductDist: """ factored representation of data from MWEM paper """ def __init__(self, factors, domain, total): """ :param factors: a list of contingency tables, defined over disjoint subsets of attributes :param domain: the domain object :param total: known or estimated total """ self.factors = factors self.domain = domain self.total = total for a in domain: if not any(a in f.domain for f in factors): sub = domain.project([a]) x = np.ones(domain[a]) / domain[a] factors.append(Factor(sub, x)) def project(self, cols): domain = self.domain.project(cols) factors = [] for factor in self.factors: pcol = [c for c in cols if c in factor.domain] if pcol != []: factors.append(factor.project(pcol)) return ProductDist(factors, domain, self.total) def datavector(self): ans = reduce(lambda x,y: x*y, self.factors, 1.0) ans = ans.transpose(self.domain.attrs) return ans.values.flatten() * self.total class FactoredMultiplicativeWeights: def __init__(self, domain, iters = 100): self.domain = domain self.iters = iters def infer(self, measurements, total): self.multWeightsFast(measurements, total) return self.model def multWeightsFast(self, measurements, total): domain = self.domain groups, projections = _cluster(measurements) factors = [] for group, proj in zip(groups, projections): dom = self.domain.project(proj) fact = Factor.uniform(dom) for i in range(self.iters): update = Factor.zeros(dom) for Q, y, noise_scale, p in group: dom2 = dom.project(p) hatx = fact.project(p).values.flatten()*total error = y - Q.dot(hatx) update += Factor(dom2, Q.T.dot(error).reshape(dom2.shape)) fact *= np.exp(update / (2*total)) fact /= fact.sum() factors.append(fact) self.model = ProductDist(factors, self.domain, total) def _cluster(measurement_cache): """ Cluster the measurements into disjoint subsets by finding the connected components of the graph implied by the measurement projections """ # create the adjacency matrix k = len(measurement_cache) G = sparse.dok_matrix((k,k)) for i, (_, _, _, p) in enumerate(measurement_cache): for j, (_, _, _, q) in enumerate(measurement_cache): if len(set(p) & set(q)) >= 1: G[i,j] = 1 # find the connected components and group measurements ncomps, labels = sparse.csgraph.connected_components(G) groups = [ [] for _ in range(ncomps) ] projections = [ set() for _ in range(ncomps) ] for i, group in enumerate(labels): groups[group].append(measurement_cache[i]) projections[group] |= set(measurement_cache[i][3]) projections = [tuple(p) for p in projections] return groups, projections def average_error(workload, data, est): errors = [] for ax, W in workload: x = data.project(ax).datavector() xest = est.project(ax).datavector() ans = W.dot(x - xest) err = np.linalg.norm(W.dot(x-xest), 1) / np.linalg.norm(W.dot(x), 1) errors.append(err) return
np.mean(errors)
numpy.mean
import gym from gym import error, spaces, utils from gym.utils import seeding import numpy as np import pybullet as p import pybullet_data import time from sklearn.preprocessing import normalize MAX_EPISODE_LEN = 500 # Number of steps for one training episode REWARD_FACTOR = 1000 REWARD_WEIGHT_1 = 1.0 REWARD_WEIGHT_2 = 1.0 BOUND_ANGLE = 40 STEP_ANGLE = 15 # Maximum angle delta per step class OpenCatGymEnv(gym.Env): """ Gym environment (stable baselines 3) for OpenCat robots. """ metadata = {'render.modes': ['human']} def __init__(self): self.step_counter = 0 self.state_robot_history = np.array([]) self.jointAngles_history = np.array([]) self.boundAngles = np.deg2rad(BOUND_ANGLE) p.connect(p.GUI) #, options="--width=960 --height=540 --mp4=\"training.mp4\" --mp4fps=60") # uncommend to create a video p.configureDebugVisualizer(p.COV_ENABLE_GUI, 0) p.resetDebugVisualizerCamera(cameraDistance=0.5, cameraYaw=-10, cameraPitch=-40, cameraTargetPosition=[0.4,0,0]) # The action space are the 8 joint angles self.action_space = spaces.Box(np.array([-1]*8), np.array([1]*8)) # The observation space are the torso roll, pitch and the joint angles and a history of the last 20 joint angles self.observation_space = spaces.Box(
np.array([-1]*166)
numpy.array
#!/usr/bin/env python # -*- coding: UTF-8 -*- ''' Name: NetPanelAnalysis Function: 计算环形网片顶破力、顶破位移、耗能能力 Note: 国际单位制 Version: 1.0.3 Author: <NAME> Date: 2021/4/7 命名方式:以平行于x方向及y方向分别作为后缀 Remark: 影响计算结果的细节因素: (1)直线传力纤维与变形后的环网曲面传力路径之间的角度差异 1.5F; (2)三环环链拉伸代表了一种网环受力的最不利情形,实际网片中传力路径上环网轴向应力发展程度可能高于环链试验值+0.18 (3)需保证夹持卡扣的强度,一旦卡扣强度不足,将发生钢丝滑移失效,造成网片承载力下降。 (4) 该版本修正了一个错误:对应网环顶破试验,R3/2.2/300其实为R4/2.2/300,而R4/2.2/300其实为R4/3.0/300。 (5)由于(3)中的原因,剔除了网片试验RN3对应的试验结果,只保留R4/3.0/300的试验结果 (6)由于(3)中的原因,对于直径为2.2mm钢丝对应的网片规格R4/2.2/300,进行了单独计算 (7)Bug: gamma_N2的拟合结果与FN2的拟合结果存在不一致情况 (8)弹簧-纤维单元的双线性刚度特征,导致F_2及E_2在计算时每个单元分别修正与单元不同阶段实际刚度一致 (9)钢柱摆动、残余高度、窗帘效应 ''' import numpy as np from userfunc_NPA import * # 参数输入----------------------------------------------------------------------------------- # if __name__ == '__main__': # MULTIPLE FACTORS INPUT nw = 5 # 网环圈数 d = func_return_d(nw) # 制作网环的钢丝直径 D = 0.3 # 单个网环直径 Rp = 1.0/2 # 加载顶头水平投影半径,若加载形状为多边形时考虑为半径为Rp圆内切 w = 3.0 # ns = 12 # w = (np.sqrt(2)*(ns-1)+1)*0.3+0.2-0.0455844122715714 # 矩形网片短边长度 # print('w=',w) kappa = 1 # 网片长宽比:为大于1的常数 ls0_PQ = 0.05 # 初始弹簧长度 ls0_CD = 0.05 # 初始弹簧长度 ex = 0.0 # 加载位置偏心距离 ey = 0.0 # 加载位置偏心距离 sigma_y = 1770e6 # 钢丝材料屈服强度 blockShape = 'round' # blockShape must be 'Round' or 'Polygon'! curtain = False # 是否考虑窗帘效应,True为考虑,False为不考虑! boundary = 'Flexible' # boundary must be 'Rigid' or 'Flexible'! A = nw * np.pi*d**2/4 # 单肢截面面积 a = np.pi*D/(2*(1+kappa)) # 变形后网环短边长度 mPQ, mCD = func_m(blockShape,Rp,kappa,a) # 坐标系中x(PQ)y(CD)方向力矢量个数 print('mPQ, mCD=',mPQ, mCD) Rope1770Steel = {'3':5.29,'4':9.40,'5':14.7,'6':21.2,'7':28.8,'8':37.6,'9':47.6,'10':58.8,'11':71.1,'12':84.6,'13':99.3,'14':115,'16':150,'18':190,'20':235,'22':284,'24':338} sigma_rope = 1770e6 E_rope = 94.5e9 d_ropePQ = 18 F_ropePQ = 1000*Rope1770Steel[str(d_ropePQ)] # 1000为换算国际单位 l0_ropePQ = kappa*w # 钢丝绳初始长度 sigma_ropePQ = sigma_rope E_ropePQ = E_rope # 钢丝绳弹性模量 d_ropeCD = 18 F_ropeCD = 1000*Rope1770Steel[str(d_ropeCD)] # 1000为换算国际单位,钢丝绳破断力 l0_ropeCD = w # 钢丝绳初始长度 sigma_ropeCD = sigma_rope # 钢丝绳应力强度 E_ropeCD = E_rope # 钢丝绳弹性模量 lb_onePQ = 0.8 # 单个耗能器最大行程800mm b_numPQ = 0 # 边界钢丝绳两端串联的耗能器数量(耗能器连接方式:串联!!) lb_maxPQ = b_numPQ * lb_onePQ # 边界钢丝绳两端串联的耗能器总伸长量 lb_oneCD= 0.8 # 单个耗能器最大行程800mm b_numCD = 0 # 边界钢丝绳一端串联的耗能器数量(耗能器连接方式:串联!!) lb_maxCD = b_numCD * lb_oneCD # 边界钢丝绳两端串联的耗能器总伸长量 # 环链试验----------------------------------------------------------------------------------- # # 将三环环链试验力位移数据转换为弹簧纤维单元中的纤维双折线E1,E2应力应变关系 FN1, FN2, lN0, lN1, lN2, gamma_N1, gamma_N2 = func_ringChianDataFit(nw, sigma_y, d) E1 = FN1*lN0/(2*A*(lN1 - lN0)) E2 = (FN2-FN1)*lN0 / (2*A*(lN2 - lN1)) gamma_ave = gamma_N2/4 # 柔性边界下作用于钢丝绳上的平均分布荷载集度 dictRigid = {'ks':1e20} dictRopePQ = {'l0_rope':l0_ropePQ,'m':mPQ,'F_rope':F_ropePQ,'sigma_rope':sigma_ropePQ,'E_rope':E_ropePQ} dictRopeCD = {'l0_rope':l0_ropeCD,'m':mCD,'F_rope':F_ropeCD,'sigma_rope':sigma_ropeCD,'E_rope':E_ropeCD} dictBrakerPQ = {'lb_one':lb_maxPQ,'b_num':b_numPQ,'lb_max':lb_maxPQ} dictBrakerCD = {'lb_one':lb_maxCD,'b_num':b_numCD,'lb_max':lb_maxCD} dictFiber = {'gamma_ave':gamma_ave,'sigma_y':sigma_y,'gamma_N2':gamma_N2,'A':A} dictBoundaryPQ = {**dictRigid,**dictRopePQ,**dictBrakerPQ,**dictFiber} # PQ连接的钢丝绳参数字典 dictBoundaryCD = {**dictRigid,**dictRopeCD,**dictBrakerCD,**dictFiber} # CD连接的钢丝绳参数字典 ks_PQ = func_ks(boundary,**dictBoundaryPQ) # 弹簧刚度,指代刚性边界或柔性边界 ks_CD = func_ks(boundary,**dictBoundaryCD) # 弹簧刚度,指代刚性边界或柔性边界 #ks11 = 50000000 #ks_PQ = ks11 #ks_CD = ks11 print('ks_PQ=',ks_PQ) print('ks_CD=',ks_CD) func_inputCheck(nw,d,D,Rp,w,kappa,ks_PQ,ks_CD,ls0_PQ,ls0_CD,ex,ey) # 检查参数输入有无错误 # 各个纤维弹簧单元初始长度 L0_PQxy , L0_CDxy = func_xyz(blockShape, curtain, '+x+y', w, kappa, Rp, a, ex, ey, 0) L0_PQ_xy , L0_CD_xy = func_xyz(blockShape, curtain, '-x+y', w, kappa, Rp, a, ex, ey, 0) L0_PQx_y , L0_CDx_y = func_xyz(blockShape, curtain, '+x-y', w, kappa, Rp, a, ex, ey, 0) L0_PQ_x_y, L0_CD_x_y= func_xyz(blockShape, curtain, '-x-y', w, kappa, Rp, a, ex, ey, 0) # 各个纤维弹簧单元中纤维的初始长度 lf0_PQxy , lf0_CDxy = L0_PQxy -ls0_PQ, L0_CDxy -ls0_CD lf0_PQ_xy , lf0_CD_xy = L0_PQ_xy -ls0_PQ, L0_CD_xy -ls0_CD lf0_PQx_y , lf0_CDx_y = L0_PQx_y -ls0_PQ, L0_CDx_y -ls0_CD lf0_PQ_x_y, lf0_CD_x_y= L0_PQ_x_y-ls0_PQ, L0_CD_x_y-ls0_CD # 第一阶段纤维弹簧单元刚度 K1_PQxy , K1_CDxy = 1/(lf0_PQxy /(E1*A)+1/ks_PQ), 1/(lf0_CDxy /(E1*A)+1/ks_CD) K1_PQ_xy , K1_CD_xy = 1/(lf0_PQ_xy /(E1*A)+1/ks_PQ), 1/(lf0_CD_xy /(E1*A)+1/ks_CD) K1_PQx_y , K1_CDx_y = 1/(lf0_PQx_y /(E1*A)+1/ks_PQ), 1/(lf0_CDx_y /(E1*A)+1/ks_CD) K1_PQ_x_y, K1_CD_x_y= 1/(lf0_PQ_x_y/(E1*A)+1/ks_PQ), 1/(lf0_CD_x_y/(E1*A)+1/ks_CD) # 第二阶段纤维弹簧单元刚度 K2_PQxy , K2_CDxy = 1/(lf0_PQxy /(E2*A)+1/ks_PQ), 1/(lf0_CDxy /(E2*A)+1/ks_CD) K2_PQ_xy , K2_CD_xy = 1/(lf0_PQ_xy /(E2*A)+1/ks_PQ), 1/(lf0_CD_xy /(E2*A)+1/ks_CD) K2_PQx_y , K2_CDx_y = 1/(lf0_PQx_y /(E2*A)+1/ks_PQ), 1/(lf0_CDx_y /(E2*A)+1/ks_CD) K2_PQ_x_y, K2_CD_x_y= 1/(lf0_PQ_x_y/(E2*A)+1/ks_PQ), 1/(lf0_CD_x_y/(E2*A)+1/ks_CD) # 两个方向最短纤维弹簧单元(最薄弱单元)的长度与该单元的位置,两阶段刚度,用于计算顶破高度 L0minPQ,idPQ,K1minPQ,K2minPQ = func_minElement(L0_PQxy, L0_PQ_xy, L0_PQx_y, L0_PQ_x_y,K1_PQxy,K2_PQxy) L0minCD,idCD,K1minCD,K2minCD = func_minElement(L0_CDxy, L0_CD_xy, L0_CDx_y, L0_CD_x_y,K1_CDxy,K2_CDxy) #print('L0minPQ,idPQ,K1minPQ,K2minPQ=',L0minPQ,idPQ,K1minPQ,K2minPQ) #print('L0minCD,idCD,K1minCD,K2minCD=',L0minCD,idCD,K1minCD,K2minCD) # 两个方向单元确定的两阶段高度 z1PQ, z2PQ = func_compute_z1z2(L0minPQ,K1minPQ,K2minPQ,gamma_N1,gamma_N2,sigma_y,A) z1CD, z2CD = func_compute_z1z2(L0minCD,K1minCD,K2minCD,gamma_N1,gamma_N2,sigma_y,A) # 找出计算模型所有单元中的最短纤维弹簧单元 L0min = np.min([L0minPQ,L0minCD]) #print('z1PQ,z1CD,z2PQ,z2CD=',z1PQ,z1CD,z2PQ,z2CD) z1, z2 = func_Checkz1z2(z1PQ,z1CD,z2PQ,z2CD) maxTheta1 = np.arctan(z1/L0min) # 第一阶段纤维-弹簧单元最大角度 maxTheta2 = np.arctan(z2/L0min) # 第二阶段纤维-弹簧单元最大角度 # 第一阶段各个纤维弹簧单元长度 L1_PQxy , L1_CDxy = func_xyz(blockShape, curtain, '+x+y', w, kappa, Rp, a, ex, ey, z1) L1_PQ_xy , L1_CD_xy = func_xyz(blockShape, curtain, '-x+y', w, kappa, Rp, a, ex, ey, z1) L1_PQx_y , L1_CDx_y = func_xyz(blockShape, curtain, '+x-y', w, kappa, Rp, a, ex, ey, z1) L1_PQ_x_y, L1_CD_x_y= func_xyz(blockShape, curtain, '-x-y', w, kappa, Rp, a, ex, ey, z1) # 第二阶段各个纤维弹簧单元长度 L2_PQxy , L2_CDxy = func_xyz(blockShape, curtain, '+x+y', w, kappa, Rp, a, ex, ey, z2) L2_PQ_xy , L2_CD_xy = func_xyz(blockShape, curtain, '-x+y', w, kappa, Rp, a, ex, ey, z2) L2_PQx_y , L2_CDx_y = func_xyz(blockShape, curtain, '+x-y', w, kappa, Rp, a, ex, ey, z2) L2_PQ_x_y, L2_CD_x_y= func_xyz(blockShape, curtain, '-x-y', w, kappa, Rp, a, ex, ey, z2) # 第一阶段各个纤维弹簧单元与加载方向的夹角 Ang1_PQxy , Ang1_CDxy = np.arccos(z1/L1_PQxy) , np.arccos(z1/L1_CDxy) Ang1_PQ_xy , Ang1_CD_xy = np.arccos(z1/L1_PQ_xy) , np.arccos(z1/L1_CD_xy) Ang1_PQx_y , Ang1_CDx_y = np.arccos(z1/L1_PQx_y) , np.arccos(z1/L1_CDx_y) Ang1_PQ_x_y, Ang1_CD_x_y = np.arccos(z1/L1_PQ_x_y), np.arccos(z1/L1_CD_x_y) # 第二阶段各个纤维弹簧单元与加载方向的夹角 Ang2_PQxy , Ang2_CDxy = np.arccos(z2/L2_PQxy) , np.arccos(z2/L2_CDxy) Ang2_PQ_xy , Ang2_CD_xy = np.arccos(z2/L2_PQ_xy) , np.arccos(z2/L2_CD_xy) Ang2_PQx_y , Ang2_CDx_y = np.arccos(z2/L2_PQx_y) , np.arccos(z2/L2_CDx_y) Ang2_PQ_x_y, Ang2_CD_x_y = np.arccos(z2/L2_PQ_x_y), np.arccos(z2/L2_CD_x_y) chi_ang = 0.65 # chi为考虑实际顶破后环绕加载区域边缘网环内钢丝纤维与竖直方向夹角小于模型角度的修正系数 # 第一阶段各个纤维弹簧单元内力 F1_PQxy , F2_PQxy , E1_PQxy ,E2_PQxy = func_vectorFiEi(L0_PQxy ,L1_PQxy ,L2_PQxy ,K1_PQxy ,K2_PQxy ,gamma_N1,sigma_y,A) F1_PQ_xy , F2_PQ_xy , E1_PQ_xy ,E2_PQ_xy = func_vectorFiEi(L0_PQ_xy ,L1_PQ_xy ,L2_PQ_xy ,K1_PQ_xy ,K2_PQ_xy ,gamma_N1,sigma_y,A) F1_PQx_y , F2_PQx_y , E1_PQx_y ,E2_PQx_y = func_vectorFiEi(L0_PQx_y ,L1_PQx_y ,L2_PQx_y ,K1_PQx_y ,K2_PQx_y ,gamma_N1,sigma_y,A) F1_PQ_x_y, F2_PQ_x_y, E1_PQ_x_y,E2_PQ_x_y = func_vectorFiEi(L0_PQ_x_y,L1_PQ_x_y,L2_PQ_x_y,K1_PQ_x_y,K2_PQ_x_y,gamma_N1,sigma_y,A) F1_CDxy , F2_CDxy , E1_CDxy ,E2_CDxy = func_vectorFiEi(L0_CDxy ,L1_CDxy ,L2_CDxy ,K1_CDxy ,K2_CDxy ,gamma_N1,sigma_y,A) F1_CD_xy , F2_CD_xy , E1_CD_xy ,E2_CD_xy = func_vectorFiEi(L0_CD_xy ,L1_CD_xy ,L2_CD_xy ,K1_CD_xy ,K2_CD_xy ,gamma_N1,sigma_y,A) F1_CDx_y , F2_CDx_y , E1_CDx_y ,E2_CDx_y = func_vectorFiEi(L0_CDx_y ,L1_CDx_y ,L2_CDx_y ,K1_CDx_y ,K2_CDx_y ,gamma_N1,sigma_y,A) F1_CD_x_y, F2_CD_x_y, E1_CD_x_y,E2_CD_x_y = func_vectorFiEi(L0_CD_x_y,L1_CD_x_y,L2_CD_x_y,K1_CD_x_y,K2_CD_x_y,gamma_N1,sigma_y,A) # 第一、二阶段各个纤维弹簧单元中纤维长度与弹簧长度 ls1_PQxy ,ls2_PQxy ,lf1_PQxy ,lf2_PQxy = func_lslf(F1_PQxy ,F2_PQxy ,L1_PQxy ,L2_PQxy ,ls0_PQ,lf0_PQxy ,ks_PQ,E1,E2,gamma_N1,sigma_y,A) ls1_PQ_xy ,ls2_PQ_xy ,lf1_PQ_xy ,lf2_PQ_xy = func_lslf(F1_PQ_xy ,F2_PQ_xy ,L1_PQ_xy ,L2_PQ_xy ,ls0_PQ,lf0_PQ_xy ,ks_PQ,E1,E2,gamma_N1,sigma_y,A) ls1_PQx_y ,ls2_PQx_y ,lf1_PQx_y ,lf2_PQx_y = func_lslf(F1_PQx_y ,F2_PQx_y ,L1_PQx_y ,L2_PQx_y ,ls0_PQ,lf0_PQx_y ,ks_PQ,E1,E2,gamma_N1,sigma_y,A) ls1_PQ_x_y,ls2_PQ_x_y,lf1_PQ_x_y,lf2_PQ_x_y = func_lslf(F1_PQ_x_y,F2_PQ_x_y,L1_PQ_x_y,L2_PQ_x_y,ls0_PQ,lf0_PQ_x_y,ks_PQ,E1,E2,gamma_N1,sigma_y,A) ls1_CDxy ,ls2_CDxy ,lf1_CDxy ,lf2_CDxy = func_lslf(F1_CDxy ,F2_CDxy ,L1_CDxy ,L2_CDxy ,ls0_CD,lf0_CDxy ,ks_CD,E1,E2,gamma_N1,sigma_y,A) ls1_CD_xy ,ls2_CD_xy ,lf1_CD_xy ,lf2_CD_xy = func_lslf(F1_CD_xy ,F2_CD_xy ,L1_CD_xy ,L2_CD_xy ,ls0_CD,lf0_CD_xy ,ks_CD,E1,E2,gamma_N1,sigma_y,A) ls1_CDx_y ,ls2_CDx_y ,lf1_CDx_y ,lf2_CDx_y = func_lslf(F1_CDx_y ,F2_CDx_y ,L1_CDx_y ,L2_CDx_y ,ls0_CD,lf0_CDx_y ,ks_CD,E1,E2,gamma_N1,sigma_y,A) ls1_CD_x_y,ls2_CD_x_y,lf1_CD_x_y,lf2_CD_x_y = func_lslf(F1_CD_x_y,F2_CD_x_y,L1_CD_x_y,L2_CD_x_y,ls0_PQ,lf0_CD_x_y,ks_PQ,E1,E2,gamma_N1,sigma_y,A) H_net = z2 # 顶破高度 # 顶破时刻各个单元内力在加载方向的分量 F_PQx = np.sum(F2_PQxy *np.cos(chi_ang*Ang2_PQxy)) + np.sum(F2_PQxy *np.cos(chi_ang*Ang2_PQx_y)) F_PQ_x= np.sum(F2_PQ_xy*np.cos(chi_ang*Ang2_PQ_xy))+ np.sum(F2_PQ_xy*np.cos(chi_ang*Ang2_PQ_x_y)) F_CDy = np.sum(F2_CDxy *np.cos(chi_ang*Ang2_CDxy)) + np.sum(F2_CDxy *np.cos(chi_ang*Ang2_CD_xy)) F_CD_y= np.sum(F2_CDx_y*np.cos(chi_ang*Ang2_CDx_y))+ np.sum(F2_CDx_y*np.cos(chi_ang*Ang2_CD_x_y)) F_net = F_PQx + F_PQ_x + F_CDy + F_CD_y # 顶破力 # 顶破时刻各个单元消耗能量值 Exy = np.sum(E2_PQxy) + np.sum(E2_CDxy) E_xy = np.sum(E2_PQ_xy) + np.sum(E2_CD_xy) Ex_y =
np.sum(E2_PQx_y)
numpy.sum
import tensor.libtensor as _ts import pytest import numpy as np def test_matrix_f_init(): tensor = _ts.MatrixF(2, 2) assert tensor.shape() == [2, 2] assert tensor.data_size() == 4 def test_matrix_f_getitem(): tensor = _ts.MatrixF(2, 2) assert tensor[0, 0] == 0. assert tensor[0, 1] == 0. assert tensor[1, 0] == 0. assert tensor[1, 1] == 0. def test_matrix_f_setitem(): tensor = _ts.MatrixF(2, 2) assert tensor[1, 1] == 0. tensor[1, 1] = 1337. assert tensor[1, 1] == 1337. def test_tensor_from_numpy(): with pytest.raises(RuntimeError) as e: _ts.MatrixF(np.array([1, 2, 3])) # trying to assign a int array assert str(e.value) == "Incompatible buffer format!" array = np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) tensor = _ts.MatrixF(array) for i in range(tensor.shape()[0]): for j in range(tensor.shape()[1]): assert tensor[i, j] == array[i, j] def test_numpy_from_tensor(): tensor = _ts.MatrixF(5, 4) assert memoryview(tensor).shape == (5, 4) assert tensor[2, 3] == 0. tensor[2, 3] = 11. tensor[3, 2] = 7. assert tensor[2, 3] == 11. assert tensor[3, 2] == 7. array = np.array(tensor) assert array.shape == (5, 4) assert array[2, 3] == 11. assert array[3, 2] == 7. assert abs(array).sum() == 11 + 7 array[2, 3] = 5. assert array[2, 3] == 5. def test_cross_entropy_loss(): loss = _ts.CrossEntropyLoss() logits = _ts.MatrixF(np.random.randn(300, 3).astype(np.float32)) labels = _ts.VectorI(
np.random.randint(0, 2, (300,))
numpy.random.randint
import numpy as np import pandas as pd import torch from pathlib import Path from PIL import Image from wilds.datasets.wilds_dataset import WILDSDataset from wilds.common.grouper import CombinatorialGrouper from wilds.common.metrics.all_metrics import DetectionAccuracy SESSIONS = [ 'Arvalis_1', 'Arvalis_2', 'Arvalis_3', 'Arvalis_4', 'Arvalis_5', 'Arvalis_6', 'Arvalis_7', 'Arvalis_8', 'Arvalis_9', 'Arvalis_10', 'Arvalis_11', 'Arvalis_12', 'ETHZ_1', 'Inrae_1', 'NMBU_1', 'NMBU_2', 'Rres_1', 'ULiège-GxABT_1', 'Utokyo_1', 'Utokyo_2', 'Utokyo_3', 'Ukyoto_1', 'NAU_1', 'NAU_2', 'NAU_3', 'ARC_1', 'UQ_1', 'UQ_2', 'UQ_3', 'UQ_4', 'UQ_5', 'UQ_6', 'UQ_7', 'UQ_8', 'UQ_9', 'UQ_10', 'UQ_11', 'Terraref_1', 'Terraref_2', 'KSU_1', 'KSU_2', 'KSU_3', 'KSU_4', 'CIMMYT_1', 'CIMMYT_2', 'CIMMYT_3', 'Usask_1' ] COUNTRIES = [ 'Switzerland', 'UK', 'Belgium', 'Norway', 'France', 'Canada', 'US', 'Mexico', 'Japan', 'China', 'Australia', 'Sudan', ] LOCATIONS = [ 'Baima', 'Brookstead', 'Ciudad Obregon', 'Gatton', 'Gembloux', 'Gréoux', 'KSU', 'Kyoto', 'Maricopa, AZ', 'McAllister', 'Mons', 'NARO-Hokkaido', 'NARO-Tsukuba', 'NMBU', 'Rothamsted', 'Saskatchewan', 'Toulouse', 'Usask', 'VLB', 'VSC', 'Wad Medani', 'Eschikon' ] STAGES = [ 'Filling', 'Filling-Ripening', 'multiple', 'Post-flowering', 'Ripening', ] class GlobalWheatDataset(WILDSDataset): """ The GlobalWheat-WILDS wheat head localization dataset. This is a modified version of the original Global Wheat Head Dataset 2021. Supported `split_scheme`: - 'official' - 'official_with_subsampled_test' - 'test-to-test' - 'mixed-to-test' Input (x): 1024 x 1024 RGB images of wheat field canopy starting from anthesis (flowering) to ripening. Output (y): y is a n x 4-dimensional vector where each line represents a box coordinate (x_min, y_min, x_max, y_max) Metadata: Each image is annotated with the ID of the domain (session) it came from (integer from 0 to 46). Website: http://www.global-wheat.com/ Original publication: @article{david_global_2020, title = {Global {Wheat} {Head} {Detection} ({GWHD}) {Dataset}: {A} {Large} and {Diverse} {Dataset} of {High}-{Resolution} {RGB}-{Labelled} {Images} to {Develop} and {Benchmark} {Wheat} {Head} {Detection} {Methods}}, volume = {2020}, url = {https://doi.org/10.34133/2020/3521852}, doi = {10.34133/2020/3521852}, journal = {Plant Phenomics}, author = {<NAME> and Madec, Simon and Sadeghi-Tehran, Pouria and Aasen, Helge and Zheng, Bangyou and Liu, Shouyang and Kirchgessner, Norbert and Ishikawa, Goro and Nagasawa, Koichi and Badhon, <NAME>. and Pozniak, Curtis and <NAME>, Benoit and Hund, Andreas and Chapman, <NAME>. and Baret, Frédéric and Stavness, Ian and <NAME>}, month = Aug, year = {2020}, note = {Publisher: AAAS}, pages = {3521852}, } @misc{david2021global, title={Global Wheat Head Dataset 2021: more diversity to improve the benchmarking of wheat head localization methods}, author={<NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME> and <NAME>}, year={2021}, eprint={2105.07660}, archivePrefix={arXiv}, primaryClass={cs.CV} } License: This dataset is distributed under the MIT license. """ _dataset_name = 'globalwheat' _versions_dict = { '1.0': { 'download_url': 'https://worksheets.codalab.org/rest/bundles/0x443fbcb18eeb4f80b5ea4a9f77795168/contents/blob/', 'compressed_size': 10_286_120_960}, '1.1': { 'download_url': 'https://worksheets.codalab.org/rest/bundles/0x36e16907b7254571b708b725f8beae52/contents/blob/', 'compressed_size': 10_284_949_504}, } def __init__(self, version=None, root_dir='data', download=False, split_scheme='official'): self._version = version self._data_dir = self.initialize_data_dir(root_dir, download) self._original_resolution = (1024, 1024) self.root = Path(self.data_dir) self._is_detection = True self._is_classification = False self._y_size = None self._n_classes = 1 self._split_scheme = split_scheme self._split_dict = { 'train': 0, 'val': 1, 'test': 2, } self._split_names = { 'train': 'Train', 'val': 'Validation (OOD)', 'test':'Test (OOD)', } data_dfs = {} if split_scheme == "official": data_dfs['train'] = pd.read_csv(self.root / f'official_train.csv') data_dfs['val'] = pd.read_csv(self.root / f'official_val.csv') data_dfs['test'] = pd.read_csv(self.root / f'official_test.csv') data_dfs['id_val'] = pd.read_csv(self.root / f'fixed_train_val.csv') data_dfs['id_test'] = pd.read_csv(self.root / f'fixed_train_test.csv') self._split_dict = { 'train': 0, 'val': 1, 'test': 2, 'id_val': 3, 'id_test': 4, } self._split_names = { 'train': 'Train', 'val': 'Validation (OOD)', 'test':'Test (OOD)', 'id_val': 'Validation (ID)', 'id_test': 'Test (ID)' } elif split_scheme == "official_with_subsampled_test": data_dfs['train'] = pd.read_csv(self.root / f'official_train.csv') data_dfs['val'] = pd.read_csv(self.root / f'official_val.csv') data_dfs['test'] = pd.read_csv(self.root / f'fixed_test_test.csv') elif split_scheme == "test-to-test": data_dfs['train'] = pd.read_csv(self.root / f'fixed_test_train.csv') data_dfs['val'] = pd.read_csv(self.root / f'official_val.csv') data_dfs['test'] = pd.read_csv(self.root / f'fixed_test_test.csv') elif split_scheme == "mixed-to-test": data_dfs['train'] = pd.read_csv(self.root / f'mixed_train_train.csv') data_dfs['val'] = pd.read_csv(self.root / f'official_val.csv') data_dfs['test'] = pd.read_csv(self.root / f'mixed_train_test.csv') else: raise ValueError(f'Split scheme {self.split_scheme} not recognized') self._image_array = [] self._split_array, self._y_array, self._metadata_array = [], [], [] for split_name, split_idx in self._split_dict.items(): df = data_dfs[split_name] self._image_array.extend(list(df['image_name'].values)) boxes_string = list(df['BoxesString'].values) all_boxes = [GlobalWheatDataset._decode_string(box_string) for box_string in boxes_string] self._split_array.extend([split_idx] * len(all_boxes)) labels = [{ "boxes": torch.stack([ torch.tensor(box) for box in boxes ]), "labels": torch.tensor([1]*len(boxes)).long() } if len(boxes) > 0 else { "boxes": torch.empty(0,4), "labels": torch.empty(0,dtype=torch.long) } for boxes in all_boxes] self._y_array.extend(labels) self._metadata_array.extend([int(item) for item in df['domain'].values]) self._split_array = np.array(self._split_array) self._metadata_array = torch.tensor(self._metadata_array, dtype=torch.long).unsqueeze(1) self._metadata_array = torch.cat( (self._metadata_array, torch.zeros( (len(self._metadata_array), 3), dtype=torch.long)), dim=1) domain_df = pd.read_csv(self.root / 'metadata_domain.csv', sep=';') for session_idx, session_name in enumerate(SESSIONS): idx = pd.Index(domain_df['name']).get_loc(session_name) country = domain_df.loc[idx, 'country'] location = domain_df.loc[idx, 'location'] stage = domain_df.loc[idx, 'development_stage'] session_mask = (self._metadata_array[:, 0] == session_idx) self._metadata_array[session_mask, 1] = COUNTRIES.index(country) self._metadata_array[session_mask, 2] = LOCATIONS.index(location) self._metadata_array[session_mask, 3] = STAGES.index(stage) self._metadata_fields = ['session', 'country', 'location', 'stage'] self._metadata_map = { 'session': SESSIONS, 'country': COUNTRIES, 'location': LOCATIONS, 'stage': STAGES, } self._eval_grouper = CombinatorialGrouper( dataset=self, groupby_fields=['session']) self._metric = DetectionAccuracy() self._collate = GlobalWheatDataset._collate_fn super().__init__(root_dir, download, split_scheme) def get_input(self, idx): """ Returns x for a given idx. """ img_filename = self.root / "images" / self._image_array[idx] x = Image.open(img_filename) return x def eval(self, y_pred, y_true, metadata): """ The main evaluation metric, detection_acc_avg_dom, measures the simple average of the detection accuracies of each domain. """ results, results_str = self.standard_group_eval( self._metric, self._eval_grouper, y_pred, y_true, metadata) detection_accs = [] for k, v in results.items(): if k.startswith('detection_acc_session:'): d = k.split(':')[1] count = results[f'count_session:{d}'] if count > 0: detection_accs.append(v) detection_acc_avg_dom = np.array(detection_accs).mean() results['detection_acc_avg_dom'] = detection_acc_avg_dom results_str = f'Average detection_acc across session: {detection_acc_avg_dom:.3f}\n' + results_str return results, results_str @staticmethod def _decode_string(box_string): """ Helper method to decode each box_string in the BoxesString field of the data CSVs """ if box_string == "no_box": return
np.zeros((0,4))
numpy.zeros
import argparse import time import numpy as np import tensorflow as tf import socket import importlib import os import sys baseDir = os.path.dirname(os.path.abspath(__file__)) rootDir = os.path.dirname(baseDir) sys.path.append(baseDir) sys.path.append(os.path.join(rootDir, 'models')) sys.path.append(os.path.join(rootDir, 'utils')) import data_util parser = argparse.ArgumentParser() parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]') parser.add_argument('--model', default='SPH3D_shapenet_onehot', help='Model name [default: SPH3D_shapenet_onehot]') parser.add_argument('--config', default='shapenet_config', help='Model name [default: shapenet_config]') parser.add_argument('--log_dir', default='log_shapenet_onehot', help='Log dir [default: log_shapenet_onehot]') parser.add_argument('--max_epoch', type=int, default=501, help='Epoch to run [default: 501]') parser.add_argument('--batch_size', type=int, default=32, help='Batch Size during training [default: 32]') parser.add_argument('--model_name', default='model.ckpt', help='model checkpoint file path [default: model.ckpt]') FLAGS = parser.parse_args() BATCH_SIZE = FLAGS.batch_size MAX_EPOCH = FLAGS.max_epoch GPU_INDEX = FLAGS.gpu MODEL_FILE = os.path.join(rootDir, 'models', FLAGS.model+'.py') LOG_DIR = os.path.join(rootDir,FLAGS.log_dir) LOG_FOUT = open(os.path.join(LOG_DIR,'log_evaluate.txt'), 'a+') LOG_FOUT.write(str(FLAGS)+'\n') HOSTNAME = socket.gethostname() # import network module spec = importlib.util.spec_from_file_location('',os.path.join(LOG_DIR,FLAGS.model+'.py')) MODEL = importlib.util.module_from_spec(spec) spec.loader.exec_module(MODEL) # import network config spec = importlib.util.spec_from_file_location('',os.path.join(LOG_DIR,FLAGS.config+'.py')) net_config = importlib.util.module_from_spec(spec) spec.loader.exec_module(net_config) resultDir = 'shapenet_seg/results' if not os.path.exists(resultDir): os.mkdir(resultDir) NUM_POINT = net_config.num_input NUM_CLASSES = 50 INPUT_DIM = 3 dataDir = os.path.join(rootDir, 'data/shapenet_onehot') seg_info = [int(line.rstrip().split('\t')[-1]) for line in open(os.path.join(dataDir, 'class_info_all.txt'))] seg_info.append(NUM_CLASSES) shape_names = [line.rstrip().split('\t')[0] for line in open(os.path.join(dataDir, 'class_info_all.txt'))] trainlist = [line.rstrip() for line in open(os.path.join(dataDir, 'train_files.txt'))] testlist = [line.rstrip() for line in open(os.path.join(dataDir, 'test_files.txt'))] def log_string(out_str): LOG_FOUT.write(out_str+'\n') LOG_FOUT.flush() print(out_str) def placeholder_inputs(batch_size, num_point, normal=False): xyz_pl = tf.placeholder(tf.float32, shape=(batch_size, num_point, 3)) label_pl = tf.placeholder(tf.int32, shape=(batch_size, num_point)) cls_label_pl = tf.placeholder(tf.int32, shape=(batch_size)) return xyz_pl, label_pl, cls_label_pl def augment_fn1(batch_xyz): augment_xyz = batch_xyz augment_xyz = data_util.rotate_point_cloud(augment_xyz) augment_xyz = data_util.rotate_perturbation_point_cloud(augment_xyz) augment_xyz = data_util.random_scale_point_cloud(augment_xyz) augment_xyz = data_util.shift_point_cloud(augment_xyz) augment_xyz = data_util.jitter_point_cloud(augment_xyz) batch_xyz = augment_xyz return batch_xyz def augment_fn2(batch_xyz): augment_xyz = batch_xyz augment_xyz = data_util.rotate_perturbation_point_cloud(augment_xyz) augment_xyz = data_util.random_scale_point_cloud(augment_xyz) augment_xyz = data_util.shift_point_cloud(augment_xyz) augment_xyz = data_util.jitter_point_cloud(augment_xyz) batch_xyz = augment_xyz return batch_xyz def parse_fn(item): features = tf.parse_single_example( item, features={ 'xyz_raw': tf.FixedLenFeature([], dtype=tf.string), 'seg_label':tf.FixedLenFeature([], dtype=tf.string), 'cls_label': tf.FixedLenFeature([], dtype=tf.int64)}) xyz = tf.decode_raw(features['xyz_raw'], tf.float32) seg_label = tf.decode_raw(features['seg_label'], tf.int32) cls_label = tf.cast(features['cls_label'], tf.int32) xyz = tf.reshape(xyz,[-1,3]) seg_label = tf.reshape(seg_label, [-1, 1]) print(cls_label) cls_label = tf.cast([cls_label,cls_label,cls_label,cls_label], tf.float32) cls_label = tf.reshape(cls_label, [1, -1]) all_in_one = tf.concat((xyz, tf.cast(seg_label, tf.float32)), axis=-1) all_in_one = tf.concat((all_in_one, cls_label), axis=0) return all_in_one def input_fn(filelist, batch_size=16, buffer_size=10000): dataset = tf.data.TFRecordDataset(filelist) dataset = dataset.map(parse_fn, num_parallel_calls=4) dataset = dataset.padded_batch(batch_size, padded_shapes=(None, INPUT_DIM+1), padding_values=-1.0, drop_remainder=False) return dataset def evaluate(): # ===============================Prepare the Dataset=============================== testset = input_fn(testlist, BATCH_SIZE, 10000) test_iterator = testset.make_initializable_iterator() next_test_element = test_iterator.get_next() # =====================================The End===================================== with tf.device('/gpu:0'): # =================================Define the Graph================================ xyz_pl, label_pl, cls_label_pl = placeholder_inputs(BATCH_SIZE, NUM_POINT) training_pl = tf.placeholder(tf.bool, shape=()) # Get model and loss pred, end_points = MODEL.get_model(xyz_pl, cls_label_pl, NUM_CLASSES, training_pl, config=net_config) MODEL.get_loss(pred, label_pl, end_points) if net_config.weight_decay is not None: reg_loss = tf.multiply(tf.losses.get_regularization_loss(), net_config.weight_decay, name='reg_loss') tf.add_to_collection('losses', reg_loss) losses = tf.get_collection('losses') total_loss = tf.add_n(losses, name='total_loss') # Add ops to save and restore all the variables. saver = tf.train.Saver() # =====================================The End===================================== n = len([n.name for n in tf.get_default_graph().as_graph_def().node]) print("*****************The Graph has %d nodes*****************"%(n)) # =================================Start a Session================================ config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False with tf.Session(config=config) as sess: ops = {'xyz_pl': xyz_pl, 'label_pl': label_pl, 'cls_label_pl': cls_label_pl, 'training_pl': training_pl, 'pred': pred, 'loss': total_loss} saver.restore(sess, os.path.join(LOG_DIR, FLAGS.model_name)) sess.run(test_iterator.initializer) eval_one_epoch(sess, ops, next_test_element) # =====================================The End===================================== def eval_one_epoch(sess, ops, next_test_element): """ ops: dict mapping from string to tf ops """ is_training = False # Make sure batch data is of same size cur_batch_xyz = np.zeros((BATCH_SIZE, NUM_POINT, 3)) cur_batch_label = np.zeros((BATCH_SIZE, NUM_POINT), dtype=np.int32) cur_batch_cls_label = np.zeros((BATCH_SIZE), dtype=np.int32) total_correct = 0 total_seen = 0 loss_sum = 0 batch_idx = 0 total_seen_class = [0 for _ in range(NUM_CLASSES)] total_correct_class = [0 for _ in range(NUM_CLASSES)] shape_ious = {cat:[] for cat in shape_names} test_time = 0.0 while True: try: padded_all = sess.run(next_test_element) bsize = padded_all.shape[0] batch_xyz = np.zeros((bsize, NUM_POINT, INPUT_DIM)) batch_label = np.zeros((bsize, NUM_POINT), dtype=np.int32) batch_cls_label = np.zeros((bsize), dtype=np.int32) batch_gt_label = [] batch_pred_sum = [] batch_sample_count = [] batch_sample_index = [] batch_point_size = np.zeros((bsize,), np.int32) batch_point_covered = np.zeros((bsize,), np.int32) for b in range(bsize): loc = np.where(padded_all[b, :, -1]<0) if len(loc[0])==0: num = padded_all.shape[1] else: num = loc[0][0] if num==0: print(loc, padded_all[b, 0:10, :]) print('problem of eval') exit() num = num-1 batch_cls_label[b] = padded_all[b, num, 0] # print(padded_all[b, num-1:num+1, :]) batch_point_size[b] = num batch_gt_label.append(padded_all[b, 0:num, -1]) batch_pred_sum.append(
np.zeros((num, NUM_CLASSES), dtype=np.float32)
numpy.zeros
#!/usr/bin/env python """ statistic.py Description: statistic information for several runs printSTAT: input is a dictionary for results in several tests: result['FunEvalRuntimes']: a list for function evaluation runtime in each test result['Runtimes']: a list for total runtime in each test result['FunEvalNums']: a list for function evaluation numbers in each test result['optimalYs']: a list for optimal values obtained in each test FuncEvalRatio: the proportion of function evaluation in whole runtime """ import numpy as np __all__ = ['printSTAT'] def printSTAT(result): # result: dictionary # result[FunEvalRuntimes] # result[Runtimes] # result[FunEvalNums] # result[optimals] # result['optimalYs'], result['FuncEvalRuntimes'] = [], [] # result['Runtimes'], result['FuncEvalNums'] = [], [] print('$--------Statistic Information--------$\n') FuncEvalRatio = 100.0 * np.array(result['FuncEvalRuntimes']) / np.array(result['Runtimes']) print('Optimal Y : ---- Mean & Std: {0} & {1} \n'.format( np.array(result['optimalYs']).mean(), np.array(result['optimalYs']).std())) print('Runtime : ---- Mean & Std: {0} & {1} \n'.format( np.array(result['Runtimes']).mean(), np.array(result['Runtimes']).std())) print('FE Runtime : ---- Mean & Std: {0} & {1} \n'.format( np.array(result['FuncEvalRuntimes']).mean(), np.array(result['FuncEvalRuntimes']).std())) print('FE Ratio : ---- Mean & Std: {0} & {1} \n'.format( np.array(FuncEvalRatio).mean(),
np.array(FuncEvalRatio)
numpy.array
import os import pickle import numpy as np import torch.utils.data as torch_data from collections import defaultdict import datasets.kitti_common as kitti_common import utils.box_np_ops as box_np_ops import utils.geometry as geometry import utils.box_coder as box_coder_utils from datasets.target_assigner import TargetAssigner, AnchorGeneratorRange from config import cfg import imageio import copy class KittiStereoDataset(torch_data.Dataset): def __init__(self, root_path, class_names, split, training, logger=None): """ :param root_path: KITTI data path :param split: """ super().__init__() self.root_path = os.path.join(root_path, 'object') self.root_split_path = os.path.join(self.root_path, 'training' if split != 'test' else 'testing') self.class_names = class_names self.split = split self.training = training self.logger = logger self.img_w = cfg.INPUT_DATA.IMAGE_WIDTH self.img_h = cfg.INPUT_DATA.IMAGE_HEIGHT # read kitti infos, which is a list of dict with the following keys: # image_idx, velodyne_path, img_path, image_shape, calib matrices, annos (annotations) info_path = os.path.join(self.root_path, 'kitti_infos_%s.pkl' % split) with open(info_path, 'rb') as f: self.kitti_infos = pickle.load(f) # NOTE: we are not able to use sampler any more because we cannot edit stereo images for augmentation. # database sampler # self.db_sampler = None # if self.training and cfg.DB_SAMPLER.ENABLED: # # read db info, which is a dict for all categories (Car, Ped, Cyclist, etc.) # # For each category, for example 'Car', there is a list of dict with the following keys: # # name, path, image_idx, gt_idx, box3d_lidar, num_points_in_gt, difficulty, group_id, etc/ # # actually each sample represents an object subsest of lidar points # db_info_path = os.path.join(self.root_path, 'kitti_dbinfos_%s.pkl' % split) # with open(db_info_path, 'rb') as f: # db_infos = pickle.load(f) # self.db_sampler = DataBaseSampler(db_infos=db_infos, sampler_cfg=cfg.DB_SAMPLER, logger=logger) # NOTE: voxel generator is replaced by cost volume generator, which is inside the backbone network # voxel generator: convert point cloud into a voxel grid # voxel_generator_cfg = cfg.VOXEL_GENERATOR # self.voxel_generator = VoxelGenerator(voxel_size=voxel_generator_cfg.VOXEL_SIZE, # point_cloud_range=voxel_generator_cfg.POINT_CLOUD_RANGE, # max_num_points=voxel_generator_cfg.MAX_POINTS_PER_VOXEL, # max_voxels=20000) # a list of configs for each class, car, cyclist, pedestrian, etc. # each config consists of the following keys: # anchor_range: array [6] # matched_threshold, unmatched_threshold # sizes, rotations: (for each position xyz, generate anchors with different sizes and rotations) anchor_cfg = cfg.TARGET_ASSIGNER.ANCHOR_GENERATOR # anchor generators for each class: `generate anchors` with different x,y,z,sizes,rotations anchor_generators = [] for a_cfg in anchor_cfg: anchor_generator = AnchorGeneratorRange( anchor_ranges=a_cfg['anchor_range'], sizes=a_cfg['sizes'], rotations=a_cfg['rotations'], class_name=a_cfg['class_name'], match_threshold=a_cfg['matched_threshold'], unmatch_threshold=a_cfg['unmatched_threshold'] ) anchor_generators.append(anchor_generator) # box coder: compute the `regression target` for the outputs (according to the anchors) # usually it could be the residual values based on the anchor size and rotation # will be used in target_assigner self.box_coder = getattr(box_coder_utils, cfg.BOX_CODER)() # target assigner: assign anchors with corresponding gt boxes to obtain training labels and regression targets self.target_assigner = TargetAssigner( anchor_generators=anchor_generators, pos_fraction=cfg.TARGET_ASSIGNER.SAMPLE_POS_FRACTION, sample_size=cfg.TARGET_ASSIGNER.SAMPLE_SIZE, region_similarity_fn_name=cfg.TARGET_ASSIGNER.REGION_SIMILARITY_FN, box_coder=self.box_coder ) # the number of anchors should be D/dd/stride * W/dw/stride * 2 (angle), 7 # generate cached anchors # because anchors are fixed, generate beforehand to save computation cost # compute the output size factor of the 3D CNN out_size_factor = cfg.RPN_STAGE.RPN_HEAD.LAYER_STRIDES[0] / cfg.RPN_STAGE.RPN_HEAD.UPSAMPLE_STRIDES[0] # out_size_factor *= cfg.RPN_STAGE.COST_VOLUME_GENERATOR.DOWNSAMPLE_RATE_3D out_size_factor = int(out_size_factor) assert out_size_factor > 0 # the grid size of the initial cost volume grid_size = np.array(cfg.RPN_STAGE.COST_VOLUME.GRID_SIZE, dtype=np.int64) # the feature map size after the cost volume is processed by the 3D CNN feature_map_size = grid_size[:2] // out_size_factor feature_map_size = [*feature_map_size, 1][::-1] ret = self.target_assigner.generate_anchors(feature_map_size) anchors_dict = self.target_assigner.generate_anchors_dict(feature_map_size) anchors = ret["anchors"].reshape([-1, 7]) self.anchor_cache = { "anchors": anchors, "anchors_dict": anchors_dict, } def get_lidar(self, idx): lidar_file = os.path.join(self.root_split_path, 'velodyne', '%06d.bin' % idx) assert os.path.exists(lidar_file) points = np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4) points = points[:, :3] points = points[points[:, 0] > 0] return points def get_lidar_reduced(self, idx): lidar_file = os.path.join(self.root_split_path, 'velodyne_reduced', '%06d.bin' % idx) assert os.path.exists(lidar_file) return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4) def get_image(self, idx, left_or_right='left'): if left_or_right == 'left': tag = 'image_2' elif left_or_right == 'right': tag = 'image_3' else: raise ValueError('can only be left or right') img_file = os.path.join(self.root_split_path, tag, '%06d.png' % idx) assert os.path.exists(img_file), 'img_file: %s not exist' % img_file img = imageio.imread(img_file) img = img.astype(np.float32) / 255. img = img * 2 - 1 return img def get_depth_image(self, idx, left_or_right='left', img_shape=None): if left_or_right == 'left': tag = 'depth_2' elif left_or_right == 'right': tag = 'depth_3' else: raise ValueError('can only be left or right') img_file = os.path.join(self.root_split_path, tag, '%06d.png' % idx) if not os.path.exists(img_file): print('img_file: %s not exist' % img_file) return None img = imageio.imread(img_file) assert np.max(img) > 255 img = img.astype(np.float32) / 256. img[img == 0] = np.nan return img # def get_road_plane(self, idx): # plane_file = os.path.join(self.root_split_path, 'planes', '%06d.txt' % idx) # with open(plane_file, 'r') as f: # lines = f.readlines() # lines = [float(i) for i in lines[3].split()] # plane = np.asarray(lines) # # # Ensure normal is always facing up, this is in the rectified camera coordinate # if plane[1] > 0: # plane = -plane # # norm = np.linalg.norm(plane[0:3]) # plane = plane / norm # return planes def __len__(self): return len(self.kitti_infos) def __getitem__(self, index): info = self.kitti_infos[index] sample_idx = info['image_idx'] rect = info['calib/R0_rect'].astype(np.float32) Trv2c = info['calib/Tr_velo_to_cam'].astype(np.float32) P2 = info['calib/P2'].astype(np.float32) P3 = info['calib/P3'].astype(np.float32) points = self.get_lidar(sample_idx) left_img = self.get_image(sample_idx, 'left') right_img = self.get_image(sample_idx, 'right') left_depth = self.get_depth_image(sample_idx, 'left') right_depth = self.get_depth_image(sample_idx, 'right') if left_depth is not None: assert left_img.shape[:2] == left_depth.shape[:2] input_dict = { 'left_img': left_img, 'right_img': right_img, 'left_depth': left_depth, 'right_depth': right_depth, 'points': points, 'rect': rect, 'Trv2c': Trv2c, 'P2': P2, 'P3': P3, 'image_shape': np.array(info["img_shape"], dtype=np.int32), 'sample_idx': sample_idx, 'image_path': info['img_path'] } if 'annos' in info: annos = info['annos'] # we need other objects to avoid collision when sample annos = kitti_common.remove_dontcare(annos) loc = annos["location"] dims = annos["dimensions"] rots = annos["rotation_y"] gt_names = annos["name"] # print(gt_names, len(loc)) gt_boxes = np.concatenate([loc, dims, rots[..., np.newaxis]], axis=1).astype(np.float32) # gt_boxes = box_np_ops.box_camera_to_lidar(gt_boxes, rect, Trv2c) difficulty = annos["difficulty"] input_dict.update({ 'gt_boxes': gt_boxes, 'gt_names': gt_names, 'difficulty': difficulty, }) example = self.prepare_data(input_dict=input_dict) example["sample_idx"] = sample_idx if "anchors_mask" in example: example["anchors_mask"] = example["anchors_mask"].astype(np.uint8) return example def convert_points_to_grid(self, points): """ :param points [N, 3]: should be in camera coordinate (cam0 or cam2) :return: voxel_grid [N_h, N_w, N_d], inverse format of VOXEL_SIZE in config.py """ points = box_np_ops.camera_to_pseudo_lidar(points) # convert into D, W, H order (pseudo lidar coordinate) cost_volume_cfg = cfg.RPN_STAGE.COST_VOLUME self.voxel_size = np.array(cost_volume_cfg.VOXEL_SIZE) # size of each voxel self.point_cloud_range = np.array(cost_volume_cfg.POINT_CLOUD_RANGE) grid_size = (self.point_cloud_range[3:] - self.point_cloud_range[:3]) / self.voxel_size self.grid_size = np.round(grid_size).astype(np.int64) # generate voxel centers for cost volume resampling voxel_grid = np.zeros(self.grid_size, dtype=np.float32) # in D, W, H order voxel_ids = np.round((points - self.point_cloud_range[:3]) / self.voxel_size).astype(np.int64) valid = np.logical_and(np.all(voxel_ids >= 0, axis=1), np.all(voxel_ids < self.grid_size, axis=1)) voxel_ids = voxel_ids[valid, :] # print(self.grid_size, voxel_ids.min(0), voxel_ids.max(0)) np.add.at(voxel_grid, (voxel_ids[:, 0], voxel_ids[:, 1], voxel_ids[:, 2]), 1) voxel_grid = np.transpose(voxel_grid, [2, 1, 0]) return voxel_grid def convert_points_to_depth_map(self, points, K): assert K.shape == (3, 3) depth = points[:, 2:3] uv = points @ K.T uv = uv[:, :2] / uv[:, 2:3] # uv -= 1 # use minus 1 to get the exact same value as KITTI matlab code # TODO: do not fix the size, use configs or input_dict["image_shape"] depth_map = np.zeros([self.img_h, self.img_w], dtype=np.float32) depth_map_shape = np.array(list(depth_map.shape)[::-1]) valid = np.logical_and(np.all(uv > 0, 1), np.all(uv < depth_map_shape - 1, 1)) valid = np.logical_and(valid, depth[:, 0] > 0) uv = uv[valid] depth = depth[valid] u, v, depth = uv[:, 0], uv[:, 1], depth[:, 0] depth_map[...] = 10000. # set to a large value np.minimum.at(depth_map, (np.floor(v).astype(np.uint32), np.floor(u).astype(np.uint32)), depth) np.minimum.at(depth_map, (np.ceil(v).astype(np.uint32), np.floor(u).astype(np.uint32)), depth) np.minimum.at(depth_map, (
np.floor(v)
numpy.floor
import os from src.data_management.New_DataSplitter_leave_k_out import New_DataSplitter_leave_k_out from src.data_management.RecSys2019Reader import RecSys2019Reader from src.data_management.RecSys2019Reader_utils import merge_UCM from src.data_management.data_preprocessing import apply_feature_engineering_ICM, apply_filtering_ICM, \ apply_transformation_ICM, apply_discretization_ICM, build_ICM_all_from_dict, apply_feature_engineering_UCM, \ apply_transformation_UCM, apply_discretization_UCM, build_UCM_all_from_dict, apply_imputation_ICM, \ apply_imputation_UCM, apply_feature_entropy_UCM, apply_advanced_discretization_ICM import scipy.sparse as sps import numpy as np from src.utils.general_utility_functions import get_project_root_path # -------- COLD DATA MATRICES ALL -------- def read_URM_cold_all(path="../data/data_train.csv"): """ :return: all the user rating matrix, in csr format """ import scipy.sparse as sps import numpy as np import pandas as pd # Reading data df_original = pd.read_csv(path) user_id_list = df_original['row'].values item_id_list = df_original['col'].values rating_list = np.ones(len(user_id_list)) # Creating URM URM_all = sps.coo_matrix((rating_list, (user_id_list, item_id_list))) URM_all = URM_all.tocsr() return URM_all def read_UCM_cold_all(num_users, root_path="../data/"): """ :return: all the UCM in csr format """ import scipy.sparse as sps import numpy as np import pandas as pd import os # Reading age data df_age = pd.read_csv(os.path.join(root_path, "data_UCM_age.csv")) user_id_list = df_age['row'].values age_id_list = df_age['col'].values UCM_age = sps.coo_matrix((np.ones(len(user_id_list)), (user_id_list, age_id_list)), shape=(num_users, np.max(age_id_list) + 1)) # Reading region data df_region = pd.read_csv(os.path.join(root_path, "data_UCM_region.csv")) user_id_list = df_region['row'].values region_id_list = df_region['col'].values UCM_region = sps.coo_matrix((np.ones(len(user_id_list)), (user_id_list, region_id_list)), shape=(num_users, np.max(region_id_list) + 1)) # Merge UCMs UCM_all, _ = merge_UCM(UCM_age, UCM_region, {}, {}) UCM_all = UCM_all.tocsr() return UCM_all def read_UCM_cold_all_with_user_act(num_users, root_path="../data/"): """ :return: all the UCM in csr format """ import scipy.sparse as sps import numpy as np import pandas as pd import os # Reading age data df_age = pd.read_csv(os.path.join(root_path, "data_UCM_age.csv")) user_id_list = df_age['row'].values age_id_list = df_age['col'].values UCM_age = sps.coo_matrix((np.ones(len(user_id_list)), (user_id_list, age_id_list)), shape=(num_users, np.max(age_id_list) + 1)) # Reading region data df_region = pd.read_csv(os.path.join(root_path, "data_UCM_region.csv")) user_id_list = df_region['row'].values region_id_list = df_region['col'].values UCM_region = sps.coo_matrix((np.ones(len(user_id_list)), (user_id_list, region_id_list)), shape=(num_users, np.max(region_id_list) + 1)) # Reading user_act data from URM df_original = pd.read_csv(os.path.join(root_path, "data_train.csv")) user_act = df_original.groupby(by='row')['data'].sum() user_act = (user_act - 0) / (user_act.max() - 0) user_id_list = user_act.index feature_list = [0] * len(user_id_list) data_list = user_act.values.astype(np.float32) UCM_user_act = sps.coo_matrix((data_list, (user_id_list, feature_list)), shape=(num_users, 1)) # Create UCM_all_dict UCM_all_dict = {"UCM_age": UCM_age, "UCM_region": UCM_region, "UCM_user_act": UCM_user_act} UCM_all_dict = apply_transformation_UCM(UCM_all_dict, UCM_name_to_transform_mapper={"UCM_user_act": np.log1p}) UCM_all_dict = apply_discretization_UCM(UCM_all_dict, UCM_name_to_bins_mapper={"UCM_user_act": 50}) # Merge UCMs UCM_all = build_UCM_all_from_dict(UCM_all_dict) return UCM_all # -------- GET ITEM CONTENT MATRIX -------- def get_ICM_all(reader: RecSys2019Reader): """ It returns all the ICM_all after applying feature engineering :param reader: data splitter :return: return ICM_all """ URM_all = reader.get_URM_all() UCM_all_dict = reader.get_loaded_UCM_dict() ICM_all_dict = reader.get_loaded_ICM_dict() ICM_all_dict.pop("ICM_all") ICM_all_dict = apply_feature_engineering_ICM(ICM_all_dict, URM_all, UCM_all_dict, ICM_names_to_count=["ICM_sub_class"], UCM_names_to_list=["UCM_age"]) ICM_all_dict = apply_filtering_ICM(ICM_all_dict, ICM_name_to_filter_mapper={"ICM_asset": lambda x: x < np.quantile(x, q=0.75) + 0.72 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25)), "ICM_price": lambda x: x < np.quantile(x, q=0.75) + 4 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25))}) ICM_all_dict = apply_transformation_ICM(ICM_all_dict, ICM_name_to_transform_mapper={"ICM_asset": lambda x: np.log1p(1 / x), "ICM_price": lambda x: np.log1p(1 / x), "ICM_item_pop": np.log1p, "ICM_sub_class_count": np.log1p, "ICM_age": lambda x: x ** (1 / 2.5)}) ICM_all_dict = apply_discretization_ICM(ICM_all_dict, ICM_name_to_bins_mapper={"ICM_asset": 200, "ICM_price": 200, "ICM_item_pop": 50, "ICM_sub_class_count": 50}) ICM_all = build_ICM_all_from_dict(ICM_all_dict) return ICM_all def get_ICM_all_new(reader: RecSys2019Reader): """ It returns all the ICM_all after applying feature engineering :param reader: data splitter :return: return ICM_all """ ICM_all_dict = reader.get_loaded_ICM_dict() ICM_all_dict.pop("ICM_all") ICM_all_dict = apply_filtering_ICM(ICM_all_dict, ICM_name_to_filter_mapper={"ICM_asset": lambda x: x < np.quantile(x, q=0.75) + 0.72 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25)), "ICM_price": lambda x: x < np.quantile(x, q=0.75) + 4 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25))}) # Apply useful transformation ICM_all_dict = apply_transformation_ICM(ICM_all_dict, ICM_name_to_transform_mapper={"ICM_asset": lambda x: np.log1p(1 / x), "ICM_price": lambda x: np.log1p(1 / x), "ICM_item_pop": np.log1p}) ICM_all_dict = apply_discretization_ICM(ICM_all_dict, ICM_name_to_bins_mapper={"ICM_asset": 200, "ICM_price": 200, "ICM_item_pop": 50}) # Apply feature weighting ICM_all_dict = apply_transformation_ICM(ICM_all_dict, ICM_name_to_transform_mapper={"ICM_price": lambda x: x * 1.8474248499810804, "ICM_asset": lambda x: x * 1.2232716972721878, "ICM_sub_class": lambda x: x * 1.662671860026709, "ICM_item_pop": lambda x: x * 0.886528360392298}) ICM_all = build_ICM_all_from_dict(ICM_all_dict) return ICM_all def get_ICM_train(reader: New_DataSplitter_leave_k_out): """ It returns all the ICM_train_all after applying feature engineering. This preprocessing is used on new_best_models file :param reader: data splitter :return: return ICM_train_all """ URM_train, _ = reader.get_holdout_split() UCM_all_dict = reader.get_loaded_UCM_dict() ICM_all_dict = reader.get_loaded_ICM_dict() ICM_all_dict.pop("ICM_all") ICM_all_dict = apply_feature_engineering_ICM(ICM_all_dict, URM_train, UCM_all_dict, ICM_names_to_count=["ICM_sub_class"], UCM_names_to_list=["UCM_age"]) ICM_all_dict = apply_filtering_ICM(ICM_all_dict, ICM_name_to_filter_mapper={"ICM_asset": lambda x: x < np.quantile(x, q=0.75) + 0.72 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25)), "ICM_price": lambda x: x < np.quantile(x, q=0.75) + 4 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25))}) ICM_all_dict = apply_transformation_ICM(ICM_all_dict, ICM_name_to_transform_mapper={"ICM_asset": lambda x: np.log1p(1 / x), "ICM_price": lambda x: np.log1p(1 / x), "ICM_item_pop": np.log1p, "ICM_sub_class_count": np.log1p, "ICM_age": lambda x: x ** (1 / 2.5)}) ICM_all_dict = apply_discretization_ICM(ICM_all_dict, ICM_name_to_bins_mapper={"ICM_asset": 200, "ICM_price": 200, "ICM_item_pop": 50, "ICM_sub_class_count": 50}) ICM_all = build_ICM_all_from_dict(ICM_all_dict) return ICM_all def get_ICM_train_new(reader: New_DataSplitter_leave_k_out): """ It returns all the ICM_train_all after applying feature engineering. :param reader: data splitter :return: return ICM_train_all """ ICM_all_dict = reader.get_loaded_ICM_dict() ICM_all_dict.pop("ICM_all") ICM_all_dict = apply_filtering_ICM(ICM_all_dict, ICM_name_to_filter_mapper={"ICM_asset": lambda x: x < np.quantile(x, q=0.75) + 0.72 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25)), "ICM_price": lambda x: x < np.quantile(x, q=0.75) + 4 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25))}) # Apply useful transformation ICM_all_dict = apply_transformation_ICM(ICM_all_dict, ICM_name_to_transform_mapper={"ICM_asset": lambda x: np.log1p(1 / x), "ICM_price": lambda x: np.log1p(1 / x), "ICM_item_pop": np.log1p}) ICM_all_dict = apply_discretization_ICM(ICM_all_dict, ICM_name_to_bins_mapper={"ICM_asset": 200, "ICM_price": 200, "ICM_item_pop": 50}) # Apply feature weighting ICM_all_dict = apply_transformation_ICM(ICM_all_dict, ICM_name_to_transform_mapper={"ICM_price": lambda x: x * 1.8474248499810804, "ICM_asset": lambda x: x * 1.2232716972721878, "ICM_sub_class": lambda x: x * 1.662671860026709, "ICM_item_pop": lambda x: x * 0.886528360392298}) ICM_all = None item_feature_to_range_mapper = {} last_range = 0 for idx, ICM_key_value in enumerate(ICM_all_dict.items()): ICM_name, ICM_object = ICM_key_value if idx == 0: ICM_all = ICM_object else: ICM_all = sps.hstack([ICM_all, ICM_object], format="csr") item_feature_to_range_mapper[ICM_name] = (last_range, last_range + ICM_object.shape[1]) last_range = last_range + ICM_object.shape[1] return ICM_all, item_feature_to_range_mapper # -------- GET USER CONTENT MATRIX -------- def get_UCM_all(reader: RecSys2019Reader): URM_all = reader.get_URM_all() UCM_all_dict = reader.get_loaded_UCM_dict() ICM_dict = reader.get_loaded_ICM_dict() UCM_all_dict = apply_feature_engineering_UCM(UCM_all_dict, URM_all, ICM_dict, ICM_names_to_UCM=["ICM_sub_class"]) # These are useful feature weighting for UserCBF_CF_Warm UCM_all_dict = apply_transformation_UCM(UCM_all_dict, UCM_name_to_transform_mapper={"UCM_sub_class": lambda x: x / 2, "UCM_user_act": np.log1p}) UCM_all_dict = apply_discretization_UCM(UCM_all_dict, UCM_name_to_bins_mapper={"UCM_user_act": 50}) UCM_all = build_UCM_all_from_dict(UCM_all_dict) return UCM_all def get_UCM_all_new(reader: RecSys2019Reader): URM_all = reader.get_URM_all() UCM_all_dict = reader.get_loaded_UCM_dict() ICM_dict = reader.get_loaded_ICM_dict() # Preprocess ICM ICM_dict.pop("ICM_all") ICM_dict = apply_feature_engineering_ICM(ICM_dict, URM_all, UCM_all_dict, ICM_names_to_count=["ICM_sub_class"], UCM_names_to_list=["UCM_age"]) ICM_dict = apply_filtering_ICM(ICM_dict, ICM_name_to_filter_mapper={"ICM_asset": lambda x: x < np.quantile(x, q=0.75) + 0.72 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25)), "ICM_price": lambda x: x < np.quantile(x, q=0.75) + 4 * (np.quantile(x, q=0.75) - np.quantile(x, q=0.25))}) ICM_dict = apply_transformation_ICM(ICM_dict, ICM_name_to_transform_mapper={"ICM_asset": lambda x: np.log1p(1 / x), "ICM_price": lambda x: np.log1p(1 / x), "ICM_item_pop": np.log1p, "ICM_sub_class_count": np.log1p, "ICM_age": lambda x: x ** (1 / 2.5)}) ICM_dict = apply_discretization_ICM(ICM_dict, ICM_name_to_bins_mapper={"ICM_asset": 200, "ICM_price": 200, "ICM_item_pop": 50, "ICM_sub_class_count": 50}) # Preprocess UCM UCM_all_dict = apply_feature_engineering_UCM(UCM_all_dict, URM_all, ICM_dict, ICM_names_to_UCM=["ICM_sub_class", "ICM_item_pop"]) UCM_all_dict = apply_feature_entropy_UCM(UCM_all_dict, UCM_names_to_entropy=["UCM_sub_class"]) # Apply useful transformation UCM_all_dict = apply_transformation_UCM(UCM_all_dict, UCM_name_to_transform_mapper={"UCM_user_act": np.log1p}) UCM_all_dict = apply_discretization_UCM(UCM_all_dict, UCM_name_to_bins_mapper={"UCM_user_act": 50, "UCM_sub_class_entropy": 20}) UCM_all = build_UCM_all_from_dict(UCM_all_dict) return UCM_all def get_UCM_train(reader: New_DataSplitter_leave_k_out): """ It returns all the UCM_all after applying feature engineering. This preprocessing is used on new_best_models file :param reader: data splitter :return: return UCM_all """ URM_train, _ = reader.get_holdout_split() UCM_all_dict = reader.get_loaded_UCM_dict() ICM_dict = reader.get_loaded_ICM_dict() UCM_all_dict = apply_feature_engineering_UCM(UCM_all_dict, URM_train, ICM_dict, ICM_names_to_UCM=["ICM_sub_class"]) # These are useful feature weighting for UserCBF_CF_Warm UCM_all_dict = apply_transformation_UCM(UCM_all_dict, UCM_name_to_transform_mapper={"UCM_sub_class": lambda x: x / 2, "UCM_user_act": np.log1p}) UCM_all_dict = apply_discretization_UCM(UCM_all_dict, UCM_name_to_bins_mapper={"UCM_user_act": 50}) UCM_all = build_UCM_all_from_dict(UCM_all_dict) return UCM_all def get_UCM_train_new(reader: New_DataSplitter_leave_k_out): URM_train, _ = reader.get_holdout_split() UCM_all_dict = reader.get_loaded_UCM_dict() ICM_dict = reader.get_loaded_ICM_dict() # Preprocess ICM ICM_dict.pop("ICM_all") ICM_dict = apply_feature_engineering_ICM(ICM_dict, URM_train, UCM_all_dict, ICM_names_to_count=["ICM_sub_class"], UCM_names_to_list=["UCM_age"]) ICM_dict = apply_filtering_ICM(ICM_dict, ICM_name_to_filter_mapper={"ICM_asset": lambda x: x <
np.quantile(x, q=0.75)
numpy.quantile
import numpy as np import os import random from utility import * import tensorflow as tf def generate_batch_skip_gram(data, batch_size, num_skips): ''' Batch generator for Skip-gram ''' data_index = 0 assert batch_size % num_skips == 0 batch = np.ndarray(shape=(batch_size), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) while True: for i in range(batch_size // num_skips): span = len(data[data_index]) # target label at the center of the buffer label_index = random.randint(0, span - 1) singe_data = data[data_index] targets_to_avoid = [label_index] target = label_index for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) batch[i * num_skips + j] = singe_data[label_index] labels[i * num_skips + j, 0] = singe_data[target] data_index = (data_index + 1) % len(data) yield batch, labels def generate_batch_cbow(data, batch_size, num_skips): ''' Batch generator for CBOW (Continuous Bag of Words). ''' data_index = 0 batch = np.ndarray(shape=(batch_size, num_skips), dtype=np.int32) labels = np.ndarray(shape=(batch_size, 1), dtype=np.int32) while True: for i in range(batch_size): span = len(data[data_index]) label_index = random.randint(0, span - 1) singe_data = data[data_index] labels[i, 0] = singe_data[label_index] targets_to_avoid = [label_index] target = label_index sample = [] for j in range(num_skips): while target in targets_to_avoid: target = random.randint(0, span - 1) targets_to_avoid.append(target) sample.append(singe_data[target]) batch[i] = sample data_index = (data_index + 1) % len(data) yield batch, labels class Options(object): """Options used by the model.""" def __init__(self): # Model options. # Embedding dimension. self.embedding_size = 32 # The initial learning rate. self.learning_rate = 1. # Number of epochs to train. After these many epochs, the learning # rate decays linearly to zero and the training stops. self.epochs_to_train = 100 # Number of examples for one training step. self.batch_size = 128 # Number of class self.num_classes = 2 self.sequence_length = 25 self.interaction_times = 3 # self.k = self.sequence_length self.vocabulary_size = 10000000 # Where to write out summaries. self.save_path = './' self.dataset = 'ipinyou' self.eval_data = './data/' + self.dataset + '/questions.txt' self.architecture = 'skip-gram' self.num_skips = 4 self.field_cate_indices_path = \ './data/ipinyou/field_cates_index_not_aligned.csv' # for negative sampling self.valid_size = 16 self.valid_window = 100 self.valid_examples = np.random.choice( self.valid_window, self.valid_size, replace=False) self.num_sampled = 64 # Number of negative examples to sample. class Cat2Vec(object): """ Base Class for Cat2Vec Based on tensorflow/embedding/word2vec.py """ def __init__(self, options, session, id2cate, cate2id): self._options = options self._cate2id = cate2id self._id2cate = id2cate self._session = session self.fields_index = None # self.embeddings = None # self._read_analogies() self.build_graph() self.build_eval_graph() def _read_analogies(self): """Reads through the analogy question file. Returns: questions: a [n, 4] numpy array containing the analogy question's word ids. questions_skipped: questions skipped due to unknown words. """ questions = [] questions_skipped = 0 with open(self._options.eval_data, "rb") as analogy_f: for line in analogy_f: if line.startswith(":"): # Skip comments. continue words = line.strip().lower().split(" ") # print words ids = [self._cate2id.get(w.strip()) for w in words] # print ids if None in ids or len(ids) != 4: questions_skipped += 1 else: questions.append(np.array(ids)) print("Eval analogy file: ", self._options.eval_data) print("Questions: ", len(questions)) print("Skipped: ", questions_skipped) questions =
np.array(questions, dtype=np.int32)
numpy.array
import random import math import numpy as np class DrawTicTacToe: # class to represent a game # scale parameters and board initializer def __init__(self, scale, combo): self.scale = scale self.combo = combo self.board = [[" " for x in range(self.scale)] for y in range(self.scale)] self.game_winner = '' print(f'New game created with a scale of {scale} and a combo of {combo}.') # function to display the board of the game def printboard(self): [[print(self.board[x][y], end=' ') if y < self.scale - 1 else print(self.board[x][y]) for y in range(self.scale)] for x in range(self.scale)] # function to place a stone at a given positioon def move(self, x, y, player): self.board[x][y] = player # function to perform generalized row check def check_general_rows(self, rows, player): current_player = " " for row in rows: for index, place in enumerate(row): check_space = [] begin = 0 while len(check_space) < self.combo: if index + begin <= len(row) - 1: if row[index + begin] == player: check_space.append(row[index + begin]) begin = begin + 1 else: break else: break if len(check_space) == self.combo: current_player = player return current_player return current_player # function to see if we have a winner def whowins(self): for player in ["X", "O"]: # check horizontal current_player1 = self.check_general_rows(self.board, player) if current_player1 == 'X': return "X" elif current_player1 == 'O': return "O" # check vertical rotated = zip(*self.board[::-1]) current_player2 = self.check_general_rows(rotated, player) if current_player2 == 'X': return "X" elif current_player2 == 'O': return "O" matrix =
np.array(self.board)
numpy.array
# Copyright (c) 2018 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. import numpy as np import toast.timing as timing class GlitchFlagger(): def __init__(self, fwhm=5, threshold=4.0, fsample=180.3737, twice=False, wkernel=3): """ Instantiate a glitch flagging object. Parameters: fwhm (float): Beam width [arc minutes] threshold (float): glitch detection limit in units of the filtered signal RMS twice(bool): Run the glitch detection on regular and convolved TOD """ self.fwhm = fwhm wbin = self.fwhm self.order = 6 # order of signal model across 3 bins nbin_min = np.int(2 * np.pi / np.radians(wbin / 60)) nbin = 2 while nbin < nbin_min: nbin *= 2 wbin = 2 * np.pi / nbin self.nbin = nbin self.wbin = wbin self.threshold = threshold self.fsample = fsample self.twice = twice self.wkernel = wkernel def flag_glitches(self, signal_in, flag_in, phase=None, dark=False, pntflag=None): """ Find and flag glitches. """ if not dark: if phase is None: raise RuntimeError('Optical detectors must provide phase') if pntflag is None: raise RuntimeError( 'Optical detectors must provide pointing flags') signal_in = signal_in.copy() self.subtract_trend(signal_in) flag = flag_in.copy() if dark: self.flag_outliers(signal_in, flag) flag_intense = np.zeros_like(flag) else: # POD = phase-ordered data ind = np.argsort(phase) reverse_ind = np.argsort(ind) POD_signal_in = signal_in[ind] POD_signal = POD_signal_in.copy() POD_flag = flag[ind] POD_pntflag = pntflag[ind] POD_phase = phase[ind] bin_lim = np.arange(self.nbin) * self.wbin bin_ind = np.searchsorted(POD_phase, bin_lim) bin_ranges = [ (bin_ind[i], bin_ind[i + 1]) for i in range(self.nbin - 1)] bin_ranges.append((bin_ind[-1], POD_phase.size)) # Identify outliers in each phase bin POD_signal, POD_flag, bin_rms = self.flag_outliers_by_phase( POD_signal, POD_phase, POD_flag, POD_pntflag, bin_ranges) POD_signal_estimate = POD_signal_in - POD_signal POD_flag_intense = self.get_intense( bin_ranges, bin_rms, POD_signal, POD_signal_estimate, POD_flag) if self.twice: POD_signal2 = np.convolve(signal_in, [.25, .5, .25], mode='same')[ind] # POD_signal2_in = POD_signal2.copy() flag2_in = POD_flag[reverse_ind] flag2_in = np.convolve(flag2_in, np.ones(3), mode='same') != 0 POD_flag2_in = flag2_in[ind] POD_flag2 = POD_flag2_in.copy() POD_signal2, POD_flag2, bin_rms = self.flag_outliers_by_phase( POD_signal2, POD_phase, POD_flag2, POD_pntflag, bin_ranges) """ # DEBUG begin import matplotlib.pyplot as plt import pdb plt.figure() good = flag_in[ind] + POD_pntflag == 0 plt.plot(POD_phase[good] / self.wbin, POD_signal_in[good], '.', label='input') good = POD_flag + POD_pntflag == 0 plt.plot(POD_phase[good] / self.wbin, POD_signal_in[good], label='unflagged') plt.plot(POD_phase[good] / self.wbin, POD_signal_estimate[good], label='model') good[POD_flag_intense == 0] = False plt.plot(POD_phase[good] / self.wbin, POD_signal_in[good], '.', label='unflagged intense') # plt.plot(POD_phase[good] / self.wbin, POD_signal[good], '.', # label='unflagged - model') if self.twice: plt.legend(loc='best') plt.figure() POD_signal_estimate2 = POD_signal2_in - POD_signal2 good = POD_flag2_in + POD_pntflag == 0 plt.plot(POD_phase[good] / self.wbin, POD_signal2_in[good], '.', label='input') good = POD_flag2 + POD_pntflag == 0 plt.plot(POD_phase[good] / self.wbin, POD_signal2_in[good], label='unflagged') plt.plot(POD_phase[good] / self.wbin, POD_signal_estimate2[good], label='model') good[POD_flag_intense == 0] = False plt.plot(POD_phase[good] / self.wbin, POD_signal2_in[good], '.', label='unflagged intense') # plt.plot(POD_phase[good] / self.wbin, POD_signal2[good], '.', # label='unflagged - model') plt.legend(loc='best') plt.show() pdb.set_trace() # DEBUG end """ if self.twice: POD_flag2[POD_flag2_in] = False POD_flag[POD_flag2] = True flag = POD_flag[reverse_ind] # flag = POD_flag[reverse_ind] flag_intense = POD_flag_intense[reverse_ind] signal_estimate = POD_signal_estimate[reverse_ind] if self.wkernel: # Extend the flagging flag[flag_in] = False flag = np.convolve(flag, np.ones(self.wkernel), mode='same') != 0 flag = np.roll(flag, self.wkernel // 2 - 1) flag[flag_in] = True return flag, flag_intense, signal_estimate def subtract_trend(self, signal): """ subtract a simple trend """ istart = 0 step = np.int(60 * self.fsample) while istart < signal.size: istop = istart + step if istop + step > signal.size: istop += step ind = slice(istart, istop) offset = np.median(signal[ind]) signal[ind] -= offset istart = istop return def flag_outliers(self, signal, flag): """ Find outliers in offset-removed signal """ for _ in range(10): offset = np.median(signal[flag == 0]) signal -= offset rms = np.mean(signal[flag == 0] ** 2) ** .5 bad = np.abs(signal) > self.threshold * rms bad[flag != 0] = False nbad = np.sum(bad) if nbad == 0: break flag[bad] = True return def _get_bin(self, ibin, signal, phase, flag, pntflag, bin_ranges): """ Return signal in the current bin with margins """ nbin = len(bin_ranges) signals = [] phases = [] flags = [] pntflags = [] # previous bin if ibin == 0: bin_start, bin_stop = bin_ranges[-1] else: bin_start, bin_stop = bin_ranges[ibin - 1] ind = slice(bin_start, bin_stop) signals.append(signal[ind]) if ibin == 0: phases.append(phase[ind] - 2 * np.pi) else: phases.append(phase[ind]) flags.append(flag[ind]) pntflags.append(pntflag[ind]) # current bin bin_start, bin_stop = bin_ranges[ibin] ind = slice(bin_start, bin_stop) signals.append(signal[ind]) phases.append(phase[ind]) flags.append(flag[ind]) pntflags.append(pntflag[ind]) # next bin if ibin < nbin - 1: bin_start, bin_stop = bin_ranges[ibin + 1] else: bin_start, bin_stop = bin_ranges[0] ind = slice(bin_start, bin_stop) signals.append(signal[ind]) if ibin < nbin - 1: phases.append(phase[ind]) else: phases.append(phase[ind] + 2 * np.pi) flags.append(flag[ind]) pntflags.append(pntflag[ind]) center = slice(signals[0].size, signals[0].size + signals[1].size) # concatenate signals = np.hstack(signals) phases = np.hstack(phases) flags = np.hstack(flags) pntflags = np.hstack(pntflags) return signals, phases, flags, pntflags, center def robust_rms(self, x): """ Measure the sample variance using the interquartile range (IQR) method """ if len(x) < 4: return np.std(x) xsorted = np.sort(x) nx = x.size i1 = np.int(0.25 * nx) i2 = np.int(0.75 * nx) iqr = xsorted[i2] - xsorted[i1] rms = iqr * 0.7412 return rms def flag_outliers_by_phase(self, signal, phase, flag, pntflag, bin_ranges): """ Find outliers in the de-trended signal and derive a signal estimate. """ bin_rms = [] nbin = len(bin_ranges) signal_out = np.zeros_like(signal) flag_out = np.zeros_like(flag) for ibin in range(nbin): bin_start, bin_stop = bin_ranges[ibin] ind = slice(bin_start, bin_stop) sig, phse, flg, pntflg, center = self._get_bin( ibin, signal, phase, flag, pntflag, bin_ranges) rms = 0 for iiter in range(10): good_ind = flg + pntflg == 0 ngood = np.sum(good_ind) if ngood < 10: # This bin is beyond hope flg[:] = True break if iiter < 2: # Signal model is an offset offset = np.median(sig[good_ind]) else: # Signal model is a polynomial offset = self.fit_poly(phse, sig, good_ind) sig -= offset rms = self.robust_rms(sig[good_ind]) bad = np.abs(sig) > self.threshold * rms bad[flg != 0] = False nbad = np.sum(bad) if nbad == 0 and iiter > 2: break flg[bad] = True signal_out[ind] = sig[center] flag_out[ind] = flg[center] bin_rms.append(rms) return signal_out, flag_out, np.array(bin_rms) def get_intense(self, bin_ranges, bin_rms, noise, estimate, flag): """ Flag all samples falling into bins with extreme RMS as intense """ snr = [] for ibin, ((bin_start, bin_stop), rms) in enumerate(zip(bin_ranges, bin_rms)): ind = slice(bin_start, bin_stop) good = flag[ind] == 0 rms_signal = np.std(estimate[ind][good]) rms_noise = np.std(noise[ind][good]) snr.append(rms_signal / rms_noise) flag_intense = np.zeros_like(flag) good = bin_rms != 0 for _ in range(10): ngood = np.sum(good) good_rms = bin_rms[good] rms_median = np.median(good_rms) rms_rms = (np.sum((good_rms - rms_median) ** 2) / (ngood - 1)) ** .5 for ibin, ((bin_start, bin_stop), rms) in enumerate(zip(bin_ranges, bin_rms)): if rms < max(2 * rms_median, rms_median + 5 * rms_rms) and snr[ibin] < 1: continue good[ibin] = False ind = slice(bin_start, bin_stop) flag_intense[ind] = True return flag_intense def fit_poly(self, x, y, ind_fit): templates = [] xx = (x - np.mean(x)) / np.ptp(x) for iorder in range(self.order + 1): templates.append(xx[ind_fit] ** iorder) templates =
np.vstack(templates)
numpy.vstack
from .socp import Model as SOCModel from .ro import Model as ROModel from .lp import LinConstr, ConeConstr, CvxConstr from .lp import Vars, Affine from .lp import RoAffine, RoConstr from .lp import DecVar, RandVar, DecLinConstr, DecCvxConstr from .lp import DecRoConstr from .lp import Scen from .lp import Solution from .lpg_solver import solve as def_sol from .subroutines import * import numpy as np import pandas as pd import warnings from collections import Sized, Iterable class Model: """ Returns a model object with the given number of scenarios. Parameters ---------- scens : int or array-like objects The number of scenarios, if it is an integer. It could also be an array of scenario indices. name : str Name of the model Returns ------- model : rsome.dro.Model A model object """ def __init__(self, scens=1, name=None): self.ro_model = ROModel() self.vt_model = SOCModel(mtype='V') self.sup_model = self.ro_model.sup_model self.exp_model = SOCModel(nobj=True, mtype='E') self.pro_model = SOCModel(nobj=True, mtype='P') self.obj_ambiguity = None if isinstance(scens, int): num_scen = scens series = pd.Series(np.arange(num_scen).astype(int)) elif isinstance(scens, Sized): num_scen = len(scens) series = pd.Series(np.arange(num_scen).astype(int), index=scens) else: raise ValueError('Incorrect scenarios.') self.num_scen = num_scen self.series_scen = series self.dec_vars = [DecVar(self, self.vt_model.vars[0])] self.rand_vars = [] self.all_constr = [] self.var_ev_list = None # self.affadapt_mat = None pr = self.pro_model.dvar(num_scen, name='probabilities') self.p = pr self.obj = None self.sign = 1 self.primal = None self.dual = None self.solution = None self.pupdate = True self.dupdate = True self.solution = None self.name = name def rvar(self, shape=(1,), name=None): sup_var = self.sup_model.dvar(shape, 'C', name) exp_var = self.exp_model.dvar(shape, 'C', name) rand_var = RandVar(sup_var, exp_var) self.rand_vars.append(rand_var) return rand_var def dvar(self, shape=(1,), vtype='C', name=None): """ Returns an array of decision variables with the given shape and variable type. Parameters ---------- shape : int or tuple Shape of the variable array. vtype : {'C', 'B', 'I'} Type of the decision variables. 'C' means continuous; 'B' means binary, and 'I" means integer. name : str Name of the variable array Returns ------- new_var : rsome.lp.DecVar An array of new decision variables """ dec_var = self.vt_model.dvar(shape, vtype, name) dec_var = DecVar(self, dec_var, name=name) self.dec_vars.append(dec_var) return dec_var def ambiguity(self): if self.all_constr: raise SyntaxError('Ambiguity set must be specified ' + 'before defining constraints.') return Ambiguity(self) def bou(self, *args): if self.num_scen != 1: raise ValueError('The uncertainty set can only be applied ' 'to a one-scenario model') bou_set = self.ambiguity() for arg in args: if arg.model is not self.sup_model: raise ValueError('Constraints are not for this support.') bou_set.sup_constr = [tuple(args)] return bou_set def wks(self, *args): if self.num_scen != 1: raise ValueError('The WKS ambiguity set can only be applied ' 'to a one-scenario model') wks_set = self.ambiguity() sup_constr = [] exp_constr = [] for arg in args: if arg.model is self.sup_model: sup_constr.append(arg) elif arg.model is self.exp_model: exp_constr.append(arg) else: raise ValueError('Constraints are not defined for the ' 'ambiguity support.') wks_set.sup_constr = [tuple(sup_constr)] wks_set.exp_constr = [tuple(exp_constr)] wks_set.exp_constr_indices = [np.array([0], dtype=np.int32)] return wks_set def rule_var(self): if self.var_ev_list is not None: return self.var_ev_list total = sum(dvar.size*len(dvar.event_adapt) for dvar in self.dec_vars) vtype = ''.join([dvar.vtype * dvar.size * len(dvar.event_adapt) if len(dvar.vtype) == 1 else dvar.vtype * len(dvar.event_adapt) for dvar in self.dec_vars]) var_const = self.ro_model.dvar(total, vtype=vtype) count = 0 for dvar in self.dec_vars: dvar.ro_first = count count += dvar.size*len(dvar.event_adapt) num_scen = self.num_scen self.var_ev_list = [] for s in range(num_scen): start = 0 index = [] total_size = 0 total_col = 0 for dvar in self.dec_vars: edict = event_dict(dvar.event_adapt) size = dvar.size index.extend(list(start + size * edict[s] +
np.arange(size, dtype=int)
numpy.arange
#!/usr/bin/env python u""" ecco_monthly_harmonics.py Written by <NAME> (10/2021) Reads monthly ECCO ocean bottom pressure anomalies and converts to spherical harmonic coefficients INPUTS: ECCO Near Real-Time models kf080i: Kalman filter analysis https://ecco.jpl.nasa.gov/drive/files/NearRealTime/KalmanFilter/ dr080i: RTS smoother analysis https://ecco.jpl.nasa.gov/drive/files/NearRealTime/Smoother/ ECCO2 Cube92 models Cube92 ECCO version 4 models V4r3: Version 4, Revision 3 V4r4: Version 4, Revision 4 COMMAND LINE OPTIONS: -D X, --directory X: Working data directory -Y X, --year X: Years to run -l X, --lmax X: maximum spherical harmonic degree -m X, --mmax X: maximum spherical harmonic order -n X, --love X: Load Love numbers dataset 0: Han and Wahr (1995) values from PREM 1: Gegout (2005) values from PREM 2: Wang et al. (2012) values from PREM --reference X: Reference frame for load love numbers CF: Center of Surface Figure (default) CM: Center of Mass of Earth System CE: Center of Mass of Solid Earth -F X, --format X: Input and output data format ascii netcdf HDF5 -V, --verbose: Output information for each output file -M X, --mode X: Permission mode of directories and files PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html dateutil: powerful extensions to datetime https://dateutil.readthedocs.io/en/stable/ netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html h5py: Pythonic interface to the HDF5 binary data format. https://www.h5py.org/ PROGRAM DEPENDENCIES: plm_holmes.py: computes fully-normalized associated Legendre polynomials read_love_numbers.py: reads Load Love Numbers from Han and Wahr (1995) ref_ellipsoid.py: calculate reference parameters for common ellipsoids norm_gravity.py: calculates the normal gravity for locations on an ellipsoid gen_pressure_stokes.py: converts a pressure field into spherical harmonics harmonics.py: spherical harmonic data class for processing GRACE/GRACE-FO destripe_harmonics.py: calculates the decorrelation (destriping) filter and filters the GRACE/GRACE-FO coefficients for striping errors ncdf_read_stokes.py: reads spherical harmonic netcdf files ncdf_stokes.py: writes output spherical harmonic data to netcdf hdf5_read_stokes.py: reads spherical harmonic HDF5 files hdf5_stokes.py: writes output spherical harmonic data to HDF5 spatial.py: spatial data class for reading, writing and processing data ncdf_read.py: reads input spatial data from netCDF4 files hdf5_read.py: reads input spatial data from HDF5 files ncdf_write.py: writes output spatial data to netCDF4 hdf5_write.py: writes output spatial data to HDF5 time.py: utilities for calculating time operations utilities.py: download and management utilities for files UPDATE HISTORY: Updated 10/2021: using python logging for handling verbose output use output harmonic file wrapper routine to write to file Updated 09/2021: use GRACE/GRACE-FO month to calendar month converters Updated 07/2021: can use input files to define command line arguments Updated 05/2021: define int/float precision to prevent deprecation warning Updated 03/2021: automatically update years to run based on current time Updated 02/2021: separate inputs to gen_pressure_stokes Updated 01/2021: added Cube92 choice to input model types outputs from gen_pressure_stokes are now harmonics objects Updated 12/2020: use argparse to set command line parameters using spatial and harmonics modules for read/write operations added more love number options. using utilities from time module Updated 10/2019: changing Y/N flags to True/False Updated 06/2019: recommending kf080i for the Kalman filtered solution Updated 10/2018: separated gen_pressure_stokes into separate function Updated 07/2018: output index and date files in separate loop for all files Updated 03/2018: use realistic geometry from bathymetry and local gravity simplified love number extrapolation if LMAX is greater than 696 Updated 01/2018: using getopt to set parameters Updated 08/2017: convert from geodetic coordinates to geocentric Updated 08/2016: fixed find_new_files function with previous updates Updated 06/2016: can use dr080g model, using __future__ print option Updated 05/2016: complete rewrite of program Written 05/2013 """ from __future__ import print_function import os import re import logging import netCDF4 import argparse import numpy as np import gravity_toolkit.time import gravity_toolkit.spatial import gravity_toolkit.harmonics import gravity_toolkit.utilities as utilities from gravity_toolkit.plm_holmes import plm_holmes from gravity_toolkit.read_love_numbers import read_love_numbers from model_harmonics.gen_pressure_stokes import gen_pressure_stokes from geoid_toolkit.ref_ellipsoid import ref_ellipsoid from geoid_toolkit.norm_gravity import norm_gravity #-- PURPOSE: convert monthly ECCO OBP data to spherical harmonics def ecco_monthly_harmonics(ddir, MODEL, YEARS, LMAX=0, MMAX=None, LOVE_NUMBERS=0, REFERENCE=None, DATAFORM=None, VERBOSE=False, MODE=0o775): #-- create logger for verbosity level loglevel = logging.INFO if VERBOSE else logging.CRITICAL logging.basicConfig(level=loglevel) #-- input and output subdirectory input_sub = 'ECCO_{0}_AveRmvd_OBP'.format(MODEL) output_sub = 'ECCO_{0}_AveRmvd_OBP_CLM_L{1:d}'.format(MODEL,LMAX) #-- upper bound of spherical harmonic orders (default = LMAX) MMAX = np.copy(LMAX) if not MMAX else MMAX #-- output string for both LMAX == MMAX and LMAX != MMAX cases order_str = 'M{0:d}'.format(MMAX) if (MMAX != LMAX) else '' #-- output file format output_file_format = 'ECCO_{0}_AveRmvd_OBP_CLM_L{1:d}{2}_{3:03d}.{4}' #-- Creating subdirectory if it doesn't exist if (not os.access(os.path.join(ddir,output_sub), os.F_OK)): os.makedirs(os.path.join(ddir,output_sub),MODE) #-- input/output data file format suffix = dict(ascii='txt', netCDF4='nc', HDF5='H5') #-- parameters for each model if MODEL in ('kf080i','dr080i'): #-- grid step size dlon,dlat = (1.0,1.0) #-- grid extent LAT_MAX = 78.5 extent = [0.5,359.5,-LAT_MAX,LAT_MAX] input_depth_file = os.path.join(ddir,'depth.nc') input_geoid_file = os.path.join(ddir,'egm_2008.nc') #-- indices to read indices = np.arange(1,2*LAT_MAX+2).astype(np.int64) elif MODEL in ('Cube92',): #-- grid step size dlon,dlat = (0.25,0.25) #-- grid extent extent = [0.125,359.875,-89.875,89.875] input_depth_file = os.path.join(ddir,'DEPTH.2020.1440x720.nc') input_geoid_file = os.path.join(ddir,'EGM_2008.1440x720.nc') #-- indices to read (all) indices = Ellipsis elif MODEL in ('V4r3','V4r4'): #-- grid step size dlon,dlat = (0.5,0.5) #-- grid extent extent = [-179.75,179.75,-89.75,89.75] input_depth_file = os.path.join(ddir,'DEPTH.2020.720x360.nc') input_geoid_file = os.path.join(ddir,'EGM_2008.720x360.nc') #-- indices to read (all) indices = Ellipsis #-- input grid dimensions glon = np.arange(extent[0],extent[1]+dlon,dlon) glat =
np.arange(extent[2],extent[3]+dlat,dlat)
numpy.arange
#!/usr/bin/env python # coding: utf-8 from __future__ import division import numpy as np from numpy.random import rand from numpy import linalg as LA import matplotlib import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.lines as mlines import math import sys import os from random import shuffle from random import gauss from scipy.interpolate import UnivariateSpline from scipy.interpolate import InterpolatedUnivariateSpline from scipy.optimize import fmin from scipy.optimize import fsolve from scipy import interpolate from scipy.optimize import curve_fit import scipy.optimize as opt import matplotlib.colors as colors import matplotlib.cm as cmx from pylab import polyfit import matplotlib.ticker as ticker from matplotlib import gridspec from mpl_toolkits.axes_grid.inset_locator import (inset_axes, InsetPosition, mark_inset) from scipy.optimize import differential_evolution import warnings from matplotlib.collections import PatchCollection from matplotlib.patches import Rectangle from matplotlib import rc rc('font',**{'family':'sans-serif', 'size' : 10}) #, 'sans-serif':['Arial']}) ## for Palatino and other serif fonts use: #rc('font',**{'family':'serif','serif':['Palatino']}) rc('text', usetex=True) color_red = (0.73, 0.13869999999999993, 0.) color_orange = (1., 0.6699999999999999, 0.) color_green = (0.14959999999999996, 0.43999999999999995, 0.12759999999999994) color_blue = (0.06673600000000002, 0.164512, 0.776) color_purple = (0.25091600000000003, 0.137378, 0.29800000000000004) color_ocker = (0.6631400000000001, 0.71, 0.1491) color_pink = (0.71, 0.1491, 0.44730000000000003) color_brown = (0.651, 0.33331200000000005, 0.054683999999999955) color_all = [color_red, color_orange, color_green, color_blue, color_purple, color_ocker,color_pink, color_brown] def fit_func_cv(x ,a ,b, c, d, e): return np.exp(a)*x + b*np.absolute(x - d)**(-c) + np.exp(e) def fit_func_cv_fix(x, b, d): return b*np.absolute(x - d)**(-1/3) ###### #----------------------------------------------------------------------------------------------------------------------- ####### #parameters of the code ###### #----------------------------------------------------------------------------------------------------------------------- ###### j2 = 1.0 j6 = 1.0 Kc = 0.0 lambda3 = 2.1 q_Q = 1 N_list = [60, 80, 100, 120, 140, 160, 180, 200, 300, 380] N_og = [10, 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, 380] #N_fit_cv = 200 N_fit_cv = 300 #### #code ### cv_ind = 1 data = np.load('Delta1_data.npy',allow_pickle=True) #create a mix of all of them: flat_data = [] flat_error = [] flat_temp = [] Tmin_l = [] Tmax_l = [] for i in range(len(N_list)): i_og = i + 3 flat_data.extend((N_list[i]**2)*data[i_og][2*cv_ind + 1]) flat_error.extend((N_list[i])*data[i_og][2*cv_ind + 2]) flat_temp.extend(data[i_og][0]) Tmin_l.append(np.min(data[i_og][0])) Tmax_l.append(np.max(data[i_og][0])) flat_data = np.array(flat_data) flat_error = np.array(flat_error) flat_temp = np.array(flat_temp) all_together = np.array([flat_temp, flat_data, flat_error]) all_together = np.transpose(all_together) all_together_sorted = all_together[all_together[:,0].argsort()] #print(all_together_sorted) #create duplicates list seen = set() uniq = [] for x in list(all_together_sorted[:,0]): if x not in seen: uniq.append(x) seen.add(x) sorted_and_filter_temp = np.sort(np.array(list(seen))) values_avg = np.zeros(len(sorted_and_filter_temp)) values_err = np.zeros(len(sorted_and_filter_temp)) temps_all = all_together_sorted[:,0] j=0 n = 1 for i in range(len(sorted_and_filter_temp)): indices = np.argwhere(temps_all == sorted_and_filter_temp[i]) values_avg[i] = np.mean((all_together_sorted[:,1])[indices]) values_err[i] = np.mean((all_together_sorted[:,2])[indices]) ########### #fit for a specific Cv jind = N_og.index(N_fit_cv) fit_all = False if fit_all: data_fit = values_avg data_err = values_err x_range_fit = sorted_and_filter_temp else: data_fit = (N_og[jind]**2)*data[jind][2*cv_ind + 1] data_err = (N_og[jind])*data[jind][2*cv_ind + 1] x_range_fit = data[jind][0] #popt2, pcov2 = curve_fit(fit_func_cv, x_range_fit, data_fit, sigma = data_err,\ # absolute_sigma = True, p0 = [0.5, 0.4, 1.2], bounds = ([0, 0.01, 0.1], [10, 1.0, 2.0])) popt2, pcov2 = curve_fit(fit_func_cv, x_range_fit, data_fit, sigma = data_err, absolute_sigma = True, p0 = [0.0, 0.5, 0.4, 1.201, 0.0]) #popt2, pcov2 = curve_fit(fit_func_cv_fix, x_range_fit, data_fit, sigma = data_err, absolute_sigma = True, p0 = [0.5, 1.201]) print('fit vals') print(popt2) print('errors') print(np.sqrt(np.diag(pcov2))) #y_fit = fit_func_cv_fix(x_range_fit, *popt2) y_fit = fit_func_cv(x_range_fit, *popt2) y = data_fit # residual sum of squares ss_res = np.sum((y - y_fit) ** 2) # total sum of squares ss_tot = np.sum((y -
np.mean(y)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- ''' gnpy.tools.cli_examples ======================= Common code for CLI examples ''' import argparse import logging import sys from math import ceil from numpy import linspace, mean from pathlib import Path import gnpy.core.ansi_escapes as ansi_escapes from gnpy.core.elements import Transceiver, Fiber, RamanFiber from gnpy.core.equipment import trx_mode_params import gnpy.core.exceptions as exceptions from gnpy.core.network import build_network from gnpy.core.parameters import SimParams from gnpy.core.utils import db2lin, lin2db, automatic_nch from gnpy.topology.request import (ResultElement, jsontocsv, compute_path_dsjctn, requests_aggregation, BLOCKING_NOPATH, correct_json_route_list, deduplicate_disjunctions, compute_path_with_disjunction, PathRequest, compute_constrained_path, propagate) from gnpy.topology.spectrum_assignment import build_oms_list, pth_assign_spectrum from gnpy.tools.json_io import load_equipment, load_network, load_json, load_requests, save_network, \ requests_from_json, disjunctions_from_json, save_json from gnpy.tools.plots import plot_baseline, plot_results _logger = logging.getLogger(__name__) _examples_dir = Path(__file__).parent.parent / 'example-data' _help_footer = ''' This program is part of GNPy, https://github.com/TelecomInfraProject/oopt-gnpy Learn more at https://gnpy.readthedocs.io/ ''' _help_fname_json = 'FILE.json' _help_fname_json_csv = 'FILE.(json|csv)' def show_example_data_dir(): print(f'{_examples_dir}/') def load_common_data(equipment_filename, topology_filename, simulation_filename, save_raw_network_filename): '''Load common configuration from JSON files''' try: equipment = load_equipment(equipment_filename) network = load_network(topology_filename, equipment) if save_raw_network_filename is not None: save_network(network, save_raw_network_filename) print(f'{ansi_escapes.blue}Raw network (no optimizations) saved to {save_raw_network_filename}{ansi_escapes.reset}') if not simulation_filename: sim_params = {} if next((node for node in network if isinstance(node, RamanFiber)), None) is not None: print(f'{ansi_escapes.red}Invocation error:{ansi_escapes.reset} ' f'RamanFiber requires passing simulation params via --sim-params') sys.exit(1) else: sim_params = load_json(simulation_filename) SimParams.set_params(sim_params) except exceptions.EquipmentConfigError as e: print(f'{ansi_escapes.red}Configuration error in the equipment library:{ansi_escapes.reset} {e}') sys.exit(1) except exceptions.NetworkTopologyError as e: print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}') sys.exit(1) except exceptions.ParametersError as e: print(f'{ansi_escapes.red}Simulation parameters error:{ansi_escapes.reset} {e}') sys.exit(1) except exceptions.ConfigurationError as e: print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}') sys.exit(1) except exceptions.ServiceError as e: print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}') sys.exit(1) return (equipment, network) def _setup_logging(args): logging.basicConfig(level={2: logging.DEBUG, 1: logging.INFO, 0: logging.CRITICAL}.get(args.verbose, logging.DEBUG)) def _add_common_options(parser: argparse.ArgumentParser, network_default: Path): parser.add_argument('topology', nargs='?', type=Path, metavar='NETWORK-TOPOLOGY.(json|xls|xlsx)', default=network_default, help='Input network topology') parser.add_argument('-v', '--verbose', action='count', default=0, help='Increase verbosity (can be specified several times)') parser.add_argument('-e', '--equipment', type=Path, metavar=_help_fname_json, default=_examples_dir / 'eqpt_config.json', help='Equipment library') parser.add_argument('--sim-params', type=Path, metavar=_help_fname_json, default=None, help='Path to the JSON containing simulation parameters (required for Raman). ' f'Example: {_examples_dir / "sim_params.json"}') parser.add_argument('--save-network', type=Path, metavar=_help_fname_json, help='Save the final network as a JSON file') parser.add_argument('--save-network-before-autodesign', type=Path, metavar=_help_fname_json, help='Dump the network into a JSON file prior to autodesign') parser.add_argument('--no-insert-edfas', action='store_true', help='Disable insertion of EDFAs after ROADMs and fibers ' 'as well as splitting of fibers by auto-design.') def transmission_main_example(args=None): parser = argparse.ArgumentParser( description='Send a full spectrum load through the network from point A to point B', epilog=_help_footer, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) _add_common_options(parser, network_default=_examples_dir / 'edfa_example_network.json') parser.add_argument('--show-channels', action='store_true', help='Show final per-channel OSNR and GSNR summary') parser.add_argument('-pl', '--plot', action='store_true') parser.add_argument('-l', '--list-nodes', action='store_true', help='list all transceiver nodes') parser.add_argument('-po', '--power', default=0, help='channel ref power in dBm') parser.add_argument('source', nargs='?', help='source node') parser.add_argument('destination', nargs='?', help='destination node') args = parser.parse_args(args if args is not None else sys.argv[1:]) _setup_logging(args) (equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign) if args.plot: plot_baseline(network) transceivers = {n.uid: n for n in network.nodes() if isinstance(n, Transceiver)} if not transceivers: sys.exit('Network has no transceivers!') if len(transceivers) < 2: sys.exit('Network has only one transceiver!') if args.list_nodes: for uid in transceivers: print(uid) sys.exit() # First try to find exact match if source/destination provided if args.source: source = transceivers.pop(args.source, None) valid_source = True if source else False else: source = None _logger.info('No source node specified: picking random transceiver') if args.destination: destination = transceivers.pop(args.destination, None) valid_destination = True if destination else False else: destination = None _logger.info('No destination node specified: picking random transceiver') # If no exact match try to find partial match if args.source and not source: # TODO code a more advanced regex to find nodes match source = next((transceivers.pop(uid) for uid in transceivers if args.source.lower() in uid.lower()), None) if args.destination and not destination: # TODO code a more advanced regex to find nodes match destination = next((transceivers.pop(uid) for uid in transceivers if args.destination.lower() in uid.lower()), None) # If no partial match or no source/destination provided pick random if not source: source = list(transceivers.values())[0] del transceivers[source.uid] if not destination: destination = list(transceivers.values())[0] _logger.info(f'source = {args.source!r}') _logger.info(f'destination = {args.destination!r}') params = {} params['request_id'] = 0 params['trx_type'] = '' params['trx_mode'] = '' params['source'] = source.uid params['destination'] = destination.uid params['bidir'] = False params['nodes_list'] = [destination.uid] params['loose_list'] = ['strict'] params['format'] = '' params['path_bandwidth'] = 0 params['effective_freq_slot'] = None trx_params = trx_mode_params(equipment) if args.power: trx_params['power'] = db2lin(float(args.power)) * 1e-3 params.update(trx_params) req = PathRequest(**params) power_mode = equipment['Span']['default'].power_mode print('\n'.join([f'Power mode is set to {power_mode}', f'=> it can be modified in eqpt_config.json - Span'])) pref_ch_db = lin2db(req.power * 1e3) # reference channel power / span (SL=20dB) pref_total_db = pref_ch_db + lin2db(req.nb_channel) # reference total power / span (SL=20dB) try: build_network(network, equipment, pref_ch_db, pref_total_db, args.no_insert_edfas) except exceptions.NetworkTopologyError as e: print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}') sys.exit(1) except exceptions.ConfigurationError as e: print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}') sys.exit(1) path = compute_constrained_path(network, req) spans = [s.params.length for s in path if isinstance(s, RamanFiber) or isinstance(s, Fiber)] print(f'\nThere are {len(spans)} fiber spans over {sum(spans)/1000:.0f} km between {source.uid} ' f'and {destination.uid}') print(f'\nNow propagating between {source.uid} and {destination.uid}:') power_range = [0] if power_mode: # power cannot be changed in gain mode try: p_start, p_stop, p_step = equipment['SI']['default'].power_range_db p_num = abs(int(round((p_stop - p_start) / p_step))) + 1 if p_step != 0 else 1 power_range = list(linspace(p_start, p_stop, p_num)) except TypeError: print('invalid power range definition in eqpt_config, should be power_range_db: [lower, upper, step]') for dp_db in power_range: req.power = db2lin(pref_ch_db + dp_db) * 1e-3 if power_mode: print(f'\nPropagating with input power = {ansi_escapes.cyan}{lin2db(req.power*1e3):.2f} dBm{ansi_escapes.reset}:') else: print(f'\nPropagating in {ansi_escapes.cyan}gain mode{ansi_escapes.reset}: power cannot be set manually') infos = propagate(path, req, equipment) if len(power_range) == 1: for elem in path: print(elem) if power_mode: print(f'\nTransmission result for input power = {lin2db(req.power*1e3):.2f} dBm:') else: print(f'\nTransmission results:') print(f' Final GSNR (0.1 nm): {ansi_escapes.cyan}{mean(destination.snr_01nm):.02f} dB{ansi_escapes.reset}') else: print(path[-1]) if args.save_network is not None: save_network(network, args.save_network) print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}') if args.show_channels: print('\nThe GSNR per channel at the end of the line is:') print( '{:>5}{:>26}{:>26}{:>28}{:>28}{:>28}' .format( 'Ch. #', 'Channel frequency (THz)', 'Channel power (dBm)', 'OSNR ASE (signal bw, dB)', 'SNR NLI (signal bw, dB)', 'GSNR (signal bw, dB)')) for final_carrier, ch_osnr, ch_snr_nl, ch_snr in zip( infos.carriers, path[-1].osnr_ase, path[-1].osnr_nli, path[-1].snr): ch_freq = final_carrier.frequency * 1e-12 ch_power = lin2db(final_carrier.power.signal * 1e3) print( '{:5}{:26.2f}{:26.2f}{:28.2f}{:28.2f}{:28.2f}' .format( final_carrier.channel_number, round( ch_freq, 2), round( ch_power, 2), round( ch_osnr, 2), round( ch_snr_nl, 2), round( ch_snr, 2))) if not args.source: print(f'\n(No source node specified: picked {source.uid})') elif not valid_source: print(f'\n(Invalid source node {args.source!r} replaced with {source.uid})') if not args.destination: print(f'\n(No destination node specified: picked {destination.uid})') elif not valid_destination: print(f'\n(Invalid destination node {args.destination!r} replaced with {destination.uid})') if args.plot: plot_results(network, path, source, destination) def _path_result_json(pathresult): return {'response': [n.json for n in pathresult]} def path_requests_run(args=None): parser = argparse.ArgumentParser( description='Compute performance for a list of services provided in a json file or an excel sheet', epilog=_help_footer, formatter_class=argparse.ArgumentDefaultsHelpFormatter, ) _add_common_options(parser, network_default=_examples_dir / 'meshTopologyExampleV2.xls') parser.add_argument('service_filename', nargs='?', type=Path, metavar='SERVICES-REQUESTS.(json|xls|xlsx)', default=_examples_dir / 'meshTopologyExampleV2.xls', help='Input service file') parser.add_argument('-bi', '--bidir', action='store_true', help='considers that all demands are bidir') parser.add_argument('-o', '--output', type=Path, metavar=_help_fname_json_csv, help='Store satisifed requests into a JSON or CSV file') args = parser.parse_args(args if args is not None else sys.argv[1:]) _setup_logging(args) _logger.info(f'Computing path requests {args.service_filename} into JSON format') (equipment, network) = load_common_data(args.equipment, args.topology, args.sim_params, args.save_network_before_autodesign) # Build the network once using the default power defined in SI in eqpt config # TODO power density: db2linp(ower_dbm": 0)/power_dbm": 0 * nb channels as defined by # spacing, f_min and f_max p_db = equipment['SI']['default'].power_dbm p_total_db = p_db + lin2db(automatic_nch(equipment['SI']['default'].f_min, equipment['SI']['default'].f_max, equipment['SI']['default'].spacing)) try: build_network(network, equipment, p_db, p_total_db, args.no_insert_edfas) except exceptions.NetworkTopologyError as e: print(f'{ansi_escapes.red}Invalid network definition:{ansi_escapes.reset} {e}') sys.exit(1) except exceptions.ConfigurationError as e: print(f'{ansi_escapes.red}Configuration error:{ansi_escapes.reset} {e}') sys.exit(1) if args.save_network is not None: save_network(network, args.save_network) print(f'{ansi_escapes.blue}Network (after autodesign) saved to {args.save_network}{ansi_escapes.reset}') oms_list = build_oms_list(network, equipment) try: data = load_requests(args.service_filename, equipment, bidir=args.bidir, network=network, network_filename=args.topology) rqs = requests_from_json(data, equipment) except exceptions.ServiceError as e: print(f'{ansi_escapes.red}Service error:{ansi_escapes.reset} {e}') sys.exit(1) # check that request ids are unique. Non unique ids, may # mess the computation: better to stop the computation all_ids = [r.request_id for r in rqs] if len(all_ids) != len(set(all_ids)): for item in list(set(all_ids)): all_ids.remove(item) msg = f'Requests id {all_ids} are not unique' _logger.critical(msg) sys.exit() rqs = correct_json_route_list(network, rqs) # pths = compute_path(network, equipment, rqs) dsjn = disjunctions_from_json(data) print(f'{ansi_escapes.blue}List of disjunctions{ansi_escapes.reset}') print(dsjn) # need to warn or correct in case of wrong disjunction form # disjunction must not be repeated with same or different ids dsjn = deduplicate_disjunctions(dsjn) # Aggregate demands with same exact constraints print(f'{ansi_escapes.blue}Aggregating similar requests{ansi_escapes.reset}') rqs, dsjn = requests_aggregation(rqs, dsjn) # TODO export novel set of aggregated demands in a json file print(f'{ansi_escapes.blue}The following services have been requested:{ansi_escapes.reset}') print(rqs) print(f'{ansi_escapes.blue}Computing all paths with constraints{ansi_escapes.reset}') try: pths = compute_path_dsjctn(network, equipment, rqs, dsjn) except exceptions.DisjunctionError as this_e: print(f'{ansi_escapes.red}Disjunction error:{ansi_escapes.reset} {this_e}') sys.exit(1) print(f'{ansi_escapes.blue}Propagating on selected path{ansi_escapes.reset}') propagatedpths, reversed_pths, reversed_propagatedpths = compute_path_with_disjunction(network, equipment, rqs, pths) # Note that deepcopy used in compute_path_with_disjunction returns # a list of nodes which are not belonging to network (they are copies of the node objects). # so there can not be propagation on these nodes. pth_assign_spectrum(pths, rqs, oms_list, reversed_pths) print(f'{ansi_escapes.blue}Result summary{ansi_escapes.reset}') header = ['req id', ' demand', ' GSNR@bandwidth A-Z (Z-A)', ' [email protected] A-Z (Z-A)', ' Receiver minOSNR', ' mode', ' Gbit/s', ' nb of tsp pairs', 'N,M or blocking reason'] data = [] data.append(header) for i, this_p in enumerate(propagatedpths): rev_pth = reversed_propagatedpths[i] if rev_pth and this_p: psnrb = f'{round(
mean(this_p[-1].snr)
numpy.mean
import numpy as np import h5py import time import os # functions (to be moved to utils.py) def add_meta_keys(fn, pars_keys, image_keys=[]): with h5py.File(fn, 'r') as f: for key in f.keys(): if key not in pars_keys and key not in image_keys: pars_keys.append(key) return 0 def get_square_images_fn(cdict, file_number=None): # in the future: load the first n_events from a file with more images event_type = cdict['event_type'] n_events = cdict['n_events'] mode = cdict['mode'] Etrue_min = cdict['Etrue_min'] fn = '%s_%i_images_%s' % (event_type, n_events, mode) if Etrue_min is not None and Etrue_min != 'None': fn += '_Etrue_min%.1fTeV' % Etrue_min if cdict.get('tel') != None: fn += '_%s' % cdict['tel'] if file_number is not None: fn += '_file%i' % file_number fn += '.h5' return fn def get_images_fns(cdict, folder=None, exists=False, nfiles=200): ev_types = cdict['model_events'] #n_events = cdict['n_events'] #n_events_tot = cdict.get('n_events_tot', None) #if n_events_tot == None: # n_events_tot = n_events #nfiles = int(n_events_tot / n_events) out_dict = {} for k, event_type in enumerate(ev_types): cdict['event_type'] = event_type out_dict[event_type] = [get_square_images_fn(cdict, file_number=j+1) for j in range(nfiles)] if folder is not None and exists: out_dict[event_type] = [fn for fn in out_dict[event_type] if os.path.isfile(folder + fn)] return out_dict def get_zeta_fns(cdict, folder=None, exists=False): out_dict = get_images_fns(cdict) for key in out_dict.keys(): out_dict[key] = [fn.replace('.h5', '_zeta.h5') for fn in out_dict[key]] if folder is not None and exists: out_dict[key] = [fn for fn in out_dict[key] if os.path.isfile(folder + fn)] return out_dict def load_images(folder, cdict): ev_types = cdict['model_events'] n_events = cdict['n_events'] n_events_tot = cdict.get('n_events_tot', None) if n_events_tot == None: n_events_tot = n_events nfiles = int(n_events_tot / n_events) data_key = cdict['data_key'] print('load images') for k, event_type in enumerate(ev_types): print('load %s images' % event_type) cdict['event_type'] = event_type for j in range(nfiles): fn = folder + get_square_images_fn(cdict, file_number=j+1) with h5py.File(fn, 'r') as f: if k == 0 and j == 0: dims = f[data_key].shape out_dims = list(dims) out_dims[0] = n_events_tot * len(ev_types) images = np.zeros(out_dims, dtype=np.float32) ind_start = n_events_tot * k + dims[0] * j ind_end = n_events_tot * k + dims[0] * j + dims[0] fill_inds = list(range(ind_start, ind_end)) images[fill_inds] = f[data_key][:] return images def load_images_from_file(fn, key): with h5py.File(fn, 'r') as f: return f[key][:] def get_group_key(key, f): for gkey in f.keys(): if type(f[gkey]) != h5py._hl.dataset.Dataset and key in f[gkey].keys(): return gkey return None def load_meta_data(folder, cdict): ev_types = cdict['model_events'] n_events = cdict['n_events'] n_events_tot = cdict.get('n_events_tot', None) if n_events_tot == None: n_events_tot = n_events nfiles = int(n_events_tot / n_events) data_key = cdict['data_key'] pars_keys = cdict['pars_keys'] print('load meta data') for k, event_type in enumerate(ev_types): print(event_type) cdict['event_type'] = event_type for j in range(nfiles): fn = folder + get_square_images_fn(cdict, file_number=j+1) with h5py.File(fn, 'r') as f: if k == 0 and j == 0: pars_dict = {} for key in pars_keys: gkey = get_group_key(key, f) if gkey is None: dims = [n_events] out_dims = n_events_tot * len(ev_types) else: dims = f[gkey][key].shape out_dims = list(dims) out_dims[0] = n_events_tot * len(ev_types) pars_dict[key] =
np.zeros(out_dims, dtype=np.float32)
numpy.zeros
# -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> and <NAME> # -------------------------------------------------------- import numpy as np import yaml from fast_rcnn.config import cfg from rpn_msr.generate_anchors import generate_anchors_bv, generate_anchors from rpn_msr.anchor_target_layer_tf import clip_anchors from fast_rcnn.bbox_transform import bbox_transform_inv, clip_boxes, bbox_transform_inv_3d from fast_rcnn.nms_wrapper import nms from utils.transform import bv_anchor_to_lidar, lidar_to_bv, lidar_3d_to_bv, lidar_3d_to_corners, lidar_cnr_to_img import pdb,time #DEBUG = False """ Outputs object detection proposals by applying estimated bounding-box transformations to a set of regular boxes (called "anchors"). """ def proposal_layer_3d_debug(rpn_cls_prob_reshape,rpn_bbox_pred,im_info,calib,cfg_in, _feat_stride = [8,], anchor_scales=[1.0, 1.0],debug_state=True): #copy part of the code from proposal_layer_3d for debug _anchors = generate_anchors_bv() # _anchors = generate_anchors(scales=np.array(anchor_scales)) _num_anchors = _anchors.shape[0] im_info = im_info[0] assert rpn_cls_prob_reshape.shape[0] == 1, \ 'Only single item batches are supported' # cfg_key = str(self.phase) # either 'TRAIN' or 'TEST' # the first set of _num_anchors channels are bg probs # the second set are the fg probs, which we want # print rpn_cls_prob_reshape.shape height, width = rpn_cls_prob_reshape.shape[1:3] # scores = rpn_cls_prob_reshape[:, _num_anchors:, :, :] scores = np.reshape(np.reshape(rpn_cls_prob_reshape, [1, height, width, _num_anchors, 2])[:,:,:,:,1],[1, height, width, _num_anchors]) bbox_deltas = rpn_bbox_pred if debug_state: print ('im_size: ({}, {})'.format(im_info[0], im_info[1])) print ('scale: {}'.format(im_info[2])) if debug_state: print ('score map size: {}'.format(scores.shape)) # Enumerate all shifts shift_x = np.arange(0, width) * _feat_stride shift_y = np.arange(0, height) * _feat_stride shift_x, shift_y = np.meshgrid(shift_x, shift_y) shifts = np.vstack((shift_x.ravel(), shift_y.ravel(), shift_x.ravel(), shift_y.ravel())).transpose() # Enumerate all shifted anchors: # # add A anchors (1, A, 4) to # cell K shifts (K, 1, 4) to get # shift anchors (K, A, 4) # reshape to (K*A, 4) shifted anchors A = _num_anchors K = shifts.shape[0] anchors = _anchors.reshape((1, A, 4)) + \ shifts.reshape((1, K, 4)).transpose((1, 0, 2)) anchors = anchors.reshape((K * A, 4)) bbox_deltas = bbox_deltas.reshape((-1, 6)) scores = scores.reshape((-1, 1)) # convert anchors bv to anchors_3d anchors_3d = bv_anchor_to_lidar(anchors) # Convert anchors into proposals via bbox transformations proposals_3d = bbox_transform_inv_3d(anchors_3d, bbox_deltas) # convert back to lidar_bv proposals_bv = lidar_3d_to_bv(proposals_3d) #[x1,y1,x2,y2] lidar_corners = lidar_3d_to_corners(proposals_3d) proposals_img = lidar_cnr_to_img(lidar_corners, calib[3], calib[2], calib[0]) if debug_state: # print "bbox_deltas: ", bbox_deltas[:10] # print "proposals number: ", proposals_3d[:10] print ("proposals_bv shape: ", proposals_bv.shape) print ("proposals_3d shape: ", proposals_3d.shape) print ("scores shape:", scores.shape) # 2. clip predicted boxes to image #WZN: delete those not in image ind_inside = clip_anchors(anchors, im_info[:2]) #ind_inside = np.logical_and(ind_inside,clip_anchors(proposals_bv, im_info[:2])) proposals_bv = proposals_bv[ind_inside,:] proposals_3d = proposals_3d[ind_inside,:] proposals_img = proposals_img[ind_inside,:] scores = scores[ind_inside,:] proposals_bv = clip_boxes(proposals_bv, im_info[:2]) # TODO: pass real image_info #keep = _filter_img_boxes(proposals_img, [375, 1242]) #proposals_bv = proposals_bv[keep, :] #proposals_3d = proposals_3d[keep, :] #proposals_img = proposals_img[keep, :] #scores = scores[keep] if debug_state: print ("proposals after clip") print ("proposals_bv shape: ", proposals_bv.shape) print ("proposals_3d shape: ", proposals_3d.shape) print ("proposals_img shape: ", proposals_img.shape) # 4. sort all (proposal, score) pairs by score from highest to lowest # 5. take top pre_nms_topN (e.g. 6000) order = scores.ravel().argsort()[::-1] if cfg_in['pre_keep_topN'] > 0: order = order[:cfg_in['pre_keep_topN']] #keep = keep[order] proposals_bv = proposals_bv[order, :] proposals_3d = proposals_3d[order, :] proposals_img = proposals_img[order, :] scores = scores[order] # 6. apply nms (e.g. threshold = 0.7) # 7. take after_nms_topN (e.g. 300) # 8. return the top proposals (-> RoIs top) if cfg_in['use_nms']: keep = nms(np.hstack((proposals_bv, scores)), cfg_in['nms_thresh']) if cfg_in['nms_topN'] > 0: keep = keep[:cfg_in['nms_topN']] proposals_bv = proposals_bv[keep, :] proposals_3d = proposals_3d[keep, :] proposals_img = proposals_img[keep, :] scores = scores[keep] if debug_state: print ("proposals after nms") print ("proposals_bv shape: ", proposals_bv.shape) print ("proposals_3d shape: ", proposals_3d.shape) # debug only: keep probabilities above a threshold if cfg_in['prob_thresh']: keep_ind = scores[:,0]>cfg_in['prob_thresh'] print ('scores: ',scores) print ('threshold: ', cfg_in['prob_thresh']) print ('score shape:', scores.shape) #print keep_ind.shape #print keep.shape #keep = keep[keep_ind] proposals_bv = proposals_bv[keep_ind, :] proposals_3d = proposals_3d[keep_ind, :] proposals_img = proposals_img[keep_ind, :] scores = scores[keep_ind] return proposals_bv,proposals_3d,proposals_img,scores def proposal_layer_3d(rpn_cls_prob_reshape,rpn_bbox_pred,im_info,calib,cfg_key, _feat_stride = [8,], anchor_scales=[1.0, 1.0],DEBUG = False): # Algorithm: # # for each (H, W) location i # generate A anchor boxes centered on cell i # apply predicted bbox deltas at cell i to each of the A anchors # clip predicted boxes to image # remove predicted boxes with either height or width < threshold # sort all (proposal, score) pairs by score from highest to lowest # take top pre_nms_topN proposals before NMS # apply NMS with threshold 0.7 to remaining proposals # take after_nms_topN proposals after NMS # return the top proposals (-> RoIs top, scores top) #layer_params = yaml.load(self.param_str_) #t0 = time.time() _anchors = generate_anchors_bv() # _anchors = generate_anchors(scales=np.array(anchor_scales)) _num_anchors = _anchors.shape[0] #print 'time for anchors: ', time.time()-t0 #t0 = time.time() im_info = im_info[0] assert rpn_cls_prob_reshape.shape[0] == 1, \ 'Only single item batches are supported' # cfg_key = str(self.phase) # either 'TRAIN' or 'TEST' if type(cfg_key) is bytes: cfg_key = cfg_key.decode('UTF-8','ignore') pre_score_filt = cfg[cfg_key].RPN_SCORE_FILT pre_nms_topN = cfg[cfg_key].RPN_PRE_NMS_TOP_N post_nms_topN = cfg[cfg_key].RPN_POST_NMS_TOP_N nms_thresh = cfg[cfg_key].RPN_NMS_THRESH min_size = cfg[cfg_key].RPN_MIN_SIZE # the first set of _num_anchors channels are bg probs # the second set are the fg probs, which we want # print rpn_cls_prob_reshape.shape height, width = rpn_cls_prob_reshape.shape[1:3] # scores = rpn_cls_prob_reshape[:, _num_anchors:, :, :] scores = np.reshape(np.reshape(rpn_cls_prob_reshape, [1, height, width, _num_anchors, 2])[:,:,:,:,1],[1, height, width, _num_anchors]) bbox_deltas = rpn_bbox_pred if DEBUG: print ('im_size: ({}, {})'.format(im_info[0], im_info[1])) print ('scale: {}'.format(im_info[2])) # 1. Generate proposals from bbox deltas and shifted anchors if DEBUG: print ('score map size: {}'.format(scores.shape)) # Enumerate all shifts shift_x = np.arange(0, width) * _feat_stride shift_y = np.arange(0, height) * _feat_stride shift_x, shift_y =
np.meshgrid(shift_x, shift_y)
numpy.meshgrid
#!/usr/bin/env python # coding: utf-8 # <a href="https://colab.research.google.com/github/korymath/public_notebooks/blob/master/Building_Equal_Size_Clusters_Kyle_Mathewson_Sept_2019.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # # Imports # In[1]: # get_ipython().run_line_magic('matplotlib', 'inline') import matplotlib.pyplot as plt import seaborn as sns; sns.set() import numpy as np from sklearn.datasets.samples_generator import make_blobs from sklearn.cluster import KMeans from collections import Counter import numpy as np from scipy.spatial.distance import pdist from scipy.spatial.distance import squareform random_state = 1017 # # Generate and Visualize Data # In[2]: n_samples = 6 n_groups = 3 n_members = 2 # ensure that the calculus works out assert n_groups * n_members == n_samples X, y_true = make_blobs(n_samples=n_samples, centers=n_groups, cluster_std=0.50, random_state=random_state) plt.scatter(X[:, 0], X[:, 1], s=50); # In[3]: for x in X: print('{};'.format(x)) # # K-Means Clustering # In[4]: kmeans = KMeans(n_clusters=n_groups, n_init=100, max_iter=1000) kmeans.fit(X) labels = kmeans.predict(X) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis') centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c='black', s=200, alpha=0.5); # In[5]: # test the group size, AssertionError on failure C = Counter(labels) print('Group sizes: {}'.format(C)) try: assert list(C.values()) == [n_members] * n_groups except AssertionError as e: print('Unequal group sizes') # # (optional) Explicit Algorithm Details # In[6]: from sklearn.metrics import pairwise_distances_argmin def find_clusters(X, n_groups, rseed=random_state): # 1. Randomly choose clusters rng = np.random.RandomState(rseed) i = rng.permutation(X.shape[0])[:n_groups] centers = X[i] while True: # 2a. Assign labels based on closest center labels = pairwise_distances_argmin(X, centers) # 2b. Find new centers from means of points new_centers = np.array([X[labels == i].mean(0) for i in range(n_groups)]) # 2c. Check for convergence if np.all(centers == new_centers): break centers = new_centers return centers, labels centers, labels = find_clusters(X=X, n_groups=n_groups) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); # # Limitations of K-Means # # 1. Global optimum not guaranteed # 2. n_groups must be selected beforehand # 3. limited to linear cluster boundaries # 4. slow for large n_samples # 5. group sizes unequal # In[7]: # To address limitation 1, we can increase n_init for different random # starting points on centroids. We can also increase the number of iterations # particularly if there is a small n_samples # To address limitation 3, we can use spectral clustering # use a kernel transformation to project the data into a higher dimension where # a linear separation is possible. # Allow k-means to discover non-linear boundaries. from sklearn.cluster import SpectralClustering model = SpectralClustering(n_clusters=n_groups, affinity='nearest_neighbors', assign_labels='kmeans', n_neighbors=n_members, n_init=100, random_state=random_state) labels = model.fit_predict(X) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); # In[8]: # test the group size, AssertionError on failure C = Counter(labels) print('Group sizes: {}'.format(C)) try: assert list(C.values()) == [n_members] * n_groups except AssertionError as e: print('Unequal group sizes') # # Contrained Group Size k-means Clustering # In[9]: def average_data_distance_error(n_groups, memberships, distances): '''Calculate average distance between data in clusters.''' error = 0 for k in range(n_groups): # indices of datapoints belonging to class k i = np.where(memberships == k)[0] error += np.mean(distances[tuple(np.meshgrid(i, i))]) return error / n_groups def cluster_equal_groups(data, n_groups=None, n_members=None, verbose=False): # equal-size clustering based on data exchanges between pairs of clusters # given two of three num_points, num_clusters, group_size # the third is trivial to calculate n_samples, _ = data.shape if n_members is None and n_groups is not None: n_members = n_samples // n_groups elif n_groups is None and n_members is not None: n_groups = n_samples // n_members else: raise Exception('must specify either n_members or n_groups') # distance matrix distances = squareform(pdist(data)) # print(distances) # Random initial membership # np.random.seed(random_state) # memberships = np.random.permutation(n_samples) % n_groups # Initial membership kmeans = KMeans(n_clusters=n_groups, n_init=100, max_iter=1000) kmeans.fit(data) memberships = kmeans.predict(data) current_err = average_data_distance_error(n_groups, memberships, distances) # print(n_groups, memberships) t = 1 while True: past_err = current_err for a in range(n_samples): for b in range(a): # exchange membership memberships[a], memberships[b] = memberships[b], memberships[a] # calculate new error test_err = average_data_distance_error(n_groups, memberships, distances) if verbose: print("{}: {}<->{} E={}".format(t, a, b, current_err)) if test_err < current_err: current_err = test_err else: # put them back memberships[a], memberships[b] = memberships[b], memberships[a] if past_err == current_err: break t += 1 return memberships # In[10]: import time n_samples = 32 n_groups = 8 n_members = n_samples // n_groups # ensure that the calculus works out assert n_groups * n_members == n_samples X, y_true = make_blobs(n_samples=n_samples, centers=n_groups, cluster_std=0.50, random_state=random_state) plt.scatter(X[:, 0], X[:, 1], s=50); t0 = time.time() labels = cluster_equal_groups(X, n_groups=n_groups, verbose=False) t1 = time.time() # test the group size, AssertionError on failure C = Counter(labels) print('Group sizes: {}'.format(C)) try: assert list(C.values()) == [n_members] * n_groups print('Success, group sizes are equal!') except AssertionError as e: print('Unequal group sizes') print('Equal group memberships found in {} s'.format(round(t1-t0, 2))) # Plot the memberships plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='viridis'); # In[14]: nx, ny = 4, 8 xs = np.linspace(0, 1, nx) ys = np.linspace(0, 1, ny) x, y = np.meshgrid(xs, ys) + np.random.normal(scale=0.01, size=(ny, nx)) print(x.shape, y.shape) # In[15]: X = np.zeros(shape=(len(x.flatten()), 2)) X[:, 0] = x.flatten() X[:, 1] = y.flatten() plt.scatter(X[:, 0], X[:, 1], s=50); # In[16]: labels = cluster_equal_groups(X, n_groups=n_groups, verbose=False) plt.scatter(X[:, 0], X[:, 1], c=labels, s=50, cmap='jet'); # test the group size, AssertionError on failure C = Counter(labels) print('Group sizes: {}'.format(C)) try: assert list(C.values()) == [n_members] * n_groups except AssertionError as e: print('Unequal group sizes') # In[17]: # This import registers the 3D projection, but is otherwise unused. from mpl_toolkits.mplot3d import Axes3D # noqa: F401 unused import X, y_true = make_blobs(n_samples=n_samples, centers=n_groups, n_features=3, cluster_std=0.50, random_state=random_state) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], s=50) # In[18]: labels = cluster_equal_groups(X, n_groups=n_groups) # In[19]: fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(X[:, 0], X[:, 1], X[:, 2], c=labels, s=50, cmap='viridis'); # In[20]: np.random.permutation(n_samples) % 4 # In[21]: distances = squareform(pdist(X)) distances # In[22]: distances[
np.meshgrid((0,1), (0,1))
numpy.meshgrid
import cv2 import functions as fc import numpy as np import os import time from dataset import Dataset def main(): dataset = Dataset('highway',1,20) imgs = dataset.readInput() imgs_GT = dataset.readGT() # ori_imgs = fc.readImages("../../Datasets/highway/groundtruth", "png") # A_imgs = fc.readImages("results/highway/A", "png") # B_imgs = fc.readImages("results/highway/B", "png") # TASK 1.1 - Background Substraction Evaluation # test A t = time.time() A_CMatrix = fc.ConfusionMatrix(ori_imgs, A_imgs) A_Metrics = fc.Metrics(A_CMatrix) elapsed = time.time() - t print('Elapsed time is ' + str(elapsed) + ' seconds') # test B t = time.time() B_CMatrix = fc.ConfusionMatrix_2(ori_imgs, B_imgs) B_Metrics = fc.Metrics_2(B_CMatrix) elapsed = time.time() - t print('Elapsed time is ' + str(elapsed) + ' seconds') # TASK 2.1 - Plot TP vs Time A_CMatrix, TPFv_A, TPGTv_A, F1v_A = fc.ConfusionMatrix(ori_imgs, A_imgs) B_CMatrix, TPFv_B, TPGTv_B, F1v_B = fc.ConfusionMatrix(ori_imgs, B_imgs) x = [np.arange(0, 200, 1), np.arange(0, 200, 1), np.arange(0, 200, 1)] y = [np.array(TPFv_A), np.array(TPFv_B), np.array(TPGTv_A)] axis = ["Time", "#Pixels"] labels = ["True Positives A", "True Positives B", "Total Positives"] fc.plotGraphics(x, y, axis, labels) # TASK 2.2 - Plot F1-score vs Time x = [np.arange(0, 200, 1),
np.arange(0, 200, 1)
numpy.arange
""" Library Features: Name: lib_data_io_binary Author(s): <NAME> (<EMAIL>), <NAME> (<EMAIL>) Date: '20210603' Version: '1.0.0' """ ####################################################################################### # Library import logging import os import struct from copy import deepcopy import numpy as np import pandas as pd import xarray as xr from lib_info_args import logger_name # Logging log_stream = logging.getLogger(logger_name) # Debug import matplotlib.pylab as plt ####################################################################################### # -------------------------------------------------------------------------------- # Method to get size of binary file def search_geo_reference(file_name, info_dict, tag_geo_reference=None, tag_cols='ncols', tag_rows='nrows', scale_factor=4): file_handle = open(file_name, 'rb') file_stream = file_handle.read(-1) straem_n = file_stream.__len__() data_tag = None for info_key, info_fields in info_dict.items(): data_n = int(info_fields[tag_cols]) * int(info_fields[tag_rows]) * scale_factor if data_n == straem_n: data_info = info_fields data_tag = info_key break file_handle.close() assert data_tag == tag_geo_reference, " ===> Geographical reference set and found are not equal. " \ "Check your settings and datasets" return data_tag # -------------------------------------------------------------------------------- # -------------------------------------------------------------------------------- # Method to read 2d variable in binary format (saved as 1d integer array) def read_data_binary(file_name, var_geo_x, var_geo_y, var_geo_attrs=None, var_format='i', var_scale_factor=10, var_name=None, var_time=None, var_geo_1d=True, coord_name_geo_x='west_east', coord_name_geo_y='south_north', coord_name_time='time', dim_name_geo_x='west_east', dim_name_geo_y='south_north', dim_name_time='time', dims_order=None): if dims_order is None: dims_order = [dim_name_geo_y, dim_name_geo_x, dim_name_time] if os.path.exists(file_name): # Open file handle file_handle = open(file_name, 'rb') rows = var_geo_y.shape[0] cols = var_geo_x.shape[0] # Values shape (1d) var_n = rows * cols # Values format data_format = var_format * var_n # Open and read binary file data_stream = file_handle.read(-1) array_data = struct.unpack(data_format, data_stream) # Close file handle file_handle.close() # Reshape binary file in Fortran order and scale Data (float32) file_values = np.reshape(array_data, (rows, cols), order='F') file_values = np.float32(file_values / var_scale_factor) if var_geo_1d: var_geo_x_2d, var_geo_y_2d = np.meshgrid(var_geo_x, var_geo_y) else: var_geo_x_2d = var_geo_x var_geo_y_2d = var_geo_y geo_y_upper = var_geo_y_2d[0, 0] geo_y_lower = var_geo_y_2d[-1, 0] if geo_y_lower > geo_y_upper: var_geo_y_2d = np.flipud(var_geo_y_2d) file_dims = file_values.shape file_high = file_dims[0] file_wide = file_dims[1] var_data =
np.zeros(shape=[var_geo_x_2d.shape[0], var_geo_y_2d.shape[1], 1])
numpy.zeros
import numpy as np def root_mean_squared_error(y_true, y_pred): rmse = np.sqrt(np.square(np.subtract(y_true, y_pred)).mean()) return rmse def root_mean_squared_log_error(y_true, y_pred): rmsle = np.sqrt(np.square(np.subtract(np.log(y_pred + 1), np.log(y_true + 1))).mean()) return rmsle def root_mean_squared_precentage_error(y_true, y_pred): rmspe = (np.sqrt(np.mean(np.square(np.subtract(y_true, y_pred) / y_true)))) * 100 return rmspe def symmetric_mean_absolute_precentage_error(y_true, y_pred): smape = 100/len(y_true) * np.sum(2 * np.abs(np.subtract(y_pred, y_true)) / (np.abs(y_true) + np.abs(y_pred))) return smape def mean_bias_error(y_true, y_pred): mbe = np.mean(np.subtract(y_pred, y_true)) return mbe def relative_squared_error(y_true, y_pred): rse = np.sum(np.square(np.subtract(y_true, y_pred))) / np.sum(np.square(np.subtract(np.average(y_true), y_true))) return rse def root_relative_squared_error(y_true, y_pred): rrse = np.sqrt(np.sum(np.square(np.subtract(y_true, y_pred))) / np.sum(np.square(np.subtract(
np.average(y_true)
numpy.average
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright © 2022 <NAME> """Wavefront aberration calculations Functions for setting up and calculating wavefront aberrations for (fld, wvl, foc), including focus and image shift. .. Created on Thu Mar 31 22:28:44 2022 .. codeauthor: <NAME> """ from math import sqrt import numpy as np from rayoptics.optical import model_constants as mc from rayoptics.elem.transform import transform_after_surface from rayoptics.util.misc_math import normalize def calculate_reference_sphere(opt_model, fld, wvl, foc, chief_ray_pkg, image_pt_2d=None): """Compute the reference sphere for a defocussed image point at **fld**. Args: opt_model: :class:`~.OpticalModel` instance fld: :class:`~.Field` point for wave aberration calculation wvl: wavelength of ray (nm) foc: defocus amount chief_ray_pkg: input tuple of chief_ray, cr_exp_seg image_pt_2d: x, y image point in (defocussed) image plane, if None, use the chief ray coordinate. Returns: ref_sphere: tuple of image_pt, ref_dir, ref_sphere_radius """ cr, cr_exp_seg = chief_ray_pkg # cr_exp_pt: E upper bar prime: pupil center for pencils from Q # cr_exp_pt, cr_b4_dir, cr_dst # cr_exp_pt = cr_exp_seg[mc.p] if image_pt_2d is None: # get distance along cr corresponding to a z shift of the defocus dist = foc / cr.ray[-1][mc.d][2] image_pt = cr.ray[-1][mc.p] + dist*cr.ray[-1][mc.d] else: image_pt = np.array([image_pt_2d[0], image_pt_2d[1], foc]) # get the image point wrt the final surface image_thi = opt_model['seq_model'].gaps[-1].thi img_pt = np.array(image_pt) img_pt[2] += image_thi # R' radius of reference sphere for O' ref_sphere_vec = img_pt - cr_exp_seg[mc.p] ref_sphere_radius = np.linalg.norm(ref_sphere_vec) ref_dir = normalize(ref_sphere_vec) ref_sphere = (image_pt, ref_dir, ref_sphere_radius) return ref_sphere def transfer_to_exit_pupil(interface, ray_seg, exp_dst_parax): """Given the exiting interface and chief ray data, return exit pupil ray coords. Args: interface: the exiting :class:'~.Interface' for the path sequence ray_seg: ray segment exiting from **interface** exp_dst_parax: z distance to the paraxial exit pupil Returns: (**exp_pt**, **exp_dir**, **exp_dst**) - **exp_pt** - ray intersection with exit pupil plane - **exp_dir** - direction cosine of the ray in exit pupil space - **exp_dst** - distance from interface to exit pupil pt """ b4_pt, b4_dir = transform_after_surface(interface, ray_seg) # h = b4_pt[0]**2 + b4_pt[1]**2 # u = b4_dir[0]**2 + b4_dir[1]**2 # handle field points in the YZ plane h = b4_pt[1] u = b4_dir[1] if abs(u) < 1e-14: exp_dst = exp_dst_parax else: # exp_dst = -np.sign(b4_dir[2])*sqrt(h/u) exp_dst = -h/u exp_pt = b4_pt + exp_dst*b4_dir exp_dir = b4_dir return exp_pt, exp_dir, exp_dst, interface, b4_pt, b4_dir # --- Wavefront aberration def eic_distance(r, r0): """ calculate equally inclined chord distance between 2 rays Args: r: (p, d), where p is a point on the ray r and d is the direction cosine of r r0: (p0, d0), where p0 is a point on the ray r0 and d0 is the direction cosine of r0 Returns: float: distance along r from equally inclined chord point to p """ # eq 3.9 e = (np.dot(r[mc.d] + r0[mc.d], r[mc.p] - r0[mc.p]) / (1. +
np.dot(r[mc.d], r0[mc.d])
numpy.dot
""" keras.py Methods to create, use, save and load pilots. Pilots contain the highlevel logic used to determine the angle and throttle of a vehicle. Pilots can include one or more models to help direct the vehicles motion. """ from abc import ABC, abstractmethod import numpy as np from typing import Dict, Any, Tuple, Optional, Union import donkeycar as dk from donkeycar.utils import normalize_image, linear_bin, process_image, linear_unbin from donkeycar.pipeline.types import TubRecord import tensorflow as tf from tensorflow import keras from tensorflow.keras.layers import Input, Dense from tensorflow.keras.layers import Conv2D, MaxPooling2D, \ BatchNormalization from tensorflow.keras.layers import Activation, Dropout, Flatten from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import TimeDistributed as TD from tensorflow.keras.layers import Conv3D, MaxPooling3D, Conv2DTranspose from tensorflow.keras.backend import concatenate from tensorflow.keras.models import Model, Sequential from tensorflow.python.keras.callbacks import EarlyStopping, ModelCheckpoint from tensorflow.keras.optimizers import Optimizer ONE_BYTE_SCALE = 1.0 / 255.0 # type of x XY = Union[float, np.ndarray, Tuple[float, ...], Tuple[np.ndarray, ...]] class KerasPilot(ABC): """ Base class for Keras models that will provide steering and throttle to guide a car. """ def __init__(self) -> None: self.model: Optional[Model] = None self.optimizer = "adam" self.s_t = None print(f'Created {self}') def load(self, model_path: str) -> None: self.model = keras.models.load_model(model_path, compile=False) def load_weights(self, model_path: str, by_name: bool = True) -> None: assert self.model, 'Model not set' self.model.load_weights(model_path, by_name=by_name) def shutdown(self) -> None: pass def compile(self) -> None: pass def set_optimizer(self, optimizer_type: str, rate: float, decay: float) -> None: assert self.model, 'Model not set' if optimizer_type == "adam": self.model.optimizer = keras.optimizers.Adam(lr=rate, decay=decay) elif optimizer_type == "sgd": self.model.optimizer = keras.optimizers.SGD(lr=rate, decay=decay) elif optimizer_type == "rmsprop": self.model.optimizer = keras.optimizers.RMSprop(lr=rate, decay=decay) else: raise Exception("unknown optimizer type: %s" % optimizer_type) def get_input_shape(self) -> tf.TensorShape: assert self.model, 'Model not set' return self.model.inputs[0].shape def run(self, img_arr: np.ndarray, other_arr: np.ndarray = None) \ -> Tuple[Union[float, np.ndarray], ...]: """ Donkeycar parts interface to run the part in the loop. :param img_arr: uint8 [0,255] numpy array with image data :param other_arr: numpy array of additional data to be used in the pilot, like IMU array for the IMU model or a state vector in the Behavioural model :return: tuple of (angle, throttle) """ norm_arr = normalize_image(img_arr) x_t = process_image(norm_arr) if not self.s_t: self.s_t = np.stack((x_t,x_t,x_t,x_t),axis=2) # In Keras, need to reshape self.s_t = self.s_t.reshape(1, self.s_t.shape[0], self.s_t.shape[1], self.s_t.shape[2]) #1*80*80*4 else: x_t = x_t.reshape(1, x_t.shape[0], x_t.shape[1], 1) #1x80x80x1 self.s_t =
np.append(x_t, self.s_t[:, :, :, :3], axis=3)
numpy.append
import numpy as np import matplotlib as plt import os import serial import time import h5py import sys import matplotlib.pyplot as plt from frgpl.camera import camera from frgpl.stage import stage from frgpl.kepco import kepco from frgpl.daq import daq from frgpl.laser import laser from frgpl.tec import omega import datetime import time from mpl_toolkits.axes_grid1 import make_axes_locatable from tqdm import tqdm import threading import pdb import winsound from frgpl.checkPLmaps import plotPL soundpath='C:\\Users\\Operator\\Documents\\GitHub\\Instruments\\FRG Hardware\\frgpl\\frgpl\\tada.wav' root = 'C:\\Users\\Operator\\Desktop\\frgPL' #default folder to save data if not os.path.exists(root): os.mkdir(root) datafolder = os.path.join(root, 'Data') if not os.path.exists(datafolder): os.mkdir(datafolder) calibrationfolder = os.path.join(root, 'Calibration') if not os.path.exists(calibrationfolder): os.mkdir(calibrationfolder) class control: def __init__(self, kepcoport = 'COM5',laserport = 'COM1', spotmapnumber = None): # hardware properties self.kepcoport = kepcoport self.laserport = laserport self.__laserON = False self.__kepcoON = False self.__cameraON = False # measurement settings self.bias = 0 #bias applied to sample self.laserpower = 0 #current supplied to laser ###may replace this with n_suns, if calibration is enabled self.saturationtime = 0.5 #delay between applying voltage/illumination and beginning measurement self.numIV = 20 #number of IV measurements to average self.numframes = 50 #number of image frames to average self.__temperature = 25 #TEC stage temperature setpoint (C) during measurement self.temperatureTolerance = 0.2 #how close to the setpoint we need to be to take a measurement (C) self.maxSoakTime = 60 # max soak time, in seconds, to wait for temperature to reach set point. If we reach this point, just go ahead with the measurement self.note = '' self._spotMap = None # optical power map of laser spot, used for PL normalization self._sampleOneSun = None # fractional laser power with which to approximate one-sun injection levels self._sampleOneSunJsc = None # target Jsc, matching of which is used for one-sun injection level is approximated self._sampleOneSunSweep = None # fractional laser power vs photocurrent (Isc), fit to provide one-sun estimate self.__previewFigure = None #handle for matplotlib figure, used for previewing most recent image results self.__previewAxes = [None, None] # handle for matplotib axes, used to hold the image and colorbar self.__backgroundImage = None # data saving settings todaysDate = datetime.datetime.now().strftime('%Y%m%d') self.outputDirectory = os.path.join(root, 'Data', todaysDate) #default save locations is desktop/frgPL/Data/(todaysDate) self.sampleName = None self.__dataBuffer = [] # buffer to hold data files during sequential measurements of single sample. Held until a batch export # stage/positioning constants self.__sampleposition = (52000, 56000) #position where TEC stage is centered in camera FOV, um self.__detectorposition = (68000, 117000) #delta position between detector and sampleposition, um. self.__fov = (77000, 56000) #dimensions of FOV, um self.connect() self.loadSpotCalibration(spotmapnumber) @property def temperature(self): return self.__temperature @temperature.setter def temperature(self, t): if self.tec.setSetPoint(t): self.__temperature = t def connect(self): self.camera = camera() # connect to FLIR camera self.kepco = kepco() # connect to Kepco self.kepco.set(voltage=0) # set voltage to 0, seems to solve current compliance issues self.laser = laser() # Connect to OSTECH Laser self.daq = daq() # connect to NI-USB6000 DAQ self.stage = stage(sampleposition = self.__sampleposition) # connect to FRG stage self.tec = omega() # connect to omega PID controller, which is driving the TEC stage. def disconnect(self): try: self.camera.disconnect() except: print('Could not disconnect camera') try: self.kepco.disconnect() except: print('Could not disconnect Kepco') try: self.laser.disconnect() except: print('Could not disconnect OSTech Laser') try: self.daq.disconnect() except: print('Could not disconnect DAQ') try: self.stage.disconnect() except: print('Could not disconnect stage') try: self.tec.disconnect() except: print('Could not disconnect TEC controller') ### basic use functions def setMeas(self, bias = None, laserpower = None, suns = None, saturationtime = None, temperature = None, numIV = None, numframes = None, note = ''): if bias is None: bias = self.bias if laserpower is None: if suns is None: laserpower = self.laserpower else: if self._sampleOneSun is None: print('Error: can\'t use "suns =" without calibration - please run .findOneSun to calibrate one-sun power level for this sample.') return False else: laserpower = suns * self._sampleOneSun if (laserpower > 1) or (laserpower < 0): maxsuns = 1/self._sampleOneSun print('Error: {0} suns is out of range! Based on laser power and current sample, allowed suns range = 0 - {1}.'.format(suns, maxsuns)) if laserpower > 1: print('Setting to max laser power ({0} suns)'.format(maxsuns)) laserpower = 1 else: print('Setting laser off') laserpower = 0 # return False if saturationtime is None: saturationtime = self.saturationtime if temperature is None: temperature = self.__temperature if numIV is None: numIV = self.numIV if numframes is None: numframes = self.numframes result = self.kepco.set(voltage = bias) if result: self.bias = bias else: print('Error setting kepco') # return False result = self.laser.set(power = laserpower) if result: self.laserpower = laserpower else: print('Error setting laser') # return False result = self.tec.setSetPoint(temperature) if result: self.__temperature = temperature else: print('Error setting TEC temperature') # return False self.numIV = numIV self.numframes = numframes self.note = note def takeMeas(self, lastmeasurement = True, preview = True, imputeHotPixels = False): ### takes a measurement with settings stored in method (can be set with .setMeas()). # measurement settings + results are appended to .__dataBuffer # # if .__dataBuffer is empty (ie, no measurements have been taken yet), takeMeas() will # automatically take a 0 bias, 0 laser power baseline measurement before the scheduled # measurement. if len(self.__dataBuffer) == 0: # sample is being measured for the first time, take a baseline image print('New sample: taking a 0 bias, 0 illumination baseline image.') # store scheduled measurement parameters savedlaserpower = self.laserpower savedbias = self.bias savednote = self.note # take a 0 bias, 0 laserpower measurement, append to .__dataBuffer self.setMeas(bias = 0, laserpower = 0, note = 'automatic baseline image') self._waitForTemperature() measdatetime = datetime.datetime.now() temperature = self.tec.getTemperature() im, _, _ = self.camera.capture(frames = self.numframes, imputeHotPixels = imputeHotPixels) v, i = self.kepco.read(counts = self.numIV) irradiance = self._getOpticalPower() temperature = (temperature + self.tec.getTemperature()) / 2 #average the temperature from just before and after the measurement. Typically averaging >1 second of time here. meas = { 'sample': self.sampleName, 'note': self.note, 'date': measdatetime.strftime('%Y-%m-%d'), 'time': measdatetime.strftime('%H:%M:%S'), 'cameraFOV':self.__fov, 'bias': self.bias, 'laserpower': self.laserpower, 'saturationtime': self.saturationtime, 'numIV': self.numIV, 'numframes':self.numframes, 'v_meas': v, 'i_meas': i, 'image': im, 'image_bgcorrected': im-im, 'irradiance_ref': irradiance, 'temperature': temperature, 'temperature_setpoint': self.temperature } self.__dataBuffer.append(meas) self.__backgroundImage = im #store background image for displaying preview # restore scheduled measurement parameters + continue self.setMeas(bias = savedbias, laserpower = savedlaserpower, note = savednote) if not self.__laserON and self.laserpower > 0: self.laser.on() self.__laserON = True if not self.__kepcoON: #and self.bias is not 0: self.kepco.on() #turn on the kepco source self.__kepcoON = True time.sleep(self.saturationtime) #take image, take IV meas during image self._waitForTemperature() measdatetime = datetime.datetime.now() temperature = self.tec.getTemperature() im, _, _ = self.camera.capture(frames = self.numframes, imputeHotPixels = imputeHotPixels) v, i = self.kepco.read(counts = self.numIV) #pdb.set_trace() irradiance = self._getOpticalPower() temperature = (temperature + self.tec.getTemperature()) / 2 #average the temperature from just before and after the measurement. Typically averaging >1 second of time here. if self.__laserON and lastmeasurement: self.laser.off() self.__laserON = False if self.__kepcoON and lastmeasurement: self.kepco.off() self.__kepcoON = False meas = { 'sample': self.sampleName, 'note': self.note, 'date': measdatetime.strftime('%Y-%m-%d'), 'time': measdatetime.strftime('%H:%M:%S'), 'cameraFOV':self.__fov, 'bias': self.bias, 'laserpower': self.laserpower, 'saturationtime': self.saturationtime, 'numIV': self.numIV, 'numframes':self.numframes, 'v_meas': v, 'i_meas': i, 'image': im, 'image_bgcorrected': self._backgroundCorrection(im), 'irradiance_ref': irradiance, 'temperature': temperature, 'temperature_setpoint': self.temperature } self.__dataBuffer.append(meas) if preview: self.displayPreview(self._backgroundCorrection(im), v, i) return im, v, i def displayPreview(self, img, v, i): def handle_close(evt, self): self.__previewFigure = None self.__previewAxes = [None, None] if self.__previewFigure is None: #preview window is not created yet, lets make it plt.ioff() self.__previewFigure, self.__previewAxes[0] = plt.subplots() divider = make_axes_locatable(self.__previewAxes[0]) self.__previewAxes[1] = divider.append_axes('right', size='5%', pad=0.05) self.__previewFigure.canvas.mpl_connect('close_event', lambda x: handle_close(x, self)) # if preview figure is closed, lets clear the figure/axes handles so the next preview properly recreates the handles plt.ion() plt.show() for ax in self.__previewAxes: #clear the axes ax.clear() img_handle = self.__previewAxes[0].imshow(img) self.__previewFigure.colorbar(img_handle, cax = self.__previewAxes[1]) self.__previewAxes[0].set_title('{0} V, {1} A, {2} Laser'.format(v, i, self.laserpower)) self.__previewFigure.canvas.draw() self.__previewFigure.canvas.flush_events() time.sleep(1e-4) #pause allows plot to update during series of measurements def save(self, samplename = None, note = '', outputdirectory = None, reset = True): if len(self.__dataBuffer) == 0: print('Data buffer is empty - no data to save!') return False ## figure out the sample directory, name, total filepath if samplename is not None: self.sampleName = samplename if outputdirectory is not None: self.outputDirectory = outputdirectory if not os.path.exists(self.outputDirectory): os.mkdir(self.outputDirectory) fids = os.listdir(self.outputDirectory) sampleNumber = 1 for fid in fids: if 'frgPL' in fid: sampleNumber = sampleNumber + 1 todaysDate = datetime.datetime.now().strftime('%Y%m%d') if self.sampleName is not None: fname = 'frgPL_{0}_{1:04d}_{2}.h5'.format(todaysDate, sampleNumber, self.sampleName) else: fname = 'frgPL_{0}_{1:04d}.h5'.format(todaysDate, sampleNumber) self.sampleName = '' fpath = os.path.join(self.outputDirectory, fname) ## build each category in h5 file ### example dataset saved to _dataBuffer by .takeMeas # meas = { # 'sample': self.sampleName, # 'date': measdatetime.strftime('%Y-%m-%d'), # 'time': measdatetime.strftime('%H:%M:%S'), # 'cameraFOV':self.__fov, # 'bias': self.bias, # 'laserpower': self.laserpower, # 'saturationtime': self.saturationtime, # 'numIV': self.numIV, # 'numframes':self.numframes, # 'v_meas': v, # 'i_meas': i, # 'image': im, # } numData = len(self.__dataBuffer) data = {} for field in self.__dataBuffer[0].keys(): data[field] = [] ### field to store normalized PL images # if self._spotmap is not None: # data['image_norm'] = [] for meas in self.__dataBuffer: for field, measdata in meas.items(): data[field].append(measdata) ### normalize PL images here # if field is 'image' and self._spotmap is not None: # data['image_norm'] ## write h5 file with h5py.File(fpath, 'w') as f: # sample info info = f.create_group('/info') info.attrs['description'] = 'Metadata describing sample, datetime, etc.' temp = info.create_dataset('name', data = self.sampleName.encode('utf-8')) temp.attrs['description'] = 'Sample name.' temp = info.create_dataset('notes', data = np.array(note.encode('utf-8'))) temp.attrs['description'] = 'Any notes describing each measurement.' date = info.create_dataset('date', data = np.array([x.encode('utf-8') for x in data['date']])) temp.attrs['description'] = 'Measurement date.' temp = info.create_dataset('time', data = np.array([x.encode('utf-8') for x in data['time']])) temp.attrs['description'] = 'Measurement time of day.' # measurement settings settings = f.create_group('/settings') settings.attrs['description'] = 'Settings used for measurements.' temp = settings.create_dataset('vbias', data = np.array(data['bias'])) temp.attrs['description'] = 'Nominal voltage bias set by Kepco during measurement.' temp = settings.create_dataset('notes', data = np.array([x.encode('utf-8') for x in data['note']])) temp.attrs['description'] = 'Any notes describing each measurement.' temp = settings.create_dataset('laserpower', data = np.array(data['laserpower'])) temp.attrs['description'] = 'Fractional laser power during measurement. Calculated as normalized laser current (max current = 55 A). Laser is operated at steady state.' temp = settings.create_dataset('sattime', data = np.array(data['saturationtime'])) temp.attrs['description'] = 'Saturation time for laser/bias conditioning prior to sample measurement. Delay between applying condition and measuring, in seconds.' temp = settings.create_dataset('numIV', data = np.array(data['numIV'])) temp.attrs['description'] = 'Number of current/voltage measurements averaged by Kepco when reading IV.' temp = settings.create_dataset('numframes', data = np.array(data['numframes'])) temp.attrs['description'] = 'Number of camera frames averaged when taking image.' temp = settings.create_dataset('tempsp', data = np.array(data['temperature_setpoint'])) temp.attrs['description'] = 'TEC stage temperature setpoint for each measurement.' if self.stage.position[0] is None: stagepos = self.__sampleposition else: stagepos = self.stage.position temp = settings.create_dataset('position', data = np.array(stagepos)) temp.attrs['description'] = 'Stage position during measurement.' if self._sampleOneSun is not None: suns = [x/self._sampleOneSun for x in data['laserpower']] temp = settings.create_dataset('suns', data = np.array(suns)) temp.attrs['description'] = 'PL injection level in terms of suns. Only present if sample was calibrated with .findOneSun to match measured Isc to provided expected value, presumably from solar simulator JV curve.' # calibrations calibrations = f.create_group('/calibrations') calibrations.attrs['description'] = 'Instrument calibrations to be used for data analysis.' temp = settings.create_dataset('samplepos', data = np.array(self.__sampleposition)) temp.attrs['description'] = 'Stage position (um)[x,y] where sample is centered in camera field of view' temp = settings.create_dataset('detectorpos', data = np.array(self.__detectorposition)) temp.attrs['description'] = 'Stage position (um) [x,y] where photodetector is centered in camera field of view' temp = settings.create_dataset('camerafov', data = np.array(self.__fov)) temp.attrs['description'] = 'Camera field of view (um) [x,y]' if self._spotMap is not None: temp = calibrations.create_dataset('spot', data = np.array(self._spotMap)) temp.attrs['description'] = 'Map [y, x] of incident optical power across camera FOV, can be used to normalize PL images. Laser power set to 0.5 during spot mapping.' temp = calibrations.create_dataset('spotx', data = np.array(self._spotMapX)) temp.attrs['description'] = 'X positions (um) for map of incident optical power across camera FOV, can be used to normalize PL images.' temp = calibrations.create_dataset('spoty', data = np.array(self._spotMap)) temp.attrs['description'] = 'Y positions (um) for map of incident optical power across camera FOV, can be used to normalize PL images.' if self._sampleOneSunSweep is not None: temp = calibrations.create_dataset('onesunsweep', data = np.array(self._sampleOneSunSweep)) temp.attrs['description'] = 'Laser current vs photocurrent, measured for this sample. Column 1: fractional laser current. Column 2: total photocurrent (Isc), NOT current density (Jsc). Only present if sample was calibrated with .findOneSun to match measured Isc to provided expected value, presumably from solar simulator JV curve.' temp = calibrations.create_dataset('onesun', data =
np.array(self._sampleOneSun)
numpy.array
# -*- coding: utf-8 -*- # @Time : 2019/3/19 20:19 # @Author : Alan # @Email : <EMAIL> # @File : train.py # @Software: PyCharm import time import logging import numpy as np import tensorflow as tf import os import tqdm import sys from copy import deepcopy stdout = sys.stdout from data_helper import * from model import SiameseQACNN from model_utils import * # 创建一个logger logger = logging.getLogger('mylogger') logger.setLevel(logging.DEBUG) # 创建一个handler,用于写入日志文件 timestamp = str(int(time.time())) fh = logging.FileHandler('./log/log_' + timestamp +'.txt') fh.setLevel(logging.DEBUG) # 定义handler的输出格式 formatter = logging.Formatter('[%(asctime)s][%(levelname)s] ## %(message)s') fh.setFormatter(formatter) # ch.setFormatter(formatter) # 给logger添加handler logger.addHandler(fh) # logger.addHandler(ch) class NNConfig(object): def __init__(self, embeddings=None): # 输入问题(句子)长度 self.ques_length = 25 # 输入答案长度 self.ans_length = 90 # 循环数 self.num_epochs = 100 # batch大小 self.batch_size = 128 # 不同类型的filter,对应不同的尺寸 self.window_sizes = [1, 2, 3, 5, 7, 9] # 隐层大小 self.hidden_size = 128 self.output_size = 128 self.keep_prob = 0.5 # 每种filter的数量 self.n_filters = 128 # margin大小 self.margin = 0.5 # 词向量大小 self.embeddings = np.array(embeddings).astype(np.float32) # 学习率 self.learning_rate = 0.001 # contrasive loss 中的 positive loss部分的权重 self.pos_weight = 0.25 # 优化器 self.optimizer = 'adam' self.clip_value = 5 self.l2_lambda = 0.0001 # 评测 self.eval_batch = 100 # self.cf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) # self.cf.gpu_options.per_process_gpu_memory_fraction = 0.2 def evaluate(sess, model, corpus, config): iterator = Iterator(corpus) count = 0 total_qids = [] total_aids = [] total_pred = [] total_labels = [] total_loss = 0. Acc = [] for batch_x in iterator.next(config.batch_size, shuffle=False): batch_qids, batch_q, batch_aids, batch_a, batch_qmask, batch_amask, labels = zip(*batch_x) batch_q = np.asarray(batch_q) batch_a = np.asarray(batch_a) q_ap_cosine, loss, acc = sess.run([model.q_a_cosine, model.total_loss, model.accu], feed_dict={model._ques: batch_q, model._ans: batch_a, model._ans_neg: batch_a, model.dropout_keep_prob: 1.0}) total_loss += loss Acc.append(acc) count += 1 total_qids.append(batch_qids) total_aids.append(batch_aids) total_pred.append(q_ap_cosine) total_labels.append(labels) # print(batch_qids[0], [id2word[_] for _ in batch_q[0]], # batch_aids[0], [id2word[_] for _ in batch_ap[0]]) total_qids = np.concatenate(total_qids, axis=0) total_aids = np.concatenate(total_aids, axis=0) total_pred = np.concatenate(total_pred, axis=0) total_labels = np.concatenate(total_labels, axis=0) MAP, MRR = eval_map_mrr(total_qids, total_aids, total_pred, total_labels) acc_ = np.sum(Acc)/count ave_loss = total_loss/count # print('Eval loss:{}'.format(total_loss / count)) return MAP, MRR, ave_loss, acc_ def test(corpus, config): with tf.Session() as sess: model = SiameseQACNN(config) saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint(best_path)) test_MAP, test_MRR, _, acc = evaluate(sess, model, corpus, config) print('start test...............') print("-- test MAP %.5f -- test MRR %.5f" % (test_MAP, test_MRR)) def train(train_corpus, val_corpus, test_corpus, config, eval_train_corpus=None): iterator = Iterator(train_corpus) if not os.path.exists(save_path): os.makedirs(save_path) if not os.path.exists(best_path): os.makedirs(best_path) with tf.Session() as sess: # training print('Start training and evaluating ...') start_time = time.time() model = SiameseQACNN(config) saver = tf.train.Saver(tf.global_variables(), max_to_keep=10) best_saver = tf.train.Saver(tf.global_variables(), max_to_keep=5) ckpt = tf.train.get_checkpoint_state(save_path) print('Configuring TensorBoard and Saver ...') summary_writer = tf.summary.FileWriter(save_path, graph=sess.graph) if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): print('Reloading model parameters..') saver.restore(sess, ckpt.model_checkpoint_path) else: print('Created new model parameters..') sess.run(tf.global_variables_initializer()) # count trainable parameters total_parameters = count_parameters() print('Total trainable parameters : {}'.format(total_parameters)) current_step = 0 best_map_val = 0.0 best_mrr_val = 0.0 last_dev_map = 0.0 last_dev_mrr = 0.0 for epoch in range(config.num_epochs): print("----- Epoch {}/{} -----".format(epoch + 1, config.num_epochs)) count = 0 for batch_x in iterator.next(config.batch_size, shuffle=True): batch_q, batch_a_pos, batch_a_neg, batch_qmask, batch_a_pos_mask, batch_a_neg_mask = zip(*batch_x) batch_q =
np.asarray(batch_q)
numpy.asarray
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2019. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Methods for working with the CNOT-dihedral group. Example: from dihedral import CNOTDihedral g = CNOTDihedral(3) # create identity element on 3 qubits g.cnot(0,1) # apply CNOT from qubit 0 to qubit 1 g.flip(2) # apply X on qubit 2 g.phase(3, 1) # apply T^3 on qubit 1 print(g) # pretty print g phase polynomial = 0 + 3*x_0 + 3*x_1 + 2*x_0*x_1 affine function = (x_0,x_0 + x_1,x_2 + 1) This means that |x_0 x_1 x_2> transforms to omega^{p(x)}|f(x)>, where omega = exp(i*pi/4) from which we can read that T^3 on qubit 1 AFTER CNOT_{0,1} is the same as T^3 on qubit 0, T^3 on qubit 1, and CS_{0,1} BEFORE CNOT_{0,1}. """ import itertools from itertools import combinations import copy from functools import reduce from operator import mul import numpy as np from numpy.random import RandomState from qiskit.exceptions import QiskitError from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit.quantum_info.operators.operator import Operator from qiskit.quantum_info.operators.pauli import Pauli from qiskit.quantum_info.operators.scalar_op import ScalarOp from qiskit.circuit import QuantumCircuit, Instruction from qiskit.circuit.library import U1Gate class SpecialPolynomial(): """Multivariate polynomial with special form. Maximum degree 3, n Z_2 variables, coefficients in Z_8. """ def __init__(self, n_vars): """Construct the zero polynomial on n_vars variables.""" # 1 constant term # n linear terms x_1, ..., x_n # {n choose 2} quadratic terms x_1x_2, x_1x_3, ..., x_{n-1}x_n # {n choose 3} cubic terms x_1x_2x_3, ..., x_{n-2}x_{n-1}x_n # and coefficients in Z_8 if n_vars < 1: raise QiskitError("n_vars for SpecialPolynomial is too small.") self.n_vars = n_vars self.nc2 = int(n_vars * (n_vars-1) / 2) self.nc3 = int(n_vars * (n_vars-1) * (n_vars-2) / 6) self.weight_0 = 0 self.weight_1 = np.zeros(n_vars, dtype=np.int8) self.weight_2 = np.zeros(self.nc2, dtype=np.int8) self.weight_3 = np.zeros(self.nc3, dtype=np.int8) def mul_monomial(self, indices): """Multiply by a monomial given by indices. Returns the product. """ length = len(indices) if length >= 4: raise QiskitError("There is no term with on more than 3 indices.") indices_arr = np.array(indices) if (indices_arr < 0).any() and (indices_arr > self.n_vars).any(): raise QiskitError("Indices are out of bounds.") if length > 1 and (np.diff(indices_arr) <= 0).any(): raise QiskitError("Indices are non-increasing!") result = SpecialPolynomial(self.n_vars) if length == 0: result = copy.deepcopy(self) else: terms0 = [[]] terms1 = list(combinations(range(self.n_vars), r=1)) terms2 = list(combinations(range(self.n_vars), r=2)) terms3 = list(combinations(range(self.n_vars), r=3)) for term in terms0 + terms1 + terms2 + terms3: value = self.get_term(term) new_term = list(set(term).union(set(indices))) result.set_term(new_term, (result.get_term(new_term) + value) % 8) return result def __mul__(self, other): """Multiply two polynomials.""" if not isinstance(other, SpecialPolynomial): other = int(other) result = SpecialPolynomial(self.n_vars) if isinstance(other, int): result.weight_0 = (self.weight_0 * other) % 8 result.weight_1 = (self.weight_1 * other) % 8 result.weight_2 = (self.weight_2 * other) % 8 result.weight_3 = (self.weight_3 * other) % 8 else: if self.n_vars != other.n_vars: raise QiskitError("Multiplication on different n_vars.") terms0 = [[]] terms1 = list(combinations(range(self.n_vars), r=1)) terms2 = list(combinations(range(self.n_vars), r=2)) terms3 = list(combinations(range(self.n_vars), r=3)) for term in terms0 + terms1 + terms2 + terms3: value = other.get_term(term) if value != 0: temp = copy.deepcopy(self) temp = temp.mul_monomial(term) temp = temp * value result = result + temp return result def __rmul__(self, other): """Right multiplication. This operation is commutative. """ return self.__mul__(other) def __add__(self, other): """Add two polynomials.""" if not isinstance(other, SpecialPolynomial): raise QiskitError("Element to add is not a SpecialPolynomial.") if self.n_vars != other.n_vars: raise QiskitError("Addition on different n_vars.") result = SpecialPolynomial(self.n_vars) result.weight_0 = (self.weight_0 + other.weight_0) % 8 result.weight_1 = (self.weight_1 + other.weight_1) % 8 result.weight_2 = (self.weight_2 + other.weight_2) % 8 result.weight_3 = (self.weight_3 + other.weight_3) % 8 return result def evaluate(self, xval): """Evaluate the multinomial at xval. if xval is a length n z2 vector, return element of Z8. if xval is a length n vector of multinomials, return a multinomial. The multinomials must all be on n vars. """ if len(xval) != self.n_vars: raise QiskitError("Evaluate on wrong number of variables.") check_int = list(map(lambda x: isinstance(x, int), xval)) check_poly = list(map(lambda x: isinstance(x, SpecialPolynomial), xval)) if False in check_int and False in check_poly: raise QiskitError("Evaluate on a wrong type.") is_int = (False not in check_int) if not is_int: if False in [i.n_vars == self.n_vars for i in xval]: raise QiskitError("Evaluate on incompatible polynomials.") else: xval = xval % 2 # Examine each term of this polynomial terms0 = [[]] terms1 = list(combinations(range(self.n_vars), r=1)) terms2 = list(combinations(range(self.n_vars), r=2)) terms3 = list(combinations(range(self.n_vars), r=3)) # Set the initial result and start for each term if is_int: result = 0 start = 1 else: result = SpecialPolynomial(self.n_vars) start = SpecialPolynomial(self.n_vars) start.weight_0 = 1 # Compute the new terms and accumulate for term in terms0 + terms1 + terms2 + terms3: value = self.get_term(term) if value != 0: newterm = reduce(mul, [xval[j] for j in term], start) result = result + value * newterm if isinstance(result, int): result = result % 8 return result def set_pj(self, indices): """Set to special form polynomial on subset of variables. p_J(x) := sum_{a subseteq J,|a| neq 0} (-2)^{|a|-1}x^a """ indices_arr = np.array(indices) if (indices_arr < 0).any() or (indices_arr >= self.n_vars).any(): raise QiskitError("Indices are out of bounds.") indices = sorted(indices) subsets_2 = itertools.combinations(indices, 2) subsets_3 = itertools.combinations(indices, 3) self.weight_0 = 0 self.weight_1 = np.zeros(self.n_vars) self.weight_2 = np.zeros(self.nc2) self.weight_3 = np.zeros(self.nc3) for j in indices: self.set_term([j], 1) for j in subsets_2: self.set_term(list(j), 6) for j in subsets_3: self.set_term(list(j), 4) def get_term(self, indices): """Get the value of a term given the list of variables. Example: indices = [] returns the constant indices = [0] returns the coefficient of x_0 indices = [0,3] returns the coefficient of x_0x_3 indices = [0,1,3] returns the coefficient of x_0x_1x_3 If len(indices) > 3 the method fails. If the indices are out of bounds the method fails. If the indices are not increasing the method fails. """ length = len(indices) if length >= 4: return 0 indices_arr = np.array(indices) if (indices_arr < 0).any() or (indices_arr >= self.n_vars).any(): raise QiskitError("Indices are out of bounds.") if length > 1 and (np.diff(indices_arr) <= 0).any(): raise QiskitError("Indices are non-increasing.") if length == 0: return self.weight_0 if length == 1: return self.weight_1[indices[0]] if length == 2: # sum(self.n_vars-j, {j, 1, indices[0]}) offset_1 = int(indices[0] * self.n_vars - ((indices[0] + 1) * indices[0])/2) offset_2 = int(indices[1] - indices[0] - 1) return self.weight_2[offset_1 + offset_2] # handle length = 3 tmp_1 = self.n_vars - indices[0] offset_1 = int((tmp_1 - 3) * (tmp_1 - 2) * (tmp_1 - 1) / 6) tmp_2 = self.n_vars - indices[1] offset_2 = int((tmp_2 - 2) * (tmp_2 - 1) / 2) offset_3 = self.n_vars - indices[2] offset = int(self.n_vars * (self.n_vars - 1) * (self.n_vars - 2) / 6 - offset_1 - offset_2 - offset_3) return self.weight_3[offset] def set_term(self, indices, value): """Set the value of a term given the list of variables. Example: indices = [] returns the constant indices = [0] returns the coefficient of x_0 indices = [0,3] returns the coefficient of x_0x_3 indices = [0,1,3] returns the coefficient of x_0x_1x_3 If len(indices) > 3 the method fails. If the indices are out of bounds the method fails. If the indices are not increasing the method fails. The value is reduced modulo 8. """ length = len(indices) if length >= 4: return indices_arr = np.array(indices) if (indices_arr < 0).any() or (indices_arr >= self.n_vars).any(): raise QiskitError("Indices are out of bounds.") if length > 1 and (np.diff(indices_arr) <= 0).any(): raise QiskitError("Indices are non-increasing.") value = value % 8 if length == 0: self.weight_0 = value elif length == 1: self.weight_1[indices[0]] = value elif length == 2: # sum(self.n_vars-j, {j, 1, indices[0]}) offset_1 = int(indices[0] * self.n_vars - ((indices[0] + 1) * indices[0])/2) offset_2 = int(indices[1] - indices[0] - 1) self.weight_2[offset_1 + offset_2] = value else: # length = 3 tmp_1 = self.n_vars - indices[0] offset_1 = int((tmp_1 - 3) * (tmp_1 - 2) * (tmp_1 - 1) / 6) tmp_2 = self.n_vars - indices[1] offset_2 = int((tmp_2 - 2) * (tmp_2 - 1) / 2) offset_3 = self.n_vars - indices[2] offset = int(self.n_vars * (self.n_vars - 1) * (self.n_vars - 2) / 6 - offset_1 - offset_2 - offset_3) self.weight_3[offset] = value @property def key(self): """Return a string representation.""" tup = (self.weight_0, tuple(self.weight_1), tuple(self.weight_2), tuple(self.weight_3)) return str(tup) def __eq__(self, x): """Test equality.""" return isinstance(x, SpecialPolynomial) and self.key == x.key def __str__(self): """Return formatted string representation.""" out = str(self.weight_0) for i in range(self.n_vars): value = self.get_term([i]) if value != 0: out += " + " if value != 1: out += (str(value) + "*") out += ("x_" + str(i)) for i in range(self.n_vars-1): for j in range(i+1, self.n_vars): value = self.get_term([i, j]) if value != 0: out += " + " if value != 1: out += (str(value) + "*") out += ("x_" + str(i) + "*x_" + str(j)) for i in range(self.n_vars-2): for j in range(i+1, self.n_vars-1): for k in range(j+1, self.n_vars): value = self.get_term([i, j, k]) if value != 0: out += " + " if value != 1: out += (str(value) + "*") out += ("x_" + str(i) + "*x_" + str(j) + "*x_" + str(k)) return out class CNOTDihedral(BaseOperator): """CNOT-dihedral Object Class. The CNOT-dihedral group on num_qubits qubits is generated by the gates CNOT, T and X. References: 1. <NAME> and <NAME>, *On the structure of the CNOT-Dihedral group*, `arXiv:2006.12042 [quant-ph] <https://arxiv.org/abs/2006.12042>`_ 2. <NAME>, Easwar Magesan, <NAME>, <NAME> and <NAME>, *Scalable randomised benchmarking of non-Clifford gates*, npj Quantum Inf 2, 16012 (2016). """ def __init__(self, data, validate=True): """Initialize a CNOTDihedral operator object.""" # Initialize from another CNOTDihedral by sharing the underlying # poly, linear and shift if isinstance(data, CNOTDihedral): self.linear = data.linear self.shift = data.shift self.poly = data.poly # Initialize from ScalarOp as N-qubit identity discarding any global phase elif isinstance(data, ScalarOp): if not data.is_unitary() or set(data._input_dims) != {2} or \ data.num_qubits is None: raise QiskitError("Can only initialize from N-qubit identity ScalarOp.") self._num_qubits = data.num_qubits # phase polynomial self.poly = SpecialPolynomial(self._num_qubits) # n x n invertible matrix over Z_2 self.linear = np.eye(self._num_qubits, dtype=np.int8) # binary shift, n coefficients in Z_2 self.shift = np.zeros(self._num_qubits, dtype=np.int8) # Initialize from a QuantumCircuit or Instruction object elif isinstance(data, (QuantumCircuit, Instruction)): self._num_qubits = data.num_qubits elem = self.from_circuit(data) self.poly = elem.poly self.linear = elem.linear self.shift = elem.shift # Construct the identity element on num_qubits qubits. elif isinstance(data, int): self._num_qubits = data # phase polynomial self.poly = SpecialPolynomial(self._num_qubits) # n x n invertible matrix over Z_2 self.linear = np.eye(self._num_qubits, dtype=np.int8) # binary shift, n coefficients in Z_2 self.shift = np.zeros(self._num_qubits, dtype=np.int8) elif isinstance(data, Pauli): self._num_qubits = data.num_qubits elem = self.from_circuit(data.to_instruction()) self.poly = elem.poly self.linear = elem.linear self.shift = elem.shift # Initialize BaseOperator super().__init__(num_qubits=self._num_qubits) # Validate the CNOTDihedral element if validate and not self.is_cnotdihedral(): raise QiskitError('Invalid CNOTDihedsral element.') def _z2matmul(self, left, right): """Compute product of two n x n z2 matrices.""" prod = np.mod(np.dot(left, right), 2) return prod def _z2matvecmul(self, mat, vec): """Compute mat*vec of n x n z2 matrix and vector.""" prod = np.mod(np.dot(mat, vec), 2) return prod def __mul__(self, other): """Left multiplication self * other.""" if self.num_qubits != other.num_qubits: raise QiskitError("Multiplication on different number of qubits.") result = CNOTDihedral(self.num_qubits) result.shift = [(x[0] + x[1]) % 2 for x in zip(self._z2matvecmul(self.linear, other.shift), self.shift)] result.linear = self._z2matmul(self.linear, other.linear) # Compute x' = B1*x + c1 using the p_j identity new_vars = [] for i in range(self.num_qubits): support =
np.arange(self.num_qubits)
numpy.arange
import unittest import nose.tools as nt import numpy as np from daps.utils.pooling import pyramid1d @unittest.skip("A contribution is required") def test_concat1d(): return None def test_pyramid1d(): x = np.array([[0, 4], [4, 2], [0, 4], [2, 0], [1, 2], [1, 4], [3, 4], [1, 4], [1, 1], [4, 2]]) nt.assert_equal((2,), pyramid1d(x).shape) py1_x = pyramid1d(x, 1) nt.assert_equal((6,), py1_x.shape) rst = np.array([2, 3])/np.sqrt(13) np.testing.assert_array_almost_equal(rst, py1_x[4:6]) py2_x = pyramid1d(x, 2) nt.assert_equal((14,), py2_x.shape) rst = np.array([1, 2])/np.sqrt(5)
np.testing.assert_array_almost_equal(rst, py2_x[8:10])
numpy.testing.assert_array_almost_equal
import sys import itertools import numpy as np from lab5 import input_matrix, input_vector def print_matrix(matrix): return(f'\n'.join([' '.join(list(map(str, map(int, i)))) for i in matrix])) def square_task(c, D, A, x, J, J_adv): m = len(A) n = len(A[0]) itr = 1 while True: print(f'\nIteration {itr}:\n') # STEP 1 print('X:\t' + np.array2string(x)) cx = c + x @ D print(f'Cx:\t{np.array2string(cx)}') cbx = np.array([cx[J[i] - 1] for i in range(len(J))]) A_b = np.array([(A[:, J[i] - 1]) for i in range(len(J))]) A_b_inv = np.linalg.inv(A_b) print(f'A_b_inv:\n{print_matrix(A_b_inv)}') ux = -cbx @ A_b_inv print(f'ux:\t{ux}') deltax = ux @ A + cx print(f'deltax:\t{deltax}') # STEP 2 if min(deltax) >= 0: return f'ANSWER:\t{x}' # return # STEP 3 j0 = list(deltax).index(min(deltax)) # python index print(f'j0:\t{j0}') # STEP 4 vector_l = np.zeros(n) vector_l[j0] = 1 print(f'J_adv:\t{J_adv}') l_adv = np.delete(vector_l, J_adv - 1, axis=0) print(f'l_adv:\t{l_adv}') # STEP 4.a # all linear combinations of J(coordinates of Ds elements) D_adv_indx = list( itertools.combinations_with_replacement(J_adv - 1, 2)) lJ = len(J_adv) D_adv = np.zeros([lJ, lJ]) k = 0 for i in range(lJ): for j in range(i, lJ): if D_adv_indx[k][0] != D_adv_indx[k][1]: D_adv[j][i] = D[D_adv_indx[k][1]][D_adv_indx[k][0]] D_adv[i][j] = D[D_adv_indx[k][0]][D_adv_indx[k][1]] k += 1 A_adv_b = np.array([(A[:, J_adv[i] - 1]) for i in range(len(J_adv))]) At_adv_b = np.transpose(A_adv_b) print(f'D_adv:\n{print_matrix(D_adv)}') print(f'A_adv_b:\n{print_matrix(A_adv_b)}') Matrix1 = np.row_stack((D_adv, At_adv_b)) Matrix2 = np.row_stack( (A_adv_b, np.zeros([len(A_adv_b[0]), len(At_adv_b)]))) H = np.column_stack((Matrix1, Matrix2)) # STEP 4.b b_up = np.array([D[:, j0][J_adv[i] - 1] for i in range(len(J_adv))]) print(f'b_up:\t{b_up}') b_down = A[:, j0] print(f'b_down:\t{b_down}') b = np.concatenate((b_up, b_down)) # STEP 4.c print(f'H:\n{print_matrix(H)}') print(f'b:\t{b}') x_hb = -np.linalg.inv(H) @ b print(f'x_hb:\t{x_hb}') ladv = np.array([x_hb[i] for i in range(len(J_adv))]) print(f'ladv:\t{ladv}') vector_l = np.concatenate((ladv, l_adv)) # STEP 5 print(f'vector_l:\t{vector_l}') print(f'D:\n{print_matrix(D)}') delta = vector_l @ D @ vector_l[:, np.newaxis] print(f'delta:\t{delta}') teta = np.full(len(J_adv), np.inf) teta_j0 = np.inf if delta > 0: teta_j0 = abs(deltax[j0]) / delta print(f'teta_j0:\t{teta_j0}') for i in range(len(teta)): if vector_l[i] < 0: teta[i] = -x[i] / vector_l[i] teta = np.append(teta, teta_j0) print(f'teta:\t{teta}') teta0 = min(teta) print(f'teta0:\t{teta0}') if teta0 == np.inf or teta0 > 1e+16: return ('TARGET FUNCTION IS UNBOUNDED') # return js = j0 # j* if teta0 != teta_j0: js = J_adv[list(teta).index(teta0)] - 1 # python index print(f'js:\t{js}') # STEP 6(UPDATE) x = x + teta0 * vector_l print(f'teta0 * vector_l:\t{teta0 * vector_l}') print(f'J:\t{J}\nJ_adv:\t{J_adv}') last_condition = True if js == j0: J_adv = np.append(J_adv, js + 1) last_condition = False elif js + 1 in J_adv and js+1 not in J: J_adv = np.delete(J_adv, np.where(J_adv == js + 1)) last_condition = False elif js + 1 in J: s = list(J).index(js + 1) J_adv_tmp = set(J_adv) - set(J) J_adv_tmp = list(J_adv_tmp) print(f'J_adv_tmp:\t{J_adv_tmp}') for i in range(len(J_adv_tmp)): j_plus = J_adv_tmp[i] # not python index vector_tmp = A_b_inv @ A[:, j_plus - 1] print(vector_tmp) if vector_tmp[s] != 0: J = np.where(J == js + 1, j_plus, J) J_adv = np.delete(J_adv, np.where(J_adv == j_plus)) last_condition = False break if last_condition: J = np.where(J == js + 1, j0 + 1, J) J_adv = np.where(J_adv == js + 1, j0 + 1, J_adv) itr += 1 def test1(): c = np.array([0, -1, 0]) D = np.array([[2, -1, 0], [-1, 2, -1], [0, -1, 2]]) A = np.array([[2, 1, 0], [0, 1, 2]]) x = np.array([0, 2, 1]) J = np.array([2, 3]) J_adv =
np.array([2, 3])
numpy.array
#- This simulation with gpu (with the below parameters) took 14h #- In this experiment we also set lr from 0.01 to 0.0025 # but here with masking is like the no masking case (exp2a-d) with 0.03 to 0.0075 # thefactor of corecction is approx 3. # So: probably we should set the next time for masking case: lr=0.005-0.001 # ssh no100 # screen -S exp2e # cd /export/lv4/user/jfajardourbina/dws_ulf_getm_2D_depth_avg/experiments_post_proc/lagrangian_simulation_36years/machine_learning_github/Lagrangian_ML/notebooks/convlstm # conda activate phd_parcelsv221 # python3 convlstm_dws_exp2e_use_only_displacement_standarized_5std_train_test_adaptive_lr_masking_loss_gpu.py & # to comeback: screen -r exp2e import os import sys import numpy as np import torch import torch.nn.functional from torch.autograd import Variable import matplotlib.pyplot as plt from copy import deepcopy import matplotlib as mpl import glob import xarray as xr import dask as da from tqdm import tqdm # import convlstm sys.path.append("../../../src") import convlstm #path to files--- homee = "/export/lv4/user/jfajardourbina/" dir_post_proc_data=f"{homee}dws_ulf_getm_2D_depth_avg/experiments_post_proc/lagrangian_simulation_36years/machine_learning_github/Lagrangian_ML/post_proc_data/" dir_displacement="net_displacement" dir_interp_wind="wind" #for output after train and test--- exp="exp2e" dir_convlstm_model_out="ouput_convlstm_model_data/" case_train="training"; file_out_train=f"{exp}_train.nc" case_test="testing"; file_out_test=f"{exp}_test.nc" #for plotting--- #dir_wind="{homee}dws_ulf_getm_2D_depth_avg/data/atmosphere/" #winds dir_dws_bound=f"{homee}dws_ulf_getm_2D_depth_avg/experiments_post_proc/analysis_eulerian_data_36years/data_dws_boundaries/" #DWS boundarie with contour0 file_dws_bound0="dws_boundaries_contour0.nc" file_grid=f"{homee}dws_ulf_getm_2D_depth_avg/experiments_post_proc/analysis_eulerian_data_36years/data_bathy_grid/" #topo data #dir_vel = f'{homee}dws_ulf_getm_2D_depth_avg/data/velocity/' #vel data #file_vel="RE.DWS200m.uvz.20090301.nc" #any vel file #file_wind="UERRA.2009.nc4" #any wind file # #savee='everyM2' #saving track data every m2 #deploy='everyM2'#deploy set of particles every m2 #minTsim=60 #mimimum time of simulation (days) #maxTsim=91 #maximum time of simulation (days) #dir_tracks = f"{homee}dws_ulf_getm_2D_depth_avg/experiments_post_proc/lagrangian_simulation_36years/exp-deployHighVolume_coords-xcyc_save-{savee}_deploy-{deploy}_Tsim-{minTsim}-{maxTsim}d/tracks/" # #parameters #npa_per_dep=12967 #number of particles per deployment m2=int(12.42*3600+2) #period in seconds #dx=400/1e3;dy=400/1e3 #particle grid reso #Hyper-parameter of neural network--- run_model = True #True = run model; False = open results from old run input_channels = 2 # number of input channels: u10,v10 wind output_channels = 2 #number of output channels: dx, dy displacement hidden_channels = [6, 3, output_channels] # the last digit is the output channel of each ConvLSTMCell (so we are using 3 layers) #hidden_channels = [4, output_channels] # the last digit is the output channel of each ConvLSTMCell (so we are using 2 layers) kernel_size = 3 #3, does not work with kernel=2 batch_size = 1 #not used in this tutorial num_epochs = 3000 #learning parameters: adaptive_learning=True #False: lr=learning_rate; True: lr=[learning_rate - learning_rate_end] #learning_rate = 0.0025 ##too slow convergence if used since the beginning of simulation learning_rate = 0.01 #initial lr learning_rate_end=0.0025 #final lr # std_fac=5 #standarize using "std_fac" times the standard deviation # #if: hidden_channels = [6, 3, output_channels] #the model will create 6GB of data in GPU memory after 400 training time steps #so, after nt_steps=2000 (around 3y) we will exceed the mem limit of GPU (around 30GB) #2.5years for training needs approx 26GB for the above model and with: input_channels = 2; output_channels = 2; kernel_size = 3 #this is because in every time step the graph of computations is stored in the cummulative lost (after calling the model), to perform then a backpropagation #for this reason is sometimes important to use mini_batches and perform backpropagation after finish with 1. #then use the next mini_batch and so on until using all the data and finishes 1 eppoch. #use cuda if possible--- print ("Pytorch version {}".format(torch.__version__)) # check if CUDA is available use_cuda = torch.cuda.is_available() # use GPU if possible device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("Device to be used for computation: {}".format(device)) print(f"{torch.cuda.get_device_name(0)}") #open files---- #open DWS contours dsb0=xr.open_dataset(dir_dws_bound+file_dws_bound0) bdr_dws0=dsb0.bdr_dws.values #points that define DWS with contour0 #open topo file dsto=xr.open_dataset(file_grid+"DWS200m.2012.v03.nc") xct0=dsto.xc.min().values/1e3; yct0=dsto.yc.min().values/1e3 #=(0,0) mask_topo=dsto.bathymetry.copy(); mask_topo=xr.where(np.isfinite(mask_topo),1,0) #mask ocean=1, land=0 #open net displacement files--- files_displacement=sorted(glob.glob(f'{dir_post_proc_data}{dir_displacement}/*.nc',recursive=True)) #files_displacement=files_displacement[29:31] #2009-2010 #concat all the files dsdis=xr.open_mfdataset(files_displacement,concat_dim="time",parallel='True',chunks={'time': -1}, decode_cf=True, decode_times=True)#.load() #this are default decodes #data_vars='minimal', coords='minimal', compat='override') #takes 1second more with this, see https://xarray.pydata.org/en/stable/io.html#reading-multi-file-datasets #open interp files for wind--- files_interp_wind=sorted(glob.glob(f'{dir_post_proc_data}{dir_interp_wind}/*.nc',recursive=True)) #files_interp_wind=files_interp_wind[29:31] #concat all the files dswi=xr.open_mfdataset(files_interp_wind,concat_dim="time",parallel='True',chunks={'time': -1}, decode_cf=True, decode_times=True)#.load() #this are default decodes #data_vars='minimal', coords='minimal', compat='override') #takes 1second more with this, see https://xarray.pydata.org/en/stable/io.html#reading-multi-file-datasets #set training data--- # #wind (input) #dswi_train=dswi.sel(time=slice("2009-10-01","2009-12-31"),x=slice(60000,80000),y=slice(60000,70000)) #dswi_train=dswi_train.fillna(0) #fill nan with 0s in case displacement is in land (not neccesary for the above small domain) #in_u10_train,in_v10_train=da.compute(dswi_train.u10.values.astype('float32'),dswi_train.v10.values.astype('float32')) # #displacement (output) #dsdis_train=dsdis.sel(time=slice("2009-01-01","2012-12-31"))#,x=slice(70000,80000),y=slice(60000,70000)) #dsdis_train=dsdis.sel(time=slice("2009-10-01","2009-12-31"))#,x=slice(70000,80000),y=slice(60000,70000)) dsdis_train=dsdis.sel(time=slice("2009-06-01","2011-12-31"))#,x=slice(70000,80000),y=slice(60000,70000)) #dsdis_train=dsdis_train.fillna(0) #fill nan with 0s in case displacement is on land (not neccesary for the above small domain) dx_train,dy_train=da.compute(dsdis_train.dx.values.astype('float32'),dsdis_train.dy.values.astype('float32')) # #use the past displacement to predict the displacement after M2=12.42h in_u10_train,in_v10_train=dx_train[0:-1,...],dy_train[0:-1,...] out_dx_train,out_dy_train=dx_train[1:,...],dy_train[1:,...] # del dx_train,dy_train times_train=dsdis_train.time[0:-1].values nt_train,ny,nx=out_dx_train.shape print(times_train[[0,-1]],out_dx_train.shape) #set testing data--- # #wind (input) #dswi_test=dswi.sel(time=slice("2009-10-01","2009-12-31"),x=slice(60000,80000),y=slice(60000,70000)) #dswi_test=dswi_test.fillna(0) #fill nan with 0s in case displacement is in land (not neccesary for the above small domain) #in_u10_test,in_v10_test=da.compute(dswi_test.u10.values.astype('float32'),dswi_test.v10.values.astype('float32')) # #displacement (output) #dsdis_test=dsdis.sel(time=slice("2013-01-01",None))#,x=slice(70000,80000),y=slice(60000,70000)) #dsdis_test=dsdis.sel(time=slice("2010-01-01","2010-03-31"))#,x=slice(70000,80000),y=slice(60000,70000)) dsdis_test=dsdis.sel(time=slice("2012-01-01",None))#,x=slice(70000,80000),y=slice(60000,70000)) #dsdis_test=dsdis_test.fillna(0) #fill nan with 0s in case displacement is on land (not neccesary for the above small domain) dx_test,dy_test=da.compute(dsdis_test.dx.values.astype('float32'),dsdis_test.dy.values.astype('float32')) # #use the past displacement to predict the displacement after m2 in_u10_test,in_v10_test=dx_test[0:-1,...],dy_test[0:-1,...] out_dx_test,out_dy_test=dx_test[1:,...],dy_test[1:,...] # del dx_test,dy_test times_test=dsdis_test.time[0:-1].values nt_test,ny,nx=out_dx_test.shape print(times_test[[0,-1]],out_dx_test.shape) #for plotting maps of predictions--- #mask: ocean=1, land=nan mask=out_dx_train[0,...]*1.; mask[np.isfinite(mask)]=1.; mask[np.isnan(mask)]=np.nan xx=dsdis_train.x/1e3; yy=dsdis_train.y/1e3; xx,yy=np.meshgrid(xx,yy) #for masking values on land when computing loss--- mask_torch=torch.tensor(np.where(np.isnan(mask),0,1)[np.newaxis,np.newaxis,...]*np.ones((output_channels,ny,nx)))*1. mask_numpy=mask_torch.numpy()*1. def standarization(var,fac=3): mean=np.nanmean(var) std=np.nanstd(var)*fac #using 3 times std (seems to works better than just 1std) var[np.isnan(var)]=0. #fill with 0 in case of nan. This is modifing our input array return ((var-mean)/std),mean,std #.astype('float32') def destandarization(var,mean,std): return (var*std+mean) #.astype('float32') #standarization of data--- #training--- #inputs in_u10_train, in_u10_mean_train, in_u10_std_train = standarization(in_u10_train,std_fac) in_v10_train, in_v10_mean_train, in_v10_std_train = standarization(in_v10_train,std_fac) #outputs out_dx_train, out_dx_mean_train, out_dx_std_train = standarization(out_dx_train,std_fac) out_dy_train, out_dy_mean_train, out_dy_std_train = standarization(out_dy_train,std_fac) print("train info:") print(f"steps={nt_train}; (ny,nx)=({ny},{nx})") print("input approx output") print(f"dx_mean, dx_std*{std_fac}, dy_mean, dy_std*{std_fac}:") print(in_u10_mean_train, in_u10_std_train, in_v10_mean_train, in_v10_std_train) print() #testing--- #inputs in_u10_test, in_u10_mean_test, in_u10_std_test = standarization(in_u10_test,std_fac) in_v10_test, in_v10_mean_test, in_v10_std_test = standarization(in_v10_test,std_fac) #outputs out_dx_test, out_dx_mean_test, out_dx_std_test = standarization(out_dx_test,std_fac) out_dy_test, out_dy_mean_test, out_dy_std_test = standarization(out_dy_test,std_fac) print("test info:") print(f"steps={nt_test}; (ny,nx)=({ny},{nx})") print("input approx output") print(f"dx_mean, dx_std*{std_fac}, dy_mean, dy_std*{std_fac}:") print(in_u10_mean_test, in_u10_std_test, in_v10_mean_test, in_v10_std_test) # initialize model--- if run_model: #loss functions with and without masking--- class initialization: def __init__(self, masking=False, mask=None): self.masking=masking self.mask=mask class loss_function: class mse(initialization): #we call this function without using its name def __call__(self, predict=torch.zeros(1), target=torch.zeros(1)): if self.masking: #masking land points--- # #- the masking affect: # the value of the total loss (that only includes points inside DWS) and hence the last gradient of the backpropagation # loss=sum(prediction-output)**2/N; dlos/dpred=2*sum(prediction-output)/N, # with masking N is smaller because we dont consider land points, so seems that its like increasing the overall lr #- similar effect to masking without using it: # if we use another custom loss like torch.nn.MSELoss(reduction='sum') # masking is irrelevant since we dont divide with N # #disregard land points (=0) for the mean, so the loss value will increase #mask_torch: 0=land, 1=ocean #however, because we only have particles inside DWS, mask_torch=0 for the land and all points outside DWS loss_val = torch.mean(((predict-target)[self.mask==1])**2) else: #original--- loss_val = torch.mean((predict-target)**2) #=torch.nn.MSELoss() # return loss_val class mse_numpy(initialization): #we call this function without using its name def __call__(self, predict=np.zeros(1), target=np.zeros(1)): if self.masking: #masking land points--- #disregard land points (=0) for the mean, so the loss value will increase #probably because land points decrease the loss, the model don't perform so well #mask_torch: 0=land, 1=ocean #however, because we only have particles inside DWS, mask_torch=0 all points except inside it loss_val = np.mean(((predict-target)[self.mask==1])**2) else: #original--- loss_val = np.mean((predict-target)**2) #=torch.nn.MSELoss() # return loss_val # initialize our model--- model = convlstm.ConvLSTM(input_channels, hidden_channels, kernel_size).to(device) # choose loss function #loss_fn = torch.nn.MSELoss() #loss_fn = loss_function.mse() #for training (the same as above) masking=True loss_fn = loss_function.mse(masking=masking,mask=mask_torch) #for training (masking land points) #loss_fn_np = loss_function.mse_numpy() #for testing loss_fn_np = loss_function.mse_numpy(masking=masking,mask=mask_numpy) #for testing # choose optimizer optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) # check the model / loss function and optimizer print(model) print(loss_fn.__class__.__name__) #this works for pytorch, but also for our custom class #print(loss_fn) #only works for pytorch print(optimizer) def training(epoch,num_epochs,nt,model): predict=[] # Clear stored gradient model.zero_grad() # loop through all timesteps for t in range(nt): #stack data--- # #old method using torch.autograd.Variable and .view()--- # #data_in=np.stack((in_u10_train[t,...],in_v10_train[t,...])) #data_out=np.stack((out_dx_train[t,...],out_dy_train[t,...])) #data_in = torch.autograd.Variable(torch.Tensor(data_in).view(-1,input_channels,ny,nx)).to(device) #data_out = torch.autograd.Variable(torch.Tensor(data_out).view(-1,input_channels,ny,nx)).to(device) # #new method using torch.tensor and np.newaxis (the same results as above)--- data_in = torch.tensor(np.stack((in_u10_train[t,...], in_v10_train[t,...]),axis=0)[np.newaxis,...]).to(device) #(1,input_channels,ny,nx) data_out = torch.tensor(np.stack((out_dx_train[t,...], out_dy_train[t,...]),axis=0)[np.newaxis,...]).to(device) #(1,input_channels,ny,nx) # Forward process--- #print(torch.cuda.memory_summary()) #check GPU memory usage predict0, _ = model(data_in, t) #data_in=(1,input_channels,ny,nx) pred_y=(1,output_channels,ny,nx) #del data_in; torch.cuda.empty_cache() #to delete this variable from GPU memory # compute loss (and the cumulative loss from all the time steps)--- if t == 0: loss0 = loss_fn(predict0, data_out) #data_out=(1,output_channels,ny,nx) if masking: mae0 = np.mean((abs(predict0-data_out).detach().cpu().numpy())[mask_numpy==1]) else: mae0 = np.mean(abs(predict0-data_out).detach().cpu().numpy()) #mape0=np.mean( abs((predict0-data_out)/data_out).detach().numpy() ) #problems with mape if denominator = 0 else: loss0 += loss_fn(predict0, data_out) if masking: mae0 += np.mean((abs(predict0-data_out).detach().cpu().numpy())[mask_numpy==1]) else: mae0 += np.mean(abs(predict0-data_out).detach().cpu().numpy()) #mape0 += np.mean( abs((predict0-data_out)/data_out).detach().numpy() ) #del data_out; torch.cuda.empty_cache() #cumulative loss from all the time steps (the loss we use for backward propagation)--- if epoch % 50 == 0: print("Train epoch ", epoch, "; mean(MSE(t)) = ", loss0.item()/nt*std_fac**2, "; mean(MAE(t)) = ", mae0/nt*std_fac) # Zero out gradient, else they will accumulate between epochs--- optimizer.zero_grad() # Backward pass--- # Backward propagation is kicked off when we call .backward() on the error tensor # Autograd then calculates and stores the gradients for each model parameter in the parameter’s ".grad" attribute. loss0.backward() # Update parameters--- optimizer.step() #to initiate gradient descent # Clear stored gradient--- model.zero_grad() # save lr lr0=optimizer.param_groups[0]["lr"] #predict train data for the last epoch, after updating model parameters if epoch == num_epochs-1: with torch.no_grad(): for t in range(nt): data_in = torch.from_numpy(np.stack((in_u10_train[t,...], in_v10_train[t,...]),axis=0)[np.newaxis,...]).to(device) #(1,input_channels,ny,nx) predict0, _ = model(data_in, t) #data_in=(1,input_channels,ny,nx) predict=(1,output_channels,ny,nx) predict0 = predict0.detach().cpu().numpy() predict.append(predict0) #save the predictions for the last epoch predict=
np.reshape(predict,(nt,output_channels,ny,nx))
numpy.reshape
import numpy as np from scipy import signal from scipy.interpolate import splev, splrep class Record: sr = 20000 # Sample Rate - 20 kHz def __init__(self,array): self.array = array ## Instance Variables # Control System Features self.dom_pp = [] self.rec_pp = [] self.dom_bp = [] self.rec_bp = [] self.dom_pt = [] self.rec_pt = [] self.dom_ssv = [] self.rec_ssv = [] self.dom_sse = [] self.rec_sse = [] self.dom_po = [] self.rec_po = [] self.dom_st_s = [] self.rec_st_s = [] self.dom_rt_s = [] self.rec_rt_s = [] self.dom_dt_s = [] self.rec_dt_s = [] # Spectral Analysis Features self.dom_pulse_data = [] self.rec_pulse_data = [] self.dom_sd = [] self.rec_sd = [] self.dom_snr = [] self.rec_snr = [] self.dom_mdfr = [] self.rec_mdfr = [] self.dom_mnfr = [] self.rec_mnfr = [] # Outlier Check Results self.outlier_count = [] ## Instance Methods # Control System Processing self.PeakDetection() self.PeakTime() self.SteadyStateValErr() self.PercentOvershoot() self.SettlingTime() self.RiseTime() self.DelayTime() # Spectral Analysis Processing self.RunSpectralAnalysis() self.total_rec = np.min((len(self.dom_sd), len(self.rec_sd))) # # Outlier Detection and Removal # self.OutlierCount() # self.RemoveOutliers() # # Build Feature Datastructure self.features = self.GenerateFeatures() self.headers = [] self.headers.append('Dom_Peak_Time') self.headers.append('Dom_Steady_State_Value') self.headers.append('Dom_Steady_State_Error') self.headers.append('Dom_Percent_Overshoot') self.headers.append('Dom_Settling_Time') self.headers.append('Dom_Rise_Time') self.headers.append('Dom_Delay_Time') for i in np.arange(len(self.dom_sd[0])): self.headers.append('Dom_Spectral_Bin_%d' % i) self.headers.append('Dom_SNR') self.headers.append('Dom_Mean_Freq') self.headers.append('Dom_Median_Freq') self.headers.append('Rec_Peak_Time') self.headers.append('Rec_Steady_State_Value') self.headers.append('Rec_Steady_State_Error') self.headers.append('Rec_Percent_Overshoot') self.headers.append('Rec_Settling_Time') self.headers.append('Rec_Rise_Time') self.headers.append('Rec_Delay_Time') for i in np.arange(len(self.rec_sd[0])): self.headers.append('Rec_Spectral_Bin_%d' % i) self.headers.append('Rec_SNR') self.headers.append('Rec_Mean_Freq') self.headers.append('Rec_Median_Freq') def PeakDetection(self): ##### PeakDetection # Input: array - raw signal data for record # Output: dom_pp - dominant Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_pp - recessive Pulse Peak index # rec_bp - recessive Before Pulse peak index ### Pulse Peak Detection ### # Calculate difference array arr_diff = np.diff(self.array, prepend=self.array[0]) # Perform moving average filter, width=3, x2 w = 3 arr_diff = np.convolve(arr_diff, np.ones(w), 'valid') / w arr_diff = np.convolve(arr_diff, np.ones(w), 'valid') / w # Prepend zeros to offset processing delay arr_diff = np.insert(arr_diff, 0, np.zeros((w-1)*2), axis=0) # Crossing filter to detect dominant and recessive leading edge zones dom_pp_ts = (arr_diff > 0.2).astype(float) rec_pp_ts = (arr_diff < -0.2).astype(float) # Find peak for each zone (dominant) a = np.where(dom_pp_ts == 1)[0].astype(float) b = np.diff(a, prepend=0) c = np.where(b > 1)[0] dom_pp = a[c].astype(int) # Remove errant peaks (dominant) corr_idx = np.concatenate((np.diff(dom_pp),[np.average(np.diff(dom_pp))])) if np.min(np.diff(corr_idx)) < 100: corr_idx = np.where(corr_idx > np.average(corr_idx/4))[0] dom_pp = dom_pp[corr_idx] # Find peak for each zone (recessive) a = np.where(rec_pp_ts == 1)[0].astype(float) b = np.diff(a, prepend=0) c = np.where(b > 1)[0] rec_pp = a[c].astype(int) # Remove errant peaks (recessive) corr_idx = np.concatenate((np.diff(rec_pp),[np.average(np.diff(rec_pp))])) if np.min(np.diff(corr_idx)) < 15: corr_idx = np.where(corr_idx > np.average(corr_idx/4))[0] rec_pp = rec_pp[corr_idx] # Pair dom and rec indices dom_len = len(dom_pp) rec_len = len(rec_pp) dom_is_larger = [] if dom_len > rec_len + 1: dom_is_larger = 1 elif rec_len > dom_len + 1: dom_is_larger = 0 if not dom_is_larger == []: len_min = np.min((dom_len, rec_len)) len_dif = np.abs(dom_len - rec_len) + 1 dif_amt = [] for i in np.arange(len_dif): if dom_is_larger: temp = dom_pp[0:dom_len] - rec_pp[i:dom_len+i] else: temp = dom_pp[0:dom_len] - rec_pp[i:dom_len+i] temp = np.abs(temp) temp = np.sum(temp) dif_amt.append(temp) dif_loc = np.where(np.min(dif_amt) == dif_amt)[0] if dom_is_larger: dom_pp = dom_pp[dif_loc[0]:rec_len+dif_loc[0]+1] else: rec_pp = rec_pp[dif_loc[0]:dom_len+dif_loc[0]+1] # Create timestamps using indices dom_pp_ts = np.zeros(dom_pp_ts.size) dom_pp_ts[dom_pp] = 1 self.dom_pp = np.where(dom_pp_ts == 1)[0] rec_pp_ts = np.zeros(rec_pp_ts.size) rec_pp_ts[rec_pp] = 1 self.rec_pp = np.where(rec_pp_ts == 1)[0] ### Pre-Peak Detection ### # Crossing filter to detect pre-dominant steady state (Before Leading-edge) dom_bp_ts = np.abs(np.diff(self.array - 2.5, prepend = self.array[0])) w = 5 dom_bp_ts = np.convolve(dom_bp_ts, np.ones(w), 'valid') / w dom_bp_ts = np.insert(dom_bp_ts, 0, np.zeros(w-1), axis=0) dom_bp_ts = 1-(dom_bp_ts > 0.05).astype(float) # Crossing filter to detect pre-recessive steady state (Before Leading-edge) rec_bp_ts = np.abs(np.diff(3.5 - self.array, prepend = self.array[0])) w = 5 rec_bp_ts = np.convolve(rec_bp_ts, np.ones(w), 'valid') / w rec_bp_ts = np.insert(rec_bp_ts, 0, np.zeros(w-1), axis=0) rec_bp_ts = 1-(rec_bp_ts > 0.05).astype(float) ## Find the last instance of steady state prior to dominant peaks jj = np.zeros(dom_pp.size).astype(int) for k in np.arange(0,dom_pp.size): # "Dominant-low steady state" indices before peak j = np.where(dom_bp_ts[0:dom_pp[k]] == 1) j = j[0] # Find nearest index before dominant peak min_idx = j-dom_pp[k] min_idx = min_idx[np.where(np.min(np.abs(min_idx)) == np.abs(min_idx))[0]] jj[k] = ((min_idx + dom_pp[k])[0]) # Dominant prior-to-peak steady-state indices dom_bp_ts2 = np.zeros(dom_bp_ts.size, dtype=int) dom_bp_ts2[jj] = 1 self.dom_bp = jj ## Find the last instance of steady state prior to recessive peaks jj = np.zeros(rec_pp.size).astype(int) for k in np.arange(0,rec_pp.size): # "Recesive-low steady state" indices before peak j = np.where(rec_bp_ts[0:rec_pp[k]] == 1) j = j[0] # Find nearest index before recessive peak min_idx = j-rec_pp[k] min_idx = min_idx[np.where(np.min(np.abs(min_idx)) == np.abs(min_idx))[0]] jj[k] = ((min_idx + rec_pp[k])[0]) # Recessive prior-to-peak steady-state indices rec_bp_ts2 = np.zeros(rec_bp_ts.size, dtype=int) rec_bp_ts2[jj] = 1 self.rec_bp = jj def PeakTime(self): ##### PeakTime # Input: dom_pp - dominant Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_pp - recessive Pulse Peak index # rec_bp - recessive Before Pulse peak index # sr - sample rate of the raw data # Output: dom_pt - dominant Peak Time # rec_pt - recessive Peak Time self.dom_pt = (self.dom_pp-self.dom_bp)/Record.sr self.rec_pt = (self.rec_pp-self.rec_bp)/Record.sr def SteadyStateValErr(self): ##### Steady State Value and Error # Input: array - raw signal data for record # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # Output: dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # dom_sse - dominant Steady State Error # rec_sse - recessive Steady State Error # Perform moving average filter, width=19 w = 19 arr_avg = np.convolve(self.array, np.ones(w), 'valid') / w arr_avg = np.insert(arr_avg, 0, arr_avg[0]*np.ones(w-1), axis=0) # Extract Steady State Value from previous Steady State Index dom_ssv_idx = self.rec_bp rec_ssv_idx = self.dom_bp self.dom_ssv = arr_avg[dom_ssv_idx] self.rec_ssv = arr_avg[rec_ssv_idx] # Calculate Steady State Error self.dom_sse = arr_avg[dom_ssv_idx] - 3.5 self.rec_sse = arr_avg[rec_ssv_idx] - 2.5 def PercentOvershoot(self): ##### Percent Overshoot # Input: array - raw signal data for record # dom_pp - dominant Before Pulse peak index # rec_pp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # Output: dom_po - dominant Percent Overshoot # rec_po - recessive Percent Overshoot dom_pv = self.array[self.dom_pp] rec_pv = self.array[self.rec_pp] try: self.dom_po = 100 * (dom_pv - self.dom_ssv) / self.dom_ssv self.rec_po = 100 * (self.rec_ssv - rec_pv) / self.rec_ssv except: self.dom_po = 100 * (dom_pv - np.average(self.dom_ssv)) / np.average(self.dom_ssv) self.rec_po = 100 * (np.average(self.rec_ssv) - rec_pv) / np.average(self.rec_ssv) def SettlingTime(self): ##### Settling Time # Input: array - raw signal data for record # dom_pp - dominant Before Pulse peak index # rec_pp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_st_s - dominant Settling Time (s) # rec_st_s - recessive Settling Time (s) ss_rng = 0.05 # 5% Steady State Range of 1V Vpp design # Find index and time of settling point (dominant) w = 3 arr_avg1 = np.convolve(np.abs(self.array-np.average(self.dom_ssv)), np.ones(w), 'valid') / w arr_avg1 = np.insert(arr_avg1, 0, arr_avg1[0]*np.ones(w-1), axis=0) arr_avg11 = np.abs(np.round(arr_avg1,decimals=2)) dom_st_idx = np.where(arr_avg11 <= ss_rng)[0] dom_st = np.zeros(self.dom_pp.size) if dom_st_idx.size != 0: for i in np.arange(self.dom_pp.size): dom_st_idx[dom_st_idx <= self.dom_pp[i]] = -self.array.size j = np.where( np.min(np.abs(dom_st_idx - self.dom_pp[i])) == np.abs(dom_st_idx - self.dom_pp[i]) )[0][-1] dom_st[i] = dom_st_idx[j] dom_st = dom_st.astype(int) else: self.dom_st = np.concatenate((self.dom_pp[1:],[self.array.size])) self.dom_st_s = (dom_st - self.dom_pp)/Record.sr # Find index and time of settling point (dominant) w = 3 arr_avg2 = np.convolve(np.average(self.dom_ssv)-self.array, np.ones(w), 'valid') / w arr_avg2 = np.insert(arr_avg2, 0, arr_avg2[0]*np.ones(w-1), axis=0) arr_avg22 = np.abs(np.round(arr_avg2,decimals=2)) rec_st_idx = np.where(arr_avg22 <= ss_rng)[0] rec_st = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): rec_st_idx[rec_st_idx <= self.rec_pp[i]] = -self.array.size j = np.where( np.min(np.abs(rec_st_idx - self.rec_pp[i])) == np.abs(rec_st_idx - self.rec_pp[i]) )[0][-1] rec_st[i] = rec_st_idx[j] rec_st = rec_st.astype(int) self.rec_st_s = (rec_st - self.rec_pp)/Record.sr def RiseTime(self): ##### Rise Time # Input: array - raw signal data for record # dom_pp - dominant Pulse Peak index # rec_pp - recessive Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_rt_s - dominant Settling Time (s) # rec_rt_s - recessive Settling Time (s) # Find index and time of rise point (dominant) dom_rt_ts = (self.array.copy() - np.average(self.rec_ssv) <= 1).astype(int) dom_rt_idx = np.where(dom_rt_ts == 1)[0] dom_rt = np.zeros(self.dom_pp.size) for i in np.arange(self.dom_pp.size): j = np.where(np.min(np.abs(dom_rt_idx - self.dom_pp[i])) == np.abs(dom_rt_idx - self.dom_pp[i]))[0][-1] dom_rt[i] = dom_rt_idx[j] dom_rt = dom_rt.astype(int) self.dom_rt_s = (dom_rt - self.dom_bp)/Record.sr # Find index and time of rise point (recessive) rec_rt_ts = (-self.array.copy() + np.average(self.dom_ssv) <= 1).astype(int) rec_rt_idx = np.where(rec_rt_ts == 1)[0] rec_rt = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): j = np.where(np.min(np.abs(rec_rt_idx - self.rec_pp[i])) == np.abs(rec_rt_idx - self.rec_pp[i]))[0][-1] rec_rt[i] = rec_rt_idx[j] rec_rt = rec_rt.astype(int) self.rec_rt_s = (rec_rt - self.rec_bp)/Record.sr def DelayTime(self): ##### Delay Time # Input: array - raw signal data for record # dom_pp - dominant Pulse Peak index # rec_pp - recessive Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_rt_s - dominant Settling Time (s) # rec_rt_s - recessive Settling Time (s) # Find index and time of delay point (dominant) dom_dt_ts = (self.array.copy() - np.average(self.rec_ssv) <= 0.5).astype(int) dom_dt_idx = np.where(dom_dt_ts == 1)[0] dom_dt = np.zeros(self.dom_pp.size) for i in np.arange(self.dom_pp.size): j = np.where(np.min(np.abs(dom_dt_idx - self.dom_pp[i])) == np.abs(dom_dt_idx - self.dom_pp[i]))[0][-1] dom_dt[i] = dom_dt_idx[j] dom_dt = dom_dt.astype(int) self.dom_dt_s = (dom_dt - self.dom_bp)/Record.sr # Find index and time of delay point (recessive) rec_dt_ts = (-self.array.copy() + np.average(self.dom_ssv) <= 0.5).astype(int) rec_dt_idx = np.where(rec_dt_ts == 1)[0] rec_dt = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): j = np.where(np.min(np.abs(rec_dt_idx - self.rec_pp[i])) == np.abs(rec_dt_idx - self.rec_pp[i]))[0][-1] rec_dt[i] = rec_dt_idx[j] rec_dt = rec_dt.astype(int) self.rec_dt_s = (rec_dt - self.rec_bp)/Record.sr def RunSpectralAnalysis(self): ##### Spectral Analysis # Run the following methods: # # + Spectral Density Binning # + Signal-to-Noise Ratio # + Median Frequency # + Mean Frequency # # Features will be processed for both # Dominant and Recessive CAN High bits self.SpectralDensityBinning() self.SignalToNoiseRatio() self.MeanMedianFrequency() def SpectralDensityBinning(self): ##### Bin Spectral Density index_shift = -5 # Include some steady state info from prev pulse dom_pp_sd = self.dom_pp.copy() + index_shift rec_pp_sd = self.rec_pp.copy() + index_shift # Find the start/end pulse indices if self.dom_pp[0] <= self.rec_pp[0]: if len(self.dom_pp) > len(self.rec_pp): dom_pp_sd = dom_pp_sd[0:-1] idx_dom_se = np.array([dom_pp_sd,rec_pp_sd]) idx_rec_se = np.array([rec_pp_sd[0:-1],dom_pp_sd[1:]]) else: if len(self.rec_pp) > len(self.dom_pp): rec_pp_sd = rec_pp_sd[0:-1] idx_rec_se = np.array([rec_pp_sd,dom_pp_sd]) idx_dom_se = np.array([dom_pp_sd[0:-1],rec_pp_sd[1:]]) # Remove pulses that don't provide enough steady-state information from the prev pulse if idx_dom_se[0][0] < -index_shift: idx_dom_se = np.array([idx_dom_se[0][1:],idx_dom_se[1][1:]]) if idx_rec_se[0][0] < -index_shift: idx_rec_se = np.array([idx_rec_se[0][1:],idx_rec_se[1][1:]]) # Check for out-or-order index error if idx_dom_se[0][0] > idx_dom_se[1][0]: temp1 = np.array([idx_dom_se[1],idx_dom_se[0]]) temp2 = np.array([idx_dom_se[0],idx_rec_se[1]]) idx_dom_se = temp2 idx_rec_se = temp1 # Save dom pulse info to parent method variable dom_pulse_data for i in np.arange(idx_dom_se.shape[1]): self.dom_pulse_data.append(self.array[idx_dom_se[0][i]:idx_dom_se[1][i]]) # Save dom pulse info to parent method variable rec_pulse_data for i in np.arange(idx_rec_se.shape[1]): self.rec_pulse_data.append(self.array[idx_rec_se[0][i]:idx_rec_se[1][i]]) # Reset indices idx_dom_se = idx_dom_se - index_shift idx_rec_se = idx_rec_se - index_shift # Bin power densities def binned_sd(Pxx_den, nbins): bs = Pxx_den.size/nbins bs = round(bs) Pxx_hist = [] for i in np.arange(nbins): idx_s = i*bs idx_e = (i+1)*bs if idx_e >= Pxx_den.size: idx_e = Pxx_den.size - 1 Pxx_hist.append(np.average(Pxx_den[idx_s:idx_e])) Pxx_hist = np.nan_to_num(Pxx_hist) return Pxx_hist # Select bin sizes bin_sel = 2 dom_nbin = [15,13,10] # Bin size limited by pulse length # Perform binning of spectral density self.dom_sd = [] for i in np.arange(len(self.dom_pulse_data)): f, pd = signal.welch(self.dom_pulse_data[i], Record.sr, nperseg=len(self.dom_pulse_data[i])); self.dom_sd.append(binned_sd(pd, dom_nbin[bin_sel])) rec_nbin = [10, 8, 5] # Bin size limited by pulse length self.rec_sd = [] for i in np.arange(len(self.rec_pulse_data)): f, pd = signal.welch(self.rec_pulse_data[i], Record.sr, nperseg=len(self.rec_pulse_data[i])); self.rec_sd.append(binned_sd(pd, rec_nbin[bin_sel])) def SignalToNoiseRatio(self): index_shift = -5 self.dom_snr = [] for i in np.arange(len(self.dom_pulse_data)): cur_array = self.dom_pulse_data[i] signl = (np.arange(len(cur_array)) > -index_shift-1).astype(float)*np.average(self.dom_ssv) + \ (np.arange(len(cur_array)) <= -index_shift-1).astype(float)*np.average(self.rec_ssv) noise = signl - cur_array f, s_pd = signal.welch(signl, Record.sr, nperseg=len(signl)); f, n_pd = signal.welch(noise, Record.sr, nperseg=len(noise)); Ps = sum(s_pd) Pn = sum(n_pd) if Pn == 0: self.rec_snr.append(np.nan) continue self.dom_snr.append(10*np.log10(Ps/Pn)) self.rec_snr = [] for i in np.arange(len(self.rec_pulse_data)): cur_array = self.rec_pulse_data[i] signl = (np.arange(len(cur_array)) > -index_shift-2).astype(float)*np.average(self.rec_ssv) + \ (np.arange(len(cur_array)) <= -index_shift-2).astype(float)*np.average(self.dom_ssv) noise = signl - cur_array f, s_pd = signal.welch(signl, Record.sr, nperseg=len(signl)) f, n_pd = signal.welch(noise, Record.sr, nperseg=len(noise)) Ps = sum(s_pd) Pn = sum(n_pd) if Pn == 0: self.rec_snr.append(np.nan) continue self.rec_snr.append(10*np.log10(Ps/Pn)) def MeanMedianFrequency(self): self.dom_mdfr = [] self.rec_mdfr = [] self.dom_mnfr = [] self.rec_mnfr = [] self.dom_mnfr = [] self.dom_mdfr = [] for i in np.arange(len(self.dom_pulse_data)): cur_pulse = self.dom_pulse_data[i] f, pd = signal.welch(cur_pulse, Record.sr, nperseg=len(cur_pulse)) spl = splrep(f, pd, k=1) x2 = np.arange(f[0], f[-1],0.01) y2 = splev(x2, spl) y21 = y2/np.sum(y2) # Normalize spectra y22 = np.cumsum(y21) # Cummulative sum (CDF for SPD) y23 = y22-0.5 # Subtract 50% of energy y24 = abs(y23) # Abs value to create a minima y25 = np.where(np.min(y24) == y24)[0][-1] # Locate minima index self.dom_mdfr.append(x2[y25]) # Retrieve minima frequency self.dom_mnfr.append(np.sum(pd*f)/np.sum(pd)) self.rec_mnfr = [] self.rec_mdfr = [] for i in np.arange(len(self.rec_pulse_data)): cur_pulse = self.rec_pulse_data[i] f, pd = signal.welch(cur_pulse, Record.sr, nperseg=len(cur_pulse)) spl = splrep(f, pd, k=1) x2 = np.arange(f[0], f[-1],0.01) y2 = splev(x2, spl) y21 = y2/np.sum(y2) # Normalize spectra y22 = np.cumsum(y21) # Cummulative sum (CDF for SPD) y23 = y22-0.5 # Subtract 50% of energy y24 = abs(y23) # Abs value to create a minima y25 = np.where(np.min(y24) == y24)[0][-1] # Locate minima index self.rec_mdfr.append(x2[y25]) # Retrieve minima frequency self.rec_mnfr.append(np.sum(pd*f)/np.sum(pd)) def OutlierCount(self): ##### Outlier Count # Calculates the standard deviation for each feature and creates a binary # mask of pulses that exceed the standard deviation threshold # Binary masks are added to determine total number of deviations per pulse # across all features std = 1.5 # Threshold def fix_size_disparity(in1, in2): if in1.size > in2.size: in2 = np.concatenate((in2,np.zeros(in1.size - in2.size))).astype(int) elif in2.size > in1.size: in1 = np.concatenate((in1,np.zeros(in2.size - in1.size))).astype(int) return in1, in2 # Outlier check and size correction self.dom_pp, self.rec_pp = fix_size_disparity(self.dom_pp, self.rec_pp) self.dom_bp, self.rec_bp = fix_size_disparity(self.dom_bp, self.rec_bp) self.dom_pt, self.rec_pt = fix_size_disparity(self.dom_pt, self.rec_pt) dom_pt_out = (np.abs(self.dom_pt-np.average(self.dom_pt)) > std*np.std(self.dom_pt)).astype(int) rec_pt_out = (np.abs(self.rec_pt-np.average(self.rec_pt)) > std*np.std(self.rec_pt)).astype(int) pt_out = dom_pt_out + rec_pt_out self.dom_ssv, self.rec_ssv = fix_size_disparity(self.dom_ssv, self.rec_ssv) dom_ssv_out = (np.abs(self.dom_ssv-np.average(self.dom_ssv)) > std*np.std(self.dom_ssv)).astype(int) rec_ssv_out = (np.abs(self.rec_ssv-np.average(self.rec_ssv)) > std*np.std(self.rec_ssv)).astype(int) ssv_out = dom_ssv_out + rec_ssv_out self.dom_sse, self.rec_sse = fix_size_disparity(self.dom_sse, self.rec_sse) dom_sse_out = (np.abs(self.dom_sse-np.average(self.dom_sse)) > std*np.std(self.dom_sse)).astype(int) rec_sse_out = (np.abs(self.rec_sse-np.average(self.rec_sse)) > std*np.std(self.rec_sse)).astype(int) sse_out = dom_sse_out + rec_sse_out self.dom_po, self.rec_po = fix_size_disparity(self.dom_po, self.rec_po) dom_po_out = (np.abs(self.dom_po-np.average(self.dom_po)) > std*np.std(self.dom_po)).astype(int) rec_po_out = (np.abs(self.rec_po-np.average(self.rec_po)) > std*np.std(self.rec_po)).astype(int) po_out = dom_po_out + rec_po_out self.dom_st_s, self.rec_st_s = fix_size_disparity(self.dom_st_s, self.rec_st_s) dom_st_s_out = (np.abs(self.dom_st_s-np.average(self.dom_st_s)) > std*np.std(self.dom_st_s)).astype(int) rec_st_s_out = (np.abs(self.rec_st_s-np.average(self.rec_st_s)) > std*np.std(self.rec_st_s)).astype(int) st_s_out = dom_st_s_out + rec_st_s_out self.dom_rt_s, self.rec_rt_s = fix_size_disparity(self.dom_rt_s, self.rec_rt_s) dom_rt_s_out = (np.abs(self.dom_rt_s-np.average(self.dom_rt_s)) > std*np.std(self.dom_rt_s)).astype(int) rec_rt_s_out = (np.abs(self.rec_rt_s-np.average(self.rec_rt_s)) > std*np.std(self.rec_rt_s)).astype(int) rt_s_out = dom_rt_s_out + rec_rt_s_out self.dom_dt_s, self.rec_dt_s = fix_size_disparity(self.dom_dt_s, self.rec_dt_s) dom_dt_s_out = (np.abs(self.dom_dt_s-np.average(self.dom_dt_s)) > std*np.std(self.dom_dt_s)).astype(int) rec_dt_s_out = (np.abs(self.rec_dt_s-np.average(self.rec_dt_s)) > std*np.std(self.rec_dt_s)).astype(int) dt_s_out = dom_dt_s_out + rec_dt_s_out self.outlier_count = pt_out + ssv_out + sse_out + \ po_out + st_s_out + rt_s_out + dt_s_out return self.outlier_count def RemoveOutliers(self): ##### Remove Outlier Pulses # Checks outlier count for each pulse and removes pulses that exceed # the deviation threshold dev = 6 noutlier_idx = np.where(self.outlier_count < dev + 1)[0] self.dom_pp = self.dom_pp[noutlier_idx] self.rec_pp = self.rec_pp[noutlier_idx] self.dom_bp = self.dom_bp[noutlier_idx] self.rec_bp = self.rec_bp[noutlier_idx] self.dom_pt = self.dom_pt[noutlier_idx] self.rec_pt = self.rec_pt[noutlier_idx] self.dom_ssv = self.dom_ssv[noutlier_idx] self.rec_ssv = self.rec_ssv[noutlier_idx] self.dom_sse = self.dom_sse[noutlier_idx] self.rec_sse = self.rec_sse[noutlier_idx] self.dom_po = self.dom_po[noutlier_idx] self.rec_po = self.rec_po[noutlier_idx] self.dom_st_s = self.dom_st_s[noutlier_idx] self.rec_st_s = self.rec_st_s[noutlier_idx] self.dom_rt_s = self.dom_rt_s[noutlier_idx] self.rec_rt_s = self.rec_rt_s[noutlier_idx] self.dom_dt_s = self.dom_dt_s[noutlier_idx] self.rec_dt_s = self.rec_dt_s[noutlier_idx] self.OutlierCount() def summary(self): print('Peak Time (s):') print(' dom: ', self.dom_pt) print(' avg: ', np.average(self.dom_pt)) print(' std: ', np.std(self.dom_pt)) print(' dev: ', np.abs(self.dom_pt-np.average(self.dom_pt))) # print(' out: ', dom_pt_out) print(' rec: ', self.rec_pt) print(' avg: ', np.average(self.rec_pt)) print(' std: ', np.std(self.rec_pt)) print(' dev: ', np.abs(self.rec_pt-np.average(self.rec_pt))) # print(' out: ', rec_pt_out) print('') print('Steady State Value (V):') print(' dom: ', self.dom_ssv) print(' avg: ', np.average(self.dom_ssv)) print(' std: ', np.std(self.dom_ssv)) print(' dev: ', np.abs(self.dom_ssv-np.average(self.dom_ssv))) # print(' out: ', dom_ssv_out) print(' rec: ', self.rec_ssv) print(' avg: ', np.average(self.rec_ssv)) print(' std: ', np.std(self.rec_ssv)) print(' dev: ', np.abs(self.rec_ssv-np.average(self.rec_ssv))) # print(' out: ', rec_ssv_out) print('') print('Steady State Error (V):') print(' dom: ', self.dom_sse) print(' avg: ', np.average(self.dom_sse)) print(' std: ', np.std(self.dom_sse)) print(' dev: ', np.abs(self.dom_sse-np.average(self.dom_sse))) # print(' out: ', dom_sse_out) print(' rec: ', self.rec_sse) print(' avg: ', np.average(self.rec_sse)) print(' std: ', np.std(self.rec_sse)) print(' dev: ', np.abs(self.rec_sse-np.average(self.rec_sse))) # print(' out: ', rec_sse_out) print('') print('Percent Overshoot') print(' dom: ', self.dom_po) print(' avg: ', np.average(self.dom_po)) print(' std: ', np.std(self.dom_po)) print(' dev: ', np.abs(self.dom_po-np.average(self.dom_po))) # print(' out: ', dom_po_out) print(' rec: ', self.rec_po) print(' avg: ', np.average(self.rec_po)) print(' std: ', np.std(self.rec_po)) print(' dev: ', np.abs(self.rec_po-np.average(self.rec_po))) # print(' out: ', rec_po_out) print('') print('Settling Time (s)') print(' dom: ', self.dom_st_s) print(' avg: ', np.average(self.dom_st_s)) print(' std: ', np.std(self.dom_st_s)) print(' dev: ', np.abs(self.dom_st_s-np.average(self.dom_st_s))) # print(' out: ', dom_st_s_out) print(' rec: ', self.rec_st_s) print(' avg: ', np.average(self.rec_st_s)) print(' std: ', np.std(self.rec_st_s)) print(' dev: ', np.abs(self.rec_st_s-np.average(self.rec_st_s))) # print(' out: ', rec_st_s_out) print('') print('Rise Time (s)') print(' dom: ', self.dom_rt_s) print(' avg: ', np.average(self.dom_rt_s)) print(' std: ', np.std(self.dom_rt_s)) print(' dev: ', np.abs(self.dom_rt_s-np.average(self.dom_rt_s))) # print(' out: ', dom_rt_s_out) print(' rec: ', self.rec_rt_s) print(' avg: ', np.average(self.rec_rt_s)) print(' std: ', np.std(self.rec_rt_s)) print(' dev: ', np.abs(self.rec_rt_s-np.average(self.rec_rt_s))) # print(' out: ', rec_rt_s_out) print('') print('Delay Time (s)') print(' dom: ', self.dom_dt_s) print(' avg: ',
np.average(self.dom_dt_s)
numpy.average
import numpy as np; import pandas as pd from pyg_timeseries._math import stdev_calculation_ewm, skew_calculation, cor_calculation_ewm, covariance_calculation, corr_calculation_ewm, LR_calculation_ewm, variance_calculation_ewm, _w from pyg_timeseries._decorators import compiled, first_, _data_state from pyg_base import pd2np, clock, loop_all, loop, is_pd, is_df, presync, df_concat __all__ = ['ewma', 'ewmstd', 'ewmvar', 'ewmskew', 'ewmrms', 'ewmcor', 'ewmcorr', 'ewmLR', 'ewmGLM', 'ewma_', 'ewmstd_', 'ewmskew_', 'ewmrms_', 'ewmcor_', 'ewmvar_','ewmLR_', 'ewmGLM_',] ############################################ ## ## compiled functions, unfortunately, both these methods are much slower ## ########################################### # import numba # from numba import int32, float32 # import the types # from numba.experimental import jitclass # spec = [ # ('t0', float32), # a simple scalar field # ('t1', float32), # a simple scalar field # ('t', float32), # a simple scalar field # ('a', float32), # a simple scalar field # ('w', float32), # a simple scalar field # ] # @jitclass(spec) # class c_ewma(object): # def __init__(self, a, t, t0, t1, w): # self.a = a # self.t = t # self.t0 = t0 # self.t1 = t1 # self.w = w # def push(self, a, t): # if np.isnan(a): # return np.nan # if t == self.t: # self.t1 = self.t1 + (1-self.w) * (a - self.a) # return self.t1/self.t0 # else: # p = self.w if np.isnan(t) else self.w**(t-self.t) # self.t0 = self.t0 * p + (1-self.w) # self.t1 = self.t1 * p + (1-self.w) * a # return self.t1/self.t0 # @compiled # def _ewma_(ai, ti, ai0, ti0, t0, t1, w): # """ # we receive # - current values, (ai, ti) # - previous values (ai0, ti0) # - current state of the moments t0, t1 # - parameters, w # We return: # result, current values, updated moments # res, a, t, t0, t1 # """ # if np.isnan(ai): # res = np.nan # return res, ai0, ti0, t0, t1 # else: # if ti == ti0: # t1 = t1 + (1-w) * (ai - ai0) # res = t1/t0 # return res, ai, ti, t0, t1 # else: # p = w**(ti-ti0) # t0 = t0 * p + (1-w) # t1 = t1 * p + (1-w) * ai # res = t1/t0 # return res, ai, ti, t0, t1 @pd2np @compiled def _ewma(a, n, time, t = np.nan, t0 = 0, t1 = 0): if n == 1: return a, t, t0, t1 w = _w(n) res = np.empty_like(a) i0 = 0 for i in range(a.shape[0]): if np.isnan(a[i]): res[i] = np.nan else: if time[i] == t: t1 = t1 + (1-w) * (a[i] - a[i0]) else: p = w if np.isnan(time[i]) else w**(time[i]-t) t0 = t0 * p + (1-w) t1 = t1 * p + (1-w) * a[i] t = time[i] i0 = i res[i] = np.nan if t0 == 0 else t1/t0 return res, t, t0, t1 @pd2np @compiled def _ewmrms(a, n, time, t = np.nan, t0 = 0., t2 = 0.): if n == 1: return a, t, t0, t2 w = _w(n) res = np.empty_like(a) i0 = 0 for i in range(a.shape[0]): if np.isnan(a[i]): res[i] = np.nan else: if time[i] == t: t2 = t2 + (1-w) * (a[i]**2 - a[i0]**2) else: p = w if np.isnan(time[i]) else w**(time[i]-t) v = a[i] t0 = t0 * p + (1-w) t2 = t2 * p + (1-w) * v**2 t = time[i] i0 = i res[i] = np.nan if t0 == 0 else np.sqrt(t2/t0) return res, t, t0, t2 @pd2np @compiled def _ewmstd(a, n, time, t = np.nan, t0 = 0, t1 = 0, t2 = 0, w2 = 0, min_sample = 0.25, bias = False, calculator = stdev_calculation_ewm): if n == 1: return np.full_like(a, 0.0), t, t0, t1, t2, w2 w = _w(n) res = np.empty_like(a) i0 = 0 for i in range(a.shape[0]): if np.isnan(a[i]): res[i] = np.nan else: if time[i] == t: t1 = t1 + (1-w) * (a[i] - a[i0]) t2 = t2 + (1-w) * (a[i]**2 - a[i0]**2) else: p = w if np.isnan(time[i]-t) else w**(time[i]-t) v = a[i] t0 = t0 * p + (1-w) w2 = w2 * p**2 + (1-w)**2 t1 = t1 * p + (1-w) * v t2 = t2 * p + (1-w) * v**2 t = time[i] i0 = i res[i] = calculator(t0, t1, t2, w2 = w2, min_sample = min_sample, bias = bias) return res, t, t0, t1, t2, w2 @pd2np @compiled def _ewmcor(a, b, ba, n, time, t = np.nan, t0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = 0, ab = 0, w2 = 0, min_sample = 0.25, bias = False): """ _ewmcor(a, b, ba, n, time, t) n = 50 t = np.nan; t0 = 0; a1 = 0; a2 = 0; b1 = 0; b2 = 0; ab = 0; w2 = 0; min_sample = 0.25; bias = False data, t, t0, a1, a2, b1, b2, ab, w2 = _ewmcor(a, b, ba, 200, time, t = np.nan, t0 = 0, a1 = 0, a2 = 0, b1 = 0, b2 = 0, ab = 0, w2 = 0, min_sample = 0.25, bias = False) pd.Series(data, drange(-9999)).plot() """ if n == 1: return np.full_like(a, np.nan), t, t0, a1, a2, b1, b2, ab, w2 w = _w(n) res = np.empty_like(a) i0 = 0 for i in range(a.shape[0]): if np.isnan(a[i]) or np.isnan(b[i]): res[i] = np.nan else: if time[i] == t: a1 = a1 + (1-w) * (a[i] - a[i0]) a2 = a2 + (1-w) * (a[i]**2 - a[i0]**2) b1 = b1 + (1-w) * (b[i] - b[i0]) b2 = b2 + (1-w) * (b[i]**2 - b[i0]**2) ab = ab + (1-w) * (ba[i] - ba[i0]) else: p = w if np.isnan(time[i]) else w**(time[i]-t) t0 = t0 * p + (1-w) w2 = w2 * p**2 + (1-w)**2 a1 = a1 * p + (1-w) * a[i] a2 = a2 * p + (1-w) * a[i]**2 b1 = b1 * p + (1-w) * b[i] b2 = b2 * p + (1-w) * b[i]**2 ab = ab * p + (1-w) * ba[i] t = time[i] i0 = i res[i0] = cor_calculation_ewm(t0 = t0, a1 = a1, a2 = a2, b1 = b1, b2 = b2, ab = ab, w2 = w2, min_sample = min_sample, bias = bias) return res, t, t0, a1, a2, b1, b2, ab, w2 @compiled def _ewmcorr(a, n, a0 = None, a1 = None, a2 = None, aa0 = None, aa1 = None, w2 = None, min_sample = 0.25, bias = False): """ """ m = a.shape[1] if n == 1: return np.full((a.shape[0], m, m), np.nan), a0, a1, a2, aa0, aa1, w2 p = w = _w(n) v = 1 - w res = np.zeros((a.shape[0], m, m)) a0 = np.zeros(m) if a0 is None else a0 a1 = np.zeros(m) if a1 is None else a1 a2 = np.zeros(m) if a2 is None else a2 aa1 = np.zeros((m,m)) if aa1 is None else aa1 aa0 = np.zeros((m,m)) if aa0 is None else aa0 w2 = np.zeros(m) if w2 is None else w2 for i in range(a.shape[0]): for j in range(m): if ~np.isnan(a[i,j]): w2[j] = w2[j] * p**2 + v**2 a0[j] = a0[j] * p + v a1[j] = a1[j] * p + v * a[i,j] a2[j] = a2[j] * p + v * a[i,j] ** 2 for j in range(m): res[i, j, j] = 1. if np.isnan(a[i,j]): res[i, j, :] = np.nan #if i == 0 else res[i-1, j, :] # we ffill correlations res[i, :, j] = np.nan #if i == 0 else res[i-1, :, j] else: for k in range(j): if ~np.isnan(a[i,k]): aa0[j,k] = aa0[j,k] * p + v aa1[j,k] = aa1[j,k] * p + v * a[i, j] * a[i, k] res[i, k, j] = res[i, j, k] = corr_calculation_ewm(a0 = a0[j], a1 = a1[j], a2 = a2[j], aw2 = w2[j], b0 = a0[k], b1 = a1[k], b2 = a2[k], bw2 = w2[k], ab = aa1[j,k], ab0 = aa0[j,k], min_sample = min_sample, bias = bias) return res, a0, a1, a2, aa0, aa1, w2 @compiled def _ewmcovar(a, n, a0 = None, a1 = None, aa0 = None, aa1 = None, min_sample = 0.25, bias = False): """ """ m = a.shape[1] if n == 1: return np.full((a.shape[0], m, m), np.nan), a0, a1, aa0, aa1 p = w = _w(n) v = 1 - w res = np.zeros((a.shape[0], m, m)) a0 =
np.zeros(m)
numpy.zeros
import argparse import configparser from datetime import datetime import json import matplotlib.pyplot as plt import numpy as np import os import pickle import torch import torch.nn as nn from torch.nn.functional import softplus from torch.optim import Adam from torch.utils.data import DataLoader, TensorDataset import pyro import pyro.distributions as dist from pyro import poutine from pyro.distributions.torch_distribution import TorchDistribution from pyro.infer import SVI, JitTrace_ELBO, Trace_ELBO from pyro.optim import MultiStepLR class Jorganizer(nn.Module): """Construct structured J matrix.""" def __init__(self, N): super().__init__() self.N = N self._make_transfer() def _make_transfer(self): N = self.N self.register_buffer("J_transf", torch.zeros(N*N, dtype=torch.long)) pos = 0 offset1 = int(N * (N - 1) / 2) offset2 = int(N * (N + 1) / 2) for j in range(N-1): for jp in range(j+1, N): self.J_transf[j * N + jp] = pos self.J_transf[jp * N + j] = offset2 + pos pos += 1 for j in range(N): self.J_transf[j * N + j] = offset1 + j def forward(self, Jraw): diag = torch.zeros((self.N, 2, 2)) flip = torch.transpose(Jraw, 1, 2) concat = torch.cat([Jraw, diag, flip]) reorder = concat[self.J_transf, :, :] Jmat = reorder.reshape([self.N, self.N, 2, 2]) return Jmat class SteinGlass(TorchDistribution): """ Continuous glass model with a normalized kernelized Stein discrepancy instead of a log probability. """ arg_constraints = {} def __init__(self, gene_scale, gene_mean, glass_h, glass_J, kernel_c=1., kernel_beta=-0.5, nksd_T=1., validate_args=None): self.gene_scale = gene_scale self.gene_mean = gene_mean self.ngenes = glass_h.shape[0] self.glass_h = glass_h self.glass_J = glass_J self.kernel_c = kernel_c self.kernel_beta = torch.tensor(kernel_beta) self.nksd_T = nksd_T super(SteinGlass, self).__init__( torch.Size([1]), torch.Size([self.ngenes]), validate_args=validate_args ) def stein_score(self, value): """Stein score function for model.""" # Compute inverse logits (effective spins). invlogit = 1/(1 + torch.exp(-self.gene_scale * ( value - self.gene_mean))) sigma = torch.cat([(1-invlogit.unsqueeze(-1)), invlogit.unsqueeze(-1)], -1) # Compute derivative of inverse logits. dinvlogit = self.gene_scale * torch.prod(sigma, -1) dsigma = torch.cat([-dinvlogit.unsqueeze(-1), dinvlogit.unsqueeze(-1)], -1) # Order-one term. term_one = torch.einsum('ijk,jk->ij', dsigma, self.glass_h) # Order-two term term_two = torch.einsum('ijk,jakb,iab->ij', dsigma, self.glass_J, sigma) return term_one + term_two def kernel_terms(self, value): """Compute kernel terms in NKSD.""" c, beta = self.kernel_c, self.kernel_beta / self.ngenes xmy = value[:, None, :] - value[None, :, :] fl2 = xmy**2 K = torch.prod((c*c + fl2)**beta, dim=2) K = K - torch.diag(torch.diag(K)) # First derivative. Kp = 2 * beta * xmy * (1/(c*c + fl2)) * K[:, :, None] # Trace of second derivative. Kpp = torch.sum(- 2 * beta / (c*c + fl2) - 4 * beta * (beta - 1) * fl2 / (c*c + fl2)**2, dim=2) * K # Normalization. Kbar = torch.sum(K) return K, Kp, Kpp, Kbar def log_prob(self, value): """ The normalized kernelized Stein discrepancy acts as a generalized log likelihood. """ # Stein score. sscore = self.stein_score(value) # Kernel terms. K, Kp, Kpp, Kbar = self.kernel_terms(value) # Kernelized Stein discrepancy. ksd = (torch.einsum('ia,ja,ij->', sscore, sscore, K) + 2 * torch.einsum('ija,ja->', Kp, sscore) + torch.sum(Kpp)) # Normalized KSD (NKSD). nksd = ksd / Kbar # Negative loss. nloss = - (value.shape[0]/self.nksd_T) * nksd return nloss class DataSelector: def __init__(self, datapoints, ngenes, PY_mix_d=2, PY_conc=-0.25, loorf_init=0.99, learning_rate=0.01, milestones=[], learning_gamma=1.): # Set up SVC volume correction. self.PY_mix_d = torch.tensor(PY_mix_d) self.PY_conc = torch.tensor(PY_conc) self.PY_alpha = torch.tensor(0.5) assert PY_conc > -self.PY_alpha, ( 'Pitman-Yor model constraint violated.') # Compute Pitman-Yor mixture model effective dimension prefactor. cB = (self.PY_mix_d / self.PY_alpha) * torch.exp( torch.lgamma(self.PY_conc + 1.) - torch.lgamma(self.PY_conc + self.PY_alpha)) self.cfactor = (0.5 * cB * np.sqrt(datapoints) * (np.log(2 * np.pi) - np.log(datapoints))) # Set up stochastic optimization of SVC. self.select_phi = (loorf_init * torch.ones(ngenes) ).requires_grad_(True) self.loorf_optimizer = Adam([self.select_phi], lr=learning_rate) self.loorf_scheduler = torch.optim.lr_scheduler.MultiStepLR( self.loorf_optimizer, milestones, gamma=learning_gamma) def correction(self, select): """SVC volume correction.""" return (1 - select).sum(-1) * self.cfactor def _logit(self): """Logit of stochastic selection weights.""" return 1/(1 + torch.exp(-self.select_phi)) def sample_select(self): """Sample selection variable.""" probs = self._logit() bern = torch.distributions.bernoulli.Bernoulli(probs) return bern.sample().to(torch.bool) def step(self, selects, nelbos): """Update stochastic selection biases with LOORF estimator.""" selects = selects.to(torch.double) # Compute total SVC. fb = self.correction(selects) - nelbos # LOORF gradient estimator. n = len(fb) baseline = fb.mean() grad_est = (1/(n-1)) * torch.sum((fb - baseline)[:, None] * ( selects - self._logit()[None, :]), dim=0) # Update. self.select_phi.grad = -grad_est self.loorf_optimizer.step() self.loorf_scheduler.step() return baseline class SparseGlass(nn.Module): """ Stein glass with sparsity promoting prior on interactions. """ def __init__(self, ngenes, prior_gene_scale_mn=0., prior_gene_scale_sd=1., prior_gene_scale_lbound=1., prior_gene_mean_mn=1., prior_gene_mean_sd=0., prior_glass_h_sd=1., prior_glass_J_scale=0.1, kernel_c=1., kernel_beta=-0.5, nksd_T=1., cuda=False, pin_memory=False): super().__init__() self.ngenes = ngenes self.ninteracts = int(self.ngenes * (self.ngenes - 1) / 2) self.prior_gene_scale_mn = prior_gene_scale_mn self.prior_gene_scale_sd = prior_gene_scale_sd self.prior_gene_scale_lbound = prior_gene_scale_lbound self.prior_gene_mean_mn = prior_gene_mean_mn self.prior_gene_mean_sd = prior_gene_mean_sd self.prior_glass_h_sd = prior_glass_h_sd self.prior_glass_J_scale = prior_glass_J_scale self.kernel_c = kernel_c self.kernel_beta = kernel_beta self.nksd_T = nksd_T self.cuda = cuda self.pin_memory = pin_memory self.jorganizer = Jorganizer(ngenes) def model(self, data, select, local_scale): # Effective spin parameters. gene_scale = pyro.sample( "gene_scale", dist.Normal(torch.tensor(self.prior_gene_scale_mn), torch.tensor(self.prior_gene_scale_sd))) gene_scale = softplus(gene_scale) + self.prior_gene_scale_lbound gene_mean = pyro.sample( "gene_mean", dist.Normal(torch.tensor(self.prior_gene_mean_mn), torch.tensor(self.prior_gene_mean_sd))) gene_mean = softplus(gene_mean) # First order energies. glass_h = pyro.sample( "glass_h", dist.Normal(torch.zeros((self.ngenes, 2)), torch.tensor(self.prior_glass_h_sd)).to_event(2) ) # Second order energies. glass_J = pyro.sample( "glass_J", dist.Laplace(torch.zeros((self.ninteracts, 2, 2)), torch.tensor(self.prior_glass_J_scale)).to_event(3) ) glass_J = self.jorganizer.forward(glass_J) # Take selected subset. data = data[:, select] glass_h = glass_h[select] glass_J = glass_J[select][:, select] # Compute NKSD term. with pyro.plate("batch", data.shape[0]): with poutine.scale(scale=local_scale): # Observations. pyro.sample( "obs_seq", SteinGlass( gene_scale, gene_mean, glass_h, glass_J, kernel_c=self.kernel_c, kernel_beta=self.kernel_beta, nksd_T=self.nksd_T ), obs=data, ) def guide(self, data, select, local_scale): gene_scale_mn = pyro.param( "gene_scale_mn", torch.tensor(0.) ) gene_scale_sd = pyro.param( "gene_scale_sd", torch.tensor(0.) ) pyro.sample("gene_scale", dist.Normal(gene_scale_mn, softplus(gene_scale_sd))) gene_mean_mn = pyro.param( "gene_mean_mn", torch.tensor(0.) ) gene_mean_sd = pyro.param( "gene_mean_sd", torch.tensor(0.) ) pyro.sample("gene_mean", dist.Normal(gene_mean_mn, softplus(gene_mean_sd))) glass_h_mn = pyro.param( "glass_h_mn", torch.zeros((self.ngenes, 2)) ) glass_h_sd = pyro.param( "glass_h_sd", torch.zeros((self.ngenes, 2)) ) pyro.sample("glass_h", dist.Normal(glass_h_mn, softplus(glass_h_sd)).to_event(2)) glass_J_mn = pyro.param( "glass_J_mn", torch.zeros((self.ninteracts, 2, 2)) ) glass_J_sd = pyro.param( "glass_J_sd", torch.zeros((self.ninteracts, 2, 2)) ) pyro.sample("glass_J", dist.Laplace(glass_J_mn, softplus(glass_J_sd)).to_event(3)) def fit_svi(self, dataset, epochs=2, batch_size=100, scheduler=None, jit=False, learning_rate=0.01, milestones=[], learning_gamma=1., PY_mix_d=2, PY_conc=-0.25, loorf_samples=10, loorf_init=1.0, select_all=False, early_stop=True, smooth_wind=2000): """Fit via stochastic variational inference.""" # GPU. if self.cuda: device = torch.device("cuda") else: device = torch.device("cpu") # Initialize guide. self.guide(None, None, None) dataload = DataLoader( dataset, batch_size=batch_size, shuffle=True, pin_memory=self.pin_memory, generator=torch.Generator(device=device), ) N = len(dataset) # Optimizer for model variational approximation. scheduler = MultiStepLR( { "optimizer": Adam, "optim_args": {"lr": learning_rate}, "milestones": milestones, "gamma": learning_gamma, } ) if not select_all: # Optimizer for data selection. dataselector = DataSelector( N, self.ngenes, PY_mix_d=PY_mix_d, PY_conc=PY_conc, loorf_init=loorf_init, learning_rate=learning_rate, milestones=milestones, learning_gamma=learning_gamma) else: select = torch.ones(self.ngenes).to(torch.bool) select_prob = torch.ones(self.ngenes) select_gap = torch.tensor(0.5) # Setup stochastic variational inference. if jit: elbo = JitTrace_ELBO(ignore_jit_warnings=True) else: elbo = Trace_ELBO() svi = SVI(self.model, self.guide, scheduler, loss=elbo) # Run inference. svcs = [] select_gaps = [] t0 = datetime.now() stop = False for epoch in range(epochs): for data in dataload: data = data[0] if self.cuda: data = data.cuda() # Take SVI step. if not select_all: select = dataselector.sample_select() nelbo = svi.step(data, select, torch.tensor(N / data.shape[0])) scheduler.step() # Draw LOORF samples. if not select_all: selects = torch.zeros((loorf_samples, self.ngenes), dtype=torch.bool) nelbos = torch.zeros(loorf_samples) for s in range(loorf_samples): selects[s] = dataselector.sample_select() nelbos[s] = svi.evaluate_loss( data, selects[s], torch.tensor(N / data.shape[0])) # Update stochastic selection. svc = dataselector.step(selects, nelbos) select_prob = dataselector._logit().detach() select_gap = torch.abs(select_prob - 0.5).min() else: svc = torch.tensor(-nelbo) # Record. svcs.append(svc.cpu()) select_gaps.append(select_gap.cpu()) if early_stop and len(svcs) > 2 * smooth_wind: mu_m_var_0 = (np.mean(svcs[-smooth_wind:]) - np.std(svcs[-smooth_wind:])) mu_m_var_1 = (np.mean(svcs[-2*smooth_wind:-smooth_wind]) - np.std(svcs[-2*smooth_wind:-smooth_wind])) if mu_m_var_0 < mu_m_var_1: stop = True break print(epoch, svc, select_gap, torch.sum(select_prob > 0.5), " ", datetime.now() - t0) if stop: print('Stopped early based on mean - std criterion.') break return np.array(svcs),
np.array(select_gaps)
numpy.array
import mdtraj as md import numpy as np from scipy.interpolate import interp1d from scipy.spatial import ConvexHull def save_pdb(t, protein, filename, bfactors=None): """Save a PDB file. It supports adding contact information in a beta-factor column. Parameters ---------- t : MDTraj.Trajectory protein : ProLint.Protein filename : str bfactors : array """ df = protein.dataframe[0] if protein.resolution == 'atomistic': indices = df[(df.name == "CA")].index.to_numpy() elif protein.resolution == 'martini': indices = df[(df.name == "BB")].index.to_numpy() t = t[0].atom_slice(indices) t.save_pdb(filename, bfactors=bfactors) def unit_poly_verts(theta, centre ): """Return vertices of polygon for subplot axes. This polygon is circumscribed by a unit circle centered at (0.5, 0.5) """ x0, y0, r = [centre ] * 3 verts = [(r*np.cos(t) + x0, r*
np.sin(t)
numpy.sin
import cv2 import numpy as np import albumentations as A transforms = A.Compose([ A.CenterCrop(1350,1350, True,1), ], p=1.0, bbox_params=A.BboxParams(format='pascal_voc', min_area=0, min_visibility=0.99, label_fields=['labels'])) def switch_image(img) : h, w = img.shape[:2] if (h, w) == (4032, 1960) or (h, w) == (4000, 1800) : img = np.flip(img, 1) img = np.transpose(img, (1, 0, 2)) return img # def crop_image(img): # h, w = img.shape[:2] # # Case 1 # if (h, w) == (1960, 4032): # h_margin = 305 # w_margin = 1341 # elif (h, w) == (1800, 4000): # h_margin = 225 # w_margin = 1325 # else: #(1560, 1632) # h_margin = 0 # w_margin = 0 # wid = w - w_margin*2 # hgt = h - h_margin*2 # img = img[h_margin:-h_margin, w_margin:-w_margin, :] # return img # def transform_bbox_points(img, bbox_point): # h, w = img.shape[:2] # # Case 1 # if (h, w) == (1960, 4032): # h_margin = 305 # w_margin = 1341 # elif (h, w) == (1800, 4000): # h_margin = 225 # w_margin = 1325 # else: #(1560, 1632) # h_margin = 0 # w_margin = 0 # xmin, ymin, xmax, ymax = bbox_point # xmin -= w_margin # ymin -= h_margin # xmax -= w_margin # ymax -= h_margin # new_bbox_point = [xmin, ymin, xmax, ymax] # return new_bbox_point def shift(img, val_x, val_y, points_2d=None, is_normalized=True): """ Shift Image and Points """ h, w = img.shape[:2] shift_x = int(val_x * w) shift_y = int(val_y * h) # Get Affine transform matrix M =
np.float32([[1, 0, shift_x], [0, 1, shift_y]])
numpy.float32
# This code is based on: https://github.com/stefanknegt/Probabilistic-Unet-Pytorch/ # Author: <NAME> https://github.com/stefanknegt/Probabilistic-Unet-Pytorch/ # Modifications: <NAME> # This software is licensed under the Apache License 2.0 import torch from torch.utils.data.dataset import Dataset from torch.utils.data import DataLoader import numpy as np import os import random import pickle from torch.utils.data import DataLoader from torch.utils.data.sampler import SubsetRandomSampler from mypath import Path def load_data_into_loader(sys_config, name, batch_size, transform=None): location = os.path.join(sys_config.data_root, name) dataset = LIDC_IDRI(dataset_location=location, transform=transform) dataset_size = len(dataset) indices = list(range(dataset_size)) split = int(np.floor(0.1 * dataset_size)) np.random.shuffle(indices) train_indices, test_indices, val_indices = indices[2*split:], indices[2*split:3*split], indices[:split] train_sampler = SubsetRandomSampler(train_indices) test_sampler = SubsetRandomSampler(test_indices) val_sampler = SubsetRandomSampler(val_indices) train_loader = DataLoader(dataset, batch_size=12, sampler=train_sampler) test_loader = DataLoader(dataset, batch_size=1, sampler=test_sampler) validation_loader = DataLoader(dataset, batch_size=1, sampler=val_sampler) print("Number of training/test/validation patches:", (len(train_indices), len(test_indices), len(val_indices))) return train_loader, test_loader, validation_loader class LIDC_IDRI(Dataset): images = [] labels = [] series_uid = [] MEAN = 0.22223 STD = 0.1843 def __init__(self, dataset_location=Path.getPath('lidc'), transform=None, mode='ged'): """ mode = choices(['ged', 'qubiq']) """ self.transform = transform self.mode = mode max_bytes = 2**31 - 1 data = {} for file in os.listdir(dataset_location): filename = os.fsdecode(file) if '.pickle' in filename: print("Loading file", filename) file_path = dataset_location + filename bytes_in = bytearray(0) input_size = os.path.getsize(file_path) with open(file_path, 'rb') as f_in: for _ in range(0, input_size, max_bytes): bytes_in += f_in.read(max_bytes) new_data = pickle.loads(bytes_in) data.update(new_data) for key, value in data.items(): self.images.append(value['image'].astype(float)) self.labels.append(value['masks']) self.series_uid.append(value['series_uid']) assert (len(self.images) == len(self.labels) == len(self.series_uid)) for img in self.images: assert np.max(img) <= 1 and np.min(img) >= 0 for label in self.labels: assert np.max(label) <= 1 and np.min(label) >= 0 del new_data del data def __getitem__(self, index): image = np.expand_dims(self.images[index], axis=0) label = self.labels[index][np.random.randint(4)][None, ...] labels = np.stack(self.labels[index], axis=0) # Convert image and label to torch tensors image = (torch.from_numpy(image) - self.MEAN) / self.STD label = torch.from_numpy(label) #Convert uint8 to float tensors image = image.type(torch.FloatTensor) label = label.type(torch.FloatTensor) # Normalise inputs if self.transform: image = self.transform(image) label = self.transform(label) if self.mode == 'ged': return {'image': image, 'label': label, 'labels': labels} elif self.mode == 'qubiq': return {'image': image, 'label': labels} else: raise NotImplementedError # Override to give PyTorch size of dataset def __len__(self): return len(self.images) def mean(self, ): return np.mean(self.images) def std(self, ): return
np.std(self.images)
numpy.std
import pickle import itertools import os import math from sklearn.preprocessing import normalize import re from operator import add import matplotlib.pyplot as plt #%matplotlib inline import numpy as np import argparse import pylab as pl def normalize_by_row(arr): row_sums = np.sqrt((arr*arr).sum(axis=1)) new_arr = arr / row_sums[:, np.newaxis] return new_arr def grep(pat, txt, ind): r = re.search(pat, txt) return int(r.group(1)) def compute_embds_matrix(path, M): pkls = os.listdir(path) pkls.sort(key=lambda txt: grep(r"(\d+)_(\d+)\.pkl", txt, 1)) print(pkls) A_lst = [] for pkl in pkls: print(pkl) with open(os.path.join(path, pkl), 'rb') as handle: samples = pickle.load(handle) keys = list(samples.keys()) keys.sort(key=lambda txt: grep(r"(\d+)\.png", txt, 1)) samples = [samples[key] for key in keys] chunks = [normalize(np.asarray(samples[i:i+M]), axis=1, norm='l2') for i in range(0, len(samples), M)] print(chunks[0].shape) print(len(chunks)) A_lst.extend(chunks) return A_lst def compute_nearest_neighbors(A_lst, epsilon, N): neighbors_count_lstoflst = [] final_neighbors_count_lstoflst = [] for i in range(N): print('i={}'.format(i)) Ai = A_lst[i] Bi = np.transpose(Ai) AiBi = np.matmul(Ai, Bi) np.fill_diagonal(AiBi, 1) AiBi = np.arccos(AiBi) / math.pi np.fill_diagonal(AiBi, np.inf) AiBi = AiBi - np.ones(AiBi.shape)*epsilon neighbors_count = list(
np.sum(AiBi <= 0, axis=1)
numpy.sum
#! /usr/bin/env python """Provides an artificial problem to test multi-fidelity optimizers on. """ import numpy as np import rospy import random from percepto_msgs.srv import GetCritique, GetCritiqueRequest, GetCritiqueResponse class MultiFidelityFunctions(object): def __init__(self, num_fidelities, noise=0.1, gamma=0.1): self.gamma = np.arange(num_fidelities)[::-1] * gamma self.theta_offsets = np.random.uniform(-self.gamma, self.gamma, size=num_fidelities) rospy.loginfo('Gammas: ' + str(self.gamma)) rospy.loginfo('Offsets: ' + str(self.theta_offsets)) self.noise = noise def __call__(self, fid, x): if round(fid) != fid: raise ValueError('Fidelity must be integer') fid = int(round(fid)) if fid >= len(self.gamma): raise ValueError('Cannot query fidelity %d out of %d' % (fid, len(self.gamma))) mean = -
np.linalg.norm(x)
numpy.linalg.norm
import unittest import numpy as np from activations import sigmoid, sigmoid_derivative, relu, relu_derivative from propagate import propagate, _cost, _step_forward, _propagate_forward, _step_backward, _propagate_back, _tf_propagate_forward, _tf_cost from utils import vectorize, normalize_rows, softmax, loss from initializations import initialize_parameters, initialize_lr_with_zeros, initialize_tf_parameters from gradient_checking import _dictionary_to_vector, check_gradient from convolutions import zero_pad, conv_step, conv_forward, pool_forward, conv_backward, create_mask_from_window, distribute_value, pool_backward, create_placeholders, initialize_tf_parameters as initialize_tf_conv_parameters import tensorflow as tf from tf_helpers import create_placeholders class TestActivations(unittest.TestCase): def test_sigmoid(self): self.assertEqual(sigmoid(0), 0.5) self.assertGreater(sigmoid(100), .99) self.assertLess(sigmoid(-100), .01) Z = np.array([1,2,3]) expected = np.array([0.73105858, 0.88079708, 0.95257413]) self.assertTrue(np.allclose(sigmoid(Z), expected)) def test_sigmoid_derivative(self): self.assertEqual(sigmoid_derivative(0), 0.25) self.assertLess(sigmoid_derivative(100), .001) self.assertLess(sigmoid_derivative(-100), .001) Z = np.array([1, 2, 3]) expected = np.array([0.1966119, 0.1049935, 0.04517666]) self.assertTrue(np.allclose(sigmoid_derivative(Z), expected)) def test_relu(self): self.assertEqual(relu(1), 1) self.assertEqual(relu(0), 0) self.assertEqual(relu(-1), 0) def test_relu_derivative(self): self.assertTrue(np.allclose(relu_derivative(np.array([[2,1,0,-1,-2]])), np.array([[1,1,0,0,0]]))) class TestUtils(unittest.TestCase): def test_vectorize(self): with self.assertRaises(AssertionError): vectorize([]) array = vectorize(np.array([])) self.assertEqual(array.shape, (0,1)) array = vectorize(np.zeros((2,1))) self.assertEqual(array.shape, (2,1)) array = vectorize(np.zeros((1,3))) self.assertEqual(array.shape, (3,1)) array = vectorize(np.zeros((3,4,2,5))) self.assertEqual(array.shape, (120,1)) image = np.array([ [ [0.67826139, 0.29380381], [0.90714982, 0.52835647], [0.4215251 , 0.45017551] ], [ [0.92814219, 0.96677647], [0.85304703, 0.52351845], [0.19981397, 0.27417313] ], [ [0.60659855, 0.00533165], [0.10820313, 0.49978937], [0.34144279, 0.94630077] ] ]) expected = np.array([ [0.67826139], [0.29380381], [0.90714982], [0.52835647], [0.4215251 ], [0.45017551], [0.92814219], [0.96677647], [0.85304703], [0.52351845], [0.19981397], [0.27417313], [0.60659855], [0.00533165], [0.10820313], [0.49978937], [0.34144279], [0.94630077] ]) self.assertTrue(np.allclose(vectorize(image), expected)) def test_normalize_rows(self): arg = np.zeros((3,2)) self.assertTrue(np.array_equal(normalize_rows(arg), arg)) arg = np.array([ [0, 3, 4], [1, 6, 4] ]) expected = np.array([ [0, 0.6, 0.8], [0.13736056, 0.82416338, 0.54944226] ]) self.assertTrue(np.allclose(normalize_rows(arg), expected)) def test_softmax(self): arg = np.zeros((3,2)) self.assertTrue(np.array_equal(softmax(arg), arg + 0.5)) arg = np.array([ [9, 2, 5, 0, 0], [7, 5, 0, 0 ,0] ]) expected = np.array([ [9.80897665e-01, 8.94462891e-04, 1.79657674e-02, 1.21052389e-04, 1.21052389e-04], [8.78679856e-01, 1.18916387e-01, 8.01252314e-04, 8.01252314e-04, 8.01252314e-04] ]) self.assertTrue(np.allclose(softmax(arg), expected)) def test_loss(self): with self.assertRaises(AssertionError): loss([], [], L=0) with self.assertRaises(AssertionError): loss([], [], L=3) size = 10 y = np.random.randint(2, size=size) yhat = np.copy(y) self.assertEqual(loss(yhat, y, L=1), 0) self.assertEqual(loss(yhat, y, L=2), 0) yhat = (y == 0).astype(int) self.assertEqual(loss(yhat, y, L=1), size) self.assertEqual(loss(yhat, y, L=2), size) y = np.array([1, 0, 0, 1, 1]) yhat = np.array([.9, 0.2, 0.1, .4, .9]) self.assertEqual(loss(yhat, y, L=1), 1.1) self.assertEqual(loss(yhat, y, L=2), 0.43) class TestInitialization(unittest.TestCase): def test_initialize_parameters(self): for i in range(5, 8): for o in range(1, 4): layer_dimensions = [dimension for dimension in [i,o] if dimension != 0] parameters = initialize_parameters(layer_dimensions, use="zeros") self.assertEqual(len(parameters), 2) self.assertTrue(np.array_equal(parameters["W1"], np.zeros((o,i)))) self.assertTrue(np.array_equal(parameters["b1"], np.zeros((o, 1)))) for h1 in range(1, 4): layer_dimensions = [dimension for dimension in [i, h1, o] if dimension != 0] parameters = initialize_parameters(layer_dimensions, use="zeros") self.assertEqual(len(parameters), 4) self.assertTrue(np.array_equal(parameters["W1"], np.zeros((h1,i)))) self.assertTrue(np.array_equal(parameters["b1"], np.zeros((h1, 1)))) self.assertTrue(np.array_equal(parameters["W2"], np.zeros((o, h1)))) self.assertTrue(np.array_equal(parameters["b2"], np.zeros((o, 1)))) for h2 in range(7, 9): layer_dimensions = [dimension for dimension in [i,h1,h2,o] if dimension != 0] parameters = initialize_parameters(layer_dimensions, use="zeros") self.assertEqual(len(parameters), 6) self.assertTrue(np.array_equal(parameters["W1"], np.zeros((h1,i)))) self.assertTrue(np.array_equal(parameters["b1"], np.zeros((h1, 1)))) self.assertTrue(np.array_equal(parameters["W2"], np.zeros((h2, h1)))) self.assertTrue(np.array_equal(parameters["b2"], np.zeros((h2, 1)))) self.assertTrue(np.array_equal(parameters["W3"], np.zeros((o, h2)))) self.assertTrue(np.array_equal(parameters["b3"], np.zeros((o, 1)))) np.random.seed(3) expected = { 'W1': np.array([ [17.88628473, 4.36509851, 0.96497468], [-18.63492703, -2.77388203, -3.54758979] ]), 'b1': np.array([[0], [0]]), 'W2': np.array([[-0.82741481, -6.27000677]]), 'b2': np.array([[0]]) } parameters = initialize_parameters([3,2,1], use="random", W_multiplier=10) self.assertTrue(np.allclose(parameters["W1"], expected['W1'])) self.assertTrue(np.allclose(parameters["b1"], expected['b1'])) self.assertTrue(np.allclose(parameters["W2"], expected['W2'])) self.assertTrue(np.allclose(parameters["b2"], expected['b2'])) np.random.seed(3) expected = { 'W1': np.array([ [1.78862847, 0.43650985], [0.09649747, -1.8634927], [-0.2773882, -0.35475898], [-0.08274148, -0.62700068] ]), 'b1': np.array([ [0.], [0.], [0.], [0.] ]), 'W2': np.array([[-0.03098412, -0.33744411, -0.92904268, 0.62552248]]), 'b2': np.array([[0]]) } parameters = initialize_parameters([2,4,1], use="he") self.assertTrue(np.allclose(parameters["W1"], expected['W1'])) self.assertTrue(np.allclose(parameters["b1"], expected['b1'])) self.assertTrue(np.allclose(parameters["W2"], expected['W2'])) self.assertTrue(np.allclose(parameters["b2"], expected['b2'])) def test_initialize_lr_with_zeros(self): with self.assertRaises(ValueError): initialize_lr_with_zeros(0) for l in range(1,4): parameters = initialize_lr_with_zeros(l) self.assertTrue(np.array_equal(parameters['W1'], np.zeros((1,l)))) self.assertEqual(parameters['b1'], 0) self.assertEqual(parameters['b1'].shape, (1, 1)) def test_initialize_tf_parameters(self): parameters = initialize_tf_parameters([12288, 25, 12, 6], seed=1) tf.get_variable_scope().reuse_variables() init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) parameters = sess.run(parameters) self.assertEqual(parameters['W1'].shape, (25, 12288)) self.assertAlmostEqual(parameters['W1'][0][0], -0.01962241) self.assertEqual(parameters['b1'].shape, (25, 1)) self.assertEqual(np.sum(parameters['b1']), 0) self.assertEqual(parameters['W2'].shape, (12, 25)) self.assertAlmostEqual(parameters['W2'][0][0], -0.35795909) self.assertEqual(parameters['b2'].shape, (12, 1)) self.assertEqual(np.sum(parameters['b2']), 0) self.assertEqual(parameters['W3'].shape, (6, 12)) self.assertAlmostEqual(parameters['W3'][0][0], -0.5132134) self.assertEqual(parameters['b3'].shape, (6, 1)) self.assertEqual(np.sum(parameters['b3']), 0) class TestPropagate(unittest.TestCase): def test__step_forward(self): A_prev = np.array([ [-0.41675785, -0.05626683], [-2.1361961, 1.64027081], [-1.79343559, -0.84174737] ]) W = np.array([[0.50288142, -1.24528809, -1.05795222]]) b = np.array([[-0.90900761]]) activation = 'sigmoid' A, D, ((cA_prev, cW, cb), (cZ, cActivation)) = _step_forward(A_prev, W, b, activation) self.assertTrue(np.allclose(A, [[0.96890023, 0.11013289]])) self.assertIs(A_prev, cA_prev) self.assertIs(W, cW) self.assertIs(b, cb) self.assertTrue(np.allclose(cZ, np.array([[3.43896134, -2.08938436]]))) self.assertIs(activation, cActivation) activation = 'relu' A, D, ((cA_prev, cW, cb), (cZ, cActivation)) = _step_forward(A_prev, W, b, activation) self.assertTrue(np.allclose(A, [[3.43896131, 0.]])) self.assertIs(A_prev, cA_prev) self.assertIs(W, cW) self.assertIs(b, cb) self.assertTrue(np.allclose(cZ, np.array([[3.43896131, -2.08938436]]))) self.assertIs(activation, cActivation) def test__propagate_forward(self): X = np.array([ [-0.31178367, 0.72900392, 0.21782079, -0.8990918 ], [-2.48678065, 0.91325152, 1.12706373, -1.51409323], [1.63929108, -0.4298936, 2.63128056, 0.60182225], [-0.33588161, 1.23773784, 0.11112817, 0.12915125], [0.07612761, -0.15512816, 0.63422534, 0.810655] ]) parameters = { 'W1': np.array([ [0.35480861, 1.81259031, -1.3564758 , -0.46363197, 0.82465384], [-1.17643148, 1.56448966, 0.71270509, -0.1810066 , 0.53419953], [-0.58661296, -1.48185327, 0.85724762, 0.94309899, 0.11444143], [-0.02195668, -2.12714455, -0.83440747, -0.46550831, 0.23371059] ]), 'b1': np.array([ [1.38503523], [-0.51962709], [-0.78015214], [0.95560959] ]), 'W2': np.array([ [-0.12673638, -1.36861282, 1.21848065, -0.85750144], [-0.56147088, -1.0335199 , 0.35877096, 1.07368134], [-0.37550472, 0.39636757, -0.47144628, 2.33660781] ]), 'b2': np.array([ [1.50278553], [-0.59545972], [0.52834106] ]), 'W3': np.array([ [0.9398248, 0.42628539, -0.75815703] ]), 'b3': np.array([[-0.16236698]]) } AL, Ds, caches = _propagate_forward(parameters, X) self.assertTrue(np.allclose(AL, np.array([[0.03921668, 0.70498921, 0.19734387, 0.04728177]]))) self.assertEqual(len(caches), 3) X = np.array([ [ 1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763], [-2.3015387, 1.74481176, -0.7612069, 0.3190391, -0.24937038], [ 1.46210794, -2.06014071, -0.3224172, -0.38405435, 1.13376944] ]) parameters = { 'W1': np.array([ [-1.09989127, -0.17242821, -0.87785842], [ 0.04221375, 0.58281521, -1.10061918] ]), 'b1': np.array([[ 1.14472371], [ 0.90159072]]), 'W2': np.array([ [ 0.50249434, 0.90085595], [-0.68372786, -0.12289023], [-0.93576943, -0.26788808] ]), 'b2': np.array([[ 0.53035547], [-0.69166075], [-0.39675353]]), 'W3': np.array([[-0.6871727 , -0.84520564, -0.67124613]]), 'b3': np.array([[-0.0126646]]) } np.random.seed(1) AL, Ds, caches = _propagate_forward(parameters, X, keep_prob=0.7) self.assertTrue(np.allclose(AL, np.array([[0.36974721, 0.00305176, 0.04565099, 0.49683389, 0.36974721]]))) self.assertEqual(len(caches), 3) def test__step_backward(self): dAL = np.array([[-0.41675785, -0.05626683]]) A_prev = np.array([ [-2.1361961, 1.64027081], [-1.79343559, -0.84174737], [0.50288142, -1.24528809] ]) W = np.array([[-1.05795222, -0.90900761, 0.55145404]]) b = np.array([[2.29220801]]) Z = np.array([[0.04153939, -1.11792545]]) cache = ((A_prev, W, b), (Z, 'sigmoid')) dA_prev, dW, db = _step_backward(dAL, 1, cache, None, None, 1) self.assertTrue(np.allclose(dA_prev, np.array([[0.11017994, 0.01105339], [0.09466817, 0.00949723], [-0.05743092, -0.00576154]]))) self.assertTrue(np.allclose(dW, np.array([[0.10266786, 0.09778551, -0.01968084]]))) self.assertTrue(np.allclose(db, [[-0.05729622]])) cache = ((A_prev, W, b), (Z, 'relu')) dA_prev, dW, db = _step_backward(dAL, 1, cache, None, None, 1) self.assertTrue(np.allclose(dA_prev, np.array([[0.44090989, 0.], [0.37883606, 0.], [-0.2298228, 0.]]))) self.assertTrue(np.allclose(dW, np.array([[0.44513824, 0.37371418, -0.10478989]]))) self.assertTrue(np.allclose(db, [[-0.20837892]])) def test__propagate_back(self): # AL = np.array([[1.78862847, 0.43650985]]) # Y = np.array([[1, 0]]) # A_prev = np.array([ # [0.09649747, -1.8634927], # [-0.2773882 , -0.35475898], # [-0.08274148, -0.62700068], # [-0.04381817, -0.47721803] # ]) # W = np.array([ # [-1.31386475, 0.88462238, 0.88131804, 1.70957306], # [0.05003364, -0.40467741, -0.54535995, -1.54647732], # [0.98236743, -1.10106763, -1.18504653, -0.2056499] # ]) # b = np.array([ # [1.48614836], # [0.23671627], # [-1.02378514] # ]) # Z = np.array([ # [-0.7129932 , 0.62524497], # [-0.16051336, -0.76883635], # [-0.23003072, 0.74505627] # ]) # first_cache = ((A_prev, W, b), (Z, 'relu')) # A_prev = np.array([ # [1.97611078, -1.24412333], # [-0.62641691, -0.80376609], # [-2.41908317, -0.92379202] # ]) # W = np.array([[-1.02387576, 1.12397796, -0.13191423]]) # b = np.array([[-1.62328545]]) # Z = np.array([[0.64667545, -0.35627076]]) # second_cache = ((A_prev, W, b), (Z, 'sigmoid')) # caches = [first_cache, second_cache] # expected = { # 'dW1': np.array([ # [ 0.41010002, 0.07807203, 0.13798444, 0.10502167], # [0.,0.,0.,0.], # [0.05283652, 0.01005865, 0.01777766, 0.0135308] # ]), # 'db1': np.array([[-0.22007063], [0.], [-0.02835349]]), # 'dW2': np.array([[-0.39202432, -0.13325855, -0.04601089]]), # 'db2': np.array([[ 0.15187861]]) # } # grads = _propagate_back(AL, Y, [1,1], caches, None, None, 1) # self.assertTrue(np.allclose(expected['dW1'], grads['dW1'])) # self.assertTrue(np.allclose(expected['db1'], grads['db1'])) # self.assertTrue(np.allclose(expected['dW2'], grads['dW2'])) # self.assertTrue(np.allclose(expected['db2'], grads['db2'])) # # regularization # X = np.array([ # [1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763], # [-2.3015387, 1.74481176, -0.7612069, 0.3190391, -0.24937038], # [1.46210794, -2.06014071, -0.3224172, -0.38405435, 1.13376944] # ]) # AL = np.array([[ 0.40682402, 0.01629284, 0.16722898, 0.10118111, 0.40682402]]) # Y = np.array([[1, 1, 0, 1, 0]]) # caches = ( # (( # X, # np.array([ # [-1.09989127, -0.17242821, -0.87785842], # [0.04221375, 0.58281521, -1.10061918] # ]), # np.array([[1.14472371], [0.90159072]]) # ), # ( # np.array([ # [-1.52855314, 3.32524635, 2.13994541, 2.60700654, -0.75942115], # [-1.98043538, 4.1600994 , 0.79051021, 1.46493512, -0.45506242] # ]), # "relu" # )), # (( # np.array([ # [0., 3.32524635, 2.13994541, 2.60700654, 0.], # [0., 4.1600994, 0.79051021, 1.46493512, 0.] # ]), # np.array([ # [0.50249434, 0.90085595], # [-0.68372786, -0.12289023], # [-0.93576943, -0.26788808] # ]), # np.array([ # [0.53035547], # [-0.69166075], # [-0.39675353] # ]) # ), # ( # np.array([ # [0.53035547, 5.94892323, 2.31780174, 3.16005701, 0.53035547], # [-0.69166075, -3.47645987, -2.25194702, -2.65416996, -0.69166075], # [-0.39675353, -4.62285846, -2.61101729, -3.22874921, -0.39675353] # ]), # "relu" # )), # (( # np.array([ # [0.53035547, 5.94892323, 2.31780174, 3.16005701, 0.53035547], # [0., 0., 0., 0., 0.], # [0., 0., 0., 0., 0.] # ]), # np.array([[-0.6871727, -0.84520564, -0.67124613]]), # np.array([[-0.0126646]]) # ), # ( # np.array([[-0.3771104, -4.10060224, -1.60539468, -2.18416951, -0.3771104 ]]), # "sigmoid" # )) # ) # expected = { # 'dW1': np.array([ # [-0.25604646, 0.12298827, -0.28297129], # [-0.17706303, 0.34536094, -0.4410571 ] # ]), # 'db1': np.array([[0.11845855], [0.21236874]]), # 'dW2': np.array([ # [0.79276486, 0.85133918], # [-0.0957219, -0.01720463], # [-0.13100772, -0.03750433] # ]), # 'db2': np.array([[ 0.26135226], [ 0.], [ 0.]]), # 'dW3': np.array([[-1.77691347, -0.11832879, -0.09397446]]), # 'db3': np.array([[-0.38032981]]) # } # grads = _propagate_back(AL, Y, [1, 1, 1], caches, "L2", 0.7, 1) # self.assertTrue(np.allclose(grads['dW1'], expected['dW1'])) # self.assertTrue(np.allclose(grads['db1'], expected['db1'])) # self.assertTrue(np.allclose(grads['dW2'], expected['dW2'])) # self.assertTrue(np.allclose(grads['db2'], expected['db2'])) # self.assertTrue(np.allclose(grads['dW3'], expected['dW3'])) # self.assertTrue(np.allclose(grads['db3'], expected['db3'])) # Dropout AL = np.array([[0.32266394, 0.49683389, 0.00348883, 0.49683389, 0.32266394]]) Y = np.array([[1, 1, 0, 1, 0]]) caches = ( (( np.array([ [1.62434536, -0.61175641, -0.52817175, -1.07296862, 0.86540763], [-2.3015387, 1.74481176, -0.7612069, 0.3190391, -0.24937038], [ 1.46210794, -2.06014071, -0.3224172, -0.38405435, 1.13376944] ]), np.array([[-1.09989127, -0.17242821, -0.87785842], [0.04221375, 0.58281521, -1.10061918]]), np.array([[1.14472371], [0.90159072]]) ), ( np.array([ [-1.52855314, 3.32524635, 2.13994541, 2.60700654, -0.75942115], [-1.98043538, 4.1600994, 0.79051021, 1.46493512, -0.45506242] ]), "relu" )), (( np.array([ [0., 0., 4.27989081, 5.21401307, 0.], [0., 8.32019881, 1.58102041, 2.92987024, 0.] ]), np.array([ [0.50249434, 0.90085595], [-0.68372786, -0.12289023], [-0.93576943, -0.26788808] ]), np.array([[0.53035547], [-0.69166075], [-0.39675353]]) ), ( np.array([ [0.53035547, 8.02565606, 4.10524802, 5.78975856, 0.53035547], [-0.69166075, -1.71413186, -3.81223329, -4.61667916, -0.69166075], [-0.39675353, -2.62563561, -4.82528105, -6.0607449, -0.39675353] ]), "relu" )), (( np.array([ [1.06071093, 0., 8.21049603, 0., 1.06071093], [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.] ]), np.array([[-0.6871727, -0.84520564, -0.67124613]]), np.array([[-0.0126646]]) ), ( np.array([[-0.7415562, -0.0126646, -5.65469333, -0.0126646, -0.7415562 ]]), "sigmoid" )) ) expected = { 'dW1': np.array([[0.00019884, 0.00028657, 0.00012138], [ 0.00035647, 0.00051375, 0.00021761]]), 'db1': np.array([[-0.00037647], [-0.00067492]]), 'dW2': np.array([[-0.00256518, -0.0009476 ], [0., 0.], [0., 0.]]), 'db2': np.array([[ 0.06033089], [0.], [0.]]), 'dW3': np.array([[-0.06951191, 0., 0.]]), 'db3': np.array([[-0.2715031]]) } Ds = [ 1, np.array([[1, 0, 1, 1, 1], [1, 1, 1, 1, 0]]), np.array([[1, 0, 1, 0, 1], [0, 1, 0, 1, 1], [0, 0, 1, 0, 0]]) ] grads = _propagate_back(AL, Y, Ds, caches, None, None, 0.8) self.assertTrue(np.allclose(grads['dW1'], expected['dW1'])) self.assertTrue(np.allclose(grads['db1'], expected['db1'])) self.assertTrue(np.allclose(grads['dW2'], expected['dW2'])) self.assertTrue(np.allclose(grads['db2'], expected['db2'])) self.assertTrue(np.allclose(grads['dW3'], expected['dW3'])) self.assertTrue(np.allclose(grads['db3'], expected['db3'])) def test__cost(self): Y, A = np.array([[1, 1, 1]]), np.array([[0.8, 0.9, 0.4]]) self.assertEqual(_cost(A, Y, None, None, None), 0.414931599615397) Y, A = np.array([[1, 1, 0, 1, 0]]), np.array([[0.40682402, 0.01629284, 0.16722898, 0.10118111, 0.40682402]]) parameters = { 'W1': np.array([ [1.62434536, -0.61175641, -0.52817175], [-1.07296862, 0.86540763, -2.3015387] ]), 'b1': np.array([ [1.74481176], [-0.7612069 ] ]), 'W2': np.array([ [0.3190391, -0.24937038], [1.46210794, -2.06014071], [-0.3224172, -0.38405435] ]), 'b2': np.array([ [1.13376944], [-1.09989127], [-0.17242821] ]), 'W3': np.array([[-0.87785842, 0.04221375, 0.58281521]]), 'b3': np.array([[-1.10061918]]) } self.assertEqual(_cost(A, Y, parameters, regularization="L2", lambd=0.1), 1.786485945169561) def test_propagate(self): w, b, X, Y = np.array([[1., 2.]]), 2., np.array([[1.,2.,-1.],[3.,4.,-3.2]]), np.array([[1,0,1]]) parameters = { 'W1': w, 'b1': b } grads, cost = propagate(parameters, X, Y) self.assertTrue(np.allclose(grads['dW1'], np.array([[0.99845601, 2.39507239]]))) self.assertTrue(np.allclose(grads['db1'], np.array([[0.00145558]]))) self.assertEqual(cost, 5.801545319394553) def test__tf_propagate_forward(self): X, Y = create_placeholders(12288, 6) parameters = initialize_tf_parameters([12288, 25, 12, 6], seed=1) tf.get_variable_scope().reuse_variables() Z = _tf_propagate_forward(parameters, X) np.random.seed(1) dict_X = np.random.randn(12288, 1080) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) Z = sess.run(Z, feed_dict={X: dict_X}) self.assertAlmostEqual(Z[0][0], -2.46408725) self.assertAlmostEqual(Z[5][1079], -0.9831996) self.assertEqual(Z.shape, (6, 1080)) def test__tf_cost(self): X, Y = create_placeholders(12288, 6) parameters = initialize_tf_parameters([12288, 25, 12, 6], seed=1) tf.get_variable_scope().reuse_variables() Z = _tf_propagate_forward(parameters, X) cost = _tf_cost(Z, Y) np.random.seed(1) dict_X = np.random.randn(12288, 1080) dict_Y = np.random.randn(6, 1080) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) cost = sess.run(cost, feed_dict={X: dict_X, Y: dict_Y}) self.assertAlmostEqual(cost, 0.11581959) class TestGradientChecking(unittest.TestCase): def parameters(self): return { 'W1': np.array([ [-0.3224172, -0.38405435, 1.13376944, -1.09989127], [-0.17242821, -0.87785842, 0.04221375, 0.58281521], [-1.10061918, 1.14472371, 0.90159072, 0.50249434], [ 0.90085595, -0.68372786, -0.12289023, -0.93576943], [-0.26788808, 0.53035547, -0.69166075, -0.39675353] ]), 'b1': np.array([ [-0.6871727], [-0.84520564], [-0.67124613], [-0.0126646], [-1.11731035] ]), 'W2': np.array([ [ 0.2344157, 1.65980218, 0.74204416, -0.19183555, -0.88762896], [-0.74715829, 1.6924546, 0.05080775, -0.63699565, 0.19091548], [ 2.10025514, 0.12015895, 0.61720311, 0.30017032, -0.35224985] ]), 'b2': np.array([[-1.1425182], [-0.34934272], [-0.20889423]]), 'W3': np.array([[ 0.58662319, 0.83898341, 0.93110208]]), 'b3': np.array([[ 0.28558733]]) } def gradients(self): return { 'dW1': np.array([ [-0.37347779, -1.47903216, 0.17596143, -1.33685036], [-0.01967514, -0.08573553, 0.01188465, -0.07674312], [0.03916037, -0.05539735, 0.04872715, -0.09359393], [-0.05337778, -0.21138458, 0.02514856, -0.19106384], [0., 0., 0., 0.] ]), 'db1': np.array([ [0.63290787], [0.0372514 ], [-0.06401301], [0.09045575], [0.] ]), 'dW2': np.array([ [0., 0., 0., 0., 0.], [0., 0., 0., 0., 0.], [0.91580165, 0.02451548, -0.10797954, 0.90281891, 0.] ]), 'db2': np.array([[0.], [0.], [0.19763343]]), 'dW3': np.array([[0., 0., 2.24404238]]), 'db3': np.array([[0.21225753]]), } def test__dictionary_to_vector_on_parameters(self): expected = np.array([ [-0.3224172], [-0.38405435], [1.13376944], [-1.09989127], [-0.17242821], [-0.87785842], [0.04221375], [0.58281521], [-1.10061918], [1.14472371], [0.90159072], [0.50249434], [0.90085595], [-0.68372786], [-0.12289023], [-0.93576943], [-0.26788808], [0.53035547], [-0.69166075], [-0.39675353], [-0.6871727 ], [-0.84520564], [-0.67124613], [-0.0126646], [-1.11731035], [ 0.2344157], [1.65980218], [0.74204416], [-0.19183555], [-0.88762896], [-0.74715829], [1.6924546], [0.05080775], [-0.63699565], [0.19091548], [2.10025514], [0.12015895], [0.61720311], [0.30017032], [-0.35224985], [-1.1425182], [-0.34934272], [-0.20889423], [0.58662319], [0.83898341], [0.93110208], [0.28558733] ]) parameter_values = _dictionary_to_vector(self.parameters()) self.assertTrue(np.allclose(parameter_values, expected)) def test__dictionary_to_vector_on_gradients(self): expected = np.array([ [-0.37347779], [-1.47903216], [ 0.17596143], [-1.33685036], [-0.01967514], [-0.08573553], [0.01188465], [-0.07674312], [0.03916037], [-0.05539735], [0.04872715], [-0.09359393], [-0.05337778], [-0.21138458], [0.02514856], [-0.19106384], [0.], [0.], [0.], [0.], [0.63290787], [0.0372514 ], [-0.06401301], [0.09045575], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.], [0.91580165], [0.02451548], [-0.10797954], [0.90281891], [0.], [0.], [0.], [0.19763343], [0.], [0.], [2.24404238], [0.21225753] ]) gradient_values = _dictionary_to_vector(self.gradients(), key_bases=["dW", "db"]) self.assertTrue(np.allclose(gradient_values, expected)) def test_check_gradient(self): X = np.array([ [1.62434536, -0.61175641, -0.52817175], [-1.07296862, 0.86540763, -2.3015387], [ 1.74481176, -0.7612069, 0.3190391], [-0.24937038, 1.46210794, -2.06014071] ]) Y = np.array([[1, 1, 0]]) difference = check_gradient(self.parameters(), self.gradients(), X, Y) self.assertEqual(difference, 7.058343235500508e-08) class TestTF_Helpers(unittest.TestCase): def test_create_placeholders(self): X, Y = create_placeholders(12288, 6) print ("X = " + str(X)) print ("Y = " + str(Y)) self.assertEqual(X.shape[0], 12288) self.assertEqual(Y.shape[0], 6) self.assertEqual(X.dtype, tf.float32) self.assertEqual(Y.dtype, tf.float32) class TestConvolutions(unittest.TestCase): def test_zero_pad(self): np.random.seed(1) x = np.random.randn(4, 3, 3, 2) x_pad = zero_pad(x, 2) oneone = np.array([[0.90085595, -0.68372786], [-0.12289023, -0.93576943], [-0.26788808, 0.53035547]]) padone = np.zeros((7,2)) self.assertEqual(x.shape, (4,3,3,2)) self.assertEqual(x_pad.shape, (4,7,7,2)) self.assertTrue(np.allclose(x[1,1], oneone)) self.assertTrue(np.allclose(x_pad[1,1], padone)) def test_conv_step(self): np.random.seed(1) a_slice_prev = np.random.randn(4, 4, 3) W = np.random.randn(4, 4, 3) b = np.random.randn(1, 1, 1) Z = conv_step(a_slice_prev, W, b) self.assertAlmostEqual(Z, -6.99908945068) def test_conv_forward(self): np.random.seed(1) A_prev = np.random.randn(10,4,4,3) W = np.random.randn(2,2,3,8) b = np.random.randn(1,1,1,8) hparameters = { "pad" : 2, "stride": 2 } Z, cache_conv = conv_forward(A_prev, W, b, hparameters) zthreetwoone = np.array([-0.61490741, -6.7439236, -2.55153897, 1.75698377, 3.56208902, 0.53036437, 5.18531798, 8.75898442]) cczeroonetwothree = np.array([-0.20075807, 0.18656139, 0.41005165]) self.assertAlmostEqual(np.mean(Z), 0.0489952035289) self.assertTrue(np.allclose(Z[3,2,1], zthreetwoone)) self.assertTrue(np.allclose(cache_conv[0][1][2][3], cczeroonetwothree)) def test_pool_forward(self): np.random.seed(1) A_prev = np.random.randn(2, 4, 4, 3) hparameters = { "stride" : 2, "f": 3 } A, cache = pool_forward(A_prev, hparameters) eA = np.array([[[[1.74481176, 0.86540763, 1.13376944]]], [[[1.13162939, 1.51981682, 2.18557541]]]]) self.assertTrue(np.allclose(A, eA)) A, cache = pool_forward(A_prev, hparameters, mode = "average") eA = np.array([[[[0.02105773, -0.20328806, -0.40389855]]], [[[-0.22154621, 0.51716526, 0.48155844]]]]) def test_conv_backward(self): np.random.seed(1) A_prev = np.random.randn(10,4,4,3) W =
np.random.randn(2,2,3,8)
numpy.random.randn
import gym import math import json import torch import pathlib import numpy as np from torch.utils.tensorboard import SummaryWriter def sample(batch, p): sampled_batch_len = int(batch.shape[0] * p) idxs = np.random.choice(batch.shape[0], size=sampled_batch_len, replace=False) sampled_batch = batch[idxs] return sampled_batch, idxs def get_stepsize(policy, max_kl): grads = torch.cat([p.og_grad.flatten() for p in policy.parameters()]) ngrads = torch.cat([p.grad.flatten() for p in policy.parameters()]) alpha = torch.sqrt((2 * max_kl) / ((grads @ ngrads) + 1e-8)) return alpha def zero_grad(model, set_none=False): for p in model.parameters(): if set_none: p.og_grad = None p.grad = None else: p.og_grad = torch.zeros_like(p) p.grad = torch.zeros_like(p) def sgd_step(model, step_size): for p in model.parameters(): p.data = p.data - step_size * p.grad.data def orthog_layer_init(layer, std=np.sqrt(2), bias_const=0.0): torch.nn.init.orthogonal_(layer.weight, std) torch.nn.init.constant_(layer.bias, bias_const) return layer def set_seeds(experiments): for exp in experiments: exp.seed = np.random.randint(1e5) def setup_writer(base_path, name, hparams): bpath = pathlib.Path(f"{base_path}/") bpath.mkdir(exist_ok=True, parents=True) writer_path = f"{base_path}/{name}" writer = SummaryWriter(writer_path) # metrics print("saving to:", writer_path, "...") # save hyperparams for run dfile = open(f"{writer_path}/hparams.json", "w") dfile.write(json.dumps(hparams, indent=4, sort_keys=True)) dfile.close() return writer, writer_path def normal_entropy(std): var = std.pow(2) entropy = 0.5 + 0.5 * torch.log(2 * var * math.pi) return entropy.sum(1, keepdim=True) def normal_log_density(x, mean, log_std, std): var = std.pow(2) log_density = -(x - mean).pow(2) / (2 * var) - 0.5 * math.log(2 * math.pi) - log_std return log_density.sum(1, keepdim=True) n1_vec = lambda x: x.flatten()[:, None] vec = lambda xs: torch.cat([x.reshape(-1) for x in xs]) def set_flat_grad_to(model, flat_params): prev_ind = 0 for param in model.parameters(): flat_size = int(np.prod(list(param.size()))) param.grad = flat_params[prev_ind : prev_ind + flat_size].view(param.size()) prev_ind += flat_size def set_flat_params_to(model, flat_params): prev_ind = 0 for param in model.parameters(): flat_size = int(np.prod(list(param.size()))) param.data.copy_( flat_params[prev_ind : prev_ind + flat_size].view(param.size()) ) prev_ind += flat_size def get_flat_grad_from(net): fgrads = torch.cat([param.grad.view(-1) for param in net.parameters()]) return fgrads def vector_to_parameter_list(vec, parameters): params_new = [] pointer = 0 for param in parameters: num_param = param.numel() param_new = vec[pointer : pointer + num_param].view_as(param).data params_new.append(param_new) pointer += num_param return list(params_new) # from https://github.com/joschu/modular_rl # http://www.johndcook.com/blog/standard_deviation/ import numpy as onp class RunningStat(object): def __init__(self, shape): self._n = 0 self._M = onp.zeros(shape) self._S = onp.zeros(shape) def push(self, x): x = onp.asarray(x) assert x.shape == self._M.shape self._n += 1 if self._n == 1: self._M[...] = x else: oldM = self._M.copy() self._M[...] = oldM + (x - oldM) / self._n self._S[...] = self._S + (x - oldM) * (x - self._M) @property def n(self): return self._n @property def mean(self): return self._M @property def var(self): return self._S / (self._n - 1) if self._n > 1 else onp.square(self._M) @property def std(self): return onp.sqrt(self.var) @property def shape(self): return self._M.shape class ZFilter: """ y = (x-mean)/std using running estimates of mean,std """ def __init__(self, shape, demean=True, destd=True, clip=10.0): self.demean = demean self.destd = destd self.clip = clip self.rs = RunningStat(shape) def __call__(self, x, update=True): if update: self.rs.push(x) if self.demean: x = x - self.rs.mean if self.destd: x = x / (self.rs.std + 1e-8) if self.clip: x =
onp.clip(x, -self.clip, self.clip)
numpy.clip
""" DustAttnCalc Given stellar masses, star formation rates, stellar metallicities, redshifts, axis ratios, calculate dust attenuation curves based on the hierarchical Bayesian model from Nagaraj+22a (in prep) Author: <NAME>--<EMAIL> """ __all__ = ["regular_grid_interp_scipy","mass_completeness","get_dust_attn_curve_d2","get_dust_attn_curve_d1","getMargSample","getTraceInfo","getModelSamplesI","plotDustAttn","plotDust12","DustAttnCalc"] import numpy as np import os.path as op from sedpy.attenuation import noll from scipy.stats import truncnorm import arviz as az import argparse as ap from glob import glob import fnmatch from astropy.table import Table from distutils.dir_util import mkpath import matplotlib.pyplot as plt from scipy.interpolate import interp1d from scipy.interpolate import RegularGridInterpolator as RGIScipy from dynesty.utils import resample_equal import pkg_resources import seaborn as sns sns.set_style("ticks") sns.set_style({"xtick.direction": "in","ytick.direction": "in", "xtick.top":True, "ytick.right":True, "xtick.major.size":12, "xtick.minor.size":4, "ytick.major.size":12, "ytick.minor.size":4, }) def parse_args(argv=None): """ Tool to parse arguments from the command line. The entries should be self-explanatory. They include all of the options in the DustAttnCalc class. """ parser = ap.ArgumentParser(description="DustAttnCalc", formatter_class=ap.RawTextHelpFormatter) parser.add_argument('-logM','--logM',help='Log stellar mass of galaxy',type=float,default=None) parser.add_argument('-sfr','--sfr',help='Log SFR of galaxy',type=float,default=None) parser.add_argument('-logZ','--logZ',help='Log stellar metallicity of galaxy',type=float,default=None) parser.add_argument('-z','--z',help='Redshift of galaxy',type=float,default=None) parser.add_argument('-i','--i',help='Axis ratio b/a of galaxy',type=float,default=None) parser.add_argument('-d2','--d2',help='Diffuse dust optical depth of galaxy',type=float,default=None) parser.add_argument('-de','--de',help='Effective dust optical depth of galaxy',type=float,default=None) parser.add_argument('-f1','--f1',help='Name of file with one to five columns with independent variable values',type=str,default=None) parser.add_argument('-f2','--f2',help='Name of file with diffuse dust optical depths in order to get birth cloud dust optical depths',type=str,default=None) parser.add_argument('-pl','--plot',help='Whether or not to plot dust attenuation curve',action='count',default=0) parser.add_argument('-bv','--bivar',help='Whether or not to use bivariate model',action='count',default=0) parser.add_argument('-eff','--effective',help='Whether to use effective dust attenuation (default is diffuse)',action='count',default=0) parser.add_argument('-sa','--samples',help='Number of samples per galaxy desired for dependent variables',type=int,default=50) parser.add_argument('-nm','--nummarg',help='Number of Prospector likelihood samples desired for marginalization purposes',type=int,default=20) parser.add_argument('-mnp','--max_num_plot',help='Maximum number of plots that will be made in a run',type=int,default=10) parser.add_argument('-dir','--img_dir',help='Image directory for created plots (does not have to be created beforehand) ',type=str,default='DustAttnCurves') parser.add_argument('-inb','--img_name_base',help='Image name base (minus extension); each plot made will be numbered on top of the image name base',type=str,default=None) return parser.parse_args(args=argv) def regular_grid_interp_scipy(points, values, coords, *, fill_value=None): """Perform a linear interpolation in N-dimensions w a regular grid The data must be defined on a filled regular grid, but the spacing may be uneven in any of the dimensions. This implementation uses the ``scipy.interpolate.RegularGridInterpolator`` class which, in turn, is based on the implementation from <NAME>'s ``regulargrid`` package https://github.com/JohannesBuchner/regulargrid. Args: points: A list of vectors with shapes ``(m1,), ... (mn,)``. These define the grid points in each dimension. values: A tensor defining the values at each point in the grid defined by ``points``. This must have the shape ``(m1, ... mn, ..., nout)``. coords: A matrix defining the coordinates where the interpolation should be evaluated. This must have the shape ``(ntest, ndim)``. """ rgi = RGIScipy(points,values,bounds_error=False,fill_value=fill_value) return rgi(coords) def mass_completeness(zred): """Uses mass-completeness estimates from Tal+14, for FAST masses then applied M_PROSP / M_FAST to estimate Prospector completeness Credit: <NAME> Parameters ---------- zred: 1-D Array of redshifts Returns ------- Minimum masses in ``log(M*/M_sun)`` for completeness at zred """ zref = np.array([0.65,1,1.5,2.1,3.0]) mcomp_prosp = np.array([8.71614882,9.07108637,9.63281923,9.79486727,10.15444536]) return np.interp(zred, zref, mcomp_prosp) def get_dust_attn_curve_d2(wave,n=0.0,d2=1.0): """ Calculate diffuse dust attenuation curve Parameters ---------- wave: Float or 1-D Array Wavelengths (Angstroms) at which attenuation curve should be evaluated n: Float Slope parameter of Noll+09 dust attenuation parametrization--difference between true slope and that of Calzetti+00 curve, with positive values signifying shallower curves d2: Float Diffuse dust optical depth; also referred to as tau throughout this document Returns ------- Diffuse dust attenuation curve at given wavelength(s) """ Eb = 0.85 - 1.9*n return noll(wave,tau_v=d2,delta=n,c_r=0.0,Ebump=Eb) def get_dust_attn_curve_d1(wave,d1=1.0): """ Calculate birth cloud dust attenuation curve Parameters ---------- wave: Float or 1-D Array Wavelengths (Angstroms) at which attenuation curve should be evaluated d1: Float Birth cloud dust optical depth Returns ------- Birth dust attenuation curve at given wavelength(s); inverse law from Charlot+Fall 00 assumed """ return d1*(wave/5500.0)**(-1) def getMargSample(num=10,bv=1,eff=1): """ Get samples from the Prospector likelihood distribution for proper marginalization Parameters ---------- num: Integer Number of marginal samples desired bv: Boolean Whether or not bivariate case for code is being used eff: Boolean Whether or not single-component dust attenuation model is being used Returns ------- Marg_samples: (5 x num) 2D array Samples from the likelihood distribution to be used for marginalization """ fn = 'b%de%d.dat'%(bv,eff) try: stream = pkg_resources.resource_filename('duste',op.join('Marg',fn)) except: stream = op.join('Marg',fn) info = np.loadtxt(stream) totnum = len(info[0]) inds = np.random.choice(totnum,num,replace=False) return info[:,inds] def getTraceInfo(trace, bivar=False): """ Parse the hierarchical Bayesian model trace object in order to get all samples of the model parameters Parameters ---------- trace: Trace object bivar: Boolean Whether or not the model is bivariate (two dependent variables) or not Returns ------- ngrid, taugrid: Multi-D Arrays Posterior samples of values of the dependent variables (n and/or tau) at the grid points in the interpolation model (taugrid = None if univariate model) log_width, log_width2: 1-D Arrays Posterior samples of the log_width parameters (log_width2 = None if univariate), which is a measure of the natural spread in reality around the model valuefs rho: 1-D Array Posterior samples of the correlation between the errors in ngrid and taugrid (None if univariate) """ ngrid_0, log_width_0 = np.array(getattr(trace.posterior,'ngrid')), np.array(getattr(trace.posterior,'log_width')) sh = ngrid_0.shape ngrid, log_width = ngrid_0.reshape(sh[0]*sh[1],*sh[2:]), log_width_0.reshape(sh[0]*sh[1]) if bivar: taugrid_0, log_width2_0 = np.array(getattr(trace.posterior,'taugrid')), np.array(getattr(trace.posterior,'log_width2')) taugrid, log_width2 = taugrid_0.reshape(sh[0]*sh[1],*sh[2:]), log_width2_0.reshape(sh[0]*sh[1]) rho_0 = np.array(getattr(trace.posterior,'rho')) rho = rho_0.reshape(sh[0]*sh[1]) else: taugrid, log_width2, rho = None, None, None return ngrid, log_width, taugrid, log_width2, rho def getModelSamplesI(xtup, indep_samp, ngrid, log_width, taugrid, log_width2, rho, numsamp=50, nlim=None, taulim=None, return_other=False): """ Calculate samples of n and/or tau (the dependent variables of the model) at a given set of points Parameters ---------- xtup: List of arrays Values of grid points for independent variables in the model; use DustAttnCalc.getPostModelData() for easy generation indep_samp: 2-D or 3-D array Points at which to evaluate model; variables are differentiated at the outermost dimension; for example, in a 2-D case, each row is a different variable ngrid, log_width, taugrid, log_width2, rho: Outputs of getTraceInfo numsamp: Integer Number of samples desired per galaxy nlim, taulim: Two-element 1-D arrays Limits for n and tau to keep sample values within reasonable bounds; see DustAttnCalc.make_prop_dict() for values to use; those bounds can be guaranteed only if the independent variables are within the correct bounds as well return_other: Boolean Whether or not to also return Gaussian width and bivariate correlation parameter values Return ------ n_sim, tau_sim: 2-D or 3-D arrays (same dimension as indep_samp but different outer dimension size) Samples of n and/or tau at the given points; tau_sim is None if univariate width, width2, rho: 1-D Arrays Samples of Gaussian width and bivariate correlation if desired """ npts = len(log_width) if indep_samp.ndim == 2: indepI = indep_samp.T else: indepI = indep_samp.reshape(len(indep_samp),np.prod(indep_samp.shape[1:])).T inds = np.random.choice(npts,size=numsamp,replace=False) sh = list(indep_samp[0].shape) sh.insert(0,numsamp) n_sim = np.empty(tuple(sh)) if taugrid is not None: tau_sim = np.empty(tuple(sh)) else: tau_sim = None for i, ind in enumerate(inds): ngrid_mod, width_mod = ngrid[ind], np.exp(log_width[ind]) r1, r2 = np.random.randn(*n_sim[i].shape), np.random.randn(*n_sim[i].shape) interp_part = regular_grid_interp_scipy(xtup, ngrid_mod, indepI).reshape(n_sim[0].shape) # Direct model values (without adding a random component to represent the natural error in the model) n_sim[i] = interp_part + width_mod * r1 # Simulated values include the direct interpolated model values plus a random component based on the width parameter # Try to ensure that all samples of n are within the desired bounds, but ignore if there are direct model values (without adding a random component) that are considerably below or above the limits if np.amin(interp_part)>=nlim[0]-0.1*width_mod and np.amax(interp_part)<=nlim[1]+0.1*width_mod: ind_bad = np.where(np.logical_or(n_sim[i]<nlim[0],n_sim[i]>nlim[1])) while len(ind_bad[0])>0: r1[ind_bad] = np.random.randn(len(ind_bad[0])) n_sim[i] = interp_part + width_mod * r1 ind_bad = np.where(np.logical_or(n_sim[i]<nlim[0],n_sim[i]>nlim[1])) # Repeat the same process for tau if bivariate model if taugrid is not None: taugrid_mod, width2_mod, rho_mod = taugrid[ind], np.exp(log_width2[ind]), rho[ind] interp_part = regular_grid_interp_scipy(xtup, taugrid_mod, indepI).reshape(tau_sim[0].shape) tau_sim[i] = interp_part + width2_mod * (rho_mod*r1 + np.sqrt(1.0-rho_mod**2)*r2) if np.amin(interp_part)>=taulim[0]-0.1*width2_mod and np.amax(interp_part)<=taulim[1]+0.1*width2_mod: ind_bad = np.where(np.logical_or(tau_sim[i]<taulim[0],tau_sim[i]>taulim[1])) while len(ind_bad[0])>0: r2[ind_bad] = np.random.randn(len(ind_bad[0])) tau_sim[i] = interp_part + width2_mod * (rho_mod*r1 + np.sqrt(1.0-rho_mod**2)*r2) ind_bad = np.where(np.logical_or(tau_sim[i]<taulim[0],tau_sim[i]>taulim[1])) if not return_other: return n_sim, tau_sim if taugrid is not None: return n_sim, tau_sim, np.exp(log_width[inds]), np.exp(log_width2[inds]), rho[inds] else: return n_sim, tau_sim, np.exp(log_width[inds]), None, None def plotDustAttn(nvals,tauvals,img_name,wvs,effective=False,label=None): """ Plot either diffuse or effective dust attenuation curves Parameters ---------- nvals, tauvals: 1-D Arrays Samples of n and tau for 1 galaxy only img_name: String Name for image (can choose desired extension, but if vector graphics format, will need to remove the dpi argument) wvs: 1-D Array Array of wavelengths (in Angstroms) at which dust attenuation curve will be plotted effective: Boolean Whether or not effective dust (or diffuse dust if False) is the quantity in question label: String Text to help describe plot; optimally a list of independent variable values """ fig, ax = plt.subplots() lnv, lwv = len(nvals), len(wvs) attn_curve = np.empty((lnv,lwv)) for i in range(lnv): attn_curve[i] = get_dust_attn_curve_d2(wvs,n=nvals[i],d2=tauvals[i]) attn_mean, attn_std = np.mean(attn_curve,axis=0), np.std(attn_curve,axis=0) ax.plot(wvs,attn_mean,color='r',linestyle='-',linewidth=2) ax.fill_between(wvs,attn_mean-attn_std,attn_mean+attn_std,color='b',alpha=0.1) ax.set_xlabel(r'$\lambda$ ($\AA$)') if effective: taustr = r"$\hat{\tau}_{\lambda,{\rm eff}}$" else: taustr = r"$\hat{\tau}_{\lambda,2}$" ax.set_ylabel(taustr) ax.set_xlim(min(wvs),max(wvs)) if label is not None: ax.text(0.4,0.9,label,transform=ax.transAxes,fontsize='x-small') fig.savefig(img_name,bbox_inches='tight',dpi=150) def plotDust12(tau1,tau2,img_name,n,wvs,label=None): """ Plot either diffuse or effective dust attenuation curves Parameters ---------- tau1, tau2, n: 1-D Arrays Samples of birth cloud dust optical depth (tau1), diffuse dust optical depth (tau2), and dust slope index (n) for 1 galaxy only img_name: String Name for image (can choose desired extension, but if vector graphics format, will need to remove the dpi argument) wvs: 1-D Array Array of wavelengths (in Angstroms) at which dust attenuation curve will be plotted label: String Text to help describe plot; optimally a list of independent variable values """ fig, ax = plt.subplots() ltau, lwv = len(tau1), len(wvs) attn_curve1, attn_curve2 = np.empty((ltau,lwv)),
np.empty((ltau,lwv))
numpy.empty
import datetime as dt import numpy as np import os from nose.tools import assert_raises from nose.plugins import skip import pandas as pds import pysat from pysat.instruments import sw_kp, sw_f107 from pysat.instruments.methods import sw as sw_meth class TestSWKp(): def setup(self): """Runs before every method to create a clean testing setup""" # Load a test instrument self.testInst = pysat.Instrument() self.testInst.data = pds.DataFrame({'Kp': np.arange(0, 4, 1.0/3.0), 'ap_nan': np.full(shape=12, \ fill_value=np.nan), 'ap_inf': np.full(shape=12, \ fill_value=np.inf)}, index=[pysat.datetime(2009, 1, 1) + pds.DateOffset(hours=3*i) for i in range(12)]) self.testInst.meta = pysat.Meta() self.testInst.meta.__setitem__('Kp', {self.testInst.meta.fill_label: np.nan}) self.testInst.meta.__setitem__('ap_nan', {self.testInst.meta.fill_label: np.nan}) self.testInst.meta.__setitem__('ap_inv', {self.testInst.meta.fill_label: np.inf}) # Load a test Metadata self.testMeta = pysat.Meta() def teardown(self): """Runs after every method to clean up previous testing.""" del self.testInst, self.testMeta def test_convert_kp_to_ap(self): """ Test conversion of Kp to ap""" sw_kp.convert_3hr_kp_to_ap(self.testInst) assert '3hr_ap' in self.testInst.data.columns assert '3hr_ap' in self.testInst.meta.keys() assert(self.testInst['3hr_ap'].min() >= self.testInst.meta['3hr_ap'][self.testInst.meta.min_label]) assert(self.testInst['3hr_ap'].max() <= self.testInst.meta['3hr_ap'][self.testInst.meta.max_label]) def test_convert_kp_to_ap_fill_val(self): """ Test conversion of Kp to ap with fill values""" # Set the first value to a fill value, then calculate ap fill_label = self.testInst.meta.fill_label self.testInst['Kp'][0] = self.testInst.meta['Kp'][fill_label] sw_kp.convert_3hr_kp_to_ap(self.testInst) # Test non-fill ap values assert '3hr_ap' in self.testInst.data.columns assert '3hr_ap' in self.testInst.meta.keys() assert(self.testInst['3hr_ap'][1:].min() >= self.testInst.meta['3hr_ap'][self.testInst.meta.min_label]) assert(self.testInst['3hr_ap'][1:].max() <= self.testInst.meta['3hr_ap'][self.testInst.meta.max_label]) # Test the fill value in the data and metadata assert np.isnan(self.testInst['3hr_ap'][0]) assert np.isnan(self.testInst.meta['3hr_ap'][fill_label]) del fill_label def test_convert_kp_to_ap_bad_input(self): """ Test conversion of Kp to ap with bad input""" self.testInst.data.rename(columns={"Kp": "bad"}, inplace=True) assert_raises(ValueError, sw_kp.convert_3hr_kp_to_ap, self.testInst) def test_initialize_kp_metadata(self): """Test default Kp metadata initialization""" sw_kp.initialize_kp_metadata(self.testInst.meta, 'Kp') assert self.testInst.meta['Kp'][self.testInst.meta.units_label] == '' assert self.testInst.meta['Kp'][self.testInst.meta.name_label] == 'Kp' assert(self.testInst.meta['Kp'][self.testInst.meta.desc_label] == 'Planetary K-index') assert self.testInst.meta['Kp'][self.testInst.meta.plot_label] == 'Kp' assert self.testInst.meta['Kp'][self.testInst.meta.axis_label] == 'Kp' assert(self.testInst.meta['Kp'][self.testInst.meta.scale_label] == 'linear') assert self.testInst.meta['Kp'][self.testInst.meta.min_label] == 0 assert self.testInst.meta['Kp'][self.testInst.meta.max_label] == 9 assert self.testInst.meta['Kp'][self.testInst.meta.fill_label] == -1 def test_uninit_kp_metadata(self): """Test Kp metadata initialization with uninitialized Metadata""" sw_kp.initialize_kp_metadata(self.testMeta, 'Kp') assert self.testMeta['Kp'][self.testMeta.units_label] == '' assert self.testMeta['Kp'][self.testMeta.name_label] == 'Kp' assert(self.testMeta['Kp'][self.testMeta.desc_label] == 'Planetary K-index') assert self.testMeta['Kp'][self.testMeta.plot_label] == 'Kp' assert self.testMeta['Kp'][self.testMeta.axis_label] == 'Kp' assert self.testMeta['Kp'][self.testMeta.scale_label] == 'linear' assert self.testMeta['Kp'][self.testMeta.min_label] == 0 assert self.testMeta['Kp'][self.testMeta.max_label] == 9 assert self.testMeta['Kp'][self.testMeta.fill_label] == -1 def test_fill_kp_metadata(self): """Test Kp metadata initialization with user-specified fill value""" sw_kp.initialize_kp_metadata(self.testInst.meta, 'Kp', fill_val=666) assert self.testInst.meta['Kp'][self.testInst.meta.fill_label] == 666 def test_long_name_kp_metadata(self): """Test Kp metadata initialization with a long name""" dkey = 'high_lat_Kp' sw_kp.initialize_kp_metadata(self.testInst.meta, dkey) assert self.testInst.meta[dkey][self.testInst.meta.name_label] == dkey assert(self.testInst.meta[dkey][self.testInst.meta.desc_label] == 'Planetary K-index') assert(self.testInst.meta[dkey][self.testInst.meta.plot_label] == 'High lat Kp') assert(self.testInst.meta[dkey][self.testInst.meta.axis_label] == 'High lat Kp') del dkey def test_convert_ap_to_kp(self): """ Test conversion of ap to Kp""" sw_kp.convert_3hr_kp_to_ap(self.testInst) kp_out, kp_meta = sw_meth.convert_ap_to_kp(self.testInst['3hr_ap']) # Assert original and coverted there and back Kp are equal assert all(abs(kp_out - self.testInst.data['Kp']) < 1.0e-4) # Assert the converted Kp meta data exists and is reasonable assert 'Kp' in kp_meta.keys() assert(kp_meta['Kp'][kp_meta.fill_label] == -1) del kp_out, kp_meta def test_convert_ap_to_kp_middle(self): """ Test conversion of ap to Kp where ap is not an exact Kp value""" sw_kp.convert_3hr_kp_to_ap(self.testInst) self.testInst['3hr_ap'][8] += 1 kp_out, kp_meta = sw_meth.convert_ap_to_kp(self.testInst['3hr_ap']) # Assert original and coverted there and back Kp are equal assert all(abs(kp_out - self.testInst.data['Kp']) < 1.0e-4) # Assert the converted Kp meta data exists and is reasonable assert 'Kp' in kp_meta.keys() assert(kp_meta['Kp'][kp_meta.fill_label] == -1) del kp_out, kp_meta def test_convert_ap_to_kp_nan_input(self): """ Test conversion of ap to Kp where ap is NaN""" kp_out, kp_meta = sw_meth.convert_ap_to_kp(self.testInst['ap_nan']) # Assert original and coverted there and back Kp are equal assert all(kp_out == -1) # Assert the converted Kp meta data exists and is reasonable assert 'Kp' in kp_meta.keys() assert(kp_meta['Kp'][kp_meta.fill_label] == -1) del kp_out, kp_meta def test_convert_ap_to_kp_inf_input(self): """ Test conversion of ap to Kp where ap is Inf""" kp_out, kp_meta = sw_meth.convert_ap_to_kp(self.testInst['ap_inf']) # Assert original and coverted there and back Kp are equal assert all(kp_out[1:] == -1) # Assert the converted Kp meta data exists and is reasonable assert 'Kp' in kp_meta.keys() assert(kp_meta['Kp'][kp_meta.fill_label] == -1) del kp_out, kp_meta def test_convert_ap_to_kp_fill_val(self): """ Test conversion of ap to Kp with fill values""" # Set the first value to a fill value, then calculate ap fill_label = self.testInst.meta.fill_label self.testInst['Kp'][0] = self.testInst.meta['Kp'][fill_label] sw_kp.convert_3hr_kp_to_ap(self.testInst) kp_out, kp_meta = sw_meth.convert_ap_to_kp(self.testInst['3hr_ap'], \ fill_val=self.testInst.meta['Kp'][fill_label]) # Test non-fill ap values assert all(abs(kp_out[1:] - self.testInst.data['Kp'][1:]) < 1.0e-4) # Test the fill value in the data and metadata assert np.isnan(kp_out[0]) assert np.isnan(kp_meta['Kp'][fill_label]) del fill_label, kp_out, kp_meta class TestSwKpCombine(): def setup(self): """Runs before every method to create a clean testing setup""" # Switch to test_data directory self.saved_path = pysat.data_dir pysat.utils.set_data_dir(pysat.test_data_path, store=False) # Set combination testing input self.test_day = pysat.datetime(2019, 3, 18) self.combine = {"standard_inst": pysat.Instrument("sw", "kp", ""), "recent_inst": pysat.Instrument("sw", "kp", "recent"), "forecast_inst": pysat.Instrument("sw", "kp", "forecast"), "start": self.test_day - dt.timedelta(days=30), "stop": self.test_day + dt.timedelta(days=3), "fill_val": -1} def teardown(self): """Runs after every method to clean up previous testing.""" pysat.utils.set_data_dir(self.saved_path) del self.combine, self.test_day, self.saved_path def test_combine_kp_none(self): """ Test combine_kp failure when no input is provided""" assert_raises(ValueError, sw_meth.combine_kp) def test_combine_kp_one(self): """ Test combine_kp failure when only one instrument is provided""" # Load a test instrument testInst = pysat.Instrument() testInst.data = pds.DataFrame({'Kp': np.arange(0, 4, 1.0/3.0)}, index=[pysat.datetime(2009, 1, 1) + pds.DateOffset(hours=3*i) for i in range(12)]) testInst.meta = pysat.Meta() testInst.meta['Kp'] = {testInst.meta.fill_label: np.nan} combo_in = {"standard_inst": testInst} assert_raises(ValueError, sw_meth.combine_kp, combo_in) del combo_in, testInst def test_combine_kp_no_time(self): """Test combine_kp failure when no times are provided""" combo_in = {kk: self.combine[kk] for kk in ['standard_inst', 'recent_inst', 'forecast_inst']} assert_raises(ValueError, sw_meth.combine_kp, combo_in) del combo_in def test_combine_kp_no_data(self): """Test combine_kp when no data is present for specified times""" combo_in = {kk: self.combine['forecast_inst'] for kk in ['standard_inst', 'recent_inst', 'forecast_inst']} combo_in['start'] = pysat.datetime(2014, 2, 19) combo_in['stop'] = pysat.datetime(2014, 2, 24) kp_inst = sw_meth.combine_kp(**combo_in) assert kp_inst.data.isnull().all()["Kp"] del combo_in, kp_inst def test_combine_kp_inst_time(self): """Test combine_kp when times are provided through the instruments""" combo_in = {kk: self.combine[kk] for kk in ['standard_inst', 'recent_inst', 'forecast_inst']} combo_in['standard_inst'].load(date=self.combine['start']) combo_in['recent_inst'].load(date=self.test_day) combo_in['forecast_inst'].load(date=self.test_day) combo_in['stop'] = combo_in['forecast_inst'].index[-1] kp_inst = sw_meth.combine_kp(**combo_in) assert kp_inst.index[0] >= self.combine['start'] # kp_inst contains times up to 21:00:00, coombine['stop'] is midnight assert kp_inst.index[-1].date() <= self.combine['stop'].date() assert len(kp_inst.data.columns) == 1 assert kp_inst.data.columns[0] == 'Kp' assert np.isnan(kp_inst.meta['Kp'][kp_inst.meta.fill_label]) assert len(kp_inst['Kp'][
np.isnan(kp_inst['Kp'])
numpy.isnan
from __future__ import absolute_import, division, print_function import numpy as np from functools import partial, wraps from math import factorial from toolz import compose from .core import _concatenate2, Array, atop, sqrt, elemwise from .slicing import insert_many from .numpy_compat import divide from ..core import flatten from . import chunk from ..utils import ignoring, getargspec def reduction(x, chunk, aggregate, axis=None, keepdims=None, dtype=None): """ General version of reductions >>> reduction(my_array, np.sum, np.sum, axis=0, keepdims=False) # doctest: +SKIP """ if axis is None: axis = tuple(range(x.ndim)) if isinstance(axis, int): axis = (axis,) axis = tuple(i if i >= 0 else x.ndim + i for i in axis) if dtype and 'dtype' in getargspec(chunk).args: chunk = partial(chunk, dtype=dtype) if dtype and 'dtype' in getargspec(aggregate).args: aggregate = partial(aggregate, dtype=dtype) chunk2 = partial(chunk, axis=axis, keepdims=True) aggregate2 = partial(aggregate, axis=axis, keepdims=keepdims) inds = tuple(range(x.ndim)) tmp = atop(chunk2, inds, x, inds) inds2 = tuple(i for i in inds if i not in axis) result = atop(compose(aggregate2, partial(_concatenate2, axes=axis)), inds2, tmp, inds, dtype=dtype) if keepdims: dsk = result.dask.copy() for k in flatten(result._keys()): k2 = (k[0],) + insert_many(k[1:], axis, 0) dsk[k2] = dsk.pop(k) chunks = insert_many(result.chunks, axis, [1]) return Array(dsk, result.name, chunks=chunks, dtype=dtype) else: return result @wraps(chunk.sum) def sum(a, axis=None, dtype=None, keepdims=False): if dtype is not None: dt = dtype elif a._dtype is not None: dt =
np.empty((1,), dtype=a._dtype)
numpy.empty
from __future__ import division, print_function import copy import fnmatch import os import subprocess import wave import struct import hashlib import h5py from copy import deepcopy from math import ceil from numpy.fft import fftshift, ifftshift import numpy as np from scipy.io.wavfile import read as read_wavfile from scipy.fftpack import fft, ifft, fftfreq, fft2, ifft2, dct from scipy.signal import resample, firwin, filtfilt from scipy.linalg import inv, toeplitz from scipy.optimize import leastsq import matplotlib.pyplot as plt import matplotlib.cm as cmap import matplotlib.colors as pltcolors import matplotlib.mlab as mlab import colorsys from soundsig.signal import lowpass_filter, gaussian_window, correlation_function from soundsig.timefreq import gaussian_stft from soundsig.detect_peaks import detect_peaks class WavFile(): """ Class for representing a sound and writing it to a .wav file """ def __init__(self, file_name=None, log_spectrogram=True): self.log_spectrogram = log_spectrogram if file_name is None: self.sample_depth = 2 # in bytes self.sample_rate = 44100.0 # in Hz self.data = None self.num_channels = 1 else: wr = wave.open(file_name, 'r') self.num_channels = wr.getnchannels() self.sample_depth = wr.getsampwidth() wr.close() self.sample_rate, data = read_wavfile(file_name) # If stereo make mono if self.num_channels == 1: self.data = data else: self.data = data.mean(axis=1) self.analyzed = False def to_wav(self, output_file, normalize=False, max_amplitude=32767.0): wf = wave.open(output_file, 'w') wf.setparams( (self.num_channels, self.sample_depth, self.sample_rate, len(self.data), 'NONE', 'not compressed') ) # normalize the sample if normalize: nsound = ((self.data / np.abs(self.data).max())*max_amplitude).astype('int') else: nsound = self.data #print 'nsound.min=%d, max=%d' % (nsound.min(), nsound.max()) hex_sound = [struct.pack('h', x) for x in nsound] wf.writeframes(b''.join(hex_sound)) wf.close() def analyze(self, min_freq=0, max_freq=None, spec_sample_rate=1000.0, freq_spacing=125.0, envelope_cutoff_freq=200.0, noise_level_db=80, rectify=True, cmplx=False): if self.analyzed: return self.data_t = np.arange(0.0, len(self.data), 1.0) / self.sample_rate #compute the temporal envelope self.envelope = temporal_envelope(self.data, self.sample_rate, envelope_cutoff_freq) #compute log power spectrum fftx = fft(self.data) ps_f = fftfreq(len(self.data), d=(1.0 / self.sample_rate)) if max_freq == None: findx = (ps_f > min_freq) & (ps_f < np.inf) else: findx = (ps_f > min_freq) & (ps_f < max_freq) self.power_spectrum = np.log10(np.abs(fftx[findx])) self.power_spectrum_f = ps_f[findx] #estimate fundamental frequency from log power spectrum in the simplest way possible ps = np.abs(fftx[findx]) peak_index = ps.argmax() try: self.fundamental_freq = self.power_spectrum_f[peak_index] except IndexError: print('Could not identify fundamental frequency!') self.fundamental_freq = 0.0 #compute log spectrogram t,f,spec,spec_rms = spectrogram(self.data, self.sample_rate, spec_sample_rate=spec_sample_rate, freq_spacing=freq_spacing, min_freq=min_freq, max_freq=max_freq) self.spectrogram_t = t self.spectrogram_f = f self.spectrogram = spec self.spectrogram_rms = spec_rms self.analyzed = True def reanalyze(self, min_freq=0, max_freq=None, spec_sample_rate=1000.0, freq_spacing=25.0, envelope_cutoff_freq=200.0, noise_level_db=80, rectify=True, cmplx=False): self.analyzed = False return self.analyze(min_freq, max_freq, spec_sample_rate, freq_spacing, envelope_cutoff_freq, noise_level_db, rectify, cmplx) def plot(self, fig=None, show_envelope=True, min_freq=0.0, max_freq=10000.0, colormap=cmap.gist_yarg, noise_level_db=80, start_time=0, end_time=np.inf): self.analyze(min_freq=min_freq, max_freq=max_freq, noise_level_db=noise_level_db) if show_envelope: spw_size = 15 spec_size = 35 else: spw_size = 25 spec_size = 75 raw_ti = (self.data_t > start_time) & (self.data_t < end_time) if fig is None: fig = plt.figure() gs = plt.GridSpec(100, 1) ax = fig.add_subplot(gs[:spw_size]) plt.plot(self.data_t[raw_ti], self.data[raw_ti], 'k-') plt.axis('tight') plt.ylabel('Sound Pressure') s = (spw_size+5) e = s + spec_size ax = fig.add_subplot(gs[s:e]) spec_ti = (self.spectrogram_t > start_time) & (self.spectrogram_t < end_time) plot_spectrogram(self.spectrogram_t[spec_ti], self.spectrogram_f, self.spectrogram[:, spec_ti], ax=ax, ticks=True, colormap=colormap, colorbar=False) if show_envelope: ax = fig.add_subplot(gs[(e+5):95]) plt.plot(self.spectrogram_t, self.spectrogram_rms, 'g-') plt.xlabel('Time (s)') plt.ylabel('Envelope') plt.axis('tight') class BioSound(object): """ Class for representing a communication sound using multiple feature spaces""" def __init__(self, soundWave=np.array(0.0), fs=np.array(0.0), emitter='Unknown', calltype = 'U' ): # Note that all the fields are numpy arrays for saving to h5 files. self.sound = soundWave # sound pressure waveform self.hashid = np.string_(hashlib.md5(np.array_str(soundWave).encode('utf-8')).hexdigest()) self.samprate = float(fs) if isinstance(fs,int) else fs # sampling rate self.emitter = np.string_(emitter) # string for id of emitter self.type = np.string_(calltype) # string for call type self.spectro = np.asarray([]) # Log spectrogram self.to = np.asarray([]) # Time scale for spectrogram self.fo = np.asarray([]) # Frequency scale for spectrogram self.mps = np.asarray([]) # Modulation Power Spectrum self.wf = np.asarray([]) # Spectral modulations self.wt = np.asarray([]) # Temporal modulations self.f0 = np.asarray([]) # time varying fundamental self.f0_2 = np.asarray([]) # time varying fundamental of second voice self.F1 = np.asarray([]) # time varying formant 1 self.F2 = np.asarray([]) # time varying formant 2 self.F3 = np.asarray([]) # time varying formant 3 self.fund = np.asarray([]) # Average fundamental self.sal = np.asarray([]) # time varying saliency self.meansal = np.asarray([]) # mean saliency self.fund2 = np.asarray([]) # Average fundamental of 2nd peak self.voice2percent = np.asarray([]) # Average percent of presence of second peak self.maxfund = np.asarray([]) self.minfund = np.asarray([]) self.cvfund = np.asarray([]) self.meanspect = np.asarray([]) self.stdspect = np.asarray([]) self.skewspect = np.asarray([]) self.kurtosisspect = np.asarray([]) self.entropyspect = np.asarray([]) self.q1 =
np.asarray([])
numpy.asarray
import os import cv2 import glob import scipy import torch import random import numpy as np import torchvision.transforms.functional as F from torch.utils.data import DataLoader from PIL import Image from scipy.misc import imread from skimage.feature import canny from skimage.color import rgb2gray, gray2rgb from .utils import create_mask import src.region_fill as rf class Dataset(torch.utils.data.Dataset): def __init__(self, config, flist, edge_flist, mask_flist, augment=True, training=True): super(Dataset, self).__init__() self.augment = augment self.training = training self.flo = config.FLO self.norm = config.NORM self.data = self.load_flist(flist, self.flo) self.edge_data = self.load_flist(edge_flist, 0) self.mask_data = self.load_flist(mask_flist, 0) self.input_size = config.INPUT_SIZE self.sigma = config.SIGMA self.edge = config.EDGE self.mask = config.MASK self.nms = config.NMS # in test mode, there's a one-to-one relationship between mask and image # masks are loaded non random if config.MODE == 2: self.mask = 6 def __len__(self): return len(self.data) def __getitem__(self, index): try: item = self.load_item(index) except: print('loading error: ' + self.data[index]) item = self.load_item(0) return item def load_name(self, index): name = self.data[index] return os.path.basename(name) def load_item(self, index): size = self.input_size factor = 1. if self.flo == 0: # load image img = imread(self.data[index]) # gray to rgb if len(img.shape) < 3: img = gray2rgb(img) # resize/crop if needed if size != 0: img = self.resize(img, size[0], size[1]) # create grayscale image img_gray = rgb2gray(img) # load mask mask = self.load_mask(img, index) edge = self.load_edge(img_gray, index, mask) img_filled = img else: img = self.readFlow(self.data[index]) # resize/crop if needed if size != 0: img = self.flow_tf(img, [size[0], size[1]]) img_gray = (img[:, :, 0] ** 2 + img[:, :, 1] ** 2) ** 0.5 if self.norm == 1: # normalization # factor = (np.abs(img[:, :, 0]).max() ** 2 + np.abs(img[:, :, 1]).max() ** 2) ** 0.5 factor = img_gray.max() img /= factor # load mask mask = self.load_mask(img, index) edge = self.load_edge(img_gray, index, mask) img_gray = img_gray / img_gray.max() img_filled = np.zeros(img.shape) img_filled[:, :, 0] = rf.regionfill(img[:, :, 0], mask) img_filled[:, :, 1] = rf.regionfill(img[:, :, 1], mask) # augment data if self.augment and np.random.binomial(1, 0.5) > 0: img = img[:, ::-1, ...].copy() img_filled = img_filled[:, ::-1, ...].copy() img_gray = img_gray[:, ::-1, ...] edge = edge[:, ::-1, ...] mask = mask[:, ::-1, ...] return self.to_tensor(img), self.to_tensor(img_filled), self.to_tensor(img_gray), self.to_tensor(edge), self.to_tensor(mask), factor def load_edge(self, img, index, mask): sigma = self.sigma # in test mode images are masked (with masked regions), # using 'mask' parameter prevents canny to detect edges for the masked regions mask = None if self.training else (1 - mask / 255).astype(np.bool) # canny if self.edge == 1: # no edge if sigma == -1: return np.zeros(img.shape).astype(np.float) # random sigma if sigma == 0: sigma = random.randint(1, 4) return canny(img, sigma=sigma, mask=mask).astype(np.float) # external else: imgh, imgw = img.shape[0:2] edge = imread(self.edge_data[index]) edge = self.resize(edge, imgh, imgw) # non-max suppression if self.nms == 1: edge = edge * canny(img, sigma=sigma, mask=mask) return edge def load_mask(self, img, index): imgh, imgw = img.shape[0:2] mask_type = self.mask # external + random block if mask_type == 4: mask_type = 1 if np.random.binomial(1, 0.5) == 1 else 3 # external + random block + half elif mask_type == 5: mask_type = np.random.randint(1, 4) # random block if mask_type == 1: return create_mask(imgw, imgh, imgw // 2, imgh // 2) # half if mask_type == 2: # randomly choose right or left return create_mask(imgw, imgh, imgw // 2, imgh, 0 if random.random() < 0.5 else imgw // 2, 0) # external if mask_type == 3: mask_index = random.randint(0, len(self.mask_data) - 1) mask = imread(self.mask_data[mask_index]) mask = self.resize(mask, imgh, imgw, centerCrop=False) mask = (mask > 0).astype(np.uint8) * 255 # threshold due to interpolation return mask # test mode: load mask non random if mask_type == 6: mask = imread(self.mask_data[index]) mask = self.resize(mask, imgh, imgw, centerCrop=False) mask = rgb2gray(mask) mask = (mask > 0).astype(np.uint8) * 255 return mask def to_tensor(self, img): if (len(img.shape) == 3 and img.shape[2] == 2): return F.to_tensor(img).float() img = Image.fromarray(img) img_t = F.to_tensor(img).float() return img_t def resize(self, img, height, width, centerCrop=True): imgh, imgw = img.shape[0:2] if centerCrop and imgh != imgw: # center crop side = np.minimum(imgh, imgw) j = (imgh - side) // 2 i = (imgw - side) // 2 img = img[j:j + side, i:i + side, ...] img = scipy.misc.imresize(img, [height, width]) return img def load_flist(self, flist, flo=0): if isinstance(flist, list): return flist # flist: image file path, image directory path, text file flist path if flo == 0: if isinstance(flist, str): if os.path.isdir(flist): flist = list(glob.glob(flist + '/*.jpg')) + list(glob.glob(flist + '/*.png')) flist.sort() return flist if os.path.isfile(flist): try: return np.genfromtxt(flist, dtype=np.str, encoding='utf-8') except: return [flist] else: if isinstance(flist, str): if os.path.isdir(flist): flist = list(glob.glob(flist + '/*.flo')) flist.sort() return flist if os.path.isfile(flist): try: return np.genfromtxt(flist, dtype=np.str, encoding='utf-8') except: return [flist] return [] def create_iterator(self, batch_size): while True: sample_loader = DataLoader( dataset=self, batch_size=batch_size, drop_last=True ) for item in sample_loader: yield item def readFlow(self, fn): with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) data = np.fromfile(f, np.float32, count=2 * int(w) * int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) return np.resize(data, (int(h), int(w), 2)) def flow_to_image(self, flow): UNKNOWN_FLOW_THRESH = 1e7 u = flow[:, :, 0] v = flow[:, :, 1] maxu = -999. maxv = -999. minu = 999. minv = 999. idxUnknow = (abs(u) > UNKNOWN_FLOW_THRESH) | (abs(v) > UNKNOWN_FLOW_THRESH) u[idxUnknow] = 0 v[idxUnknow] = 0 maxu = max(maxu, np.max(u)) minu = min(minu, np.min(u)) maxv = max(maxv, np.max(v)) minv = min(minv, np.min(v)) rad = np.sqrt(u ** 2 + v ** 2) maxrad = max(-1, np.max(rad)) # print("max flow: %.4f\nflow range:\nu = %.3f .. %.3f\nv = %.3f .. %.3f" % (maxrad, minu,maxu, minv, maxv)) u = u/(maxrad + np.finfo(float).eps) v = v/(maxrad + np.finfo(float).eps) img = self.compute_color(u, v) idx = np.repeat(idxUnknow[:, :, np.newaxis], 3, axis=2) img[idx] = 0 return np.uint8(img) def compute_color(self, u, v): """ compute optical flow color map :param u: optical flow horizontal map :param v: optical flow vertical map :return: optical flow in color code """ [h, w] = u.shape img = np.zeros([h, w, 3]) nanIdx = np.isnan(u) | np.isnan(v) u[nanIdx] = 0 v[nanIdx] = 0 colorwheel = self.make_color_wheel() ncols = np.size(colorwheel, 0) rad = np.sqrt(u**2+v**2) a = np.arctan2(-v, -u) / np.pi fk = (a+1) / 2 * (ncols - 1) + 1 k0 = np.floor(fk).astype(int) k1 = k0 + 1 k1[k1 == ncols+1] = 1 f = fk - k0 for i in range(0, np.size(colorwheel,1)): tmp = colorwheel[:, i] col0 = tmp[k0-1] / 255 col1 = tmp[k1-1] / 255 col = (1-f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1-rad[idx]*(1-col[idx]) notidx = np.logical_not(idx) col[notidx] *= 0.75 img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx))) return img def make_color_wheel(self): """ Generate color wheel according Middlebury color code :return: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY)) col += RY # YG colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG)) colorwheel[col:col+YG, 1] = 255 col += YG # GC colorwheel[col:col+GC, 1] = 255 colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC)) col += GC # CB colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB)) colorwheel[col:col+CB, 2] = 255 col += CB # BM colorwheel[col:col+BM, 2] = 255 colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM)) col += + BM # MR colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 *
np.arange(0, MR)
numpy.arange
#!/usr/bin/env python # coding: utf-8 from mat4py import loadmat import numpy as np import tensorflow as tf import tensorflow_model_optimization as tfmot import matplotlib.pyplot as plt import json import tempfile from sklearn.metrics import mean_squared_error from tqdm import tqdm import matplotlib.ticker as tick print(tf.__version__) # # Data pre-processing # In[ ]: def downscale(data, resolution): # 10 min resolution.. (data.shape[0], 3, 1440) -> (data.shape[0], 10, 3, 144).. breaks one 3,1440 length trajectory into ten 3,144 length trajectories # Use ~12 timesteps -> 2-5 timesteps (Use ~2 hours to predict 20-50 mins) return np.mean(data.reshape(data.shape[0], data.shape[1], int(data.shape[2]/resolution), resolution), axis=3) def process_data(aligned_data, time_horizon, ph): # 10 min resolution.. breaks each (3,144) trajectory into (144-ph-time_horizon,3,time_horizon) samples data = np.zeros((aligned_data.shape[0] * (aligned_data.shape[2]-ph-time_horizon), aligned_data.shape[1], time_horizon)) label = np.zeros((aligned_data.shape[0] * (aligned_data.shape[2]-ph-time_horizon), ph)) count = 0 for i in range(aligned_data.shape[0]): # for each sample for j in range(aligned_data.shape[2]-ph-time_horizon): # TH length sliding window across trajectory data[count] = aligned_data[i,:,j:j+time_horizon] label[count] = aligned_data[i,0,j+time_horizon:j+time_horizon+ph] count+=1 return data, label def load_mpc(time_horizon, ph, resolution, batch): # int, int, int, bool # Load train data g = np.loadtxt('CGM_prediction_data/glucose_readings_train.csv', delimiter=',') c = np.loadtxt('CGM_prediction_data/meals_carbs_train.csv', delimiter=',') it = np.loadtxt('CGM_prediction_data/insulin_therapy_train.csv', delimiter=',') # Load test data g_ = np.loadtxt('CGM_prediction_data/glucose_readings_test.csv', delimiter=',') c_ = np.loadtxt('CGM_prediction_data/meals_carbs_test.csv', delimiter=',') it_ = np.loadtxt('CGM_prediction_data/insulin_therapy_test.csv', delimiter=',') # Time align train & test data aligned_train_data = downscale(np.array([(g[i,:], c[i,:], it[i,:]) for i in range(g.shape[0])]), resolution) aligned_test_data = downscale(np.array([(g_[i,:], c_[i,:], it_[i,:]) for i in range(g_.shape[0])]), resolution) print(aligned_train_data.shape) # Break time aligned data into train & test samples if batch: train_data, train_label = process_data(aligned_train_data, time_horizon, ph) test_data, test_label = process_data(aligned_test_data, time_horizon, ph) return np.swapaxes(train_data,1,2), train_label, np.swapaxes(test_data,1,2), test_label else: return aligned_train_data, aligned_test_data def load_uva(time_horizon, ph, resolution, batch): data = loadmat('uva-padova-data/sim_results.mat') train_data = np.zeros((231,3,1440)) test_data = np.zeros((99,3,1440)) # Separate train and test sets.. last 3 records of each patient will be used for testing count_train = 0 count_test = 0 for i in range(33): for j in range(10): if j>=7: test_data[count_test,0,:] = np.asarray(data['data']['results']['sensor'][count_test+count_train]['signals']['values']).flatten()[:1440] test_data[count_test,1,:] = np.asarray(data['data']['results']['CHO'][count_test+count_train]['signals']['values']).flatten()[:1440] test_data[count_test,2,:] = np.asarray(data['data']['results']['BOLUS'][count_test+count_train]['signals']['values']).flatten()[:1440] + np.asarray(data['data']['results']['BASAL'][i]['signals']['values']).flatten()[:1440] count_test+=1 else: train_data[count_train,0,:] = np.asarray(data['data']['results']['sensor'][count_test+count_train]['signals']['values']).flatten()[:1440] train_data[count_train,1,:] = np.asarray(data['data']['results']['CHO'][count_test+count_train]['signals']['values']).flatten()[:1440] train_data[count_train,2,:] = np.asarray(data['data']['results']['BOLUS'][count_test+count_train]['signals']['values']).flatten()[:1440] + np.asarray(data['data']['results']['BASAL'][i]['signals']['values']).flatten()[:1440] count_train+=1 train_data = downscale(train_data, resolution) test_data = downscale(test_data, resolution) if batch: train_data, train_label = process_data(train_data, time_horizon, ph) test_data, test_label = process_data(test_data, time_horizon, ph) return np.swapaxes(train_data,1,2)*0.0555, train_label*0.0555, np.swapaxes(test_data,1,2)*0.0555, test_label*0.0555 # convert to mmol/L else: return train_data, test_data # # Monte Carlo dropout # In[ ]: def sampling(model, test_data, test_label, samples): model.compile(optimizer='adam', loss='mean_squared_error', metrics=[tf.keras.metrics.RootMeanSquaredError()]) mc_ensemble = np.zeros(test_label.shape) mc_mse = np.zeros(samples) predictions = np.zeros((samples, test_label.shape[0], test_label.shape[1])) # (mc_samples, test samples, ph) for j in tqdm(range(0,samples)): sample_predictions = model.predict(test_data, batch_size=1000) predictions[j,:,:] = sample_predictions mc_mse[j] = mean_squared_error(sample_predictions, test_label) mc_ensemble = [a+b for a,b in zip(mc_ensemble, sample_predictions)] return mean_squared_error([i/samples for i in mc_ensemble], test_label), mc_mse, predictions def credible_interval(predictions, alpha): # Sort predictions from smallest to largest predictions = np.sort(predictions, axis=0) # print(predictions.shape) # Upper & lower bounds ci = np.zeros((predictions.shape[1], 2)) # print(ci.shape) # print(np.floor(predictions.shape[0]*(alpha/2))) ci[:,0] = predictions[int(np.floor(predictions.shape[0]*(alpha/2))),:] ci[:,1] = predictions[int(-np.floor(predictions.shape[0]*(alpha/2))),:] return ci # # MPC Results # ## Bidirectional LSTM # In[ ]: PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 SAMPLES = 100 BATCH = True # Load data & model _, __, test_data, test_label = load_mpc(TIME_HORIZON, PH, RESOLUTION, BATCH) bilstm = tf.keras.models.load_model('../saved/postgraduate_dissertation/saved_models/mpc_guided_bilstm.h5', compile=False) bilstm_ensemble, bilstm_mse, bilstm_pred = sampling(bilstm, test_data, test_label, SAMPLES) # Construct CI for 10 min prediction fig, axes = plt.subplots(2,3) plt.rcParams["legend.loc"] = 'upper left' plt.rcParams["figure.figsize"] = (20,10) bilstm_CI_10mins_90percent = credible_interval(bilstm_pred[:,:,0],alpha=0.1) bilstm_CI_10mins_98percent = credible_interval(bilstm_pred[:,:,0],alpha=0.02) axes[0,0].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,0], s=5, c='r', marker='o', label='test label', zorder=10) axes[0,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_10mins_90percent[:144-TIME_HORIZON-PH,1], bilstm_CI_10mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[0,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_10mins_98percent[:144-TIME_HORIZON-PH,1],bilstm_CI_10mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[0,0].set_xlabel('Minutes') axes[0,0].set_ylabel('Predicted BG (mmol/L)') axes[0,0].title.set_text('10 minute prediction') axes[0,0].legend() # Construct CI for 20 min prediction bilstm_CI_20mins_90percent = credible_interval(bilstm_pred[:,:,1],alpha=0.1) bilstm_CI_20mins_98percent = credible_interval(bilstm_pred[:,:,1],alpha=0.02) axes[0,1].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,1], s=5, c='r', marker='o', label='test label', zorder=10) axes[0,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_20mins_90percent[:144-TIME_HORIZON-PH,1], bilstm_CI_20mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[0,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_20mins_98percent[:144-TIME_HORIZON-PH,1],bilstm_CI_20mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[0,1].set_xlabel('Minutes') axes[0,1].set_ylabel('Predicted BG (mmol/L)') axes[0,1].title.set_text('20 minute prediction') axes[0,1].legend() # Construct CI for 30 min prediction bilstm_CI_30mins_90percent = credible_interval(bilstm_pred[:,:,2],alpha=0.1) bilstm_CI_30mins_98percent = credible_interval(bilstm_pred[:,:,2],alpha=0.02) axes[0,2].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,2], s=5, c='r', marker='o', label='test label', zorder=10) axes[0,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_30mins_90percent[:144-TIME_HORIZON-PH,1], bilstm_CI_30mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[0,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_30mins_98percent[:144-TIME_HORIZON-PH,1], bilstm_CI_30mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[0,2].set_xlabel('Minutes') axes[0,2].set_ylabel('Predicted BG (mmol/L)') axes[0,2].title.set_text('30 minute prediction') axes[0,2].legend() # Construct CI for 40 min prediction bilstm_CI_40mins_90percent = credible_interval(bilstm_pred[:,:,3],alpha=0.1) bilstm_CI_40mins_98percent = credible_interval(bilstm_pred[:,:,3],alpha=0.02) axes[1,0].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,3], s=5, c='r', marker='o', label='test label', zorder=10) axes[1,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_40mins_90percent[:144-TIME_HORIZON-PH,1], bilstm_CI_40mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[1,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_40mins_98percent[:144-TIME_HORIZON-PH,1], bilstm_CI_40mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[1,0].set_xlabel('Minutes') axes[1,0].set_ylabel('Predicted BG (mmol/L)') axes[1,0].title.set_text('40 minute prediction') axes[1,0].legend() # Construct CI for 50 min prediction bilstm_CI_50mins_90percent = credible_interval(bilstm_pred[:,:,4],alpha=0.1) bilstm_CI_50mins_98percent = credible_interval(bilstm_pred[:,:,4],alpha=0.02) axes[1,1].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,4], s=5, c='r', marker='o', label='test label', zorder=10) axes[1,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_50mins_90percent[:144-TIME_HORIZON-PH,1], bilstm_CI_50mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[1,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_50mins_98percent[:144-TIME_HORIZON-PH,1], bilstm_CI_50mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[1,1].set_xlabel('Minutes') axes[1,1].set_ylabel('Predicted BG (mmol/L)') axes[1,1].title.set_text('50 minute prediction') axes[1,1].legend() # Construct CI for 60 min prediction bilstm_CI_60mins_90percent = credible_interval(bilstm_pred[:,:,5],alpha=0.1) bilstm_CI_60mins_98percent = credible_interval(bilstm_pred[:,:,5],alpha=0.02) axes[1,2].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,5], s=5, c='r', marker='o', label='test label', zorder=10) axes[1,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_60mins_90percent[:144-TIME_HORIZON-PH,1], bilstm_CI_60mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[1,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, bilstm_CI_60mins_98percent[:144-TIME_HORIZON-PH,1], bilstm_CI_60mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[1,2].set_xlabel('Minutes') axes[1,2].set_ylabel('Predicted BG (mmol/L)') axes[1,2].title.set_text('60 minute prediction') axes[1,2].legend() #fig.suptitle('Figure 15: Bidirectional LSTM Credible Intervals', fontsize='x-large') plt.show() # ## LSTM # In[ ]: PH = 6 TIME_HORIZON = 12 RESOLUTION = 10 SAMPLES = 100 BATCH = True # Load data & model plt.rcParams["legend.loc"] = 'best' _, __, test_data, test_label = load_mpc(TIME_HORIZON, PH, RESOLUTION, BATCH) lstm = tf.keras.models.load_model('../saved/postgraduate_dissertation/saved_models/mpc_guided_lstm.h5', compile=False) lstm_ensemble, lstm_mse, lstm_pred = sampling(lstm, test_data, test_label, SAMPLES) # Construct CI for 10 min prediction fig, axes = plt.subplots(2,3) plt.rcParams["figure.figsize"] = (20,10) lstm_CI_10mins_90percent = credible_interval(lstm_pred[:,:,0],alpha=0.1) lstm_CI_10mins_98percent = credible_interval(lstm_pred[:,:,0],alpha=0.02) axes[0,0].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,0], s=5, c='r', marker='o', label='test label', zorder=10) axes[0,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_10mins_90percent[:144-TIME_HORIZON-PH,1], lstm_CI_10mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[0,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_10mins_98percent[:144-TIME_HORIZON-PH,1], lstm_CI_10mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[0,0].set_xlabel('Minutes') axes[0,0].set_ylabel('Predicted BG (mmol/L)') axes[0,0].title.set_text('10 minute prediction') axes[0,0].legend() # Construct CI for 20 min prediction lstm_CI_20mins_90percent = credible_interval(lstm_pred[:,:,1],alpha=0.1) lstm_CI_20mins_98percent = credible_interval(lstm_pred[:,:,1],alpha=0.02) axes[0,1].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,1], s=5, c='r', marker='o', label='test label', zorder=10) axes[0,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_20mins_90percent[:144-TIME_HORIZON-PH,1], lstm_CI_20mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[0,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_20mins_98percent[:144-TIME_HORIZON-PH,1], lstm_CI_20mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[0,1].set_xlabel('Minutes') axes[0,1].set_ylabel('Predicted BG (mmol/L)') axes[0,1].title.set_text('20 minute prediction') axes[0,1].legend() # Construct CI for 30 min prediction lstm_CI_30mins_90percent = credible_interval(lstm_pred[:,:,2],alpha=0.1) lstm_CI_30mins_98percent = credible_interval(lstm_pred[:,:,2],alpha=0.02) axes[0,2].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,2], s=5, c='r', marker='o', label='test label', zorder=10) axes[0,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_30mins_90percent[:144-TIME_HORIZON-PH,1], lstm_CI_30mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[0,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_30mins_98percent[:144-TIME_HORIZON-PH,1], lstm_CI_30mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[0,2].set_xlabel('Minutes') axes[0,2].set_ylabel('Predicted BG (mmol/L)') axes[0,2].title.set_text('30 minute prediction') axes[0,2].legend() # Construct CI for 40 min prediction lstm_CI_40mins_90percent = credible_interval(lstm_pred[:,:,3],alpha=0.1) lstm_CI_40mins_98percent = credible_interval(lstm_pred[:,:,3],alpha=0.02) axes[1,0].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,3], s=5, c='r', marker='o', label='test label', zorder=10) axes[1,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_40mins_90percent[:144-TIME_HORIZON-PH,1], lstm_CI_40mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[1,0].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_40mins_98percent[:144-TIME_HORIZON-PH,1], lstm_CI_40mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[1,0].set_xlabel('Minutes') axes[1,0].set_ylabel('Predicted BG (mmol/L)') axes[1,0].title.set_text('40 minute prediction') axes[1,0].legend() # Construct CI for 50 min prediction lstm_CI_50mins_90percent = credible_interval(lstm_pred[:,:,4],alpha=0.1) lstm_CI_50mins_98percent = credible_interval(lstm_pred[:,:,4],alpha=0.02) axes[1,1].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,4], s=5, c='r', marker='o', label='test label', zorder=10) axes[1,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_50mins_90percent[:144-TIME_HORIZON-PH,1], lstm_CI_50mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[1,1].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_50mins_98percent[:144-TIME_HORIZON-PH,1], lstm_CI_50mins_98percent[:144-TIME_HORIZON-PH,0], color='m', label='98% CI', zorder=0) axes[1,1].set_xlabel('Minutes') axes[1,1].set_ylabel('Predicted BG (mmol/L)') axes[1,1].title.set_text('50 minute prediction') axes[1,1].legend() # Construct CI for 60 min prediction lstm_CI_60mins_90percent = credible_interval(lstm_pred[:,:,5],alpha=0.1) lstm_CI_60mins_98percent = credible_interval(lstm_pred[:,:,5],alpha=0.02) axes[1,2].scatter(np.arange(144-TIME_HORIZON-PH)*10, test_label[:144-TIME_HORIZON-PH,5], s=5, c='r', marker='o', label='test label', zorder=10) axes[1,2].fill_between(np.arange(144-TIME_HORIZON-PH)*10, lstm_CI_60mins_90percent[:144-TIME_HORIZON-PH,1], lstm_CI_60mins_90percent[:144-TIME_HORIZON-PH,0], color='k', label='90% CI', zorder=5) axes[1,2].fill_between(
np.arange(144-TIME_HORIZON-PH)
numpy.arange
""" ======================================================= :mod:`go_benchmark` -- Benchmark optimization functions ======================================================= This module provides a set of benchmark problems for global optimization. .. Copyright 2013 <NAME> .. module:: go_benchmark .. moduleauthor:: <NAME> <<EMAIL>> .. modifiedby:: <NAME> <<EMAIL>> 2016 """ # Array math module implemented in C / C++ import numpy # Optimized mathematical functions from numpy import abs, arctan2, cos, dot, exp, floor, inf, log, log10, pi, prod, sin, sqrt, sum, tan, tanh # Array functions from numpy import arange, asarray, atleast_1d, ones, roll, seterr, sign, where, zeros, zeros_like from numpy.random import uniform from math import factorial # Tell numpy to ignore errors seterr(all='ignore') # -------------------------------------------------------------------------------- # class Benchmark(object): """ Defines a global optimization benchmark problem. This abstract class defines the basic structure of a global optimization problem. Subclasses should implement the ``evaluator`` method for a particular optimization problem. Public Attributes: - *dimensions* -- the number of inputs to the problem - *fun_evals* -- stores the number of function evaluations, as some crappy optimization frameworks (i.e., `nlopt`) do not return this value - *change_dimensionality* -- whether we can change the benchmark function `x` variable length (i.e., the dimensionality of the problem) - *custom_bounds* -- a set of lower/upper bounds for plot purposes (if needed). - *spacing* -- the spacing to use to generate evenly spaced samples across the lower/upper bounds on the variables, for plotting purposes """ def __init__(self, dimensions): self.dimensions = dimensions self.fun_evals = 0 self.change_dimensionality = False self.custom_bounds = None self.record = [] # A record of objective values per evaluations if dimensions == 1: self.spacing = 1001 else: self.spacing = 201 def __str__(self): return "%s (%i dimensions)"%(self.__class__.__name__, self.dimensions) def __repr__(self): return self.__class__.__name__ def generator(self): """The generator function for the benchmark problem.""" return [uniform(l, u) for l, u in self.bounds] def evaluator(self, candidates): """The evaluator function for the benchmark problem.""" raise NotImplementedError def set_dimensions(self, ndim): self.dimensions = ndim def lower_bounds_constraints(self, x): lower = asarray([b[0] for b in self.bounds]) return asarray(x) - lower def upper_bounds_constraints(self, x): upper = asarray([b[1] for b in self.bounds]) return upper - asarray(x) #----------------------------------------------------------------------- # SINGLE-OBJECTIVE PROBLEMS #----------------------------------------------------------------------- class Ackley(Benchmark): """ Ackley test objective function. This class defines the Ackley global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Ackley}}(\\mathbf{x}) = -20e^{-0.2 \\sqrt{\\frac{1}{n} \\sum_{i=1}^n x_i^2}} - e^{ \\frac{1}{n} \\sum_{i=1}^n \\cos(2 \\pi x_i)} + 20 + e Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-32, 32]` for :math:`i=1,...,n`. .. figure:: figures/Ackley.png :alt: Ackley function :align: center **Two-dimensional Ackley function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-32.0] * self.dimensions, [ 32.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 a = 20.0; b = 0.2; c = 2.0*pi return -a*exp(-b*sqrt(1./self.dimensions*sum(x**2)))-exp(1./self.dimensions*sum(cos(c*x)))+a+exp(1.) #----------------------------------------------------------------------- class Adjiman(Benchmark): """ Adjiman test objective function. This class defines the Adjiman global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Adjiman}}(\\mathbf{x}) = \\cos(x_1)\\sin(x_2) - \\frac{x_1}{(x_2^2 + 1)} Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-1, 2]` and :math:`x_2 \\in [-1, 1]`. .. figure:: figures/Adjiman.png :alt: Adjiman function :align: center **Two-dimensional Adjiman function** *Global optimum*: :math:`f(x_i) = -2.02181` for :math:`\\mathbf{x} = [2, 0.10578]` """ def __init__(self, dimensions): Benchmark.__init__(self, 2) self.bounds = [(-1.0, 2.0), (-1.0, 1.0)] self.global_optimum = [2.0, 0.10578] self.fglob = -2.02180678 self.change_dimensionality = False def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return cos(x1)*sin(x2) - x1/(x2**2.0 + 1) # -------------------------------------------------------------------------------- # class Alpine01(Benchmark): """ Alpine 1 test objective function. This class defines the Alpine 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Alpine01}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\lvert {x_i \\sin \\left( x_i \\right) + 0.1 x_i} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Alpine01.png :alt: Alpine 1 function :align: center **Two-dimensional Alpine 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(abs(x*sin(x) + 0.1*x)) # -------------------------------------------------------------------------------- # class Alpine02(Benchmark): """ Alpine 2 test objective function. This class defines the Alpine 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Alpine02}}(\\mathbf{x}) = \\prod_{i=1}^{n} \\sqrt{x_i} \\sin(x_i) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,n`. .. figure:: figures/Alpine02.png :alt: Alpine 2 function :align: center **Two-dimensional Alpine 2 function** *Global optimum*: :math:`f(x_i) = -6.1295` for :math:`x_i = 7.917` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [7.91705268, 4.81584232] self.fglob = -6.12950 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return prod(sqrt(x)*sin(x)) # -------------------------------------------------------------------------------- # class AMGM(Benchmark): """ AMGM test objective function. This class defines the Arithmetic Mean - Geometric Mean Equality global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{AMGM}}(\\mathbf{x}) = \\left ( \\frac{1}{n} \\sum_{i=1}^{n} x_i - \\sqrt[n]{ \\prod_{i=1}^{n} x_i} \\right )^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,n`. .. figure:: figures/AMGM.png :alt: AMGM function :align: center **Two-dimensional Arithmetic Mean - Geometric Mean Equality function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_1 = x_2 = ... = x_n` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [1, 1] self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions f1 = sum(x) f2 = prod(x) xsum = f1 f1 = f1/n f2 = f2**(1.0/n) return (f1 - f2)**2 # -------------------------------------------------------------------------------- # class BartelsConn(Benchmark): """ Bartels-Conn test objective function. This class defines the Bartels-Conn global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{BartelsConn}}(\\mathbf{x}) = \\lvert {x_1^2 + x_2^2 + x_1x_2} \\rvert + \\lvert {\\sin(x_1)} \\rvert + \\lvert {\\cos(x_2)} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-50, 50]` for :math:`i=1,...,n`. .. figure:: figures/BartelsConn.png :alt: Bartels-Conn function :align: center **Two-dimensional Bartels-Conn function** *Global optimum*: :math:`f(x_i) = 1` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self): Benchmark.__init__(self, 2) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 1.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return abs(x1**2.0 + x2**2.0 + x1*x2) + abs(sin(x1)) + abs(cos(x2)) # -------------------------------------------------------------------------------- # class Beale(Benchmark): """ Beale test objective function. This class defines the Beale global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Beale}}(\\mathbf{x}) = \\left(x_1 x_2 - x_1 + 1.5\\right)^{2} + \\left(x_1 x_2^{2} - x_1 + 2.25\\right)^{2} + \\left(x_1 x_2^{3} - x_1 + 2.625\\right)^{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Beale.png :alt: Beale function :align: center **Two-dimensional Beale function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [3, 0.5]` """ def __init__(self, dimensions): Benchmark.__init__(self, 2) self.bounds = list(zip([-4.5] * self.dimensions, [ 4.5] * self.dimensions)) self.global_optimum = [3.0, 0.5] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (1.5 - x[0] + x[0]*x[1])**2 + (2.25 - x[0] + x[0]*x[1]**2)**2 + (2.625 - x[0] + x[0]*x[1]**3)**2 # -------------------------------------------------------------------------------- # class Bird(Benchmark): """ Bird test objective function. This class defines the Bird global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bird}}(\\mathbf{x}) = \\left(x_1 - x_2\\right)^{2} + e^{\left[1 - \\sin\\left(x_1\\right) \\right]^{2}} \\cos\\left(x_2\\right) + e^{\left[1 - \\cos\\left(x_2\\right)\\right]^{2}} \\sin\\left(x_1\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-2\\pi, 2\\pi]` for :math:`i=1,2`. .. figure:: figures/Bird.png :alt: Bird function :align: center **Two-dimensional Bird function** *Global optimum*: :math:`f(x_i) = -106.7645367198034` for :math:`\\mathbf{x} = [4.701055751981055 , 3.152946019601391]` or :math:`\\mathbf{x} = [-1.582142172055011, -3.130246799635430]` """ def __init__(self): Benchmark.__init__(self, 2) self.bounds = list(zip([-2.0*pi] * self.dimensions, [ 2.0*pi] * self.dimensions)) self.global_optimum = ([4.701055751981055 , 3.152946019601391], [-1.582142172055011, -3.130246799635430]) self.fglob = -106.7645367198034 def evaluator(self, x, *args): self.fun_evals += 1 return sin(x[0])*exp((1-cos(x[1]))**2) + cos(x[1])*exp((1-sin(x[0]))**2) + (x[0]-x[1])**2 # -------------------------------------------------------------------------------- # class Bohachevsky(Benchmark): """ Bohachevsky test objective function. This class defines the Bohachevsky global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bohachevsky}}(\\mathbf{x}) = \\sum_{i=1}^{n-1}\\left[x_i^2 + 2x_{i+1}^2 - 0.3\\cos(3\\pi x_i) - 0.4\\cos(4\\pi x_{i+1}) + 0.7\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-15, 15]` for :math:`i=1,...,n`. .. figure:: figures/Bohachevsky.png :alt: Bohachevsky function :align: center **Two-dimensional Bohachevsky function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-15.0] * self.dimensions, [ 15.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x0 = x[:-1] x1 = roll(x,-1)[:-1] return sum(x0**2 + 2*x1**2 - 0.3 * cos(3*pi*x0) - 0.4 * cos(4*pi*x1) + 0.7) # -------------------------------------------------------------------------------- # class BoxBetts(Benchmark): """ BoxBetts test objective function. This class defines the Box-Betts global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{BoxBetts}}(\\mathbf{x}) = \\sum_{i=1}^k g(x_i)^2 Where, in this exercise: .. math:: g(x) = e^{-0.1(i+1)x_1} - e^{-0.1(i+1)x_2} - \\left[(e^{-0.1(i+1)}) - e^{-(i+1)}x_3\\right] And :math:`k = 10`. Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [0.9, 1.2], x_2 \\in [9, 11.2], x_3 \\in [0.9, 1.2]`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 10, 1]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = ([0.9, 1.2], [9.0, 11.2], [0.9, 1.2]) self.global_optimum = [1.0, 10.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 y = 0.0 for i in range(1, 11): y += (exp(-0.1*i*x[0]) - exp(-0.1*i*x[1]) - (exp(-0.1*i) - exp(-1.0*i))*x[2])**2.0 return y # -------------------------------------------------------------------------------- # class Branin01(Benchmark): """ Branin 1 test objective function. This class defines the Branin 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Branin01}}(\\mathbf{x}) = \\left(- 1.275 \\frac{x_1^{2}}{\pi^{2}} + 5 \\frac{x_1}{\pi} + x_2 -6\\right)^{2} + \\left(10 - \\frac{5}{4 \\pi} \\right) \\cos\\left(x_1\\right) + 10 Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-5, 10], x_2 \\in [0, 15]` .. figure:: figures/Branin01.png :alt: Branin 1 function :align: center **Two-dimensional Branin 1 function** *Global optimum*: :math:`f(x_i) = 0.39788735772973816` for :math:`\\mathbf{x} = [-\\pi, 12.275]` or :math:`\\mathbf{x} = [\\pi, 2.275]` or :math:`\\mathbf{x} = [9.42478, 2.475]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-5., 10.), (0., 15.)] self.global_optimum = [(-pi, 12.275), (pi, 2.275), (9.42478, 2.475)] self.fglob = 0.39788735772973816 def evaluator(self, x, *args): self.fun_evals += 1 return (x[1]-(5.1/(4*pi**2))*x[0]**2+5*x[0]/pi-6)**2+10*(1-1/(8*pi))*cos(x[0])+10 # -------------------------------------------------------------------------------- # class Branin02(Benchmark): """ Branin 2 test objective function. This class defines the Branin 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Branin02}}(\\mathbf{x}) = \\left(- 1.275 \\frac{x_1^{2}}{\pi^{2}} + 5 \\frac{x_1}{\pi} + x_2 -6\\right)^{2} + \\left(10 - \\frac{5}{4 \\pi} \\right) \\cos\\left(x_1\\right) \\cos\\left(x_2\\right) + \\log(x_1^2+x_2^2 +1) + 10 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 15]` for :math:`i=1,2`. .. figure:: figures/Branin02.png :alt: Branin 2 function :align: center **Two-dimensional Branin 2 function** *Global optimum*: :math:`f(x_i) = 5.559037` for :math:`\\mathbf{x} = [-3.2, 12.53]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-5.0, 15.0), (-5.0, 15.0)] self.global_optimum = [-3.2, 12.53] self.fglob = 5.559037 def evaluator(self, x, *args): self.fun_evals += 1 return (x[1]-(5.1/(4*pi**2))*x[0]**2+5*x[0]/pi-6)**2+10*(1-1/(8*pi))*cos(x[0])*cos(x[1])+log(x[0]**2.0+x[1]**2.0+1.0)+10 # -------------------------------------------------------------------------------- # class Brent(Benchmark): """ Brent test objective function. This class defines the Brent global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Brent}}(\\mathbf{x}) = (x_1 + 10)^2 + (x_2 + 10)^2 + e^{(-x_1^2-x_2^2)} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Brent.png :alt: Brent function :align: center **Two-dimensional Brent function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, -10]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-10, 2), (-10, 2)] self.global_optimum = [-10.0, -10.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (x[0] + 10.0)**2.0 + (x[1] + 10.0)**2.0 + exp(-x[0]**2.0 - x[1]**2.0) # -------------------------------------------------------------------------------- # class Brown(Benchmark): """ Brown test objective function. This class defines the Brown global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Brown}}(\\mathbf{x}) = \\sum_{i=1}^{n-1}\\left[ \\left(x_i^2\\right)^{x_{i+1}^2+1} + \\left(x_{i+1}^2\\right)^{x_i^2+1} \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 4]` for :math:`i=1,...,n`. .. figure:: figures/Brown.png :alt: Brown function :align: center **Two-dimensional Brown function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 4.0] * self.dimensions)) self.custom_bounds = [(-1.0, 1.0), (-1.0, 1.0)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x0 = x[:-1] x1 = x[1:] return sum((x0**2.0)**(x1**2.0 + 1.0) + (x1**2.0)**(x0**2.0 + 1.0)) # -------------------------------------------------------------------------------- # class Bukin02(Benchmark): """ Bukin 2 test objective function. This class defines the Bukin 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bukin02}}(\\mathbf{x}) = 100 (x_2 - 0.01x_1^2 + 1) + 0.01(x_1 + 10)^2 Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-15, -5], x_2 \\in [-3, 3]` .. figure:: figures/Bukin02.png :alt: Bukin 2 function :align: center **Two-dimensional Bukin 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [-10.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*(x[1]**2 - 0.01*x[0]**2 + 1.0) + 0.01*(x[0] + 10.0)**2.0 # -------------------------------------------------------------------------------- # class Bukin04(Benchmark): """ Bukin 4 test objective function. This class defines the Bukin 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bukin04}}(\\mathbf{x}) = 100 x_2^{2} + 0.01 \\lvert{x_1 + 10} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-15, -5], x_2 \\in [-3, 3]` .. figure:: figures/Bukin04.png :alt: Bukin 4 function :align: center **Two-dimensional Bukin 4 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [-10.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*x[1]**2 + 0.01*abs(x[0] + 10) # -------------------------------------------------------------------------------- # class Bukin06(Benchmark): """ Bukin 6 test objective function. This class defines the Bukin 6 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Bukin06}}(\\mathbf{x}) = 100 \\sqrt{ \\lvert{x_2 - 0.01 x_1^{2}} \\rvert} + 0.01 \\lvert{x_1 + 10} \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-15, -5], x_2 \\in [-3, 3]` .. figure:: figures/Bukin06.png :alt: Bukin 6 function :align: center **Two-dimensional Bukin 6 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-10, 1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-15.0, -5.0), (-3.0, 3.0)] self.global_optimum = [-10.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*sqrt(abs(x[1] - 0.01*x[0]**2)) + 0.01*abs(x[0] + 10) # -------------------------------------------------------------------------------- # class CarromTable(Benchmark): """ CarromTable test objective function. This class defines the CarromTable global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CarromTable}}(\\mathbf{x}) = - \\frac{1}{30} e^{2 \\left|{1 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\pi}}\\right|} \\cos^{2}\\left(x_{1}\\right) \\cos^{2}\\left(x_{2}\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/CarromTable.png :alt: CarromTable function :align: center **Two-dimensional CarromTable function** *Global optimum*: :math:`f(x_i) = -24.15681551650653` for :math:`x_i = \\pm 9.646157266348881` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [(9.646157266348881 , 9.646134286497169), (-9.646157266348881, 9.646134286497169), (9.646157266348881 , -9.646134286497169), (-9.646157266348881, -9.646134286497169)] self.fglob = -24.15681551650653 def evaluator(self, x, *args): self.fun_evals += 1 return -((cos(x[0])*cos(x[1])*exp(abs(1 - sqrt(x[0]**2 + x[1]**2)/pi)))**2)/30 # -------------------------------------------------------------------------------- # class Chichinadze(Benchmark): """ Chichinadze test objective function. This class defines the Chichinadze global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Chichinadze}}(\\mathbf{x}) = x_{1}^{2} - 12 x_{1} + 8 \\sin\\left(\\frac{5}{2} \\pi x_{1}\\right) + 10 \\cos\\left(\\frac{1}{2} \\pi x_{1}\\right) + 11 - 0.2 \\frac{\\sqrt{5}}{e^{\\frac{1}{2} \\left(x_{2} -0.5\\right)^{2}}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-30, 30]` for :math:`i=1,2`. .. figure:: figures/Chichinadze.png :alt: Chichinadze function :align: center **Two-dimensional Chichinadze function** *Global optimum*: :math:`f(x_i) = -42.94438701899098` for :math:`\\mathbf{x} = [6.189866586965680, 0.5]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-30.0] * self.dimensions, [ 30.0] * self.dimensions)) self.custom_bounds = [(-10, 10), (-10, 10)] self.global_optimum = [6.189866586965680, 0.5] self.fglob = -42.94438701899098 def evaluator(self, x, *args): self.fun_evals += 1 return x[0]**2 - 12*x[0] + 11 + 10*cos(pi*x[0]/2) + 8*sin(5*pi*x[0]/2) - 1.0/sqrt(5)*exp(-((x[1] - 0.5)**2)/2) # -------------------------------------------------------------------------------- # class Cigar(Benchmark): """ Cigar test objective function. This class defines the Cigar global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Cigar}}(\\mathbf{x}) = x_1^2 + 10^6\\sum_{i=2}^{n} x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Cigar.png :alt: Cigar function :align: center **Two-dimensional Cigar function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return x[0]**2 + 1e6*sum(x[1:]**2) # -------------------------------------------------------------------------------- # class Cola(Benchmark): """ Cola test objective function. This class defines the Cola global optimization problem. The 17-dimensional function computes indirectly the formula :math:`f(n, u)` by setting :math:`x_0 = y_0, x_1 = u_0, x_i = u_{2(i−2)}, y_i = u_{2(i−2)+1}` : .. math:: f_{\\text{Cola}}(\\mathbf{x}) = \\sum_{i<j}^{n} \\left (r_{i,j} - d_{i,j} \\right )^2 Where :math:`r_{i,j}` is given by: .. math:: r_{i,j} = \\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} And :math:`d` is a symmetric matrix given by: .. math:: \\mathbf{d} = \\left [ d_{ij} \\right ] = \\begin{pmatrix} 1.27 & & & & & & & & \\\\ 1.69 & 1.43 & & & & & & & \\\\ 2.04 & 2.35 & 2.43 & & & & & & \\\\ 3.09 & 3.18 & 3.26 & 2.85 & & & & & \\\\ 3.20 & 3.22 & 3.27 & 2.88 & 1.55 & & & & \\\\ 2.86 & 2.56 & 2.58 & 2.59 & 3.12 & 3.06 & & & \\\\ 3.17 & 3.18 & 3.18 & 3.12 & 1.31 & 1.64 & 3.00 & \\\\ 3.21 & 3.18 & 3.18 & 3.17 & 1.70 & 1.36 & 2.95 & 1.32 & \\\\ 2.38 & 2.31 & 2.42 & 1.94 & 2.85 & 2.81 & 2.56 & 2.91 & 2.97 \\end{pmatrix} This function has bounds :math:`0 \\leq x_0 \\leq 4` and :math:`-4 \\leq x_i \\leq 4` for :math:`i = 1,...,n-1`. It has a global minimum of 11.7464. """ def __init__(self, dimensions=17): Benchmark.__init__(self, dimensions) self.bounds = [[0.0, 4.0]] + \ list(zip([-4.0] * (self.dimensions-1), [ 4.0] * (self.dimensions-1))) self.global_optimum = [0.651906, 1.30194, 0.099242, -0.883791, -0.8796, 0.204651, -3.28414, 0.851188, -3.46245, 2.53245, -0.895246, 1.40992, -3.07367, 1.96257, -2.97872, -0.807849, -1.68978] self.fglob = 11.7464 def evaluator(self, x, *args): self.fun_evals += 1 d = asarray([[0, 0, 0, 0, 0, 0, 0, 0, 0], [1.27, 0, 0, 0, 0, 0, 0, 0, 0], [1.69, 1.43, 0, 0, 0, 0, 0, 0, 0], [2.04, 2.35, 2.43, 0, 0, 0, 0, 0, 0], [3.09, 3.18, 3.26, 2.85, 0, 0, 0, 0, 0], [3.20, 3.22, 3.27, 2.88, 1.55, 0, 0, 0, 0], [2.86, 2.56, 2.58, 2.59, 3.12, 3.06, 0, 0, 0], [3.17, 3.18, 3.18, 3.12, 1.31, 1.64, 3.00, 0, 0], [3.21, 3.18, 3.18, 3.17, 1.70, 1.36, 2.95, 1.32, 0], [2.38, 2.31, 2.42, 1.94, 2.85, 2.81, 2.56, 2.91, 2.97]]) # WARNING: This doesn't seem to follow guidelines above... x1 = asarray([0.0, x[0]] + list(x[1::2])) x2 = asarray([0.0, 0.0] + list(x[2::2])) y = 0.0 for i in range(1, len(x1)): y += sum((sqrt((x1[i] - x1[0:i])**2.0 + (x2[i] - x2[0:i])**2.0) - d[i, 0:i])**2.0) return y # -------------------------------------------------------------------------------- # class Colville(Benchmark): """ Colville test objective function. This class defines the Colville global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Colville}}(\\mathbf{x}) = \\left(x_{1} -1\\right)^{2} + 100 \\left(x_{1}^{2} - x_{2}\\right)^{2} + 10.1 \\left(x_{2} -1\\right)^{2} + \\left(x_{3} -1\\right)^{2} + 90 \\left(x_{3}^{2} - x_{4}\\right)^{2} + 10.1 \\left(x_{4} -1\\right)^{2} + 19.8 \\frac{x_{4} -1}{x_{2}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*(x[0]**2-x[1])**2+(x[0]-1)**2+(x[2]-1)**2+90*(x[2]**2-x[3])**2+ 10.1*((x[1]-1)**2+(x[3]-1)**2)+19.8*(1/x[1])*(x[3]-1) # -------------------------------------------------------------------------------- # class Corana(Benchmark): """ Corana test objective function. This class defines the Corana global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Corana}}(\\mathbf{x}) = \\begin{cases} \\sum_{i=1}^n 0.15 d_i [z_i - 0.05\\textrm{sgn}(z_i)]^2 & \\textrm{if}|x_i-z_i| < 0.05 \\\\ d_ix_i^2 & \\textrm{otherwise}\\end{cases} Where, in this exercise: .. math:: z_i = 0.2 \\lfloor |x_i/s_i|+0.49999\\rfloor\\textrm{sgn}(x_i), d_i=(1,1000,10,100, ...) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 d = [1., 1000., 10., 100.] r = 0 for j in range(4): zj = floor(abs(x[j]/0.2) + 0.49999)*sign(x[j]) * 0.2 if abs(x[j]-zj) < 0.05: r += 0.15 * ((zj - 0.05*sign(zj))**2) * d[j] else: r += d[j] * x[j] * x[j] return r # -------------------------------------------------------------------------------- # class CosineMixture(Benchmark): """ Cosine Mixture test objective function. This class defines the Cosine Mixture global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CosineMixture}}(\\mathbf{x}) = -0.1 \\sum_{i=1}^n \\cos(5 \\pi x_i) - \\sum_{i=1}^n x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,N`. .. figure:: figures/CosineMixture.png :alt: Cosine Mixture function :align: center **Two-dimensional Cosine Mixture function** *Global optimum*: :math:`f(x_i) = -0.1N` for :math:`x_i = 0` for :math:`i=1,...,N` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.change_dimensionality = True self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -0.1*self.dimensions def evaluator(self, x, *args): self.fun_evals += 1 return -0.1*sum(cos(5.0*pi*x)) - sum(x**2.0) # -------------------------------------------------------------------------------- # class CrossInTray(Benchmark): """ Cross-in-Tray test objective function. This class defines the Cross-in-Tray global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CrossInTray}}(\\mathbf{x}) = - 0.0001 \\left(\\left|{e^{\\left|{100 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi}}\\right|} \\sin\\left(x_{1}\\right) \\sin\\left(x_{2}\\right)}\\right| + 1\\right)^{0.1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-15, 15]` for :math:`i=1,2`. .. figure:: figures/CrossInTray.png :alt: Cross-in-Tray function :align: center **Two-dimensional Cross-in-Tray function** *Global optimum*: :math:`f(x_i) = -2.062611870822739` for :math:`x_i = \\pm 1.349406608602084` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [(1.349406685353340 , 1.349406608602084), (-1.349406685353340, 1.349406608602084), (1.349406685353340, -1.349406608602084), (-1.349406685353340, -1.349406608602084)] self.fglob = -2.062611870822739 def evaluator(self, x, *args): self.fun_evals += 1 return -0.0001*(abs(sin(x[0])*sin(x[1])*exp(abs(100 - sqrt(x[0]**2 + x[1]**2)/pi))) + 1)**(0.1) # -------------------------------------------------------------------------------- # class CrossLegTable(Benchmark): """ Cross-Leg-Table test objective function. This class defines the Cross-Leg-Table global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CrossLegTable}}(\\mathbf{x}) = - \\frac{1}{\\left(\\left|{e^{\\left|{100 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi}}\\right|} \\sin\\left(x_{1}\\right) \\sin\\left(x_{2}\\right)}\\right| + 1\\right)^{0.1}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/CrossLegTable.png :alt: Cross-Leg-Table function :align: center **Two-dimensional Cross-Leg-Table function** *Global optimum*: :math:`f(x_i) = -1`. The global minimum is found on the planes :math:`x_1 = 0` and :math:`x_2 = 0` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) # WARNING: There was an error here, I added the global optimum self.global_optimum = [0.0, 2.0] self.fglob = -1.0 def evaluator(self, x, *args): self.fun_evals += 1 return -(abs(sin(x[0])*sin(x[1])*exp(abs(100 - sqrt(x[0]**2 + x[1]**2)/pi))) + 1)**(-0.1) # -------------------------------------------------------------------------------- # class CrownedCross(Benchmark): """ Crowned Cross test objective function. This class defines the Crowned Cross global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{CrownedCross}}(\\mathbf{x}) = 0.0001 \\left(\\left|{e^{\\left|{100- \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi}}\\right|} \\sin\\left(x_{1}\\right) \\sin\\left(x_{2}\\right)}\\right| + 1\\right)^{0.1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/CrownedCross.png :alt: Crowned Cross function :align: center **Two-dimensional Crowned Cross function** *Global optimum*: :math:`f(x_i) = 0.0001`. The global minimum is found on the planes :math:`x_1 = 0` and :math:`x_2 = 0` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [0, 0] self.fglob = 0.0001 def evaluator(self, x, *args): self.fun_evals += 1 return 0.0001*(abs(sin(x[0])*sin(x[1])*exp(abs(100 - sqrt(x[0]**2 + x[1]**2)/pi))) + 1)**(0.1) # -------------------------------------------------------------------------------- # class Csendes(Benchmark): """ Csendes test objective function. This class defines the Csendes global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Csendes}}(\\mathbf{x}) = \\sum_{i=1}^n x_i^6 \\left[ 2 + \\sin \\left( \\frac{1}{x_i} \\right ) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,N`. .. figure:: figures/Csendes.png :alt: Csendes function :align: center **Two-dimensional Csendes function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`x_i = 0` for :math:`i=1,...,N` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum((x**6.0)*(2.0 + sin(1.0/x))) # -------------------------------------------------------------------------------- # class Cube(Benchmark): """ Cube test objective function. This class defines the Cube global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Cube}}(\\mathbf{x}) = 100(x_2 - x_1^3)^2 + (1 - x1)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,N`. .. figure:: figures/Cube.png :alt: Cube function :align: center **Two-dimensional Cube function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`\\mathbf{x} = [1, 1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [1.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100.0*(x[1] - x[0]**3.0)**2.0 + (1.0 - x[0])**2.0 # -------------------------------------------------------------------------------- # class Damavandi(Benchmark): """ Damavandi test objective function. This class defines the Damavandi global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Damavandi}}(\\mathbf{x}) = \\left[ 1 - \\lvert{\\frac{\\sin[\\pi(x_1-2)]\\sin[\\pi(x2-2)]}{\\pi^2(x_1-2)(x_2-2)}} \\rvert^5 \\right] \\left[2 + (x_1-7)^2 + 2(x_2-7)^2 \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 14]` for :math:`i=1,...,n`. .. figure:: figures/Damavandi.png :alt: Damavandi function :align: center **Two-dimensional Damavandi function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`x_i = 2` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [14.0] * self.dimensions)) self.global_optimum = [2.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x numerator = sin(pi*(x1 - 2.0))*sin(pi*(x2 - 2.0)) denumerator = (pi**2)*(x1 - 2.0)*(x2 - 2.0) factor1 = 1.0 - (abs(numerator / denumerator))**5.0 factor2 = 2 + (x1 - 7.0)**2.0 + 2*(x2 - 7.0)**2.0 return factor1*factor2 # -------------------------------------------------------------------------------- # class Deb01(Benchmark): """ Deb 1 test objective function. This class defines the Deb 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Deb01}}(\\mathbf{x}) = - \\frac{1}{N} \\sum_{i=1}^n \\sin^6(5 \\pi x_i) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Deb01.png :alt: Deb 1 function :align: center **Two-dimensional Deb 1 function** *Global optimum*: :math:`f(x_i) = 0.0`. The number of global minima is :math:`5^n` that are evenly spaced in the function landscape, where :math:`n` represents the dimension of the problem. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.3, -0.3] self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return -(1.0/self.dimensions)*sum(sin(5*pi*x)**6.0) # -------------------------------------------------------------------------------- # class Deb02(Benchmark): """ Deb 2 test objective function. This class defines the Deb 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Deb02}}(\\mathbf{x}) = - \\frac{1}{N} \\sum_{i=1}^n \\sin^6 \\left[ 5 \\pi \\left ( x_i^{3/4} - 0.05 \\right) \\right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Deb02.png :alt: Deb 2 function :align: center **Two-dimensional Deb 2 function** *Global optimum*: :math:`f(x_i) = 0.0`. The number of global minima is :math:`5^n` that are evenly spaced in the function landscape, where :math:`n` represents the dimension of the problem. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.93388314, 0.68141781] self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return -(1.0/self.dimensions)*sum(sin(5*pi*(x**0.75 - 0.05))**6.0) # -------------------------------------------------------------------------------- # class Decanomial(Benchmark): """ Decanomial test objective function. This class defines the Decanomial function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Decanomial}}(\\mathbf{x}) = 0.001 \\left(\\lvert{x_{2}^{4} + 12 x_{2}^{3} + 54 x_{2}^{2} + 108 x_{2} + 81.0}\\rvert + \\lvert{x_{1}^{10} - 20 x_{1}^{9} + 180 x_{1}^{8} - 960 x_{1}^{7} + 3360 x_{1}^{6} - 8064 x_{1}^{5} + 13340 x_{1}^{4} - 15360 x_{1}^{3} + 11520 x_{1}^{2} - 5120 x_{1} + 2624.0}\\rvert\\right)^{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Decanomial.png :alt: Decanomial function :align: center **Two-dimensional Decanomial function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [2, -3]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(0, 2.5), (-2, -4)] self.global_optimum = [2.0, -3.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 F1 = abs(x[0]**10 - 20*x[0]**9 + 180*x[0]**8 - 960*x[0]**7 + 3360*x[0]**6 - 8064*x[0]**5 + \ 13340*x[0]**4 - 15360*x[0]**3 + 11520*x[0]**2 - 5120*x[0] + 2624.0) F2 = abs(x[1]**4 + 12*x[1]**3 + 54*x[1]**2 + 108*x[1] + 81.0) return 0.001*(F1 + F2)**2 # -------------------------------------------------------------------------------- # class Deceptive(Benchmark): """ Deceptive test objective function. This class defines the Deceptive global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Deceptive}}(\\mathbf{x}) = - \\left [\\frac{1}{n} \\sum_{i=1}^{n} g_i(x_i) \\right ]^{\\beta} Where :math:`\\beta` is a fixed non-linearity factor; in this exercise, :math:`\\beta = 2`. The function :math:`g_i(x_i)` is given by: .. math:: g_i(x_i) = \\begin{cases} - \\frac{x}{\\alpha_i} + \\frac{4}{5} & \\textrm{if} \\hspace{5pt} 0 \\leq x_i \\leq \\frac{4}{5} \\alpha_i \\\\ \\frac{5x}{\\alpha_i} -4 & \\textrm{if} \\hspace{5pt} \\frac{4}{5} \\alpha_i \\le x_i \\leq \\alpha_i \\\\ \\frac{5(x - \\alpha_i)}{\\alpha_i-1} & \\textrm{if} \\hspace{5pt} \\alpha_i \\le x_i \\leq \\frac{1 + 4\\alpha_i}{5} \\\\ \\frac{x - 1}{1 - \\alpha_i} & \\textrm{if} \\hspace{5pt} \\frac{1 + 4\\alpha_i}{5} \\le x_i \\leq 1 \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Deceptive.png :alt: Deceptive function :align: center **Two-dimensional Deceptive function** *Global optimum*: :math:`f(x_i) = -1` for :math:`x_i = \\alpha_i` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) n = self.dimensions self.global_optimum = numpy.arange(1.0, n + 1.0)/(n + 1.0) self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions alpha = numpy.arange(1.0, n + 1.0)/(n + 1.0) beta = 2.0 g = zeros((n, )) for i in range(n): if x[i] <= 0.0: g[i] = x[i] elif x[i] < 0.8*alpha[i]: g[i] = -x[i]/alpha[i] + 0.8 elif x[i] < alpha[i]: g[i] = 5.0*x[i]/alpha[i] - 4.0 elif x[i] < (1.0 + 4*alpha[i])/5.0: g[i] = 5.0*(x[i] - alpha[i])/(alpha[i] - 1.0) + 1.0 elif x[i] <= 1.0: g[i] = (x[i] - 1.0)/(1.0 - alpha[i]) + 4.0/5.0 else: g[i] = x[i] - 1.0 return -((1.0/n)*sum(g))**beta # -------------------------------------------------------------------------------- # class DeckkersAarts(Benchmark): """ Deckkers-Aarts test objective function. This class defines the Deckkers-Aarts global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeckkersAarts}}(\\mathbf{x}) = 10^5x_1^2 + x_2^2 - (x_1^2 + x_2^2)^2 + 10^{-5}(x_1^2 + x_2^2)^4 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-20, 20]` for :math:`i=1,2`. .. figure:: figures/DeckkersAarts.png :alt: DeckkersAarts function :align: center **Two-dimensional Deckkers-Aarts function** *Global optimum*: :math:`f(x_i) = -24777` for :math:`\\mathbf{x} = [0, \\pm 15]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-20.0] * self.dimensions, [ 20.0] * self.dimensions)) # WARNING: Custom bounds was a tuple of lists.. self.custom_bounds = [(-1, 1), (14, 16)] self.global_optimum = [0.0, 15.0] self.fglob = -24776.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 1e5*x1**2.0 + x2**2.0 - (x1**2.0 + x2**2.0)**2.0 + 1e-5*(x1**2.0 + x2**2.0)**4.0 # -------------------------------------------------------------------------------- # class DeflectedCorrugatedSpring(Benchmark): """ DeflectedCorrugatedSpring test objective function. This class defines the Deflected Corrugated Spring function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeflectedCorrugatedSpring}}(\\mathbf{x}) = 0.1\\sum_{i=1}^n \\left[ (x_i - \\alpha)^2 - \\cos \\left( K \\sqrt {\\sum_{i=1}^n (x_i - \\alpha)^2} \\right ) \\right ] Where, in this exercise, :math:`K = 5` and :math:`\\alpha = 5`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 2\\alpha]` for :math:`i=1,...,n`. .. figure:: figures/DeflectedCorrugatedSpring.png :alt: Deflected Corrugated Spring function :align: center **Two-dimensional Deflected Corrugated Spring function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = \\alpha` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) alpha = 5.0 self.bounds = list(zip([0] * self.dimensions, [2*alpha] * self.dimensions)) self.global_optimum = [alpha] * self.dimensions self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 K, alpha = 5.0, 5.0 return -cos(K*sqrt(sum((x - alpha)**2))) + 0.1*sum((x - alpha)**2) # -------------------------------------------------------------------------------- # class DeVilliersGlasser01(Benchmark): """ DeVilliers-Glasser 1 test objective function. This class defines the DeVilliers-Glasser 1 function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeVilliersGlasser01}}(\\mathbf{x}) = \\sum_{i=1}^{24} \\left[ x_1x_2^{t_i} \\sin(x_3t_i + x_4) - y_i \\right ]^2 Where, in this exercise, :math:`t_i = 0.1(i-1)` and :math:`y_i = 60.137(1.371^{t_i}) \\sin(3.112t_i + 1.761)`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [1, 100]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`\\mathbf{x} = [60.137, 1.371, 3.112, 1.761]`. """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 1.0] * self.dimensions, [100.0] * self.dimensions)) self.global_optimum = [60.137, 1.371, 3.112, 1.761] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 t_i = 0.1*numpy.arange(24) y_i = 60.137*(1.371**t_i)*sin(3.112*t_i + 1.761) x1, x2, x3, x4 = x return sum((x1*(x2**t_i)*sin(x3*t_i + x4) - y_i)**2.0) # -------------------------------------------------------------------------------- # class DeVilliersGlasser02(Benchmark): """ DeVilliers-Glasser 2 test objective function. This class defines the DeVilliers-Glasser 2 function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DeVilliersGlasser01}}(\\mathbf{x}) = \\sum_{i=1}^{24} \\left[ x_1x_2^{t_i} \\tanh \\left [x_3t_i + \\sin(x_4t_i) \\right] \\cos(t_ie^{x_5}) - y_i \\right ]^2 Where, in this exercise, :math:`t_i = 0.1(i-1)` and :math:`y_i = 53.81(1.27^{t_i}) \\tanh (3.012t_i + \\sin(2.13t_i)) \\cos(e^{0.507}t_i)`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [1, 60]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`\\mathbf{x} = [53.81, 1.27, 3.012, 2.13, 0.507]`. """ def __init__(self, dimensions=5): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 1.0] * self.dimensions, [60.0] * self.dimensions)) self.global_optimum = [53.81, 1.27, 3.012, 2.13, 0.507] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 t_i = 0.1*numpy.arange(16) y_i = 53.81*1.27**t_i*tanh(3.012*t_i + sin(2.13*t_i))*cos(exp(0.507)*t_i) x1, x2, x3, x4, x5 = x return sum((x1*(x2**t_i)*tanh(x3*t_i + sin(x4*t_i))*cos(t_i*exp(x5)) - y_i)**2.0) # -------------------------------------------------------------------------------- # class DixonPrice(Benchmark): """ Dixon and Price test objective function. This class defines the Dixon and Price global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DixonPrice}}(\\mathbf{x}) = (x_i - 1)^2 + \\sum_{i=2}^n i(2x_i^2 - x_{i-1})^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/DixonPrice.png :alt: Dixon and Price function :align: center **Two-dimensional Dixon and Price function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 2^{- \\frac{(2^i-2)}{2^i}}` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2, 3), (-2, 3)] self.global_optimum = [2.0**(-(2.0**i-2.0)/2.0**i) for i in range(1, self.dimensions+1)] self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 s = 0.0 for i in range(1, self.dimensions): s += i*(2.0*x[i]**2.0 - x[i-1])**2.0 y = s + (x[0] - 1.0)**2.0 return y # -------------------------------------------------------------------------------- # class Dolan(Benchmark): """ Dolan test objective function. This class defines the Dolan global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Dolan}}(\\mathbf{x}) = \\lvert (x_1 + 1.7x_2)\\sin(x_1) - 1.5x_3 - 0.1x_4\\cos(x_5 + x_5 - x_1) + 0.2x_5^2 - x_2 - 1 \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. *Global optimum*: :math:`f(x_i) = 10^{-5}` for :math:`\\mathbf{x} = [8.39045925, 4.81424707, 7.34574133, 68.88246895, 3.85470806]` """ def __init__(self, dimensions=5): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [8.39045925, 4.81424707, 7.34574133, 68.88246895, 3.85470806] self.fglob = 1e-5 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3, x4, x5 = x return abs((x1 + 1.7*x2)*sin(x1) - 1.5*x3 - 0.1*x4*cos(x4 + x5 - x1) + 0.2*x5**2.0 - x2 - 1.0) # -------------------------------------------------------------------------------- # class DropWave(Benchmark): """ DropWave test objective function. This class defines the DropWave global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{DropWave}}(\\mathbf{x}) = - \\frac{1 + \\cos\\left(12 \\sqrt{\\sum_{i=1}^{n} x_i^{2}}\\right)}{2 + 0.5 \\sum_{i=1}^{n} x_i^{2}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5.12, 5.12]` for :math:`i=1,2`. .. figure:: figures/DropWave.png :alt: DropWave function :align: center **Two-dimensional DropWave function** *Global optimum*: :math:`f(x_i) = -1` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.12] * self.dimensions, [ 5.12] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -1.0 def evaluator(self, x, *args): self.fun_evals += 1 norm_x = sum(x**2) return -(1+cos(12 * sqrt(norm_x)))/(0.5 * norm_x + 2) # -------------------------------------------------------------------------------- # class Easom(Benchmark): """ Easom test objective function. This class defines the Easom global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Easom}}(\\mathbf{x}) = a - \\frac{a}{e^{b \\sqrt{\\frac{\\sum_{i=1}^{n} x_i^{2}}{n}}}} + e - e^{\\frac{\\sum_{i=1}^{n} \\cos\\left(c x_i\\right)}{n}} Where, in this exercise, :math:`a = 20, b = 0.2` and :math:`c = 2\\pi`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Easom.png :alt: Easom function :align: center **Two-dimensional Easom function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 a = 20.0 b = 0.2 c = 2*pi n = self.dimensions return -a * exp(-b * sqrt(sum(x**2) / n)) - exp(sum(cos(c * x)) / n) + a + exp(1) # -------------------------------------------------------------------------------- # class EggCrate(Benchmark): """ Egg Crate test objective function. This class defines the Egg Crate global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{EggCrate}}(\\mathbf{x}) = x_1^2 + x_2^2 + 25 \\left[ \\sin^2(x_1) + \\sin^2(x_2) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,2`. .. figure:: figures/EggCrate.png :alt: Egg Crate function :align: center **Two-dimensional Egg Crate function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return x1**2.0 + x2**2.0 + 25.0*(sin(x1)**2.0 + sin(x2)**2.0) # -------------------------------------------------------------------------------- # class EggHolder(Benchmark): """ Egg Holder test objective function. This class defines the Egg Holder global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{EggHolder}}(\\mathbf{x}) = - x_{1} \\sin\\left(\\sqrt{\\lvert{x_{1} - x_{2} -47}\\rvert}\\right) - \\left(x_{2} + 47\\right) \\sin\\left(\\sqrt{\\left|{\\frac{1}{2} x_{1} + x_{2} + 47}\\right|}\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-512, 512]` for :math:`i=1,2`. .. figure:: figures/EggHolder.png :alt: Egg Holder function :align: center **Two-dimensional Egg Holder function** *Global optimum*: :math:`f(x_i) = -959.640662711` for :math:`\\mathbf{x} = [512, 404.2319]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-512.0] * self.dimensions, [ 512.0] * self.dimensions)) self.global_optimum = [512.0, 404.2319] self.fglob = -959.640662711 def evaluator(self, x, *args): self.fun_evals += 1 return -(x[1]+47)*sin(sqrt(abs(x[1]+x[0]/2+47)))-x[0]*sin(sqrt(abs(x[0]-(x[1]+47)))) # -------------------------------------------------------------------------------- # class ElAttarVidyasagarDutta(Benchmark): """ El-Attar-Vidyasagar-Dutta test objective function. This class defines the El-Attar-Vidyasagar-Dutta function global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{ElAttarVidyasagarDutta}}(\\mathbf{x}) = (x_1^2 + x_2 - 10)^2 + (x_1 + x_2^2 - 7)^2 + (x_1^2 + x_2^3 - 1)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/ElAttarVidyasagarDutta.png :alt: El-Attar-Vidyasagar-Dutta function :align: center **Two-dimensional El-Attar-Vidyasagar-Dutta function** *Global optimum*: :math:`f(x_i) = 1.712780354` for :math:`\\mathbf{x} = [3.40918683, -2.17143304]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-4, 4), (-4, 4)] self.global_optimum = [3.40918683, -2.17143304] self.fglob = 1.712780354 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return (x1**2.0 + x2 - 10)**2.0 + (x1 + x2**2.0 - 7)**2.0 + (x1**2.0 + x2**3.0 - 1)**2.0 # -------------------------------------------------------------------------------- # class Exp2(Benchmark): """ Exp2 test objective function. This class defines the Exp2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Exp2}}(\\mathbf{x}) = \\sum_{i=0}^9 \\left ( e^{-ix_1/10} - 5e^{-ix_2/10} -e^{-i/10} + 5e^{-i} \\right )^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 20]` for :math:`i=1,2`. .. figure:: figures/Exp2.png :alt: Exp2 function :align: center **Two-dimensional Exp2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = [1, 0.1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [20.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [1.0, 0.1] self.fglob = 0 def evaluator(self, x, *args): self.fun_evals += 1 y = 0.0 for i in range(10): y += (exp(-i*x[0]/10.0) - 5*exp(-i*x[1]*10) - exp(-i/10.0) + 5*exp(-i))**2.0 return y # -------------------------------------------------------------------------------- # class Exponential(Benchmark): """ Exponential test objective function. This class defines the Exponential global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Exponential}}(\\mathbf{x}) = -e^{-0.5 \\sum_{i=1}^n x_i^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Exponential.png :alt: Exponential function :align: center **Two-dimensional Exponential function** *Global optimum*: :math:`f(x_i) = -1` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return -exp(-0.5*sum(x**2.0)) # -------------------------------------------------------------------------------- # class FreudensteinRoth(Benchmark): """ FreudensteinRoth test objective function. This class defines the Freudenstein & Roth global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{FreudensteinRoth}}(\\mathbf{x}) = \\left\{x_1 - 13 + \\left[(5 - x_2)x_2 - 2 \\right] x_2 \\right\}^2 + \\left \{x_1 - 29 + \\left[(x_2 + 1)x_2 - 14 \\right] x_2 \\right\}^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/FreudensteinRoth.png :alt: FreudensteinRoth function :align: center **Two-dimensional FreudensteinRoth function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [5, 4]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-3, 3), (-5, 5)] self.global_optimum = [5.0, 4.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 f1 = (-13.0 + x[0] + ((5.0 - x[1])*x[1] - 2.0)*x[1])**2 f2 = (-29.0 + x[0] + ((x[1] + 1.0)*x[1] - 14.0)*x[1])**2 return f1 + f2 # -------------------------------------------------------------------------------- # class Gear(Benchmark): """ Gear test objective function. This class defines the Gear global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Gear}}(\\mathbf{x}) = \\left \\{ \\frac{1.0}{6.931} - \\frac{\\lfloor x_1\\rfloor \\lfloor x_2 \\rfloor } {\\lfloor x_3 \\rfloor \\lfloor x_4 \\rfloor } \\right\\}^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [12, 60]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 2.7 \\cdot 10^{-12}` for :math:`\\mathbf{x} = [16, 19, 43, 49]`, where the various :math:`x_i` may be permuted. """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([12.0] * self.dimensions, [60.0] * self.dimensions)) self.global_optimum = [16, 19, 43, 49] self.fglob = 2.7e-12 def evaluator(self, x, *args): self.fun_evals += 1 return (1.0/6.931 - floor(x[0])*floor(x[1])/(floor(x[2])*floor(x[3])))**2 # -------------------------------------------------------------------------------- # class Giunta(Benchmark): """ Giunta test objective function. This class defines the Giunta global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Giunta}}(\\mathbf{x}) = 0.6 + \\sum_{i=1}^{n} \\left[\\sin^{2}\\left(1 - \\frac{16}{15} x_i\\right) - \\frac{1}{50} \\sin\\left(4 - \\frac{64}{15} x_i\\right) - \\sin\\left(1 - \\frac{16}{15} x_i\\right)\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,2`. .. figure:: figures/Giunta.png :alt: Giunta function :align: center **Two-dimensional Giunta function** *Global optimum*: :math:`f(x_i) = 0.06447042053690566` for :math:`\\mathbf{x} = [0.4673200277395354, 0.4673200169591304]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.4673200277395354, 0.4673200169591304] self.fglob = 0.06447042053690566 def evaluator(self, x, *args): self.fun_evals += 1 arg = 16*x/15.0 - 1 return 0.6 + sum(sin(arg) + sin(arg)**2 + sin(4*arg)/50) # -------------------------------------------------------------------------------- # class GoldsteinPrice(Benchmark): """ Goldstein-Price test objective function. This class defines the Goldstein-Price global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{GoldsteinPrice}}(\\mathbf{x}) = \\left[ 1+(x_1+x_2+1)^2(19-14x_1+3x_1^2-14x_2+6x_1x_2+3x_2^2) \\right] \\left[ 30+(2x_1-3x_2)^2(18-32x_1+12x_1^2+48x_2-36x_1x_2+27x_2^2) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-2, 2]` for :math:`i=1,2`. .. figure:: figures/GoldsteinPrice.png :alt: Goldstein-Price function :align: center **Two-dimensional Goldstein-Price function** *Global optimum*: :math:`f(x_i) = 3` for :math:`\\mathbf{x} = [0, -1]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-2.0] * self.dimensions, [ 2.0] * self.dimensions)) self.global_optimum = [0., -1.] self.fglob = 3.0 def evaluator(self, x, *args): self.fun_evals += 1 a = 1+(x[0]+x[1]+1)**2*(19-14*x[0]+3*x[0]**2-14*x[1]+6*x[0]*x[1]+3*x[1]**2) b = 30+(2*x[0]-3*x[1])**2*(18-32*x[0]+12*x[0]**2+48*x[1]-36*x[0]*x[1]+27*x[1]**2) return a*b # -------------------------------------------------------------------------------- # class Griewank(Benchmark): """ Griewank test objective function. This class defines the Griewank global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Griewank}}(\\mathbf{x}) = \\frac{1}{4000}\\sum_{i=1}^n x_i^2 - \\prod_{i=1}^n\\cos\\left(\\frac{x_i}{\\sqrt{i}}\\right) + 1 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-600, 600]` for :math:`i=1,...,n`. .. figure:: figures/Griewank.png :alt: Griewank function :align: center **Two-dimensional Griewank function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-600.0] * self.dimensions, [ 600.0] * self.dimensions)) self.custom_bounds = [(-50, 50), (-50, 50)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(x**2)/4000.0 - prod(cos(x/sqrt(1.0+arange(len(x))))) + 1.0 # -------------------------------------------------------------------------------- # class Gulf(Benchmark): """ Gulf test objective function. This class defines the Gulf global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Gulf}}(\\mathbf{x}) = \\sum_{i=1}^m \\left( e^{-\\frac{\\lvert y_i - x_2 \\rvert^{x_3}}{x_1} } - t_i \\right) Where, in this exercise: .. math:: t_i = i/100 \\\\ y_i = 25 + [-50 \\log(t_i)]^{2/3} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 60]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [50, 25, 1.5]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [50.0] * self.dimensions)) self.global_optimum = [50.0, 25.0, 1.5] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3 = x y = 0.0 for i in range(30): ti = (i)*0.01; yi = 25.0 + (-50*log(ti))**(2.0/3.0) ai = yi - x2 y += (exp(-((abs(ai)**x3)/x1)) - ti)**2.0 return y # -------------------------------------------------------------------------------- # class Hansen(Benchmark): """ Hansen test objective function. This class defines the Hansen global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hansen}}(\\mathbf{x}) = \\left[ \\sum_{i=0}^4(i+1)\\cos(ix_1+i+1)\\right ] \\left[\\sum_{j=0}^4(j+1)\\cos[(j+2)x_2+j+1])\\right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Hansen.png :alt: Hansen function :align: center **Two-dimensional Hansen function** *Global optimum*: :math:`f(x_i) = -2.3458` for :math:`\\mathbf{x} = [-7.58989583, -7.70831466]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-7.58989583, -7.70831466] self.fglob = -176.54 def evaluator(self, x, *args): self.fun_evals += 1 f1 = f2 = 0.0 for i in range(5): f1 += (i+1)*cos(i*x[0] + i + 1) f2 += (i+1)*cos((i+2)*x[1] + i + 1) return f1*f2 # -------------------------------------------------------------------------------- # class Hartmann3(Benchmark): """ Hartmann3 test objective function. This class defines the Hartmann3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hartmann3}}(\\mathbf{x}) = -\\sum\\limits_{i=1}^{4} c_i e^{-\\sum\\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2} Where, in this exercise: .. math:: \\begin{array}{l|ccc|c|ccr} \\hline i & & a_{ij}& & c_i & & p_{ij} & \\\\ \\hline 1 & 3.0 & 10.0 & 30.0 & 1.0 & 0.689 & 0.1170 & 0.2673 \\\\ 2 & 0.1 & 10.0 & 35.0 & 1.2 & 0.4699 & 0.4387 & 0.7470 \\\\ 3 & 3.0 & 10.0 & 30.0 & 3.0 & 0.1091 & 0.8732 & 0.5547 \\\\ 4 & 0.1 & 10.0 & 35.0 & 3.2 & 0.0381 & 0.5743 & 0.8828 \\\\ \\hline \\end{array} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = -3.86278214782076` for :math:`\\mathbf{x} = [0.1, 0.55592003, 0.85218259]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.1, 0.55592003, 0.85218259] self.fglob = -3.86278214782076 def evaluator(self, x, *args): self.fun_evals += 1 a = asarray([[3.0, 0.1, 3.0, 0.1], [10.0, 10.0, 10.0, 10.0], [30.0, 35.0, 30.0, 35.0]]) p = asarray([[0.36890, 0.46990, 0.10910, 0.03815], [0.11700, 0.43870, 0.87320, 0.57430], [0.26730, 0.74700, 0.55470, 0.88280]]) c = asarray([1.0, 1.2, 3.0, 3.2]) d = zeros_like(c) for i in range(4): d[i] = sum(a[:, i]*(x - p[:, i])**2) return -sum(c*exp(-d)) # -------------------------------------------------------------------------------- # class Hartmann6(Benchmark): """ Hartmann6 test objective function. This class defines the Hartmann6 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hartmann6}}(\\mathbf{x}) = -\\sum\\limits_{i=1}^{4} c_i e^{-\\sum\\limits_{j=1}^{n}a_{ij}(x_j - p_{ij})^2} Where, in this exercise: .. math:: \\begin{array}{l|cccccc|r} \\hline i & & & a_{ij} & & & & c_i \\\\ \\hline 1 & 10.0 & 3.0 & 17.0 & 3.50 & 1.70 & 8.00 & 1.0 \\\\ 2 & 0.05 & 10.0 & 17.0 & 0.10 & 8.00 & 14.00 & 1.2 \\\\ 3 & 3.00 & 3.50 & 1.70 & 10.0 & 17.00 & 8.00 & 3.0 \\\\ 4 & 17.00 & 8.00 & 0.05 & 10.00 & 0.10 & 14.00 & 3.2 \\\\ \\hline \\end{array} \\newline \\\\ \\newline \\begin{array}{l|cccccr} \\hline i & & & p_{ij} & & & \\\\ \\hline 1 & 0.1312 & 0.1696 & 0.5569 & 0.0124 & 0.8283 & 0.5886 \\\\ 2 & 0.2329 & 0.4135 & 0.8307 & 0.3736 & 0.1004 & 0.9991 \\\\ 3 & 0.2348 & 0.1451 & 0.3522 & 0.2883 & 0.3047 & 0.6650 \\\\ 4 & 0.4047 & 0.8828 & 0.8732 & 0.5743 & 0.1091 & 0.0381 \\\\ \\hline \\end{array} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,6`. *Global optimum*: :math:`f(x_i) = -3.32236801141551` for :math:`\\mathbf{x} = [0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162, 0.65730054]` """ def __init__(self, dimensions=6): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.20168952, 0.15001069, 0.47687398, 0.27533243, 0.31165162, 0.65730054] self.fglob = -3.32236801141551 def evaluator(self, x, *args): self.fun_evals += 1 a = asarray([[10.00, 0.05, 3.00, 17.00], [3.00, 10.00, 3.50, 8.00], [17.00, 17.00, 1.70, 0.05], [3.50, 0.10, 10.00, 10.00], [1.70, 8.00, 17.00, 0.10], [8.00, 14.00, 8.00, 14.00]]) p = asarray([[0.1312, 0.2329, 0.2348, 0.4047], [0.1696, 0.4135, 0.1451, 0.8828], [0.5569, 0.8307, 0.3522, 0.8732], [0.0124, 0.3736, 0.2883, 0.5743], [0.8283, 0.1004, 0.3047, 0.1091], [0.5886, 0.9991, 0.6650, 0.0381]]) c = asarray([1.0, 1.2, 3.0, 3.2]) d = zeros_like(c) for i in range(4): d[i] = sum(a[:, i]*(x - p[:, i])**2) return -sum(c*exp(-d)) # -------------------------------------------------------------------------------- # class HelicalValley(Benchmark): """ HelicalValley test objective function. This class defines the HelicalValley global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{HelicalValley}}(\\mathbf{x}) = 100{[z-10\\Psi(x_1,x_2)]^2+(\\sqrt{x_1^2+x_2^2}-1)^2}+x_3^2 Where, in this exercise: .. math:: 2\\pi\\Psi(x,y) = \\begin{cases} \\arctan(y/x) & \\textrm{for} x > 0 \\\\ \\pi + \\arctan(y/x) & \\textrm{for} x < 0 \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-\infty, \\infty]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 0, 0]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100] * self.dimensions)) self.global_optimum = [1.0, 0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*((x[2] - 10*arctan2(x[1], x[0])/2/pi)**2 + (sqrt(x[0]**2 + x[1]**2) - 1)**2) + x[2]**2 # -------------------------------------------------------------------------------- # class HimmelBlau(Benchmark): """ HimmelBlau test objective function. This class defines the HimmelBlau global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{HimmelBlau}}(\\mathbf{x}) = (x_1^2 + x_2 - 11)^2 + (x_1 + x_2^2 -7)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-6, 6]` for :math:`i=1,2`. .. figure:: figures/HimmelBlau.png :alt: HimmelBlau function :align: center **Two-dimensional HimmelBlau function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-6] * self.dimensions, [ 6] * self.dimensions)) self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (x[0] * x[0] + x[1] - 11)**2 + (x[0] + x[1] * x[1] - 7)**2 # -------------------------------------------------------------------------------- # class HolderTable(Benchmark): """ HolderTable test objective function. This class defines the HolderTable global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{HolderTable}}(\\mathbf{x}) = - \\left|{e^{\\left|{1 - \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi} }\\right|} \\sin\\left(x_{1}\\right) \\cos\\left(x_{2}\\right)}\\right| Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/HolderTable.png :alt: HolderTable function :align: center **Two-dimensional HolderTable function** *Global optimum*: :math:`f(x_i) = -19.20850256788675` for :math:`x_i = \\pm 9.664590028909654` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [(8.055023472141116 , 9.664590028909654), (-8.055023472141116, 9.664590028909654), (8.055023472141116 , -9.664590028909654), (-8.055023472141116, -9.664590028909654)] self.fglob = -19.20850256788675 def evaluator(self, x, *args): self.fun_evals += 1 return -abs(sin(x[0])*cos(x[1])*exp(abs(1 - sqrt(x[0]**2 + x[1]**2)/pi))) # -------------------------------------------------------------------------------- # class Holzman(Benchmark): """ Holzman test objective function. This class defines the Holzman global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Holzman}}(\\mathbf{x}) = \\sum_{i=0}^{99} \\left [ e^{\\frac{1}{x_1} (u_i-x_2)^{x_3}} -0.1(i+1) \\right ] Where, in this exercise: .. math:: u_i = 25 + (-50 \\log{[0.01(i+1)]})^{2/3} Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [0, 100], x_2 \\in [0, 25.6], x_3 \\in [0, 5]`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [50, 25, 1.5]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = ([0.0, 100.0], [0.0, 25.6], [0.0, 5.0]) self.global_optimum = [50.0, 25.0, 1.5] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 y = 0.0 for i in range(100): ui = 25.0 + (-50.0*log(0.01*(i+1)))**(2.0/3.0) y += -0.1*(i+1) + exp(1.0/x[0]*(ui-x[1])**x[2]) return y # -------------------------------------------------------------------------------- # class Hosaki(Benchmark): """ Hosaki test objective function. This class defines the Hosaki global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Hosaki}}(\\mathbf{x}) = \\left ( 1 - 8x_1 + 7x_1^2 - \\frac{7}{3}x_1^3 + \\frac{1}{4}x_1^4 \\right )x_2^2e^{-x_1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,2`. .. figure:: figures/Hosaki.png :alt: Hosaki function :align: center **Two-dimensional Hosaki function** *Global optimum*: :math:`f(x_i) = -2.3458` for :math:`\\mathbf{x} = [4, 2]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(0, 5), (0, 5)] self.global_optimum = [4, 2] self.fglob = -2.3458 def evaluator(self, x, *args): self.fun_evals += 1 return (1 + x[0]*(-8 + x[0]*(7 + x[0]*(-7.0/3.0 + x[0] *1.0/4.0))))*x[1]*x[1] * exp(-x[1]) # -------------------------------------------------------------------------------- # class Infinity(Benchmark): """ Infinity test objective function. This class defines the Infinity global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Infinity}}(\\mathbf{x}) = \\sum_{i=1}^{n} x_i^{6} \\left [ \\sin\\left ( \\frac{1}{x_i} \\right )+2 \\right ] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Infinity.png :alt: Infinity function :align: center **Two-dimensional Infinity function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [1e-16] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(x**6.0*(sin(1.0/x) + 2.0)) # -------------------------------------------------------------------------------- # class JennrichSampson(Benchmark): """ Jennrich-Sampson test objective function. This class defines the Jennrich-Sampson global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{JennrichSampson}}(\\mathbf{x}) = \\sum_{i=1}^{10} \\left [2 + 2i - (e^{ix_1} + e^{ix_2}) \\right ]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,2`. .. figure:: figures/JennrichSampson.png :alt: Jennrich-Sampson function :align: center **Two-dimensional Jennrich-Sampson function** *Global optimum*: :math:`f(x_i) = 124.3621824` for :math:`\\mathbf{x} = [0.257825, 0.257825]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.custom_bounds = [(-1, 0.34), (-1, 0.34)] self.global_optimum = [0.257825, 0.257825] self.fglob = 124.3621824 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x rng = numpy.arange(1.0, 11.0) return sum((2.0 + 2.0*rng - (exp(rng*x1) + exp(rng*x2)))**2.0) # -------------------------------------------------------------------------------- # class Judge(Benchmark): """ Judge test objective function. This class defines the Judge global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Judge}}(\\mathbf{x}) = \\sum_{i=1}^{20} \\left [ \\left (x_1 + A_i x_2 + B x_2^2 \\right ) - C_i \\right ]^2 Where, in this exercise: .. math:: \\begin{cases} A = [4.284, 4.149, 3.877, 0.533, 2.211, 2.389, 2.145, 3.231, 1.998, 1.379, 2.106, 1.428, 1.011, 2.179, 2.858, 1.388, 1.651, 1.593, 1.046, 2.152] \\\\ B = [0.286, 0.973, 0.384, 0.276, 0.973, 0.543, 0.957, 0.948, 0.543, 0.797, 0.936, 0.889, 0.006, 0.828, 0.399, 0.617, 0.939, 0.784, 0.072, 0.889] \\\\ C = [0.645, 0.585, 0.310, 0.058, 0.455, 0.779, 0.259, 0.202, 0.028, 0.099, 0.142, 0.296, 0.175, 0.180, 0.842, 0.039, 0.103, 0.620, 0.158, 0.704] \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Judge.png :alt: Judge function :align: center **Two-dimensional Judge function** *Global optimum*: :math:`f(x_i) = 16.0817307` for :math:`\\mathbf{x} = [0.86479, 1.2357]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2.0, 2.0), (-2.0, 2.0)] self.global_optimum = [0.86479, 1.2357] self.fglob = 16.0817307 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x Y = asarray([4.284, 4.149, 3.877, 0.533, 2.211, 2.389, 2.145, 3.231, 1.998, 1.379, 2.106, 1.428, 1.011, 2.179, 2.858, 1.388, 1.651, 1.593, 1.046, 2.152]) X2 = asarray([0.286, 0.973, 0.384, 0.276, 0.973, 0.543, 0.957, 0.948, 0.543, 0.797, 0.936, 0.889, 0.006, 0.828, 0.399, 0.617, 0.939, 0.784, 0.072, 0.889]) X3 = asarray([0.645, 0.585, 0.310, 0.058, 0.455, 0.779, 0.259, 0.202, 0.028, 0.099, 0.142, 0.296, 0.175, 0.180, 0.842, 0.039, 0.103, 0.620, 0.158, 0.704]) return sum(((x1 + x2*X2 + (x2**2.0)*X3) - Y)**2.0) # -------------------------------------------------------------------------------- # class Katsuura(Benchmark): """ Katsuura test objective function. This class defines the Katsuura global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Katsuura}}(\\mathbf{x}) = \\prod_{i=0}^{n-1} \\left [ 1 + (i+1) \\sum_{k=1}^{d} \\lfloor (2^k x_i) \\rfloor 2^{-k} \\right ] Where, in this exercise, :math:`d = 32`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 100]` for :math:`i=1,...,n`. .. figure:: figures/Katsuura.png :alt: Katsuura function :align: center **Two-dimensional Katsuura function** *Global optimum*: :math:`f(x_i) = 1` for :math:`x_i = 0` for :math:`i=1,...,n`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(0, 1), (0, 1)] self.global_optimum = [0.0] * self.dimensions self.fglob = 1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 d = 32 prod = 1.0 for i in range(self.dimensions): s = 0.0 for k in range(1, d+1): pow2 = 2.0**k s += round(pow2*x[i])/pow2 prod = prod*(1.0 + (i+1.0)*s) return prod # -------------------------------------------------------------------------------- # class Keane(Benchmark): """ Keane test objective function. This class defines the Keane global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Keane}}(\\mathbf{x}) = \\frac{\\sin^2(x_1 - x_2)\\sin^2(x_1 + x_2)}{\\sqrt{x_1^2 + x_2^2}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,2`. .. figure:: figures/Keane.png :alt: Keane function :align: center **Two-dimensional Keane function** *Global optimum*: :math:`f(x_i) = 0.673668` for :math:`\\mathbf{x} = [0.0, 1.39325]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(-1, 0.34), (-1, 0.34)] self.global_optimum = [0.0, 1.39325] self.fglob = 0.673668 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return (sin(x1 - x2)**2.0*sin(x1 + x2)**2.0)/sqrt(x1**2.0 + x2**2.0) # -------------------------------------------------------------------------------- # class Kowalik(Benchmark): """ Kowalik test objective function. This class defines the Kowalik global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Kowalik}}(\\mathbf{x}) = \\sum_{i=0}^{10} \\left [ a_i - \\frac{x_1(b_i^2+b_ix_2)}{b_i^2 + b_ix_3 + x_4} \\right ]^2 Where: .. math:: \\mathbf{a} = [4, 2, 1, 1/2, 1/4 1/8, 1/10, 1/12, 1/14, 1/16] \\\\ \\mathbf{b} = [0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0.00030748610` for :math:`\\mathbf{x} = [0.192833, 0.190836, 0.123117, 0.135766]`. """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0.192833, 0.190836, 0.123117, 0.135766] self.fglob = 0.00030748610 def evaluator(self, x, *args): self.fun_evals += 1 b = asarray([4.0, 2.0, 1.0, 1/2.0, 1/4.0, 1/6.0, 1/8.0, 1/10.0, 1/12.0, 1/14.0, 1/16.0]) a = asarray([0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246]) y = 0.0 for i in range(11): bb = b[i]*b[i] t = a[i] - (x[0]*(bb + b[i]*x[1])/(bb + b[i]*x[2]+x[3])) y += t*t return y # -------------------------------------------------------------------------------- # class Langermann(Benchmark): """ Langermann test objective function. This class defines the Langermann global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Langermann}}(\\mathbf{x}) = - \\sum_{i=1}^{5} \\frac{c_i \\cos\\left\{\\pi \\left[\\left(x_{1}- a_i\\right)^{2} + \\left(x_{2} - b_i \\right)^{2}\\right]\\right\}}{e^{\\frac{\\left( x_{1} - a_i\\right)^{2} + \\left( x_{2} - b_i\\right)^{2}}{\\pi}}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,2`. .. figure:: figures/Langermann.png :alt: Langermann function :align: center **Two-dimensional Langermann function** *Global optimum*: :math:`f(x_i) = -5.1621259` for :math:`\\mathbf{x} = [2.00299219, 1.006096]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [2.00299219, 1.006096] self.fglob = -5.1621259 def evaluator(self, x, *args): self.fun_evals += 1 a = [3,5,2,1,7] b = [5,2,1,4,9] c = [1,2,5,2,3] return -sum(c*exp(-(1/pi)*((x[0]-a)**2 + (x[1]-b)**2))*cos(pi*((x[0]-a)**2 + (x[1]-b)**2))) # -------------------------------------------------------------------------------- # class LennardJones(Benchmark): """ LennardJones test objective function. This class defines the Lennard-Jones global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{LennardJones}}(\\mathbf{x}) = \\sum_{i=0}^{n-2}\\sum_{j>1}^{n-1}\\frac{1}{r_{ij}^{12}} - \\frac{1}{r_{ij}^{6}} Where, in this exercise: .. math:: r_{ij} = \\sqrt{(x_{3i}-x_{3j})^2 + (x_{3i+1}-x_{3j+1})^2) + (x_{3i+2}-x_{3j+2})^2} Valid for any dimension, :math:`n = 3*k, k=2,3,4,...,20`. :math:`k` is the number of atoms in 3-D space constraints: unconstrained type: multi-modal with one global minimum; non-separable Value-to-reach: :math:`minima[k-2] + 0.0001`. See array of minima below; additional minima available at the Cambridge cluster database: http://www-wales.ch.cam.ac.uk/~jon/structures/LJ/tables.150.html Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-4, 4]` for :math:`i=1,...,n`. *Global optimum*: .. math:: minima = [-1.,-3.,-6.,-9.103852,-12.712062,-16.505384,-19.821489,-24.113360, \\\\ -28.422532,-32.765970,-37.967600,-44.326801,-47.845157,-52.322627, \\\\ -56.815742,-61.317995, -66.530949,-72.659782,-77.1777043] """ def __init__(self, dimensions=6): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-4.0] * self.dimensions, [ 4.0] * self.dimensions)) minima = [-1.0, -3.0, -6.0, -9.103852, -12.712062, -16.505384, -19.821489, -24.113360, -28.422532, -32.765970, -37.967600, -44.326801, -47.845157, -52.322627, -56.815742, -61.317995, -66.530949, -72.659782, -77.1777043] # WARNING: No global optimum for this function? Strange self.global_optimum = [] k = dimensions//3 self.fglob = minima[k-2] self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 k = self.dimensions//3 s = 0.0 for i in range(k-1): for j in range(i+1, k): a = 3*i b = 3*j xd = x[a] - x[b] yd = x[a+1] - x[b+1] zd = x[a+2] - x[b+2] ed = xd*xd + yd*yd + zd*zd ud = ed*ed*ed if ed > 0.0: s += (1.0/ud-2.0)/ud return s # -------------------------------------------------------------------------------- # class Leon(Benchmark): """ Leon test objective function. This class defines the Leon global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Leon}}(\\mathbf{x}) = \\left(1 - x_{1}\\right)^{2} + 100 \\left(x_{2} - x_{1}^{2} \\right)^{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1.2, 1.2]` for :math:`i=1,2`. .. figure:: figures/Leon.png :alt: Leon function :align: center **Two-dimensional Leon function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.2] * self.dimensions, [ 1.2] * self.dimensions)) self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 100*(x[1] - x[0]**2.0)**2.0 + (1 - x[0])**2.0 # -------------------------------------------------------------------------------- # class Levy03(Benchmark): """ Levy 3 test objective function. This class defines the Levy 3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Levy03}}(\\mathbf{x}) = \\sin^2(\\pi y_1)+\\sum_{i=1}^{n-1}(y_i-1)^2[1+10\\sin^2(\\pi y_{i+1})]+(y_n-1)^2 Where, in this exercise: .. math:: y_i=1+\\frac{x_i-1}{4} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Levy03.png :alt: Levy 3 function :align: center **Two-dimensional Levy 3 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = len(x) z = zeros_like(x) for i in range(n): z[i] = 1+(x[i]-1)/4 s = sin(pi*z[0])**2 for i in range(n-1): s = s + (z[i]-1)**2*(1+10*(sin(pi*z[i]+1))**2) y = s+(z[n-1]-1)**2*(1+(sin(2*pi*z[n-1]))**2) return y # -------------------------------------------------------------------------------- # class Levy05(Benchmark): """ Levy 5 test objective function. This class defines the Levy 5 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Levy05}}(\\mathbf{x}) = \\sum_{i=1}^{5} i \\cos \\left[(i-1)x_1 + i \\right] \\times \\sum_{j=1}^{5} j \\cos \\left[(j+1)x_2 + j \\right] + (x_1 + 1.42513)^2 + (x_2 + 0.80032)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Levy05.png :alt: Levy 5 function :align: center **Two-dimensional Levy 5 function** *Global optimum*: :math:`f(x_i) = -176.1375` for :math:`\\mathbf{x} = [-1.3068, -1.4248]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2.0, 2.0), (-2.0, 2.0)] self.global_optimum = [-1.30685, -1.42485] self.fglob = -176.1375 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x rng = numpy.arange(1.0, 6.0) return sum(rng*cos((rng-1.0)*x1 + rng))*sum(rng*cos((rng+1.0)*x2 + rng)) + (x1 + 1.42513)**2.0 + (x2 + 0.80032)**2.0 # -------------------------------------------------------------------------------- # class Levy13(Benchmark): """ Levy13 test objective function. This class defines the Levy13 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Levy13}}(\\mathbf{x}) = \\left(x_{1} -1\\right)^{2} \\left[\sin^{2}\\left(3 \\pi x_{2}\\right) + 1\\right] + \\left(x_{2} -1\\right)^{2} \\left[\\sin^{2}\\left(2 \\pi x_{2}\\right) + 1\\right] + \\sin^{2}\\left(3 \\pi x_{1}\\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Levy13.png :alt: Levy13 function :align: center **Two-dimensional Levy13 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return (sin(3*pi*x[0]))**2 + ((x[0]-1)**2)*(1 + (sin(3*pi*x[1]))**2) + ((x[1]-1)**2)*(1 + (sin(2*pi*x[1]))**2) # -------------------------------------------------------------------------------- # class Matyas(Benchmark): """ Matyas test objective function. This class defines the Matyas global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Matyas}}(\\mathbf{x}) = 0.26(x_1^2 + x_2^2) - 0.48x_1x_2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Matyas.png :alt: Matyas function :align: center **Two-dimensional Matyas function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 return 0.26*(x[0]**2 + x[1]**2) - 0.48*x[0]*x[1] # -------------------------------------------------------------------------------- # class McCormick(Benchmark): """ McCormick test objective function. This class defines the McCormick global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{McCormick}}(\\mathbf{x}) = - x_{1} + 2 x_{2} + \\left(x_{1} - x_{2}\\right)^{2} + \\sin\\left(x_{1} + x_{2}\\right) + 1 Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-1.5, 4]`, :math:`x_2 \\in [-3, 4]`. .. figure:: figures/McCormick.png :alt: McCormick function :align: center **Two-dimensional McCormick function** *Global optimum*: :math:`f(x_i) = -1.913222954981037` for :math:`\\mathbf{x} = [-0.5471975602214493, -1.547197559268372]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-1.5, 4.0), (-3.0, 4.0)] self.global_optimum = [-0.5471975602214493, -1.547197559268372] self.fglob = -1.913222954981037 def evaluator(self, x, *args): self.fun_evals += 1 return sin(x[0] + x[1]) + (x[0] - x[1])**2 - 1.5*x[0] + 2.5*x[1] + 1 # -------------------------------------------------------------------------------- # class Michalewicz(Benchmark): """ Michalewicz test objective function. This class defines the Michalewicz global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Michalewicz}}(\\mathbf{x}) = - \\sum_{i=1}^{2} \\sin\\left(x_i\\right) \\sin^{2 m}\\left(\\frac{i x_i^{2}}{\\pi}\\right) Where, in this exercise, :math:`m = 10`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, \\pi]` for :math:`i=1,2`. .. figure:: figures/Michalewicz.png :alt: Michalewicz function :align: center **Two-dimensional Michalewicz function** *Global optimum*: :math:`f(x_i) = -1.8013` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [pi] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -1.8013 def evaluator(self, x, *args): self.fun_evals += 1 m = 10.0 i = arange(1, self.dimensions+1) return -sum(sin(x) * (sin(i*x**2/pi))**(2*m)) # -------------------------------------------------------------------------------- # class MieleCantrell(Benchmark): """ Miele-Cantrell test objective function. This class defines the Miele-Cantrell global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{MieleCantrell}}(\\mathbf{x}) = (e^{-x_1} - x_2)^4 + 100(x_2 - x_3)^6 + \\tan^4(x_3 - x_4) + x_1^8 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 1, 1, 1]` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0, 1.0, 1.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3, x4 = x return (exp(-x1) - x2)**4.0 + 100.0*(x2 - x3)**6.0 + (tan(x3 - x4))**4.0 + x1**8.0 # -------------------------------------------------------------------------------- # class Mishra01(Benchmark): """ Mishra 1 test objective function. This class defines the Mishra 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra01}}(\\mathbf{x}) = (1 + x_n)^{x_n} \\hspace{10pt} ; \\hspace{10pt} x_n = n - \\sum_{i=1}^{n-1} x_i Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Mishra01.png :alt: Mishra 1 function :align: center **Two-dimensional Mishra 1 function** *Global optimum*: :math:`f(x_i) = 2` for :math:`x_i = 1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0 + 1e-9] * self.dimensions)) self.global_optimum = [1.0] * self.dimensions self.fglob = 2.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions xn = n - sum(x[0:-1]) return (1 + xn)**xn # -------------------------------------------------------------------------------- # class Mishra02(Benchmark): """ Mishra 2 test objective function. This class defines the Mishra 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra02}}(\\mathbf{x}) = (1 + x_n)^{x_n} \\hspace{10pt} ; \\hspace{10pt} x_n = n - \\sum_{i=1}^{n-1} \\frac{(x_i + x_{i+1})}{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Mishra02.png :alt: Mishra 2 function :align: center **Two-dimensional Mishra 2 function** *Global optimum*: :math:`f(x_i) = 2` for :math:`x_i = 1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0 + 1e-9] * self.dimensions)) self.global_optimum = [1.0] * self.dimensions self.fglob = 2.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions xn = n - sum((x[0:-1] + x[1:])/2.0) return (1 + xn)**xn # -------------------------------------------------------------------------------- # class Mishra03(Benchmark): """ Mishra 3 test objective function. This class defines the Mishra 3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra03}}(\\mathbf{x}) = \\sqrt{\\lvert \\cos{\\sqrt{\\lvert x_1^2 + x_2^2 \\rvert}} \\rvert} + 0.01(x_1 + x_2) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Mishra03.png :alt: Mishra 3 function :align: center **Two-dimensional Mishra 3 function** *Global optimum*: :math:`f(x_i) = -0.18467` for :math:`x_i = -10` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-10.0, -10.0] self.fglob = -0.18467 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return sqrt(abs(cos(sqrt(abs(x1**2.0 + x2**2.0))))) + 0.01*(x1 + x2) # -------------------------------------------------------------------------------- # class Mishra04(Benchmark): """ Mishra 4 test objective function. This class defines the Mishra 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra04}}(\\mathbf{x}) = \\sqrt{\\lvert \\sin{\\sqrt{\\lvert x_1^2 + x_2^2 \\rvert}} \\rvert} + 0.01(x_1 + x_2) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Mishra04.png :alt: Mishra 4 function :align: center **Two-dimensional Mishra 4 function** *Global optimum*: :math:`f(x_i) = -0.199409` for :math:`x_i = -10` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-10.0, -10.0] self.fglob = -0.199409 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return sqrt(abs(sin(sqrt(abs(x1**2.0 + x2**2.0))))) + 0.01*(x1 + x2) # -------------------------------------------------------------------------------- # class Mishra05(Benchmark): """ Mishra 5 test objective function. This class defines the Mishra 5 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra05}}(\\mathbf{x}) = \\left [ \\sin^2 ((\\cos(x_1) + \\cos(x_2))^2) + \\cos^2 ((\\sin(x_1) + \\sin(x_2))^2) + x_1 \\right ]^2 + 0.01(x_1 + x_2) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Mishra05.png :alt: Mishra 5 function :align: center **Two-dimensional Mishra 5 function** *Global optimum*: :math:`f(x_i) = -0.119829` for :math:`\\mathbf{x} = [-1.98682, -10]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-1.98682, -10.0] self.fglob = -0.119829 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return ((sin((cos(x1) + cos(x2))**2.0)**2.0) + (cos((sin(x1) + sin(x2))**2.0)**2.0) + x1)**2.0 + 0.01*(x1 + x2) # -------------------------------------------------------------------------------- # class Mishra06(Benchmark): """ Mishra 6 test objective function. This class defines the Mishra 6 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra06}}(\\mathbf{x}) = -\\log{\\left [ \\sin^2 ((\\cos(x_1) + \\cos(x_2))^2) - \\cos^2 ((\\sin(x_1) + \\sin(x_2))^2) + x_1 \\right ]^2} + 0.01 \\left[(x_1 -1)^2 + (x_2 - 1)^2 \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Mishra06.png :alt: Mishra 6 function :align: center **Two-dimensional Mishra 6 function** *Global optimum*: :math:`f(x_i) = -2.28395` for :math:`\\mathbf{x} = [2.88631, 1.82326]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [2.88631, 1.82326] self.fglob = -2.28395 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return -log(((sin((cos(x1) + cos(x2))**2.0)**2.0) - (cos((sin(x1) + sin(x2))**2.0)**2.0) + x1)**2.0) + 0.1*((x1 - 1.0)**2.0 + (x2 - 1.0)**2.0) # -------------------------------------------------------------------------------- # class Mishra07(Benchmark): """ Mishra 7 test objective function. This class defines the Mishra 7 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra07}}(\\mathbf{x}) = \\left [\\prod_{i=1}^{n} x_i - n! \\right]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Mishra07.png :alt: Mishra 7 function :align: center **Two-dimensional Mishra 7 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = \\sqrt{n}` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [sqrt(self.dimensions)] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return (prod(x) - factorial(self.dimensions))**2.0 # -------------------------------------------------------------------------------- # class Mishra08(Benchmark): """ Mishra 8 test objective function. This class defines the Mishra 8 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra08}}(\\mathbf{x}) = 0.001 \\left[\\lvert x_1^{10} - 20x_1^9 + 180x_1^8 - 960 x_1^7 + 3360x_1^6 - 8064x_1^5 + 13340x_1^4 - 15360x_1^3 + 11520x_1^2 - 5120x_1 + 2624 \\rvert \\lvert x_2^4 + 12x_2^3 + 54x_2^2 + 108x_2 + 81 \\rvert \\right]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Mishra08.png :alt: Mishra 8 function :align: center **Two-dimensional Mishra 8 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [2, -3]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(1.0, 2.0), (-4.0, 1.0)] self.global_optimum = [2.0, -3.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 F1 = abs(x[0]**10-20*x[0]**9+180*x[0]**8-960*x[0]**7+3360*x[0]**6-8064*x[0]**5+13340*x[0]**4-15360*x[0]**3+11520*x[0]**2-5120*x[0]+2624) F2 = abs(x[1]**4+12*x[1]**3+54*x[1]**2+108*x[1]+81.0) return 0.001*(F1+F2)**2 # -------------------------------------------------------------------------------- # class Mishra09(Benchmark): """ Mishra 9 test objective function. This class defines the Mishra 9 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra09}}(\\mathbf{x}) = \\left[ ab^2c + abc^2 + b^2 + (x_1 + x_2 - x_3)^2 \\right]^2 Where, in this exercise: .. math:: \\begin{cases} a = 2x_1^3 + 5x_1x_2^2 + 4x_3 - 2x_1^2x_3 - 18 \\\\ b = x_1 + x_2^3 + x_1x_3^2 - 22 \\\\ c = 8x_1^2 + 2x_2x_3 + 2x_2^2 + 3x_2^3 - 52 \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 2, 3]` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [1.0, 2.0, 3.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3 = x F1 = 2*x1**3+5*x1*x2+4*x3-2*x1**2*x3-18.0 F2 = x1+x2**3+x1*x2**2+x1*x3**2-22.0 F3 = 8*x1**2+2*x2*x3+2*x2**2+3*x2**3-52.0 return (F1*F3*F2**2+F1*F2*F3**2+F2**2+(x1+x2-x3)**2)**2 # -------------------------------------------------------------------------------- # class Mishra10(Benchmark): """ Mishra 10 test objective function. This class defines the Mishra 10 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra10}}(\\mathbf{x}) = \\left[ \\lfloor x_1 \\perp x_2 \\rfloor - \\lfloor x_1 \\rfloor - \\lfloor x_2 \\rfloor \\right]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Mishra10.png :alt: Mishra 10 function :align: center **Two-dimensional Mishra 10 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [2, 2]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [2.0, 2.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = int(x[0]), int(x[1]) f1 = x1 + x2 f2 = x1*x2 return (f1 - f2)**2.0 # -------------------------------------------------------------------------------- # class Mishra11(Benchmark): """ Mishra 11 test objective function. This class defines the Mishra 11 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Mishra11}}(\\mathbf{x}) = \\left [ \\frac{1}{n} \\sum_{i=1}^{n} \\lvert x_i \\rvert - \\left(\\prod_{i=1}^{n} \\lvert x_i \\rvert \\right )^{\\frac{1}{n}} \\right]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Mishra11.png :alt: Mishra 11 function :align: center **Two-dimensional Mishra 11 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-3, 3), (-3, 3)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions return ((1.0/n)*sum(abs(x)) - (prod(abs(x)))**1.0/n)**2.0 # -------------------------------------------------------------------------------- # class MultiModal(Benchmark): """ MultiModal test objective function. This class defines the MultiModal global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{MultiModal}}(\\mathbf{x}) = \\left( \\sum_{i=1}^n \\lvert x_i \\rvert \\right) \\left( \\prod_{i=1}^n \\lvert x_i \\rvert \\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/MultiModal.png :alt: MultiModal function :align: center **Two-dimensional MultiModal function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(abs(x))*prod(abs(x)) # -------------------------------------------------------------------------------- # class NeedleEye(Benchmark): """ NeedleEye test objective function. This class defines the Needle-Eye global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{NeedleEye}}(\\mathbf{x}) = \\begin{cases} 1 & \\textrm{if} \\hspace{5pt} \\lvert x_i \\rvert < eye \\hspace{5pt} \\forall i \\\\ \\sum_{i=1}^n (100 + \\lvert x_i \\rvert) & \\textrm{if} \\hspace{5pt} \\lvert x_i \\rvert > eye \\\\ 0 & \\textrm{otherwise} \\end{cases} Where, in this exercise, :math:`eye = 0.0001`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/NeedleEye.png :alt: NeedleEye function :align: center **Two-dimensional NeedleEye function** *Global optimum*: :math:`f(x_i) = 1` for :math:`x_i = -1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) # WARNING: Adding global optimum, not declared before self.global_optimum = [1.0] * self.dimensions self.fglob = 1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 f = 0.0 fp = False eye = 0.0001 for i in range(self.dimensions): # WARNING: Changing this code, ambiguous variable "fp" if abs(x[i]) >= eye: fp = True f += 100.0 + abs(x[i]) else: f += 1.0 if not fp: f = f/self.dimensions return f # -------------------------------------------------------------------------------- # class NewFunction01(Benchmark): """ NewFunction01 test objective function. This class defines the NewFunction01 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{NewFunction01}}(\\mathbf{x}) = \\left | {\\cos\\left(\\sqrt{\\left|{x_{1}^{2} + x_{2}}\\right|}\\right)} \\right |^{0.5} + (x_{1} + x_{2})/100 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/NewFunction01.png :alt: NewFunction01 function :align: center **Two-dimensional NewFunction01 function** *Global optimum*: :math:`f(x_i) = -0.17894509347721144` for :math:`\\mathbf{x} = [-8.4666, -9.9988]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-8.4666, -9.9988] self.fglob = -0.17894509347721144 def evaluator(self, x, *args): self.fun_evals += 1 return abs(cos(sqrt(abs(x[0]**2 + x[1]))))**0.5 + 0.01*x[0] + 0.01*x[1] # -------------------------------------------------------------------------------- # class NewFunction02(Benchmark): """ NewFunction02 test objective function. This class defines the NewFunction02 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{NewFunction02}}(\\mathbf{x}) = \\left | {\\sin\\left(\\sqrt{\\lvert{x_{1}^{2} + x_{2}}\\rvert}\\right)} \\right |^{0.5} + (x_{1} + x_{2})/100 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/NewFunction02.png :alt: NewFunction02 function :align: center **Two-dimensional NewFunction02 function** *Global optimum*: :math:`f(x_i) = -0.1971881059905` for :math:`\\mathbf{x} = [-9.94112, -9.99952]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-9.94112, -9.99952] self.fglob = -0.1971881059905 def evaluator(self, x, *args): self.fun_evals += 1 return abs(sin(sqrt(abs(x[0]**2 + x[1]))))**0.5 + 0.01*x[0] + 0.01*x[1] # -------------------------------------------------------------------------------- # class NewFunction03(Benchmark): """ NewFunction03 test objective function. This class defines the NewFunction03 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{NewFunction03}}(\\mathbf{x}) = 0.01 x_{1} + 0.1 x_{2} + \\left\{x_{1} + \\sin^{2}\\left[\\left(\\cos\\left(x_{1}\\right) + \\cos\\left(x_{2}\\right)\\right)^{2}\\right] + \\cos^{2}\\left[\\left(\\sin\\left(x_{1}\\right) + \\sin\\left(x_{2}\\right)\\right)^{2}\\right]\\right\}^{2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/NewFunction03.png :alt: NewFunction03 function :align: center **Two-dimensional NewFunction03 function** *Global optimum*: :math:`f(x_i) = -1.019829` for :math:`\\mathbf{x} = [-1.98682, -10]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-1.98682, -10.0] self.fglob = -1.019829 def evaluator(self, x, *args): self.fun_evals += 1 f1 = sin((cos(x[0]) + cos(x[1]))**2)**2 f2 = cos((sin(x[0]) + sin(x[1]))**2)**2 f = (f1 + f2 + x[0])**2 f = f + 0.01*x[0] + 0.1*x[1] return f # -------------------------------------------------------------------------------- # class OddSquare(Benchmark): """ Odd Square test objective function. This class defines the Odd Square global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{OddSquare}}(\\mathbf{x}) = -e^{-\\frac{d}{2\\pi}} \\cos(\\pi d) \\left( 1 + \\frac{0.02h}{d + 0.01} \\right ) Where, in this exercise: .. math:: \\begin{cases} d = n \\cdot \\smash{\\displaystyle\\max_{1 \leq i \leq n}} \\left[ (x_i - b_i)^2 \\right ] \\\\ \\\\ h = \\sum_{i=1}^{n} (x_i - b_i)^2 \\end{cases} And :math:`\\mathbf{b} = [1, 1.3, 0.8, -0.4, -1.3, 1.6, -0.2, -0.6, 0.5, 1.4, 1, 1.3, 0.8, -0.4, -1.3, 1.6, -0.2, -0.6, 0.5, 1.4]` Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5 \\pi, 5 \\pi]` for :math:`i=1,...,n` and :math:`n \\leq 20`. .. figure:: figures/OddSquare.png :alt: Odd Square function :align: center **Two-dimensional Odd Square function** *Global optimum*: :math:`f(x_i) = -1.0084` for :math:`\\mathbf{x} \\approx b` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0*pi] * self.dimensions, [ 5.0*pi] * self.dimensions)) self.custom_bounds = [(-2.0, 4.0), (-2.0, 4.0)] # WARNING: Max dimensions of 2 * 10 is implicit self.a = asarray([1, 1.3, 0.8, -0.4, -1.3, 1.6, -0.2, -0.6, 0.5, 1.4]*2) self.global_optimum = self.a[0:self.dimensions] self.fglob = -1.0084 if self.dimensions > (2 * len(self.a)): print("WARNING: Too many dimensions to calculate global"+ " optimum for function: OddSquare") def evaluator(self, x, *args): self.fun_evals += 1 c = 0.02 b = self.a[0:self.dimensions] d = self.dimensions*max((x - b)**2.0) h = sum((x - b)**2.0) return -exp(-d/(2.0*pi))*cos(pi*d)*(1.0 + 0.02*h/(d + 0.01)) # -------------------------------------------------------------------------------- # class Parsopoulos(Benchmark): """ Parsopoulos test objective function. This class defines the Parsopoulos global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Parsopoulos}}(\\mathbf{x}) = \\cos(x_1)^2 + \\sin(x_2)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,2`. .. figure:: figures/Parsopoulos.png :alt: Parsopoulos function :align: center **Two-dimensional Parsopoulos function** *Global optimum*: This function has infinite number of global minima in R2, at points :math:`\\left(k\\frac{\\pi}{2}, \\lambda \\pi \\right)`, where :math:`k = \\pm1, \\pm3, ...` and :math:`\\lambda = 0, \\pm1, \\pm2, ...` In the given domain problem, function has 12 global minima all equal to zero. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [pi/2.0, pi] self.fglob = 0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return cos(x1)**2.0 + sin(x2)**2.0 # -------------------------------------------------------------------------------- # class Pathological(Benchmark): """ Pathological test objective function. This class defines the Pathological global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Pathological}}(\\mathbf{x}) = \\sum_{i=1}^{n -1} \\frac{\\sin^{2}\\left(\\sqrt{100 x_{i+1}^{2} + x_{i}^{2}}\\right) -0.5}{0.001 \\left(x_{i} - x_{i+1}\\right)^{4} + 0.50} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Pathological.png :alt: Pathological function :align: center **Two-dimensional Pathological function** *Global optimum*: :math:`f(x_i) = -1.99600798403` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = -1.99600798403 def evaluator(self, x, *args): self.fun_evals += 1 x_ = roll(x, -1) return sum((sin(sqrt(x_**2 + 100*x**2))**2 - 0.5) / (0.001 * ((x_ - x)**4 + 1.0) + 0.5)) # -------------------------------------------------------------------------------- # class Paviani(Benchmark): """ Paviani test objective function. This class defines the Paviani global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Paviani}}(\\mathbf{x}) = \\sum_{i=1}^{10} \\left[\\log^{2}\\left(10 - x_i\\right) + \\log^{2}\\left(x_i -2\\right)\\right] - \\left(\\prod_{i=1}^{10} x_i^{10} \\right)^{0.2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [2.001, 9.999]` for :math:`i=1,...,n`. *Global optimum*: :math:`f(x_i) = -45.7784684040686` for :math:`x_i = 9.350266` for :math:`i=1,...,n` """ def __init__(self, dimensions=10): Benchmark.__init__(self, dimensions) self.bounds = list(zip([2.001] * self.dimensions, [9.999] * self.dimensions)) self.global_optimum = [9.350266] * self.dimensions self.fglob = -45.7784684040686 def evaluator(self, x, *args): self.fun_evals += 1 return sum(log(x-2)**2.0 + log(10.0 - x)**2.0) - prod(x)**0.2 # -------------------------------------------------------------------------------- # class Penalty01(Benchmark): """ Penalty 1 test objective function. This class defines the Penalty 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Penalty01}}(\\mathbf{x}) = \\frac{\\pi}{30} \\left\\{10 \\sin^2(\\pi y_1) + \\sum_{i=1}^{n-1} (y_i - 1)^2 \\left[1 + 10 \\sin^2(\\pi y_{i+1}) \\right ] + (y_n - 1)^2 \\right \\} + \\sum_{i=1}^n u(x_i, 10, 100, 4) Where, in this exercise: .. math:: y_i = 1 + \\frac{1}{4}(x_i + 1) And: .. math:: u(x_i, a, k, m) = \\begin{cases} k(x_i - a)^m & \\textrm{if} \\hspace{5pt} x_i > a \\\\ 0 & \\textrm{if} \\hspace{5pt} -a \\leq x_i \\leq a \\\\ k(-x_i - a)^m & \\textrm{if} \\hspace{5pt} x_i < -a \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-50, 50]` for :math:`i=1,...,n`. .. figure:: figures/Penalty01.png :alt: Penalty 1 function :align: center **Two-dimensional Penalty 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = -1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-50.0] * self.dimensions, [ 50.0] * self.dimensions)) self.custom_bounds = [(-5.0, 5.0), (-5.0, 5.0)] self.global_optimum = [-1.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 a, b, c = 10.0, 100.0, 4.0 xx = abs(x) u = where(xx > a, b*(xx - a)**c, 0.0) y = 1.0 + (x + 1.0)/4.0 return sum(u) + (pi/30.0)*(10.0*sin(pi*y[0])**2.0 + sum((y[0:-1] - 1.0)**2.0 *(1.0 + 10.0*sin(pi*y[1:])**2.0)) + (y[-1] - 1)**2.0) # -------------------------------------------------------------------------------- # class Penalty02(Benchmark): """ Penalty 2 test objective function. This class defines the Penalty 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Penalty02}}(\\mathbf{x}) = 0.1 \\left\\{\\sin^2(3\\pi x_1) + \\sum_{i=1}^{n-1} (x_i - 1)^2 \\left[1 + \\sin^2(3\\pi x_{i+1}) \\right ] + (x_n - 1)^2 \\left [1 + \\sin^2(2 \\pi x_n) \\right ]\\right \\} + \\sum_{i=1}^n u(x_i, 5, 100, 4) Where, in this exercise: .. math:: u(x_i, a, k, m) = \\begin{cases} k(x_i - a)^m & \\textrm{if} \\hspace{5pt} x_i > a \\\\ 0 & \\textrm{if} \\hspace{5pt} -a \\leq x_i \\leq a \\\\ k(-x_i - a)^m & \\textrm{if} \\hspace{5pt} x_i < -a \\end{cases} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-50, 50]` for :math:`i=1,...,n`. .. figure:: figures/Penalty02.png :alt: Penalty 2 function :align: center **Two-dimensional Penalty 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-50.0] * self.dimensions, [ 50.0] * self.dimensions)) self.custom_bounds = [(-4.0, 4.0), (-4.0, 4.0)] self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 a, b, c = 5.0, 100.0, 4.0 xx = abs(x) u = where(xx > a, b*(xx - a)**c, 0.0) return sum(u) + 0.1*(10.0*sin(3.0*pi*x[0])**2.0 + sum((x[0:-1] - 1.0)**2.0 *(1.0 + sin(pi*x[1:])**2.0)) + (x[-1] - 1)**2.0*(1 + sin(2*pi*x[-1])**2.0)) # -------------------------------------------------------------------------------- # class PenHolder(Benchmark): """ PenHolder test objective function. This class defines the PenHolder global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{PenHolder}}(\\mathbf{x}) = -e^{\\left|{e^{\\left|{- \\frac{\\sqrt{x_{1}^{2} + x_{2}^{2}}}{\\pi} + 1}\\right|} \\cos\\left(x_{1}\\right) \\cos\\left(x_{2}\\right)}\\right|^{-1}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-11, 11]` for :math:`i=1,2`. .. figure:: figures/PenHolder.png :alt: PenHolder function :align: center **Two-dimensional PenHolder function** *Global optimum*: :math:`f(x_i) = -0.9635348327265058` for :math:`x_i = \\pm 9.646167671043401` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-11.0] * self.dimensions, [ 11.0] * self.dimensions)) self.global_optimum = [-9.646167708023526, 9.646167671043401] self.fglob = -0.9635348327265058 def evaluator(self, x, *args): self.fun_evals += 1 return -exp(-(abs(cos(x[0])*cos(x[1])*exp(abs(1 - sqrt(x[0]**2 + x[1]**2)/pi))))**(-1)) # -------------------------------------------------------------------------------- # class PermFunction01(Benchmark): """ PermFunction 1 test objective function. This class defines the Perm Function 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{PermFunction01}}(\\mathbf{x}) = \\sum_{k=1}^n \\left\\{ \\sum_{j=1}^n (j^k + \\beta) \\left[ \\left(\\frac{x_j}{j}\\right)^k - 1 \\right] \\right\\}^2 Here, :math '\\beta' is 0.5 and :math:`n` represents the number of dimensions and :math:`x_i \\in [-n, n+1]` for :math:`i=1,...,n`. .. figure:: figures/PermFunction01.png :alt: PermFunction 1 function :align: center **Two-dimensional PermFunction 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = i` for :math:`i=1,...,n` """ # WARNING: Definition of "Beta" was not included in documentation def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-self.dimensions] * self.dimensions, [self.dimensions+1] * self.dimensions)) self.global_optimum = range(1, self.dimensions+1) self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 b = 0.5 s_out = 0.0 for k in range(1, self.dimensions+1): s_in = 0.0 for j in range(1, self.dimensions+1): s_in += (j**k + b)*((x[j-1]/j)**k - 1) s_out += s_in**2 return s_out # -------------------------------------------------------------------------------- # class PermFunction02(Benchmark): """ PermFunction 2 test objective function. This class defines the Perm Function 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{PermFunction02}}(\\mathbf{x}) = \\sum_{k=1}^n \\left\\{ \\sum_{j=1}^n (j + \\beta) \\left[ \\left(x_j^k - \\frac{1}{j} \\right ) \\right] \\right\\}^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-n, n+1]` for :math:`i=1,...,n`. .. figure:: figures/PermFunction02.png :alt: PermFunction 2 function :align: center **Two-dimensional PermFunction 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = \\frac{1}{i}` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-self.dimensions] * self.dimensions, [ self.dimensions+1] * self.dimensions)) self.custom_bounds = [(0, 1.5), (0, 1.0)] self.global_optimum = range(1, self.dimensions+1) self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 b = 10.0 s_out = 0.0 for k in range(1, self.dimensions+1): s_in = 0.0 for j in range(1, self.dimensions+1): s_in += (j + b)*(x[j-1]**k - (1.0/j)**k) s_out += s_in**2 return s_out # -------------------------------------------------------------------------------- # class Pinter(Benchmark): """ Pinter test objective function. This class defines the Pinter global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Pinter}}(\\mathbf{x}) = \\sum_{i=1}^n ix_i^2 + \\sum_{i=1}^n 20i \\sin^2 A + \\sum_{i=1}^n i \\log_{10} (1 + iB^2) Where, in this exercise: .. math:: \\begin{cases} A = x_{i-1} \\sin x_i + \\sin x_{i+1} \\\\ B = x_{i-1}^2 - 2x_i + 3x_{i+1} - \\cos x_i + 1 \\end{cases} Where :math:`x_0 = x_n` and :math:`x_{n+1} = x_1`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Pinter.png :alt: Pinter function :align: center **Two-dimensional Pinter function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 n = self.dimensions f = 0.0 for i in range(n): x_i = x[i] if i == 0: x_mi = x[-1] x_pi = x[i+1] elif i == n - 1: x_mi = x[i-1] x_pi = x[0] else: x_mi = x[i-1] x_pi = x[i+1] A = x_mi*sin(x_i) + sin(x_pi) B = x_mi**2.0 - 2*x_i + 3*x_pi - cos(x_i) + 1.0 f += (i + 1.0)*x_i**2.0 + 20.0*(i + 1.0)*sin(A)**2.0 + (i + 1.0)*log10(1.0 + (i + 1.0)*B**2.0) return f # -------------------------------------------------------------------------------- # class Plateau(Benchmark): """ Plateau test objective function. This class defines the Plateau global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Plateau}}(\\mathbf{x}) = 30 + \\sum_{i=1}^n \\lfloor x_i \\rfloor Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5.12, 5.12]` for :math:`i=1,...,n`. .. figure:: figures/Plateau.png :alt: Plateau function :align: center **Two-dimensional Plateau function** *Global optimum*: :math:`f(x_i) = 30` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.12] * self.dimensions, [ 5.12] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 30.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return 30.0 + sum(floor(abs(x))) # -------------------------------------------------------------------------------- # class Powell(Benchmark): """ Powell test objective function. This class defines the Powell global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Powell}}(\\mathbf{x}) = (x_3+10x_1)^2+5(x_2-x_4)^2+(x_1-2x_2)^4+10(x_3-x_4)^4 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-4, 5]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-4.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [0, 0, 0, 0] self.fglob = 0 def evaluator(self, x, *args): self.fun_evals += 1 return (x[0] + 10*x[1])**2 + 5*(x[2] - x[3])**2 + (x[1] - 2*x[2])**4 + 10*(x[0] - x[3])**4 # -------------------------------------------------------------------------------- # class PowerSum(Benchmark): """ Power sum test objective function. This class defines the Power Sum global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{PowerSum}}(\\mathbf{x}) = \\sum_{k=1}^n\\left[\\left(\\sum_{i=1}^n x_i^k \\right) - b_k \\right]^2 Where, in this exercise, :math:`\\mathbf{b} = [8, 18, 44, 114]` Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 4]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 2, 2, 3]` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [float(self.dimensions)] * self.dimensions)) self.global_optimum = [1.0, 2.0, 2.0, 3.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 b = [8.0, 18.0, 44.0, 114.0] y = 0.0 for k in range(1, self.dimensions+1): s_in = 0.0 for i in range(self.dimensions): s_in = s_in + x[i]**k y = y + (s_in - b[k-1])**2.0 return y # -------------------------------------------------------------------------------- # class Price01(Benchmark): """ Price 1 test objective function. This class defines the Price 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Price01}}(\\mathbf{x}) = (\\lvert x_1 \\rvert - 5)^2 + (\\lvert x_2 \\rvert - 5)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-500, 500]` for :math:`i=1,2`. .. figure:: figures/Price01.png :alt: Price 1 function :align: center **Two-dimensional Price 1 function** *Global optimum*: :math:`f(x_i) = 0.0` for :math:`\\mathbf{x} = [5, 5]` or :math:`\\mathbf{x} = [5, -5]` or :math:`\\mathbf{x} = [-5, 5]` or :math:`\\mathbf{x} = [-5, -5]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-500.0] * self.dimensions, [ 500.0] * self.dimensions)) self.custom_bounds = [(-10.0, 10.0), (-10.0, 10.0)] self.global_optimum = [5.0, 5.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return (abs(x1) - 5.0)**2.0 + (abs(x2) - 5.0)**2.0 # -------------------------------------------------------------------------------- # class Price02(Benchmark): """ Price 2 test objective function. This class defines the Price 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Price02}}(\\mathbf{x}) = 1 + \\sin^2(x_1) + \\sin^2(x_2) - 0.1e^{(-x_1^2 - x_2^2)} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Price02.png :alt: Price 2 function :align: center **Two-dimensional Price 2 function** *Global optimum*: :math:`f(x_i) = 0.9` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [0.0, 0.0] self.fglob = 0.9 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 1.0 + sin(x1)**2.0 + sin(x2)**2.0 - 0.1*exp(-x1**2.0 - x2**2.0) # -------------------------------------------------------------------------------- # class Price03(Benchmark): """ Price 3 test objective function. This class defines the Price 3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Price03}}(\\mathbf{x}) = 100(x_2 - x_1^2)^2 + \\left[6.4(x_2 - 0.5)^2 - x_1 - 0.6 \\right]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-50, 50]` for :math:`i=1,2`. .. figure:: figures/Price03.png :alt: Price 3 function :align: center **Two-dimensional Price 3 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-5, -5]`, :math:`\\mathbf{x} = [-5, 5]`, :math:`\\mathbf{x} = [5, -5]`, :math:`\\mathbf{x} = [5, 5]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-50.0] * self.dimensions, [ 50.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [1.0, 1.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 100.0*(x2 - x1**2.0)**2.0 + (6.4*(x2 - 0.5)**2.0 - x1 - 0.6)**2.0 # -------------------------------------------------------------------------------- # class Price04(Benchmark): """ Price 4 test objective function. This class defines the Price 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Price04}}(\\mathbf{x}) = (2x_1^3x_2 - x_2^3)^2 + (6x_1 - x_2^2 + x_2)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-50, 50]` for :math:`i=1,2`. .. figure:: figures/Price04.png :alt: Price 4 function :align: center **Two-dimensional Price 4 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 0]`, :math:`\\mathbf{x} = [2, 4]` and :math:`\\mathbf{x} = [1.464, -2.506]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-50.0] * self.dimensions, [ 50.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [2.0, 4.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return (2.0*x2*x1**3.0 - x2**3.0)**2.0 + (6.0*x1 - x2**2.0 + x2)**2.0 # -------------------------------------------------------------------------------- # class Qing(Benchmark): """ Qing test objective function. This class defines the Qing global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Qing}}(\\mathbf{x}) = \\sum_{i=1}^{n} (x_i^2 - i)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-500, 500]` for :math:`i=1,...,n`. .. figure:: figures/Qing.png :alt: Qing function :align: center **Two-dimensional Qing function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = \\pm \\sqrt(i)` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-500.0] * self.dimensions, [ 500.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [sqrt(i) for i in range(1, self.dimensions+1)] self.fglob = 0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 rng = numpy.arange(1, self.dimensions+1) return sum((x**2.0 - rng)**2.0) # -------------------------------------------------------------------------------- # class Quadratic(Benchmark): """ Quadratic test objective function. This class defines the Quadratic global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Quadratic}}(\\mathbf{x}) = -3803.84 - 138.08x_1 - 232.92x_2 + 128.08x_1^2 + 203.64x_2^2 + 182.25x_1x_2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Quadratic.png :alt: Quadratic function :align: center **Two-dimensional Quadratic function** *Global optimum*: :math:`f(x_i) = -3873.72418` for :math:`\\mathbf{x} = [0.19388, 0.48513]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(0, 1), (0, 1)] self.global_optimum = [0.19388, 0.48513] self.fglob = -3873.72418 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return -3803.84 - 138.08*x1 - 232.92*x2 + 128.08*x1**2.0 + 203.64*x2**2.0 + 182.25*x1*x2 # -------------------------------------------------------------------------------- # class Quintic(Benchmark): """ Quintic test objective function. This class defines the Quintic global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Quintic}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\left|{x_{i}^{5} - 3 x_{i}^{4} + 4 x_{i}^{3} + 2 x_{i}^{2} - 10 x_{i} -4}\\right| Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Quintic.png :alt: Quintic function :align: center **Two-dimensional Quintic function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = -1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [-1.0] * self.dimensions self.fglob = 0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(abs(x**5 - 3*x**4 + 4*x**3 + 2*x**2 - 10*x - 4)) # -------------------------------------------------------------------------------- # class Rana(Benchmark): """ Rana test objective function. This class defines the Rana global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Rana}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\left[x_{i} \\sin\\left(\\sqrt{\\lvert{x_{1} - x_{i} + 1}\\rvert}\\right) \\cos\\left(\\sqrt{\\lvert{x_{1} + x_{i} + 1}\\rvert}\\right) + \\left(x_{1} + 1\\right) \\sin\\left(\\sqrt{\\lvert{x_{1} + x_{i} + 1}\\rvert}\\right) \\cos\\left(\\sqrt{\\lvert{x_{1} - x_{i} + 1}\\rvert}\\right)\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-500.000001, 500.000001]` for :math:`i=1,...,n`. .. figure:: figures/Rana.png :alt: Rana function :align: center **Two-dimensional Rana function** *Global optimum*: :math:`f(x_i) = -928.5478` for :math:`x_i = -500` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-500.000001] * self.dimensions, [ 500.000001] * self.dimensions)) self.global_optimum = [-500.0] * self.dimensions self.fglob = -928.5478 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 E = x + 1 return sum(E*cos(sqrt(abs(E-x)))*sin(sqrt(abs(E+x))) + x*cos(sqrt(abs(E+x)))*sin(sqrt(abs(E-x)))) # -------------------------------------------------------------------------------- # class Rastrigin(Benchmark): """ Rastrigin test objective function. This class defines the Rastrigin global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Rastrigin}}(\\mathbf{x}) = 10n \\sum_{i=1}^n \\left[ x_i^2 - 10 \\cos(2\\pi x_i) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5.12, 5.12]` for :math:`i=1,...,n`. .. figure:: figures/Rastrigin.png :alt: Rastrigin function :align: center **Two-dimensional Rastrigin function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.12] * self.dimensions, [ 5.12] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return 10.0*self.dimensions + sum(x**2.0 - 10.0*cos(2.0*pi*x)) # -------------------------------------------------------------------------------- # class Ripple01(Benchmark): """ Ripple 1 test objective function. This class defines the Ripple 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Ripple01}}(\\mathbf{x}) = \\sum_{i=1}^2 -e^{-2 \\log 2 (\\frac{x_i-0.1}{0.8})^2} \\left[\\sin^6(5 \\pi x_i) + 0.1\\cos^2(500 \\pi x_i) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Ripple01.png :alt: Ripple 1 function :align: center **Two-dimensional Ripple 1 function** *Global optimum*: :math:`f(x_i) = -2.2` for :math:`x_i = 0.1` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.1] * self.dimensions self.fglob = -2.2 def evaluator(self, x, *args): self.fun_evals += 1 return sum(-exp(-2.0*log(2.0)*((x - 0.1)/0.8)**2.0)*(sin(5.0*pi*x)**6.0 + 0.1*cos(500.0*pi*x)**2.0)) # -------------------------------------------------------------------------------- # class Ripple25(Benchmark): """ Ripple 25 test objective function. This class defines the Ripple 25 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Ripple25}}(\\mathbf{x}) = \\sum_{i=1}^2 -e^{-2 \\log 2 (\\frac{x_i-0.1}{0.8})^2} \\left[\\sin^6(5 \\pi x_i) \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 1]` for :math:`i=1,...,n`. .. figure:: figures/Ripple25.png :alt: Ripple 25 function :align: center **Two-dimensional Ripple 25 function** *Global optimum*: :math:`f(x_i) = -2` for :math:`x_i = 0.1` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [1.0] * self.dimensions)) self.global_optimum = [0.1] * self.dimensions self.fglob = -2.0 def evaluator(self, x, *args): self.fun_evals += 1 return sum(-exp(-2.0*log(2.0)*((x - 0.1)/0.8)**2.0)*(sin(5.0*pi*x)**6.0)) # -------------------------------------------------------------------------------- # class Rosenbrock(Benchmark): """ Rosenbrock test objective function. This class defines the Rosenbrock global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Rosenbrock}}(\\mathbf{x}) = \\sum_{i=1}^{n-1} [100(x_i^2 - x_{i+1})^2 + (x_i - 1)^2] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 10]` for :math:`i=1,...,n`. .. figure:: figures/Rosenbrock.png :alt: Rosenbrock function :align: center **Two-dimensional Rosenbrock function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 # WARNING: This is not in accordance with the documentation return sum(100.0*(x[:-1]-x[1:]**2.0)**2.0 + (1-x[:-1])**2.0) # -------------------------------------------------------------------------------- # class RosenbrockModified(Benchmark): """ Modified Rosenbrock test objective function. This class defines the Modified Rosenbrock global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{RosenbrockModified}}(\\mathbf{x}) = 74 + 100(x_2 - x_1^2)^2 + (1 - x_1)^2 - 400 e^{-\\frac{(x_1+1)^2 + (x_2 + 1)^2}{0.1}} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-2, 2]` for :math:`i=1,2`. .. figure:: figures/RosenbrockModified.png :alt: Modified Rosenbrock function :align: center **Two-dimensional Modified Rosenbrock function** *Global optimum*: :math:`f(x_i) = 34.37` for :math:`\\mathbf{x} = [-0.9, -0.95]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-2.0] * self.dimensions, [ 2.0] * self.dimensions)) self.custom_bounds = [(-1.0, 0.5), (-1.0, 1.0)] self.global_optimum = [-0.9, -0.95] self.fglob = 34.37 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 74.0 + 100.0*(x2 - x1**2.0)**2.0 + (1.0 - x1)**2.0 - 400.0*exp(-((x1 + 1.0)**2.0 + (x2 + 1.0)**2.0)/0.1) # -------------------------------------------------------------------------------- # class RotatedEllipse01(Benchmark): """ Rotated Ellipse 1 test objective function. This class defines the Rotated Ellipse 1 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{RotatedEllipse01}}(\\mathbf{x}) = 7x_1^2 - 6 \\sqrt{3} x_1x_2 + 13x_2^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-500, 500]` for :math:`i=1,2`. .. figure:: figures/RotatedEllipse01.png :alt: Rotated Ellipse 1 function :align: center **Two-dimensional Rotated Ellipse 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-500.0] * self.dimensions, [500.0] * self.dimensions)) self.custom_bounds = [(-2.0, 2.0), (-2.0, 2.0)] self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 7.0*x1**2.0 - 6.0*sqrt(3)*x1*x2 + 13*x2**2.0 # -------------------------------------------------------------------------------- # class RotatedEllipse02(Benchmark): """ Rotated Ellipse 2 test objective function. This class defines the Rotated Ellipse 2 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{RotatedEllipse02}}(\\mathbf{x}) = x_1^2 - x_1x_2 + x_2^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-500, 500]` for :math:`i=1,2`. .. figure:: figures/RotatedEllipse02.png :alt: Rotated Ellipse 2 function :align: center **Two-dimensional Rotated Ellipse 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-500.0] * self.dimensions, [500.0] * self.dimensions)) self.custom_bounds = [(-2.0, 2.0), (-2.0, 2.0)] self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return x1**2.0 - x1*x2 + x2**2.0 # -------------------------------------------------------------------------------- # class Salomon(Benchmark): """ Salomon test objective function. This class defines the Salomon global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Salomon}}(\\mathbf{x}) = 1 - \\cos \\left (2 \\pi \\sqrt{\\sum_{i=1}^{n} x_i^2} \\right) + 0.1 \\sqrt{\\sum_{i=1}^n x_i^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Salomon.png :alt: Salomon function :align: center **Two-dimensional Salomon function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-50, 50), (-50, 50)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return 1.0 - cos(2.0*pi*sqrt(sum(x**2.0))) + 0.1*sqrt(sum(x**2.0)) # -------------------------------------------------------------------------------- # class Sargan(Benchmark): """ Sargan test objective function. This class defines the Sargan global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Sargan}}(\\mathbf{x}) = \\sum_{i=1}^{n} n \\left (x_i^2 + 0.4 \\sum_{i \\neq j}^{n} x_ix_j \\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Sargan.png :alt: Sargan function :align: center **Two-dimensional Sargan function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 x0 = x[:-1] x1 = roll(x,-1)[:-1] return sum(self.dimensions*(x**2 + 0.4*sum(x0*x1))) # -------------------------------------------------------------------------------- # class Schaffer01(Benchmark): """ Schaffer 1 test objective function. This class defines the Schaffer 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schaffer01}}(\\mathbf{x}) = 0.5 + \\frac{\\sin^2 (x_1^2 + x_2^2)^2 - 0.5}{1 + 0.001(x_1^2 + x_2^2)^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Schaffer01.png :alt: Schaffer 1 function :align: center **Two-dimensional Schaffer 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-10, 10), (-10, 10)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 0.5 + (sin(x1**2.0 + x2**2.0)**2.0 - 0.5)/(1 + 0.001*(x1**2.0 + x2**2.0)**2.0) # -------------------------------------------------------------------------------- # class Schaffer02(Benchmark): """ Schaffer 2 test objective function. This class defines the Schaffer 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schaffer02}}(\\mathbf{x}) = 0.5 + \\frac{\\sin^2 (x_1^2 - x_2^2)^2 - 0.5}{1 + 0.001(x_1^2 + x_2^2)^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Schaffer02.png :alt: Schaffer 2 function :align: center **Two-dimensional Schaffer 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,2` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-10, 10), (-10, 10)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 0.5 + (sin(x1**2.0 - x2**2.0)**2.0 - 0.5)/(1 + 0.001*(x1**2.0 + x2**2.0)**2.0) # -------------------------------------------------------------------------------- # class Schaffer03(Benchmark): """ Schaffer 3 test objective function. This class defines the Schaffer 3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schaffer03}}(\\mathbf{x}) = 0.5 + \\frac{\\sin^2 \\left( \\cos \\lvert x_1^2 - x_2^2 \\rvert \\right ) - 0.5}{1 + 0.001(x_1^2 + x_2^2)^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Schaffer03.png :alt: Schaffer 3 function :align: center **Two-dimensional Schaffer 3 function** *Global optimum*: :math:`f(x_i) = 0.00156685` for :math:`\\mathbf{x} = [0, 1.253115]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-10, 10), (-10, 10)] self.global_optimum = [0.0, 1.253115] self.fglob = 0.00156685 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 0.5 + (sin(cos(abs(x1**2.0 - x2**2.0)))**2.0 - 0.5)/(1 + 0.001*(x1**2.0 + x2**2.0)**2.0) # -------------------------------------------------------------------------------- # class Schaffer04(Benchmark): """ Schaffer 4 test objective function. This class defines the Schaffer 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schaffer04}}(\\mathbf{x}) = 0.5 + \\frac{\\cos^2 \\left( \\sin(x_1^2 - x_2^2) \\right ) - 0.5}{1 + 0.001(x_1^2 + x_2^2)^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Schaffer04.png :alt: Schaffer 4 function :align: center **Two-dimensional Schaffer 4 function** *Global optimum*: :math:`f(x_i) = 0.292579` for :math:`\\mathbf{x} = [0, 1.253115]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-10, 10), (-10, 10)] self.global_optimum = [0.0, 1.253115] self.fglob = 0.292579 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 0.5 + (cos(sin(x1**2.0 - x2**2.0))**2.0 - 0.5)/(1 + 0.001*(x1**2.0 + x2**2.0)**2.0) # -------------------------------------------------------------------------------- # class SchmidtVetters(Benchmark): """ Schmidt-Vetters test objective function. This class defines the Schmidt-Vetters global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{SchmidtVetters}}(\\mathbf{x}) = \\frac{1}{1 + (x_1 - x_2)^2} + \\sin \\left(\\frac{\\pi x_2 + x_3}{2} \\right) + e^{\\left(\\frac{x_1+x_2}{x_2} - 2\\right)^2} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,2,3`. *Global optimum*: :math:`f(x_i) = 3` for :math:`x_i = 0.78547` for :math:`i=1,2,3` """ def __init__(self, dimensions=3): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [0.78547] * self.dimensions self.fglob = 3.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2, x3 = x return 1.0/(1.0 + (x1 - x2)**2.0) + sin((pi*x2 + x3)/2.0) + exp(((x1 + x2)/x2 - 2)**2.0) # -------------------------------------------------------------------------------- # class Schwefel01(Benchmark): """ Schwefel 1 test objective function. This class defines the Schwefel 1 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel01}}(\\mathbf{x}) = \\left(\\sum_{i=1}^n x_i^2 \\right)^{\\alpha} Where, in this exercise, :math:`\\alpha = \\sqrt{\\pi}`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel01.png :alt: Schwefel 1 function :align: center **Two-dimensional Schwefel 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-4.0, 4.0), (-4.0, 4.0)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 alpha = sqrt(pi) return (sum(x**2.0))**alpha # -------------------------------------------------------------------------------- # class Schwefel02(Benchmark): """ Schwefel 2 test objective function. This class defines the Schwefel 2 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel02}}(\\mathbf{x}) = \\sum_{i=1}^n \\left(\\sum_{j=1}^i x_i \\right)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel02.png :alt: Schwefel 2 function :align: center **Two-dimensional Schwefel 2 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-4.0, 4.0), (-4.0, 4.0)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 s = 0.0 for i in range(self.dimensions): temp = 0.0 for j in range(i): temp += x[j] s += temp**2.0 return s # -------------------------------------------------------------------------------- # class Schwefel04(Benchmark): """ Schwefel 4 test objective function. This class defines the Schwefel 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel04}}(\\mathbf{x}) = \\sum_{i=1}^n \\left[(x_i - 1)^2 + (x_1 - x_i^2)^2 \\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel04.png :alt: Schwefel 4 function :align: center **Two-dimensional Schwefel 4 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 1` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.custom_bounds = [(0.0, 2.0), (0.0, 2.0)] self.global_optimum = [1.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum((x - 1.0)**2.0 + (x[0] - x**2.0)**2.0) # -------------------------------------------------------------------------------- # class Schwefel06(Benchmark): """ Schwefel 6 test objective function. This class defines the Schwefel 6 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel06}}(\\mathbf{x}) = \\max(\\lvert x_1 + 2x_2 - 7 \\rvert, \\lvert 2x_1 + x_2 - 5 \\rvert) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Schwefel06.png :alt: Schwefel 6 function :align: center **Two-dimensional Schwefel 6 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [1, 3]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-10.0, 10.0), (-10.0, 10.0)] self.global_optimum = [1.0, 3.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x vector = [abs(x1 + 2*x2 - 7), abs(2*x1 + x2 - 5)] return max(vector) # -------------------------------------------------------------------------------- # class Schwefel20(Benchmark): """ Schwefel 20 test objective function. This class defines the Schwefel 20 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel20}}(\\mathbf{x}) = \\sum_{i=1}^n \\lvert x_i \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel20.png :alt: Schwefel 20 function :align: center **Two-dimensional Schwefel 20 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(abs(x)) # -------------------------------------------------------------------------------- # class Schwefel21(Benchmark): """ Schwefel 21 test objective function. This class defines the Schwefel 21 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel21}}(\\mathbf{x}) = \\smash{\\displaystyle\\max_{1 \leq i \leq n}} \\lvert x_i \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel21.png :alt: Schwefel 21 function :align: center **Two-dimensional Schwefel 21 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return max(abs(x)) # -------------------------------------------------------------------------------- # class Schwefel22(Benchmark): """ Schwefel 22 test objective function. This class defines the Schwefel 22 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel22}}(\\mathbf{x}) = \\sum_{i=1}^n \\lvert x_i \\rvert + \\prod_{i=1}^n \\lvert x_i \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel22.png :alt: Schwefel 22 function :align: center **Two-dimensional Schwefel 22 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-10.0, 10.0), (-10.0, 10.0)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(abs(x)) + prod(abs(x)) # -------------------------------------------------------------------------------- # class Schwefel26(Benchmark): """ Schwefel 26 test objective function. This class defines the Schwefel 26 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel26}}(\\mathbf{x}) = 418.9829n - \\sum_{i=1}^n x_i \\sin(\\sqrt{|x_i|}) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-512, 512]` for :math:`i=1,...,n`. .. figure:: figures/Schwefel26.png :alt: Schwefel 26 function :align: center **Two-dimensional Schwefel 26 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 420.968746` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-512.0] * self.dimensions, [ 512.0] * self.dimensions)) self.global_optimum = [420.968746] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return 418.982887 * self.dimensions - sum([x * sin(sqrt(abs(x)))]) # -------------------------------------------------------------------------------- # class Schwefel36(Benchmark): """ Schwefel 36 test objective function. This class defines the Schwefel 36 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Schwefel36}}(\\mathbf{x}) = -x_1x_2(72 - 2x_1 - 2x_2) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 500]` for :math:`i=1,2`. .. figure:: figures/Schwefel36.png :alt: Schwefel 36 function :align: center **Two-dimensional Schwefel 36 function** *Global optimum*: :math:`f(x_i) = -3456` for :math:`\\mathbf{x} = [12, 12]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [500.0] * self.dimensions)) self.custom_bounds = [(0.0, 20.0), (0.0, 20.0)] self.global_optimum = [12.0, 12.0] self.fglob = -3456.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return -x1*x2*(72.0 - 2.0*x1 - 2.0*x2) # -------------------------------------------------------------------------------- # class Shekel05(Benchmark): """ Shekel 5 test objective function. This class defines the Shekel 5 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Shekel05}}(\\mathbf{x}) = \\sum_{i=1}^{m} \\frac{1}{c_{i} + \\sum_{j=1}^{n} (x_{j} - a_{ij})^2 }` Where, in this exercise: .. math:: \\mathbf{a} = \\begin{bmatrix} 4.0 & 4.0 & 4.0 & 4.0 \\\\ 1.0 & 1.0 & 1.0 & 1.0 \\\\ 8.0 & 8.0 & 8.0 & 8.0 \\\\ 6.0 & 6.0 & 6.0 & 6.0 \\\\ 3.0 & 7.0 & 3.0 & 7.0 \\end{bmatrix} .. math:: \\mathbf{c} = \\begin{bmatrix} 0.1 \\\\ 0.2 \\\\ 0.2 \\\\ 0.4 \\\\ 0.6 \\end{bmatrix} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = -10.1527` for :math:`x_i = 4` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [4.0] * self.dimensions self.fglob = -10.1527 def evaluator(self, x, *args): self.fun_evals += 1 m = 5 A = asarray([[4.0, 4.0, 4.0, 4.0], [1.0, 1.0, 1.0, 1.0], [8.0, 8.0, 8.0, 8.0], [6.0, 6.0, 6.0, 6.0], [3.0, 7.0, 3.0, 7.0]]) C = asarray([0.1, 0.2, 0.2, 0.4, 0.6]) return -sum(1.0/(dot(x-a, x-a)+c) for a, c in zip(A, C)) # -------------------------------------------------------------------------------- # class Shekel07(Benchmark): """ Shekel 7 test objective function. This class defines the Shekel 7 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Shekel07}}(\\mathbf{x}) = \\sum_{i=1}^{m} \\frac{1}{c_{i} + \\sum_{j=1}^{n} (x_{j} - a_{ij})^2 }` Where, in this exercise: .. math:: \\mathbf{a} = \\begin{bmatrix} 4.0 & 4.0 & 4.0 & 4.0 \\\\ 1.0 & 1.0 & 1.0 & 1.0 \\\\ 8.0 & 8.0 & 8.0 & 8.0 \\\\ 6.0 & 6.0 & 6.0 & 6.0 \\\\ 3.0 & 7.0 & 3.0 & 7.0 \\\\ 2.0 & 9.0 & 2.0 & 9.0 \\\\ 5.0 & 5.0 & 3.0 & 3.0 \\end{bmatrix} .. math:: \\mathbf{c} = \\begin{bmatrix} 0.1 \\\\ 0.2 \\\\ 0.2 \\\\ 0.4 \\\\ 0.4 \\\\ 0.6 \\\\ 0.3 \\end{bmatrix} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = -10.3999` for :math:`x_i = 4` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [4.0] * self.dimensions self.fglob = -10.3999 def evaluator(self, x, *args): self.fun_evals += 1 m = 7 A = asarray([[4.0, 4.0, 4.0, 4.0], [1.0, 1.0, 1.0, 1.0], [8.0, 8.0, 8.0, 8.0], [6.0, 6.0, 6.0, 6.0], [3.0, 7.0, 3.0, 7.0], [2.0, 9.0, 2.0, 9.0], [5.0, 5.0, 3.0, 3.0]]) C = asarray([0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3]) return -sum(1.0/(dot(x-a, x-a)+c) for a, c in zip(A, C)) # -------------------------------------------------------------------------------- # class Shekel10(Benchmark): """ Shekel 10 test objective function. This class defines the Shekel 10 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Shekel10}}(\\mathbf{x}) = \\sum_{i=1}^{m} \\frac{1}{c_{i} + \\sum_{j=1}^{n} (x_{j} - a_{ij})^2 }` Where, in this exercise: .. math:: \\mathbf{a} = \\begin{bmatrix} 4.0 & 4.0 & 4.0 & 4.0 \\\\ 1.0 & 1.0 & 1.0 & 1.0 \\\\ 8.0 & 8.0 & 8.0 & 8.0 \\\\ 6.0 & 6.0 & 6.0 & 6.0 \\\\ 3.0 & 7.0 & 3.0 & 7.0 \\\\ 2.0 & 9.0 & 2.0 & 9.0 \\\\ 5.0 & 5.0 & 3.0 & 3.0 \\\\ 8.0 & 1.0 & 8.0 & 1.0 \\\\ 6.0 & 2.0 & 6.0 & 2.0 \\\\ 7.0 & 3.6 & 7.0 & 3.6 \\end{bmatrix} .. math:: \\mathbf{c} = \\begin{bmatrix} 0.1 \\\\ 0.2 \\\\ 0.2 \\\\ 0.4 \\\\ 0.4 \\\\ 0.6 \\\\ 0.3 \\\\ 0.7 \\\\ 0.5 \\\\ 0.5 \\end{bmatrix} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, 10]` for :math:`i=1,...,4`. *Global optimum*: :math:`f(x_i) = -10.5319` for :math:`x_i = 4` for :math:`i=1,...,4` """ def __init__(self, dimensions=4): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [10.0] * self.dimensions)) self.global_optimum = [4.0] * self.dimensions self.fglob = -10.5319 def evaluator(self, x, *args): self.fun_evals += 1 m = 10 A = asarray([[4.0, 4.0, 4.0, 4.0], [1.0, 1.0, 1.0, 1.0], [8.0, 8.0, 8.0, 8.0], [6.0, 6.0, 6.0, 6.0], [3.0, 7.0, 3.0, 7.0], [2.0, 9.0, 2.0, 9.0], [5.0, 5.0, 3.0, 3.0], [8.0, 1.0, 8.0, 1.0], [6.0, 2.0, 6.0, 2.0], [7.0, 3.6, 7.0, 3.6]]) C = asarray([0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 0.3, 0.7, 0.5, 0.5]) return -sum(1.0/(dot(x-a, x-a)+c) for a, c in zip(A, C)) # -------------------------------------------------------------------------------- # class Shubert01(Benchmark): """ Shubert 1 test objective function. This class defines the Shubert 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Shubert01}}(\\mathbf{x}) = \\left( \\sum\\limits_{i=1}^{5} i\\cos[(i+1)x_1 + i] \\right) \\left( \\sum\\limits_{i=1}^{5} i\\cos[(i+1)x_2 + i] \\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Shubert01.png :alt: Shubert 1 function :align: center **Two-dimensional Shubert 1 function** *Global optimum*: :math:`f(x_i) = -186.7309` for :math:`\\mathbf{x} = [-7.0835, 4.8580]` (and many others). """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-7.0835, 4.8580] self.fglob = -186.7309 def evaluator(self, x, *args): self.fun_evals += 1 s1 = s2 = 0.0 for i in range(1, 6): s1 = s1+i*cos((i+1)*x[0]+i) s2 = s2+i*cos((i+1)*x[1]+i) y = s1*s2 return y # -------------------------------------------------------------------------------- # class Shubert03(Benchmark): """ Shubert 3 test objective function. This class defines the Shubert 3 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Shubert03}}(\\mathbf{x}) = \\sum_{i=1}^n \\sum_{j=1}^5 j \\sin \\left[(j+1)x_i \\right] + j Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Shubert03.png :alt: Shubert 3 function :align: center **Two-dimensional Shubert 3 function** *Global optimum*: :math:`f(x_i) = -24.062499` for :math:`\\mathbf{x} = [5.791794, 5.791794]` (and many others). """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [5.791794, 5.791794] self.fglob = -24.062499 def evaluator(self, x, *args): self.fun_evals += 1 return -sin(2.0*x[0]+1.0) - 2.0*sin(3.0*x[0]+2.0) - 3.0*sin(4.0*x[0]+3.0) - 4.0*sin(5.0*x[0]+4.0) \ -5.0*sin(6.0*x[0]+5.0) - sin(2.0*x[1]+1.0) - 2.0*sin(3.0*x[1]+2.0) - 3.0*sin(4.0*x[1]+3.0) \ -4.0*sin(5.0*x[1]+4.0) - 5.0*sin(6.0*x[1]+5.0) # -------------------------------------------------------------------------------- # class Shubert04(Benchmark): """ Shubert 4 test objective function. This class defines the Shubert 4 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Shubert04}}(\\mathbf{x}) = \\sum_{i=1}^n \\sum_{j=1}^5 j \\cos \\left[(j+1)x_i \\right] + j Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/Shubert04.png :alt: Shubert 4 function :align: center **Two-dimensional Shubert 4 function** *Global optimum*: :math:`f(x_i) = -29.016015` for :math:`\\mathbf{x} = [-0.80032121, -7.08350592]` (and many others). """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-0.80032121, -7.08350592] self.fglob = -29.016015 def evaluator(self, x, *args): self.fun_evals += 1 return -cos(2.0*x[0]+1.0) - 2.0*cos(3.0*x[0]+2.0) - 3.0*cos(4.0*x[0]+3.0) - 4.0*cos(5.0*x[0]+4.0) \ -5.0*cos(6.0*x[0]+5.0) - cos(2.0*x[1]+1.0) - 2.0*cos(3.0*x[1]+2.0) - 3.0*cos(4.0*x[1]+3.0) \ -4.0*cos(5.0*x[1]+4.0) - 5.0*cos(6.0*x[1]+5.0) # -------------------------------------------------------------------------------- # class SineEnvelope(Benchmark): """ SineEnvelope test objective function. This class defines the SineEnvelope global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{SineEnvelope}}(\\mathbf{x}) = -\\sum_{i=1}^{n-1}\\left[\\frac{\\sin^2(\\sqrt{x_{i+1}^2+x_{i}^2}-0.5)}{(0.001(x_{i+1}^2+x_{i}^2)+1)^2}+0.5\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/SineEnvelope.png :alt: SineEnvelope function :align: center **Two-dimensional SineEnvelope function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-20, 20), (-20, 20)] self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 X1 = x[0:-1] X2 = x[1:] X12X22 = X1**2 + X2**2 return sum((sin(sqrt(X12X22))**2 - 0.5)/(1 + 0.001*X12X22)**2 + 0.5) # -------------------------------------------------------------------------------- # class SixHumpCamel(Benchmark): """ Six Hump Camel test objective function. This class defines the Six Hump Camel global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{SixHumpCamel}}(\\mathbf{x}) = 4x_1^2+x_1x_2-4x_2^2-2.1x_1^4+4x_2^4+\\frac{1}{3}x_1^6 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,2`. .. figure:: figures/SixHumpCamel.png :alt: Six Hump Camel function :align: center **Two-dimensional Six Hump Camel function** *Global optimum*: :math:`f(x_i) = -1.031628453489877` for :math:`\\mathbf{x} = [0.08984201368301331 , -0.7126564032704135]` or :math:`\\mathbf{x} = [-0.08984201368301331, 0.7126564032704135]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-1.5, 1.5)] self.global_optimum = [(0.08984201368301331 , -0.7126564032704135), (-0.08984201368301331, 0.7126564032704135)] self.fglob = -1.031628 def evaluator(self, x, *args): self.fun_evals += 1 return (4 - 2.1*x[0]**2 + x[0]**4/3)*x[0]**2 + x[0]*x[1] + (4*x[1]**2 - 4)*x[1]**2 # -------------------------------------------------------------------------------- # class Sodp(Benchmark): """ Sodp test objective function. This class defines the Sum Of Different Powers global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Sodp}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\lvert{x_{i}}\\rvert^{i + 1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Sodp.png :alt: Sodp function :align: center **Two-dimensional Sum Of Different Powers function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-1.0] * self.dimensions, [ 1.0] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 i = arange(1, self.dimensions+1) return sum(abs(x) ** (i+1)) # -------------------------------------------------------------------------------- # class Sphere(Benchmark): """ Sphere test objective function. This class defines the Sphere global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Sphere}}(\\mathbf{x}) = \\sum_{i=1}^{n} x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-1, 1]` for :math:`i=1,...,n`. .. figure:: figures/Sphere.png :alt: Sphere function :align: center **Two-dimensional Sphere function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.12] * self.dimensions, [ 5.12] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(x**2) # -------------------------------------------------------------------------------- # class Step(Benchmark): """ Step test objective function. This class defines the Step global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Step}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\left ( \\lfloor x_i \\rfloor + 0.5 \\right )^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,...,n`. .. figure:: figures/Step.png :alt: Step function :align: center **Two-dimensional Step function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0.5` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [0.5] * self.dimensions self.fglob = 0.5 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum((floor(x) + 0.5)**2.0) # -------------------------------------------------------------------------------- # class Stochastic(Benchmark): """ Stochastic test objective function. This class defines a Stochastic global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Stochastic}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\epsilon_i \\left | {x_i - \\frac{1}{i}} \\right | The variable :math:`\\epsilon_i, (i=1,...,n)` is a random variable uniformly distributed in :math:`[0, 1]`. Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,...,n`. .. figure:: figures/Stochastic.png :alt: Stochastic function :align: center **Two-dimensional Stochastic function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = [1/n]` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [1.0/i for i in range(1, self.dimensions+1)] self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 rnd = uniform(0.0, 1.0, size=(self.dimensions, )) rng = arange(1, self.dimensions+1) return sum(rnd*abs(x - 1.0/rng)) # -------------------------------------------------------------------------------- # class StretchedV(Benchmark): """ StretchedV test objective function. This class defines the Stretched V global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{StretchedV}}(\\mathbf{x}) = \sum_{i=1}^{n-1} t^{1/4} [\sin (50t^{0.1}) + 1]^2 Where, in this exercise: .. math:: t = x_{i+1}^2 + x_i^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,...,n`. .. figure:: figures/StretchedV.png :alt: StretchedV function :align: center **Two-dimensional StretchedV function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-9.38723188, 9.34026753]` when :math:`n = 2`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10] * self.dimensions, [ 10] * self.dimensions)) self.global_optimum = [-9.38723188, 9.34026753] self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 s = 0.0 for i in range(self.dimensions-1): t = x[i+1]*x[i+1] + x[i]*x[i] s += t**0.25 * (sin(50.0*t**0.1 + 1.0))**2.0 return s # -------------------------------------------------------------------------------- # class StyblinskiTang(Benchmark): """ StyblinskiTang test objective function. This class defines the Styblinski-Tang global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{StyblinskiTang}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\left(x_i^4 - 16x_i^2 + 5x_i \\right) Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,...,n`. .. figure:: figures/StyblinskiTang.png :alt: StyblinskiTang function :align: center **Two-dimensional Styblinski-Tang function** *Global optimum*: :math:`f(x_i) = -39.16616570377142n` for :math:`x_i = -2.903534018185960` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.global_optimum = [-2.903534018185960] * self.dimensions self.fglob = -39.16616570377142*self.dimensions self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return sum(x**4 - 16*x**2 + 5*x)/2 # -------------------------------------------------------------------------------- # class TestTubeHolder(Benchmark): """ TestTubeHolder test objective function. This class defines the TestTubeHolder global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{TestTubeHolder}}(\\mathbf{x}) = - 4 \\left | {e^{\\left|{\\cos\\left(\\frac{1}{200} x_{1}^{2} + \\frac{1}{200} x_{2}^{2}\\right)}\\right|} \\sin\\left(x_{1}\\right) \\cos\\left(x_{2}\\right)}\\right | Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/TestTubeHolder.png :alt: TestTubeHolder function :align: center **Two-dimensional TestTubeHolder function** *Global optimum*: :math:`f(x_i) = -10.872299901558` for :math:`\\mathbf{x} = [-\\pi/2, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.global_optimum = [-pi/2, 0.0] self.fglob = -10.87229990155800 def evaluator(self, x, *args): self.fun_evals += 1 return -4*abs(sin(x[0])*cos(x[1])*exp(abs(cos((x[0]**2 + x[1]**2)/200)))) # -------------------------------------------------------------------------------- # class Treccani(Benchmark): """ Treccani test objective function. This class defines the Treccani global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Treccani}}(\\mathbf{x}) = x_1^4 + 4x_1^3 + 4x_1^2 + x_2^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,2`. .. figure:: figures/Treccani.png :alt: Treccani function :align: center **Two-dimensional Treccani function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [-2, 0]` or :math:`\\mathbf{x} = [0, 0]`. """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-2, 2)] self.global_optimum = [-2.0, 0.0] self.fglob = 0 def evaluator(self, x, *args): self.fun_evals += 1 return x[0]**4 + 4.0*x[0]**3 + 4.0*x[0]**2 + x[1]**2 # -------------------------------------------------------------------------------- # class Trefethen(Benchmark): """ Trefethen test objective function. This class defines the Trefethen global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Trefethen}}(\\mathbf{x}) = 0.25 x_{1}^{2} + 0.25 x_{2}^{2} + e^{\\sin\\left(50 x_{1}\\right)} - \\sin\\left(10 x_{1} + 10 x_{2}\\right) + \\sin\\left(60 e^{x_{2}}\\right) + \\sin\\left[70 \\sin\\left(x_{1}\\right)\\right] + \\sin\\left[\\sin\\left(80 x_{2}\\right)\\right] Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-10, 10]` for :math:`i=1,2`. .. figure:: figures/Trefethen.png :alt: Trefethen function :align: center **Two-dimensional Trefethen function** *Global optimum*: :math:`f(x_i) = -3.3068686474` for :math:`\\mathbf{x} = [-0.02440307923, 0.2106124261]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-10.0] * self.dimensions, [ 10.0] * self.dimensions)) self.custom_bounds = [(-5, 5), (-5, 5)] self.global_optimum = [-0.02440307923, 0.2106124261] self.fglob = -3.3068686474 def evaluator(self, x, *args): self.fun_evals += 1 F = exp(sin(50*x[0])) + sin(60*exp(x[1])) + sin(70*sin(x[0])) + \ sin(sin(80*x[1])) - sin(10*(x[0]+x[1])) + 1.0/4*(x[0]**2 + x[1]**2) return F # -------------------------------------------------------------------------------- # class ThreeHumpCamel(Benchmark): """ Three Hump Camel test objective function. This class defines the Three Hump Camel global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{ThreeHumpCamel}}(\\mathbf{x}) = 2x_1^2 - 1.05x_1^4 + \\frac{x_1^6}{6} + x_1x_2 + x_2^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-5, 5]` for :math:`i=1,2`. .. figure:: figures/ThreeHumpCamel.png :alt: Three Hump Camel function :align: center **Two-dimensional Three Hump Camel function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, 0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-5.0] * self.dimensions, [ 5.0] * self.dimensions)) self.custom_bounds = [(-2, 2), (-1.5, 1.5)] self.global_optimum = [0.0, 0.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return 2.0*x1**2.0 - 1.05*x1**4.0 + x1**6/6.0 + x1*x2 + x2**2.0 # -------------------------------------------------------------------------------- # class Trid(Benchmark): """ Trid test objective function. This class defines the Trid global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Trid}}(\\mathbf{x}) = \\sum_{i=1}^{n}(x_i - 1)^2 - \\sum_{i=2}^{n} x_ix_{i-1} Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-20, 20]` for :math:`i=1,...,6`. *Global optimum*: :math:`f(x_i) = -50` for :math:`\\mathbf{x} = [6, 10, 12, 12, 10, 6]` """ def __init__(self, dimensions=6): Benchmark.__init__(self, dimensions) self.bounds = list(zip([ 0.0] * self.dimensions, [20.0] * self.dimensions)) self.global_optimum = [6, 10, 12, 12, 10, 6] self.fglob = -50.0 def evaluator(self, x, *args): self.fun_evals += 1 return sum((x - 1.0)**2.0) - sum(x[1:]*x[0:-1]) # -------------------------------------------------------------------------------- # class Trigonometric01(Benchmark): """ Trigonometric 1 test objective function. This class defines the Trigonometric 1 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Trigonometric01}}(\\mathbf{x}) = \\sum_{i=1}^{n} \\left [n - \\sum_{j=1}^{n} \\cos(x_j) + i \\left(1 - cos(x_i) - sin(x_i) \\right ) \\right]^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [0, \\pi]` for :math:`i=1,...,n`. .. figure:: figures/Trigonometric01.png :alt: Trigonometric 1 function :align: center **Two-dimensional Trigonometric 1 function** *Global optimum*: :math:`f(x_i) = 0` for :math:`x_i = 0` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([0.0] * self.dimensions, [ pi] * self.dimensions)) self.global_optimum = [0.0] * self.dimensions self.fglob = 0.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 rng = numpy.arange(1.0, self.dimensions+1) return sum((self.dimensions - sum(cos(x) + rng*(1 - cos(x) - sin(x))))**2.0) # -------------------------------------------------------------------------------- # class Trigonometric02(Benchmark): """ Trigonometric 2 test objective function. This class defines the Trigonometric 2 global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Trigonometric2}}(\\mathbf{x}) = 1 + \\sum_{i=1}^{n} 8 \\sin^2 \\left[7(x_i - 0.9)^2 \\right] + 6 \\sin^2 \\left[14(x_i - 0.9)^2 \\right] + (x_i - 0.9)^2 Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-500, 500]` for :math:`i=1,...,n`. .. figure:: figures/Trigonometric02.png :alt: Trigonometric 2 function :align: center **Two-dimensional Trigonometric 2 function** *Global optimum*: :math:`f(x_i) = 1` for :math:`x_i = 0.9` for :math:`i=1,...,n` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-500.0] * self.dimensions, [ 500.0] * self.dimensions)) self.custom_bounds = [(0, 2), (0, 2)] self.global_optimum = [0.9] * self.dimensions self.fglob = 1.0 self.change_dimensionality = True def evaluator(self, x, *args): self.fun_evals += 1 return 1.0 + sum(8.0*(sin(7.0*(x - 0.9)**2.0)**2.0) + 6.0*(sin(14.0*(x - 0.9)**2.0)**2.0) + (x - 0.9)**2.0) # -------------------------------------------------------------------------------- # class Tripod(Benchmark): """ Tripod test objective function. This class defines the Tripod global optimization problem. This is a multimodal minimization problem defined as follows: .. math:: f_{\\text{Tripod}}(\\mathbf{x}) = p(x_2) \\left[1 + p(x_1) \\right] + \\lvert x_1 + 50p(x_2) \\left[1 - 2p(x_1) \\right] \\rvert + \\lvert x_2 + 50\\left[1 - 2p(x_2)\\right] \\rvert Here, :math:`n` represents the number of dimensions and :math:`x_i \\in [-100, 100]` for :math:`i=1,2`. .. figure:: figures/Tripod.png :alt: Tripod function :align: center **Two-dimensional Tripod function** *Global optimum*: :math:`f(x_i) = 0` for :math:`\\mathbf{x} = [0, -50]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = list(zip([-100.0] * self.dimensions, [ 100.0] * self.dimensions)) self.global_optimum = [0.0, -50.0] self.fglob = 0.0 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x p1 = float(x1 >= 0) p2 = float(x2 >= 0) return p2*(1.0 + p1) + abs(x1 + 50.0*p2*(1.0-2.0*p1)) + abs(x2 + 50.0*(1.0-2.0*p2)) # -------------------------------------------------------------------------------- # class Ursem01(Benchmark): """ Ursem 1 test objective function. This class defines the Ursem 1 global optimization problem. This is a unimodal minimization problem defined as follows: .. math:: f_{\\text{Ursem01}}(\\mathbf{x}) = - \\sin(2x_1 - 0.5 \\pi) - 3 \\cos(x_2) - 0.5x_1 Here, :math:`n` represents the number of dimensions and :math:`x_1 \\in [-2.5, 3]`, :math:`x_2 \\in [-2, 2]`. .. figure:: figures/Ursem01.png :alt: Ursem 1 function :align: center **Two-dimensional Ursem 1 function** *Global optimum*: :math:`f(x_i) = -4.8168` for :math:`\\mathbf{x} = [1.69714, 0.0]` """ def __init__(self, dimensions=2): Benchmark.__init__(self, dimensions) self.bounds = [(-2.5, 3.0), (-2.0, 2.0)] self.global_optimum = [1.69714, 0.0] self.fglob = -4.8168 def evaluator(self, x, *args): self.fun_evals += 1 x1, x2 = x return -sin(2*x1 - 0.5*pi) - 3.0*
cos(x2)
numpy.cos
from __future__ import print_function, division, absolute_import import time import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import skimage.morphology import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug.testutils import array_equal_lists, keypoints_equal, reseed def main(): time_start = time.time() test_Affine() test_AffineCv2() test_PiecewiseAffine() test_PerspectiveTransform() test_ElasticTransformation() test_Rot90() time_end = time.time() print("<%s> Finished without errors in %.4fs." % (__file__, time_end - time_start,)) def test_Affine(): reseed() base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) images_list = [base_img] outer_pixels = ([], []) for i in sm.xrange(base_img.shape[0]): for j in sm.xrange(base_img.shape[1]): if i != j: outer_pixels[0].append(i) outer_pixels[1].append(j) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] # no translation/scale/rotate/shear, shouldnt change nothing aug = iaa.Affine(scale=1.0, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) # --------------------- # scale # --------------------- # zoom in aug = iaa.Affine(scale=1.75, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug_det.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug_det.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y > 2 observed = aug_det.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y > 2 # zoom in only on x axis aug = iaa.Affine(scale={"x": 1.75, "y": 1.0}, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug_det.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug_det.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y == 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y == 2 observed = aug_det.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y == 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y == 2 # zoom in only on y axis aug = iaa.Affine(scale={"x": 1.0, "y": 1.75}, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug_det.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug_det.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug.augment_keypoints(keypoints) assert observed[0].keypoints[0].x == 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x == 2 assert observed[0].keypoints[2].y > 2 observed = aug_det.augment_keypoints(keypoints) assert observed[0].keypoints[0].x == 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x == 2 assert observed[0].keypoints[2].y > 2 # zoom out # this one uses a 4x4 area of all 255, which is zoomed out to a 4x4 area # in which the center 2x2 area is 255 # zoom in should probably be adapted to this style # no separate tests here for x/y axis, should work fine if zoom in works with that aug = iaa.Affine(scale=0.49, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.ones((4, 4, 1), dtype=np.uint8) * 255 images = np.array([image]) images_list = [image] outer_pixels = ([], []) for y in sm.xrange(4): xs = sm.xrange(4) if y in [0, 3] else [0, 3] for x in xs: outer_pixels[0].append(y) outer_pixels[1].append(x) inner_pixels = ([1, 1, 2, 2], [1, 2, 1, 2]) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=3, y=0), ia.Keypoint(x=0, y=3), ia.Keypoint(x=3, y=3)], shape=image.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=0.765, y=0.765), ia.Keypoint(x=2.235, y=0.765), ia.Keypoint(x=0.765, y=2.235), ia.Keypoint(x=2.235, y=2.235)], shape=image.shape)] observed = aug.augment_images(images) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug_det.augment_images(images) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug.augment_images(images_list) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug_det.augment_images(images_list) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # varying scales aug = iaa.Affine(scale={"x": (0.5, 1.5), "y": (0.5, 1.5)}, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) * 100 image = image[:, :, np.newaxis] images = np.array([image]) last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.8) assert nb_changed_aug_det == 0 aug = iaa.Affine(scale=iap.Uniform(0.7, 0.9)) assert isinstance(aug.scale, iap.Uniform) assert isinstance(aug.scale.a, iap.Deterministic) assert isinstance(aug.scale.b, iap.Deterministic) assert 0.7 - 1e-8 < aug.scale.a.value < 0.7 + 1e-8 assert 0.9 - 1e-8 < aug.scale.b.value < 0.9 + 1e-8 # --------------------- # translate # --------------------- # move one pixel to the right aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[1, 2] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=2, y=1)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # move one pixel to the right # with backend = skimage aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, backend="skimage") observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with backend = skimage aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, backend="skimage") observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with backend = skimage, order=ALL aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, backend="skimage", order=ia.ALL) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with backend = skimage, order=list aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, backend="skimage", order=[0, 1, 3]) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with backend = cv2, order=list aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, backend="cv2", order=[0, 1, 3]) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with backend = cv2, order=StochasticParameter aug = iaa.Affine(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, backend="cv2", order=iap.Choice([0, 1, 3])) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the bottom aug = iaa.Affine(scale=1.0, translate_px={"x": 0, "y": 1}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[2, 1] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=2)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # move 33% (one pixel) to the right aug = iaa.Affine(scale=1.0, translate_percent={"x": 0.3333, "y": 0}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[1, 2] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=2, y=1)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # move 33% (one pixel) to the bottom aug = iaa.Affine(scale=1.0, translate_percent={"x": 0, "y": 0.3333}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[2, 1] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=2)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # 0-1px to left/right and 0-1px to top/bottom aug = iaa.Affine(scale=1.0, translate_px={"x": (-1, 1), "y": (-1, 1)}, rotate=0, shear=0) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 centers_aug = np.copy(image).astype(np.int32) * 0 centers_aug_det = np.copy(image).astype(np.int32) * 0 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert len(observed_aug[0].nonzero()[0]) == 1 assert len(observed_aug_det[0].nonzero()[0]) == 1 centers_aug += (observed_aug[0] > 0) centers_aug_det += (observed_aug_det[0] > 0) assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 assert (centers_aug > int(nb_iterations * (1/9 * 0.6))).all() assert (centers_aug < int(nb_iterations * (1/9 * 1.4))).all() aug = iaa.Affine(translate_percent=iap.Uniform(0.7, 0.9)) assert isinstance(aug.translate, iap.Uniform) assert isinstance(aug.translate.a, iap.Deterministic) assert isinstance(aug.translate.b, iap.Deterministic) assert 0.7 - 1e-8 < aug.translate.a.value < 0.7 + 1e-8 assert 0.9 - 1e-8 < aug.translate.b.value < 0.9 + 1e-8 aug = iaa.Affine(translate_px=iap.DiscreteUniform(1, 10)) assert isinstance(aug.translate, iap.DiscreteUniform) assert isinstance(aug.translate.a, iap.Deterministic) assert isinstance(aug.translate.b, iap.Deterministic) assert aug.translate.a.value == 1 assert aug.translate.b.value == 10 # --------------------- # translate heatmaps # --------------------- heatmaps = ia.HeatmapsOnImage( np.float32([ [0.0, 0.5, 0.75], [0.0, 0.5, 0.75], [0.75, 0.75, 0.75], ]), shape=(3, 3, 3) ) arr_expected_1px_right = np.float32([ [0.0, 0.0, 0.5], [0.0, 0.0, 0.5], [0.0, 0.75, 0.75], ]) aug = iaa.Affine(translate_px={"x": 1}) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed.get_arr(), arr_expected_1px_right) # should still use mode=constant cval=0 even when other settings chosen aug = iaa.Affine(translate_px={"x": 1}, cval=255) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed.get_arr(), arr_expected_1px_right) aug = iaa.Affine(translate_px={"x": 1}, mode="edge", cval=255) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed.get_arr(), arr_expected_1px_right) # --------------------- # rotate # --------------------- # rotate by 90 degrees aug = iaa.Affine(scale=1.0, translate_px=0, rotate=90, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, :] = 255 image_aug[0, 1] = 255 image_aug[1, 1] = 255 image_aug[2, 1] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=1), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=1, y=2)], shape=base_img.shape)] observed = aug.augment_images(images) observed[observed >= 100] = 255 observed[observed < 100] = 0 assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) observed[observed >= 100] = 255 observed[observed < 100] = 0 assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) observed[0][observed[0] >= 100] = 255 observed[0][observed[0] < 100] = 0 assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) observed[0][observed[0] >= 100] = 255 observed[0][observed[0] < 100] = 0 assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # rotate by StochasticParameter aug = iaa.Affine(scale=1.0, translate_px=0, rotate=iap.Uniform(10, 20), shear=0) assert isinstance(aug.rotate, iap.Uniform) assert isinstance(aug.rotate.a, iap.Deterministic) assert aug.rotate.a.value == 10 assert isinstance(aug.rotate.b, iap.Deterministic) assert aug.rotate.b.value == 20 # random rotation 0-364 degrees aug = iaa.Affine(scale=1.0, translate_px=0, rotate=(0, 364), shear=0) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 pixels_sums_aug = np.copy(image).astype(np.int32) * 0 pixels_sums_aug_det = np.copy(image).astype(np.int32) * 0 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det pixels_sums_aug += (observed_aug[0] > 100) pixels_sums_aug_det += (observed_aug_det[0] > 100) assert nb_changed_aug >= int(nb_iterations * 0.9) assert nb_changed_aug_det == 0 # center pixel, should always be white when rotating line around center assert pixels_sums_aug[1, 1] > (nb_iterations * 0.98) assert pixels_sums_aug[1, 1] < (nb_iterations * 1.02) # outer pixels, should sometimes be white # the values here had to be set quite tolerant, the middle pixels at top/left/bottom/right get more activation # than expected outer_pixels = ([0, 0, 0, 1, 1, 2, 2, 2], [0, 1, 2, 0, 2, 0, 1, 2]) assert (pixels_sums_aug[outer_pixels] > int(nb_iterations * (2/8 * 0.4))).all() assert (pixels_sums_aug[outer_pixels] < int(nb_iterations * (2/8 * 2.0))).all() for backend in ["auto", "cv2", "skimage"]: # measure alignment between images and heatmaps when rotating aug = iaa.Affine(rotate=45, backend=backend) image = np.zeros((7, 6), dtype=np.uint8) image[:, 2:3+1] = 255 hm = ia.HeatmapsOnImage(image.astype(np.float32)/255, shape=(7, 6)) img_aug = aug.augment_image(image) hm_aug = aug.augment_heatmaps([hm])[0] assert hm_aug.shape == (7, 6) assert hm_aug.arr_0to1.shape == (7, 6, 1) img_aug_mask = img_aug > 255*0.1 hm_aug_mask = hm_aug.arr_0to1 > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.99 # measure alignment between images and heatmaps when rotating # here with smaller heatmaps aug = iaa.Affine(rotate=45, backend=backend) image = np.zeros((56, 48), dtype=np.uint8) image[:, 16:24+1] = 255 hm = ia.HeatmapsOnImage( ia.imresize_single_image(image, (28, 24), interpolation="cubic").astype(np.float32)/255, shape=(56, 48) ) img_aug = aug.augment_image(image) hm_aug = aug.augment_heatmaps([hm])[0] assert hm_aug.shape == (56, 48) assert hm_aug.arr_0to1.shape == (28, 24, 1) img_aug_mask = img_aug > 255*0.1 hm_aug_mask = ia.imresize_single_image(hm_aug.arr_0to1, img_aug.shape[0:2], interpolation="cubic") > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.9 # --------------------- # shear # --------------------- # TODO # shear by StochasticParameter aug = iaa.Affine(scale=1.0, translate_px=0, rotate=0, shear=iap.Uniform(10, 20)) assert isinstance(aug.shear, iap.Uniform) assert isinstance(aug.shear.a, iap.Deterministic) assert aug.shear.a.value == 10 assert isinstance(aug.shear.b, iap.Deterministic) assert aug.shear.b.value == 20 # --------------------- # cval # --------------------- aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=128) aug_det = aug.to_deterministic() image = np.ones((3, 3, 1), dtype=np.uint8) * 255 images = np.array([image]) images_list = [image] observed = aug.augment_images(images) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() observed = aug_det.augment_images(images) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() observed = aug.augment_images(images_list) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() observed = aug_det.augment_images(images_list) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() # random cvals aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=(0, 255)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 averages = [] for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det averages.append(int(np.average(observed_aug))) assert nb_changed_aug >= int(nb_iterations * 0.9) assert nb_changed_aug_det == 0 # center pixel, should always be white when rotating line around center assert pixels_sums_aug[1, 1] > (nb_iterations * 0.98) assert pixels_sums_aug[1, 1] < (nb_iterations * 1.02) assert len(set(averages)) > 200 aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=ia.ALL) assert isinstance(aug.cval, iap.Uniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 0 assert aug.cval.b.value == 255 aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=iap.DiscreteUniform(1, 5)) assert isinstance(aug.cval, iap.DiscreteUniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 1 assert aug.cval.b.value == 5 # ------------ # mode # ------------ aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=ia.ALL) assert isinstance(aug.mode, iap.Choice) aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode="edge") assert isinstance(aug.mode, iap.Deterministic) assert aug.mode.value == "edge" aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=["constant", "edge"]) assert isinstance(aug.mode, iap.Choice) assert len(aug.mode.a) == 2 and "constant" in aug.mode.a and "edge" in aug.mode.a aug = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=iap.Choice(["constant", "edge"])) assert isinstance(aug.mode, iap.Choice) assert len(aug.mode.a) == 2 and "constant" in aug.mode.a and "edge" in aug.mode.a # ------------ # fit_output # ------------ for backend in ["auto", "cv2", "skimage"]: aug = iaa.Affine(scale=1.0, translate_px=100, fit_output=True, backend=backend) assert aug.fit_output is True observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug.augment_heatmaps([heatmaps])[0] expected = heatmaps assert np.allclose(observed.arr_0to1, expected.arr_0to1) # fit_output with rotation aug = iaa.Affine(rotate=45, fit_output=True, backend=backend) img = np.zeros((10, 10), dtype=np.uint8) img[0:2, 0:2] = 255 img[-2:, 0:2] = 255 img[0:2, -2:] = 255 img[-2:, -2:] = 255 hm = ia.HeatmapsOnImage(img.astype(np.float32)/255, shape=(10, 10)) img_aug = aug.augment_image(img) hm_aug = aug.augment_heatmaps([hm])[0] _labels, nb_labels = skimage.morphology.label(img_aug > 240, return_num=True, connectivity=2) assert nb_labels == 4 _labels, nb_labels = skimage.morphology.label(hm_aug.arr_0to1 > 240/255, return_num=True, connectivity=2) assert nb_labels == 4 # fit_output with differently sized heatmaps aug = iaa.Affine(rotate=45, fit_output=True, backend=backend) img = np.zeros((80, 80), dtype=np.uint8) img[0:5, 0:5] = 255 img[-5:, 0:5] = 255 img[0:5, -5:] = 255 img[-5:, -5:] = 255 hm = ia.HeatmapsOnImage( ia.imresize_single_image(img, (40, 40), interpolation="cubic").astype(np.float32)/255, shape=(80, 80) ) img_aug = aug.augment_image(img) hm_aug = aug.augment_heatmaps([hm])[0] # these asserts are deactivated because the image size can change under fit_output=True # assert hm_aug.shape == (80, 80) # assert hm_aug.arr_0to1.shape == (40, 40, 1) _labels, nb_labels = skimage.morphology.label(img_aug > 240, return_num=True, connectivity=2) assert nb_labels == 4 _labels, nb_labels = skimage.morphology.label(hm_aug.arr_0to1 > 200/255, return_num=True, connectivity=2) assert nb_labels == 4 img_aug_mask = img_aug > 255*0.1 hm_aug_mask = ia.imresize_single_image(hm_aug.arr_0to1, img_aug.shape[0:2], interpolation="cubic") > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.95 # ------------ # exceptions for bad inputs # ------------ # scale got_exception = False try: _ = iaa.Affine(scale=False) except Exception: got_exception = True assert got_exception # translate_px got_exception = False try: _ = iaa.Affine(translate_px=False) except Exception: got_exception = True assert got_exception # translate_percent got_exception = False try: _ = iaa.Affine(translate_percent=False) except Exception: got_exception = True assert got_exception # rotate got_exception = False try: _ = iaa.Affine(scale=1.0, translate_px=0, rotate=False, shear=0, cval=0) except Exception: got_exception = True assert got_exception # shear got_exception = False try: _ = iaa.Affine(scale=1.0, translate_px=0, rotate=0, shear=False, cval=0) except Exception: got_exception = True assert got_exception # cval got_exception = False try: _ = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=None) except Exception: got_exception = True assert got_exception # mode got_exception = False try: _ = iaa.Affine(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=False) except Exception: got_exception = True assert got_exception # non-existent order in case of backend=cv2 got_exception = False try: _ = iaa.Affine(backend="cv2", order=-1) except Exception: got_exception = True assert got_exception # bad order datatype in case of backend=cv2 got_exception = False try: _ = iaa.Affine(backend="cv2", order="test") except Exception: got_exception = True assert got_exception # ---------- # get_parameters # ---------- aug = iaa.Affine(scale=1, translate_px=2, rotate=3, shear=4, order=1, cval=0, mode="constant", backend="cv2", fit_output=True) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) # scale assert isinstance(params[1], iap.Deterministic) # translate assert isinstance(params[2], iap.Deterministic) # rotate assert isinstance(params[3], iap.Deterministic) # shear assert params[0].value == 1 # scale assert params[1].value == 2 # translate assert params[2].value == 3 # rotate assert params[3].value == 4 # shear assert params[4].value == 1 # order assert params[5].value == 0 # cval assert params[6].value == "constant" # mode assert params[7] == "cv2" # backend assert params[8] is True # fit_output ################### # test other dtypes ################### # skimage aug = iaa.Affine(translate_px={"x": 1}, order=0, mode="constant", backend="skimage") mask = np.zeros((3, 3), dtype=bool) mask[1, 2] = True # bool image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image_aug = aug.augment_image(image) assert image_aug.dtype == image.dtype assert np.all(image_aug[~mask] == 0) assert np.all(image_aug[mask] == 1) # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if np.dtype(dtype).kind == "i": values = [1, 5, 10, 100, int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] values = values + [(-1) * value for value in values] else: values = [1, 5, 10, 100, int(center_value), int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] for value in values: image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image_aug = aug.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert np.all(image_aug[~mask] == 0) assert np.all(image_aug[mask] == value) # float for dtype in [np.float16, np.float32, np.float64]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) def _isclose(a, b): atol = 1e-4 if dtype == np.float16 else 1e-8 return np.isclose(a, b, atol=atol, rtol=0) isize = np.dtype(dtype).itemsize values = [0.01, 1.0, 10.0, 100.0, 500 ** (isize - 1), 1000 ** (isize - 1)] values = values + [(-1) * value for value in values] values = values + [min_value, max_value] for value in values: image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image_aug = aug.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert np.all(_isclose(image_aug[~mask], 0)) assert np.all(_isclose(image_aug[mask], np.float128(value))) # # skimage, order!=0 and rotate=180 # for order in [1, 3, 4, 5]: aug = iaa.Affine(rotate=180, order=order, mode="constant", backend="skimage") aug_flip = iaa.Sequential([iaa.Flipud(1.0), iaa.Fliplr(1.0)]) image = np.zeros((17, 17), dtype=bool) image[2:15, 5:13] = True mask_inner = aug_flip.augment_image(image) == 1 mask_outer = aug_flip.augment_image(image) == 0 assert np.any(mask_inner) and np.any(mask_outer) thresh_inner = 0.9 thresh_outer = 0.9 thresh_inner_float = 0.85 if order == 1 else 0.7 thresh_outer_float = 0.85 if order == 1 else 0.4 # bool image = np.zeros((17, 17), dtype=bool) image[2:15, 5:13] = True image_aug = aug.augment_image(image) image_exp = aug_flip.augment_image(image) assert image_aug.dtype == image.dtype assert (np.sum(image_aug == image_exp)/image.size) > thresh_inner # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) def _compute_matching(image_aug, image_exp, mask): return np.sum( np.isclose(image_aug[mask], image_exp[mask], rtol=0, atol=1.001) ) / np.sum(mask) if np.dtype(dtype).kind == "i": values = [1, 5, 10, 100, int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] values = values + [(-1) * value for value in values] else: values = [1, 5, 10, 100, int(center_value), int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] for value in values: image = np.zeros((17, 17), dtype=dtype) image[2:15, 5:13] = value image_aug = aug.augment_image(image) image_exp = aug_flip.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert _compute_matching(image_aug, image_exp, mask_inner) > thresh_inner assert _compute_matching(image_aug, image_exp, mask_outer) > thresh_outer # float dts = [np.float16, np.float32, np.float64] if order == 5: # float64 caused too many interpolation inaccuracies for order=5, not wrong but harder to test dts = [np.float16, np.float32] for dtype in dts: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) def _isclose(a, b): atol = 1e-4 if dtype == np.float16 else 1e-8 if order not in [0, 1]: atol = 1e-2 return np.isclose(a, b, atol=atol, rtol=0) def _compute_matching(image_aug, image_exp, mask): return np.sum( _isclose(image_aug[mask], image_exp[mask]) ) / np.sum(mask) isize = np.dtype(dtype).itemsize values = [0.01, 1.0, 10.0, 100.0, 500 ** (isize - 1), 1000 ** (isize - 1)] values = values + [(-1) * value for value in values] if order not in [3, 4]: # results in NaNs otherwise values = values + [min_value, max_value] for value in values: image = np.zeros((17, 17), dtype=dtype) image[2:15, 5:13] = value image_aug = aug.augment_image(image) image_exp = aug_flip.augment_image(image) np.set_printoptions(linewidth=250) assert image_aug.dtype == np.dtype(dtype) assert _compute_matching(image_aug, image_exp, mask_inner) > thresh_inner_float assert _compute_matching(image_aug, image_exp, mask_outer) > thresh_outer_float # cv2 aug = iaa.Affine(translate_px={"x": 1}, order=0, mode="constant", backend="cv2") mask = np.zeros((3, 3), dtype=bool) mask[1, 2] = True # bool image = np.zeros((3, 3), dtype=bool) image[1, 1] = True image_aug = aug.augment_image(image) assert image_aug.dtype == image.dtype assert np.all(image_aug[~mask] == 0) assert np.all(image_aug[mask] == 1) # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16, np.int32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if np.dtype(dtype).kind == "i": values = [1, 5, 10, 100, int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] values = values + [(-1) * value for value in values] else: values = [1, 5, 10, 100, int(center_value), int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] for value in values: image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image_aug = aug.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert np.all(image_aug[~mask] == 0) assert np.all(image_aug[mask] == value) # float for dtype in [np.float16, np.float32, np.float64]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) def _isclose(a, b): atol = 1e-4 if dtype == np.float16 else 1e-8 return np.isclose(a, b, atol=atol, rtol=0) isize = np.dtype(dtype).itemsize values = [0.01, 1.0, 10.0, 100.0, 500 ** (isize - 1), 1000 ** (isize - 1)] values = values + [(-1) * value for value in values] values = values + [min_value, max_value] for value in values: image = np.zeros((3, 3), dtype=dtype) image[1, 1] = value image_aug = aug.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert np.all(_isclose(image_aug[~mask], 0)) assert np.all(_isclose(image_aug[mask], np.float128(value))) # # cv2, order=1 and rotate=180 # for order in [1, 3]: aug = iaa.Affine(rotate=180, order=order, mode="constant", backend="cv2") aug_flip = iaa.Sequential([iaa.Flipud(1.0), iaa.Fliplr(1.0)]) # bool image = np.zeros((17, 17), dtype=bool) image[2:15, 5:13] = True image_aug = aug.augment_image(image) image_exp = aug_flip.augment_image(image) assert image_aug.dtype == image.dtype assert (np.sum(image_aug == image_exp) / image.size) > 0.9 # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if np.dtype(dtype).kind == "i": values = [1, 5, 10, 100, int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] values = values + [(-1) * value for value in values] else: values = [1, 5, 10, 100, int(center_value), int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value - 100, max_value] for value in values: image = np.zeros((17, 17), dtype=dtype) image[2:15, 5:13] = value image_aug = aug.augment_image(image) image_exp = aug_flip.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert (np.sum(image_aug == image_exp) / image.size) > 0.9 # float for dtype in [np.float16, np.float32, np.float64]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) def _isclose(a, b): atol = 1e-4 if dtype == np.float16 else 1e-8 return np.isclose(a, b, atol=atol, rtol=0) isize = np.dtype(dtype).itemsize values = [0.01, 1.0, 10.0, 100.0, 500 ** (isize - 1), 1000 ** (isize - 1)] values = values + [(-1) * value for value in values] values = values + [min_value, max_value] for value in values: image = np.zeros((17, 17), dtype=dtype) image[2:15, 5:13] = value image_aug = aug.augment_image(image) image_exp = aug_flip.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert (np.sum(_isclose(image_aug, image_exp)) / image.size) > 0.9 def test_AffineCv2(): reseed() base_img = np.array([[0, 0, 0], [0, 255, 0], [0, 0, 0]], dtype=np.uint8) base_img = base_img[:, :, np.newaxis] images = np.array([base_img]) images_list = [base_img] outer_pixels = ([], []) for i in sm.xrange(base_img.shape[0]): for j in sm.xrange(base_img.shape[1]): if i != j: outer_pixels[0].append(i) outer_pixels[1].append(j) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] # no translation/scale/rotate/shear, shouldnt change nothing aug = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) # --------------------- # scale # --------------------- # zoom in aug = iaa.AffineCv2(scale=1.75, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug_det.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug_det.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][outer_pixels[0], outer_pixels[1]] > 20).all() assert (observed[0][outer_pixels[0], outer_pixels[1]] < 150).all() observed = aug.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y > 2 observed = aug_det.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y > 2 # zoom in only on x axis aug = iaa.AffineCv2(scale={"x": 1.75, "y": 1.0}, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug_det.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug_det.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[1, 1], [0, 2]] > 20).all() assert (observed[0][[1, 1], [0, 2]] < 150).all() assert (observed[0][0, :] < 5).all() assert (observed[0][2, :] < 5).all() observed = aug.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y == 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y == 2 observed = aug_det.augment_keypoints(keypoints) assert observed[0].keypoints[0].x < 0 assert observed[0].keypoints[0].y == 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x > 2 assert observed[0].keypoints[2].y == 2 # zoom in only on y axis aug = iaa.AffineCv2(scale={"x": 1.0, "y": 1.75}, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug_det.augment_images(images) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug_det.augment_images(images_list) assert observed[0][1, 1] > 250 assert (observed[0][[0, 2], [1, 1]] > 20).all() assert (observed[0][[0, 2], [1, 1]] < 150).all() assert (observed[0][:, 0] < 5).all() assert (observed[0][:, 2] < 5).all() observed = aug.augment_keypoints(keypoints) assert observed[0].keypoints[0].x == 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x == 2 assert observed[0].keypoints[2].y > 2 observed = aug_det.augment_keypoints(keypoints) assert observed[0].keypoints[0].x == 0 assert observed[0].keypoints[0].y < 0 assert observed[0].keypoints[1].x == 1 assert observed[0].keypoints[1].y == 1 assert observed[0].keypoints[2].x == 2 assert observed[0].keypoints[2].y > 2 # zoom out # this one uses a 4x4 area of all 255, which is zoomed out to a 4x4 area # in which the center 2x2 area is 255 # zoom in should probably be adapted to this style # no separate tests here for x/y axis, should work fine if zoom in works with that aug = iaa.AffineCv2(scale=0.49, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.ones((4, 4, 1), dtype=np.uint8) * 255 images = np.array([image]) images_list = [image] outer_pixels = ([], []) for y in sm.xrange(4): xs = sm.xrange(4) if y in [0, 3] else [0, 3] for x in xs: outer_pixels[0].append(y) outer_pixels[1].append(x) inner_pixels = ([1, 1, 2, 2], [1, 2, 1, 2]) keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=3, y=0), ia.Keypoint(x=0, y=3), ia.Keypoint(x=3, y=3)], shape=image.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=0.765, y=0.765), ia.Keypoint(x=2.235, y=0.765), ia.Keypoint(x=0.765, y=2.235), ia.Keypoint(x=2.235, y=2.235)], shape=image.shape)] observed = aug.augment_images(images) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug_det.augment_images(images) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug.augment_images(images_list) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug_det.augment_images(images_list) assert (observed[0][outer_pixels] < 25).all() assert (observed[0][inner_pixels] > 200).all() observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # varying scales aug = iaa.AffineCv2(scale={"x": (0.5, 1.5), "y": (0.5, 1.5)}, translate_px=0, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.array([[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 2, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]], dtype=np.uint8) * 100 image = image[:, :, np.newaxis] images = np.array([image]) last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.8) assert nb_changed_aug_det == 0 aug = iaa.AffineCv2(scale=iap.Uniform(0.7, 0.9)) assert isinstance(aug.scale, iap.Uniform) assert isinstance(aug.scale.a, iap.Deterministic) assert isinstance(aug.scale.b, iap.Deterministic) assert 0.7 - 1e-8 < aug.scale.a.value < 0.7 + 1e-8 assert 0.9 - 1e-8 < aug.scale.b.value < 0.9 + 1e-8 # --------------------- # translate # --------------------- # move one pixel to the right aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[1, 2] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=2, y=1)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # move one pixel to the right aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with order=ALL aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, order=ia.ALL) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with order=list aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, order=[0, 1, 2]) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the right # with order=StochasticParameter aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 1, "y": 0}, rotate=0, shear=0, order=iap.Choice([0, 1, 2])) observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) # move one pixel to the bottom aug = iaa.AffineCv2(scale=1.0, translate_px={"x": 0, "y": 1}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[2, 1] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=2)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # move 33% (one pixel) to the right aug = iaa.AffineCv2(scale=1.0, translate_percent={"x": 0.3333, "y": 0}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[1, 2] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=2, y=1)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # move 33% (one pixel) to the bottom aug = iaa.AffineCv2(scale=1.0, translate_percent={"x": 0, "y": 0.3333}, rotate=0, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, 1] = 255 image_aug[2, 1] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=2)], shape=base_img.shape)] observed = aug.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # 0-1px to left/right and 0-1px to top/bottom aug = iaa.AffineCv2(scale=1.0, translate_px={"x": (-1, 1), "y": (-1, 1)}, rotate=0, shear=0) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 centers_aug = np.copy(image).astype(np.int32) * 0 centers_aug_det = np.copy(image).astype(np.int32) * 0 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert len(observed_aug[0].nonzero()[0]) == 1 assert len(observed_aug_det[0].nonzero()[0]) == 1 centers_aug += (observed_aug[0] > 0) centers_aug_det += (observed_aug_det[0] > 0) assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 assert (centers_aug > int(nb_iterations * (1/9 * 0.6))).all() assert (centers_aug < int(nb_iterations * (1/9 * 1.4))).all() aug = iaa.AffineCv2(translate_percent=iap.Uniform(0.7, 0.9)) assert isinstance(aug.translate, iap.Uniform) assert isinstance(aug.translate.a, iap.Deterministic) assert isinstance(aug.translate.b, iap.Deterministic) assert 0.7 - 1e-8 < aug.translate.a.value < 0.7 + 1e-8 assert 0.9 - 1e-8 < aug.translate.b.value < 0.9 + 1e-8 aug = iaa.AffineCv2(translate_px=iap.DiscreteUniform(1, 10)) assert isinstance(aug.translate, iap.DiscreteUniform) assert isinstance(aug.translate.a, iap.Deterministic) assert isinstance(aug.translate.b, iap.Deterministic) assert aug.translate.a.value == 1 assert aug.translate.b.value == 10 # --------------------- # translate heatmaps # --------------------- heatmaps = ia.HeatmapsOnImage( np.float32([ [0.0, 0.5, 0.75], [0.0, 0.5, 0.75], [0.75, 0.75, 0.75], ]), shape=(3, 3, 3) ) arr_expected_1px_right = np.float32([ [0.0, 0.0, 0.5], [0.0, 0.0, 0.5], [0.0, 0.75, 0.75], ]) aug = iaa.AffineCv2(translate_px={"x": 1}) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed.get_arr(), arr_expected_1px_right) # should still use mode=constant cval=0 even when other settings chosen aug = iaa.AffineCv2(translate_px={"x": 1}, cval=255) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed.get_arr(), arr_expected_1px_right) aug = iaa.AffineCv2(translate_px={"x": 1}, mode="replicate", cval=255) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed.get_arr(), arr_expected_1px_right) # --------------------- # rotate # --------------------- # rotate by 45 degrees aug = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=90, shear=0) aug_det = aug.to_deterministic() image = np.zeros((3, 3, 1), dtype=np.uint8) image_aug = np.copy(image) image[1, :] = 255 image_aug[0, 1] = 255 image_aug[1, 1] = 255 image_aug[2, 1] = 255 images = np.array([image]) images_aug = np.array([image_aug]) images_list = [image] images_aug_list = [image_aug] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=1), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=1)], shape=base_img.shape)] keypoints_aug = [ia.KeypointsOnImage([ia.Keypoint(x=1, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=1, y=2)], shape=base_img.shape)] observed = aug.augment_images(images) observed[observed >= 100] = 255 observed[observed < 100] = 0 assert np.array_equal(observed, images_aug) observed = aug_det.augment_images(images) observed[observed >= 100] = 255 observed[observed < 100] = 0 assert np.array_equal(observed, images_aug) observed = aug.augment_images(images_list) observed[0][observed[0] >= 100] = 255 observed[0][observed[0] < 100] = 0 assert array_equal_lists(observed, images_aug_list) observed = aug_det.augment_images(images_list) observed[0][observed[0] >= 100] = 255 observed[0][observed[0] < 100] = 0 assert array_equal_lists(observed, images_aug_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints_aug) # rotate by StochasticParameter aug = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=iap.Uniform(10, 20), shear=0) assert isinstance(aug.rotate, iap.Uniform) assert isinstance(aug.rotate.a, iap.Deterministic) assert aug.rotate.a.value == 10 assert isinstance(aug.rotate.b, iap.Deterministic) assert aug.rotate.b.value == 20 # random rotation 0-364 degrees aug = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=(0, 364), shear=0) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 pixels_sums_aug = np.copy(image).astype(np.int32) * 0 pixels_sums_aug_det = np.copy(image).astype(np.int32) * 0 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det pixels_sums_aug += (observed_aug[0] > 100) pixels_sums_aug_det += (observed_aug_det[0] > 100) assert nb_changed_aug >= int(nb_iterations * 0.9) assert nb_changed_aug_det == 0 # center pixel, should always be white when rotating line around center assert pixels_sums_aug[1, 1] > (nb_iterations * 0.98) assert pixels_sums_aug[1, 1] < (nb_iterations * 1.02) # outer pixels, should sometimes be white # the values here had to be set quite tolerant, the middle pixels at top/left/bottom/right get more activation # than expected outer_pixels = ([0, 0, 0, 1, 1, 2, 2, 2], [0, 1, 2, 0, 2, 0, 1, 2]) assert (pixels_sums_aug[outer_pixels] > int(nb_iterations * (2/8 * 0.4))).all() assert (pixels_sums_aug[outer_pixels] < int(nb_iterations * (2/8 * 2.0))).all() # --------------------- # shear # --------------------- # TODO # shear by StochasticParameter aug = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=0, shear=iap.Uniform(10, 20)) assert isinstance(aug.shear, iap.Uniform) assert isinstance(aug.shear.a, iap.Deterministic) assert aug.shear.a.value == 10 assert isinstance(aug.shear.b, iap.Deterministic) assert aug.shear.b.value == 20 # --------------------- # cval # --------------------- aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=128) aug_det = aug.to_deterministic() image = np.ones((3, 3, 1), dtype=np.uint8) * 255 image_aug = np.copy(image) images = np.array([image]) images_list = [image] observed = aug.augment_images(images) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() observed = aug_det.augment_images(images) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() observed = aug.augment_images(images_list) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() observed = aug_det.augment_images(images_list) assert (observed[0] > 128 - 30).all() assert (observed[0] < 128 + 30).all() # random cvals aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=(0, 255)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 averages = [] for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det averages.append(int(np.average(observed_aug))) assert nb_changed_aug >= int(nb_iterations * 0.9) assert nb_changed_aug_det == 0 # center pixel, should always be white when rotating line around center assert pixels_sums_aug[1, 1] > (nb_iterations * 0.98) assert pixels_sums_aug[1, 1] < (nb_iterations * 1.02) assert len(set(averages)) > 200 aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=ia.ALL) assert isinstance(aug.cval, iap.DiscreteUniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 0 assert aug.cval.b.value == 255 aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=iap.DiscreteUniform(1, 5)) assert isinstance(aug.cval, iap.DiscreteUniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 1 assert aug.cval.b.value == 5 # ------------ # mode # ------------ aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=ia.ALL) assert isinstance(aug.mode, iap.Choice) aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode="replicate") assert isinstance(aug.mode, iap.Deterministic) assert aug.mode.value == "replicate" aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=["replicate", "reflect"]) assert isinstance(aug.mode, iap.Choice) assert len(aug.mode.a) == 2 and "replicate" in aug.mode.a and "reflect" in aug.mode.a aug = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=iap.Choice(["replicate", "reflect"])) assert isinstance(aug.mode, iap.Choice) assert len(aug.mode.a) == 2 and "replicate" in aug.mode.a and "reflect" in aug.mode.a # ------------ # exceptions for bad inputs # ------------ # scale got_exception = False try: _ = iaa.AffineCv2(scale=False) except Exception: got_exception = True assert got_exception # translate_px got_exception = False try: _ = iaa.AffineCv2(translate_px=False) except Exception: got_exception = True assert got_exception # translate_percent got_exception = False try: _ = iaa.AffineCv2(translate_percent=False) except Exception: got_exception = True assert got_exception # rotate got_exception = False try: _ = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=False, shear=0, cval=0) except Exception: got_exception = True assert got_exception # shear got_exception = False try: _ = iaa.AffineCv2(scale=1.0, translate_px=0, rotate=0, shear=False, cval=0) except Exception: got_exception = True assert got_exception # cval got_exception = False try: _ = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=None) except Exception: got_exception = True assert got_exception # mode got_exception = False try: _ = iaa.AffineCv2(scale=1.0, translate_px=100, rotate=0, shear=0, cval=0, mode=False) except Exception: got_exception = True assert got_exception # non-existent order got_exception = False try: _ = iaa.AffineCv2(order=-1) except Exception: got_exception = True assert got_exception # bad order datatype got_exception = False try: _ = iaa.AffineCv2(order="test") except Exception: got_exception = True assert got_exception # ---------- # get_parameters # ---------- aug = iaa.AffineCv2(scale=1, translate_px=2, rotate=3, shear=4, order=1, cval=0, mode="constant") params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) # scale assert isinstance(params[1], iap.Deterministic) # translate assert isinstance(params[2], iap.Deterministic) # rotate assert isinstance(params[3], iap.Deterministic) # shear assert params[0].value == 1 # scale assert params[1].value == 2 # translate assert params[2].value == 3 # rotate assert params[3].value == 4 # shear assert params[4].value == 1 # order assert params[5].value == 0 # cval assert params[6].value == "constant" # mode def test_PiecewiseAffine(): reseed() img = np.zeros((60, 80), dtype=np.uint8) img[:, 9:11+1] = 255 img[:, 69:71+1] = 255 mask = img > 0 heatmaps = ia.HeatmapsOnImage((img / 255.0).astype(np.float32), shape=(60, 80, 3)) heatmaps_arr = heatmaps.get_arr() # ----- # scale # ----- # basic test aug = iaa.PiecewiseAffine(scale=0.01, nb_rows=12, nb_cols=4) observed = aug.augment_image(img) assert 100.0 < np.average(observed[mask]) < np.average(img[mask]) assert 75.0 > np.average(observed[~mask]) > np.average(img[~mask]) # basic test, heatmaps aug = iaa.PiecewiseAffine(scale=0.01, nb_rows=12, nb_cols=4) observed = aug.augment_heatmaps([heatmaps])[0] observed_arr = observed.get_arr() assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert 100.0/255.0 < np.average(observed_arr[mask]) < np.average(heatmaps_arr[mask]) assert 75.0/255.0 > np.average(observed_arr[~mask]) > np.average(heatmaps_arr[~mask]) # scale 0 aug = iaa.PiecewiseAffine(scale=0, nb_rows=12, nb_cols=4) observed = aug.augment_image(img) assert np.array_equal(observed, img) # scale 0, heatmaps aug = iaa.PiecewiseAffine(scale=0, nb_rows=12, nb_cols=4) observed = aug.augment_heatmaps([heatmaps])[0] observed_arr = observed.get_arr() assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.array_equal(observed_arr, heatmaps_arr) # scale 0, keypoints aug = iaa.PiecewiseAffine(scale=0, nb_rows=12, nb_cols=4) kpsoi = ia.KeypointsOnImage([ia.Keypoint(x=5, y=3), ia.Keypoint(x=3, y=8)], shape=(14, 14, 3)) kpsoi_aug = aug.augment_keypoints([kpsoi])[0] assert kpsoi_aug.shape == (14, 14, 3) assert np.allclose(kpsoi_aug.keypoints[0].x, 5) assert np.allclose(kpsoi_aug.keypoints[0].y, 3) assert np.allclose(kpsoi_aug.keypoints[1].x, 3) assert np.allclose(kpsoi_aug.keypoints[1].y, 8) # stronger scale should lead to stronger changes aug1 = iaa.PiecewiseAffine(scale=0.01, nb_rows=12, nb_cols=4) aug2 = iaa.PiecewiseAffine(scale=0.10, nb_rows=12, nb_cols=4) observed1 = aug1.augment_image(img) observed2 = aug2.augment_image(img) assert np.average(observed1[~mask]) < np.average(observed2[~mask]) # stronger scale should lead to stronger changes, heatmaps aug1 = iaa.PiecewiseAffine(scale=0.01, nb_rows=12, nb_cols=4) aug2 = iaa.PiecewiseAffine(scale=0.10, nb_rows=12, nb_cols=4) observed1 = aug1.augment_heatmaps([heatmaps])[0] observed1_arr = observed1.get_arr() observed2 = aug2.augment_heatmaps([heatmaps])[0] observed2_arr = observed2.get_arr() assert observed1.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed1.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed1.max_value < heatmaps.max_value + 1e-6 assert observed2.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed2.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed2.max_value < heatmaps.max_value + 1e-6 assert np.average(observed1_arr[~mask]) < np.average(observed2_arr[~mask]) # strong scale, measure alignment between images and heatmaps aug = iaa.PiecewiseAffine(scale=0.10, nb_rows=12, nb_cols=4) aug_det = aug.to_deterministic() img_aug = aug_det.augment_image(img) hm_aug = aug_det.augment_heatmaps([heatmaps])[0] assert hm_aug.shape == (60, 80, 3) assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 img_aug_mask = img_aug > 255*0.1 hm_aug_mask = hm_aug.arr_0to1 > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.98 # strong scale, measure alignment between images and heatmaps # heatmaps here smaller than image aug_det = aug.to_deterministic() heatmaps_small = ia.HeatmapsOnImage( (ia.imresize_single_image(img, (30, 40+10), interpolation="cubic") / 255.0).astype(np.float32), shape=(60, 80, 3) ) img_aug = aug_det.augment_image(img) hm_aug = aug_det.augment_heatmaps([heatmaps_small])[0] assert hm_aug.shape == (60, 80, 3) assert hm_aug.arr_0to1.shape == (30, 40+10, 1) img_aug_mask = img_aug > 255*0.1 hm_aug_mask = ia.imresize_single_image(hm_aug.arr_0to1, (60, 80), interpolation="cubic") > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.9 # seems to be 0.948 actually # strong scale, measure alignment between images and keypoints aug = iaa.PiecewiseAffine(scale=0.10, nb_rows=12, nb_cols=4) aug_det = aug.to_deterministic() kpsoi = ia.KeypointsOnImage([ia.Keypoint(x=5, y=15), ia.Keypoint(x=17, y=12)], shape=(24, 30, 3)) img_kps = np.zeros((24, 30, 3), dtype=np.uint8) img_kps = kpsoi.draw_on_image(img_kps, color=[255, 255, 255]) img_kps_aug = aug_det.augment_image(img_kps) kpsoi_aug = aug_det.augment_keypoints([kpsoi])[0] assert kpsoi_aug.shape == (24, 30, 3) bb1 = ia.BoundingBox(x1=kpsoi_aug.keypoints[0].x-1, y1=kpsoi_aug.keypoints[0].y-1, x2=kpsoi_aug.keypoints[0].x+1, y2=kpsoi_aug.keypoints[0].y+1) bb2 = ia.BoundingBox(x1=kpsoi_aug.keypoints[1].x-1, y1=kpsoi_aug.keypoints[1].y-1, x2=kpsoi_aug.keypoints[1].x+1, y2=kpsoi_aug.keypoints[1].y+1) patch1 = bb1.extract_from_image(img_kps_aug) patch2 = bb2.extract_from_image(img_kps_aug) assert np.max(patch1) > 150 assert np.max(patch2) > 150 assert np.average(img_kps_aug) < 40 # scale as list aug1 = iaa.PiecewiseAffine(scale=0.01, nb_rows=12, nb_cols=4) aug2 = iaa.PiecewiseAffine(scale=0.10, nb_rows=12, nb_cols=4) aug = iaa.PiecewiseAffine(scale=[0.01, 0.10], nb_rows=12, nb_cols=4) assert isinstance(aug.scale, iap.Choice) assert 0.01 - 1e-8 < aug.scale.a[0] < 0.01 + 1e-8 assert 0.10 - 1e-8 < aug.scale.a[1] < 0.10 + 1e-8 avg1 = np.average([np.average(aug1.augment_image(img) * (~mask).astype(np.float32)) for _ in sm.xrange(3)]) avg2 = np.average([np.average(aug2.augment_image(img) * (~mask).astype(np.float32)) for _ in sm.xrange(3)]) seen = [0, 0] for _ in sm.xrange(15): observed = aug.augment_image(img) avg = np.average(observed * (~mask).astype(np.float32)) diff1 = abs(avg - avg1) diff2 = abs(avg - avg2) if diff1 < diff2: seen[0] += 1 else: seen[1] += 1 assert seen[0] > 0 assert seen[1] > 0 # scale as tuple aug = iaa.PiecewiseAffine(scale=(0.01, 0.10), nb_rows=12, nb_cols=4) assert isinstance(aug.jitter.scale, iap.Uniform) assert isinstance(aug.jitter.scale.a, iap.Deterministic) assert isinstance(aug.jitter.scale.b, iap.Deterministic) assert 0.01 - 1e-8 < aug.jitter.scale.a.value < 0.01 + 1e-8 assert 0.10 - 1e-8 < aug.jitter.scale.b.value < 0.10 + 1e-8 # scale as StochasticParameter aug = iaa.PiecewiseAffine(scale=iap.Uniform(0.01, 0.10), nb_rows=12, nb_cols=4) assert isinstance(aug.jitter.scale, iap.Uniform) assert isinstance(aug.jitter.scale.a, iap.Deterministic) assert isinstance(aug.jitter.scale.b, iap.Deterministic) assert 0.01 - 1e-8 < aug.jitter.scale.a.value < 0.01 + 1e-8 assert 0.10 - 1e-8 < aug.jitter.scale.b.value < 0.10 + 1e-8 # bad datatype for scale got_exception = False try: _ = iaa.PiecewiseAffine(scale=False, nb_rows=12, nb_cols=4) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # ----- # rows and cols # ----- # verify effects of rows/cols aug1 = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=4) aug2 = iaa.PiecewiseAffine(scale=0.05, nb_rows=30, nb_cols=4) std1 = [] std2 = [] for _ in sm.xrange(3): observed1 = aug1.augment_image(img) observed2 = aug2.augment_image(img) grad_vert1 = observed1[1:, :].astype(np.float32) - observed1[:-1, :].astype(np.float32) grad_vert2 = observed2[1:, :].astype(np.float32) - observed2[:-1, :].astype(np.float32) grad_vert1 = grad_vert1 * (~mask[1:, :]).astype(np.float32) grad_vert2 = grad_vert2 * (~mask[1:, :]).astype(np.float32) std1.append(np.std(grad_vert1)) std2.append(np.std(grad_vert2)) std1 = np.average(std1) std2 = np.average(std2) assert std1 < std2 # ----- # rows # ----- # rows as list aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=[4, 20], nb_cols=4) assert isinstance(aug.nb_rows, iap.Choice) assert aug.nb_rows.a[0] == 4 assert aug.nb_rows.a[1] == 20 seen = [0, 0] for _ in sm.xrange(20): observed = aug.augment_image(img) grad_vert = observed[1:, :].astype(np.float32) - observed[:-1, :].astype(np.float32) grad_vert = grad_vert * (~mask[1:, :]).astype(np.float32) std = np.std(grad_vert) diff1 = abs(std - std1) diff2 = abs(std - std2) if diff1 < diff2: seen[0] += 1 else: seen[1] += 1 assert seen[0] > 0 assert seen[1] > 0 # rows as tuple aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=(4, 20), nb_cols=4) assert isinstance(aug.nb_rows, iap.DiscreteUniform) assert isinstance(aug.nb_rows.a, iap.Deterministic) assert isinstance(aug.nb_rows.b, iap.Deterministic) assert aug.nb_rows.a.value == 4 assert aug.nb_rows.b.value == 20 # rows as StochasticParameter aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=iap.DiscreteUniform(4, 20), nb_cols=4) assert isinstance(aug.nb_rows, iap.DiscreteUniform) assert isinstance(aug.nb_rows.a, iap.Deterministic) assert isinstance(aug.nb_rows.b, iap.Deterministic) assert aug.nb_rows.a.value == 4 assert aug.nb_rows.b.value == 20 # bad datatype for rows got_exception = False try: _ = iaa.PiecewiseAffine(scale=0.05, nb_rows=False, nb_cols=4) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # ----- # nb_cols # ----- # cols as list img_cols = img.T mask_cols = mask.T aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=[4, 20]) assert isinstance(aug.nb_cols, iap.Choice) assert aug.nb_cols.a[0] == 4 assert aug.nb_cols.a[1] == 20 aug1 = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=4) aug2 = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=20) std1 = [] std2 = [] for _ in sm.xrange(3): observed1 = aug1.augment_image(img_cols) observed2 = aug2.augment_image(img_cols) grad_hori1 = observed1[:, 1:].astype(np.float32) - observed1[:, :-1].astype(np.float32) grad_hori2 = observed2[:, 1:].astype(np.float32) - observed2[:, :-1].astype(np.float32) grad_hori1 = grad_hori1 * (~mask_cols[:, 1:]).astype(np.float32) grad_hori2 = grad_hori2 * (~mask_cols[:, 1:]).astype(np.float32) std1.append(np.std(grad_hori1)) std2.append(np.std(grad_hori2)) std1 = np.average(std1) std2 = np.average(std2) seen = [0, 0] for _ in sm.xrange(15): observed = aug.augment_image(img_cols) grad_hori = observed[:, 1:].astype(np.float32) - observed[:, :-1].astype(np.float32) grad_hori = grad_hori * (~mask_cols[:, 1:]).astype(np.float32) std = np.std(grad_hori) diff1 = abs(std - std1) diff2 = abs(std - std2) if diff1 < diff2: seen[0] += 1 else: seen[1] += 1 assert seen[0] > 0 assert seen[1] > 0 # cols as tuple aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=(4, 20)) assert isinstance(aug.nb_cols, iap.DiscreteUniform) assert isinstance(aug.nb_cols.a, iap.Deterministic) assert isinstance(aug.nb_cols.b, iap.Deterministic) assert aug.nb_cols.a.value == 4 assert aug.nb_cols.b.value == 20 # cols as StochasticParameter aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=iap.DiscreteUniform(4, 20)) assert isinstance(aug.nb_cols, iap.DiscreteUniform) assert isinstance(aug.nb_cols.a, iap.Deterministic) assert isinstance(aug.nb_cols.b, iap.Deterministic) assert aug.nb_cols.a.value == 4 assert aug.nb_cols.b.value == 20 # bad datatype for cols got_exception = False try: aug = iaa.PiecewiseAffine(scale=0.05, nb_rows=4, nb_cols=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # ----- # order # ----- # single int for order aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, order=0) assert isinstance(aug.order, iap.Deterministic) assert aug.order.value == 0 # list for order aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, order=[0, 1, 3]) assert isinstance(aug.order, iap.Choice) assert all([v in aug.order.a for v in [0, 1, 3]]) # StochasticParameter for order aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, order=iap.Choice([0, 1, 3])) assert isinstance(aug.order, iap.Choice) assert all([v in aug.order.a for v in [0, 1, 3]]) # ALL for order aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, order=ia.ALL) assert isinstance(aug.order, iap.Choice) assert all([v in aug.order.a for v in [0, 1, 3, 4, 5]]) # bad datatype for order got_exception = False try: _ = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, order=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # ----- # cval # ----- # cval as deterministic img = np.zeros((50, 50, 3), dtype=np.uint8) + 255 aug = iaa.PiecewiseAffine(scale=0.7, nb_rows=10, nb_cols=10, mode="constant", cval=0) observed = aug.augment_image(img) assert np.sum([observed[:, :] == [0, 0, 0]]) > 0 # cval as deterministic, heatmaps should always use cval=0 heatmaps = ia.HeatmapsOnImage(np.zeros((50, 50, 1), dtype=np.float32), shape=(50, 50, 3)) aug = iaa.PiecewiseAffine(scale=0.7, nb_rows=10, nb_cols=10, mode="constant", cval=255) observed = aug.augment_heatmaps([heatmaps])[0] assert np.sum([observed.get_arr()[:, :] >= 0.01]) == 0 # cval as list img = np.zeros((20, 20), dtype=np.uint8) + 255 aug = iaa.PiecewiseAffine(scale=0.7, nb_rows=5, nb_cols=5, mode="constant", cval=[0, 10]) assert isinstance(aug.cval, iap.Choice) assert aug.cval.a[0] == 0 assert aug.cval.a[1] == 10 seen = [0, 0, 0] for _ in sm.xrange(30): observed = aug.augment_image(img) nb_0 = np.sum([observed[:, :] == 0]) nb_10 = np.sum([observed[:, :] == 10]) if nb_0 > 0: seen[0] += 1 elif nb_10 > 0: seen[1] += 1 else: seen[2] += 1 assert seen[0] > 5 assert seen[1] > 5 assert seen[2] <= 4 # cval as tuple aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode="constant", cval=(0, 10)) assert isinstance(aug.cval, iap.Uniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 0 assert aug.cval.b.value == 10 # cval as StochasticParameter aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode="constant", cval=iap.DiscreteUniform(0, 10)) assert isinstance(aug.cval, iap.DiscreteUniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 0 assert aug.cval.b.value == 10 # ALL as cval aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode="constant", cval=ia.ALL) assert isinstance(aug.cval, iap.Uniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 0 assert aug.cval.b.value == 255 # bas datatype for cval got_exception = False try: _ = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, cval=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # ----- # mode # ----- # single string for mode aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode="nearest") assert isinstance(aug.mode, iap.Deterministic) assert aug.mode.value == "nearest" # list for mode aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode=["nearest", "edge", "symmetric"]) assert isinstance(aug.mode, iap.Choice) assert all([v in aug.mode.a for v in ["nearest", "edge", "symmetric"]]) # StochasticParameter for mode aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode=iap.Choice(["nearest", "edge", "symmetric"])) assert isinstance(aug.mode, iap.Choice) assert all([v in aug.mode.a for v in ["nearest", "edge", "symmetric"]]) # ALL for mode aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode=ia.ALL) assert isinstance(aug.mode, iap.Choice) assert all([v in aug.mode.a for v in ["constant", "edge", "symmetric", "reflect", "wrap"]]) # bad datatype for mode got_exception = False try: _ = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=8, mode=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # --------- # keypoints # --------- # basic test img = np.zeros((100, 80), dtype=np.uint8) img[:, 9:11+1] = 255 img[:, 69:71+1] = 255 mask = img > 0 kps = [ia.Keypoint(x=10, y=20), ia.Keypoint(x=10, y=40), ia.Keypoint(x=70, y=20), ia.Keypoint(x=70, y=40)] kpsoi = ia.KeypointsOnImage(kps, shape=img.shape) aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=10, nb_cols=10) aug_det = aug.to_deterministic() observed_img = aug_det.augment_image(img) observed_kpsoi = aug_det.augment_keypoints([kpsoi]) assert not keypoints_equal([kpsoi], observed_kpsoi) for kp in observed_kpsoi[0].keypoints: assert observed_img[int(kp.y), int(kp.x)] > 0 # scale 0 aug = iaa.PiecewiseAffine(scale=0, nb_rows=10, nb_cols=10) observed = aug.augment_keypoints([kpsoi]) assert keypoints_equal([kpsoi], observed) # keypoints outside of image aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=10, nb_cols=10) kps = [ia.Keypoint(x=-10, y=-20)] kpsoi = ia.KeypointsOnImage(kps, shape=img.shape) observed = aug.augment_keypoints([kpsoi]) assert keypoints_equal([kpsoi], observed) # --------- # get_parameters # --------- aug = iaa.PiecewiseAffine(scale=0.1, nb_rows=8, nb_cols=10, order=1, cval=2, mode="constant", absolute_scale=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert isinstance(params[2], iap.Deterministic) assert isinstance(params[3], iap.Deterministic) assert isinstance(params[4], iap.Deterministic) assert isinstance(params[5], iap.Deterministic) assert params[6] is False assert 0.1 - 1e-8 < params[0].value < 0.1 + 1e-8 assert params[1].value == 8 assert params[2].value == 10 assert params[3].value == 1 assert params[4].value == 2 assert params[5].value == "constant" ################### # test other dtypes ################### aug = iaa.PiecewiseAffine(scale=0.2, nb_rows=8, nb_cols=4, order=0, mode="constant") mask = np.zeros((21, 21), dtype=bool) mask[:, 7:13] = True # bool image = np.zeros((21, 21), dtype=bool) image[mask] = True image_aug = aug.augment_image(image) assert image_aug.dtype == image.dtype assert not np.all(image_aug == 1) assert np.any(image_aug[~mask] == 1) # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if np.dtype(dtype).kind == "i": values = [1, 5, 10, 100, int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value-100, max_value] values = values + [(-1)*value for value in values] else: values = [1, 5, 10, 100, int(center_value), int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value-100, max_value] for value in values: image = np.zeros((21, 21), dtype=dtype) image[:, 7:13] = value image_aug = aug.augment_image(image) assert image_aug.dtype == np.dtype(dtype) assert not np.all(image_aug == value) assert np.any(image_aug[~mask] == value) # float for dtype in [np.float16, np.float32, np.float64]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) def _isclose(a, b): atol = 1e-4 if dtype == np.float16 else 1e-8 return np.isclose(a, b, atol=atol, rtol=0) isize = np.dtype(dtype).itemsize values = [0.01, 1.0, 10.0, 100.0, 500 ** (isize - 1), 1000 ** (isize - 1)] values = values + [(-1) * value for value in values] values = values + [min_value, max_value] for value in values: image = np.zeros((21, 21), dtype=dtype) image[:, 7:13] = value image_aug = aug.augment_image(image) assert image_aug.dtype == np.dtype(dtype) # TODO switch all other tests from float(...) to np.float128(...) pattern, seems # to be more accurate for 128bit floats assert not np.all(_isclose(image_aug, np.float128(value))) assert np.any(_isclose(image_aug[~mask], np.float128(value))) def test_PerspectiveTransform(): reseed() img = np.zeros((30, 30), dtype=np.uint8) img[10:20, 10:20] = 255 heatmaps = ia.HeatmapsOnImage((img / 255.0).astype(np.float32), shape=img.shape) # without keep_size aug = iaa.PerspectiveTransform(scale=0.2, keep_size=False) aug.jitter = iap.Deterministic(0.2) observed = aug.augment_image(img) y1 = int(30*0.2) y2 = int(30*0.8) x1 = int(30*0.2) x2 = int(30*0.8) expected = img[y1:y2, x1:x2] assert all([abs(s1-s2) <= 1 for s1, s2 in zip(observed.shape, expected.shape)]) if observed.shape != expected.shape: observed = ia.imresize_single_image(observed, expected.shape[0:2], interpolation="cubic") # differences seem to mainly appear around the border of the inner rectangle, possibly # due to interpolation assert np.average(np.abs(observed.astype(np.int32) - expected.astype(np.int32))) < 30.0 hm = ia.HeatmapsOnImage(img.astype(np.float32)/255.0, shape=(30, 30)) hm_aug = aug.augment_heatmaps([hm])[0] expected = (y2 - y1, x2 - x1) assert all([abs(s1-s2) <= 1 for s1, s2 in zip(hm_aug.shape, expected)]) assert all([abs(s1-s2) <= 1 for s1, s2 in zip(hm_aug.arr_0to1.shape, expected + (1,))]) img_aug_mask = observed > 255*0.1 hm_aug_mask = hm_aug.arr_0to1 > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.99 # without keep_size, different heatmap size img_small = ia.imresize_single_image(img, (20, 25), interpolation="cubic") aug = iaa.PerspectiveTransform(scale=0.2, keep_size=False) aug.jitter = iap.Deterministic(0.2) img_aug = aug.augment_image(img) y1 = int(30*0.2) y2 = int(30*0.8) x1 = int(30*0.2) x2 = int(30*0.8) x1_small = int(25*0.2) x2_small = int(25*0.8) y1_small = int(20*0.2) y2_small = int(20*0.8) hm = ia.HeatmapsOnImage(img_small.astype(np.float32)/255.0, shape=(30, 30)) hm_aug = aug.augment_heatmaps([hm])[0] expected = (y2 - y1, x2 - x1) expected_small = (y2_small - y1_small, x2_small - x1_small, 1) assert all([abs(s1-s2) <= 1 for s1, s2 in zip(hm_aug.shape, expected)]) assert all([abs(s1-s2) <= 1 for s1, s2 in zip(hm_aug.arr_0to1.shape, expected_small)]) img_aug_mask = img_aug > 255*0.1 hm_aug_mask = ia.imresize_single_image(hm_aug.arr_0to1, img_aug.shape[0:2], interpolation="cubic") > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.96 # with keep_size aug = iaa.PerspectiveTransform(scale=0.2, keep_size=True) aug.jitter = iap.Deterministic(0.2) observed = aug.augment_image(img) expected = img[int(30*0.2):int(30*0.8), int(30*0.2):int(30*0.8)] expected = ia.imresize_single_image(expected, img.shape[0:2], interpolation="cubic") assert observed.shape == img.shape # differences seem to mainly appear around the border of the inner rectangle, possibly # due to interpolation assert np.average(np.abs(observed.astype(np.int32) - expected.astype(np.int32))) < 30.0 # with keep_size, heatmaps aug = iaa.PerspectiveTransform(scale=0.2, keep_size=True) aug.jitter = iap.Deterministic(0.2) observed = aug.augment_heatmaps([heatmaps])[0] expected = heatmaps.get_arr()[int(30*0.2):int(30*0.8), int(30*0.2):int(30*0.8)] expected = ia.imresize_single_image((expected*255).astype(np.uint8), img.shape[0:2], interpolation="cubic") expected = (expected / 255.0).astype(np.float32) assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 # differences seem to mainly appear around the border of the inner rectangle, possibly # due to interpolation assert np.average(np.abs(observed.get_arr() - expected)) < 30.0 # with keep_size, RGB images aug = iaa.PerspectiveTransform(scale=0.2, keep_size=True) aug.jitter = iap.Deterministic(0.2) imgs = np.tile(img[np.newaxis, :, :, np.newaxis], (2, 1, 1, 3)) observed = aug.augment_images(imgs) for img_idx in sm.xrange(2): for c in sm.xrange(3): observed_i = observed[img_idx, :, :, c] expected = imgs[img_idx, int(30*0.2):int(30*0.8), int(30*0.2):int(30*0.8), c] expected = ia.imresize_single_image(expected, imgs.shape[1:3], interpolation="cubic") assert observed_i.shape == imgs.shape[1:3] # differences seem to mainly appear around the border of the inner rectangle, possibly # due to interpolation assert np.average(np.abs(observed_i.astype(np.int32) - expected.astype(np.int32))) < 30.0 # tuple for scale aug = iaa.PerspectiveTransform(scale=(0.1, 0.2)) assert isinstance(aug.jitter.scale, iap.Uniform) assert isinstance(aug.jitter.scale.a, iap.Deterministic) assert isinstance(aug.jitter.scale.b, iap.Deterministic) assert 0.1 - 1e-8 < aug.jitter.scale.a.value < 0.1 + 1e-8 assert 0.2 - 1e-8 < aug.jitter.scale.b.value < 0.2 + 1e-8 # list for scale aug = iaa.PerspectiveTransform(scale=[0.1, 0.2, 0.3]) assert isinstance(aug.jitter.scale, iap.Choice) assert len(aug.jitter.scale.a) == 3 assert 0.1 - 1e-8 < aug.jitter.scale.a[0] < 0.1 + 1e-8 assert 0.2 - 1e-8 < aug.jitter.scale.a[1] < 0.2 + 1e-8 assert 0.3 - 1e-8 < aug.jitter.scale.a[2] < 0.3 + 1e-8 # StochasticParameter for scale aug = iaa.PerspectiveTransform(scale=iap.Choice([0.1, 0.2, 0.3])) assert isinstance(aug.jitter.scale, iap.Choice) assert len(aug.jitter.scale.a) == 3 assert 0.1 - 1e-8 < aug.jitter.scale.a[0] < 0.1 + 1e-8 assert 0.2 - 1e-8 < aug.jitter.scale.a[1] < 0.2 + 1e-8 assert 0.3 - 1e-8 < aug.jitter.scale.a[2] < 0.3 + 1e-8 # bad datatype for scale got_exception = False try: _ = iaa.PerspectiveTransform(scale=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # keypoint augmentation without keep_size # TODO deviations of around 0.4-0.7 in this and the next test (between expected and observed # coordinates) -- why? kps = [ia.Keypoint(x=10, y=10), ia.Keypoint(x=14, y=11)] kpsoi = ia.KeypointsOnImage(kps, shape=img.shape) aug = iaa.PerspectiveTransform(scale=0.2, keep_size=False) aug.jitter = iap.Deterministic(0.2) observed = aug.augment_keypoints([kpsoi]) kps_expected = [ ia.Keypoint(x=10-0.2*30, y=10-0.2*30), ia.Keypoint(x=14-0.2*30, y=11-0.2*30) ] for kp_observed, kp_expected in zip(observed[0].keypoints, kps_expected): assert kp_expected.x - 1.5 < kp_observed.x < kp_expected.x + 1.5 assert kp_expected.y - 1.5 < kp_observed.y < kp_expected.y + 1.5 # keypoint augmentation with keep_size kps = [ia.Keypoint(x=10, y=10), ia.Keypoint(x=14, y=11)] kpsoi = ia.KeypointsOnImage(kps, shape=img.shape) aug = iaa.PerspectiveTransform(scale=0.2, keep_size=True) aug.jitter = iap.Deterministic(0.2) observed = aug.augment_keypoints([kpsoi]) kps_expected = [ ia.Keypoint(x=((10-0.2*30)/(30*0.6))*30, y=((10-0.2*30)/(30*0.6))*30), ia.Keypoint(x=((14-0.2*30)/(30*0.6))*30, y=((11-0.2*30)/(30*0.6))*30) ] for kp_observed, kp_expected in zip(observed[0].keypoints, kps_expected): assert kp_expected.x - 1.5 < kp_observed.x < kp_expected.x + 1.5 assert kp_expected.y - 1.5 < kp_observed.y < kp_expected.y + 1.5 # get_parameters aug = iaa.PerspectiveTransform(scale=0.1, keep_size=False) params = aug.get_parameters() assert isinstance(params[0], iap.Normal) assert isinstance(params[0].scale, iap.Deterministic) assert 0.1 - 1e-8 < params[0].scale.value < 0.1 + 1e-8 assert params[1] is False ################### # test other dtypes ################### aug = iaa.PerspectiveTransform(scale=0.2, keep_size=False) aug.jitter = iap.Deterministic(0.2) y1 = int(30 * 0.2) y2 = int(30 * 0.8) x1 = int(30 * 0.2) x2 = int(30 * 0.8) # bool image = np.zeros((30, 30), dtype=bool) image[12:18, :] = True image[:, 12:18] = True expected = image[y1:y2, x1:x2] image_aug = aug.augment_image(image) assert image_aug.dtype == image.dtype assert image_aug.shape == expected.shape assert (np.sum(image_aug == expected) / expected.size) > 0.9 # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if np.dtype(dtype).kind == "i": values = [0, 1, 5, 10, 100, int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value-100, max_value] values = values + [(-1)*value for value in values] else: values = [0, 1, 5, 10, 100, int(center_value), int(0.1 * max_value), int(0.2 * max_value), int(0.5 * max_value), max_value-100, max_value] for value in values: image = np.zeros((30, 30), dtype=dtype) image[12:18, :] = value image[:, 12:18] = value expected = image[y1:y2, x1:x2] image_aug = aug.augment_image(image) assert image_aug.dtype == image.dtype assert image_aug.shape == expected.shape # rather high tolerance of 0.7 here because of interpolation assert (np.sum(image_aug == expected) / expected.size) > 0.7 # float for dtype in [np.float16, np.float32, np.float64]: def _isclose(a, b): atol = 1e-4 if dtype == np.float16 else 1e-8 return np.isclose(a, b, atol=atol, rtol=0) isize = np.dtype(dtype).itemsize values = [0.01, 1.0, 10.0, 100.0, 500 ** (isize - 1), 1000 ** (isize - 1)] values = values + [(-1) * value for value in values] for value in values: image = np.zeros((30, 30), dtype=dtype) image[12:18, :] = value image[:, 12:18] = value expected = image[y1:y2, x1:x2] image_aug = aug.augment_image(image) assert image_aug.dtype == image.dtype assert image_aug.shape == expected.shape # rather high tolerance of 0.7 here because of interpolation assert (np.sum(_isclose(image_aug, expected)) / expected.size) > 0.7 def test_ElasticTransformation(): reseed() img = np.zeros((50, 50), dtype=np.uint8) + 255 img = np.pad(img, ((100, 100), (100, 100)), mode="constant", constant_values=0) mask = img > 0 heatmaps = ia.HeatmapsOnImage((img / 255.0).astype(np.float32), shape=img.shape) img_nonsquare = np.zeros((50, 100), dtype=np.uint8) + 255 img_nonsquare = np.pad(img_nonsquare, ((100, 100), (100, 100)), mode="constant", constant_values=0) mask_nonsquare = img_nonsquare > 0 # test basic funtionality aug = iaa.ElasticTransformation(alpha=0.5, sigma=0.25) observed = aug.augment_image(img) # assume that some white/255 pixels have been moved away from the center and replaced by black/0 pixels assert np.sum(observed[mask]) < np.sum(img[mask]) # assume that some black/0 pixels have been moved away from the outer area and replaced by white/255 pixels assert np.sum(observed[~mask]) > np.sum(img[~mask]) # test basic funtionality with non-square images aug = iaa.ElasticTransformation(alpha=0.5, sigma=0.25) observed = aug.augment_image(img_nonsquare) assert np.sum(observed[mask_nonsquare]) < np.sum(img_nonsquare[mask_nonsquare]) assert np.sum(observed[~mask_nonsquare]) > np.sum(img_nonsquare[~mask_nonsquare]) # test basic funtionality, heatmaps aug = iaa.ElasticTransformation(alpha=0.5, sigma=0.25) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.sum(observed.get_arr()[mask]) < np.sum(heatmaps.get_arr()[mask]) assert np.sum(observed.get_arr()[~mask]) > np.sum(heatmaps.get_arr()[~mask]) # test effects of increased alpha strength aug1 = iaa.ElasticTransformation(alpha=0.1, sigma=0.25) aug2 = iaa.ElasticTransformation(alpha=5.0, sigma=0.25) observed1 = aug1.augment_image(img) observed2 = aug2.augment_image(img) # assume that the inner area has become more black-ish when using high alphas (more white pixels were moved out of # the inner area) assert np.sum(observed1[mask]) > np.sum(observed2[mask]) # assume that the outer area has become more white-ish when using high alphas (more black pixels were moved into # the inner area) assert np.sum(observed1[~mask]) < np.sum(observed2[~mask]) # test effects of increased alpha strength, heatmaps aug1 = iaa.ElasticTransformation(alpha=0.1, sigma=0.25) aug2 = iaa.ElasticTransformation(alpha=5.0, sigma=0.25) observed1 = aug1.augment_heatmaps([heatmaps])[0] observed2 = aug2.augment_heatmaps([heatmaps])[0] assert observed1.shape == heatmaps.shape assert observed2.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed1.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed1.max_value < heatmaps.max_value + 1e-6 assert heatmaps.min_value - 1e-6 < observed2.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed2.max_value < heatmaps.max_value + 1e-6 assert np.sum(observed1.get_arr()[mask]) > np.sum(observed2.get_arr()[mask]) assert np.sum(observed1.get_arr()[~mask]) < np.sum(observed2.get_arr()[~mask]) # test effects of increased sigmas aug1 = iaa.ElasticTransformation(alpha=3.0, sigma=0.1) aug2 = iaa.ElasticTransformation(alpha=3.0, sigma=3.0) observed1 = aug1.augment_image(img) observed2 = aug2.augment_image(img) observed1_std_hori = np.std(observed1.astype(np.float32)[:, 1:] - observed1.astype(np.float32)[:, :-1]) observed2_std_hori = np.std(observed2.astype(np.float32)[:, 1:] - observed2.astype(np.float32)[:, :-1]) observed1_std_vert = np.std(observed1.astype(np.float32)[1:, :] - observed1.astype(np.float32)[:-1, :]) observed2_std_vert = np.std(observed2.astype(np.float32)[1:, :] - observed2.astype(np.float32)[:-1, :]) observed1_std = (observed1_std_hori + observed1_std_vert) / 2 observed2_std = (observed2_std_hori + observed2_std_vert) / 2 assert observed1_std > observed2_std # test alpha being iap.Choice aug = iaa.ElasticTransformation(alpha=iap.Choice([0.001, 5.0]), sigma=0.25) seen = [0, 0] for _ in sm.xrange(100): observed = aug.augment_image(img) diff = np.average(np.abs(img.astype(np.float32) - observed.astype(np.float32))) if diff < 1.0: seen[0] += 1 else: seen[1] += 1 assert seen[0] > 10 assert seen[1] > 10 # test alpha being tuple aug = iaa.ElasticTransformation(alpha=(1.0, 2.0), sigma=0.25) assert isinstance(aug.alpha, iap.Uniform) assert isinstance(aug.alpha.a, iap.Deterministic) assert isinstance(aug.alpha.b, iap.Deterministic) assert 1.0 - 1e-8 < aug.alpha.a.value < 1.0 + 1e-8 assert 2.0 - 1e-8 < aug.alpha.b.value < 2.0 + 1e-8 # test unusual channels numbers aug = iaa.ElasticTransformation(alpha=5, sigma=0.5) for nb_channels in [1, 2, 4, 5, 7, 10, 11]: img_c = np.tile(img[..., np.newaxis], (1, 1, nb_channels)) assert img_c.shape == (250, 250, nb_channels) observed = aug.augment_image(img_c) assert observed.shape == (250, 250, nb_channels) for c in sm.xrange(1, nb_channels): assert np.array_equal(observed[..., c], observed[..., 0]) # test alpha having bad datatype got_exception = False try: _ = iaa.ElasticTransformation(alpha=False, sigma=0.25) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # test sigma being iap.Choice aug = iaa.ElasticTransformation(alpha=3.0, sigma=iap.Choice([0.01, 5.0])) seen = [0, 0] for _ in sm.xrange(100): observed = aug.augment_image(img) observed_std_hori = np.std(observed.astype(np.float32)[:, 1:] - observed.astype(np.float32)[:, :-1]) observed_std_vert = np.std(observed.astype(np.float32)[1:, :] - observed.astype(np.float32)[:-1, :]) observed_std = (observed_std_hori + observed_std_vert) / 2 if observed_std > 10.0: seen[0] += 1 else: seen[1] += 1 assert seen[0] > 10 assert seen[1] > 10 # test sigma being tuple aug = iaa.ElasticTransformation(alpha=0.25, sigma=(1.0, 2.0)) assert isinstance(aug.sigma, iap.Uniform) assert isinstance(aug.sigma.a, iap.Deterministic) assert isinstance(aug.sigma.b, iap.Deterministic) assert 1.0 - 1e-8 < aug.sigma.a.value < 1.0 + 1e-8 assert 2.0 - 1e-8 < aug.sigma.b.value < 2.0 + 1e-8 # test sigma having bad datatype got_exception = False try: _ = iaa.ElasticTransformation(alpha=0.25, sigma=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # order # no proper tests here, because unclear how to test aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, order=ia.ALL) assert isinstance(aug.order, iap.Choice) assert all([order in aug.order.a for order in [0, 1, 2, 3, 4, 5]]) aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, order=1) assert isinstance(aug.order, iap.Deterministic) assert aug.order.value == 1 aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, order=[0, 1, 2]) assert isinstance(aug.order, iap.Choice) assert all([order in aug.order.a for order in [0, 1, 2]]) aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, order=iap.Choice([0, 1, 2, 3])) assert isinstance(aug.order, iap.Choice) assert all([order in aug.order.a for order in [0, 1, 2, 3]]) got_exception = False try: _ = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, order=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # cval # few proper tests here, because unclear how to test aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, cval=ia.ALL) assert isinstance(aug.cval, iap.DiscreteUniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 0 assert aug.cval.b.value == 255 aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, cval=128) assert isinstance(aug.cval, iap.Deterministic) assert aug.cval.value == 128 aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, cval=(128, 255)) assert isinstance(aug.cval, iap.DiscreteUniform) assert isinstance(aug.cval.a, iap.Deterministic) assert isinstance(aug.cval.b, iap.Deterministic) assert aug.cval.a.value == 128 assert aug.cval.b.value == 255 aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, cval=[16, 32, 64]) assert isinstance(aug.cval, iap.Choice) assert all([cval in aug.cval.a for cval in [16, 32, 64]]) aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, cval=iap.Choice([16, 32, 64])) assert isinstance(aug.cval, iap.Choice) assert all([cval in aug.cval.a for cval in [16, 32, 64]]) aug = iaa.ElasticTransformation(alpha=30.0, sigma=3.0, mode="constant", cval=255, order=0) img = np.zeros((100, 100), dtype=np.uint8) observed = aug.augment_image(img) assert np.sum(observed == 255) > 0 assert np.sum(np.logical_and(0 < observed, observed < 255)) == 0 aug = iaa.ElasticTransformation(alpha=3.0, sigma=3.0, mode="constant", cval=255, order=2) img = np.zeros((100, 100), dtype=np.uint8) observed = aug.augment_image(img) assert np.sum(np.logical_and(0 < observed, observed < 255)) > 0 aug = iaa.ElasticTransformation(alpha=3.0, sigma=3.0, mode="constant", cval=0, order=0) img = np.zeros((100, 100), dtype=np.uint8) observed = aug.augment_image(img) assert np.sum(observed == 255) == 0 got_exception = False try: _ = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, cval=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # cval with heatmaps heatmaps = ia.HeatmapsOnImage(np.zeros((32, 32, 1), dtype=np.float32), shape=(32, 32, 3)) aug = iaa.ElasticTransformation(alpha=3.0, sigma=3.0, mode="constant", cval=255) observed = aug.augment_heatmaps([heatmaps])[0] assert observed.shape == heatmaps.shape assert heatmaps.min_value - 1e-6 < observed.min_value < heatmaps.min_value + 1e-6 assert heatmaps.max_value - 1e-6 < observed.max_value < heatmaps.max_value + 1e-6 assert np.sum(observed.get_arr() > 0.01) == 0 # mode # no proper tests here, because unclear how to test aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, mode=ia.ALL) assert isinstance(aug.mode, iap.Choice) assert all([mode in aug.mode.a for mode in ["constant", "nearest", "reflect", "wrap"]]) aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, mode="nearest") assert isinstance(aug.mode, iap.Deterministic) assert aug.mode.value == "nearest" aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, mode=["constant", "nearest"]) assert isinstance(aug.mode, iap.Choice) assert all([mode in aug.mode.a for mode in ["constant", "nearest"]]) aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, mode=iap.Choice(["constant", "nearest"])) assert isinstance(aug.mode, iap.Choice) assert all([mode in aug.mode.a for mode in ["constant", "nearest"]]) got_exception = False try: _ = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, mode=False) except Exception as exc: assert "Expected " in str(exc) got_exception = True assert got_exception # keypoints # for small alpha, should not move if below threshold alpha_thresh_orig = iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH sigma_thresh_orig = iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH = 1.0 iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH = 0 kps = [ia.Keypoint(x=1, y=1), ia.Keypoint(x=15, y=25), ia.Keypoint(x=5, y=5), ia.Keypoint(x=7, y=4), ia.Keypoint(x=48, y=5), ia.Keypoint(x=21, y=37), ia.Keypoint(x=32, y=39), ia.Keypoint(x=6, y=8), ia.Keypoint(x=12, y=21), ia.Keypoint(x=3, y=45), ia.Keypoint(x=45, y=3), ia.Keypoint(x=7, y=48)] kpsoi = ia.KeypointsOnImage(kps, shape=(50, 50)) aug = iaa.ElasticTransformation(alpha=0.001, sigma=1.0) observed = aug.augment_keypoints([kpsoi])[0] d = kpsoi.get_coords_array() - observed.get_coords_array() d[:, 0] = d[:, 0] ** 2 d[:, 1] = d[:, 1] ** 2 d = np.sum(d, axis=1) d = np.average(d, axis=0) assert d < 1e-8 iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH = alpha_thresh_orig iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH = sigma_thresh_orig # for small sigma, should not move if below threshold alpha_thresh_orig = iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH sigma_thresh_orig = iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH = 0.0 iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH = 1.0 kps = [ia.Keypoint(x=1, y=1), ia.Keypoint(x=15, y=25), ia.Keypoint(x=5, y=5), ia.Keypoint(x=7, y=4), ia.Keypoint(x=48, y=5), ia.Keypoint(x=21, y=37), ia.Keypoint(x=32, y=39), ia.Keypoint(x=6, y=8), ia.Keypoint(x=12, y=21), ia.Keypoint(x=3, y=45), ia.Keypoint(x=45, y=3), ia.Keypoint(x=7, y=48)] kpsoi = ia.KeypointsOnImage(kps, shape=(50, 50)) aug = iaa.ElasticTransformation(alpha=1.0, sigma=0.001) observed = aug.augment_keypoints([kpsoi])[0] d = kpsoi.get_coords_array() - observed.get_coords_array() d[:, 0] = d[:, 0] ** 2 d[:, 1] = d[:, 1] ** 2 d = np.sum(d, axis=1) d = np.average(d, axis=0) assert d < 1e-8 iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH = alpha_thresh_orig iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH = sigma_thresh_orig # for small alpha (at sigma 1.0), should barely move alpha_thresh_orig = iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH sigma_thresh_orig = iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH = 0 iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH = 0 kps = [ia.Keypoint(x=1, y=1), ia.Keypoint(x=15, y=25), ia.Keypoint(x=5, y=5), ia.Keypoint(x=7, y=4), ia.Keypoint(x=48, y=5), ia.Keypoint(x=21, y=37), ia.Keypoint(x=32, y=39), ia.Keypoint(x=6, y=8), ia.Keypoint(x=12, y=21), ia.Keypoint(x=3, y=45), ia.Keypoint(x=45, y=3), ia.Keypoint(x=7, y=48)] kpsoi = ia.KeypointsOnImage(kps, shape=(50, 50)) aug = iaa.ElasticTransformation(alpha=0.001, sigma=1.0) observed = aug.augment_keypoints([kpsoi])[0] d = kpsoi.get_coords_array() - observed.get_coords_array() d[:, 0] = d[:, 0] ** 2 d[:, 1] = d[:, 1] ** 2 d = np.sum(d, axis=1) d = np.average(d, axis=0) assert d < 0.5 iaa.ElasticTransformation.KEYPOINT_AUG_ALPHA_THRESH = alpha_thresh_orig iaa.ElasticTransformation.KEYPOINT_AUG_SIGMA_THRESH = sigma_thresh_orig # test alignment between images and heatmaps img = np.zeros((80, 80), dtype=np.uint8) img[:, 30:50] = 255 img[30:50, :] = 255 hm = ia.HeatmapsOnImage(img.astype(np.float32)/255.0, shape=(80, 80)) aug = iaa.ElasticTransformation(alpha=60.0, sigma=4.0, mode="constant", cval=0) aug_det = aug.to_deterministic() img_aug = aug_det.augment_image(img) hm_aug = aug_det.augment_heatmaps([hm])[0] assert hm_aug.shape == (80, 80) assert hm_aug.arr_0to1.shape == (80, 80, 1) img_aug_mask = img_aug > 255*0.1 hm_aug_mask = hm_aug.arr_0to1 > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.99 # test alignment between images and heatmaps # here with heatmaps that are smaller than the image img = np.zeros((80, 80), dtype=np.uint8) img[:, 30:50] = 255 img[30:50, :] = 255 img_small = ia.imresize_single_image(img, (40, 40), interpolation="nearest") hm = ia.HeatmapsOnImage(img_small.astype(np.float32)/255.0, shape=(80, 80)) aug = iaa.ElasticTransformation(alpha=60.0, sigma=4.0, mode="constant", cval=0) aug_det = aug.to_deterministic() img_aug = aug_det.augment_image(img) hm_aug = aug_det.augment_heatmaps([hm])[0] assert hm_aug.shape == (80, 80) assert hm_aug.arr_0to1.shape == (40, 40, 1) img_aug_mask = img_aug > 255*0.1 hm_aug_mask = ia.imresize_single_image(hm_aug.arr_0to1, (80, 80), interpolation="nearest") > 0.1 same = np.sum(img_aug_mask == hm_aug_mask[:, :, 0]) assert (same / img_aug_mask.size) >= 0.94 # get_parameters() aug = iaa.ElasticTransformation(alpha=0.25, sigma=1.0, order=2, cval=10, mode="constant") params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert isinstance(params[2], iap.Deterministic) assert isinstance(params[3], iap.Deterministic) assert isinstance(params[4], iap.Deterministic) assert 0.25 - 1e-8 < params[0].value < 0.25 + 1e-8 assert 1.0 - 1e-8 < params[1].value < 1.0 + 1e-8 assert params[2].value == 2 assert params[3].value == 10 assert params[4].value == "constant" ################### # test other dtypes ################### aug = iaa.ElasticTransformation(sigma=0.5, alpha=5, order=0) mask = np.zeros((21, 21), dtype=bool) mask[7:13, 7:13] = True # bool image = np.zeros((21, 21), dtype=bool) image[mask] = True image_aug = aug.augment_image(image) assert image_aug.dtype.name == image.dtype.name assert not np.all(image_aug == 1) assert np.any(image_aug[~mask] == 1) # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image =
np.zeros((21, 21), dtype=dtype)
numpy.zeros
# Copyright 2018 Stanford University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This file contains some basic model components""" import math import numpy as np import tensorflow as tf from tensorflow.python.ops.rnn_cell import DropoutWrapper from tensorflow.python.ops import rnn_cell from tensorflow.python.framework import function from tensor2tensor.layers.common_layers import layer_norm from tensor2tensor.layers.common_attention import add_timing_signal_1d, multihead_self_attention_memory_efficient initializer_relu = lambda: tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False, dtype=tf.float32) class RNNEncoder(object): """ General-purpose module to encode a sequence using a RNN. It feeds the input through a RNN and returns all the hidden states. Note: In lecture 8, we talked about how you might use a RNN as an "encoder" to get a single, fixed size vector representation of a sequence (e.g. by taking element-wise max of hidden states). Here, we're using the RNN as an "encoder" but we're not taking max; we're just returning all the hidden states. The terminology "encoder" still applies because we're getting a different "encoding" of each position in the sequence, and we'll use the encodings downstream in the model. """ def __init__(self, hidden_size, keep_prob, cell_type, name='RNNEncoder'): """ Inputs: hidden_size: int. Hidden size of the RNN keep_prob: Tensor containing a single scalar that is the keep probability (for dropout) """ self.name = name if cell_type == 'rnn_lstm': cell = rnn_cell.LSTMCell elif cell_type == 'rnn_gru': cell = rnn_cell.GRUCell else: cell = rnn_cell.LSTMCell self.hidden_size = hidden_size self.keep_prob = keep_prob self.rnn_cell_fw = cell(self.hidden_size) self.rnn_cell_fw = DropoutWrapper(self.rnn_cell_fw, input_keep_prob=self.keep_prob) self.rnn_cell_bw = cell(self.hidden_size) self.rnn_cell_bw = DropoutWrapper(self.rnn_cell_bw, input_keep_prob=self.keep_prob) def build_graph(self, inputs, masks): """ Inputs: inputs: Tensor shape (batch_size, seq_len, input_size) masks: Tensor shape (batch_size, seq_len). Has 1s where there is real input, 0s where there's padding. This is used to make sure tf.nn.bidirectional_dynamic_rnn doesn't iterate through masked steps. Returns: out: Tensor shape (batch_size, seq_len, hidden_size*2). This is all hidden states (fw and bw hidden states are concatenated). """ with tf.variable_scope(self.name): input_lens = tf.reduce_sum(masks, reduction_indices=1) # shape (batch_size) # Note: fw_out and bw_out are the hidden states for every timestep. # Each is shape (batch_size, seq_len, hidden_size). (fw_out, bw_out), _ = tf.nn.bidirectional_dynamic_rnn(self.rnn_cell_fw, self.rnn_cell_bw, inputs, input_lens, dtype=tf.float32) # Concatenate the forward and backward hidden states out = tf.concat([fw_out, bw_out], 2) # Apply dropout out = tf.nn.dropout(out, self.keep_prob) return out class QAEncoder(object): ''' Encoder block in QANet from https://arxiv.org/abs/1804.09541 ''' def __init__(self, num_blocks, num_layers, num_heads, filters, kernel_size, \ keep_prob, input_mapping=False, name='QAEncoder'): self.name = name self.num_blocks = num_blocks self.num_layers = num_layers self.num_heads = num_heads self.filters = filters self.kernel_size = kernel_size self.keep_prob = keep_prob self.input_mapping = input_mapping def build_graph(self, inputs, masks): with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE): if self.input_mapping: inputs = tf.layers.conv1d(inputs, filters=self.filters, \ kernel_size=1, padding='SAME', name='input_mapping') outputs = inputs for i in range(self.num_blocks): with tf.variable_scope('block{}'.format(i + 1)): outputs = add_timing_signal_1d(outputs) for j in range(self.num_layers): with tf.variable_scope('conv{}'.format(j + 1)): def fn(x): output = tf.layers.separable_conv1d(layer_norm(x, name='ln1_{}'.format(j + 1)), filters=self.filters, kernel_size=self.kernel_size, padding='SAME', name='conv{}'.format(j + 1)) if j % 2 == 0: output = tf.nn.dropout(output, self.keep_prob) return output outputs = layer_dropout( x=outputs, fn=fn, keep_prob=1 - (j + 1) / self.num_layers * (1 - self.keep_prob)) outputs = tf.nn.dropout(outputs + multihead_self_attention(layer_norm(outputs, name='ln2_{}'.format(i)), masks, self.num_heads), self.keep_prob) res = outputs outputs = layer_norm(outputs, name='ln3_{}'.format(i + 1)) #outputs = tf.layers.conv1d(outputs, filters=self.filters, kernel_size=1, padding='SAME', kernel_initializer=initializer_relu(), name='ffn1') outputs = tf.nn.relu(tf.layers.conv1d(outputs, filters=self.filters, kernel_size=1, padding='SAME', kernel_initializer=initializer_relu(), name='ffn1')) outputs = tf.layers.conv1d(outputs, filters=self.filters, kernel_size=1, padding='SAME', name='ffn2') outputs = tf.nn.dropout(res + outputs, self.keep_prob) return outputs class SimpleSoftmaxLayer(object): """ Module to take set of hidden states, (e.g. one for each context location), and return probability distribution over those states. """ def __init__(self, name="SimpleSoftmaxLayer"): self.name = name def build_graph(self, inputs, masks): """ Applies one linear downprojection layer, then softmax. Inputs: inputs: Tensor shape (batch_size, seq_len, hidden_size) masks: Tensor shape (batch_size, seq_len) Has 1s where there is real input, 0s where there's padding. Outputs: logits: Tensor shape (batch_size, seq_len) logits is the result of the downprojection layer, but it has -1e30 (i.e. very large negative number) in the padded locations prob_dist: Tensor shape (batch_size, seq_len) The result of taking softmax over logits. This should have 0 in the padded locations, and the rest should sum to 1. """ with tf.variable_scope(self.name): # Linear downprojection layer logits = tf.contrib.layers.fully_connected(inputs, num_outputs=1, activation_fn=None) # shape (batch_size, seq_len, 1) logits = tf.squeeze(logits, axis=[2]) # shape (batch_size, seq_len) # Take softmax over sequence masked_logits, prob_dist = masked_softmax(logits, masks, 1) return masked_logits, prob_dist class BasicAttn(object): """Module for basic attention. Note: in this module we use the terminology of "keys" and "values" (see lectures). In the terminology of "X attends to Y", "keys attend to values". In the baseline model, the keys are the context hidden states and the values are the question hidden states. We choose to use general terminology of keys and values in this module (rather than context and question) to avoid confusion if you reuse this module with other inputs. """ def __init__(self, keep_prob, key_vec_size, value_vec_size, name="BasicAttn"): """ Inputs: keep_prob: tensor containing a single scalar that is the keep probability (for dropout) key_vec_size: size of the key vectors. int value_vec_size: size of the value vectors. int """ self.name = name self.keep_prob = keep_prob self.key_vec_size = key_vec_size self.value_vec_size = value_vec_size def build_graph(self, values, values_mask, keys): """ Keys attend to values. For each key, return an attention distribution and an attention output vector. Inputs: values: Tensor shape (batch_size, num_values, value_vec_size). values_mask: Tensor shape (batch_size, num_values). 1s where there's real input, 0s where there's padding keys: Tensor shape (batch_size, num_keys, value_vec_size) Outputs: attn_dist: Tensor shape (batch_size, num_keys, num_values). For each key, the distribution should sum to 1, and should be 0 in the value locations that correspond to padding. output: Tensor shape (batch_size, num_keys, hidden_size). This is the attention output; the weighted sum of the values (using the attention distribution as weights). """ with tf.variable_scope(self.name): # Calculate attention distribution values_t = tf.transpose(values, perm=[0, 2, 1]) # (batch_size, value_vec_size, num_values) attn_logits = tf.matmul(keys, values_t) # shape (batch_size, num_keys, num_values) attn_logits_mask = tf.expand_dims(values_mask, 1) # shape (batch_size, 1, num_values) _, attn_dist = masked_softmax(attn_logits, attn_logits_mask, 2) # shape (batch_size, num_keys, num_values). take softmax over values # Use attention distribution to take weighted sum of values output = tf.matmul(attn_dist, values) # shape (batch_size, num_keys, value_vec_size) # Apply dropout output = tf.nn.dropout(output, self.keep_prob) return attn_dist, output class BiDAFAttn(object): '''Module for BiDAF attention cell from https://arxiv.org/abs/1611.01603 ''' def __init__(self, keep_prob=1.0, name='BiDAFAttn'): self.name = name self.keep_prob = keep_prob def build_graph(self, c, c_mask, q, q_mask): with tf.variable_scope(self.name): S = trilinear_similarity(c, q) _, alpha = masked_softmax(S, tf.expand_dims(q_mask, 1), 2) a = tf.matmul(alpha, q) m = tf.reduce_max(S, axis=2) _, beta = masked_softmax(m, c_mask, 1) c_attn = tf.matmul(tf.expand_dims(beta, 1), c) output = tf.concat([c, a, tf.multiply(c, a), tf.multiply(c, c_attn)], -1) return output def masked_softmax(logits, mask, axis=-1): """ Takes masked softmax over given dimension of logits. Inputs: logits: Numpy array. We want to take softmax over dimension dim. mask: Numpy array of same shape as logits. Has 1s where there's real data in logits, 0 where there's padding dim: int. dimension over which to take softmax Returns: masked_logits: Numpy array same shape as logits. This is the same as logits, but with 1e30 subtracted (i.e. very large negative number) in the padding locations. prob_dist: Numpy array same shape as logits. The result of taking softmax over masked_logits in given dimension. Should be 0 in padding locations. Should sum to 1 over given dimension. """ exp_mask = (1 - tf.cast(mask, 'float')) * (-1e30) # -large where there's padding, 0 elsewhere masked_logits = tf.add(logits, exp_mask) # where there's padding, set logits to -large prob_dist = tf.nn.softmax(masked_logits, axis) return masked_logits, prob_dist def trilinear_similarity(c, q, name='trilinear_similarity'): ''' Calculate trilinear similarity matrix from https://arxiv.org/abs/1611.01603 ''' c_shape, q_shape = c.get_shape().as_list(), q.get_shape().as_list() c_len, q_len, h = c_shape[1], q_shape[1], c_shape[2] with tf.variable_scope(name): w_c = tf.get_variable('w_c', [h, 1], dtype=tf.float32) w_q = tf.get_variable('w_q', [h, 1], dtype=tf.float32) w_cq = tf.get_variable('w_cq', [1, 1, h], dtype=tf.float32) bias = tf.get_variable('bias', [1, 1, 1], dtype=tf.float32, initializer=tf.zeros_initializer()) S = tf.reshape(tf.matmul(tf.reshape(c, [-1, h]), w_c), [-1, c_len, 1]) \ + tf.reshape(tf.matmul(tf.reshape(q, [-1, h]), w_q), [-1, 1, q_len]) \ + tf.matmul(tf.multiply(c, w_cq), tf.transpose(q, perm=[0, 2, 1])) S = tf.add(S, bias) return S def max_product_span(start_dist, end_dist): ''' Find the answer span with maximum probability ''' batch_size, input_len = start_dist.shape i = np.zeros(batch_size, dtype=np.int32) start_pos = np.zeros(batch_size, dtype=np.int32) end_pos = np.zeros(batch_size, dtype=np.int32) start_argmax = np.zeros(batch_size, dtype=np.int32) max_start_prob = np.zeros(batch_size, dtype=np.float32) max_product = np.zeros(batch_size, dtype=np.float32) while np.any(i < input_len): start_prob = start_dist[np.arange(batch_size), i] start_argmax = np.where(start_prob > max_start_prob, i, start_argmax) max_start_prob = np.where(start_prob > max_start_prob, start_prob, max_start_prob) end_prob = end_dist[np.arange(batch_size), i] new_product = max_start_prob * end_prob start_pos = np.where(new_product > max_product, start_argmax, start_pos) end_pos = np.where(new_product > max_product, i, end_pos) max_product =
np.where(new_product > max_product, new_product, max_product)
numpy.where
from __future__ import print_function import numpy as np import Spectrum import csv import sys from scipy import signal from scipy import stats from scipy.ndimage.filters import median_filter import handythread import multiprocessing from functools import partial import dm3_lib as DM3 #from ncempy.io import dm import numbers def make_dict_from_tags(iterables): d = {} for ii in iterables: splitted = ii.split(' = ') keys = list(splitted[:-1][0].split('.')) value = splitted[-1] tempD = d for tt in keys[:-1]: tempD = tempD.setdefault(tt, {}) if keys[-1] in tempD: # duplicate tag print('You have two tags in your DM3 file which are the same! ' + keys[-1], file=sys.stderr) else: tempD[keys[-1]] = value return d def import_EELS_dm3(filename): data = DM3.DM3(filename) # data = dm.dmReader(filename) tags = make_dict_from_tags(data._storedTags) imagedata = np.transpose(data.imagedata, axes=(1, 2, 0)) return imagedata, tags class SpectrumImage(object): """Class for spectrum image data set, must be 3d numpy array Axis0, Axis1: spatial dimensions, Axis2: spectrum dimension, spectrum_units: units along the spectral axis, calibration = spatial calibration (m/pixel)""" def __init__(self, SI, spectrum_units, calibration=0): if len(np.shape(SI)) != 3: raise ValueError('That was not a 3D spectrum image!') self.data = np.ma.array(SI.astype(float)) self.size = np.shape(SI) self.calibration = calibration self.spectrum_units = spectrum_units ## Add calibration for x, y, E/wavelength class CLSpectrumImage(SpectrumImage): def __init__(self, SI, WavelengthRange, spectrum_units='nm', calibration=0): super(CLSpectrumImage, self).__init__(SI, spectrum_units, calibration) self.SpectrumRange = WavelengthRange self.spectrum_unit_label = 'Wavelength' self.secondary_units = 'eV' self.secondary_unit_label = 'Energy' # self.spectrum_secondary_units = 'eV' # self.spectrum_secondary_unit_label = 'Energy' self.dispersion = self.SpectrumRange[1] - self.SpectrumRange[0] def ExtractSpectrum(self, mask3D): extractedspectrum = Spectrum.CLSpectrum( np.mean(np.mean( np.ma.masked_array(self.data, mask3D), axis = 0), axis = 0), self.SpectrumRange, units = self.spectrum_units) return extractedspectrum def SpikeRemoval(self, threshold): # median = np.median(self.data, axis=2, keepdims=True) # d = np.abs(self.data - median) # median_d = np.median(d) # s = d/median_d if median_d else 0. # i = np.where(s>20) # print(i) # self.data[i] = np.mean([self.data[(i[0]-1, i[1], i[2])], # self.data[(i[0]+1, i[1], i[2])], # self.data[(i[0], i[1]-1, i[2])], # self.data[(i[0], i[1]+1, i[2])]], axis=0) grad = np.abs(np.gradient(self.data.astype(float))) mask0 = np.zeros(np.shape(grad[0])) mask0[grad[0] > threshold] = 1. mask1 = np.zeros(np.shape(grad[1])) mask1[grad[1] > threshold] = 1. mask2 = np.zeros(np.shape(grad[2])) mask2[grad[2] > threshold] = 1. mask = np.logical_or(mask0, mask1).astype(float) convolutionmask = np.array([[[0,0,0],[0,1,0],[0,0,0]],[[0,1,0],[1,0,1],[0,1,0]],[[0,0,0],[0,1,0],[0,0,0]]]) convolved = signal.convolve(mask, convolutionmask, mode='same') filtermask = np.reshape(np.array([[0,1,0],[1,0,1],[0,1,0]]), (3,3,1)) filtermaskcorner = np.reshape(np.array([[1,1,1],[1,1,1],[1,1,1]]), (3,3,1)) filtercopy = median_filter(np.copy(self.data), footprint=filtermask) corners = [(0, 0), (0, -1), (-1, -1), (-1, 0)] for cc in corners: filtercopy[cc][convolved[cc] >= 2] = median_filter(np.copy(self.data), footprint=filtermaskcorner)[cc][convolved[cc] >= 2] convolved[cc][convolved[cc] >= 2] = 4 spike_free = filtercopy*(convolved >= 3) + self.data*(convolved < 3) spike_free = CLSpectrumImage(spike_free, self.SpectrumRange, self.spectrum_units, self.calibration) i = np.where(convolved > 3) return spike_free class EELSSpectrumImage(SpectrumImage): def __init__(self, SI, SpectrumRange=None, channel_eV=None, dispersion=0.005, ZLP=False, spectrum_units='eV', calibration=0, metadata=None): super(EELSSpectrumImage, self).__init__(SI, spectrum_units, calibration) '''intensity: 3D array SpectrumRange: 1D array of same length as energy axis channel_eV: 2 element array [channel #, eV value] dispersion: real number, width of each channel, must be provided if SpectrumRange is not, default is 5meV ZLP: Boolean - True=ZLP is present units: string, for plot axis ''' if ZLP: if not isinstance(dispersion, numbers.Real): raise ValueError('Dispersion needs to be a real number!') if SpectrumRange is not None: raise ValueError("You don't need to define a SpectrumRange and ZLP/dispersion!") self.ZLP = self.FindZLP(self.data) self.dispersion = dispersion self.SpectrumRange = np.arange(0 - self.ZLP, self.size[2] - self.ZLP) * self.dispersion elif SpectrumRange is not None: if len(SpectrumRange) != self.size[2]: raise ValueError("Your SpectrumRange is not the same size as your energy axis!") self.SpectrumRange = SpectrumRange self.dispersion = SpectrumRange[1] - SpectrumRange[0] if np.min(SpectrumRange) < 0 and np.max(SpectrumRange) > 0: self.ZLP = self.FindZLP(self.data) elif channel_eV: if len(channel_eV) != 2: raise ValueError('channel_eV must have length 2!') if not isinstance(dispersion, numbers.Real): raise ValueError('Dispersion needs to be a real number!') eV0 = channel_eV[1] - channel_eV[0] * dispersion self.SpectrumRange = np.linspace( eV0, eV0 + (self.size[2] - 1) * dispersion, self.size[2] ) self.dispersion = dispersion else: raise ValueError('You need to input an energy calibration!') self.metadata = metadata self.unit_label = 'Energy' self.secondary_units = 'nm' self.secondary_unit_label = 'Wavelength' self.spectrum_unit_label = 'Energy' # self.spectrum_secondary_units = 'nm' # self.spectrum_secondary_unit_label = 'Wavelength' @classmethod def LoadFromDM3(cls, filename, spectrum_calibrated = True): SI, metadata = import_EELS_dm3(filename) dispersion = float(metadata['root']['ImageList']['1']['ImageData']['Calibrations']['Dimension']['2']['Scale']) # drifttube = float(metadata['root']['ImageList']['1']['ImageTags']['EELS']['Acquisition']['Spectrometer']['Energy loss (eV)']) zero = float(metadata['root']['ImageList']['1']['ImageData']['Calibrations']['Dimension']['2']['Origin']) if zero >= 0: ZLP = True else: ZLP = False if spectrum_calibrated is True: channel_eV = [0, -zero * dispersion] else: channel_eV = None return cls(SI = SI, dispersion = dispersion, ZLP = ZLP, channel_eV = channel_eV, metadata = metadata) @staticmethod def FindZLP(data): ZLP = int(stats.mode(np.argmax(data, axis = -1), axis=None)[0]) return ZLP def FindZLPArray(self): ZLParray = np.argmax(self.data, axis=2) return ZLParray def AlignZLP(self): aligned = self.AlignChannel(self.FindZLPArray()) return aligned def ExtractSpectrum(self, mask3D): extractedspectrum = Spectrum.EELSSpectrum( np.mean(np.mean( np.ma.masked_array(self.data, mask3D), axis = 0), axis = 0), SpectrumRange = self.SpectrumRange, units = self.spectrum_units) return extractedspectrum def Threshold(self, threshold): '''To mask out pixels with very little signal''' thrmask = np.less(self.data.data[:, :, self.ZLP], threshold) # self.thrmask = np.reshape(thrmask, (np.append(np.shape(thrmask), 1))) * np.ones(np.shape(self.data)) self.data.mask = np.reshape(thrmask, (np.append(np.shape(thrmask), 1))) * np.ones(np.shape(self.data)) def InvertThreshold(self): self.data.mask = np.invert(self.data.mask) def Normalize(self): '''Normalize data to integral''' self.normfactor = np.sum(self.data, axis=2, keepdims=True) data_norm = self.data/self.normfactor return data_norm def AlignChannel(self, indices): ''' Input: indices=a 2D array of the same shape as the image dimensions containing the indices of where the desired channel is currently in the SI''' channelmax = np.max(np.max(indices)) channelmin = np.min(np.min(indices)) index1, index2 = np.meshgrid(range(self.size[0]), range(self.size[1])) index1 = np.expand_dims(np.transpose(index1), axis=2) index2 = np.expand_dims(np.transpose(index2), axis=2) index3 = np.expand_dims(np.expand_dims(range(self.size[2]) + channelmax, axis=0), axis=0) -
np.expand_dims(indices, axis=2)
numpy.expand_dims
''' check the heatmap for ant multi ''' import joblib import os from os import path as osp import numpy as np from rlkit.core.vistools import plot_2dhistogram def plot_expert_heatmap(data_path, target0, num_targets, num_bins, title, save_path, rel_pos_version=True, ax_lims=None): assert rel_pos_version d = joblib.load(data_path) mean, std = d['obs_mean'][:,-2*num_targets:-2*num_targets+2], d['obs_std'][:,-2*num_targets:-2*num_targets+2] buffer = d['train'] print(buffer._size) xy_pos = buffer._observations[:buffer._size][:,-2*num_targets:-2*num_targets+2] xy_pos = xy_pos * std + mean xy_pos = target0 - xy_pos plot_2dhistogram(xy_pos[:,0], xy_pos[:,1], num_bins, title, save_path, ax_lims=ax_lims) if __name__ == '__main__': save_dir = 'plots/junk_vis/heat_maps_for_ant_multi/' # data_path = '/scratch/hdd001/home/kamyar/expert_demos/norm_rel_pos_obs_ant_multi_4_directions_4_distance_32_det_demos_per_task_no_sub_path_len_75' data_path = '/scratch/hdd001/home/kamyar/expert_demos/norm_rel_pos_obs_ant_multi_4_directions_4_distance_32_det_demos_per_task_no_sub_path_terminates_within_0p5_of_target' data_path = osp.join(data_path, 'extra_data.pkl') plot_expert_heatmap( data_path,
np.array([4.0, 0.0])
numpy.array
import numpy as np import matplotlib.pyplot as plt import stan_utils as stan from mpl_utils import (mpl_style, common_limits) plt.style.use(mpl_style) def generate_data(N, M, D, scales=None, seed=None): """ Generate some toy data to play with. Here we assume all :math:`N` stars have been observed by all :math:`M` surveys. :param N: The number of stars observed. :param M: The number of surveys. :param D: The dimensionality of the label space. :param scales: [optional] Optional values to provide for the relative scales on the latent factors. :param seed: [optional] An optional seed to provide to the random number generator. :returns: A two-length tuple containing the data :math:`y` and a dictionary with the true values. """ if seed is not None: np.random.seed(seed) if scales is None: scales = np.abs(np.random.normal(0, 1, size=D)) else: scales = np.array(scales) assert len(scales) == D X = np.random.normal( np.zeros(D), scales, size=(N, D)) # TODO: Better way to randomly generate positive semi-definite covariance # matrices that are *very* close to an identity matrix. # Use decomposition to ensure the resulting covariance matrix is positive # semi-definite. L = np.random.randn(M, D, D) L[:, np.arange(D), np.arange(D)] = np.exp(L[:, np.arange(D), np.arange(D)]) i, j = np.triu_indices_from(L[0], 1) L[:, i, j] = 0.0 # TODO: use matrix multiplication you idiot theta = np.array([np.dot(L[i], L[i].T) for i in range(M)]) y = np.dot(X, theta) # add noise. phi = np.abs(np.random.normal(0, 0.1, size=(M, D))) rank = np.random.normal(0, 1, size=y.shape) noise = scales * rank * phi y += noise truths = dict(X=X, theta=theta, phi=phi, scales=scales, L=L, noise=noise) return (y, truths) N, M, D = (250, 10, 5) scales =
np.ones(D)
numpy.ones
"""Methods related to the {2, 2} Danilov distribution envelope model. References ---------- [1] https://doi.org/10.1103/PhysRevSTAB.6.094202 [2] https://doi.org/10.1103/PhysRevAccelBeams.24.044201 """ from __future__ import print_function import time import copy import numpy as np import numpy.linalg as la import scipy.optimize as opt from tqdm import trange from tqdm import tqdm from bunch import Bunch from orbit.twiss import twiss from orbit.twiss import bogacz_lebedev as bl from orbit.utils import helper_funcs as hf from orbit.utils.consts import mass_proton from orbit.utils.consts import pi from orbit.utils.general import tprint # Define bounds on 4D Twiss parameters. pad = 1e-5 alpha_min, alpha_max = -np.inf, np.inf beta_min, beta_max = pad, np.inf nu_min, nu_max = pad, pi - pad u_min, u_max = pad, 1 - pad TWISS4D_LB = (alpha_min, alpha_min, beta_min, beta_min, u_min, nu_min) TWISS4D_UB = (alpha_max, alpha_max, beta_max, beta_max, u_max, nu_max) def moment_vector(Sigma): """Return array of 10 unique elements of covariance matrix.""" return Sigma[np.triu_indices(4)] class DanilovEnvelope: """Class for the beam envelope of the Danilov distribution. Attributes ---------- params : ndarray, shape (8,) The envelope parameters [a, b, a', b', e, f, e', f']. The coordinates of a particle on the beam envelope are parameterized as x = a*cos(psi) + b*sin(psi), x' = a'*cos(psi) + b'*sin(psi), y = e*cos(psi) + f*sin(psi), y' = e'*cos(psi) + f'*sin(psi), where 0 <= psi <= 2pi. eps_l : float The nonzero rms intrinsic emittance of the beam (eps_1 or eps_2) [m*rad]. mode : int Whether to choose eps_2 = 0 (mode 1) or eps_1 = 0 (mode 2). This amounts to choosing the sign of the transverse angular momentum. eps_x_frac : float ex = eps_x_frac * eps mass : float Mass per particle [GeV/c^2]. kin_energy : float Kinetic energy per particle [GeV]. intensity : float Number of particles in the bunch represented by the envelope. length : float Bunch length [m]. perveance : float Dimensionless beam perveance. """ def __init__(self, eps_l=1., mode=1, eps_x_frac=0.5, mass=mass_proton, kin_energy=1.0, length=1.0, intensity=0.0, params=None): self.eps_l = eps_l self.mode = mode self.eps_x_frac, self.ey_frac = eps_x_frac, 1.0 - eps_x_frac self.mass = mass self.kin_energy = kin_energy self.length = length self.set_intensity(intensity) if params is None: eps_x = eps_x_frac * eps_l eps_y = (1.0 - eps_x_frac) * eps_l rx, ry = np.sqrt(4 * eps_x), np.sqrt(4 * eps_y) if mode == 1: self.params = np.array([rx, 0, 0, rx, 0, -ry, +ry, 0]) elif mode == 2: self.params = np.array([rx, 0, 0, rx, 0, +ry, -ry, 0]) else: self.params = np.array(params) eps_x, eps_y = self.apparent_emittances() self.eps_l = eps_x + eps_y self.eps_x_frac = eps_x / self.eps_l def copy(self): """Produced a deep copy of the envelope.""" return copy.deepcopy(self) def set_intensity(self, intensity): """Set beam intensity and re-calculate perveance.""" self.intensity = intensity self.line_density = intensity / self.length self.perveance = hf.get_perveance(self.mass, self.kin_energy, self.line_density) def set_length(self, length): """Set beam length and re-calculate perveance.""" self.length = length self.set_intensity(self.intensity) def get_params_for_dim(self, dim='x'): """Return envelope parameters associated with the given dimension.""" a, b, ap, bp, e, f, ep, fp = self.params return {'x':(a, b), 'y':(e, f), 'xp':(ap, bp), 'yp': (ep, fp)}[dim] def matrix(self): """Create the envelope matrix P from the envelope parameters. The matrix is defined by x = P.c, where x = [x, x', y, y']^T, c = [cos(psi), sin(psi)], and '.' means matrix multiplication, with 0 <= psi <= 2pi. This is useful because any transformation to the particle coordinate vector x also done to P. For example, if x -> M x, then P -> M P. """ a, b, ap, bp, e, f, ep, fp = self.params return np.array([[a, b], [ap, bp], [e, f], [ep, fp]]) def to_vec(self, P): """Return list of envelope parameters from envelope matrix.""" return P.ravel() def get_norm_mat_2D(self, inv=False): """Return normalization matrix V (x-x' and y-y' become circles).""" V = twiss.V_matrix_4x4_uncoupled(*self.twiss2D()) return la.inv(V) if inv else V def norm2D(self, scale=False): """Normalize x-x' and y-y' ellipses and return the envelope parameters. The x-x' and y-y' ellipses will be circles of radius sqrt(eps_x) and sqrt(eps_y), where eps_x and eps_y are the rms apparent emittances. If `scale` is True, they will be unit circles. """ self.transform(self.get_norm_mat_2D(inv=True)) if scale: ex, ey = 4 * self.apparent_emittances() self.params[:4] /= np.sqrt(ex) self.params[4:] /= np.sqrt(ey) return self.params def normed_params_2D(self): """Return the normalized envelope parameters in the 2D sense without actually changing the envelope.""" true_params = np.copy(self.params) normed_params = self.norm2D() self.params = true_params return normed_params def norm4D(self): """Normalize the envelope parameters in the 4D sense. In the transformed coordates the covariance matrix is diagonal, and the x-x' and y-y' emittances are the intrinsic emittances. """ r_n = np.sqrt(4 * self.eps_l) if self.mode == 1: self.params = np.array([r_n, 0, 0, r_n, 0, 0, 0, 0]) elif self.mode == 2: self.params = np.array([0, 0, 0, 0, 0, r_n, r_n, 0]) def transform(self, M): """Apply matrix M to the coordinates.""" self.params = np.matmul(M, self.matrix()).ravel() def norm_transform(self, M): """Normalize, then apply M to the coordinates.""" self.norm4D() self.transform(M) def advance_phase(self, mux=0., muy=0.): """Advance the x{y} phase by mux{muy} degrees. It is equivalent to tracking through an uncoupled lattice which the envelope is matched to. """ mux, muy = np.radians([mux, muy]) V = self.get_norm_mat_2D() M = la.multi_dot([V, twiss.phase_adv_matrix(mux, muy), la.inv(V)]) self.transform(M) def rotate(self, phi): """Apply clockwise rotation by phi degrees in x-y space.""" self.transform(twiss.rotation_matrix_4D(np.radians(phi))) def tilt_angle(self, x1='x', x2='y'): """Return ccw angle of ellipse in x1-x2 plane.""" a, b = self.get_params_for_dim(x1) e, f = self.get_params_for_dim(x2) return 0.5 * np.arctan2(2*(a*e + b*f), a**2 + b**2 - e**2 - f**2) def radii(self, x1='x', x2='y'): """Return semi-major and semi-minor axes of ellipse in x1-x2 plane.""" a, b = self.get_params_for_dim(x1) e, f = self.get_params_for_dim(x2) phi = self.tilt_angle(x1, x2) sin, cos = np.sin(phi),
np.cos(phi)
numpy.cos
# -*- coding: utf-8 -*- """ Created on Sat Mar 20 20:50:15 2021 @author: dv516 """ import numpy as np import pickle import matplotlib.pyplot as plt import pyro pyro.enable_validation(True) # can help with debugging pyro.set_rng_seed(1) from algorithms.PyBobyqa_wrapped.Wrapper_for_pybobyqa import PyBobyqaWrapper from algorithms.Bayesian_opt_Pyro.utilities_full import BayesOpt from algorithms.nesterov_random.nesterov_random import nesterov_random from algorithms.simplex.simplex_method import simplex_method from algorithms.CUATRO.CUATRO import CUATRO from algorithms.Finite_differences.Finite_differences import finite_Diff_Newton from algorithms.Finite_differences.Finite_differences import Adam_optimizer from algorithms.Finite_differences.Finite_differences import BFGS_optimizer from algorithms.SQSnobfit_wrapped.Wrapper_for_SQSnobfit import SQSnobFitWrapper from algorithms.DIRECT_wrapped.Wrapper_for_Direct import DIRECTWrapper from case_studies.RTO.systems import * def trust_fig(X, Y, Z, g1, g2): fig = plt.figure() ax = fig.add_subplot() ax.contour(X, Y, Z, 50) ax.contour(X, Y, g1, levels = [0], colors = 'black') ax.contour(X, Y, g2, levels = [0], colors = 'black') return ax, fig def average_from_list(solutions_list): N = len(solutions_list) f_best_all = np.zeros((N, 100)) for i in range(N): f_best = np.array(solutions_list[i]['f_best_so_far']) x_ind = np.array(solutions_list[i]['samples_at_iteration']) for j in range(100): ind = np.where(x_ind <= j+1) if len(ind[0]) == 0: f_best_all[i, j] = f_best[0] else: f_best_all[i, j] = f_best[ind][-1] f_median = np.median(f_best_all, axis = 0) # f_av = np.average(f_best_all, axis = 0) # f_std = np.std(f_best_all, axis = 0) f_min = np.min(f_best_all, axis = 0) f_max = np.max(f_best_all, axis = 0) return f_best_all, f_median, f_min, f_max def fix_starting_points(complete_list, x0, init_out, only_starting_point = False): if only_starting_point: for i in range(len(complete_list)): dict_out = complete_list[i] f_arr = dict_out['f_best_so_far'] N_eval = len(f_arr) g_arr = dict_out['g_best_so_far'] dict_out['x_best_so_far'][0] = np.array(x0) dict_out['f_best_so_far'][0] = init_out[0] dict_out['g_best_so_far'][0] = np.array(init_out[1]) complete_list[i] = dict_out else: for i in range(len(complete_list)): dict_out = complete_list[i] f_arr = dict_out['f_best_so_far'] N_eval = len(f_arr) g_arr = dict_out['g_best_so_far'] dict_out['x_best_so_far'][0] = np.array(x0) dict_out['f_best_so_far'][0] = init_out[0] dict_out['g_best_so_far'][0] = np.array(init_out[1]) for j in range(1, N_eval): if (g_arr[j] > 1e-3).any() or (init_out[0] < f_arr[j]): dict_out['x_best_so_far'][j] = np.array(x0) dict_out['f_best_so_far'][j] = init_out[0] dict_out['g_best_so_far'][j] = np.array(init_out[1]) complete_list[i] = dict_out return complete_list def medianx_from_list(solutions_list, x0): N = len(solutions_list) _, N_x = np.array(solutions_list[0]['x_best_so_far']).shape f_best_all =
np.zeros((N, 100))
numpy.zeros
# ****************************************************************************** # Copyright 2017-2018 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ****************************************************************************** """ MKL based backend interface and tensor data structure. """ from __future__ import division from builtins import zip import logging from neon.backends import layer_mkl from neon.backends.util.check_mkl import get_mkl_lib from neon.backends.nervanacpu import CPUTensor, NervanaCPU, CustomNumpy import ctypes from cffi import FFI from ctypes import c_longlong, c_float, c_double, c_int import numpy as np from neon.backends import math_cpu from neon.backends.backend import OpTreeNode import os import sys _none_slice = slice(None, None, None) logger = logging.getLogger(__name__) # TODO: enable this flag to find numerical problems # np.seterr(all='raise') class MKLTensor(CPUTensor): """ MKLTensor, special for MKL Backend """ _tensor = None def __init__(self, backend, shape=None, dtype=np.float32, ary=None, name=None, persist_values=True, base=None): super(MKLTensor, self).__init__(backend, shape, dtype, ary, name, persist_values, base) # add 4 address for cpu layout and buffer, mkl layout and buffer self.primitive = np.zeros((4), dtype=np.uint64) if ary is not None: self.primitive[1] = self._tensor.ctypes.data self.shape5D = None def get_prim(self): return c_longlong(self.primitive.ctypes.data) def clean_mkl(self): self.primitive[2] = 0 self.primitive[3] = 0 def set_mkl(self, tensor): self.primitive[0] = tensor.primitive[0] self.primitive[2] = tensor.primitive[2] self.primitive[3] = tensor.primitive[3] self.shape5D = tensor.shape5D def __str__(self): """ Returns a string representation of this Tensor. Returns: str: the representation. """ if self._tensor.base is not None: base_id = id(self._tensor.base) else: base_id = id(self._tensor) return ("MKLTensor(base 0x%x) name:%s shape:%s dtype:%s strides:%s" " is_c_contiguous:%s" % (base_id, self.name, self.shape, self.dtype, self._tensor.strides, self._tensor.flags.c_contiguous)) def get(self): """ Return the array. """ self.backend.convert(self) return self._tensor.copy() def reshape(self, *shape): """ Return a reshaped view. """ newTensor = super(MKLTensor, self).reshape(*shape) newTensor.set_mkl(self) return newTensor def _assign_right_to_left(left, right): math_cpu.blas_copy(left, right) # how to overlaod numpy_call_dict? numpy_call_dict_mkl = { # assign "assign": _assign_right_to_left, # zero_operand ops # unary ops "neg": lambda left: math_cpu.neg(left), "abs": lambda left: np.abs(left), "sgn": lambda left: np.sign(left), "sqrt": lambda left: math_cpu.sqrt(left), "sqr": lambda left: math_cpu.square(left), "exp": lambda left: math_cpu.exp(left), "log": lambda left: math_cpu.log(left), "safelog": lambda left: math_cpu.safelog(left), "exp2": lambda left: np.exp2(left), "log2": lambda left: np.log2(left), "sig": lambda left: 1. / (1. + np.exp(-left)), "sig2": lambda left: 1. / (1. + np.exp2(-left)), "tanh": lambda left: np.tanh(left), "tanh2": lambda left: (np.exp2(2. * left) - 1.) / (
np.exp2(2. * left)
numpy.exp2
""" Modules for numpy.where to make it more IDL-like. """ from __future__ import print_function import numpy as np def andwhere(data, val1, test1, val2=None, test2=None, return_indices=False): """ Performs an 'and' where search, i.e., where(input > 3 and input < 4). Using the parameter names, where(data test1 val1 and data test2 val2). Can also do a single test, i.e., where(input > 3). Example ------- To check data > 1.1 and data < 2.5, > out = where(data=[1,2,3], val1=1.1, test1='>', val2='2.5', test2='<') > print(out) [1] # index > print(data[out]) [2] # value at index 1 Parameters ---------- data : list or array val1 : int, float, or str First value you wish to check 'data' against. test1 : str Either '<', '>', '<=', '>=', or '=='. val2 : Second value you wish to check 'data' against. test2 : str Either '<', '>', '<=', '>=', or '=='. return_indices : {True, False} If True, returns only the indices of valid 'data' entries. If False, returns only the values of 'data' corresponding to those entries. Returns ------- If 'return_indices' is False, data_cut<1/2> : array The 'data' array cut down by the testing parameters. If 'return_indices' is True: The index array of 'data' corresponding to items cut down by the testing parameters. """ # Transform the list to numpy array. data = np.array(data) # Transform the first equality tests. if test1 == '<': indices1 = np.where(data < val1)[0] elif test1 == '>': indices1 = np.where(data > val1)[0] elif test1 == '<=': indices1 = np.where(data <= val1)[0] elif test1 == '>=': indices1 = np.where(data >= val1)[0] elif test1 == '==': indices1 = np.where(data >= val1)[0] else: print("Invalid equality check, {}".format(test1)) data_cut1 = data[indices1] # If only one equality check entered, finish. if val2 == None and test2 == None: if return_indices: return indices1 else: return data_cut1 # If a second check was entered, continue # Transform the second equality tests. if test2 == '<': indices2 = np.where(data_cut1 < val2)[0] elif test2 == '>': indices2 =
np.where(data_cut1 > val2)
numpy.where
""" desisim.templates ================= Functions to simulate spectral templates for DESI. """ from __future__ import division, print_function import os import sys import numpy as np import multiprocessing from desiutil.log import get_logger, DEBUG from desisim.io import empty_metatable try: from scipy import constants C_LIGHT = constants.c/1000.0 except TypeError: # This can happen during documentation builds. C_LIGHT = 299792458.0/1000.0 def _check_input_meta(input_meta, ignore_templateid=False): log = get_logger() cols = input_meta.colnames if ignore_templateid: required_cols = ('SEED', 'REDSHIFT', 'MAG', 'MAGFILTER') else: required_cols = ('TEMPLATEID', 'SEED', 'REDSHIFT', 'MAG', 'MAGFILTER') if not np.all(np.in1d(required_cols, cols)): log.warning('Input metadata table (input_meta) is missing one or more required columns {}'.format( required_cols)) raise ValueError def _check_star_properties(star_properties, WD=False): log = get_logger() cols = star_properties.colnames required_cols = ['REDSHIFT', 'MAG', 'MAGFILTER', 'TEFF', 'LOGG'] if not WD: required_cols = required_cols + ['FEH'] if not np.all(np.in1d(required_cols, cols)): log.warning('Input star_properties is missing one or more required columns {}'.format( required_cols)) raise ValueError class EMSpectrum(object): """Construct a complete nebular emission-line spectrum. Read the requisite external data files and initialize the output wavelength array. The desired output wavelength array can either by passed directly using LOG10WAVE (note: must be a log-base10, i.e., constant-velocity pixel array!) or via the MINWAVE, MAXWAVE, and CDELT_KMS arguments. In addition, three data files are required: ${DESISIM}/data/recombination_lines.escv, ${DESISIM}/data/forbidden_lines.esv, and ${DESISIM}/data/forbidden_mog.fits. TODO (@moustakas): Incorporate AGN-like emission-line ratios. TODO (@moustakas): Think about how to best include dust attenuation in the lines. Args: minwave (float, optional): Minimum value of the output wavelength array [Angstrom, default 3600]. maxwave (float, optional): Minimum value of the output wavelength array [Angstrom, default 10000]. cdelt_kms (float, optional): Spacing of the output wavelength array [km/s, default 20]. log10wave (numpy.ndarray, optional): Input/output wavelength array (log10-Angstrom, default None). include_mgii (bool, optional): Include Mg II in emission (default False). Attributes: log10wave (numpy.ndarray): Wavelength array constructed from the input arguments. line (astropy.Table): Table containing the laboratoy (vacuum) wavelengths and nominal line-ratios for several dozen forbidden and recombination nebular emission lines. forbidmog (GaussianMixtureModel): Table containing the mixture of Gaussian parameters encoding the forbidden emission-line priors. oiiidoublet (float32): Intrinsic [OIII] 5007/4959 doublet ratio (set by atomic physics). niidoublet (float32): Intrinsic [NII] 6584/6548 doublet ratio (set by atomic physics). Raises: IOError: If the required data files are not found. """ def __init__(self, minwave=3650.0, maxwave=7075.0, cdelt_kms=20.0, log10wave=None, include_mgii=False): from pkg_resources import resource_filename from astropy.table import Table, Column, vstack from desiutil.sklearn import GaussianMixtureModel log = get_logger() # Build a wavelength array if one is not given. if log10wave is None: cdelt = cdelt_kms/C_LIGHT/np.log(10) # pixel size [log-10 A] npix = int(round((np.log10(maxwave)-np.log10(minwave))/cdelt))+1 self.log10wave = np.linspace(np.log10(minwave), np.log10(maxwave), npix) else: self.log10wave = log10wave # Read the files which contain the recombination and forbidden lines. recombfile = resource_filename('desisim', 'data/recombination_lines.ecsv') forbidfile = resource_filename('desisim', 'data/forbidden_lines.ecsv') forbidmogfile = resource_filename('desisim','data/forbidden_mogs.fits') if not os.path.isfile(recombfile): log.fatal('Required data file {} not found!'.format(recombfile)) raise IOError if not os.path.isfile(forbidfile): log.fatal('Required data file {} not found!'.format(forbidfile)) raise IOError if not os.path.isfile(forbidmogfile): log.fatal('Required data file {} not found!'.format(forbidmogfile)) raise IOError recombdata = Table.read(recombfile, format='ascii.ecsv', guess=False) forbiddata = Table.read(forbidfile, format='ascii.ecsv', guess=False) self.include_mgii = include_mgii if not self.include_mgii: forbiddata.remove_rows(np.where(forbiddata['name'] == 'MgII_2800a')[0]) forbiddata.remove_rows(np.where(forbiddata['name'] == 'MgII_2800b')[0]) line = vstack([recombdata,forbiddata], metadata_conflicts='silent') nline = len(line) line['flux'] = Column(np.ones(nline), dtype='f8') # integrated line-flux line['amp'] = Column(np.ones(nline), dtype='f8') # amplitude self.line = line[np.argsort(line['wave'])] self.forbidmog = GaussianMixtureModel.load(forbidmogfile) self.oiiidoublet = 2.8875 # [OIII] 5007/4959 self.niidoublet = 2.93579 # [NII] 6584/6548 self.oidoublet = 3.03502 # [OI] 6300/6363 self.siiidoublet = 2.4686 # [SIII] 9532/9069 self.ariiidoublet = 4.16988 # [ArIII] 7135/7751 self.mgiidoublet = 1.0 # MgII 2803/2796 def spectrum(self, oiiihbeta=None, oiihbeta=None, niihbeta=None, siihbeta=None, oiidoublet=0.73, siidoublet=1.3, linesigma=75.0, zshift=0.0, oiiflux=None, hbetaflux=None, seed=None): """Build the actual emission-line spectrum. Building the emission-line spectrum involves three main steps. First, the oiiihbeta, oiihbeta, and niihbeta emission-line ratios are either drawn from the empirical mixture of Gaussians (recommended!) or input values are used to construct the line-ratios of the strongest optical forbidden lines relative to H-beta. Note that all three of oiiihbeta, oiihbeta, and niihbeta must be specified simultaneously in order for them to be used. Second, the requested [OII] 3726,29 and [SII] 6716,31 doublet ratios are imposed. And finally the full emission-line spectrum is self-consistently normalized to *either* an integrated [OII] 3726,29 line-flux *or* an integrated H-beta line-flux. Generally an ELG and LRG spectrum will be normalized using [OII] while the a BGS spectrum will be normalized using H-beta. Note that the H-beta normalization trumps the [OII] normalization (in the case that both are given). TODO (@moustakas): Add a suitably scaled nebular continuum spectrum. TODO (@moustakas): Add more emission lines (e.g., [NeIII] 3869). Args: oiiihbeta (float, optional): Desired logarithmic [OIII] 5007/H-beta line-ratio (default -0.2). A sensible range is [-0.5,0.2]. oiihbeta (float, optional): Desired logarithmic [OII] 3726,29/H-beta line-ratio (default 0.1). A sensible range is [0.0,0.4]. niihbeta (float, optional): Desired logarithmic [NII] 6584/H-beta line-ratio (default -0.2). A sensible range is [-0.6,0.0]. siihbeta (float, optional): Desired logarithmic [SII] 6716/H-beta line-ratio (default -0.3). A sensible range is [-0.5,0.2]. oiidoublet (float, optional): Desired [OII] 3726/3729 doublet ratio (default 0.73). siidoublet (float, optional): Desired [SII] 6716/6731 doublet ratio (default 1.3). linesigma (float, optional): Intrinsic emission-line velocity width/sigma (default 75 km/s). A sensible range is [30-150]. zshift (float, optional): Perturb the emission lines from their laboratory (rest) wavelengths by a factor 1+ZSHIFT (default 0.0). Use with caution! oiiflux (float, optional): Normalize the emission-line spectrum to this integrated [OII] emission-line flux (default None). hbetaflux (float, optional): Normalize the emission-line spectrum to this integrated H-beta emission-line flux (default None). seed (int, optional): input seed for the random numbers. Returns: Tuple of (emspec, wave, line), where emspec is an Array [npix] of flux values [erg/s/cm2/A]; wave is an Array [npix] of vacuum wavelengths corresponding to FLUX [Angstrom, linear spacing]; line is a Table of emission-line parameters used to generate the emission-line spectrum. """ from astropy.table import Table rand = np.random.RandomState(seed) line = self.line.copy() nline = len(line) # Convenience variables. is4959 = np.where(line['name'] == '[OIII]_4959')[0] is5007 = np.where(line['name'] == '[OIII]_5007')[0] is6548 = np.where(line['name'] == '[NII]_6548')[0] is6584 = np.where(line['name'] == '[NII]_6584')[0] is6716 = np.where(line['name'] == '[SII]_6716')[0] is6731 = np.where(line['name'] == '[SII]_6731')[0] #is3869 = np.where(line['name'] == '[NeIII]_3869')[0] is3726 = np.where(line['name'] == '[OII]_3726')[0] is3729 = np.where(line['name'] == '[OII]_3729')[0] is6300 = np.where(line['name'] == '[OI]_6300')[0] is6363 = np.where(line['name'] == '[OI]_6363')[0] is9532 = np.where(line['name'] == '[SIII]_9532')[0] is9069 = np.where(line['name'] == '[SIII]_9069')[0] is7135 = np.where(line['name'] == '[ArIII]_7135')[0] is7751 = np.where(line['name'] == '[ArIII]_7751')[0] # Draw from the MoGs for forbidden lines. if oiiihbeta is None or oiihbeta is None or niihbeta is None or siihbeta is None: oiiihbeta, oiihbeta, niihbeta, siihbeta = \ self.forbidmog.sample(random_state=rand)[0] # Normalize [OIII] 4959, 5007. line['ratio'][is5007] = 10**oiiihbeta # [OIII]/Hbeta line['ratio'][is4959] = line['ratio'][is5007]/self.oiiidoublet # Normalize [NII] 6548,6584. line['ratio'][is6584] = 10**niihbeta # [NII]/Hbeta line['ratio'][is6548] = line['ratio'][is6584]/self.niidoublet # Normalize [SII] 6716,6731. line['ratio'][is6716] = 10**siihbeta # [SII]/Hbeta line['ratio'][is6731] = line['ratio'][is6716]/siidoublet # Hack! For the following lines use constant ratios relative to H-beta-- # Normalize [OI] line['ratio'][is6300] = 0.1 # [OI]6300/Hbeta line['ratio'][is6363] = line['ratio'][is6300]/self.oidoublet # Normalize [SIII] line['ratio'][is9532] = 0.75 # [SIII]9532/Hbeta line['ratio'][is9069] = line['ratio'][is9532]/self.siiidoublet # Normalize [ArIII] line['ratio'][is7135] = 0.04 # [ArIII]7135/Hbeta line['ratio'][is7751] = line['ratio'][is7135]/self.ariiidoublet # Normalize MgII if self.include_mgii: is2800a = np.where(line['name'] == 'MgII_2800a')[0] is2800b = np.where(line['name'] == 'MgII_2800b')[0] line['ratio'][is2800a] = 0.3 # MgII2796/Hbeta line['ratio'][is2800a] = line['ratio'][is2800a]/self.mgiidoublet ## Normalize [NeIII] 3869. #coeff = np.asarray([1.0876,-1.1647]) #disp = 0.1 # dex #line['ratio'][is3869] = 10**(np.polyval(coeff,np.log10(oiiihbeta))+ # rand.normal(0.0,disp)) # Normalize [OII] 3727, split into [OII] 3726,3729. factor1 = oiidoublet / (1.0+oiidoublet) # convert 3727-->3726 factor2 = 1.0/(1.0+oiidoublet) # convert 3727-->3729 line['ratio'][is3726] = factor1*10**oiihbeta line['ratio'][is3729] = factor2*10**oiihbeta # Normalize the full spectrum to the desired integrated [OII] 3727 or # H-beta flux (but not both!) if (oiiflux is None) and (hbetaflux is None): line['flux'] = line['ratio'] if (hbetaflux is None) and (oiiflux is not None): for ii in range(nline): line['ratio'][ii] /= line['ratio'][is3729] line['flux'][ii] = oiiflux*factor2*line['ratio'][ii] if (hbetaflux is not None) and (oiiflux is None): for ii in range(nline): line['flux'][ii] = hbetaflux*line['ratio'][ii] if (hbetaflux is not None) and (oiiflux is not None): log.warning('Both hbetaflux and oiiflux were given; using hbetaflux.') for ii in range(nline): line['flux'][ii] = hbetaflux*line['ratio'][ii] # Finally build the emission-line spectrum log10sigma = linesigma /C_LIGHT / np.log(10) # line-width [log-10 Angstrom] emspec = np.zeros_like(self.log10wave) loglinewave = np.log10(line['wave']) these = np.where( (loglinewave > self.log10wave.min()) * (loglinewave < self.log10wave.max()) )[0] if len(these) > 0: theseline = line[these] for ii in range(len(theseline)): amp = theseline['flux'][ii] / theseline['wave'][ii] / np.log(10) # line-amplitude [erg/s/cm2/A] thislinewave = np.log10(theseline['wave'][ii] * (1.0 + zshift)) theseline['amp'][ii] = amp / (np.sqrt(2.0 * np.pi) * log10sigma) # [erg/s/A] # Construct the spectrum [erg/s/cm2/A, rest] jj = np.abs( self.log10wave - thislinewave ) < 6 * log10sigma emspec[jj] += amp * np.exp(-0.5 * (self.log10wave[jj]-thislinewave)**2 / log10sigma**2) \ / (np.sqrt(2.0 * np.pi) * log10sigma) else: theseline = Table() return emspec, 10**self.log10wave, theseline class GALAXY(object): """Base class for generating Monte Carlo spectra of the various flavors of galaxies (ELG, BGS, and LRG). """ def __init__(self, objtype='ELG', minwave=3600.0, maxwave=10000.0, cdelt=0.2, wave=None, transient=None, tr_fluxratio=(0.01, 1.), tr_epoch=(-10,10), include_mgii=False, colorcuts_function=None, normfilter_north='BASS-r', normfilter_south='decam2014-r', normline='OII', fracvdisp=(0.1, 40), baseflux=None, basewave=None, basemeta=None): """Read the appropriate basis continuum templates, filter profiles and initialize the output wavelength array. Note: Only a linearly-spaced output wavelength array is currently supported. TODO (@moustakas): Incorporate size and morphological properties. Args: objtype (str): object type (default 'ELG') minwave (float, optional): minimum value of the output wavelength array (default 3600 Angstrom). maxwave (float, optional): minimum value of the output wavelength array (default 10000 Angstrom). cdelt (float, optional): spacing of the output wavelength array (default 2 Angstrom/pixel). wave (numpy.ndarray): Input/output observed-frame wavelength array, overriding the minwave, maxwave, and cdelt arguments (Angstrom). colorcuts_function (function name): Function to use to select templates that pass the color-cuts for the specified objtype Note that this argument can also be a tuple of more than one selection function to apply (e.g., desitarget.cuts.isBGS_faint and desitarget.cuts.isBGS_bright) which will be applied in sequence (default None). normfilter_north (str): normalization filter for simulated "north" templates. Each spectrum is normalized to the magnitude in this filter bandpass (default 'BASS-r'). normfilter_south (str): corresponding normalization filter for "south" (default 'decam2014-r'). normline (str): normalize the emission-line spectrum to the flux in this emission line. The options are 'OII' (for ELGs, the default), 'HBETA' (for BGS), or None (for LRGs). fracvdisp (tuple): two-element array which gives the fraction and absolute number of unique velocity dispersion values. For example, the default (0.1, 40) means there will be either int(0.1*nmodel) or 40 unique values, where nmodel is defined in GALAXY.make_galaxy_templates, below. transient (Transient, None): optional Transient object to integrate into the spectrum (default None). tr_fluxratio (tuple): optional flux ratio range for transient and host spectrum. Default is (0.01, 1). tr_epoch (tuple): optional epoch range for uniformly sampling a transient spectrum, in days. Default is (-10, 10). include_mgii (bool, optional): Include Mg II in emission (default False). Attributes: wave (numpy.ndarray): Output wavelength array (Angstrom). baseflux (numpy.ndarray): Array [nbase,npix] of the base rest-frame continuum spectra (erg/s/cm2/A). basewave (numpy.ndarray): Array [npix] of rest-frame wavelengths corresponding to BASEFLUX (Angstrom). basemeta (astropy.Table): Table of meta-data [nbase] for each base template. pixbound (numpy.ndarray): Pixel boundaries of BASEWAVE (Angstrom). normfilt_north (speclite.filters instance): FilterSequence of self.normfilter_north. normfilt_south (speclite.filters instance): FilterSequence of self.normfilter_south. decamwise (speclite.filters instance): DECam2014-[g,r,z] and WISE2010-[W1,W2] FilterSequence. bassmzlswise (speclite.filters instance): BASS-[g,r], MzLS-z and WISE2010-[W1,W2] FilterSequence. Optional Attributes: sne_baseflux (numpy.ndarray): Array [sne_nbase,sne_npix] of the base rest-frame SNeIa spectra interpolated onto BASEWAVE [erg/s/cm2/A]. sne_basemeta (astropy.Table): Table of meta-data for each base SNeIa spectra [sne_nbase]. rfilt_north (speclite.filters instance): BASS r-band FilterSequence. rfilt_south (speclite.filters instance): DECam2014 r-band FilterSequence. """ from speclite import filters from desisim import pixelsplines as pxs self.objtype = objtype.upper() self.colorcuts_function = colorcuts_function self.normfilter_north = normfilter_north self.normfilter_south = normfilter_south self.normline = normline # Initialize the output wavelength array (linear spacing) unless it is # already provided. if wave is None: npix = int(round((maxwave-minwave) / cdelt))+1 wave = np.linspace(minwave, maxwave, npix) self.wave = wave # Read the rest-frame continuum basis spectra, if not specified. if baseflux is None or basewave is None or basemeta is None: from desisim.io import read_basis_templates baseflux, basewave, basemeta = read_basis_templates(objtype=self.objtype) self.baseflux = baseflux self.basewave = basewave self.basemeta = basemeta # Initialize the EMSpectrum object with the same wavelength array as # the "base" (continuum) templates so that we don't have to resample. if self.normline is not None: if self.normline.upper() not in ('OII', 'HBETA'): log.warning('Unrecognized normline input {}; setting to None.'.format(self.normline)) self.normline = None self.EM = EMSpectrum(log10wave=np.log10(self.basewave), include_mgii=include_mgii) # Optionally access a transient model. self.transient = transient self.trans_fluxratiorange = tr_fluxratio self.trans_epochrange = tr_epoch if self.transient is not None: self.rfilt_north = filters.load_filters('BASS-r') self.rfilt_south = filters.load_filters('decam2014-r') # Pixel boundaries self.pixbound = pxs.cen2bound(basewave) self.fracvdisp = fracvdisp # Initialize the filter profiles. self.normfilt_north = filters.load_filters(self.normfilter_north) self.normfilt_south = filters.load_filters(self.normfilter_south) self.decamwise = filters.load_filters('decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1', 'wise2010-W2') self.bassmzlswise = filters.load_filters('BASS-g', 'BASS-r', 'MzLS-z', 'wise2010-W1', 'wise2010-W2') def _blurmatrix(self, vdisp, log=None): """Pre-compute the blur_matrix as a dictionary keyed by each unique value of vdisp. """ from desisim import pixelsplines as pxs uvdisp = list(set(vdisp)) log.debug('Populating blur matrix with {} unique velocity dispersion values.'.format(len(uvdisp))) if len(uvdisp) > self.fracvdisp[1]: log.warning('Slow code ahead! Consider reducing the number of input velocity dispersion values from {}.'.format( len(uvdisp))) blurmatrix = dict() for uvv in uvdisp: sigma = 1.0 + (self.basewave * uvv / C_LIGHT) blurmatrix[uvv] = pxs.gauss_blur_matrix(self.pixbound, sigma).astype('f4') return blurmatrix def lineratios(self, nobj, oiiihbrange=(-0.5, 0.2), oiidoublet_meansig=(0.73, 0.05), agnlike=False, rand=None): """Get the correct number and distribution of the forbidden and [OII] 3726/3729 doublet emission-line ratios. Note that the agnlike option is not yet supported. Supporting oiiihbrange needs a different (fast) approach. Suppressing the code below for now until it's needed. """ if agnlike: raise NotImplementedError('AGNLIKE option not yet implemented') if rand is None: rand = np.random.RandomState() if oiidoublet_meansig[1] > 0: oiidoublet = rand.normal(oiidoublet_meansig[0], oiidoublet_meansig[1], nobj) else: oiidoublet = np.repeat(oiidoublet_meansig[0], nobj) # Sample from the MoG. This is not strictly correct because it ignores # the prior on [OIII]/Hbeta, but let's revisit that later. samp = self.EM.forbidmog.sample(nobj, random_state=rand) oiiihbeta = samp[:, 0] oiihbeta = samp[:, 1] niihbeta = samp[:, 2] siihbeta = samp[:, 3] return oiidoublet, oiihbeta, niihbeta, siihbeta, oiiihbeta def make_galaxy_templates(self, nmodel=100, zrange=(0.6, 1.6), magrange=(20.0, 22.0), oiiihbrange=(-0.5, 0.2), logvdisp_meansig=(1.9, 0.15), minlineflux=0.0, trans_filter='decam2014-r', seed=None, redshift=None, mag=None, vdisp=None, input_meta=None, nocolorcuts=False, nocontinuum=False, agnlike=False, novdisp=False, south=True, restframe=False, verbose=False): """Build Monte Carlo galaxy spectra/templates. This function chooses random subsets of the basis continuum spectra (for the given galaxy spectral type), constructs an emission-line spectrum (if desired), redshifts, convolves by the intrinsic velocity dispersion, and then finally normalizes each spectrum to a (generated or input) apparent magnitude. In detail, each (output) model gets randomly assigned a continuum (basis) template; however, if that template doesn't pass the (spectral) class-specific color cuts (at the specified redshift), then we iterate through the rest of the templates until we find one that *does* pass the color-cuts. The user also (optionally) has a lot of flexibility over the inputs/outputs and can specify any combination of the redshift, velocity dispersion, and apparent magnitude (in the normalization filter specified in the GALAXY.__init__ method) inputs. Alternatively, the user can pass a complete metadata table, in order to easily regenerate spectra on-the-fly (see the documentation for the input_meta argument, below). Note: The default inputs are generally set to values which are appropriate for ELGs, so be sure to alter them when generating templates for other spectral classes. Args: nmodel (int, optional): Number of models to generate (default 100). zrange (float, optional): Minimum and maximum redshift range. Defaults to a uniform distribution between (0.6, 1.6). magrange (float, optional): Minimum and maximum magnitude in the bandpass specified by self.normfilter_south (if south=True) or self.normfilter_north (if south=False). Defaults to a uniform distribution between (20.0, 22.0). oiiihbrange (float, optional): Minimum and maximum logarithmic [OIII] 5007/H-beta line-ratio. Defaults to a uniform distribution between (-0.5, 0.2). logvdisp_meansig (float, optional): Logarithmic mean and sigma values for the (Gaussian) stellar velocity dispersion distribution. Defaults to log10-sigma=1.9+/-0.15 km/s. minlineflux (float, optional): Minimum emission-line flux in the line specified by self.normline (default 0 erg/s/cm2). trans_filter (str): filter corresponding to TRANS_FLUXRATIORANGE (default 'decam2014-r'). seed (int, optional): Input seed for the random numbers. redshift (float, optional): Input/output template redshifts. Array size must equal nmodel. Ignores zrange input. mag (float, optional): Input/output template magnitudes in the bandpass specified by self.normfilter_south (if south=True) or self.normfilter_north (if south=False). Array size must equal nmodel. Ignores magrange input. vdisp (float, optional): Input/output velocity dispersions in km/s. Array size must equal nmodel. input_meta (astropy.Table): *Input* metadata table with the following required columns: TEMPLATEID, SEED, REDSHIFT, MAG, and MAGFILTER (see desisim.io.empty_metatable for the expected data types). In addition, in order to faithfully reproduce a previous set of spectra, then VDISP must also be passed (normally returned in the OBJMETA table). If present, then all other optional inputs (nmodel, redshift, mag, zrange, logvdisp_meansig, etc.) are ignored. nocolorcuts (bool, optional): Do not apply the color-cuts specified by the self.colorcuts_function function (default False). nocontinuum (bool, optional): Do not include the stellar continuum in the output spectrum (useful for testing; default False). Note that this option automatically sets nocolorcuts to True and transient to False. novdisp (bool, optional): Do not velocity-blur the spectrum (default False). agnlike (bool, optional): Adopt AGN-like emission-line ratios (e.g., for the LRGs and some BGS galaxies) (default False, meaning we adopt star-formation-like line-ratios). Option not yet supported. south (bool, optional): Apply "south" color-cuts using the DECaLS filter system, otherwise apply the "north" (MzLS+BASS) color-cuts. Defaults to True. restframe (bool, optional): If True, return full resolution restframe templates instead of resampled observer frame. verbose (bool, optional): Be verbose! Returns (outflux, wave, meta, objmeta) tuple where: * outflux (numpy.ndarray): Array [nmodel, npix] of observed-frame spectra (1e-17 erg/s/cm2/A). * wave (numpy.ndarray): Observed-frame [npix] wavelength array (Angstrom). * meta (astropy.Table): Table of meta-data [nmodel] for each output spectrum. * objmeta (astropy.Table): Additional objtype-specific table data [nmodel] for each spectrum. Raises: ValueError """ from speclite import filters from desispec.interpolation import resample_flux from astropy.table import Column from astropy import units if verbose: log = get_logger(DEBUG) else: log = get_logger() # Basic error checking and some preliminaries. if nocontinuum: log.warning('Forcing nocolorcuts=True, transient=None since nocontinuum=True.') nocolorcuts = True self.transient = None npix = len(self.basewave) nbase = len(self.basemeta) # Optionally unpack a metadata table. if input_meta is not None: _check_input_meta(input_meta) templateseed = input_meta['SEED'].data rand = np.random.RandomState(templateseed[0]) redshift = input_meta['REDSHIFT'].data mag = input_meta['MAG'].data magfilter = np.char.strip(input_meta['MAGFILTER'].data) nchunk = 1 nmodel = len(input_meta) alltemplateid_chunk = [input_meta['TEMPLATEID'].data.reshape(nmodel, 1)] meta, objmeta = empty_metatable(nmodel=nmodel, objtype=self.objtype) else: meta, objmeta = empty_metatable(nmodel=nmodel, objtype=self.objtype) # Initialize the random seed. rand = np.random.RandomState(seed) templateseed = rand.randint(2**32, size=nmodel) # Shuffle the basis templates and then split them into ~equal # chunks, so we can speed up the calculations below. chunksize = np.min((nbase, 50)) nchunk = int(np.ceil(nbase / chunksize)) alltemplateid = np.tile(np.arange(nbase), (nmodel, 1)) for tempid in alltemplateid: rand.shuffle(tempid) alltemplateid_chunk = np.array_split(alltemplateid, nchunk, axis=1) # Assign redshift, magnitude, and velocity dispersion priors. if redshift is None: redshift = rand.uniform(zrange[0], zrange[1], nmodel) if mag is None: mag = rand.uniform(magrange[0], magrange[1], nmodel).astype('f4') if south: magfilter = np.repeat(self.normfilter_south, nmodel) else: magfilter = np.repeat(self.normfilter_north, nmodel) if vdisp is None: # Limit the number of unique velocity dispersion values. nvdisp = int(np.max( ( np.min( ( np.round(nmodel * self.fracvdisp[0]), self.fracvdisp[1] ) ), 1 ) )) if logvdisp_meansig[1] > 0: vvdisp = 10**rand.normal(logvdisp_meansig[0], logvdisp_meansig[1], nvdisp) else: vvdisp = 10**np.repeat(logvdisp_meansig[0], nvdisp) vdisp = rand.choice(vvdisp, nmodel) if redshift is not None: if len(redshift) != nmodel: log.fatal('Redshift must be an nmodel-length array') raise ValueError if mag is not None: if len(mag) != nmodel: log.fatal('Mag must be an nmodel-length array') raise ValueError if vdisp is not None: if len(vdisp) != nmodel: log.fatal('Vdisp must be an nmodel-length array') raise ValueError vzero = np.where(vdisp <= 0)[0] if len(vzero) > 0: log.fatal('Velocity dispersion is zero or negative!') raise ValueError # Generate the (optional) distribution of transient model brightness # and epoch priors or read them from the input table. if self.transient is not None: trans_rfluxratio = rand.uniform(self.trans_fluxratiorange[0], self.trans_fluxratiorange[1], nmodel) log.debug('Flux ratio range: {:g} to {:g}'.format(self.trans_fluxratiorange[0], self.trans_fluxratiorange[1])) log.debug('Generated ratios: {}'.format(trans_rfluxratio)) tmin = self.trans_epochrange[0] if tmin < self.transient.mintime().to('day').value: tmin = self.transient.mintime().to('day').value tmin = int(tmin) tmax = self.trans_epochrange[1] if tmax > self.transient.maxtime().to('day').value: tmax = self.transient.maxtime().to('day').value tmax = int(tmax) trans_epoch = rand.randint(tmin, tmax, nmodel) log.debug('Epoch range: {:d} d to {:d} d'.format(tmin, tmax)) log.debug('Generated epochs: {}'.format(trans_epoch)) # Populate the object metadata table. objmeta['TRANSIENT_MODEL'][:] = np.full(nmodel, self.transient.model) objmeta['TRANSIENT_TYPE'][:] = np.full(nmodel, self.transient.type) objmeta['TRANSIENT_EPOCH'][:] = trans_epoch objmeta['TRANSIENT_RFLUXRATIO'][:] = trans_rfluxratio # Precompute the velocity dispersion convolution matrix for each unique # value of vdisp. if nocontinuum or novdisp: pass else: blurmatrix = self._blurmatrix(vdisp, log=log) # Populate some of the metadata table. objmeta['VDISP'][:] = vdisp for key, value in zip(('REDSHIFT', 'MAG', 'MAGFILTER', 'SEED'), (redshift, mag, magfilter, templateseed)): meta[key][:] = value # Load the unique set of MAGFILTERs. We could check against # self.decamwise.names and self.bassmzlswise to see if the filters have # already been loaded, but speed should not be an issue. normfilt = dict() for mfilter in np.unique(magfilter): normfilt[mfilter] = filters.load_filters(mfilter) # Optionally initialize the emission-line objects and line-ratios. d4000 = self.basemeta['D4000'] # Build each spectrum in turn. if restframe: outflux = np.zeros([nmodel, len(self.basewave)]) else: outflux = np.zeros([nmodel, len(self.wave)]) # [erg/s/cm2/A] for ii in range(nmodel): templaterand = np.random.RandomState(templateseed[ii]) zwave = self.basewave.astype(float) * (1.0 + redshift[ii]) # Optionally generate the emission-line spectrum for this model. if self.normline is None: emflux = np.zeros(npix) normlineflux = np.zeros(nbase) else: # For speed, build just a single emission-line spectrum for all # continuum templates. In detail the line-ratios should # correlate with D(4000) or something else. oiidoublet, oiihbeta, niihbeta, siihbeta, oiiihbeta = \ self.lineratios(nobj=1, oiiihbrange=oiiihbrange, rand=templaterand, agnlike=agnlike) for key, value in zip(('OIIIHBETA', 'OIIHBETA', 'NIIHBETA', 'SIIHBETA', 'OIIDOUBLET'), (oiiihbeta, oiihbeta, niihbeta, siihbeta, oiidoublet)): objmeta[key][ii] = value if self.normline.upper() == 'OII': ewoii = 10.0**(np.polyval(self.ewoiicoeff, d4000) + # rest-frame EW([OII]), Angstrom templaterand.normal(0.0, 0.3, nbase)) normlineflux = self.basemeta['OII_CONTINUUM'].data * ewoii emflux, emwave, emline = self.EM.spectrum(linesigma=vdisp[ii], seed=templateseed[ii], oiidoublet=oiidoublet, oiiihbeta=oiiihbeta, oiihbeta=oiihbeta, niihbeta=niihbeta, siihbeta=siihbeta, oiiflux=1.0) elif self.normline.upper() == 'HBETA': ewhbeta = 10.0**(np.polyval(self.ewhbetacoeff, d4000) + \ templaterand.normal(0.0, 0.2, nbase)) * \ (self.basemeta['HBETA_LIMIT'].data == 0) # rest-frame H-beta, Angstrom normlineflux = self.basemeta['HBETA_CONTINUUM'].data * ewhbeta emflux, emwave, emline = self.EM.spectrum(linesigma=vdisp[ii], seed=templateseed[ii], oiidoublet=oiidoublet, oiiihbeta=oiiihbeta, oiihbeta=oiihbeta, niihbeta=niihbeta, siihbeta=siihbeta, hbetaflux=1.0) emflux /= (1+redshift[ii]) # [erg/s/cm2/A, @redshift[ii]] # Optionally get the transient spectrum and normalization factor. if self.transient is not None: # Evaluate the flux where the model has defined wavelengths. # Zero-pad all other wavelength values. trans_restflux = np.zeros_like(self.basewave, dtype=float) minw = self.transient.minwave().to('Angstrom').value maxw = self.transient.maxwave().to('Angstrom').value j = np.argwhere(self.basewave >= minw)[0,0] k = np.argwhere(self.basewave <= maxw)[-1,0] trans_restflux[j:k] = self.transient.flux(trans_epoch[ii], self.basewave[j:k]*units.Angstrom) trans_norm = normfilt[magfilter[ii]].get_ab_maggies(trans_restflux, zwave) for ichunk in range(nchunk): if ii % 100 == 0 and ii > 0: log.debug('Simulating {} template {}/{} in chunk {}/{}.'. \ format(self.objtype, ii, nmodel, ichunk+1, nchunk)) templateid = alltemplateid_chunk[ichunk][ii, :] nbasechunk = len(templateid) if nocontinuum: restflux = np.tile(emflux, (nbasechunk, 1)) * \ np.tile(normlineflux[templateid], (npix, 1)).T else: restflux = self.baseflux[templateid, :] + np.tile(emflux, (nbasechunk, 1)) * \ np.tile(normlineflux[templateid], (npix, 1)).T # Optionally add in the transient spectrum. if self.transient is not None: galnorm = normfilt[magfilter[ii]].get_ab_maggies(restflux, zwave) trans_factor = galnorm[magfilter[ii]].data * trans_rfluxratio[ii]/trans_norm[magfilter[ii]].data restflux += np.tile(trans_restflux, (nbasechunk, 1)) * np.tile(trans_factor, (npix, 1)).T # Synthesize photometry to determine which models will pass the # color-cuts. if south: maggies = self.decamwise.get_ab_maggies(restflux, zwave, mask_invalid=True) else: maggies = self.bassmzlswise.get_ab_maggies(restflux, zwave, mask_invalid=True) if nocontinuum: magnorm = np.repeat(10**(-0.4*mag[ii]), nbasechunk) else: normmaggies = np.array(normfilt[magfilter[ii]].get_ab_maggies( restflux, zwave, mask_invalid=True)[magfilter[ii]]) magnorm = 10**(-0.4*mag[ii]) / normmaggies synthnano = dict() for key in maggies.columns: synthnano[key] = 1E9 * maggies[key] * magnorm # nanomaggies zlineflux = normlineflux[templateid] * magnorm if south: gflux, rflux, zflux, w1flux, w2flux = synthnano['decam2014-g'], \ synthnano['decam2014-r'], synthnano['decam2014-z'], \ synthnano['wise2010-W1'], synthnano['wise2010-W2'] else: gflux, rflux, zflux, w1flux, w2flux = synthnano['BASS-g'], \ synthnano['BASS-r'], synthnano['MzLS-z'], \ synthnano['wise2010-W1'], synthnano['wise2010-W2'] if nocolorcuts or self.colorcuts_function is None: colormask = np.repeat(1, nbasechunk) else: if self.objtype == 'BGS': _colormask = [] for targtype in ('bright', 'faint', 'wise'): _colormask.append(self.colorcuts_function( gflux=gflux, rflux=rflux, zflux=zflux, w1flux=w1flux, w2flux=w2flux, south=south, targtype=targtype)) colormask = np.any( np.ma.getdata(np.vstack(_colormask)), axis=0 ) else: colormask = self.colorcuts_function(gflux=gflux, rflux=rflux, zflux=zflux, w1flux=w1flux, w2flux=w2flux, south=south) # If the color-cuts pass then populate the output flux vector # (suitably normalized) and metadata table, convolve with the # velocity dispersion, resample, and finish up. Note that the # emission lines already have the velocity dispersion # line-width. if np.any(colormask*(zlineflux >= minlineflux)): this = templaterand.choice(np.where(colormask * (zlineflux >= minlineflux))[0]) # Pick one randomly. tempid = templateid[this] thisemflux = emflux * normlineflux[templateid[this]] if nocontinuum or novdisp: blurflux = restflux[this, :] * magnorm[this] else: blurflux = ((blurmatrix[vdisp[ii]] * (restflux[this, :] - thisemflux)) + thisemflux) * magnorm[this] if restframe: outflux[ii, :] = blurflux else: outflux[ii, :] = resample_flux(self.wave, zwave, blurflux, extrapolate=True) meta['TEMPLATEID'][ii] = tempid meta['FLUX_G'][ii] = gflux[this] meta['FLUX_R'][ii] = rflux[this] meta['FLUX_Z'][ii] = zflux[this] meta['FLUX_W1'][ii] = w1flux[this] meta['FLUX_W2'][ii] = w2flux[this] objmeta['D4000'][ii] = d4000[tempid] if self.normline is not None: if self.normline == 'OII': objmeta['OIIFLUX'][ii] = zlineflux[this] objmeta['EWOII'][ii] = ewoii[tempid] elif self.normline == 'HBETA': objmeta['HBETAFLUX'][ii] = zlineflux[this] objmeta['EWHBETA'][ii] = ewhbeta[tempid] break # Check to see if any spectra could not be computed. success = (np.sum(outflux, axis=1) > 0)*1 if ~np.all(success): log.warning('{} spectra could not be computed given the input priors!'.\ format(np.sum(success == 0))) if restframe: outwave = self.basewave else: outwave = self.wave return 1e17 * outflux, outwave, meta, objmeta class ELG(GALAXY): """Generate Monte Carlo spectra of emission-line galaxies (ELGs).""" def __init__(self, minwave=3600.0, maxwave=10000.0, cdelt=0.2, wave=None, transient=None, tr_fluxratio=(0.01, 1.), tr_epoch=(-10,10), include_mgii=False, colorcuts_function=None, normfilter_north='BASS-r', normfilter_south='decam2014-r', baseflux=None, basewave=None, basemeta=None): """Initialize the ELG class. See the GALAXY.__init__ method for documentation on the arguments plus the inherited attributes. Note: By default, we assume the emission-line spectra are normalized to the integrated [OII] emission-line flux. Args: Attributes: ewoiicoeff (float, array): empirically derived coefficients to map D(4000) to EW([OII]). Raises: """ if colorcuts_function is None: from desitarget.cuts import isELG_colors as colorcuts_function super(ELG, self).__init__(objtype='ELG', minwave=minwave, maxwave=maxwave, cdelt=cdelt, wave=wave, normline='OII', colorcuts_function=colorcuts_function, normfilter_north=normfilter_north, normfilter_south=normfilter_south, baseflux=baseflux, basewave=basewave, basemeta=basemeta, transient=transient, tr_fluxratio=tr_fluxratio, tr_epoch=tr_epoch, include_mgii=include_mgii) self.ewoiicoeff = [1.34323087, -5.02866474, 5.43842874] def make_templates(self, nmodel=100, zrange=(0.6, 1.6), magrange=(21.0, 23.4), oiiihbrange=(-0.5, 0.2), logvdisp_meansig=(1.9, 0.15), minoiiflux=0.0, trans_filter='decam2014-r', redshift=None, mag=None, vdisp=None, seed=None, input_meta=None, nocolorcuts=False, nocontinuum=False, agnlike=False, novdisp=False, south=True, restframe=False, verbose=False): """Build Monte Carlo ELG spectra/templates. See the GALAXY.make_galaxy_templates function for documentation on the arguments and inherited attributes. Here we only document the arguments that are specific to the ELG class. Args: oiiihbrange (float, optional): Minimum and maximum logarithmic [OIII] 5007/H-beta line-ratio. Defaults to a uniform distribution between (-0.5, 0.2). logvdisp_meansig (float, optional): Logarithmic mean and sigma values for the (Gaussian) stellar velocity dispersion distribution. Defaults to log10-sigma=(1.9+/-0.15) km/s minoiiflux (float, optional): Minimum [OII] 3727 flux (default 0.0 erg/s/cm2). Returns (outflux, wave, meta, objmeta) tuple where: * outflux (numpy.ndarray): Array [nmodel, npix] of observed-frame spectra (1e-17 erg/s/cm2/A). * wave (numpy.ndarray): Observed-frame [npix] wavelength array (Angstrom). * meta (astropy.Table): Table of meta-data [nmodel] for each output spectrum. * objmeta (astropy.Table): Additional objtype-specific table data [nmodel] for each spectrum. Raises: """ result = self.make_galaxy_templates(nmodel=nmodel, zrange=zrange, magrange=magrange, oiiihbrange=oiiihbrange, logvdisp_meansig=logvdisp_meansig, minlineflux=minoiiflux, redshift=redshift, vdisp=vdisp, mag=mag, trans_filter=trans_filter, seed=seed, input_meta=input_meta, nocolorcuts=nocolorcuts, nocontinuum=nocontinuum, agnlike=agnlike, novdisp=novdisp, south=south, restframe=restframe, verbose=verbose) return result class BGS(GALAXY): """Generate Monte Carlo spectra of bright galaxy survey galaxies (BGSs).""" def __init__(self, minwave=3600.0, maxwave=10000.0, cdelt=0.2, wave=None, transient=None, tr_fluxratio=(0.01, 1.), tr_epoch=(-10,10), include_mgii=False, colorcuts_function=None, normfilter_north='BASS-r', normfilter_south='decam2014-r', baseflux=None, basewave=None, basemeta=None): """Initialize the BGS class. See the GALAXY.__init__ method for documentation on the arguments plus the inherited attributes. Note: By default, we assume the emission-line spectra are normalized to the integrated H-beta emission-line flux. Args: Attributes: ewhbetacoeff (float, array): empirically derived coefficients to map D(4000) to EW(H-beta). Raises: """ if colorcuts_function is None: from desitarget.cuts import isBGS_colors as colorcuts_function super(BGS, self).__init__(objtype='BGS', minwave=minwave, maxwave=maxwave, cdelt=cdelt, wave=wave, normline='HBETA', colorcuts_function=colorcuts_function, normfilter_north=normfilter_north, normfilter_south=normfilter_south, baseflux=baseflux, basewave=basewave, basemeta=basemeta, transient=transient, tr_fluxratio=tr_fluxratio, tr_epoch=tr_epoch, include_mgii=include_mgii) self.ewhbetacoeff = [1.28520974, -4.94408026, 4.9617704] def make_templates(self, nmodel=100, zrange=(0.01, 0.4), magrange=(15.0, 20.0), oiiihbrange=(-1.3, 0.6), logvdisp_meansig=(2.0, 0.17), minhbetaflux=0.0, trans_filter='decam2014-r', redshift=None, mag=None, vdisp=None, seed=None, input_meta=None, nocolorcuts=False, nocontinuum=False, agnlike=False, novdisp=False, south=True, restframe=False, verbose=False): """Build Monte Carlo BGS spectra/templates. See the GALAXY.make_galaxy_templates function for documentation on the arguments and inherited attributes. Here we only document the arguments that are specific to the BGS class. Args: oiiihbrange (float, optional): Minimum and maximum logarithmic [OIII] 5007/H-beta line-ratio. Defaults to a uniform distribution between (-1.3, 0.6). logvdisp_meansig (float, optional): Logarithmic mean and sigma values for the (Gaussian) stellar velocity dispersion distribution. Defaults to log10-sigma=(2.0+/-0.17) km/s minhbetaflux (float, optional): Minimum H-beta flux (default 0.0 erg/s/cm2). Returns (outflux, wave, meta, objmeta) tuple where: * outflux (numpy.ndarray): Array [nmodel, npix] of observed-frame spectra (1e-17 erg/s/cm2/A). * wave (numpy.ndarray): Observed-frame [npix] wavelength array (Angstrom). * meta (astropy.Table): Table of meta-data [nmodel] for each output spectrum. * objmeta (astropy.Table): Additional objtype-specific table data [nmodel] for each spectrum. Raises: """ result = self.make_galaxy_templates(nmodel=nmodel, zrange=zrange, magrange=magrange, oiiihbrange=oiiihbrange, logvdisp_meansig=logvdisp_meansig, minlineflux=minhbetaflux, redshift=redshift, vdisp=vdisp, mag=mag, trans_filter=trans_filter, seed=seed, input_meta=input_meta, nocolorcuts=nocolorcuts, nocontinuum=nocontinuum, agnlike=agnlike, novdisp=novdisp, south=south, restframe=restframe, verbose=verbose) return result class LRG(GALAXY): """Generate Monte Carlo spectra of luminous red galaxies (LRGs).""" def __init__(self, minwave=3600.0, maxwave=10000.0, cdelt=0.2, wave=None, transient=None, tr_fluxratio=(0.01, 1.), tr_epoch=(-10,10), colorcuts_function=None, normfilter_north='MzLS-z', normfilter_south='decam2014-z', baseflux=None, basewave=None, basemeta=None): """Initialize the LRG class. See the GALAXY.__init__ method for documentation on the arguments plus the inherited attributes. Note: Emission lines (with presumably AGN-like line-ratios) are not yet included. Args: Attributes: Raises: """ if colorcuts_function is None: from desitarget.cuts import isLRG_colors as colorcuts_function super(LRG, self).__init__(objtype='LRG', minwave=minwave, maxwave=maxwave, cdelt=cdelt, wave=wave, normline=None, colorcuts_function=colorcuts_function, normfilter_north=normfilter_north, normfilter_south=normfilter_south, baseflux=baseflux, basewave=basewave, basemeta=basemeta, transient=transient, tr_fluxratio=tr_fluxratio, tr_epoch=tr_epoch) def make_templates(self, nmodel=100, zrange=(0.5, 1.0), magrange=(19.0, 20.2), logvdisp_meansig=(2.3, 0.1), trans_filter='decam2014-r', redshift=None, mag=None, vdisp=None, seed=None, input_meta=None, nocolorcuts=False, novdisp=False, agnlike=False, south=True, restframe=False, verbose=False): """Build Monte Carlo BGS spectra/templates. See the GALAXY.make_galaxy_templates function for documentation on the arguments and inherited attributes. Here we only document the arguments that are specific to the LRG class. Args: logvdisp_meansig (float, optional): Logarithmic mean and sigma values for the (Gaussian) stellar velocity dispersion distribution. Defaults to log10-sigma=(2.3+/-0.1) km/s agnlike (bool, optional): adopt AGN-like emission-line ratios (not yet supported; defaults False). Returns (outflux, wave, meta, objmeta) tuple where: * outflux (numpy.ndarray): Array [nmodel, npix] of observed-frame spectra (1e-17 erg/s/cm2/A). * wave (numpy.ndarray): Observed-frame [npix] wavelength array (Angstrom). * meta (astropy.Table): Table of meta-data [nmodel] for each output spectrum. * objmeta (astropy.Table): Additional objtype-specific table data [nmodel] for each spectrum. Raises: """ result = self.make_galaxy_templates(nmodel=nmodel, zrange=zrange, magrange=magrange, logvdisp_meansig=logvdisp_meansig, redshift=redshift, vdisp=vdisp, mag=mag, trans_filter=trans_filter, seed=seed, input_meta=input_meta, nocolorcuts=nocolorcuts, agnlike=agnlike, novdisp=novdisp, south=south, restframe=restframe, verbose=verbose) # Pre-v2.4 templates: if 'ZMETAL' in self.basemeta.colnames: good = np.where(meta['TEMPLATEID'] != -1)[0] if len(good) > 0: meta['ZMETAL'][good] = self.basemeta[meta['TEMPLATEID'][good]]['ZMETAL'] meta['AGE'][good] = self.basemeta[meta['TEMPLATEID'][good]]['AGE'] return result class SUPERSTAR(object): """Base class for generating Monte Carlo spectra of the various flavors of stars.""" def __init__(self, objtype='STAR', subtype='', minwave=3600.0, maxwave=10000.0, cdelt=0.2, wave=None, normfilter_north='BASS-r', normfilter_south='decam2014-r', colorcuts_function=None, baseflux=None, basewave=None, basemeta=None): """Read the appropriate basis continuum templates, filter profiles and initialize the output wavelength array. Note: Only a linearly-spaced output wavelength array is currently supported. Args: objtype (str): type of object to simulate (default STAR). subtype (str, optional): stellar subtype, currently only for white dwarfs. The choices are DA and DB and the default is DA. minwave (float, optional): minimum value of the output wavelength array (default 3600 Angstrom). maxwave (float, optional): minimum value of the output wavelength array (default 10000 Angstrom). cdelt (float, optional): spacing of the output wavelength array (default 2 Angstrom/pixel). wave (numpy.ndarray): Input/output observed-frame wavelength array, overriding the minwave, maxwave, and cdelt arguments (Angstrom). colorcuts_function (function name): Function to use to select targets (must accept a "south" Boolean argument for selecting templates that pass the "north" vs "south" color-cuts (default None). normfilter_north (str): normalization filter for simulated "north" templates. Each spectrum is normalized to the magnitude in this filter bandpass (default 'BASS-r'). normfilter_south (str): corresponding normalization filter for "south" (default 'decam2014-r'). Attributes: wave (numpy.ndarray): Output wavelength array (Angstrom). baseflux (numpy.ndarray): Array [nbase,npix] of the base rest-frame continuum spectra (erg/s/cm2/A). basewave (numpy.ndarray): Array [npix] of rest-frame wavelengths corresponding to BASEFLUX (Angstrom). basemeta (astropy.Table): Table of meta-data [nbase] for each base template. normfilt_north (speclite.filters instance): FilterSequence of self.normfilter_north. normfilt_south (speclite.filters instance): FilterSequence of self.normfilter_south. sdssrfilt (speclite.filters instance): SDSS2010-r FilterSequence. decamwise (speclite.filters instance): DECam2014-[g,r,z] and WISE2010-[W1,W2] FilterSequence. bassmzlswise (speclite.filters instance): BASS-[g,r], MzLS-z and WISE2010-[W1,W2] FilterSequence. """ from speclite import filters self.objtype = objtype.upper() self.subtype = subtype.upper() self.colorcuts_function = colorcuts_function self.normfilter_north = normfilter_north self.normfilter_south = normfilter_south # Initialize the output wavelength array (linear spacing) unless it is # already provided. if wave is None: npix = int(round((maxwave-minwave) / cdelt))+1 wave = np.linspace(minwave, maxwave, npix) self.wave = wave # Read the rest-frame continuum basis spectra, if not specified. if baseflux is None or basewave is None or basemeta is None: from desisim.io import read_basis_templates baseflux, basewave, basemeta = read_basis_templates(objtype=self.objtype, subtype=self.subtype) self.baseflux = baseflux self.basewave = basewave self.basemeta = basemeta # Initialize the filter profiles. self.normfilt_north = filters.load_filters(self.normfilter_north) self.normfilt_south = filters.load_filters(self.normfilter_south) self.sdssrfilt = filters.load_filters('sdss2010-r') self.decamwise = filters.load_filters('decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1', 'wise2010-W2') self.bassmzlswise = filters.load_filters('BASS-g', 'BASS-r', 'MzLS-z', 'wise2010-W1', 'wise2010-W2') def make_star_templates(self, nmodel=100, vrad_meansig=(0.0, 200.0), magrange=(18.0, 22.0), seed=None, redshift=None, mag=None, input_meta=None, star_properties=None, nocolorcuts=False, south=True, restframe=False, verbose=False): """Build Monte Carlo spectra/templates for various flavors of stars. This function chooses random subsets of the continuum spectra for the type of star specified by OBJTYPE, adds radial velocity jitter, applies the targeting color-cuts, and then normalizes the spectrum to the magnitude in the given filter. The user also (optionally) has a lot of flexibility over the inputs/outputs and can specify any combination of the radial velocity and apparent magnitude (in the normalization filter specified in the GALAXY.__init__ method) inputs. Alternatively, the user can pass a complete metadata table, in order to easily regenerate spectra on-the-fly (see the documentation for the input_meta argument, below). Finally, the user can pass a star_properties table in order to interpolate the base templates to non-gridded values of [Fe/H], logg, and Teff. Note: * The default inputs are generally set to values which are appropriate for generic stars, so be sure to alter them when generating templates for other spectral classes. * If both input_meta and star_properties are passed, then star_properties is ignored. Args: nmodel (int, optional): Number of models to generate (default 100). vrad_meansig (float, optional): Mean and sigma (standard deviation) of the radial velocity "jitter" (in km/s) that should be included in each spectrum. Defaults to a normal distribution with a mean of zero and sigma of 200 km/s. magrange (float, optional): Minimum and maximum magnitude in the bandpass specified by self.normfilter_south (if south=True) or self.normfilter_north (if south=False). Defaults to a uniform distribution between (18, 22). seed (int, optional): input seed for the random numbers. redshift (float, optional): Input/output (dimensionless) radial velocity. Array size must equal nmodel. Ignores vrad_meansig input. mag (float, optional): Input/output template magnitudes in the bandpass specified by self.normfilter_south (if south=True) or self.normfilter_north (if south=False). Array size must equal nmodel. Ignores magrange input. input_meta (astropy.Table): *Input* metadata table with the following required columns: TEMPLATEID, SEED, REDSHIFT, MAG, and MAGFILTER (see desisim.io.empty_metatable for the expected data types). If present, then all other optional inputs (nmodel, redshift, mag, zrange, vrad_meansig, etc.) are ignored. star_properties (astropy.Table): *Input* table with the following required columns: REDSHIFT, MAG, MAGFILTER, TEFF, LOGG, and FEH (except for WDs, which don't need to have an FEH column). Optionally, SEED can also be included in the table. When this table is passed, the basis templates are interpolated to the desired physical values provided, enabling large numbers of mock stellar spectra to be generated with physically consistent properties. However, be warned that the interpolation scheme is very rudimentary. nocolorcuts (bool, optional): Do not apply the color-cuts specified by the self.colorcuts_function function (default False). south (bool, optional): Apply "south" color-cuts using the DECaLS filter system, otherwise apply the "north" (MzLS+BASS) color-cuts. Defaults to True. restframe (bool, optional): If True, return full resolution restframe templates instead of resampled observer frame. verbose (bool, optional): Be verbose! Returns (outflux, wave, meta) tuple where: * outflux (numpy.ndarray): Array [nmodel, npix] of observed-frame spectra (1e-17 erg/s/cm2/A). * wave (numpy.ndarray): Observed-frame [npix] wavelength array (Angstrom). * meta (astropy.Table): Table of meta-data [nmodel] for each output spectrum. Raises: ValueError """ from speclite import filters from desispec.interpolation import resample_flux if verbose: log = get_logger(DEBUG) else: log = get_logger() npix = len(self.basewave) nbase = len(self.basemeta) # Optionally unpack a metadata table. if input_meta is not None: nmodel = len(input_meta) _check_input_meta(input_meta) templateseed = input_meta['SEED'].data redshift = input_meta['REDSHIFT'].data mag = input_meta['MAG'].data magfilter = np.char.strip(input_meta['MAGFILTER'].data) nchunk = 1 alltemplateid_chunk = [input_meta['TEMPLATEID'].data.reshape(nmodel, 1)] else: if star_properties is not None: nmodel = len(star_properties) _check_star_properties(star_properties, WD=self.objtype=='WD') redshift = star_properties['REDSHIFT'].data mag = star_properties['MAG'].data magfilter = np.char.strip(star_properties['MAGFILTER'].data) if 'SEED' in star_properties.keys(): templateseed = star_properties['SEED'].data else: rand = np.random.RandomState(seed) templateseed = rand.randint(2**32, size=nmodel) if 'FEH' in self.basemeta.columns: base_properties = np.array([self.basemeta['LOGG'], self.basemeta['TEFF'], self.basemeta['FEH']]).T.astype('f4') input_properties = (star_properties['LOGG'].data, star_properties['TEFF'].data, star_properties['FEH'].data) else: base_properties = np.array([self.basemeta['LOGG'], self.basemeta['TEFF']]).T.astype('f4') input_properties = (star_properties['LOGG'].data, star_properties['TEFF'].data) nchunk = 1 alltemplateid_chunk = [np.arange(nmodel).reshape(nmodel, 1)] else: # Initialize the random seed. rand = np.random.RandomState(seed) templateseed = rand.randint(2**32, size=nmodel) # Shuffle the basis templates and then split them into ~equal chunks, so # we can speed up the calculations below. chunksize = np.min((nbase, 50)) nchunk = int(np.ceil(nbase / chunksize)) alltemplateid = np.tile(np.arange(nbase), (nmodel, 1)) for tempid in alltemplateid: rand.shuffle(tempid) alltemplateid_chunk = np.array_split(alltemplateid, nchunk, axis=1) # Assign radial velocity and magnitude priors. if redshift is None: if vrad_meansig[1] > 0: vrad = rand.normal(vrad_meansig[0], vrad_meansig[1], nmodel) else: vrad = np.repeat(vrad_meansig[0], nmodel) redshift = np.array(vrad) / C_LIGHT if mag is None: mag = rand.uniform(magrange[0], magrange[1], nmodel).astype('f4') if south: magfilter =
np.repeat(self.normfilter_south, nmodel)
numpy.repeat
""" fit motor circle task with external data (not simulated) """ import sys, os import numpy as np import pandas as pd import stan import arviz as az import nest_asyncio nest_asyncio.apply() from matplotlib import pyplot as plt import seaborn as sns sys.path.append('.') from simulations.sim_bandit3arm_combined import bandit_combined_preprocess_func from visualisation.hdi_compare import hdi, hdi_diff def extract_ind_results(df,pars_ind,data_dict): out_col_names = [] out_df = np.zeros([data_dict['N'],len(pars_ind)*2]) i=0 for ind_par in pars_ind: pattern = r'\A'+ind_par+r'.\d+' out_col_names.append(ind_par+'_mean') out_col_names.append(ind_par+'_std') mean_val=df.iloc[:,df.columns.str.contains(pattern)].mean(axis=0).to_frame() std_val=df.iloc[:,df.columns.str.contains(pattern)].std(axis=0).to_frame() out_df[:,2*i:2*(i+1)] = np.concatenate([mean_val.values,std_val.values],axis=1) i+=1 out_df = pd.DataFrame(out_df,columns=out_col_names) beh_col_names = ['total','avg_rt','std_rt'] total_np = 100+data_dict['rew'].sum(axis=1,keepdims=True)+data_dict['los'].sum(axis=1,keepdims=True) avg_rt_np = data_dict['rt'].mean(axis=1,keepdims=True) std_rt_np = data_dict['rt'].std(axis=1,keepdims=True) beh_df = pd.DataFrame(
np.concatenate([total_np,avg_rt_np,std_rt_np],axis=1)
numpy.concatenate
# pylint:disable=unused-variable from .helpers import SeededTest from pymc3 import Model, gp, sample, Uniform import theano import theano.tensor as tt import numpy as np import numpy.testing as npt import pytest class TestZero(object): def test_value(self): X = np.linspace(0,1,10)[:,None] with Model() as model: zero_mean = gp.mean.Zero() M = theano.function([], zero_mean(X))() assert np.all(M==0) assert M.shape == (10,1) class TestConstant(object): def test_value(self): X = np.linspace(0,1,10)[:,None] with Model() as model: const_mean = gp.mean.Constant(6) M = theano.function([], const_mean(X))() assert np.all(M==6) assert M.shape == (10,1) class TestLinearMean(object): def test_value(self): X = np.linspace(0,1,10)[:,None] with Model() as model: linear_mean = gp.mean.Linear(2, 0.5) M = theano.function([], linear_mean(X))() npt.assert_allclose(M[1, 0], 0.7222, atol=1e-3) class TestCovAdd(object): def test_symadd_cov(self): X = np.linspace(0,1,10)[:,None] with Model() as model: cov1 = gp.cov.ExpQuad(1, 0.1) cov2 = gp.cov.ExpQuad(1, 0.1) cov = cov1 + cov2 K = theano.function([], cov(X))() npt.assert_allclose(K[0, 1], 2 * 0.53940, atol=1e-3) def test_rightadd_scalar(self): X = np.linspace(0,1,10)[:,None] with Model() as model: a = 1 cov = gp.cov.ExpQuad(1, 0.1) + a K = theano.function([], cov(X))() npt.assert_allclose(K[0, 1], 1.53940, atol=1e-3) def test_leftadd_scalar(self): X = np.linspace(0,1,10)[:,None] with Model() as model: a = 1 cov = a + gp.cov.ExpQuad(1, 0.1) K = theano.function([], cov(X))() npt.assert_allclose(K[0, 1], 1.53940, atol=1e-3) def test_rightadd_matrix(self): X = np.linspace(0,1,10)[:,None] M = 2 * np.ones((10,10)) with Model() as model: cov = gp.cov.ExpQuad(1, 0.1) + M K = theano.function([], cov(X))() npt.assert_allclose(K[0, 1], 2.53940, atol=1e-3) def test_leftprod_matrix(self): X = np.linspace(0,1,3)[:,None] M = np.array([[1,2,3],[2,1,2],[3,2,1]]) with Model() as model: cov = M + gp.cov.ExpQuad(1, 0.1) cov_true = gp.cov.ExpQuad(1, 0.1) + M K = theano.function([], cov(X))() K_true = theano.function([], cov_true(X))() assert np.allclose(K, K_true) class TestCovProd(object): def test_symprod_cov(self): X = np.linspace(0,1,10)[:,None] with Model() as model: cov1 = gp.cov.ExpQuad(1, 0.1) cov2 = gp.cov.ExpQuad(1, 0.1) cov = cov1 * cov2 K = theano.function([], cov(X))() npt.assert_allclose(K[0, 1], 0.53940 * 0.53940, atol=1e-3) def test_rightprod_scalar(self): X = np.linspace(0,1,10)[:,None] with Model() as model: a = 2 cov = gp.cov.ExpQuad(1, 0.1) * a K = theano.function([], cov(X))()
npt.assert_allclose(K[0, 1], 2 * 0.53940, atol=1e-3)
numpy.testing.assert_allclose
#!/usr/bin/env python3 # coding: utf-8 """ Created on Dec 2020 @author: <NAME> <<EMAIL>> """ from typing import Optional, Union import numpy as np from scipy import sparse from sknetwork.utils.check import check_random_state from sknetwork.utils.format import get_adjacency from sknetwork.clustering.louvain import Louvain from sknetwork.embedding.base import BaseEmbedding class LouvainNE(BaseEmbedding): """Embedding of graphs based on the hierarchical Louvain algorithm with random scattering per level. Parameters ---------- n_components : int Dimension of the embedding. scale : float Dilution factor to be applied on the random vector to be added at each iteration of the clustering method. resolution : Resolution parameter. tol_optimization : Minimum increase in the objective function to enter a new optimization pass. tol_aggregation : Minimum increase in the objective function to enter a new aggregation pass. n_aggregations : Maximum number of aggregations. A negative value is interpreted as no limit. shuffle_nodes : Enables node shuffling before optimization. random_state : Random number generator or random seed. If None, numpy.random is used. Attributes ---------- embedding_ : array, shape = (n, n_components) Embedding of the nodes. embedding_row_ : array, shape = (n_row, n_components) Embedding of the rows, for bipartite graphs. embedding_col_ : array, shape = (n_col, n_components) Embedding of the columns, for bipartite graphs. Example ------- >>> from sknetwork.embedding import LouvainNE >>> from sknetwork.data import karate_club >>> louvain = LouvainNE(n_components=3) >>> adjacency = karate_club() >>> embedding = louvain.fit_transform(adjacency) >>> embedding.shape (34, 3) References ---------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2020, January). `LouvainNE: Hierarchical Louvain Method for High Quality and Scalable Network Embedding. <https://hal.archives-ouvertes.fr/hal-02999888/document>`_ In Proceedings of the 13th International Conference on Web Search and Data Mining (pp. 43-51). """ def __init__(self, n_components: int = 2, scale: float = .1, resolution: float = 1, tol_optimization: float = 1e-3, tol_aggregation: float = 1e-3, n_aggregations: int = -1, shuffle_nodes: bool = False, random_state: Optional[Union[np.random.RandomState, int]] = None, verbose: bool = False): super(LouvainNE, self).__init__() self.n_components = n_components self.scale = scale self._clustering_method = Louvain(resolution=resolution, tol_optimization=tol_optimization, tol_aggregation=tol_aggregation, n_aggregations=n_aggregations, shuffle_nodes=shuffle_nodes, random_state=random_state, verbose=verbose) self.random_state = check_random_state(random_state) self.bipartite = None def _recursive_louvain(self, adjacency: Union[sparse.csr_matrix, np.ndarray], depth: int, nodes: Optional[np.ndarray] = None): """Recursive function for fit, modifies the embedding in place. Parameters ---------- adjacency : Adjacency matrix of the graph. depth : Depth of the recursion. nodes : The indices of the current nodes in the original graph. """ n = adjacency.shape[0] if nodes is None: nodes =
np.arange(n)
numpy.arange
# -*- coding: utf-8 -*- """ Thresholding schemes Notes ----- * This is a direct translation from `Data Driven Topological Filtering of Brain Networks via Orthogonal Minimal Spanning Trees <https://github.com/stdimitr/topological_filtering_networks>' * Original author is <NAME> <<EMAIL>> | ----- """ # Author: <NAME> <<EMAIL>> # Author: <NAME> <<EMAIL>> from typing import Tuple, Optional import numpy as np import networkx as nx import bct def k_core_decomposition(mtx: np.ndarray, threshold: float) -> np.ndarray: """ Threshold a binary graph based on the detected k-cores. .. [Alvarez2006] <NAME>., <NAME>., <NAME>., & <NAME>. (2006). Large scale networks fingerprinting and visualization using the k-core decomposition. In Advances in neural information processing systems (pp. 41-50). .. [Hagman2008] <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2008). Mapping the structural core of human cerebral cortex. PLoS biology, 6(7), e159. Parameters ---------- mtx : array-like, shape(N, N) Binary matrix. threshold : int Degree threshold. Returns ------- k_cores : array-like, shape(N, 1) A binary matrix of the decomposed cores. """ imtx = mtx N, _ = np.shape(mtx) # in_degree = np.sum(mtx, 0) # out_degree = np.sum(mtx, 1) degree = bct.degrees_und(mtx) for i in range(N): if degree[i] < threshold: for l in range(N): imtx[i, l] = 0 # Recalculate the list of the degrees degree = bct.degrees_und(imtx) k_cores = np.zeros((N, 1), dtype=np.int32) for i in range(N): if degree[i] > 0: k_cores[i] = 1 return k_cores def threshold_mst_mean_degree(mtx: np.ndarray, avg_degree: float) -> np.ndarray: """ Threshold a graph based on mean using minimum spanning trees. Parameters ---------- mtx : array-like, shape(N, N) Symmetric, weighted and undirected connectivity matrix. avg_degree : float Mean degree threshold. Returns ------- binary_mtx : array-like, shape(N, N) A binary mask matrix. """ N, _ = np.shape(mtx) CIJtree = np.zeros((N, N)) CIJnotintree = mtx # Find the number of orthogonal msts according to the desired mean degree. num_edges = avg_degree * N num_msts = np.int32(
np.round(num_edges / (N - 1))
numpy.round
import numpy as np import sys import asdf import matplotlib.pyplot as plt from numpy import log10 from scipy.integrate import simps import os import time from matplotlib.ticker import FormatStrFormatter from astropy.io import fits # Custom modules from .function import * from .function_class import Func from .basic_func import Basic from .function_igm import * lcb = '#4682b4' # line color, blue def plot_sfh(MB, f_comp=0, flim=0.01, lsfrl=-3, mmax=1000, Txmin=0.08, Txmax=4, lmmin=5, fil_path='./FILT/', \ inputs=None, dust_model=0, DIR_TMP='./templates/', f_SFMS=False, f_symbol=True, verbose=False, f_silence=True, \ f_log_sfh=True, dpi=250, TMIN=0.0001, tau_lim=0.01, skip_zhist=False, tset_SFR_SED=0.1, f_axis_force=True): ''' Purpose ------- Star formation history plot. Parametes --------- flim : float Lower limit for plotting an age bin. lsfrl : float Lower limit for SFR, in logMsun/yr f_SFMS : bool If true, plot SFR of the main sequence of a ginen stellar mass at each lookback time. tset_SFR_SED : float in Gyr. Time scale over which SFR estimate is averaged. ''' if f_silence: import matplotlib matplotlib.use("Agg") fnc = MB.fnc bfnc = MB.bfnc ID = MB.ID Z = MB.Zall age = MB.age nage = MB.nage tau0 = MB.tau0 age = np.asarray(age) try: if not MB.ZFIX == None: skip_zhist = True except: pass if Txmin > np.min(age): Txmin = np.min(age) * 0.8 NUM_COLORS = len(age) cm = plt.get_cmap('gist_rainbow_r') col = np.atleast_2d([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)]) ################ # RF colors. home = os.path.expanduser('~') c = MB.c chimax = 1. m0set = MB.m0set Mpc_cm = MB.Mpc_cm d = MB.d ############# # Plot. ############# if f_log_sfh: fig = plt.figure(figsize=(8,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.07, right=0.99, hspace=0.15, wspace=0.3) else: fig = plt.figure(figsize=(8.2,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.1, right=0.99, hspace=0.15, wspace=0.3) if skip_zhist: if f_log_sfh: fig = plt.figure(figsize=(5.5,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.1, right=0.99, hspace=0.15, wspace=0.3) else: fig = plt.figure(figsize=(6.2,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.1, right=0.99, hspace=0.15, wspace=0.3) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) else: ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax4 = fig.add_subplot(133) ax4t = ax4.twiny() ax1t = ax1.twiny() ax2t = ax2.twiny() ################## # Fitting Results ################## SNlim = 3 # avobe which SN line is shown. ########################### # Open result file ########################### file = MB.DIR_OUT + 'summary_' + ID + '.fits' hdul = fits.open(file) # open a FITS file try: zbes = hdul[0].header['zmc'] except: zbes = hdul[0].header['z'] chinu= hdul[1].data['chi'] try: RA = hdul[0].header['RA'] DEC = hdul[0].header['DEC'] except: RA = 0 DEC = 0 try: SN = hdul[0].header['SN'] except: ########################### # Get SN of Spectra ########################### file = 'templates/spec_obs_' + ID + '.cat' fds = np.loadtxt(file, comments='#') nrs = fds[:,0] lams = fds[:,1] fsp = fds[:,2] esp = fds[:,3] consp = (nrs<10000) & (lams/(1.+zbes)>3600) & (lams/(1.+zbes)<4200) if len((fsp/esp)[consp]>10): SN = np.median((fsp/esp)[consp]) else: SN = 1 Asum = 0 A50 = np.arange(len(age), dtype='float') for aa in range(len(A50)): A50[aa] = 10**hdul[1].data['A'+str(aa)][1] Asum += A50[aa] #################### # For cosmology #################### DL = MB.cosmo.luminosity_distance(zbes).value * Mpc_cm # Luminositydistance in cm Cons = (4.*np.pi*DL**2/(1.+zbes)) Tuni = MB.cosmo.age(zbes).value #, use_flat=True, **cosmo) Tuni0 = (Tuni - age[:]) delT = np.zeros(len(age),dtype='float') delTl = np.zeros(len(age),dtype='float') delTu = np.zeros(len(age),dtype='float') if len(age) == 1: #if tau0[0] < 0: # SSP; for aa in range(len(age)): try: tau_ssp = float(inputs['TAU_SSP']) except: tau_ssp = tau_lim delTl[aa] = tau_ssp/2 delTu[aa] = tau_ssp/2 if age[aa] < tau_lim: # This is because fsps has the minimum tau = tau_lim delT[aa] = tau_lim else: delT[aa] = delTu[aa] + delTl[aa] else: # This is only true when CSP... for aa in range(len(age)): if aa == 0: delTl[aa] = age[aa] delTu[aa] = (age[aa+1]-age[aa])/2. delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) elif Tuni < age[aa]: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = Tuni-age[aa] #delTl[aa] #10. delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) elif aa == len(age)-1: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = Tuni - age[aa] delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) else: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = (age[aa+1]-age[aa])/2. if age[aa]+delTu[aa]>Tuni: delTu[aa] = Tuni-age[aa] delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) con_delt = (delT<=0) delT[con_delt] = 1e10 delT[:] *= 1e9 # Gyr to yr delTl[:] *= 1e9 # Gyr to yr delTu[:] *= 1e9 # Gyr to yr ############################## # Load Pickle ############################## samplepath = MB.DIR_OUT pfile = 'chain_' + ID + '_corner.cpkl' niter = 0 data = loadcpkl(os.path.join(samplepath+'/'+pfile)) try: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. burnin = data['burnin'] nmc = data['niter'] nwalk = data['nwalkers'] Nburn = burnin #* nwalk/10/2 # I think this takes 3/4 of samples #if nmc>1000: # Nburn = 500 samples = data['chain'][:] except: print(' = > NO keys of ndim and burnin found in cpkl, use input keyword values') return -1 ###################### # Mass-to-Light ratio. ###################### AM = np.zeros((len(age), mmax), dtype='float') # Mass in each bin. AC = np.zeros((len(age), mmax), dtype='float') -99 # Cumulative mass in each bin. AL = np.zeros((len(age), mmax), dtype='float') # Cumulative light in each bin. ZM = np.zeros((len(age), mmax), dtype='float') # Z. ZC = np.zeros((len(age), mmax), dtype='float') -99 # Cumulative Z. ZL = np.zeros((len(age), mmax), dtype='float') -99 # Light weighted cumulative Z. TC = np.zeros((len(age), mmax), dtype='float') # Mass weighted T. TL = np.zeros((len(age), mmax), dtype='float') # Light weighted T. ZMM= np.zeros((len(age), mmax), dtype='float') # Mass weighted Z. ZML= np.zeros((len(age), mmax), dtype='float') # Light weighted Z. SF = np.zeros((len(age), mmax), dtype='float') # SFR Av = np.zeros(mmax, dtype='float') # SFR # ############################## # Add simulated scatter in quad # if files are available. # ############################## if inputs: f_zev = int(inputs['ZEVOL']) else: f_zev = 1 eZ_mean = 0 try: meanfile = './sim_SFH_mean.cat' dfile = np.loadtxt(meanfile, comments='#') eA = dfile[:,2] eZ = dfile[:,4] eAv= np.mean(dfile[:,6]) if f_zev == 0: eZ_mean = np.mean(eZ[:]) eZ[:] = age * 0 #+ eZ_mean else: try: f_zev = int(prihdr['ZEVOL']) if f_zev == 0: eZ_mean = np.mean(eZ[:]) eZ = age * 0 except: pass except: if verbose: print('No simulation file (%s).\nError may be underestimated.' % meanfile) eA = age * 0 eZ = age * 0 eAv = 0 mm = 0 ##################### # Get SED based SFR ##################### f_SFRSED_plot = False SFR_SED = np.zeros(mmax,dtype='float') # ASDF; af = asdf.open(MB.DIR_TMP + 'spec_all_' + MB.ID + '.asdf') af0 = asdf.open(MB.DIR_TMP + 'spec_all.asdf') sedpar = af['ML'] # For M/L sedpar0 = af0['ML'] # For mass loss frac. AAtmp = np.zeros(len(age), dtype='float') ZZtmp = np.zeros(len(age), dtype='float') mslist= np.zeros(len(age), dtype='float') for mm in range(mmax): delt_tot = 0 mtmp = np.random.randint(len(samples))# + Nburn try: Av_tmp = samples['Av'][mtmp] except: Av_tmp = MB.AVFIX Avrand = np.random.uniform(-eAv, eAv) if Av_tmp + Avrand<0: Av[mm] = 0 else: Av[mm] = Av_tmp + Avrand for aa in range(len(age)): try: # This is in log. AAtmp[aa] = samples['A'+str(aa)][mtmp] except: AAtmp[aa] = -10 pass try: ZZtmp[aa] = samples['Z'+str(aa)][mtmp] except: try: ZZtmp[aa] = samples['Z0'][mtmp] except: ZZtmp[aa] = MB.ZFIX nZtmp = bfnc.Z2NZ(ZZtmp[aa]) mslist[aa] = sedpar['ML_'+str(nZtmp)][aa] Arand = np.random.uniform(-eA[aa],eA[aa]) Zrand = np.random.uniform(-eZ[aa],eZ[aa]) f_m_sur = sedpar0['frac_mass_survive_%d'%nZtmp][aa] # quantity in log scale; AM[aa, mm] = AAtmp[aa] + np.log10(mslist[aa]) + Arand AL[aa, mm] = AM[aa,mm] - np.log10(mslist[aa]) SF[aa, mm] = AAtmp[aa] + np.log10(mslist[aa] / delT[aa] / f_m_sur) + Arand # / ml ZM[aa, mm] = ZZtmp[aa] + Zrand ZMM[aa, mm]= ZZtmp[aa] + AAtmp[aa] + np.log10(mslist[aa]) + Zrand ZML[aa, mm]= ZMM[aa,mm] - np.log10(mslist[aa]) # SFR from SED. This will be converted in log later; if age[aa]<=tset_SFR_SED: SFR_SED[mm] += 10**SF[aa, mm] * delT[aa] delt_tot += delT[aa] SFR_SED[mm] /= delt_tot if SFR_SED[mm] > 0: SFR_SED[mm] = np.log10(SFR_SED[mm]) else: SFR_SED[mm] = -99 for aa in range(len(age)): if np.sum(10**AM[aa:,mm])>0: AC[aa, mm] = np.log10(np.sum(10**AM[aa:,mm])) ZC[aa, mm] = np.log10(np.sum(10**ZMM[aa:,mm])/10**AC[aa, mm]) if np.sum(10**AL[aa:,mm])>0: ZL[aa, mm] = np.log10(np.sum(10**ZML[aa:,mm])/np.sum(10**AL[aa:,mm])) if f_zev == 0: # To avoid random fluctuation in A. ZC[aa,mm] = ZM[aa,mm] ACs = 0 ALs = 0 for bb in range(aa, len(age), 1): tmpAA = 10**np.random.uniform(-eA[bb],eA[bb]) tmpTT = np.random.uniform(-delT[bb]/1e9,delT[bb]/1e9) TC[aa, mm] += (age[bb]+tmpTT) * 10**AAtmp[bb] * mslist[bb] * tmpAA TL[aa, mm] += (age[bb]+tmpTT) * 10**AAtmp[bb] * tmpAA ACs += 10**AAtmp[bb] * mslist[bb] * tmpAA ALs += 10**AAtmp[bb] * tmpAA TC[aa, mm] /= ACs TL[aa, mm] /= ALs if TC[aa, mm]>0: TC[aa, mm] = np.log10(TC[aa, mm]) if TL[aa, mm]>0: TL[aa, mm] = np.log10(TL[aa, mm]) # Do stuff... time.sleep(0.01) # Update Progress Bar printProgressBar(mm, mmax, prefix = 'Progress:', suffix = 'Complete', length = 40) Avtmp = np.percentile(Av[:],[16,50,84]) ############# # Plot ############# AMp = np.zeros((len(age),3), dtype='float') ACp = np.zeros((len(age),3), dtype='float') ZMp = np.zeros((len(age),3), dtype='float') ZCp = np.zeros((len(age),3), dtype='float') ZLp = np.zeros((len(age),3), dtype='float') SFp = np.zeros((len(age),3), dtype='float') for aa in range(len(age)): AMp[aa,:] = np.percentile(AM[aa,:], [16,50,84]) ACp[aa,:] = np.percentile(AC[aa,:], [16,50,84]) ZMp[aa,:] = np.percentile(ZM[aa,:], [16,50,84]) ZCp[aa,:] = np.percentile(ZC[aa,:], [16,50,84]) ZLp[aa,:] = np.percentile(ZL[aa,:], [16,50,84]) SFp[aa,:] = np.percentile(SF[aa,:], [16,50,84]) SFR_SED_med = np.percentile(SFR_SED[:],[16,50,84]) if f_SFRSED_plot: ax1.errorbar(delt_tot/2./1e9, SFR_SED_med[1], xerr=[[delt_tot/2./1e9],[delt_tot/2./1e9]], \ yerr=[[SFR_SED_med[1]-SFR_SED_med[0]],[SFR_SED_med[2]-SFR_SED_med[1]]], \ linestyle='', color='orange', lw=1., marker='*',ms=8,zorder=-2) ################### msize = np.zeros(len(age), dtype='float') for aa in range(len(age)): if A50[aa]/Asum>flim: # if >1% msize[aa] = 200 * A50[aa]/Asum conA = (msize>=0) if f_log_sfh: ax1.fill_between(age[conA], SFp[:,0][conA], SFp[:,2][conA], linestyle='-', color='k', alpha=0.5, zorder=-1) ax1.errorbar(age, SFp[:,1], linestyle='-', color='k', marker='', zorder=-1, lw=.5) else: ax1.fill_between(age[conA], 10**SFp[:,0][conA], 10**SFp[:,2][conA], linestyle='-', color='k', alpha=0.5, zorder=-1) ax1.errorbar(age, 10**SFp[:,1], linestyle='-', color='k', marker='', zorder=-1, lw=.5) if f_symbol: tbnd = 0.0001 for aa in range(len(age)): agebin = np.arange(age[aa]-delTl[aa]/1e9, age[aa]+delTu[aa]/1e9, delTu[aa]/1e10) tbnd = age[aa]+delT[aa]/2./1e9 if f_log_sfh: ax1.errorbar(age[aa], SFp[aa,1], xerr=[[delTl[aa]/1e9], [delTu[aa]/1e9]], \ yerr=[[SFp[aa,1]-SFp[aa,0]], [SFp[aa,2]-SFp[aa,1]]], linestyle='', color=col[aa], marker='', zorder=1, lw=1.) if msize[aa]>0: ax1.scatter(age[aa], SFp[aa,1], marker='.', color=col[aa], edgecolor='k', s=msize[aa], zorder=1) else: ax1.errorbar(age[aa], 10**SFp[aa,1], xerr=[[delTl[aa]/1e9], [delTu[aa]/1e9]], \ yerr=[[10**SFp[aa,1]-10**SFp[aa,0]], [10**SFp[aa,2]-10**SFp[aa,1]]], linestyle='', color=col[aa], marker='.', zorder=1, lw=1.) if msize[aa]>0: ax1.scatter(age[aa], 10**SFp[aa,1], marker='.', color=col[aa], edgecolor='k', s=msize[aa], zorder=1) ############# # Get SFMS in log10; ############# IMF = int(inputs['NIMF']) SFMS_16 = get_SFMS(zbes,age,10**ACp[:,0],IMF=IMF) SFMS_50 = get_SFMS(zbes,age,10**ACp[:,1],IMF=IMF) SFMS_84 = get_SFMS(zbes,age,10**ACp[:,2],IMF=IMF) #try: if False: f_rejuv,t_quench,t_rejuv = check_rejuv(age,SFp[:,:],ACp[:,:],SFMS_50) else: print('Failed to call rejuvenation module.') f_rejuv,t_quench,t_rejuv = 0,0,0 # Plot MS? if f_SFMS: if f_log_sfh: ax1.fill_between(age[conA], SFMS_50[conA]-0.2, SFMS_50[conA]+0.2, linestyle='-', color='b', alpha=0.3, zorder=-2) ax1.plot(age[conA], SFMS_50[conA], linestyle='--', color='k', alpha=0.5, zorder=-2) else: ax1.fill_between(age[conA], 10**(SFMS_50[conA]-0.2), 10**(SFMS_50[conA]+0.2), linestyle='-', color='b', alpha=0.3, zorder=-2) ax1.plot(age[conA], 10**SFMS_50[conA], linestyle='--', color='k', alpha=0.5, zorder=-2) # # Mass in each bin # ax2label = '' ax2.fill_between(age[conA], ACp[:,0][conA], ACp[:,2][conA], linestyle='-', color='k', alpha=0.5) ax2.errorbar(age[conA], ACp[:,1][conA], xerr=[delTl[:][conA]/1e9,delTu[:][conA]/1e9], \ yerr=[ACp[:,1][conA]-ACp[:,0][conA],ACp[:,2][conA]-ACp[:,1][conA]], linestyle='-', color='k', lw=0.5, label=ax2label, zorder=1) #ax2.scatter(age[conA], ACp[:,1][conA], marker='.', c='k', s=msize) if f_symbol: tbnd = 0.0001 mtmp = 0 for ii in range(len(age)): aa = len(age) -1 - ii agebin = np.arange(0, age[aa], delTu[aa]/1e10) ax2.errorbar(age[aa], ACp[aa,1], xerr=[[delTl[aa]/1e9],[delTu[aa]/1e9]], \ yerr=[[ACp[aa,1]-ACp[aa,0]],[ACp[aa,2]-ACp[aa,1]]], linestyle='-', color=col[aa], lw=1, zorder=2) tbnd = age[aa]+delT[aa]/2./1e9 mtmp = ACp[aa,1] if msize[aa]>0: ax2.scatter(age[aa], ACp[aa,1], marker='.', c=[col[aa]], edgecolor='k', s=msize[aa], zorder=2) y2min = np.max([lmmin,np.min(ACp[:,0][conA])]) y2max = np.max(ACp[:,2][conA])+0.05 if np.abs(y2max-y2min) < 0.2: y2min -= 0.2 # # Total Metal # if not skip_zhist: ax4.fill_between(age[conA], ZCp[:,0][conA], ZCp[:,2][conA], linestyle='-', color='k', alpha=0.5) ax4.errorbar(age[conA], ZCp[:,1][conA], linestyle='-', color='k', lw=0.5, zorder=1) for ii in range(len(age)): aa = len(age) -1 - ii if msize[aa]>0: ax4.errorbar(age[aa], ZCp[aa,1], xerr=[[delTl[aa]/1e9],[delTu[aa]/1e9]], yerr=[[ZCp[aa,1]-ZCp[aa,0]],[ZCp[aa,2]-ZCp[aa,1]]], linestyle='-', color=col[aa], lw=1, zorder=1) ax4.scatter(age[aa], ZCp[aa,1], marker='.', c=[col[aa]], edgecolor='k', s=msize[aa], zorder=2) ############# # Axis ############# # For redshift if zbes<4: if zbes<2: zred = [zbes, 2, 3, 6] zredl = ['$z_\mathrm{obs.}$', 2, 3, 6] elif zbes<2.5: zred = [zbes, 2.5, 3, 6] zredl = ['$z_\mathrm{obs.}$', 2.5, 3, 6] elif zbes<3.: zred = [zbes, 3, 6] zredl = ['$z_\mathrm{obs.}$', 3, 6] else: zred = [zbes, 6] zredl = ['$z_\mathrm{obs.}$', 6] elif zbes<6: zred = [zbes, 5, 6, 9] zredl = ['$z_\mathrm{obs.}$', 5, 6, 9] else: zred = [zbes, 12] zredl = ['$z_\mathrm{obs.}$', 12] Tzz = np.zeros(len(zred), dtype='float') for zz in range(len(zred)): Tzz[zz] = (Tuni - MB.cosmo.age(zred[zz]).value) if Tzz[zz] < Txmin: Tzz[zz] = Txmin lsfru = 2.8 if np.max(SFp[:,2])>2.8: lsfru = np.max(SFp[:,2])+0.1 if np.min(SFp[:,2])>lsfrl: lsfrl = np.min(SFp[:,2])+0.1 if f_log_sfh: if f_axis_force: ax1.set_ylim(lsfrl, lsfru) ax1.set_ylabel('$\log \dot{M}_*/M_\odot$yr$^{-1}$', fontsize=12) #ax1.plot(Tzz, Tzz*0+lsfru+(lsfru-lsfrl)*.00, marker='|', color='k', ms=3, linestyle='None') else: ax1.set_ylim(0, 10**lsfru) ax1.set_ylabel('$\dot{M}_*/M_\odot$yr$^{-1}$', fontsize=12) #ax1.plot(Tzz, Tzz*0+10**lsfru+(lsfru-lsfrl)*.00, marker='|', color='k', ms=3, linestyle='None') if Txmax < np.max(age): Txmax = np.max(age) ax1.set_xlim(Txmin, Txmax) ax1.set_xscale('log') ax2.set_ylabel('$\log M_*/M_\odot$', fontsize=12) ax2.set_xlim(Txmin, Txmax) if f_axis_force: ax2.set_ylim(y2min, y2max) ax2.set_xscale('log') ax2.text(np.min(age*1.05), y2min + 0.07*(y2max-y2min), 'ID: %s\n$z_\mathrm{obs.}:%.2f$\n$\log M_\mathrm{*}/M_\odot:%.2f$\n$\log Z_\mathrm{*}/Z_\odot:%.2f$\n$\log T_\mathrm{*}$/Gyr$:%.2f$\n$A_V$/mag$:%.2f$'\ %(ID, zbes, ACp[0,1], ZCp[0,1], np.nanmedian(TC[0,:]), Avtmp[1]), fontsize=9, bbox=dict(facecolor='w', alpha=0.7), zorder=10) # # Brief Summary # # Writing SED param in a fits file; # Header prihdr = fits.Header() prihdr['ID'] = ID prihdr['z'] = zbes prihdr['RA'] = RA prihdr['DEC'] = DEC # Add rejuv properties; prihdr['f_rejuv'] = f_rejuv prihdr['t_quen'] = t_quench prihdr['t_rejuv'] = t_rejuv # SFR prihdr['tset_SFR'] = tset_SFR_SED # Version; import gsf prihdr['version'] = gsf.__version__ percs = [16,50,84] zmc = hdul[1].data['zmc'] ACP = [ACp[0,0], ACp[0,1], ACp[0,2]] ZCP = [ZCp[0,0], ZCp[0,1], ZCp[0,2]] ZLP = [ZLp[0,0], ZLp[0,1], ZLp[0,2]] con = (~np.isnan(TC[0,:])) TMW = [np.percentile(TC[0,:][con],16), np.percentile(TC[0,:][con],50), np.percentile(TC[0,:][con],84)] con = (~np.isnan(TL[0,:])) TLW = [np.percentile(TL[0,:][con],16), np.percentile(TL[0,:][con],50), np.percentile(TL[0,:][con],84)] for ii in range(len(percs)): prihdr['zmc_%d'%percs[ii]] = ('%.3f'%zmc[ii],'redshift') for ii in range(len(percs)): prihdr['HIERARCH Mstel_%d'%percs[ii]] = ('%.3f'%ACP[ii], 'Stellar mass, logMsun') for ii in range(len(percs)): prihdr['HIERARCH SFR_%d'%percs[ii]] = ('%.3f'%SFR_SED_med[ii], 'SFR, logMsun/yr') for ii in range(len(percs)): prihdr['HIERARCH Z_MW_%d'%percs[ii]] = ('%.3f'%ZCP[ii], 'Mass-weighted metallicity, logZsun') for ii in range(len(percs)): prihdr['HIERARCH Z_LW_%d'%percs[ii]] = ('%.3f'%ZLP[ii], 'Light-weighted metallicity, logZsun') for ii in range(len(percs)): prihdr['HIERARCH T_MW_%d'%percs[ii]] = ('%.3f'%TMW[ii], 'Mass-weighted age, logGyr') for ii in range(len(percs)): prihdr['HIERARCH T_LW_%d'%percs[ii]] = ('%.3f'%TLW[ii], 'Light-weighted agelogGyr') for ii in range(len(percs)): prihdr['AV_%d'%percs[ii]] = ('%.3f'%Avtmp[ii], 'Dust attenuation, mag') prihdu = fits.PrimaryHDU(header=prihdr) # For SFH plot; t0 = Tuni - age[:] col02 = [] col50 = fits.Column(name='time', format='E', unit='Gyr', array=age[:]) col02.append(col50) col50 = fits.Column(name='time_l', format='E', unit='Gyr', array=age[:]-delTl[:]/1e9) col02.append(col50) col50 = fits.Column(name='time_u', format='E', unit='Gyr', array=age[:]+delTl[:]/1e9) col02.append(col50) col50 = fits.Column(name='SFR16', format='E', unit='logMsun/yr', array=SFp[:,0]) col02.append(col50) col50 = fits.Column(name='SFR50', format='E', unit='logMsun/yr', array=SFp[:,1]) col02.append(col50) col50 = fits.Column(name='SFR84', format='E', unit='logMsun/yr', array=SFp[:,2]) col02.append(col50) col50 = fits.Column(name='Mstel16', format='E', unit='logMsun', array=ACp[:,0]) col02.append(col50) col50 = fits.Column(name='Mstel50', format='E', unit='logMsun', array=ACp[:,1]) col02.append(col50) col50 = fits.Column(name='Mstel84', format='E', unit='logMsun', array=ACp[:,2]) col02.append(col50) col50 = fits.Column(name='Z16', format='E', unit='logZsun', array=ZCp[:,0]) col02.append(col50) col50 = fits.Column(name='Z50', format='E', unit='logZsun', array=ZCp[:,1]) col02.append(col50) col50 = fits.Column(name='Z84', format='E', unit='logZsun', array=ZCp[:,2]) col02.append(col50) colms = fits.ColDefs(col02) dathdu = fits.BinTableHDU.from_columns(colms) hdu = fits.HDUList([prihdu, dathdu]) file_sfh = MB.DIR_OUT + 'SFH_' + ID + '.fits' hdu.writeto(file_sfh, overwrite=True) # Attach to MB; MB.sfh_tlook = age MB.sfh_tlookl= delTl[:][conA]/1e9 MB.sfh_tlooku= delTu[:][conA]/1e9 MB.sfh_sfr16 = SFp[:,0] MB.sfh_sfr50 = SFp[:,1] MB.sfh_sfr84 = SFp[:,2] MB.sfh_mfr16 = ACp[:,0] MB.sfh_mfr50 = ACp[:,1] MB.sfh_mfr84 = ACp[:,2] MB.sfh_zfr16 = ZCp[:,0] MB.sfh_zfr50 = ZCp[:,1] MB.sfh_zfr84 = ZCp[:,2] # SFH zzall = np.arange(1.,12,0.01) Tall = MB.cosmo.age(zzall).value # , use_flat=True, **cosmo) dely2 = 0.1 while (y2max-y2min)/dely2>7: dely2 *= 2. y2ticks = np.arange(y2min, y2max, dely2) ax2.set_yticks(y2ticks) ax2.set_yticklabels(np.arange(y2min, y2max, dely2), minor=False) ax2.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) y3min, y3max = np.min(Z), np.max(Z) if not skip_zhist: ax4.set_xlim(Txmin, Txmax) ax4.set_ylim(y3min-0.05, y3max) ax4.set_xscale('log') if f_axis_force: ax4.set_yticks([-0.8, -0.4, 0., 0.4]) ax4.set_yticklabels(['-0.8', '-0.4', '0', '0.4']) #ax4.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) #ax3.yaxis.labelpad = -2 ax4.yaxis.labelpad = -2 ax4.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) ax4.set_ylabel('$\log Z_*/Z_\odot$', fontsize=12) ax4t.set_xscale('log') ax4t.set_xticklabels(zredl[:]) ax4t.set_xticks(Tzz[:]) ax4t.tick_params(axis='x', labelcolor='k') ax4t.xaxis.set_ticks_position('none') ax4t.plot(Tzz, Tzz*0+y3max+(y3max-y3min)*.00, marker='|', color='k', ms=3, linestyle='None') ax4t.set_xlim(Txmin, Txmax) ax1.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) ax2.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) # This has to come before set_xticks; ax1t.set_xscale('log') ax2t.set_xscale('log') ax1t.set_xticklabels(zredl[:]) ax1t.set_xticks(Tzz[:]) ax1t.tick_params(axis='x', labelcolor='k') ax1t.xaxis.set_ticks_position('none') ax1t.plot(Tzz, Tzz*0+lsfru+(lsfru-lsfrl)*.00, marker='|', color='k', ms=3, linestyle='None') ax2t.set_xticklabels(zredl[:]) ax2t.set_xticks(Tzz[:]) ax2t.tick_params(axis='x', labelcolor='k') ax2t.xaxis.set_ticks_position('none') ax2t.plot(Tzz, Tzz*0+y2max+(y2max-y2min)*.00, marker='|', color='k', ms=3, linestyle='None') # This has to come after set_xticks; ax1t.set_xlim(Txmin, Txmax) ax2t.set_xlim(Txmin, Txmax) # Save fig.savefig(MB.DIR_OUT + 'SFH_' + ID + '_pcl.png', dpi=dpi) def sfr_tau(t0, tau0, Z=0.0, sfh=0, tt=np.arange(0,13,0.1), Mtot=1.): ''' Parameters ---------- sfh : int 1:exponential, 4:delayed exp, 5:, 6:lognormal ML : float Total Mass. tt : float Lookback time, in Gyr tau0: float in Gyr t0 : float age, in Gyr Returns ------- SFR : in Msun/yr MFR : in Msun ''' yy = np.zeros(len(tt), dtype='float') yyms = np.zeros(len(tt), dtype='float') con = (tt<=t0) if sfh == 1: yy[con] = np.exp((tt[con]-t0)/tau0) elif sfh == 4: yy[con] = (t0-tt[con]) * np.exp((tt[con]-t0)/tau0) elif sfh == 6: # lognorm con = (tt>0) yy[con] = 1. / np.sqrt(2*np.pi*tau0**2) * np.exp(-(np.log(tt[con])-np.log(t0))**2/(2*tau0**2)) / tt[con] # Total mass calculation; #deltt = (tt[1] - tt[0]) #* 1e9 yyms[:] = np.cumsum(yy[::-1])[::-1] #* deltt * 1e9 # in Msun # Normalization; deltt = tt[1] - tt[0] C = Mtot/np.max(yyms) yyms *= C yy *= C / deltt / 1e9 # in Msun/yr yy[~con] = 1e-20 yyms[~con] = 1e-20 return tt, yy, yyms def plot_sfh_tau(MB, f_comp=0, flim=0.01, lsfrl=-1, mmax=1000, Txmin=0.08, Txmax=4, lmmin=8.5, fil_path='./FILT/', \ inputs=None, dust_model=0, DIR_TMP='./templates/', f_SFMS=False, f_symbol=True, verbose=False, f_silence=True, \ f_log_sfh=True, dpi=250, TMIN=0.0001, tau_lim=0.01, skip_zhist=True, tset_SFR_SED=0.1): ''' Purpose ------- Star formation history plot. Parameters ---------- flim : float Lower limit for plotting an age bin. lsfrl : float Lower limit for SFR, in logMsun/yr f_SFMS : bool If true, plot SFR of the main sequence of a ginen stellar mass at each lookback time. tset_SFR_SED : float in Gyr. Time scale over which SFR estimate is averaged. ''' if f_silence: import matplotlib matplotlib.use("Agg") else: import matplotlib fnc = MB.fnc bfnc = MB.bfnc ID = MB.ID Z = MB.Zall age = MB.age nage = MB.nage tau0 = MB.tau0 ageparam = MB.ageparam try: if not MB.ZFIX == None: skip_zhist = True except: pass NUM_COLORS = len(age) cm = plt.get_cmap('gist_rainbow_r') col = np.atleast_2d([cm(1.*i/NUM_COLORS) for i in range(NUM_COLORS)]) ################ # RF colors. home = os.path.expanduser('~') c = MB.c chimax = 1. m0set = MB.m0set Mpc_cm = MB.Mpc_cm d = MB.d #10**(73.6/2.5) * 1e-18 # From [ergs/s/cm2/A] to [ergs/s/cm2/Hz] ############# # Plot. ############# if f_log_sfh: fig = plt.figure(figsize=(8,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.07, right=0.99, hspace=0.15, wspace=0.3) else: fig = plt.figure(figsize=(8.2,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.1, right=0.99, hspace=0.15, wspace=0.3) if skip_zhist: if f_log_sfh: fig = plt.figure(figsize=(5.5,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.1, right=0.99, hspace=0.15, wspace=0.3) else: fig = plt.figure(figsize=(6.2,2.8)) fig.subplots_adjust(top=0.88, bottom=0.18, left=0.1, right=0.99, hspace=0.15, wspace=0.3) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) else: ax1 = fig.add_subplot(131) ax2 = fig.add_subplot(132) ax4 = fig.add_subplot(133) ax4t = ax4.twiny() ax1t = ax1.twiny() ax2t = ax2.twiny() ################## # Fitting Results ################## SNlim = 3 # avobe which SN line is shown. ########################### # Open result file ########################### file = MB.DIR_OUT + 'summary_' + ID + '.fits' hdul = fits.open(file) # open a FITS file try: zbes = hdul[0].header['zmc'] except: zbes = hdul[0].header['z'] chinu= hdul[1].data['chi'] try: RA = hdul[0].header['RA'] DEC = hdul[0].header['DEC'] except: RA = 0 DEC = 0 try: SN = hdul[0].header['SN'] except: ########################### # Get SN of Spectra ########################### file = 'templates/spec_obs_' + ID + '.cat' fds = np.loadtxt(file, comments='#') nrs = fds[:,0] lams = fds[:,1] fsp = fds[:,2] esp = fds[:,3] consp = (nrs<10000) & (lams/(1.+zbes)>3600) & (lams/(1.+zbes)<4200) if len((fsp/esp)[consp]>10): SN = np.median((fsp/esp)[consp]) else: SN = 1 Asum = 0 A50 = np.arange(len(age), dtype='float') for aa in range(len(A50)): A50[aa] = 10**hdul[1].data['A'+str(aa)][1] Asum += A50[aa] #################### # For cosmology #################### DL = MB.cosmo.luminosity_distance(zbes).value * Mpc_cm # Luminositydistance in cm Cons = (4.*np.pi*DL**2/(1.+zbes)) Tuni = MB.cosmo.age(zbes).value #, use_flat=True, **cosmo) Tuni0 = (Tuni - age[:]) delT = np.zeros(len(age),dtype='float') delTl = np.zeros(len(age),dtype='float') delTu = np.zeros(len(age),dtype='float') if len(age) == 1: #if tau0[0] < 0: # SSP; for aa in range(len(age)): try: tau_ssp = float(inputs['TAU_SSP']) except: tau_ssp = tau_lim delTl[aa] = tau_ssp/2 delTu[aa] = tau_ssp/2 if age[aa] < tau_lim: # This is because fsps has the minimum tau = tau_lim delT[aa] = tau_lim else: delT[aa] = delTu[aa] + delTl[aa] else: # This is only true when CSP... for aa in range(len(age)): if aa == 0: delTl[aa] = age[aa] delTu[aa] = (age[aa+1]-age[aa])/2. delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) elif Tuni < age[aa]: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = Tuni-age[aa] #delTl[aa] #10. delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) elif aa == len(age)-1: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = Tuni - age[aa] delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) else: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = (age[aa+1]-age[aa])/2. if age[aa]+delTu[aa]>Tuni: delTu[aa] = Tuni-age[aa] delT[aa] = delTu[aa] + delTl[aa] #print(age[aa],age[aa]-delTl[aa],age[aa]+delTu[aa]) con_delt = (delT<=0) delT[con_delt] = 1e10 delT[:] *= 1e9 # Gyr to yr delTl[:] *= 1e9 # Gyr to yr delTu[:] *= 1e9 # Gyr to yr ############################## # Load Pickle ############################## samplepath = MB.DIR_OUT pfile = 'chain_' + ID + '_corner.cpkl' niter = 0 data = loadcpkl(os.path.join(samplepath+'/'+pfile)) try: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. burnin = data['burnin'] nmc = data['niter'] nwalk = data['nwalkers'] Nburn = burnin #* nwalk/10/2 # I think this takes 3/4 of samples #if nmc>1000: # Nburn = 500 samples = data['chain'][:] except: print(' = > NO keys of ndim and burnin found in cpkl, use input keyword values') return -1 ###################### # Mass-to-Light ratio. ###################### AM = np.zeros((len(age), mmax), dtype='float') # Mass in each bin. AC = np.zeros((len(age), mmax), dtype='float') -99 # Cumulative mass in each bin. AL = np.zeros((len(age), mmax), dtype='float') # Cumulative light in each bin. ZM = np.zeros((len(age), mmax), dtype='float') # Z. ZC = np.zeros((len(age), mmax), dtype='float') -99 # Cumulative Z. ZL = np.zeros((len(age), mmax), dtype='float') -99 # Light weighted cumulative Z. TC = np.zeros((len(age), mmax), dtype='float') # Mass weighted T. TL = np.zeros((len(age), mmax), dtype='float') # Light weighted T. ZMM= np.zeros((len(age), mmax), dtype='float') # Mass weighted Z. ZML= np.zeros((len(age), mmax), dtype='float') # Light weighted Z. SF = np.zeros((len(age), mmax), dtype='float') # SFR Av = np.zeros(mmax, dtype='float') # SFR # ############################## # Add simulated scatter in quad # if files are available. # ############################## if inputs: f_zev = int(inputs['ZEVOL']) else: f_zev = 1 eZ_mean = 0 ##################### # Get SED based SFR ##################### f_SFRSED_plot = False SFR_SED = np.zeros(mmax,dtype='float') # ASDF; af = asdf.open(MB.DIR_TMP + 'spec_all_' + MB.ID + '.asdf') af0 = asdf.open(MB.DIR_TMP + 'spec_all.asdf') sedpar = af['ML'] # For M/L sedpar0 = af0['ML'] # For mass loss frac. ttmin = 0.001 tt = np.arange(ttmin,Tuni+0.5,ttmin/10) xSF = np.zeros((len(tt), mmax), dtype='float') # SFR ySF = np.zeros((len(tt), mmax), dtype='float') # SFR yMS = np.zeros((len(tt), mmax), dtype='float') # MFR ySF_each = np.zeros((MB.npeak, len(tt), mmax), dtype='float') # SFR yMS_each = np.zeros((MB.npeak, len(tt), mmax), dtype='float') # MFR ZZmc = np.zeros((MB.npeak, mmax), dtype='float') TTmc = np.zeros((MB.npeak, mmax), dtype='float') TAmc = np.zeros((MB.npeak, mmax), dtype='float') if Txmin > np.min(tt): Txmin = np.min(tt) * 0.8 mm = 0 plot_each = True while mm<mmax: mtmp = np.random.randint(len(samples))# + Nburn if MB.nAV != 0: Av_tmp = samples['Av'][mtmp] else: Av_tmp = MB.AVFIX for aa in range(MB.npeak): AAtmp = samples['A%d'%aa][mtmp] ltautmp = samples['TAU%d'%aa][mtmp] lagetmp = samples['AGE%d'%aa][mtmp] if aa == 0 or MB.ZEVOL: try: ZZtmp = samples['Z%d'%aa][mtmp] except: ZZtmp = MB.ZFIX ZZmc[aa,mm] = ZZtmp TAmc[aa,mm] = lagetmp TTmc[aa,mm] = ltautmp nZtmp,nttmp,natmp = bfnc.Z2NZ(ZZtmp, ltautmp, lagetmp) mslist = sedpar['ML_'+str(nZtmp)+'_'+str(nttmp)][natmp] xSF[:,mm], ySF_each[aa,:,mm], yMS_each[aa,:,mm] = sfr_tau(10**lagetmp, 10**ltautmp, ZZtmp, sfh=MB.SFH_FORM, tt=tt, Mtot=10**AAtmp*mslist) #xSFtmp, ySFtmp, yMStmp = sfr_tau(10**lagetmp, 10**ltautmp, ZZtmp, sfh=MB.SFH_FORM, tt=tt, Mtot=10**AAtmp*mslist) ySF[:,mm] += ySF_each[aa,:,mm] yMS[:,mm] += yMS_each[aa,:,mm] # SFR from SED. This will be converted in log later; con_sfr = (xSF[:,mm] <= tset_SFR_SED) SFR_SED[mm] += np.mean(10**ySF_each[aa,:,mm]) Av[mm] = Av_tmp if plot_each: ax1.plot(xSF[:,mm], np.log10(ySF[:,mm]), linestyle='-', color='k', alpha=0.01, zorder=-1, lw=0.5) ax2.plot(xSF[:,mm], np.log10(yMS[:,mm]), linestyle='-', color='k', alpha=0.01, zorder=-1, lw=0.5) if SFR_SED[mm] > 0: SFR_SED[mm] = np.log10(SFR_SED[mm]) else: SFR_SED[mm] = -99 mm += 1 Avtmp = np.percentile(Av[:],[16,50,84]) ############# # Plot ############# xSFp = np.zeros((len(tt),3), dtype='float') ySFp = np.zeros((len(tt),3), dtype='float') yMSp = np.zeros((len(tt),3), dtype='float') ySFp_each = np.zeros((MB.npeak, len(tt), 3), dtype='float') yMSp_each = np.zeros((MB.npeak, len(tt), 3), dtype='float') for ii in range(len(tt)): xSFp[ii,:] = np.percentile(xSF[ii,:], [16,50,84]) ySFp[ii,:] = np.percentile(ySF[ii,:], [16,50,84]) yMSp[ii,:] = np.percentile(yMS[ii,:], [16,50,84]) for aa in range(MB.npeak): ySFp_each[aa,ii,:] = np.percentile(ySF_each[aa,ii,:], [16,50,84]) yMSp_each[aa,ii,:] = np.percentile(yMS_each[aa,ii,:], [16,50,84]) for aa in range(MB.npeak): ax1.plot(xSFp[:,1], np.log10(ySFp_each[aa,:,1]), linestyle='-', color=col[aa], alpha=1., zorder=-1, lw=0.5) ax2.plot(xSFp[:,1], np.log10(ySFp_each[aa,:,1]), linestyle='-', color=col[aa], alpha=1., zorder=-1, lw=0.5) ax1.plot(xSFp[:,1], np.log10(ySFp[:,1]), linestyle='-', color='k', alpha=1., zorder=-1, lw=0.5) ax2.plot(xSFp[:,1], np.log10(yMSp[:,1]), linestyle='-', color='k', alpha=1., zorder=-1, lw=0.5) ACp = np.zeros((len(tt),3),'float') SFp = np.zeros((len(tt),3),'float') ACp[:] = np.log10(yMSp[:,:]) SFp[:] = np.log10(ySFp[:,:]) SFR_SED_med = np.percentile(SFR_SED[:],[16,50,84]) ################### msize = np.zeros(len(age), dtype='float') # Metal ZCp = np.zeros((MB.npeak,3),'float') TCp = np.zeros((MB.npeak,3),'float') TTp = np.zeros((MB.npeak,3),'float') for aa in range(len(age)): if A50[aa]/Asum>flim: # if >1% msize[aa] = 200 * A50[aa]/Asum ZCp[aa,:] = np.percentile(ZZmc[aa,:], [16,50,84]) TCp[aa,:] = np.percentile(TTmc[aa,:], [16,50,84]) TTp[aa,:] = np.percentile(TAmc[aa,:], [16,50,84]) if False: conA = (msize>=0) if f_log_sfh: ax1.fill_between(age[conA], SFp[:,0][conA], SFp[:,2][conA], linestyle='-', color='k', alpha=0.5, zorder=-1) ax1.errorbar(age, SFp[:,1], linestyle='-', color='k', marker='', zorder=-1, lw=.5) else: ax1.fill_between(age[conA], 10**SFp[:,0][conA], 10**SFp[:,2][conA], linestyle='-', color='k', alpha=0.5, zorder=-1) ax1.errorbar(age, 10**SFp[:,1], linestyle='-', color='k', marker='', zorder=-1, lw=.5) ############# # Get SFMS in log10; ############# IMF = int(inputs['NIMF']) SFMS_16 = get_SFMS(zbes,tt,10**ACp[:,0],IMF=IMF) SFMS_50 = get_SFMS(zbes,tt,10**ACp[:,1],IMF=IMF) SFMS_84 = get_SFMS(zbes,tt,10**ACp[:,2],IMF=IMF) #try: if False: f_rejuv,t_quench,t_rejuv = check_rejuv(age,SFp[:,:],ACp[:,:],SFMS_50) else: print('Failed to call rejuvenation module.') f_rejuv,t_quench,t_rejuv = 0,0,0 # Plot MS? conA = () if f_SFMS: if f_log_sfh: ax1.fill_between(tt[conA], SFMS_50[conA]-0.2, SFMS_50[conA]+0.2, linestyle='-', color='b', alpha=0.3, zorder=-2) ax1.plot(tt[conA], SFMS_50[conA], linestyle='--', color='k', alpha=0.5, zorder=-2) # Plot limit; y2min = np.max([lmmin,np.min(np.log10(yMSp[:,1]))]) y2max = np.max(np.log10(yMSp[:,1]))+0.05 if np.abs(y2max-y2min) < 0.2: y2min -= 0.2 # Total Metal if not skip_zhist: ax4.fill_between(age[conA], ZCp[:,0][conA], ZCp[:,2][conA], linestyle='-', color='k', alpha=0.5) ax4.errorbar(age[conA], ZCp[:,1][conA], linestyle='-', color='k', lw=0.5, zorder=1) for ii in range(len(age)): aa = len(age) -1 - ii if msize[aa]>0: ax4.errorbar(age[aa], ZCp[aa,1], xerr=[[delTl[aa]/1e9],[delTu[aa]/1e9]], yerr=[[ZCp[aa,1]-ZCp[aa,0]],[ZCp[aa,2]-ZCp[aa,1]]], linestyle='-', color=col[aa], lw=1, zorder=1) ax4.scatter(age[aa], ZCp[aa,1], marker='.', c=[col[aa]], edgecolor='k', s=msize[aa], zorder=2) ############# # Axis ############# # For redshift if zbes<4: if zbes<2: zred = [zbes, 2, 3, 6] zredl = ['$z_\mathrm{obs.}$', 2, 3, 6] elif zbes<2.5: zred = [zbes, 2.5, 3, 6] zredl = ['$z_\mathrm{obs.}$', 2.5, 3, 6] elif zbes<3.: zred = [zbes, 3, 6] zredl = ['$z_\mathrm{obs.}$', 3, 6] else: zred = [zbes, 6] zredl = ['$z_\mathrm{obs.}$', 6] elif zbes<6: zred = [zbes, 5, 6, 9] zredl = ['$z_\mathrm{obs.}$', 5, 6, 9] else: zred = [zbes, 12] zredl = ['$z_\mathrm{obs.}$', 12] Tzz = np.zeros(len(zred), dtype='float') for zz in range(len(zred)): Tzz[zz] = (Tuni - MB.cosmo.age(zred[zz]).value) if Tzz[zz] < Txmin: Tzz[zz] = Txmin lsfru = 2.8 if np.max(SFp[:,2])>2.8: lsfru = np.max(SFp[:,2])+0.1 if f_log_sfh: ax1.set_ylim(lsfrl, lsfru) ax1.set_ylabel('$\log \dot{M}_*/M_\odot$yr$^{-1}$', fontsize=12) #ax1.plot(Tzz, Tzz*0+lsfru+(lsfru-lsfrl)*.00, marker='|', color='k', ms=3, linestyle='None') else: ax1.set_ylim(0, 10**lsfru) ax1.set_ylabel('$\dot{M}_*/M_\odot$yr$^{-1}$', fontsize=12) #ax1.plot(Tzz, Tzz*0+10**lsfru+(lsfru-lsfrl)*.00, marker='|', color='k', ms=3, linestyle='None') ax1.set_xlim(Txmin, Txmax) ax1.set_xscale('log') ax2.set_ylabel('$\log M_*/M_\odot$', fontsize=12) ax2.set_xlim(Txmin, Txmax) ax2.set_ylim(y2min, y2max) ax2.set_xscale('log') ax2.text(np.min(age*1.05), y2min + 0.07*(y2max-y2min), 'ID: %s\n$z_\mathrm{obs.}:%.2f$\n$\log M_\mathrm{*}/M_\odot:%.2f$\n$\log Z_\mathrm{*}/Z_\odot:%.2f$\n$\log T_\mathrm{*}$/Gyr$:%.2f$\n$A_V$/mag$:%.2f$'\ %(ID, zbes, ACp[0,1], ZCp[0,1], np.nanmedian(TC[0,:]), Avtmp[1]), fontsize=9, bbox=dict(facecolor='w', alpha=0.7), zorder=10) # # Brief Summary # # Writing SED param in a fits file; # Header prihdr = fits.Header() prihdr['ID'] = ID prihdr['z'] = zbes prihdr['RA'] = RA prihdr['DEC'] = DEC # Add rejuv properties; prihdr['f_rejuv'] = f_rejuv prihdr['t_quen'] = t_quench prihdr['t_rejuv'] = t_rejuv # SFR prihdr['tset_SFR'] = tset_SFR_SED # SFH prihdr['SFH_FORM'] = MB.SFH_FORM # Version; import gsf prihdr['version'] = gsf.__version__ percs = [16,50,84] zmc = hdul[1].data['zmc'] ACP = [ACp[0,0], ACp[0,1], ACp[0,2]] ZCP = [ZCp[0,0], ZCp[0,1], ZCp[0,2]] ZLP = ZCP #[ZLp[0,0], ZLp[0,1], ZLp[0,2]] TLW = TTp[0,:] TMW = TTp[0,:] TAW = TCp[0,:] for ii in range(len(percs)): prihdr['zmc_%d'%percs[ii]] = ('%.3f'%zmc[ii],'redshift') for ii in range(len(percs)): prihdr['HIERARCH Mstel_%d'%percs[ii]] = ('%.3f'%ACP[ii], 'Stellar mass, logMsun') for ii in range(len(percs)): prihdr['HIERARCH SFR_%d'%percs[ii]] = ('%.3f'%SFR_SED_med[ii], 'SFR, logMsun/yr') for ii in range(len(percs)): prihdr['HIERARCH Z_MW_%d'%percs[ii]] = ('%.3f'%ZCP[ii], 'Mass-weighted metallicity, logZsun') for ii in range(len(percs)): prihdr['HIERARCH Z_LW_%d'%percs[ii]] = ('%.3f'%ZLP[ii], 'Light-weighted metallicity, logZsun') for ii in range(len(percs)): prihdr['HIERARCH T_MW_%d'%percs[ii]] = ('%.3f'%TMW[ii], 'Mass-weighted age, logGyr') for ii in range(len(percs)): prihdr['HIERARCH T_LW_%d'%percs[ii]] = ('%.3f'%TLW[ii], 'Light-weighted age, logGyr') for ii in range(len(percs)): prihdr['HIERARCH TAU_%d'%percs[ii]] = ('%.3f'%TAW[ii], 'Tau, logGyr') for ii in range(len(percs)): prihdr['AV_%d'%percs[ii]] = ('%.3f'%Avtmp[ii], 'Dust attenuation, mag') prihdu = fits.PrimaryHDU(header=prihdr) # For SFH plot; t0 = Tuni - age[:] col02 = [] col50 = fits.Column(name='time', format='E', unit='Gyr', array=xSFp[:,1]) col02.append(col50) col50 = fits.Column(name='time_l', format='E', unit='Gyr', array=xSFp[:,0]) col02.append(col50) col50 = fits.Column(name='time_u', format='E', unit='Gyr', array=xSFp[:,2]) col02.append(col50) col50 = fits.Column(name='SFR16', format='E', unit='logMsun/yr', array=SFp[:,0]) col02.append(col50) col50 = fits.Column(name='SFR50', format='E', unit='logMsun/yr', array=SFp[:,1]) col02.append(col50) col50 = fits.Column(name='SFR84', format='E', unit='logMsun/yr', array=SFp[:,2]) col02.append(col50) col50 = fits.Column(name='Mstel16', format='E', unit='logMsun', array=ACp[:,0]) col02.append(col50) col50 = fits.Column(name='Mstel50', format='E', unit='logMsun', array=ACp[:,1]) col02.append(col50) col50 = fits.Column(name='Mstel84', format='E', unit='logMsun', array=ACp[:,2]) col02.append(col50) col50 = fits.Column(name='Z16', format='E', unit='logZsun', array=ZCp[:,0]) col02.append(col50) col50 = fits.Column(name='Z50', format='E', unit='logZsun', array=ZCp[:,1]) col02.append(col50) col50 = fits.Column(name='Z84', format='E', unit='logZsun', array=ZCp[:,2]) col02.append(col50) colms = fits.ColDefs(col02) dathdu = fits.BinTableHDU.from_columns(colms) hdu = fits.HDUList([prihdu, dathdu]) file_sfh = MB.DIR_OUT + 'SFH_' + ID + '.fits' hdu.writeto(file_sfh, overwrite=True) # Attach to MB; MB.sfh_tlook = age MB.sfh_tlookl= delTl[:][conA]/1e9 MB.sfh_tlooku= delTu[:][conA]/1e9 MB.sfh_sfr16 = SFp[:,0] MB.sfh_sfr50 = SFp[:,1] MB.sfh_sfr84 = SFp[:,2] MB.sfh_mfr16 = ACp[:,0] MB.sfh_mfr50 = ACp[:,1] MB.sfh_mfr84 = ACp[:,2] MB.sfh_zfr16 = ZCp[:,0] MB.sfh_zfr50 = ZCp[:,1] MB.sfh_zfr84 = ZCp[:,2] # SFH zzall = np.arange(1.,12,0.01) Tall = MB.cosmo.age(zzall).value # , use_flat=True, **cosmo) dely2 = 0.1 while (y2max-y2min)/dely2>7: dely2 *= 2. y2ticks = np.arange(y2min, y2max, dely2) ax2.set_yticks(y2ticks) ax2.set_yticklabels(np.arange(y2min, y2max, dely2), minor=False) ax2.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) if not skip_zhist: y3min, y3max = np.min([np.min(Z),-0.8]), np.max([np.max(Z),0.4]) ax4.set_xlim(Txmin, Txmax) ax4.set_ylim(y3min-0.05, y3max) ax4.set_xscale('log') ax4.set_yticks([-0.8, -0.4, 0., 0.4]) ax4.set_yticklabels(['-0.8', '-0.4', '0', '0.4']) #ax4.yaxis.set_major_formatter(FormatStrFormatter('%.2f')) #ax3.yaxis.labelpad = -2 ax4.yaxis.labelpad = -2 ax4.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) ax4.set_ylabel('$\log Z_*/Z_\odot$', fontsize=12) ax4t.set_xscale('log') ax4t.set_xticklabels(zredl[:]) ax4t.set_xticks(Tzz[:]) ax4t.tick_params(axis='x', labelcolor='k') ax4t.xaxis.set_ticks_position('none') ax4t.plot(Tzz, Tzz*0+y3max+(y3max-y3min)*.00, marker='|', color='k', ms=3, linestyle='None') ax4t.set_xlim(Txmin, Txmax) ax1.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) ax2.set_xlabel('$t_\mathrm{lookback}$/Gyr', fontsize=12) # This has to come before set_xticks; ax1t.set_xscale('log') ax2t.set_xscale('log') ax1t.set_xticklabels(zredl[:]) ax1t.set_xticks(Tzz[:]) ax1t.tick_params(axis='x', labelcolor='k') ax1t.xaxis.set_ticks_position('none') ax1t.plot(Tzz, Tzz*0+lsfru+(lsfru-lsfrl)*.00, marker='|', color='k', ms=3, linestyle='None') ax2t.set_xticklabels(zredl[:]) ax2t.set_xticks(Tzz[:]) ax2t.tick_params(axis='x', labelcolor='k') ax2t.xaxis.set_ticks_position('none') ax2t.plot(Tzz, Tzz*0+y2max+(y2max-y2min)*.00, marker='|', color='k', ms=3, linestyle='None') # This has to come after set_xticks; ax1t.set_xlim(Txmin, Txmax) ax2t.set_xlim(Txmin, Txmax) # Save fig.savefig(MB.DIR_OUT + 'SFH_' + ID + '_pcl.png', dpi=dpi) def get_evolv(MB, ID, Z=np.arange(-1.2,0.4249,0.05), age=[0.01, 0.1, 0.3, 0.7, 1.0, 3.0], f_comp=0, fil_path='./FILT/', \ inputs=None, dust_model=0, DIR_TMP='./templates/', delt_sfh=0.01): ''' Purpose ------- Reprocess output files to get spectra, UV color, and SFH at higher resolution. Parameters ---------- delt_sfh : float delta t of input SFH in Gyr. Returns ------- SED as function of age, based on SF and Z histories; ''' print('This function may take a while as it runs fsps.') flim = 0.01 lsfrl = -1 # log SFR low limit mmax = 1000 Txmax = 4 # Max x value lmmin = 10.3 nage = np.arange(0,len(age),1) fnc = Func(ID, Z, nage, dust_model=dust_model) # Set up the number of Age/ZZ bfnc = Basic(Z) age = np.asarray(age) ################ # RF colors. import os.path home = os.path.expanduser('~') c = MB.c #3.e18 # A/s m0set = MB.m0set #25.0 chimax = 1. d = 10**(73.6/2.5) * 1e-18 # From [ergs/s/cm2/A] to [ergs/s/cm2/Hz] ########################### # Open result file ########################### file = 'summary_' + ID + '.fits' hdul = fits.open(file) # open a FITS file zbes = hdul[0].header['z'] chinu= hdul[1].data['chi'] uv= hdul[1].data['uv'] vj= hdul[1].data['vj'] RA = 0 DEC = 0 rek = 0 erekl= 0 ereku= 0 mu = 1.0 nn = 0 qq = 0 enn = 0 eqq = 0 try: RA = hdul[0].header['RA'] DEC = hdul[0].header['DEC'] except: RA = 0 DEC = 0 try: SN = hdul[0].header['SN'] except: ########################### # Get SN of Spectra ########################### file = 'templates/spec_obs_' + ID + '.cat' fds = np.loadtxt(file, comments='#') nrs = fds[:,0] lams = fds[:,1] fsp = fds[:,2] esp = fds[:,3] consp = (nrs<10000) & (lams/(1.+zbes)>3600) & (lams/(1.+zbes)<4200) if len((fsp/esp)[consp]>10): SN = np.median((fsp/esp)[consp]) else: SN = 1 Asum = 0 A50 = np.arange(len(age), dtype='float') for aa in range(len(A50)): A50[aa] = hdul[1].data['A'+str(aa)][1] Asum += A50[aa] #################### # For cosmology #################### DL = MB.cosmo.luminosity_distance(zbes).value * MB.Mpc_cm # Luminositydistance in cm Cons = (4.*np.pi*DL**2/(1.+zbes)) Tuni = MB.cosmo.age(zbes).value Tuni0 = (Tuni - age[:]) delT = np.zeros(len(age),dtype='float') delTl = np.zeros(len(age),dtype='float') delTu = np.zeros(len(age),dtype='float') for aa in range(len(age)): if aa == 0: delTl[aa] = age[aa] delTu[aa] = (age[aa+1]-age[aa])/2. delT[aa] = delTu[aa] + delTl[aa] elif Tuni < age[aa]: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = delTl[aa] #10. delT[aa] = delTu[aa] + delTl[aa] elif aa == len(age)-1: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = Tuni - age[aa] delT[aa] = delTu[aa] + delTl[aa] else: delTl[aa] = (age[aa]-age[aa-1])/2. delTu[aa] = (age[aa+1]-age[aa])/2. delT[aa] = delTu[aa] + delTl[aa] delT[:] *= 1e9 # Gyr to yr delTl[:] *= 1e9 # Gyr to yr delTu[:] *= 1e9 # Gyr to yr ############################## # Load Pickle ############################## samplepath = './' pfile = 'chain_' + ID + '_corner.cpkl' niter = 0 data = loadcpkl(os.path.join(samplepath+'/'+pfile)) try: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. burnin = data['burnin'] nmc = data['niter'] nwalk = data['nwalkers'] Nburn = burnin #* nwalk/10/2 # I think this takes 3/4 of samples #if nmc>1000: # Nburn = 500 samples = data['chain'][:] except: print(' = > NO keys of ndim and burnin found in cpkl, use input keyword values') return -1 ###################### # Mass-to-Light ratio. ###################### AM = np.zeros((len(age), mmax), dtype='float') # Mass in each bin. AC = np.zeros((len(age), mmax), dtype='float') # Cumulative mass in each bin. AL = np.zeros((len(age), mmax), dtype='float') # Cumulative light in each bin. ZM = np.zeros((len(age), mmax), dtype='float') # Z. ZC = np.zeros((len(age), mmax), dtype='float') # Cumulative Z. ZL = np.zeros((len(age), mmax), dtype='float') # Light weighted cumulative Z. TC = np.zeros((len(age), mmax), dtype='float') # Mass weighted T. TL = np.zeros((len(age), mmax), dtype='float') # Light weighted T. ZMM= np.zeros((len(age), mmax), dtype='float') # Mass weighted Z. ZML= np.zeros((len(age), mmax), dtype='float') # Light weighted Z. SF = np.zeros((len(age), mmax), dtype='float') # SFR Av = np.zeros(mmax, dtype='float') # SFR # ############################## # Add simulated scatter in quad # if files are available. # ############################## if inputs: f_zev = int(inputs['ZEVOL']) else: f_zev = 1 eZ_mean = 0 try: meanfile = './sim_SFH_mean.cat' dfile = np.loadtxt(meanfile, comments='#') eA = dfile[:,2] eZ = dfile[:,4] eAv= np.mean(dfile[:,6]) if f_zev == 0: eZ_mean = np.mean(eZ[:]) eZ[:] = age * 0 #+ eZ_mean else: try: f_zev = int(prihdr['ZEVOL']) if f_zev == 0: eZ_mean = np.mean(eZ[:]) eZ = age * 0 except: pass except: print('No simulation file (%s).\nError may be underestimated.' % meanfile) eA = age * 0 eZ = age * 0 eAv= 0 mm = 0 for mm in range(mmax): mtmp = np.random.randint(len(samples))# + Nburn AAtmp = np.zeros(len(age), dtype='float') ZZtmp = np.zeros(len(age), dtype='float') mslist= np.zeros(len(age), dtype='float') Av_tmp = samples['Av'][mtmp] f0 = fits.open(DIR_TMP + 'ms_' + ID + '.fits') sedpar = f0[1] f1 = fits.open(DIR_TMP + 'ms.fits') mloss = f1[1].data Avrand = np.random.uniform(-eAv, eAv) if Av_tmp + Avrand<0: Av[mm] = 0 else: Av[mm] = Av_tmp + Avrand for aa in range(len(age)): AAtmp[aa] = samples['A'+str(aa)][mtmp]/mu try: ZZtmp[aa] = samples['Z'+str(aa)][mtmp] except: ZZtmp[aa] = samples['Z0'][mtmp] nZtmp = bfnc.Z2NZ(ZZtmp[aa]) mslist[aa] = sedpar.data['ML_'+str(nZtmp)][aa] ml = mloss['ms_'+str(nZtmp)][aa] Arand = np.random.uniform(-eA[aa],eA[aa]) Zrand = np.random.uniform(-eZ[aa],eZ[aa]) AM[aa, mm] = AAtmp[aa] * mslist[aa] * 10**Arand AL[aa, mm] = AM[aa, mm] / mslist[aa] SF[aa, mm] = AAtmp[aa] * mslist[aa] / delT[aa] / ml * 10**Arand ZM[aa, mm] = ZZtmp[aa] + Zrand ZMM[aa, mm]= (10 ** ZZtmp[aa]) * AAtmp[aa] * mslist[aa] * 10**Zrand ZML[aa, mm]= ZMM[aa, mm] / mslist[aa] for aa in range(len(age)): AC[aa, mm] = np.sum(AM[aa:, mm]) ZC[aa, mm] = np.log10(np.sum(ZMM[aa:, mm])/AC[aa, mm]) ZL[aa, mm] = np.log10(np.sum(ZML[aa:, mm])/np.sum(AL[aa:, mm])) if f_zev == 0: # To avoid random fluctuation in A. ZC[aa, mm] = ZM[aa, mm] ACs = 0 ALs = 0 for bb in range(aa, len(age), 1): tmpAA = 10**np.random.uniform(-eA[bb],eA[bb]) tmpTT = np.random.uniform(-delT[bb]/1e9,delT[bb]/1e9) TC[aa, mm] += (age[bb]+tmpTT) * AAtmp[bb] * mslist[bb] * tmpAA TL[aa, mm] += (age[bb]+tmpTT) * AAtmp[bb] * tmpAA ACs += AAtmp[bb] * mslist[bb] * tmpAA ALs += AAtmp[bb] * tmpAA TC[aa, mm] /= ACs TL[aa, mm] /= ALs Avtmp = np.percentile(Av[:],[16,50,84]) ############# # Plot ############# AMp = np.zeros((len(age),3), dtype='float') ACp = np.zeros((len(age),3), dtype='float') ZMp = np.zeros((len(age),3), dtype='float') ZCp = np.zeros((len(age),3), dtype='float') SFp = np.zeros((len(age),3), dtype='float') for aa in range(len(age)): AMp[aa,:] = np.percentile(AM[aa,:], [16,50,84]) ACp[aa,:] = np.percentile(AC[aa,:], [16,50,84]) ZMp[aa,:] = np.percentile(ZM[aa,:], [16,50,84]) ZCp[aa,:] = np.percentile(ZC[aa,:], [16,50,84]) SFp[aa,:] = np.percentile(SF[aa,:], [16,50,84]) ################### msize = np.zeros(len(age), dtype='float') for aa in range(len(age)): if A50[aa]/Asum>flim: # if >1% msize[aa] = 150 * A50[aa]/Asum conA = (msize>=0) # Make template; tbegin = np.min(Tuni-age) tuniv_hr = np.arange(tbegin,Tuni,delt_sfh) # in Gyr sfh_hr_in= np.interp(tuniv_hr,(Tuni-age)[::-1],SFp[:,1][::-1]) zh_hr_in = np.interp(tuniv_hr,(Tuni-age)[::-1],ZCp[:,1][::-1]) # FSPS con_sfh = (tuniv_hr>0) import fsps nimf = int(inputs['NIMF']) try: fneb = int(inputs['ADD_NEBULAE']) except: fneb = 0 if fneb == 1: print('Metallicity is set to logZ/Zsun=%.2f'%(np.max(zh_hr_in))) sp = fsps.StellarPopulation(compute_vega_mags=False, zcontinuous=1, imf_type=nimf, logzsol=
np.max(zh_hr_in)
numpy.max
# -*- coding: utf-8 -*- ''' #------------------------------------------------------------------------------- # NATIONAL UNIVERSITY OF SINGAPORE - NUS # SINGAPORE INSTITUTE FOR NEUROTECHNOLOGY - SINAPSE # Singapore # URL: http://www.sinapseinstitute.org #------------------------------------------------------------------------------- # Neuromorphic Engineering Group # Author: <NAME>, MSc # Contact: <EMAIL> #------------------------------------------------------------------------------- # Description: Library implementing different control algorithms. The classes # are not related to the application in any way. Feedback signals should be # input directly. Likewise, the generated outputs should be sent to the proper # hardware such as the iLimb or UR10 after processing #------------------------------------------------------------------------------- ''' #------------------------------------------------------------------------------- import numpy as np from copy import copy #------------------------------------------------------------------------------- #------------------------------------------------------------------------------- ''' check later how to use an abstract class and it is really interesting for control systems class BaseController(ABC): def __init__(self, _min=0, _max=500): self.minOutput = _min self.maxOutput = _max super().__init__() @abstractmethod def run(): pass ''' #------------------------------------------------------------------------------- #Proportional controller for feedback-based control #This can be used for pressing the switches, for example class Pcontroller(): def __init__(self,_Kp=0.1,_min=0,_max=500,_initCond=0): self.Kp = _Kp #proportional gain self.minOutput = _min #minimum output self.maxOutput = _max #maximum output self.initCond = _initCond #initial condition self.currentOutput = self.initCond #run the def run(self,_inputSignal,_setPoint): #error signal error = _setPoint - _inputSignal #define the output self.output += self.Kp*error #saturation if self.output > self.maxOutput: self.output = self.maxOutput elif self.output < self.minOutput: self.output = self.minOutput #return the current output return copy(self.output) #------------------------------------------------------------------------------- #Ref: Prach et al., 2017: "Pareto-front analysis of a monotonic PI control law #for slip suppression in a robotic manipulator" class SlipController(): def __init__(self,_MPI_Kp=0.1,_MPI_Ki=0.2,_min=0,_max=500,_dt=0.1,_initCond=0): self.MPI_Kp = _MPI_Kp #Proportional gain self.MPI_Ki = _MPI_Ki #Integral gain self.minOutput = _min #minimum output value self.maxOutput = _max #maximum output value #initial condition is necessary when the output is already at a level #which is usually the case like baseline force or joint position that #establishes contact between the robotic hand and the object self.initCond = _initCond #necessary for the derivative of the input signal which will be used #as the velocity signal self.prevSample = 0 #velocity generated signal self.velocity = 0 #position signal self.position = 0 self.dt = _dt #necessary since this is discrete-time formulation self.MPI = self.initCond #current MPI output self.prevMPI = 0 #previous MPI output, necessary for monotonic behavior self.MPI_crossed = False #resets the MPI controller def reset(self): self.MPI = 0 self.prevMPI = 0 self.position = 0 self.velocity = 0 #run the MPI control and returns its output #input: velocity def run(self,_inputVelocity): self.velocity = _inputVelocity #integrate the obtained velocity signal = position self.position += (self.velocity*self.dt) #print(self.velocity, self.position) #debugging #debugging #print('mpi', _inputSignal, self.velocity, self.position) #MPI output #Renaming variables to maintain the same structure as used #in the simulink files developed by Dr. <NAME> v = self.velocity z = self.position #print('mpi', 'v', v, 'z', z) #debugging self.MPI += self.MPI_Kp*
np.sign(v)
numpy.sign
#!/usr/bin/env python ''' mcu: Modeling and Crystallographic Utilities Copyright (C) 2019 <NAME>. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Email: <NAME> <<EMAIL>> ''' # This is the only place needed to be modified # The path for the libwannier90 library W90LIB = '/panfs/roc/groups/6/gagliard/phamx494/pyWannier90/src' import sys sys.path.append(W90LIB) import importlib found = importlib.util.find_spec('libwannier90') is not None if found == True: import libwannier90 else: print('WARNING: Check the installation of libwannier90 and its path in pyscf/pbc/tools/pywannier90.py') print('libwannier90 path: ' + W90LIB) print('libwannier90 can be found at: https://github.com/hungpham2017/pyWannier90') raise ImportError import numpy as np import scipy import mcu from mcu.vasp import const from mcu.cell import utils as cell_utils def angle(v1, v2): ''' Return the angle (in radiant between v1 and v2) ''' v1 = np.asarray(v1) v2 = np.asarray(v2) cosa = v1.dot(v2)/ np.linalg.norm(v1) / np.linalg.norm(v2) return np.arccos(cosa) def transform(x_vec, z_vec): ''' Construct a transformation matrix to transform r_vec to the new coordinate system defined by x_vec and z_vec ''' x_vec = x_vec/np.linalg.norm(np.asarray(x_vec)) z_vec = z_vec/np.linalg.norm(np.asarray(z_vec)) assert x_vec.dot(z_vec) == 0 # x and z have to be orthogonal to one another y_vec = np.cross(x_vec,z_vec) new = np.asarray([x_vec, y_vec, z_vec]) original = np.asarray([[1,0,0],[0,1,0],[0,0,1]]) tran_matrix = np.empty([3,3]) for row in range(3): for col in range(3): tran_matrix[row,col] = np.cos(angle(original[row],new[col])) return tran_matrix.T def cartesian_prod(arrays, out=None, order = 'C'): ''' This function is similar to lib.cartesian_prod of PySCF, except the output can be in Fortran or in C order ''' arrays = [np.asarray(x) for x in arrays] dtype = np.result_type(*arrays) nd = len(arrays) dims = [nd] + [len(x) for x in arrays] if out is None: out = np.empty(dims, dtype) else: out = np.ndarray(dims, dtype, buffer=out) tout = out.reshape(dims) shape = [-1] + [1] * nd for i, arr in enumerate(arrays): tout[i] = arr.reshape(shape[:nd-i]) return tout.reshape((nd,-1),order=order).T def periodic_grid(lattice, grid = [50,50,50], supercell = [1,1,1], order = 'C'): ''' Generate a periodic grid for the unit/computational cell in F/C order Note: coords has the same unit as lattice ''' ngrid = np.asarray(grid) qv = cartesian_prod([np.arange(-ngrid[i]*(supercell[i]//2),ngrid[i]*((supercell[i]+1)//2)) for i in range(3)], order=order) a_frac = np.einsum('i,ij->ij', 1./ngrid, lattice) coords = np.dot(qv, a_frac) # Compute weight ngrids = np.prod(grid) ncells = np.prod(supercell) weights = np.empty(ngrids*ncells) vol = abs(np.linalg.det(lattice)) weights[:] = vol / ngrids / ncells return coords, weights def R_r(r_norm, r = 1, zona = 1): ''' Radial functions used to compute \Theta_{l,m_r}(\theta,\phi) Note: r_norm has the unit of Bohr ''' if r == 1: R_r = 2 * zona**(3/2) * np.exp(-zona*r_norm) elif r == 2: R_r = 1 / 2 / np.sqrt(2) * zona**(3/2) * (2 - zona*r_norm) * np.exp(-zona*r_norm/2) else: R_r = np.sqrt(4/27) * zona**(3/2) * (1 - 2*zona*r_norm/3 + 2*(zona**2)*(r_norm**2)/27) * np.exp(-zona*r_norm/3) return R_r def theta(func, cost, phi): ''' Basic angular functions (s,p,d,f) used to compute \Theta_{l,m_r}(\theta,\phi) ''' if func == 's': # s theta = 1 / np.sqrt(4 * np.pi) * np.ones([cost.shape[0]]) elif func == 'pz': theta = np.sqrt(3 / 4 / np.pi) * cost elif func == 'px': sint = np.sqrt(1 - cost**2) theta = np.sqrt(3 / 4 / np.pi) * sint * np.cos(phi) elif func == 'py': sint = np.sqrt(1 - cost**2) theta = np.sqrt(3 / 4 / np.pi) * sint * np.sin(phi) elif func == 'dz2': theta = np.sqrt(5 / 16 / np.pi) * (3*cost**2 - 1) elif func == 'dxz': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 4 / np.pi) * sint * cost * np.cos(phi) elif func == 'dyz': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 4 / np.pi) * sint * cost * np.sin(phi) elif func == 'dx2-y2': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 16 / np.pi) * (sint**2) * np.cos(2*phi) elif func == 'pxy': sint = np.sqrt(1 - cost**2) theta = np.sqrt(15 / 16 / np.pi) * (sint**2) * np.sin(2*phi) elif func == 'fz3': theta = np.sqrt(7) / 4 / np.sqrt(np.pi) * (5*cost**3 - 3*cost) elif func == 'fxz2': sint = np.sqrt(1 - cost**2) theta = np.sqrt(21) / 4 / np.sqrt(2*np.pi) * (5*cost**2 - 1) * sint * np.cos(phi) elif func == 'fyz2': sint = np.sqrt(1 - cost**2) theta = np.sqrt(21) / 4 / np.sqrt(2*np.pi) * (5*cost**2 - 1) * sint * np.sin(phi) elif func == 'fz(x2-y2)': sint = np.sqrt(1 - cost**2) theta = np.sqrt(105) / 4 / np.sqrt(np.pi) * sint**2 * cost * np.cos(2*phi) elif func == 'fxyz': sint = np.sqrt(1 - cost**2) theta = np.sqrt(105) / 4 / np.sqrt(np.pi) * sint**2 * cost * np.sin(2*phi) elif func == 'fx(x2-3y2)': sint = np.sqrt(1 - cost**2) theta = np.sqrt(35) / 4 / np.sqrt(2*np.pi) * sint**3 * (np.cos(phi)**2 - 3*np.sin(phi)**2) * np.cos(phi) elif func == 'fy(3x2-y2)': sint = np.sqrt(1 - cost**2) theta = np.sqrt(35) / 4 / np.sqrt(2*np.pi) * sint**3 * (3*
np.cos(phi)
numpy.cos
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np # type: ignore import onnx from ..base import Base from . import expect class Mod(Base): @staticmethod def export_mod_mixed_sign_float64(): # type: () -> None node = onnx.helper.make_node( 'Mod', inputs=['x', 'y'], outputs=['z'], fmod=1 ) x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float64) y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float64) z = np.fmod(x, y) # expected output [-0.1, 0.4, 5. , 0.1, -0.4, 3.] expect(node, inputs=[x, y], outputs=[z], name='test_mod_mixed_sign_float64') @staticmethod def export_mod_mixed_sign_float32(): # type: () -> None node = onnx.helper.make_node( 'Mod', inputs=['x', 'y'], outputs=['z'], fmod=1 ) x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float32) y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float32) z = np.fmod(x, y) # expected output [-0.10000038, 0.39999962, 5. , 0.10000038, -0.39999962, 3.] expect(node, inputs=[x, y], outputs=[z], name='test_mod_mixed_sign_float32') @staticmethod def export_mod_mixed_sign_float16(): # type: () -> None node = onnx.helper.make_node( 'Mod', inputs=['x', 'y'], outputs=['z'], fmod=1 ) x = np.array([-4.3, 7.2, 5.0, 4.3, -7.2, 8.0]).astype(np.float16) y = np.array([2.1, -3.4, 8.0, -2.1, 3.4, 5.0]).astype(np.float16) z = np.fmod(x, y) # expected output [-0.10156, 0.3984 , 5. , 0.10156, -0.3984 , 3.] expect(node, inputs=[x, y], outputs=[z], name='test_mod_mixed_sign_float16') @staticmethod def export_mod_mixed_sign_int64(): # type: () -> None node = onnx.helper.make_node( 'Mod', inputs=['x', 'y'], outputs=['z'], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int64) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int64) z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3] expect(node, inputs=[x, y], outputs=[z], name='test_mod_mixed_sign_int64') @staticmethod def export_mod_mixed_sign_int32(): # type: () -> None node = onnx.helper.make_node( 'Mod', inputs=['x', 'y'], outputs=['z'], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int32) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int32) z = np.mod(x, y) # expected output [ 0, -2, 5, 0, 2, 3] expect(node, inputs=[x, y], outputs=[z], name='test_mod_mixed_sign_int32') @staticmethod def export_mod_mixed_sign_int16(): # type: () -> None node = onnx.helper.make_node( 'Mod', inputs=['x', 'y'], outputs=['z'], ) x = np.array([-4, 7, 5, 4, -7, 8]).astype(np.int16) y = np.array([2, -3, 8, -2, 3, 5]).astype(np.int16) z =
np.mod(x, y)
numpy.mod
# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for adaptive.py.""" from absl.testing import parameterized import numpy as np import scipy.stats import tensorflow.compat.v2 as tf from robust_loss import adaptive from robust_loss import util from robust_loss import wavelet tf.enable_v2_behavior() def generate_pixel_toy_image_data(image_width, num_samples, _): """Generates pixel data for _test_fitting_toy_image_data_is_correct(). Constructs a "mean" image in RGB pixel space (parametrized by `image_width`) and draws `num_samples` samples from a normal distribution using that mean, and returns those samples and their empirical mean as reference. Args: image_width: The width and height in pixels of the images being produced. num_samples: The number of samples to generate. _: Dummy argument so that this function's interface matches generate_wavelet_toy_image_data() Returns: A tuple of (samples, reference, color_space, representation), where samples = A set of sampled images of size (`num_samples`, `image_width`, `image_width`, 3) reference = The empirical mean of `samples` of size (`image_width`, `image_width`, 3). color_space = 'RGB' representation = 'PIXEL' """ color_space = 'RGB' representation = 'PIXEL' mu = np.random.uniform(size=(image_width, image_width, 3)) samples = np.random.normal( loc=np.tile(mu[np.newaxis], [num_samples, 1, 1, 1])) reference = np.mean(samples, 0) return samples, reference, color_space, representation def generate_wavelet_toy_image_data(image_width, num_samples, wavelet_num_levels): """Generates wavelet data for testFittingImageDataIsCorrect(). Constructs a "mean" image in the YUV wavelet domain (parametrized by `image_width`, and `wavelet_num_levels`) and draws `num_samples` samples from a normal distribution using that mean, and returns RGB images corresponding to those samples and to the mean (computed in the specified latent space) of those samples. Args: image_width: The width and height in pixels of the images being produced. num_samples: The number of samples to generate. wavelet_num_levels: The number of levels in the wavelet decompositions of the generated images. Returns: A tuple of (samples, reference, color_space, representation), where samples = A set of sampled images of size (`num_samples`, `image_width`, `image_width`, 3) reference = The empirical mean of `samples` (computed in YUV Wavelet space but returned as an RGB image) of size (`image_width`, `image_width`, 3). color_space = 'YUV' representation = 'CDF9/7' """ color_space = 'YUV' representation = 'CDF9/7' samples = [] reference = [] for level in range(wavelet_num_levels): samples.append([]) reference.append([]) w = image_width // 2**(level + 1) scaling = 2**level for _ in range(3): # Construct the ground-truth pixel band mean. mu = scaling * np.random.uniform(size=(3, w, w)) # Draw samples from the ground-truth mean. band_samples = np.random.normal( loc=np.tile(mu[np.newaxis], [num_samples, 1, 1, 1])) # Take the empirical mean of the samples as a reference. band_reference = np.mean(band_samples, 0) samples[-1].append(np.reshape(band_samples, [-1, w, w])) reference[-1].append(band_reference) # Handle the residual band. mu = scaling * np.random.uniform(size=(3, w, w)) band_samples = np.random.normal( loc=np.tile(mu[np.newaxis], [num_samples, 1, 1, 1])) band_reference = np.mean(band_samples, 0) samples.append(
np.reshape(band_samples, [-1, w, w])
numpy.reshape
""" Defines: - data_in_material_coord(bdf, op2, in_place=False) """ from __future__ import annotations import copy from itertools import count from typing import TYPE_CHECKING import numpy as np from numpy import cos, sin, cross from numpy.linalg import norm # type: ignore from pyNastran.utils.numpy_utils import integer_types if TYPE_CHECKING: # pragma: no cover from pyNastran.bdf.bdf import BDF, GRID from pyNastran.op2.op2 import OP2 force_vectors = ['cquad4_force', 'cquad8_force', 'cquadr_force', 'ctria3_force', 'ctria6_force', 'ctriar_force'] stress_vectors = ['cquad4_stress', 'cquad8_stress', 'cquadr_stress', 'ctria3_stress', 'ctria6_stress', 'ctriar_stress'] strain_vectors = ['cquad4_strain', 'cquad8_strain', 'cquadr_strain', 'ctria3_strain', 'ctria6_strain', 'ctriar_strain'] def __transform_solids(model: OP2): # pragma: no cover """http://web.mit.edu/course/3/3.11/www/modules/trans.pdf""" R = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 2.], ]) Ri = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 0.5], ]) thetad = 20. theta = np.radians(thetad) s = np.sin(theta) c = np.cos(theta) sc = s * c c2 = c ** 2 s2 = s ** 2 oxx = 1. oyy = 2. ozz = 3. txy = 1. txz = 0. tyz = 0. Ar = np.array([ [c2, s2, 2. * sc], [s2, c2, -2. * sc], [-sc, sc, c2 - s2], ]) """ {ox' {ox} {oy' = [Ar] {oy} {txy' {txy} """ from pyNastran.bdf.bdf import BDF bdf_model = BDF() bdf_model.add_grid(1, [1., 0., 0.], cp=0, cd=0, ps='', seid=0, comment='') bdf_model.add_grid(2, [1., 1., 0.], cp=0, cd=0, ps='', seid=0, comment='') bdf_model.add_grid(3, [0., 1., 0.], cp=0, cd=0, ps='', seid=0, comment='') bdf_model.add_grid(4, [0., 0., 1.], cp=0, cd=0, ps='', seid=0, comment='') ctetra = bdf_model.add_ctetra(1, 1, [1, 2, 3, 4],) bdf_model.add_psolid(1, 1, cordm=0) E = 3.0E7 G = None nu = 0.3 bdf_model.add_mat1(1, E, G, nu) bdf_model.cross_reference() # this is ACTUALLY the element coordinate system centroid, xe, ye, ze = ctetra.material_coordinate_system() T = np.vstack([xe, ye, ze]) # Te # we're going to transform the Te stress = np.array([ [oxx, txy, txz], [txy, oyy, tyz], [txz, tyz, ozz], ]) #stress2 = Ar @ stress #strain2 = (R @ A @ Ri) @ strain # which is it? stress3 = T.T @ stress @ T stress3t = T @ stress @ T.T # this is a test that these are the same... stress4 = R @ stress @ Ri print(stress) print(stress4) print('------------') strain3 = T.T @ strain @ T #strain3t = T.T @ strain @ T #strain4 = R @ strain3 @ Ri # is this strain3 or strain3t; is it (R @ strain3x @ Ri) or (Ri @ strain3x @ R) strain4 = R @ strain3 @ Ri #print(T) #print(T @ T.T) #print(stress2) print(stress3) print(stress3t) x = 1 R = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 2.], ]) Ri = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 0.5], ]) nodes_desired = [213972, 213973, 213974, 213975, 213980, 213982, 213989, 213990, 213998, 213999, 214420, 214431, 214457, 214458, 214459, 214460] def transform_solids(bdf_model: BDF, op2_model: OP2, cid: int): """ http://web.mit.edu/course/3/3.11/www/modules/trans.pdf [stress_out] = [T_out] [stress_0] [T_out]^T [T_out]^T [stress_0] [T_out] = [stress_0] [T_out] [stress_out] = [T_out] [T_in]^T [stress_in] [T_in] [T_out]^T [stress_out] = [T] [stress_in] [T]^T [T] = [T_out] [T_in]^T """ Tout = np.eye(3, dtype='float64') if cid != [-1, 0]: coord_out = bdf_model.coords[cid] assert coord_out.type in ['CORD2R', 'CORD1R'], coord_out Tout = coord_out.beta() #coord = model.coords[1] #T1 = coord.beta() # TODO: should be this... #strain_obj = model.op2_results.strain.ctetra_strain[1] # TODO: all we have for now #stress_obj = op2_model.ctetra_stress[1] result_types = ['ctetra_stress', 'cpenta_stress', 'cpyram_stress', 'chexa_stress'] for res_type in result_types: res_dict = getattr(op2_model, res_type) for subcase, stress_obj in res_dict.items(): _transform_solid_stress_obj(bdf_model, stress_obj, Tout) def _transform_solid_stress_obj(bdf_model: BDF, stress_obj, Tout): #['oxx', 'oyy', 'ozz', 'txy', 'tyz', 'txz', 'omax', 'omid', 'omin', 'von_mises'] data = stress_obj.data nmodes = data.shape[0] if stress_obj.is_stress: oxx = data[:, :, 0] oyy = data[:, :, 1] ozz = data[:, :, 2] txy = data[:, :, 3] tyz = data[:, :, 4] txz = data[:, :, 5] else: exx = data[:, :, 0] eyy = data[:, :, 1] ezz = data[:, :, 2] exy = data[:, :, 3] / 2 eyz = data[:, :, 4] / 2 exz = data[:, :, 5] / 2 nnodes = 5 # CTETRA4 / CTETRA10 eids = stress_obj.element_node[:, 0] neids = len(eids) // nnodes nodes = stress_obj.element_node[:, 1].reshape(neids, nnodes) ueids = np.unique(eids) eids_cids = stress_obj.element_cid cids = eids_cids[:, 1] ucids = np.unique(cids) for ucid in ucids: if ucid == 0: continue if ucid == cid: continue ieids = np.where(cids == ucid)[0] ueids = eids_cids[ieids, 0] nodes_xyz = {} for nid in np.unique(nodes[ieids, 1:].ravel()): node = bdf_model.nodes[nid] # type: GRID nodes_xyz[nid] = node.get_position_wrt(bdf_model, ucid) for eid, ieid in zip(ueids, ieids): i0 = ieid * nnodes i1 = i0 + nnodes nodes_eid = nodes[ieid, 1:] assert len(nodes_eid) == nnodes - 1 e_nodes = np.vstack([nodes_xyz[nid] for nid in nodes_eid]) avg_node = e_nodes.mean(axis=0) assert len(avg_node) == 3 if ucid == -1: element = bdf_model.elements[eid] centroid, xe, ye, ze = element.material_coordinate_system() Te = np.vstack([xe, ye, ze]) # Te else: coord_in = bdf_model.coords[ucid] Tin = coord_in.beta() if coord_in.type in ['CORD2R', 'CORD1R']: pass #elif coord_in.type in ['CORD2C', 'CORD1C']: #thetad = avg_node[0] #print(avg_node) #theta = np.radians(thetad) #s = np.sin(theta) #c = np.cos(theta) #sc = s * c #c2 = c ** 2 #s2 = s ** 2 #Ar = np.array([ #[c2, s2, 2. * sc], #[s2, c2, -2. * sc], #[-sc, sc, c2 - s2], #]) #Ar = np.array([ #[c, s, 0.], #[-s, c, 0.], #[0., 0., 1.], #]) #Tin2 = Tin @ Ar.T else: raise NotImplementedError(coord_in) T = Tout @ Tin.T for itime in range(nmodes): for ielem in range(i0, i1): #exx = data[itime, ielem, 0] #eyy = data[itime, ielem, 1] #ezz = data[itime, ielem, 2] #exy_2 = data[itime, ielem, 3] / 2 #eyz_2 = data[itime, ielem, 4] / 2 #exz_2 = data[itime, ielem, 5] / 2 #strain = np.array([ #[exx, exy_2, exz_2], #[exy_2, eyy, eyz_2], #[exz_2, eyz_2, ezz], #]) oxx = data[itime, ielem, 0] oyy = data[itime, ielem, 1] ozz = data[itime, ielem, 2] txy = data[itime, ielem, 3] tyz = data[itime, ielem, 4] txz = data[itime, ielem, 5] stress = np.array([ [oxx, txy, txz], [txy, oyy, tyz], [txz, tyz, ozz], ]) #[stress_out] = [T] [stress_in] [T]^T T11 = T[0, 0] T22 = T[1, 1] #T33 = T[2, 2] T12 = T[0, 1] T13 = T[0, 2] T32 = T23 = T[1, 2] T21 = T[1, 0] T31 = T[2, 0] oxx2 = (oxx*T11**2 + oyy*T21**2 + ozz*T31**2 + 2*txy*T11*T12 + 2*txz*T11*T13 + 2*tyz*T21*T31) oyy2 = (oxx*T12**2 + oyy*T22**2 + ozz*T32**2 + 2*txy*T11*T12 + 2*txz*T11*T13 + 2*tyz*T21*T31) ozz2 = (oxx*T11**2 + oyy*T21**2 + ozz*T31**2 + 2*txy*T11*T12 + 2*txz*T11*T13 + 2*tyz*T21*T31) #oxx2 = (oxx*T11**2 + oyy*T21**2 + ozz*T31**2 + 2*txy*T11*T12 + 2*txz*T11*T13 + 2*tyz*T21*T31) stress2 = T @ stress @ T.T print(eid) print(stress) print(stress2) #ss inid0 = 0 for ieid, eid in enumerate(ueids): # ------------------------------------------ # this is ACTUALLY the element coordinate system ctetra = bdf_model.elements[eid] #print(ctetra) T = get_transform(T1, Te) for unused_irange in range(5): exxi = exx[:, inid0] eyyi = eyy[:, inid0] ezzi = ezz[:, inid0] exyi = exy[:, inid0] eyzi = eyz[:, inid0] exzi = exz[:, inid0] # mode loop for imode, exxii, eyyii, ezzii, exyii, eyzii, exzii in zip(count(), exxi, eyyi, ezzi, exyi, eyzi, exzi): exxiit, eyyiit, ezziit, exyiit, eyziit, exziit = _transform_strain( T, exxii, eyyii, ezzii, exyii, eyzii, exzii) # save_op2 method data[imode, inid0, :6] = exxiit, eyyiit, ezziit, exyiit, eyziit, exziit inid0 += 1 #op2_filename_out = os.path.join(dirname, f'xform.op2') #op2_model.write_op2(op2_filename_out, post=-1, endian=b'<', skips=None, nastran_format='nx') def get_transform(T1, Te): """ [T_el] = [T1]^T [T] [T_element_in_local] = [T_local_in_basic]^T [T_elemental_in_basic] [T_element_in_local] = [T_basic_in_local] [T_elemental_in_basic] """ T = T1.T @ Te # TODO: is this the right order?; I think so... return T def _transform_strain(T, exxii, eyyii, ezzii, exyii, eyzii, exzii): strain = np.array([ [exxii, exyii, exzii], [exyii, eyyii, eyzii], [exzii, eyzii, ezzii], ]) # TODO: is it T.t @ inner @ T # or T @ inner @ T.T # # TODO: is it Ri @ inner @ R # or R @ inner @ Ri # # TODO: is the T / R order right? strain4 = T.T @ (R @ strain @ Ri) @ T #print(T) # TODO: or is it another strain? strain_cid = strain4 exxiit = strain_cid[0, 0] eyyiit = strain_cid[1, 1] ezziit = strain_cid[2, 2] exyiit = strain_cid[0, 1] eyziit = strain_cid[1, 2] exziit = strain_cid[0, 2] return exxiit, eyyiit, ezziit, exyiit, eyziit, exziit def transf_Mohr(Sxx, Syy, Sxy, thetarad): """Mohr's Circle-based Plane Stress Transformation Parameters ---------- Sxx, Syy, Sxy : array-like Sigma_xx, Sigma_yy, Sigma_xy stresses. thetarad : array-like Array with angles for wich the stresses should be transformed. Returns ------- Sxx_theta, Syy_theta, Sxy_theta : np.ndarray Transformed stresses. """ Sxx = np.asarray(Sxx) Syy = np.asarray(Syy) Sxy = np.asarray(Sxy) thetarad = np.asarray(thetarad) Scenter = (Sxx + Syy)/2. R = np.sqrt((Sxx - Scenter)**2 + Sxy**2) thetarad_Mohr = np.arctan2(-Sxy, Sxx - Scenter) + 2*thetarad cos_Mohr = cos(thetarad_Mohr) Sxx_theta = Scenter + R*cos_Mohr Syy_theta = Scenter - R*cos_Mohr Sxy_theta = -R*sin(thetarad_Mohr) return Sxx_theta, Syy_theta, Sxy_theta def thetadeg_to_principal(Sxx, Syy, Sxy): """Calculate the angle to the principal plane stress state Parameters ---------- Sxx, Syy, Sxy : array-like Sigma_xx, Sigma_yy, Sigma_xy stresses. Returns ------- thetadeg : np.ndarray Array with angles for which the given stresses are transformed to the principal stress state. """ Scenter = (Sxx + Syy)/2. thetarad = np.arctan2(Sxy, Scenter - Syy) return np.rad2deg(thetarad)/2. def get_eids_from_op2_vector(vector): """Obtain the element ids for a given op2 vector Parameters ---------- vector : op2 vector An op2 vector obtained, for example, doing:: vector = op2.cquad4_force[1] vector = op2.cquad8_stress[1] vector = op2.ctriar_force[1] vector = op2.ctria3_stress[1] """ eids = getattr(vector, 'element', None) if eids is None: eids = vector.element_node[:, 0] return eids def is_mcid(elem): """ Determines if the element uses theta or the mcid (projected material coordinate system) Parameters ---------- elem : varies an element object CQUAD4, CQUAD8, CQUADR CTRIA3, CTRIA6, CTRIAR Returns ------- is_mcid : bool the projected material coordinate system is used """ theta_mcid = getattr(elem, 'theta_mcid', None) return isinstance(theta_mcid, integer_types) def check_theta(elem) -> float: theta = getattr(elem, 'theta_mcid', None) if theta is None: theta = 0. elif isinstance(theta, float): pass elif isinstance(theta, integer_types): raise ValueError('MCID is accepted by this function') return theta def angle2vec(v1, v2): """ Using the definition of the dot product to get the angle v1 o v2 = |v1| * |v2| * cos(theta) theta = np.arccos( (v1 o v2) / (|v1|*|v2|)) """ denom = norm(v1, axis=1) * norm(v2, axis=1) return np.arccos((v1 * v2).sum(axis=1) / denom) def calc_imat(normals, csysi): """ Calculates the i vector in the material coordinate system. j = k x ihat jhat = j / |j| i = jhat x k Notes ----- i is not a unit vector because k (the element normal) is not a unit vector. """ jmat = cross(normals, csysi) # k x i jmat /= norm(jmat) imat = cross(jmat, normals) return imat def data_in_material_coord(bdf: BDF, op2: OP2, in_place: bool=False) -> OP2: """Convert OP2 2D element outputs to material coordinates Nastran allows the use of 'PARAM,OMID,YES' to print 2D element forces, stresses and strains based on the material direction. However, the convertion only takes place in the F06 output file, whereas the OP2 output file remains in the element coordinate system. This function converts the 2D element vectors to the material OP2 similarly to most of the post-processing tools (Patran, Femap, HyperView, etc). It handles both 2D elements with MCID or THETA. Parameters ---------- bdf : :class:`.BDF` object A :class:`.BDF` object that corresponds to the 'op2'. op2 : :class:`.OP2` object A :class:`.OP2` object that corresponds to the 'bdf'. in_place : bool; default=False If true the original op2 object is modified, otherwise a new one is created. Returns ------- op2_new : :class:`.OP2` object A :class:`.OP2` object with the abovementioned changes. .. warning :: doesn't handle composite stresses/strains/forces .. warning :: doesn't handle solid stresses/strains/forces (e.g. MAT11) .. warning :: zeros out data for CQUAD8s """ if in_place: op2_new = op2 else: op2_new = copy.deepcopy(op2) eids = np.array(list(bdf.elements.keys())) elems = np.array(list(bdf.elements.values())) mcid = np.array([is_mcid(e) for e in elems]) elemsmcid = elems[mcid] elemstheta = elems[~mcid] thetadeg = np.zeros(elems.shape) thetadeg[~mcid] = np.array([check_theta(e) for e in elemstheta]) thetarad = np.deg2rad(thetadeg) #NOTE separating quad types to get vectorizable "corner" quad_types = ['CQUAD4', 'CQUAD8', 'CQUADR'] for quad_type in quad_types: # elems with THETA thisquad = np.array([quad_type in e.type for e in elemstheta]) if np.any(thisquad): quadelems = elemstheta[thisquad] corner = np.array([e.get_node_positions() for e in quadelems]) g1 = corner[:, 0, :] g2 = corner[:, 1, :] g3 = corner[:, 2, :] g4 = corner[:, 3, :] betarad = angle2vec(g3 - g1, g2 - g1) gammarad = angle2vec(g4 - g2, g1 - g2) alpharad = (betarad + gammarad) / 2. tmp = thetarad[~mcid] tmp[thisquad] -= betarad tmp[thisquad] += alpharad thetarad[~mcid] = tmp # elems with MCID thisquad = np.array([quad_type in e.type for e in elemsmcid]) if np.any(thisquad): quadelems = elemsmcid[thisquad] corner = np.array([e.get_node_positions() for e in quadelems]) g1 = corner[:, 0, :] g2 = corner[:, 1, :] g3 = corner[:, 2, :] g4 = corner[:, 3, :] normals = np.array([e.Normal() for e in quadelems]) csysi =
np.array([bdf.coords[e.theta_mcid].i for e in quadelems])
numpy.array
##imports=============================================================================== from scipy.spatial.distance import cdist import numpy as np import os, sys,glob, copy, csv, time import matplotlib.pyplot as plt import matplotlib.patches as patches from matplotlib.colors import Normalize from neuropixels.continuous_traces import get_channel_count, filtr from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.manifold import TSNE from scipy.cluster.vq import kmeans2 ##=============================================================================== ##=============================================================================== #probe geometry, for the summary figure only option234_xpositions = np.zeros((192,2)) option234_ypositions = np.zeros((192,2)) option234_positions = np.zeros((384,2)) option234_positions[:,0][::4] = 21 option234_positions[:,0][1::4] = 53 option234_positions[:,0][2::4] = 5 option234_positions[:,0][3::4] = 37 option234_positions[:,1] = np.floor(np.linspace(383,0,384)/2) * 20 ##=============================================================================== ##helper functions=============================================================================== def read_kilosort_params(filename): f=open(filename) params = {} for line in list(f): try: params[line.split(' =')[0]]=line.split('= ')[1].replace('\r\n','') except: pass return params def read_cluster_groups_CSV(directory): cluster_id = []; if os.path.isfile(os.path.join(directory,'cluster_group.tsv')): cluster_id = [row for row in csv.reader(open(os.path.join(directory,'cluster_group.tsv')))][0:]; else: if os.path.isfile(os.path.join(directory,'cluster_groups.csv')): cluster_id = [row for row in csv.reader(open(os.path.join(directory,'cluster_groups.csv')))][0:]; else: print('could not find cluster groups csv or tsv') return None good=[];mua=[];unsorted=[] for i in np.arange(1,np.shape(cluster_id)[0]): if cluster_id[i][0].split('\t')[1] == 'good':#if it is a 'good' cluster by manual sort good.append(cluster_id[i][0].split('\t')[0]) if cluster_id[i][0].split('\t')[1] == 'mua':#if it is a 'good' cluster by manual sort mua.append(cluster_id[i][0].split('\t')[0]) if cluster_id[i][0].split('\t')[1] == 'unsorted':#if it is a 'good' cluster by manual sort unsorted.append(cluster_id[i][0].split('\t')[0]) return (np.array(good).astype(int),np.array(mua).astype(int),np.array(unsorted).astype(int)) def count_unique(x): values=[] instances=[] for v in np.unique(x): values.extend([v]) instances.extend([len(np.where(np.array(x)==v)[0].flatten())]) return values, instances def ismember(a, b): bind = {} for i, elt in enumerate(b): if elt not in bind: bind[elt] = i return [bind.get(itm, None) for itm in a] # None can be replaced by any other "not in b" def load_waveforms(data,channel,times,pre=0.5,post=1.5,channels=384,sampling_rate=30000): #input can be memory mapped file or a string specifiying the file to memory map. if string, deletes the memory mapped object when done, for hygiene. pre = pre * .001 post = post * .001 channel = int(channel) channels = int(channels) if type(data)==str: mm = np.memmap(data, dtype=np.int16, mode='r') else: mm=data waveforms=[] for i in times: start = int((i - pre) * sampling_rate) * int(channels) temp = mm[start:start+int((pre+post)*sampling_rate*channels)][channel::channels]# - mm[start:start+int((pre+post)*sampling_rate*channels)][channel::channels][0] temp = temp - temp[0] waveforms.extend([temp * 0.195]) if type(data)==str: del mm return waveforms def mean_waveform(rawdata,times,pre=0.5,post=1.5,channels=384,sampling_rate=30000): mean_waveform = []#np.zeros(channels,int((pre+post)*.001)*sampling_rate*channels) for i,ch in enumerate(
np.linspace(0,channels-1,channels)
numpy.linspace
import unittest import numpy as np from desc.grid import LinearGrid from desc.basis import polyder_vec, polyval_vec, powers, jacobi, fourier from desc.basis import PowerSeries, DoubleFourierSeries, FourierZernikeBasis class TestBasis(unittest.TestCase): """Tests Basis classes""" def test_polyder(self): """Tests polyder_vec function """ p0 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]]) p1 = polyder_vec(p0, 1) p2 = polyder_vec(p0, 2) correct_p1 = np.array([[0, 2, 0], [0, 0, 1], [0, 0, 0], [0, 2, 1]]) correct_p2 = np.array([[0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 2]]) np.testing.assert_allclose(p1, correct_p1, atol=1e-8) np.testing.assert_allclose(p2, correct_p2, atol=1e-8) def test_polyval(self): """Tests polyval_vec function """ p = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]]) x = np.linspace(0, 1, 11) correct_vals = np.array([x**2, x, np.ones_like(x), x**2+x+1]) values = polyval_vec(p, x) np.testing.assert_allclose(values, correct_vals, atol=1e-8) def test_powers(self): """Tests powers function """ l = np.array([0, 1, 2]) r = np.linspace(0, 1, 11) # rho coordinates correct_vals = np.array([np.ones_like(r), r, r**2]).T correct_ders = np.array([np.zeros_like(r), np.ones_like(r), 2*r]).T values = powers(r, l, dr=0) derivs = powers(r, l, dr=1) np.testing.assert_allclose(values, correct_vals, atol=1e-8) np.testing.assert_allclose(derivs, correct_ders, atol=1e-8) def test_jacobi(self): """Tests jacobi function """ l =
np.array([3, 4, 6])
numpy.array
import sys import numpy as np Pposition={} Lposition={} ResinameP={} ResinameL={} Atomline=[] residuePair=[] if len(sys.argv) <1 : print("python python2_L.py xxx") filebase=sys.argv[1] print(filebase) for line in open(filebase+'_w.pdb'): tem_B=' ' if len(line)>16: tem_B=line[16] line=line[:16]+' '+line[17:] #print(line) list = line.split() id = list[0] if id == 'ATOM' and tem_B !='B': type = list[2] #if type == 'CA' and list[3]!= 'UNK': if list[3]!= 'UNK': residue = list[3] type_of_chain = line[21:22] tem1=line[22:26].replace("A", "") tem2=tem1.replace("B", "") tem2=tem2.replace("C", "") #tem2=filter(str.isdigit, list[5]) atom_count = tem2+line[21:22] list[6]=line[30:38] list[7]=line[38:46] list[8]=line[46:54] position = list[6:9] Pposition[atom_count]=position ResinameP[atom_count]=residue+list[5]+list[4] resindex=residue+list[5] Atomline.append(line) index_nn=0 for line in open(filebase+'_ligand_n.mol2'): tem_B=' ' line=line.strip() #print(line) if line == "@<TRIPOS>ATOM": index_nn=1 #print(line) if line == "@<TRIPOS>BOND": index_nn=0 if index_nn==1 and line != "@<TRIPOS>ATOM": list = line.split() #tem2=filter(str.isdigit, list[5]) atom_count = list[0]+list[5] position = list[2:5] Lposition[atom_count]=position ResinameL[atom_count]=list[5] #------------------------------------------------- for key1, value1 in Pposition.items(): #print ( key1) for key2, value2 in Lposition.items(): #print (ResinameE[key], 'corresponds to', value) ##distance=pow(value1[0]-value2[0]) #print (value2) a = np.array(value1) a1 = a.astype(np.float) b =
np.array(value2)
numpy.array
# -*- coding: utf-8 -*- """ Created on Thu Mar 20 23:12:01 2014 @author: <NAME> @email: <EMAIL> @license: MIT """ import unittest import numpy as np import scipy.sparse as sp from sklearn import datasets import sys sys.path.append("../pyKMLib/") import SparseFormats as spf class TestSparseFormats(unittest.TestCase): def setUp(self): pass def test_csr2sertilp(self): mat = np.array([ [1,0,2,0,3,0], [4,0,5,0,0,0], [0,0,0,6,7,0], [0,0,0,0,0,8], [21,0,22,0,23,0], [24,0,25,0,0,0], [0,0,0,26,27,0], [0,0,0,0,0,28] ]) sp_mat = sp.csr_matrix(mat) row_len_right = np.array([1,1,1,1,1,1,1,1]) sl_start_right = np.array([0,16,32]) val_right = np.array([1.0,2.0,4.0,5.0,6.0,7.0,8.0,0.0,3.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,21.0,22.0,24.0,25.0,26.0,27.0,28.0,0.0,23.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0]) #collumns taken directly from dataset, col_vs_right = np.array([1,3,1,3,4,5,6,0,5,0,0,0,0,0,0,0,1,3,1,3,4,5,6,0,5,0,0,0,0,0,0,0]) #but in sparse format collumns start from 0 so we have to substract 1 col_right = col_vs_right-1 col_right[col_right==-1]=0 val,col,row_len,sl_start=spf.csr2sertilp(sp_mat, threadsPerRow=2, prefetch=2, sliceSize=4, minAlign=2*4) self.assertTrue(np.allclose(row_len,row_len_right), 'sliced ellpack row length arrays are not equal') self.assertTrue(np.allclose(sl_start,sl_start_right), 'sliced ellpack slice start arrays are not equal') self.assertTrue(np.allclose(val,val_right), 'sliced ellpack values arrays are not equal') self.assertTrue(np.allclose(col,col_right), 'sliced ellpack collumns arrays are not equal') def test_csr2sertilp_class_smaller_than_slice_size(self): ''' The function tests the method of creation of sertilp_class representation in which each class is algin to slice_size, when class is smaller than slice_size than it is padded with 'slice_size - n' rows filled with zeros. There are 8 rows for three different classes [0,1,2], in each class the number of rows is smaller than sliceSize ''' threadsPerRow=2 prefetch=2 sliceSize=4 minAlign=2*4 mat = np.array([ [1,0,2,0,3,0], [4,0,5,0,0,0], [0,0,0,6,7,0], [0,0,0,0,0,8], [9,0,10,0,11,0], [12,0,13,0,0,0], [0,0,0,14,15,0], [0,0,0,0,0,16] ]) y = np.array([0,0,0,1,1,2,2,2]) sp_mat = sp.csr_matrix(mat) row_len_right = np.array([1,1,1,1,1,1,1,1]) sl_start_right = np.array([0,16,32, 48]) cls_slice_right = np.array([0,1,2,3]) val_right = np.array([1.0,2.0, 4.0,5.0, 6.0,7.0, 0.0,0.0, 3.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 8.0,0.0, 9.0,10.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 11.0,0.0, 0.0,0.0, 0.0,0.0, 12.0,13.0, 14.0,15.0, 16.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, ]) col_right = np.array([0,2, 0,2, 3,4, 0,0, 4,0, 0,0, 0,0, 0,0, 5,0, 0,2, 0,0, 0,0, 0,0, 4,0, 0,0, 0,0, 0,2, 3,4, 5,0, 0,0, 0,0, 0,0, 0,0, 0,0]) val,col,row_len,sl_start,cls_slice=spf.csr2sertilp_class(sp_mat,y, threadsPerRow=threadsPerRow, prefetch=prefetch, sliceSize=sliceSize, minAlign=minAlign) self.assertTrue(np.allclose(row_len,row_len_right), 'sliced ellpack row length arrays are not equal') self.assertTrue(np.allclose(sl_start,sl_start_right), 'sliced ellpack slice start arrays are not equal') self.assertTrue(np.allclose(cls_slice,cls_slice_right), 'sliced ellpack class slice start arrays are not equal') self.assertTrue(np.allclose(val,val_right), 'sliced ellpack values arrays are not equal') self.assertTrue(np.allclose(col,col_right), 'sliced ellpack collumns arrays are not equal') def test_csr2sertilp_class_grather_than_slice_size(self): threadsPerRow=2 prefetch=2 sliceSize=4 minAlign=2*4 mat = np.array([ [1,0,2,0,3,0], [1,2,0,0,0,0], [1,2,3,4,0,0], [4,0,5,0,0,0], [0,0,0,6,7,0], [0,0,0,0,0,8], [9,0,10,0,11,0], [12,0,13,0,0,0], [0,0,0,14,15,0], [0,0,0,0,0,16] ]) y = np.array([0,0,0,0,0,1,1,2,2,2]) sp_mat = sp.csr_matrix(mat) row_len_right = np.array([1,1,1,1,1,1,1,1,1,1]) sl_start_right = np.array([0,16,32,48,64]) cls_slice_right = np.array([0,2,3,4]) val_right = np.array([1.0,2.0, 1.0,2.0, 1.0,2.0, 4.0,5.0, 3.0,0.0, 0.0,0.0, 3.0,4.0, 0.0,0.0, 6.0,7.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 8.0,0.0, 9.0,10.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 11.0,0.0, 0.0,0.0, 0.0,0.0, 12.0,13.0, 14.0,15.0, 16.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, 0.0,0.0, ]) col_right = np.array([0,2, 0,1, 0,1, 0,2, 4,0, 0,0, 2,3, 0,0, 3,4, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 0,0, 5,0, 0,2, 0,0, 0,0, 0,0, 4,0, 0,0, 0,0, 0,2, 3,4, 5,0, 0,0, 0,0, 0,0, 0,0, 0,0]) val,col,row_len,sl_start, cls_slice=spf.csr2sertilp_class(sp_mat,y, threadsPerRow=threadsPerRow, prefetch=prefetch, sliceSize=sliceSize, minAlign=minAlign) self.assertTrue(np.allclose(row_len,row_len_right), 'sliced ellpack row length arrays are not equal') self.assertTrue(np.allclose(sl_start,sl_start_right), 'sliced ellpack slice start arrays are not equal') self.assertTrue(np.allclose(cls_slice,cls_slice_right), 'sliced ellpack class slice start arrays are not equal') self.assertTrue(np.allclose(val,val_right), 'sliced ellpack values arrays are not equal') self.assertTrue(np.allclose(col,col_right), 'sliced ellpack collumns arrays are not equal') def test_csr2sertilp_class_grather_than_slice_size_unequal(self): threadsPerRow=2 prefetch=2 sliceSize=2 minAlign=threadsPerRow*sliceSize # mat = np.array([ [1,2,3,4,5,6] ]) # y = np.array([0]) # mat = np.array([ [1,0,2,0,3,0], # [1,2,0,0,0,0], # [1,2,3,4,5,6] ])#, # y = np.array([0,0,0]) mat = np.array([ [1,0,2,0,3,0], [1,2,0,0,0,0], [1,2,3,4,5,6], [6,5,4,3,2,1], [0,0,0,6,7,0], [0,0,0,0,0,8], [9,0,10,0,11,0], [12,0,13,0,0,0], [0,0,0,14,15,0], [1,2,3,4,5,17], [0,0,0,0,0,18], [0,0,0,0,0,19] ]) y = np.array([0,0,0,1,1,1,2,2,2,3,3,3]) sp_mat = sp.csr_matrix(mat) row_len_right = np.array([1,1,2,2,1,1,1,1,1,2,1,1]) sl_start_right = np.array([ 0, 8, 24, 40, 48, 56, 64, 80, 88]) cls_slice_right = np.array([0,2,4,6,8]) val_right = np.array([ 1., 2., 1., 2., 3., 0., 0., 0., 1., 2., 0., 0., 3., 4., 0., 0., 5., 6., 0., 0., 0., 0., 0., 0., 6., 5., 6., 7., 4., 3., 0., 0., 2., 1., 0., 0., 0., 0., 0., 0., 8., 0., 0., 0., 0., 0., 0., 0., 9., 10., 12., 13., 11., 0., 0., 0., 14., 15., 0., 0., 0., 0., 0., 0., 1., 2., 18., 0., 3., 4., 0., 0., 5., 17., 0., 0., 0., 0., 0., 0., 19., 0., 0., 0., 0., 0., 0., 0.]) col_right = np.array([0, 2, 0, 1, 4, 0, 0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 0, 1, 3, 4, 2, 3, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 4, 0, 0, 0, 3, 4, 0, 0, 0, 0, 0, 0, 0, 1, 5, 0, 2, 3, 0, 0, 4, 5, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0]) val,col,row_len,sl_start, cls_slice=spf.csr2sertilp_class(sp_mat,y, threadsPerRow=threadsPerRow, prefetch=prefetch, sliceSize=sliceSize, minAlign=minAlign) self.assertTrue(np.allclose(row_len,row_len_right), 'sliced ellpack row length arrays are not equal') self.assertTrue(np.allclose(sl_start,sl_start_right), 'sliced ellpack slice start arrays are not equal') self.assertTrue(
np.allclose(cls_slice,cls_slice_right)
numpy.allclose
import numpy as np import sys from numba import jit @jit def count_primes(n): v =
np.full(n,True,np.bool)
numpy.full
# coding: utf-8 import os import shutil import subprocess from pathlib import Path import matplotlib.pyplot as plt import numpy as np import pandas as pd from matplotlib.patches import Wedge from scipy.integrate import trapz from scipy.interpolate import NearestNDInterpolator, griddata, interp1d from scipy.optimize import minimize TESLAMAX_PACKAGE_DIR = Path(os.path.dirname(__file__)) TESLAMAX_JAVA_DIR = TESLAMAX_PACKAGE_DIR.parent / 'java' TESLAMAX_CLASS_FILE = TESLAMAX_JAVA_DIR / 'TeslaMax.class' TESLAMAX_CMD = ['comsolbatch', '-inputfile', str(TESLAMAX_CLASS_FILE)] B_HIGH_FILENAME = "B_high.txt" B_LOW_FILENAME = "B_low.txt" B_III_FILENAME = "B_III.txt" H_IV_FILENAME = "H_IV_1Q.txt" MAIN_RESULTS_FILENAME = "COMSOL Main Results.txt" MAGNETIC_PROFILE_FILENAME = "COMSOL Magnetic Profile.txt" PARAMETER_FILENAME = "params.txt" N_PROFILE_POINTS = 181 # keep at this level to have in increments of 1 degree N_R_POINTS = 20 N_POINTS_PER_AXIS = 400 FIGSIZE_CM = 20 FIGSIZE_INCHES = FIGSIZE_CM / 2.54 FONTSIZE = 20 B_HIGH_LEVEL = 1.0 B_LOW_LEVEL = 0.0 DEBUG = False def get_comsol_parameters_series(filename=PARAMETER_FILENAME): """Parse a COMSOL parameters file 'filename' and return a pandas Series from it. """ param_comsol_file = Path(filename) param_comsol_series = pd.read_csv(str(param_comsol_file), squeeze=True, sep=" ", index_col=0, header=None) param_comsol_series.name = "COMSOL Parameters" param_comsol_series.index.name = None # append the units to the parameters names names_with_units = {} for name in param_comsol_series.keys(): if name.startswith("h_") or name.startswith("R_"): names_with_units[name] = name + "[m]" if name.startswith("alpha") or name.startswith( "phi") or name.startswith("delta_phi"): names_with_units[name] = name + "[deg]" if name.startswith("B_"): names_with_units[name] = name + "[T]" if name.startswith("H_c"): names_with_units[name] = name + "[A/m]" param_comsol_series = param_comsol_series.rename(names_with_units) return param_comsol_series def read_comsol_data_file(filename): """Read and parse 'filename' as exported by COMSOL. Export the numerical data as a numpy array containing only the numerical data; the first two columns are x and y values. All values are in SI. Keyword Arguments: filename -- str """ return np.loadtxt(filename, skiprows=9) def read_comsol_profile_data(filename): """ Read 'filename' as exported by TeslaMax and return an array of the magnetic profile data, where the first column is the angle in degrees [0,360] and the second is the average magnetic flux density in tesla """ profile_data = np.loadtxt(filename, skiprows=1) return profile_data.T def process_main_results_file(): """Take the file "COMSOL Main Results.txt" as exported by COMSOL and clean the header data. """ p = Path('.') / MAIN_RESULTS_FILENAME results = pd.read_csv(MAIN_RESULTS_FILENAME, sep="\s+", skiprows=5, index_col=None, header=None, names=["B_high[T]", "B_low[T]", "A_gap[m2]", "A_magnet[m2]", "-H_Brem_II_max[A/m]", "-H_Brem_IV_max[A/m]", "A_demag[m2]"]) results_series = results.ix[0] results_series.to_csv(str(p), float_format="%.6f", sep=" ", header=False, index=True) def read_main_results_file(): """Return a Series where each row is one of the COMSOL Main results""" results_filepath = Path(MAIN_RESULTS_FILENAME) results_series = pd.read_table(results_filepath, sep=" ", squeeze=True, index_col=0, header=None) results_series.index.name = None results_series.name = "COMSOL Main Results" return results_series # noinspection PyPep8Naming def calculate_magnitude(components_grid): """ Return an array [x, y, norm(V)] from [x, y, Vx, Vy] """ # noinspection PyPep8Naming x, y, Vx, Vy = components_grid.T V = np.sqrt(Vx * Vx + Vy * Vy) return np.array((x, y, V)).T #sem erro aqui mas sai um zero def calculate_magnetic_profile(B_data, params): """ Return the magnetic profile array [phi, B] based on data for the magnetic flux density [x, y, B] and a dictionary of parameters. The magnetic profile is defined as the magnetic flux density along the circumference in the middle of the air gap. The grid for 'B_data' is supposed to span the interval 0 <= phi <= 90 (the first quadrant); this function mirrors this interval and return phi in the interval [0, 360]. """ params = expand_parameter_dictionary(params) R_g = params['R_g'] R_o = params['R_o'] # create ranges for phi and r phi_min = 0.0 phi_max = np.pi / 2 phi_vector_1q = np.linspace(phi_min, phi_max, N_PROFILE_POINTS) r_central = (R_o + R_g) / 2 # calcualte the points (x,y) distributed along # radial lines x_grid = r_central * np.cos(phi_vector_1q) y_grid = r_central * np.sin(phi_vector_1q) B_profile_1q = griddata(B_data[:, 0:2], B_data[:, 2], np.array([x_grid, y_grid]).T) #ERRO AQUI. PRIMEIRO DIGITO DO B_profile_1q A PARTIR DE CERTO MOMENTO VEM NAN b=np.isnan(B_profile_1q) for i in range(0,len(b)): if b[i]==True: B_profile_1q[i]=B_profile_1q[i+1] else: continue # extrapolate data to the full circle phi_vector = np.concatenate((phi_vector_1q, phi_vector_1q + np.pi / 2, phi_vector_1q + np.pi, phi_vector_1q + (3 / 2) * np.pi)) B_profile = np.concatenate((B_profile_1q, B_profile_1q[::-1], B_profile_1q, B_profile_1q[::-1])) profile_data = np.array((np.rad2deg(phi_vector), B_profile)).T return profile_data def write_magnetic_profile_file(): """Create a file "COMSOL Magnetic Profile.txt" in the current directory, assuming the teslamax command was already ran, and write the magnetic profile data (magentic flux density at the air gap central circumference). """ p = Path('.') / MAGNETIC_PROFILE_FILENAME column_names = ["phi[deg]", "B[T]"] column_header = " ".join(column_names) # load data from the B_III filename B_III_data = read_comsol_data_file(B_III_FILENAME) # get the columns corresponding to [x, y, B_x, B_y] and calculate [x, y, B] B_1q = calculate_magnitude(B_III_data[:, :4]) case_series = get_comsol_parameters_series() profile_data = calculate_magnetic_profile(B_1q, case_series) np.savetxt(str(p), profile_data, fmt=("%.2f", "%.5f"), delimiter=" ", header=column_header, comments='') def calculate_average_high_field(profile_data): """ Return the average magnetic profile through the high field region, based on profile data [theta, B_profile] """ # in the present model, the high field region (equivalent to the cold # blow in an AMR device) goes from -45° to +45°, and from 135° to 225° theta_min = 135.0 theta_max = 225.0 theta_vector = profile_data[:, 0] B_profile_vector = profile_data[:, 1] # select values only where theta_vector falls in the high field region # this will return an array with True only at those positions region_filter = np.logical_and(theta_vector > theta_min, theta_vector < theta_max) # select the region of the magnetic profile that satisfy this condition theta_high_field = theta_vector[region_filter] B_profile_high_field = B_profile_vector[region_filter] # return the integral of these samples, divided by the range B_integrated = trapz(B_profile_high_field, theta_high_field) theta_range = theta_max - theta_min B_high_avg = B_integrated / theta_range return B_high_avg def write_magnetic_profile_central_file(): """Create a file "COMSOL Magnetic Profile.txt" in the current directory, assuming the teslamax command was already ran, and write the magnetic profile data (magnetic induction at central radial position). """ p = Path('.') / MAGNETIC_PROFILE_FILENAME column_names = ["phi[deg]", "B[T]"] column_header = " ".join(column_names) # load data from the high and low field regions B_h = read_comsol_data_file(B_HIGH_FILENAME) B_l = read_comsol_data_file(B_LOW_FILENAME) B_1q = np.concatenate((B_h, B_l), axis=0) # calcualte vector of angles for the first quadrant case_series = get_comsol_parameters_series() n_phi_points = 100 R_g = case_series['R_g[m]'] R_o = case_series['R_o[m]'] # create ranges for phi and r phi_min = 0.0 phi_max = np.pi / 2 phi_vector_1q = np.linspace(phi_min, phi_max, N_PROFILE_POINTS) r_min = R_o r_max = R_g r_central = (R_o + R_g)/2 # calcualte the points (x,y) distributed along # radial lines x_grid = r_central * np.cos(phi_vector_1q) y_grid = r_central * np.sin(phi_vector_1q) B_profile_1q = griddata(B_1q[:, 0:2], B_1q[:, 2], np.array([x_grid, y_grid]).T) # extrapolate data to the full circle phi_vector = np.concatenate((phi_vector_1q, phi_vector_1q + np.pi / 2, phi_vector_1q + np.pi, phi_vector_1q + (3 / 2) * np.pi)) B_profile = np.concatenate((B_profile_1q, B_profile_1q[::-1], B_profile_1q, B_profile_1q[::-1])) profile_data = np.array((np.rad2deg(phi_vector), B_profile)).T np.savetxt(str(p), profile_data, fmt=("%.2f", "%.5f"), delimiter=" ", header=column_header, comments='') def run_teslamax(verbose=False): """ Run the teslamax process in the current directory, clean the results file and create a magnetic profile file. Assumes the parameters file is present in the current directory.""" comsol_process = subprocess.run(TESLAMAX_CMD, shell=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) if verbose: print(comsol_process.stdout) process_main_results_file() write_magnetic_profile_file() def remove_units_from_dict_keys(dictionary): """Remove a string '[<anything>]' from every key of 'dictionary'""" new_dictionary = {} for key in dictionary.keys(): new_key = key.split('[')[0] new_dictionary[new_key] = dictionary[key] return new_dictionary def expand_parameter_dictionary(param_simple): """ Return a new dictionary, calculating derivative parameters from 'param_simple', which is usually passed to COMSOL. If the input dictionary contain units, they are removed. The returned dict does not contain units """ param_dict = remove_units_from_dict_keys(param_simple) # cast the number of segments to int, if necessary param_dict["n_IV"] = int(param_dict["n_IV"]) # remove some keys that are not necessary (and which may cause errors) try: del param_dict["-H_Brem_IV_max"] except: pass # calculate magnet geometry param_dict["R_g"] = param_dict["R_o"] + param_dict["h_gap"] param_dict["R_c"] = param_dict["R_s"] + param_dict["h_fc"] if param_dict["n_II"] > 0: param_dict["delta_phi_S_II"] = ((param_dict["phi_S_II"] - param_dict["phi_C_II"]) / param_dict["n_II"]) if param_dict["n_IV"] > 0: param_dict["delta_phi_S_IV"] = (param_dict["phi_S_IV"] / param_dict["n_IV"]) return param_dict def write_parameter_file_from_dict(param_dict): """From a basic 'param_dict', calculate the necessary other parameters (e.g. magnet segment size from total size and number of segments) and write the correct parameters file. If 'param_dict' contains units in the names, they are removed. """ param_dict = expand_parameter_dictionary(param_dict) # write the dictionary file in the appropriate format that COMSOL can parse parameters_file_path = Path(".") / PARAMETER_FILENAME param_text = "" for (key, value) in param_dict.items(): param_text = param_text + "%s %s\n" % (key, value) parameters_file_path.write_text(param_text) def run_teslamax_from_params(params, verbose=False): """Write the 'params' dictionary in the apropriate format to the current directory (removing units if necessary) and run the teslamax process""" write_parameter_file_from_dict(params) run_teslamax(verbose) def normalize_vector(v): """ Return the normalized (dimensionless) form of vector (or list of vectors) v""" # v could be a single vector or a list of vectors, # so we handle different cases if v.ndim == 1: return v / np.linalg.norm(v) else: v_norm = np.linalg.norm(v, axis=1) v_norm_inv = np.reciprocal(v_norm).reshape(len(v), 1) return np.multiply(v, v_norm_inv) def create_quater_circle_figure_template(r_lim, params): """ Return (fig,axes) correspondent to a figure of the first quadrant, limited by r_lim. Both magnets are also drawn. The size of the figure is controlled by FIGSIZE_INCHES""" fig = plt.figure(figsize=(FIGSIZE_INCHES, FIGSIZE_INCHES)) axes = fig.add_subplot(111, aspect='equal') axes.set_ylim(0, 1e3 * r_lim) axes.set_xlim(0, 1e3 * r_lim) axes.set_ylabel(r'$y\ [\si{\mm}$]') axes.set_xlabel(r'$x\ [\si{\mm}$]') R_o = params['R_o'] R_i = params['R_i'] R_s = params['R_s'] R_g = params.get('R_g', params['R_o'] + params['h_gap']) magnet_II_outer = plt.Circle((0, 0), 1000 * R_o, color='k', fill=False) magnet_II_inner = plt.Circle((0, 0), 1e3 * R_i, color='k', fill=False) axes.add_artist(magnet_II_outer) axes.add_artist(magnet_II_inner) magnet_IV_outer = plt.Circle((0, 0), 1e3 * R_s, color='k', fill=False) magnet_IV_inner = plt.Circle((0, 0), 1000 * R_g, color='k', fill=False) axes.add_artist(magnet_IV_outer) axes.add_artist(magnet_IV_inner) return fig, axes def generate_sector_mesh_points(R1, R2, phi1, phi2): """ Return a list of points [X,Y] uniformily distributed in a circle between radii R1 and R2 and angular positions phi1 and phi2 The number of points is controlled by N_POINTS_PER_AXIS. """ phi_min = phi1 phi_max = phi2 phi_vector = np.linspace(phi_min, phi_max, N_POINTS_PER_AXIS) r_vector = np.linspace(R1, R2, N_POINTS_PER_AXIS) phi_grid, r_grid = np.meshgrid(phi_vector, r_vector) X_vector = (r_grid * np.cos(phi_grid)).flatten() Y_vector = (r_grid * np.sin(phi_grid)).flatten() return np.array([X_vector, Y_vector]).T def create_magnet_IV_figure_template(params): """ Return (fig,axes) correspondent to a figure of the first quadrant of magnet IV. The size of the figure is controlled by FIGSIZE_INCHES""" fig = plt.figure(figsize=(FIGSIZE_INCHES, FIGSIZE_INCHES)) axes = fig.add_subplot(111, aspect='equal') R_o = params['R_o'] R_i = params['R_i'] R_s = params['R_s'] R_g = params.get('R_g', params['R_o'] + params['h_gap']) R_c = params.get('R_c', params['R_s'] + params['h_fc']) r_lim = R_c axes.set_ylim(0, 1e3 * r_lim) axes.set_xlim(0, 1e3 * r_lim) axes.set_ylabel(r'$y\ [\si{\mm}$]') axes.set_xlabel(r'$x\ [\si{\mm}$]') width_IV = R_s - R_g n_IV = int(params['n_IV']) delta_phi_S_IV = params['delta_phi_S_IV'] for i in range(0, n_IV): theta_0 = i * delta_phi_S_IV theta_1 = (i + 1) * delta_phi_S_IV magnet_segment = Wedge((0, 0), 1e3 * R_s, theta_0, theta_1, 1e3 * width_IV, color='k', fill=False) axes.add_artist(magnet_segment) return fig, axes def create_magnets_figure_template(params): """ Return (fig,axes) correspondent to a figure of the first quadrant of both magnets. The size of the figure is controlled by FIGSIZE_INCHES""" fig = plt.figure(figsize=(FIGSIZE_INCHES, FIGSIZE_INCHES)) axes = fig.add_subplot(111, aspect='equal') R_o = params['R_o'] R_i = params['R_i'] R_s = params['R_s'] R_g = params.get('R_g', params['R_o'] + params['h_gap']) R_c = params.get('R_c', params['R_s'] + params['h_fc']) r_lim = R_c axes.set_ylim(0, 1e3 * r_lim) axes.set_xlim(0, 1e3 * r_lim) axes.set_ylabel(r'$y\ [\si{\mm}$]') axes.set_xlabel(r'$x\ [\si{\mm}$]') width_II = R_o - R_i n_II = int(params['n_II']) delta_phi_S_II = params['delta_phi_S_II'] for i in range(0, n_II): theta_0 = i * delta_phi_S_II theta_1 = (i + 1) * delta_phi_S_II magnet_segment = Wedge((0, 0), 1e3 * R_o, theta_0, theta_1, 1e3 * width_II, color='k', fill=False) axes.add_artist(magnet_segment) width_IV = R_s - R_g n_IV = int(params['n_IV']) delta_phi_S_IV = params['delta_phi_S_IV'] for j in range(0, n_IV): theta_0 = j * delta_phi_S_IV theta_1 = (j + 1) * delta_phi_S_IV magnet_segment = Wedge((0, 0), 1e3 * R_s, theta_0, theta_1, 1e3 * width_IV, color='k', fill=False) axes.add_artist(magnet_segment) return fig, axes class TeslaMaxGeometry: """ Class representing the physical geometry of the TeslaMax system, with all radii and angles. To instantiante, pass a dictionary (or similar object) with all geometric parameters in SI units (except for the angles, which must be provided in degrees). The names for the keys follow the standard convention, without the units in the names. E.g. >>> params = {'R_i': 0.015, 'phi_C_II': 15, ...} # provide other parameters >>> tmg = TeslaMaxGeometry(params) The parameters 'R_o', 'h_gap' and 'R_g' are not independent. If two are provided, the class automatically calculates the other one. If you provide all three, it's your responsibility to provide three consistent values. Currently, the only possible calculations are volume-related. """ def __init__(self, params): """ Keyword Arguments: params -- dict-like """ self.geometric_parameters = params.copy() self._complete_geometric_parameters() def _complete_geometric_parameters(self): """ For two of the parameters 'R_o', 'R_g', 'h_gap', calculate the third one and populate the 'geometric_parameters' field. If all three parameters are provided, nothing happens """ gp = self.geometric_parameters if ('R_o' in gp) and ('R_g' in gp) and ('h_gap' in gp): pass else: if ('R_o' in gp) and ('R_g' in gp): gp['h_gap'] = gp['R_g'] - gp['R_o'] elif ('R_o' in gp) and ('h_gap' in gp): gp['R_g'] = gp['R_o'] + gp['h_gap'] elif ('R_g' in gp) and ('h_gap' in gp): gp['R_o'] = gp['R_g'] - gp['h_gap'] def calculate_magnet_volume(self, L): """ Return the volume (m3) of the permanent regions, for a length of 'L' (m) """ params = self.geometric_parameters phi_S_II = np.deg2rad(params["phi_S_II"]) phi_S_IV = np.deg2rad(params["phi_S_IV"]) phi_C_II = np.deg2rad(params["phi_C_II"]) R_i = params["R_i"] R_o = params["R_o"] R_s = params["R_s"] R_g = params["R_g"] # the factor of 2 already accounts for 4 quadrants A_II = 2 * (phi_S_II - phi_C_II) * (R_o ** 2 - R_i ** 2) A_IV = 2 * phi_S_IV * (R_s ** 2 - R_g ** 2) V = (A_II + A_IV) * L return V def expand_parameters_from_remanence_array(magnet_parameters, params, prefix): """ Return a new parameters dict with the magnet parameters in the form '<prefix>_<magnet>_<segment>', with the values from 'magnet_parameters' and other parameters from 'params'. The length of the array 'magnet_parameters' must be equal to the sum of the number of segments in both cylinders. The first n_II elements refer to the inner magnet, and the remaining elements to the outer magnet. """ params_expanded = params.copy() n_II = params["n_II"] for i in range(0, n_II): params_expanded["%s_II_%d" % (prefix, i + 1,)] = magnet_parameters[i] n_IV = params["n_IV"] for j in range(0, n_IV): k = j + n_II # the first n_II elements refer to magnet II params_expanded["%s_IV_%d" % (prefix, j + 1,)] = magnet_parameters[k] return params_expanded def calculate_instantaneous_profile(phi, B_high, B_low, *args): """ Calculate the value of the two-pole instantaneous magnetic profile at angular position 'phi' (in degrees), where the profile oscillates from 'B_low' to 'B_high' """ high_region = (phi <= 45) high_region = np.logical_or(high_region, np.logical_and((phi >= 135), (phi <= 225))) high_region = np.logical_or(high_region, (phi >= 315)) return np.where(high_region, B_high, B_low) def calculate_ramp_profile(phi, B_high, B_low, high_field_fraction, *args): """ Calculate the value of the two-pole instantaneous magnetic profile at angular position 'phi' (in degrees), where the profile oscillates from 'B_low' to 'B_high' in a trapezoidal wave, with each plateau occupying 'high_field_fraction' of the cycle. """ # for the edge case of a field fraction of 50%, # the ramp profile is equivalent to the instantaneous profile if
np.isclose(high_field_fraction,0.5)
numpy.isclose
# AUTOGENERATED! DO NOT EDIT! File to edit: gen_cb.ipynb (unless otherwise specified). __all__ = ['meshgrid2ps', 'affine_ps', 'homography_ps', 'rotate_ps', 'get_circle_poly', 'rotate_poly', 'affine_poly', 'poly2coords', 'affine_coords', 'homography_coords', 'plot_coords', 'euler2R', 'ARt2H', 'get_bb', 'get_fiducial_poly', 'get_checker_poly', 'get_ps_b', 'get_ps_fp', 'get_ps_t', 'get_poly_cb', 'plot_cb_poly', 'draw_ps', 'draw_coords'] # Cell import copy import descartes import matplotlib.pyplot as plt import numpy as np import skimage.draw import skimage.filters import skimage.transform from IPython.core.debugger import set_trace from shapely import affinity from shapely.geometry import Point, Polygon # Cell def meshgrid2ps(r_x, r_y, order='C'): xs, ys = np.meshgrid(r_x, r_y) return np.c_[xs.ravel(order), ys.ravel(order)] # Cell def _xform_ps(ps, mat): ps, mat = map(np.array, [ps,mat]) ps_aug = np.concatenate([ps, np.ones((ps.shape[0], 1))], axis=1) return (mat@ps_aug.T).T # Cell def affine_ps(ps, mat): # Assumes last row of mat is [0, 0, 1] return _xform_ps(ps, mat)[:, 0:2] # Cell def homography_ps(ps, mat): ps = _xform_ps(ps, mat) return ps[:, 0:2]/ps[:, 2:] # Cell def rotate_ps(ps, deg): theta = np.radians(deg) R = [[np.cos(theta), -np.sin(theta), 0], [np.sin(theta), np.cos(theta), 0], [ 0, 0, 1]] return affine_ps(ps, R) # Cell def get_circle_poly(p, r): return Point(p).buffer(r) # Cell def rotate_poly(poly, deg): return affinity.rotate(poly, deg, origin=(0,0)) # Cell def affine_poly(poly, mat): mat = np.array(mat) return affinity.affine_transform(poly, np.r_[mat[0:2,0:2].ravel(), mat[0,2], mat[1,2]]) # Cell def poly2coords(poly): if isinstance(poly, Polygon): poly = [poly] coords = [] for idx, p in enumerate(poly): coord = {} coord['ext'] =
np.array(p.exterior.coords)
numpy.array
import numpy as np from sim.sim2d_prediction import sim_run # Simulator options. options = {} options['FIG_SIZE'] = [8,8] options['ALLOW_SPEEDING'] = False class KalmanFilter: def __init__(self): # Initial State self.x = np.matrix([[55.], [3.], [5.], [0.]]) # Uncertainity Matrix self.P = np.matrix([[1., 0.,0.,0.], [0., 1.,0.,0.], [0., 0.,0.,0.], [0., 0.,0.,100.]]) # Next State Function self.F = np.matrix([[1., 0., 0.1,0.], [0., 1., 0.,0.1], [0., 0., 1.,0.], [0., 0., 0.,1.]]) # Measurement Function self.H = np.matrix([[1., 0., 0.,0.], [0., 1., 0.,0.]]) # Measurement Uncertainty self.R = np.matrix([[1.0], [1.0]]) # Identity Matrix self.I = np.matrix([[1., 0., 0., 0.], [0., 1., 0., 0.], [0., 0., 1., 0.], [0., 0., 0., 1.]]) self.prev_time = 0. def predict(self,t): dt = t - self.prev_time self.x = self.F*self.x return def measure_and_update(self,measurements,t): dt = t - self.prev_time Z = np.matrix(measurements) y = np.transpose(Z) - self.H*self.x S = self.H*self.P*np.transpose(self.H) + self.R K = self.P*np.transpose(self.H)*np.linalg.inv(S) self.x = self.x + K*y self.P = (self.I - K*self.H)*self.P self.P[0,0]+= 100 self.P[1,1] += 100 self.P[2,2]+= 100 self.P[3,3] += 100 self.v = (self.x[1,0]) self.prev_time = t return [self.x[0], self.x[1]] def predict_red_light(self,light_location): light_duration = 3 F_new = np.copy(self.F) F_new[0,2] = light_duration F_new[1,3] = light_duration x_new = F_new*self.x if x_new[0] < light_location: return [False, x_new[0]] else: return [True, x_new[0]] def predict_red_light_speed(self, light_location): light_duration = 3 F_new =
np.copy(self.F)
numpy.copy
# Built-in import os import warnings import itertools as itt import copy import datetime as dtm # DB # Common import numpy as np import scipy.optimize as scpopt import scipy.interpolate as scpinterp import scipy.constants as scpct import scipy.sparse as sparse from scipy.interpolate import BSpline import scipy.stats as scpstats import matplotlib.pyplot as plt # ToFu-specific import tofu.utils as utils from . import _fit12d_funccostjac as _funccostjac from . import _plot __all__ = [ 'fit1d_dinput', 'fit2d_dinput', 'fit12d_dvalid', 'fit12d_dscales', 'fit1d', 'fit2d', 'fit1d_extract', 'fit2d_extract', ] _NPEAKMAX = 12 _DCONSTRAINTS = { 'bck_amp': False, 'bck_rate': False, 'amp': False, 'width': False, 'shift': False, 'double': False, 'symmetry': False, } _DORDER = ['amp', 'width', 'shift'] _SAME_SPECTRUM = False _DEG = 2 _NBSPLINES = 13 _TOL1D = {'x': 1e-10, 'f': 1.e-10, 'g': 1.e-10} _TOL2D = {'x': 1e-6, 'f': 1.e-6, 'g': 1.e-6} _SYMMETRY_CENTRAL_FRACTION = 0.3 _BINNING = False _POS = False _SUBSET = False _CHAIN = True _METHOD = 'trf' _LOSS = 'linear' _D3 = { 'bck_amp': 'x', 'bck_rate': 'x', 'amp': 'x', 'coefs': 'lines', 'ratio': 'lines', 'Ti': 'x', 'width': 'x', 'vi': 'x', 'shift': 'lines', # necessarily by line for de-normalization (*lamb0) } _VALID_NSIGMA = 6. _VALID_FRACTION = 0.8 _SIGMA_MARGIN = 3. _ALLOW_PICKLE = True _LTYPES = [int, float, np.int_, np.float_] _DBOUNDS = { 'bck_amp': (0., 3.), 'bck_rate': (-3., 3.), 'amp': (0, 2), 'width': (0.01, 2.), 'shift': (-2, 2), 'dratio': (0., 2.), 'dshift': (-10., 10.), 'bs': (-10., 10.), } _DX0 = { 'bck_amp': 1., 'bck_rate': 0., 'amp': 1., 'width': 1., 'shift': 0., 'dratio': 0.5, 'dshift': 0., 'bs': 1., } ########################################################### ########################################################### # # Preliminary # utility tools for 1d spectral fitting # ########################################################### ########################################################### def get_symmetry_axis_1dprofile(phi, data, cent_fraction=None): """ On a series of 1d vertical profiles, find the best symmetry axis """ if cent_fraction is None: cent_fraction = _SYMMETRY_CENTRAL_FRACTION # Find the phi in the central fraction phimin = np.nanmin(phi) phimax = np.nanmax(phi) phic = 0.5*(phimax + phimin) dphi = (phimax - phimin)*cent_fraction indphi = np.abs(phi-phic) <= dphi/2. phiok = phi[indphi] # Compute new phi and associated costs phi2 = phi[:, None] - phiok[None, :] phi2min = np.min([np.nanmax(np.abs(phi2 * (phi2 < 0)), axis=0), np.nanmax(np.abs(phi2 * (phi2 > 0)), axis=0)], axis=0) indout = np.abs(phi2) > phi2min[None, :] phi2p = np.abs(phi2) phi2n = np.abs(phi2) phi2p[(phi2 < 0) | indout] = np.nan phi2n[(phi2 > 0) | indout] = np.nan nok = np.min([np.sum((~np.isnan(phi2p)), axis=0), np.sum((~np.isnan(phi2n)), axis=0)], axis=0) cost = np.full((data.shape[0], phiok.size), np.nan) for ii in range(phiok.size): indp = np.argsort(np.abs(phi2p[:, ii])) indn = np.argsort(np.abs(phi2n[:, ii])) cost[:, ii] = np.nansum( (data[:, indp] - data[:, indn])[:, :nok[ii]]**2, axis=1) return phiok[np.nanargmin(cost, axis=1)] ########################################################### ########################################################### # # 1d spectral fitting from dlines # ########################################################### ########################################################### def _checkformat_dconstraints(dconstraints=None, defconst=None): # Check constraints if dconstraints is None: dconstraints = defconst # Check dconstraints keys lk = sorted(_DCONSTRAINTS.keys()) c0 = ( isinstance(dconstraints, dict) and all([k0 in lk for k0 in dconstraints.keys()]) ) if not c0: msg = ( "\ndconstraints should contain constraints for spectrum fitting\n" + "It be a dict with the following keys:\n" + "\t- available keys: {}\n".format(lk) + "\t- provided keys: {}".format(dconstraints.keys()) ) raise Exception(msg) # copy to avoid modifying reference return copy.deepcopy(dconstraints) def _checkformat_dconstants(dconstants=None, dconstraints=None): if dconstants is None: return lk = [kk for kk in sorted(dconstraints.keys()) if kk != 'symmetry'] if not isinstance(dconstants, dict): msg = ( "\ndconstants should be None or a dict with keys in:\n" + "\t- available keys: {}\n".format(lk) + "\t- provided : {}".format(type(dconstants)) ) raise Exception(msg) # Check dconstraints keys lc = [ k0 for k0, v0 in dconstants.items() if not ( k0 in lk and ( ( k0 in _DORDER and isinstance(v0, dict) and all([ k1 in dconstraints[k0].keys() and type(v1) in _LTYPES for k1, v1 in v0.items() ]) ) or ( k0 not in _DORDER and type(v0) in _LTYPES ) ) ) ] if len(lc) > 0: dc0 = [ '\t\t{}: {}'.format( kk, sorted(dconstraints[kk].keys()) if kk in _DORDER else float ) for kk in lk ] dc1 = [ '\t\t{}: {}'.format( kk, sorted(dconstants[kk].keys()) if kk in _DORDER else dconstants[kk] ) for kk in sorted(dconstants.keys()) ] msg = ( "\ndconstants should be None or a dict with keys in:\n" + "\t- available keys:\n" + "\n".join(dc0) + "\n\t- provided keys:\n" + "\n".join(dc1) ) raise Exception(msg) # copy to avoid modifying reference return copy.deepcopy(dconstants) def _dconstraints_double(dinput, dconstraints, defconst=_DCONSTRAINTS): dinput['double'] = dconstraints.get('double', defconst['double']) c0 = ( isinstance(dinput['double'], bool) or ( isinstance(dinput['double'], dict) and all([ kk in ['dratio', 'dshift'] and type(vv) in _LTYPES for kk, vv in dinput['double'].items() ]) ) ) if c0 is False: msg = ( "dconstraints['double'] must be either:\n" + "\t- False: no line doubling\n" + "\t- True: line doubling with unknown ratio and shift\n" + "\t- {'dratio': float}: line doubling with:\n" + "\t \t explicit ratio, unknown shift\n" + "\t- {'dshift': float}: line doubling with:\n" + "\t \t unknown ratio, explicit shift\n" + "\t- {'dratio': float, 'dshift': float}: line doubling with:\n" + "\t \t explicit ratio, explicit shift" ) raise Exception(msg) def _width_shift_amp( indict, dconstants=None, keys=None, dlines=None, nlines=None, k0=None, ): # ------------------------ # Prepare error message msg = '' pavail = sorted(set(itt.chain.from_iterable([ v0.keys() for v0 in dlines.values() ]))) # ------------------------ # Check case c0 = indict is False c1 = ( isinstance(indict, str) and indict in pavail ) c2 = ( isinstance(indict, dict) and all([ isinstance(k1, str) and ( (isinstance(v1, str)) # and v0 in keys) or ( isinstance(v1, list) and all([ isinstance(v2, str) # and v1 in keys for v2 in v1 ]) ) ) for k1, v1 in indict.items() ]) ) c3 = ( isinstance(indict, dict) and all([ # ss in keys isinstance(vv, dict) and all([s1 in ['key', 'coef', 'offset'] for s1 in vv.keys()]) and isinstance(vv['key'], str) for ss, vv in indict.items() ]) ) c4 = ( isinstance(indict, dict) and isinstance(indict.get('keys'), list) and isinstance(indict.get('ind'), np.ndarray) ) if not any([c0, c1, c2, c3, c4]): msg = ( "dconstraints['{}'] shoud be either:\n".format(k0) + "\t- False ({}): no constraint\n".format(c0) + "\t- str ({}): key from dlines['<lines>'] ".format(c1) + "to be used as criterion\n" + "\t\t available crit: {}\n".format(pavail) + "\t- dict ({}): ".format(c2) + "{str: line_keyi or [line_keyi, ..., line_keyj}\n" + "\t- dict ({}): ".format(c3) + "{line_keyi: {'key': str, 'coef': , 'offset': }}\n" + "\t- dict ({}): ".format(c4) + "{'keys': [], 'ind': np.ndarray}\n" + " Available line_keys:\n{}\n".format(sorted(keys)) + " You provided:\n{}".format(indict) ) raise Exception(msg) # ------------------------ # str key to be taken from dlines as criterion if c0: lk = keys ind = np.eye(nlines) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': np.ones((nlines,)), 'offset': np.zeros((nlines,)), } if c1: lk = sorted(set([dlines[k1].get(indict, k1) for k1 in keys])) ind = np.array([ [dlines[k2].get(indict, k2) == k1 for k2 in keys] for k1 in lk ]) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': np.ones((nlines,)), 'offset': np.zeros((nlines,)), } elif c2: lkl = [] for k1, v1 in indict.items(): if isinstance(v1, str): v1 = [v1] v1 = [k2 for k2 in v1 if k2 in keys] c0 = ( len(set(v1)) == len(v1) and all([k2 not in lkl for k2 in v1]) ) if not c0: msg = ( "Inconsistency in indict[{}], either:\n".format(k1) + "\t- v1 not unique: {}\n".format(v1) + "\t- some v1 not in keys: {}\n".format(keys) + "\t- some v1 in lkl: {}".format(lkl) ) raise Exception(msg) indict[k1] = v1 lkl += v1 for k1 in set(keys).difference(lkl): indict[k1] = [k1] lk = sorted(set(indict.keys())) ind = np.array([[k2 in indict[k1] for k2 in keys] for k1 in lk]) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': np.ones((nlines,)), 'offset': np.zeros((nlines,)), } elif c3: lk = sorted(set([v0['key'] for v0 in indict.values()])) lk += sorted(set(keys).difference(indict.keys())) ind = np.array([ [indict.get(k2, {'key': k2})['key'] == k1 for k2 in keys] for k1 in lk ]) coefs = np.array([ indict.get(k1, {'coef': 1.}).get('coef', 1.) for k1 in keys ]) offset = np.array([ indict.get(k1, {'offset': 0.}).get('offset', 0.) for k1 in keys ]) outdict = { 'keys': np.r_[lk], 'ind': ind, 'coefs': coefs, 'offset': offset, } elif c4: outdict = indict if 'coefs' not in indict.keys(): outdict['coefs'] = np.ones((nlines,)) if 'offset' not in indict.keys(): outdict['offset'] = np.zeros((nlines,)) # ------------------------ # Ultimate conformity checks if not c0: assert sorted(outdict.keys()) == ['coefs', 'ind', 'keys', 'offset'] assert isinstance(outdict['ind'], np.ndarray) assert outdict['ind'].dtype == np.bool_ assert outdict['ind'].shape == (outdict['keys'].size, nlines) assert np.all(np.sum(outdict['ind'], axis=0) == 1) assert outdict['coefs'].shape == (nlines,) assert outdict['offset'].shape == (nlines,) return outdict ########################################################### ########################################################### # # 2d spectral fitting from dlines # ########################################################### ########################################################### def _dconstraints_symmetry( dinput, dprepare=None, symmetry=None, cent_fraction=None, defconst=_DCONSTRAINTS, ): if symmetry is None: symmetry = defconst['symmetry'] dinput['symmetry'] = symmetry if not isinstance(dinput['symmetry'], bool): msg = "dconstraints['symmetry'] must be a bool" raise Exception(msg) if dinput['symmetry'] is True: dinput['symmetry_axis'] = get_symmetry_axis_1dprofile( dprepare['phi1d'], dprepare['dataphi1d'], cent_fraction=cent_fraction, ) ########################################################### ########################################################### # # data, lamb, phi conformity checks # ########################################################### ########################################################### def _checkformat_data_fit12d_dlines_msg(data, lamb, phi=None, mask=None): datash = data.shape if isinstance(data, np.ndarray) else type(data) lambsh = lamb.shape if isinstance(lamb, np.ndarray) else type(lamb) phish = phi.shape if isinstance(phi, np.ndarray) else type(phi) masksh = mask.shape if isinstance(mask, np.ndarray) else type(mask) shaped = '(nt, n1)' if phi is None else '(nt, n1, n2)' shape = '(n1,)' if phi is None else '(n1, n2)' msg = ("Args data, lamb, phi and mask must be:\n" + "\t- data: {} or {} np.ndarray\n".format(shaped, shape) + "\t- lamb, phi: both {} np.ndarray\n".format(shape) + "\t- mask: None or {}\n".format(shape) + " You provided:\n" + "\t - data: {}\n".format(datash) + "\t - lamb: {}\n".format(lambsh)) if phi is not None: msg += "\t - phi: {}\n".format(phish) msg += "\t - mask: {}\n".format(masksh) return msg def _checkformat_data_fit12d_dlines( data, lamb, phi=None, nxi=None, nxj=None, mask=None, is2d=False, ): # Check types c0 = isinstance(data, np.ndarray) and isinstance(lamb, np.ndarray) if is2d: c0 &= isinstance(phi, np.ndarray) if not c0: msg = _checkformat_data_fit12d_dlines_msg( data, lamb, phi=phi, mask=mask, ) raise Exception(msg) # Check shapes 1 mindim = 1 if phi is None else 2 phi1d, lamb1d, dataphi1d, datalamb1d = None, None, None, None if is2d: # special case c1 = lamb.ndim == phi.ndim == 1 if c1: if nxi is None: nxi = lamb.size if nxj is None: nxj = phi.size lamb1d = np.copy(lamb) phi1d = np.copy(phi) lamb = np.repeat(lamb[None, :], nxj, axis=0) phi = np.repeat(phi[:, None], nxi, axis=1) c0 = ( data.ndim in mindim + np.r_[0, 1] and ( lamb.ndim == mindim and lamb.shape == data.shape[-mindim:] and lamb.shape == phi.shape and lamb.shape in [(nxi, nxj), (nxj, nxi)] ) ) else: c0 = ( data.ndim in mindim + np.r_[0, 1] and lamb.ndim == mindim and lamb.shape == data.shape[-mindim:] ) if not c0: msg = _checkformat_data_fit12d_dlines_msg( data, lamb, phi=phi, mask=mask, ) raise Exception(msg) # Check shapes 2 if data.ndim == mindim: data = data[None, ...] if is2d and c1: dataphi1d = np.nanmean(data, axis=2) datalamb1d = np.nanmean(data, axis=1) if is2d and lamb.shape == (nxi, nxj): lamb = lamb.T phi = phi.T data = np.swapaxes(data, 1, 2) # mask if mask is not None: if mask.shape != lamb.shape: if phi is not None and mask.T.shape == lamb.shape: mask = mask.T else: msg = _checkformat_data_fit12d_dlines_msg( data, lamb, phi=phi, mask=mask, ) raise Exception(msg) if is2d: return lamb, phi, data, mask, phi1d, lamb1d, dataphi1d, datalamb1d else: return lamb, data, mask ########################################################### ########################################################### # # Domain limitation # ########################################################### ########################################################### def _checkformat_domain(domain=None, keys=['lamb', 'phi']): if keys is None: keys = ['lamb', 'phi'] if isinstance(keys, str): keys = [keys] if domain is None: domain = {k0: {'spec': [np.inf*np.r_[-1., 1.]]} for k0 in keys} return domain c0 = ( isinstance(domain, dict) and all([k0 in keys for k0 in domain.keys()]) ) if not c0: msg = ("\nArg domain must be a dict with keys {}\n".format(keys) + "\t- provided: {}".format(domain)) raise Exception(msg) domain2 = {k0: v0 for k0, v0 in domain.items()} for k0 in keys: domain2[k0] = domain2.get(k0, [np.inf*np.r_[-1., 1.]]) ltypesin = [list, np.ndarray] ltypesout = [tuple] for k0, v0 in domain2.items(): c0 = ( type(v0) in ltypesin + ltypesout and ( ( all([type(v1) in _LTYPES for v1 in v0]) and len(v0) == 2 and v0[1] > v0[0] ) or ( all([ type(v1) in ltypesin + ltypesout and all([type(v2) in _LTYPES for v2 in v1]) and len(v1) == 2 and v1[1] > v1[0] for v1 in v0 ]) ) ) ) if not c0: msg = ( "domain[{}] must be either a:\n".format(k0) + "\t- np.ndarray or list of 2 increasing values: " + "inclusive interval\n" + "\t- tuple of 2 increasing values: exclusive interval\n" + "\t- a list of combinations of the above\n" + " provided: {}".format(v0) ) raise Exception(msg) if type(v0) in ltypesout: v0 = [v0] else: c0 = all([ type(v1) in ltypesin + ltypesout and len(v1) == 2 and v1[1] > v1[0] for v1 in v0 ]) if not c0: v0 = [v0] domain2[k0] = { 'spec': v0, 'minmax': [np.nanmin(v0), np.nanmax(v0)], } return domain2 def apply_domain(lamb=None, phi=None, domain=None): lc = [lamb is not None, phi is not None] if not lc[0]: msg = "At least lamb must be provided!" raise Exception(msg) din = {'lamb': lamb} if lc[1]: din['phi'] = phi domain = _checkformat_domain(domain=domain, keys=din.keys()) ind = np.ones(lamb.shape, dtype=bool) for k0, v0 in din.items(): indin = np.zeros(v0.shape, dtype=bool) indout = np.zeros(v0.shape, dtype=bool) for v1 in domain[k0]['spec']: indi = (v0 >= v1[0]) & (v0 <= v1[1]) if isinstance(v1, tuple): indout |= indi else: indin |= indi ind = ind & indin & (~indout) return ind, domain ########################################################### ########################################################### # # binning (2d only) # ########################################################### ########################################################### def _binning_check( binning, domain=None, nbsplines=None, ): lk = ['phi', 'lamb'] lkall = lk + ['nperbin'] msg = ( "binning must be dict of the form:\n" + "\t- provide number of bins:\n" + "\t \t{'phi': int,\n" + "\t \t 'lamb': int}\n" + "\t- provide bin edges vectors:\n" + "\t \t{'phi': 1d np.ndarray (increasing),\n" + "\t \t 'lamb': 1d np.ndarray (increasing)}\n" + " provided:\n{}".format(binning) ) # Check input if binning is None: binning = _BINNING if nbsplines is None: nbsplines = False if nbsplines is not False: c0 = isinstance(nbsplines, int) and nbsplines > 0 if not c0: msg2 = ( "Both nbsplines and deg must be positive int!\n" + "\t- nbsplines: {}\n".format(nbsplines) ) raise Exception(msg2) # Check which format was passed and return None or dict ltypes0 = _LTYPES ltypes1 = [tuple, list, np.ndarray] lc = [ binning is False, ( isinstance(binning, dict) and all([kk in lkall for kk in binning.keys()]) ), type(binning) in ltypes0, type(binning) in ltypes1, ] if not any(lc): raise Exception(msg) if binning is False: return binning elif type(binning) in ltypes0: binning = { 'phi': {'nbins': int(binning)}, 'lamb': {'nbins': int(binning)}, } elif type(binning) in ltypes1: binning = np.atleast_1d(binning).ravel() binning = { 'phi': {'edges': binning}, 'lamb': {'edges': binning}, } for kk in lk: if type(binning[kk]) in ltypes0: binning[kk] = {'nbins': int(binning[kk])} elif type(binning[kk]) in ltypes1: binning[kk] = {'edges': np.atleast_1d(binning[kk]).ravel()} c0 = all([ all([k1 in ['edges', 'nbins'] for k1 in binning[k0].keys()]) for k0 in lk ]) c0 = ( c0 and all([ ( ( binning[k0].get('nbins') is None or type(binning[k0].get('nbins')) in ltypes0 ) and ( binning[k0].get('edges') is None or type(binning[k0].get('edges')) in ltypes1 ) ) for k0 in lk ]) ) if not c0: raise Exception(msg) # Check dict for k0 in lk: c0 = all([k1 in ['nbins', 'edges'] for k1 in binning[k0].keys()]) if not c0: raise Exception(msg) if binning[k0].get('nbins') is not None: binning[k0]['nbins'] = int(binning[k0]['nbins']) if binning[k0].get('edges') is None: binning[k0]['edges'] = np.linspace( domain[k0]['minmax'][0], domain[k0]['minmax'][1], binning[k0]['nbins'] + 1, endpoint=True, ) else: binning[k0]['edges'] = np.atleast_1d( binning[k0]['edges']).ravel() if binning[k0]['nbins'] != binning[k0]['edges'].size - 1: raise Exception(msg) elif binning[k0].get('bin_edges') is not None: binning[k0]['edges'] = np.atleast_1d(binning[k0]['edges']).ravel() binning[k0]['nbins'] = binning[k0]['edges'].size - 1 else: raise Exception(msg) if not np.allclose(binning[k0]['edges'], np.unique(binning[k0]['edges'])): raise Exception(msg) # Optional check vs nbsplines and deg if nbsplines is not False: if binning['phi']['nbins'] <= nbsplines: msg = ( "The number of bins is too high:\n" + "\t- nbins = {}\n".format(binning['phi']['nbins']) + "\t- nbsplines = {}".format(nbsplines) ) raise Exception(msg) return binning def binning_2d_data( lamb, phi, data, indok=None, domain=None, binning=None, nbsplines=None, phi1d=None, lamb1d=None, dataphi1d=None, datalamb1d=None, ): # ------------------ # Checkformat input binning = _binning_check( binning, domain=domain, nbsplines=nbsplines, ) nspect = data.shape[0] if binning is False: if phi1d is None: phi1d_bins = np.linspace(domain['phi'][0], domain['phi'][1], 100) lamb1d_bins = np.linspace( domain['lamb'][0], domain['lamb'][1], 100, ) dataf = data.reshape((nspect, data.shape[1]*data.shape[2])) dataphi1d = scpstats.binned_statistics( phi.ravel(), dataf, statistic='sum', ) datalamb1d = scpstats.binned_statistics( lamb.ravel(), dataf, statistic='sum', ) phi1d = 0.5*(phi1d_bins[1:] + phi1d_bins[:-1]) lamb1d = 0.5*(lamb1d_bins[1:] + lamb1d_bins[:-1]) import pdb; pdb.set_trace() # DB return ( lamb, phi, data, indok, binning, phi1d, lamb1d, dataphi1d, datalamb1d, ) else: nphi = binning['phi']['nbins'] nlamb = binning['lamb']['nbins'] bins = (binning['lamb']['edges'], binning['phi']['edges']) # ------------------ # Compute databin = np.full((nspect, nphi, nlamb), np.nan) nperbin = np.full((nspect, nphi, nlamb), np.nan) for ii in range(nspect): databin[ii, ...] = scpstats.binned_statistic_2d( phi[indok[ii, ...]], lamb[indok[ii, ...]], data[indok[ii, ...]], statistic='sum', bins=bins, range=None, expand_binnumbers=True, )[0] nperbin[ii, ...] = scpstats.binned_statistic_2d( phi[indok[ii, ...]], lamb[indok[ii, ...]], np.ones((indok[ii, ...].sum(),), dtype=int), statistic='sum', bins=bins, range=None, expand_binnumbers=True, )[0] binning['nperbin'] = nperbin lambbin = 0.5*( binning['lamb']['edges'][1:] + binning['lamb']['edges'][:-1] ) phibin = 0.5*( binning['phi']['edges'][1:] + binning['phi']['edges'][:-1] ) lambbin = np.repeat(lambbin[None, :], nphi, axis=0) phibin = np.repeat(phibin[:, None], nlamb, axis=1) indok = ~np.isnan(databin) # dataphi1d phi1d = phibin lamb1d = lambbin dataphi1d = np.nanmean(databin, axis=2) datalamb1d = np.nanmean(databin, axis=1) return ( lambbin, phibin, databin, indok, binning, phi1d, lamb1d, dataphi1d, datalamb1d, ) ########################################################### ########################################################### # # dprepare dict # ########################################################### ########################################################### def _get_subset_indices(subset, indlogical): if subset is None: subset = _SUBSET if subset is False: return indlogical c0 = ((isinstance(subset, np.ndarray) and subset.shape == indlogical.shape and 'bool' in subset.dtype.name) or (type(subset) in [int, float, np.int_, np.float_] and subset >= 0)) if not c0: msg = ("subset must be either:\n" + "\t- an array of bool of shape: {}\n".format(indlogical.shape) + "\t- a positive int (nb. of ind. to keep from indlogical)\n" + "You provided:\n{}".format(subset)) raise Exception(msg) if isinstance(subset, np.ndarray): indlogical = subset[None, ...] & indlogical else: subset = np.random.default_rng().choice( indlogical.sum(), size=int(indlogical.sum() - subset), replace=False, shuffle=False) for ii in range(indlogical.shape[0]): ind = indlogical[ii, ...].nonzero() indlogical[ii, ind[0][subset], ind[1][subset]] = False return indlogical def _extract_lphi_spectra( data, phi, lamb, lphi=None, lphi_tol=None, databin=None, binning=None, nlamb=None, ): """ Extra several 1d spectra from 2d image at lphi """ # -------------- # Check input if lphi is None: lphi = False if lphi is False: lphi_tol = False if lphi is not False: lphi = np.atleast_1d(lphi).astype(float).ravel() lphi_tol = float(lphi_tol) if lphi is False: return False, False nphi = len(lphi) # -------------- # Compute non-trivial cases if binning is False: if nlamb is None: nlamb = lamb.shape[1] lphi_lamb = np.linspace(lamb.min(), lamb.max(), nlamb+1) lphi_spectra = np.full((data.shape[0], lphi_lamb.size-1, nphi), np.nan) for ii in range(nphi): indphi = np.abs(phi - lphi[ii]) < lphi_tol lphi_spectra[:, ii, :] = scpstats.binned_statistic( lamb[indphi], data[:, indphi], bins=lphi_lamb, statistic='mean', range=None, )[0] else: lphi_lamb = 0.5*( binning['lamb']['edges'][1:] + binning['lamb']['edges'][:-1] ) lphi_phi = 0.5*( binning['phi']['edges'][1:] + binning['phi']['edges'][:-1] ) lphi_spectra = np.full((data.shape[0], nphi, lphi_lamb.size), np.nan) lphi_spectra1 = np.full((data.shape[0], nphi, lphi_lamb.size), np.nan) for ii in range(nphi): datai = databin[:, np.abs(lphi_phi - lphi[ii]) < lphi_tol, :] iok = np.any(~np.isnan(datai), axis=1) for jj in range(datai.shape[0]): if np.any(iok[jj, :]): lphi_spectra[jj, ii, iok[jj, :]] = np.nanmean( datai[jj, :, iok[jj, :]], axis=1, ) return lphi_spectra, lphi_lamb def _checkformat_possubset(pos=None, subset=None): if pos is None: pos = _POS c0 = isinstance(pos, bool) or type(pos) in _LTYPES if not c0: msg = ("Arg pos must be either:\n" + "\t- False: no positivity constraints\n" + "\t- True: all negative values are set to nan\n" + "\t- float: all negative values are set to pos") raise Exception(msg) if subset is None: subset = _SUBSET return pos, subset def multigausfit1d_from_dlines_prepare( data=None, lamb=None, mask=None, domain=None, pos=None, subset=None, ): # -------------- # Check input pos, subset = _checkformat_possubset(pos=pos, subset=subset) # Check shape of data (multiple time slices possible) lamb, data, mask = _checkformat_data_fit12d_dlines( data, lamb, mask=mask, ) # -------------- # Use valid data only and optionally restrict lamb indok, domain = apply_domain(lamb, domain=domain) if mask is not None: indok &= mask # Optional positivity constraint if pos is not False: if pos is True: data[data < 0.] = np.nan else: data[data < 0.] = pos # Introduce time-dependence (useful for valid) indok = indok[None, ...] & (~np.isnan(data)) # Recompute domain domain['lamb']['minmax'] = [ np.nanmin(lamb[np.any(indok, axis=0)]), np.nanmax(lamb[np.any(indok, axis=0)]) ] # -------------- # Optionally fit only on subset # randomly pick subset indices (replace=False => no duplicates) indok = _get_subset_indices(subset, indok) if np.any(np.isnan(data[indok])): msg = ( "Some NaNs in data not caught by indok!" ) raise Exception(msg) # -------------- # Return dprepare = { 'data': data, 'lamb': lamb, 'domain': domain, 'indok': indok, 'pos': pos, 'subset': subset, } return dprepare def multigausfit2d_from_dlines_prepare( data=None, lamb=None, phi=None, mask=None, domain=None, pos=None, binning=None, nbsplines=None, deg=None, subset=None, nxi=None, nxj=None, lphi=None, lphi_tol=None, ): # -------------- # Check input pos, subset = _checkformat_possubset(pos=pos, subset=subset) # Check shape of data (multiple time slices possible) ( lamb, phi, data, mask, phi1d, lamb1d, dataphi1d, datalamb1d, ) = _checkformat_data_fit12d_dlines( data, lamb, phi, nxi=nxi, nxj=nxj, mask=mask, is2d=True, ) # -------------- # Use valid data only and optionally restrict lamb / phi indok, domain = apply_domain(lamb, phi, domain=domain) if mask is not None: indok &= mask # Optional positivity constraint if pos is not False: if pos is True: data[data < 0.] = np.nan else: data[data < 0.] = pos # Introduce time-dependence (useful for valid) indok = indok[None, ...] & (~np.isnan(data)) # Recompute domain domain['lamb']['minmax'] = [ np.nanmin(lamb[np.any(indok, axis=0)]), np.nanmax(lamb[np.any(indok, axis=0)]) ] domain['phi']['minmax'] = [ np.nanmin(phi[np.any(indok, axis=0)]), np.nanmax(phi[np.any(indok, axis=0)]) ] # -------------- # Optionnal 2d binning ( lambbin, phibin, databin, indok, binning, phi1d, lamb1d, dataphi1d, datalamb1d, ) = binning_2d_data( lamb, phi, data, indok=indok, binning=binning, domain=domain, nbsplines=nbsplines, phi1d=phi1d, lamb1d=lamb1d, dataphi1d=dataphi1d, datalamb1d=datalamb1d, ) # -------------- # Optionally fit only on subset # randomly pick subset indices (replace=False => no duplicates) indok = _get_subset_indices(subset, indok) # -------------- # Optionally extract 1d spectra at lphi lphi_spectra, lphi_lamb = _extract_lphi_spectra( data, phi, lamb, lphi, lphi_tol, databin=databin, binning=binning, ) # -------------- # Return dprepare = { 'data': databin, 'lamb': lambbin, 'phi': phibin, 'domain': domain, 'binning': binning, 'indok': indok, 'pos': pos, 'subset': subset, 'nxi': nxi, 'nxj': nxj, 'lphi': lphi, 'lphi_tol': lphi_tol, 'lphi_spectra': lphi_spectra, 'lphi_lamb': lphi_lamb, 'phi1d': phi1d, 'dataphi1d': dataphi1d, 'lamb1d': lamb1d, 'datalamb1d': datalamb1d, } return dprepare def multigausfit2d_from_dlines_dbsplines( knots=None, deg=None, nbsplines=None, phimin=None, phimax=None, symmetryaxis=None, ): # Check / format input if nbsplines is None: nbsplines = _NBSPLINES c0 = [nbsplines is False, isinstance(nbsplines, int)] if not any(c0): msg = "nbsplines must be a int (degree of bsplines to be used!)" raise Exception(msg) if nbsplines is False: lk = ['knots', 'knots_mult', 'nknotsperbs', 'ptsx0', 'nbs', 'deg'] return dict.fromkeys(lk, False) if deg is None: deg = _DEG if not (isinstance(deg, int) and deg <= 3): msg = "deg must be a int <= 3 (the degree of the bsplines to be used!)" raise Exception(msg) if symmetryaxis is None: symmetryaxis = False if knots is None: if phimin is None or phimax is None: msg = "Please provide phimin and phimax if knots is not provided!" raise Exception(msg) if symmetryaxis is False: knots = np.linspace(phimin, phimax, nbsplines + 1 - deg) else: phi2max = np.max( np.abs(np.r_[phimin, phimax][None, :] - symmetryaxis[:, None]) ) knots = np.linspace(0, phi2max, nbsplines + 1 - deg) if not np.allclose(knots, np.unique(knots)): msg = "knots must be a vector of unique values!" raise Exception(msg) # Get knots for scipy (i.e.: with multiplicity) if deg > 0: knots_mult = np.r_[[knots[0]]*deg, knots, [knots[-1]]*deg] else: knots_mult = knots nknotsperbs = 2 + deg nbs = knots.size - 1 + deg assert nbs == knots_mult.size - 1 - deg if deg == 0: ptsx0 = 0.5*(knots[:-1] + knots[1:]) elif deg == 1: ptsx0 = knots elif deg == 2: num = (knots_mult[3:]*knots_mult[2:-1] - knots_mult[1:-2]*knots_mult[:-3]) denom = (knots_mult[3:] + knots_mult[2:-1] - knots_mult[1:-2] - knots_mult[:-3]) ptsx0 = num / denom else: # To be derived analytically for more accuracy ptsx0 = np.r_[ knots[0], np.mean(knots[:2]), knots[1:-1], np.mean(knots[-2:]), knots[-1], ] msg = ("degree 3 not fully implemented yet!" + "Approximate values for maxima positions") warnings.warn(msg) assert ptsx0.size == nbs dbsplines = { 'knots': knots, 'knots_mult': knots_mult, 'nknotsperbs': nknotsperbs, 'ptsx0': ptsx0, 'nbs': nbs, 'deg': deg, } return dbsplines ########################################################### ########################################################### # # dvalid dict (S/N ratio) # ########################################################### ########################################################### def _dvalid_checkfocus_errmsg(focus=None, focus_half_width=None, lines_keys=None): msg = ("Please provide focus as:\n" + "\t- str: the key of an available spectral line:\n" + "\t\t{}\n".format(lines_keys) + "\t- float: a wavelength value\n" + "\t- a list / tuple / flat np.ndarray of such\n" + " You provided:\n" + "{}\n\n".format(focus) + "Please provide focus_half_width as:\n" + "\t- float: a unique wavelength value for all focus\n" + "\t- a list / tuple / flat np.ndarray of such\n" + " You provided:\n" + "{}".format(focus_half_width)) return msg def _dvalid_checkfocus( focus=None, focus_half_width=None, lines_keys=None, lines_lamb=None, lamb=None, ): """ Check the provided focus is properly formatted and convert it focus specifies the wavelength range of interest in which S/N is evaluated It can be provided as: - a spectral line key (or list of such) - a wavelength (or list of such) For each wavelength, a spectral range centered on it, is defined using the provided focus_half_width The focus_half_width can be a unique value applied to all or a list of values of the same length as focus. focus is then return as a (n, 2) array where: each line gives a central wavelength and halfwidth of interest """ if focus in [None, False]: return False # Check focus and transform to array of floats lc0 = [ type(focus) in [str] + _LTYPES, type(focus) in [list, tuple, np.ndarray] ] if not any(lc0): msg = _dvalid_checkfocus_errmsg( focus, focus_half_width, lines_keys, ) raise Exception(msg) if lc0[0] is True: focus = [focus] for ii in range(len(focus)): if focus[ii] not in lines_keys and type(focus[ii]) not in _LTYPES: msg = _dvalid_checkfocus_errmsg( focus, focus_half_width, lines_keys, ) raise Exception(msg) focus = np.array([ lines_lamb[(lines_keys == ff).nonzero()[0][0]] if ff in lines_keys else ff for ff in focus ]) # Check focus_half_width and transform to array of floats if focus_half_width is None: focus_half_width = (np.nanmax(lamb) - np.nanmin(lamb))/10. lc0 = [ type(focus_half_width) in _LTYPES, ( type(focus_half_width) in [list, tuple, np.ndarray] and len(focus_half_width) == focus.size and all([type(fhw) in _LTYPES for fhw in focus_half_width]) ) ] if not any(lc0): msg = _dvalid_checkfocus_errmsg( focus, focus_half_width, lines_keys, ) raise Exception(msg) if lc0[0] is True: focus_half_width = np.full((focus.size,), focus_half_width) return np.array([focus, np.r_[focus_half_width]]).T def fit12d_dvalid( data=None, lamb=None, phi=None, indok=None, binning=None, valid_nsigma=None, valid_fraction=None, focus=None, focus_half_width=None, lines_keys=None, lines_lamb=None, dphimin=None, nbs=None, deg=None, knots_mult=None, nknotsperbs=None, return_fract=None, ): """ Return a dict of valid time steps and phi indices data points are considered valid if there signal is sufficient: np.sqrt(data) >= valid_nsigma data is supposed to be provided in counts (or photons).. TBC!!! """ # Check inputs if valid_nsigma is None: valid_nsigma = _VALID_NSIGMA if valid_fraction is None: valid_fraction = _VALID_FRACTION if binning is None: binning = False if dphimin is None: dphimin = 0. if return_fract is None: return_fract = False data2d = data.ndim == 3 nspect = data.shape[0] focus = _dvalid_checkfocus( focus, focus_half_width=focus_half_width, lines_keys=lines_keys, lines_lamb=lines_lamb, lamb=lamb, ) # Get indices of pts with enough signal ind = np.zeros(data.shape, dtype=bool) if indok is None: isafe = (~np.isnan(data)) isafe[isafe] = data[isafe] >= 0. # Ok with and w/o binning if data provided as counts / photons # and binning was done by sum (and not mean) ind[isafe] = np.sqrt(data[isafe]) > valid_nsigma else: ind[indok] = np.sqrt(data[indok]) > valid_nsigma # Derive indt and optionally dphi and indknots indbs, dphi = False, False if focus is not False: # TBC lambok = np.rollaxis( np.array([np.abs(lamb - ff[0]) < ff[1] for ff in focus]), 0, lamb.ndim+1, ) indall = ind[..., None] & lambok[None, ...] if data2d is True: # Make sure there are at least deg + 2 different phi deltaphi = np.max(np.diff(knots_mult)) # Code ok with and without binning :-) if focus is False: fract = np.full((nspect, nbs), np.nan) for ii in range(nbs): iphi = ( (phi >= knots_mult[ii]) & (phi < knots_mult[ii+nknotsperbs-1]) ) fract[:, ii] = ( np.sum(np.sum(ind & iphi[None, ...], axis=-1), axis=-1) / np.sum(iphi) ) indbs = fract > valid_fraction else: fract = np.full((nspect, nbs, len(focus)), np.nan) for ii in range(nbs): iphi = ((phi >= knots_mult[ii]) & (phi < knots_mult[ii+nknotsperbs-1])) fract[:, ii, :] = ( np.sum(np.sum(indall & iphi[None, ..., None], axis=1), axis=1) / np.sum(np.sum(iphi[..., None] & lambok, axis=0), axis=0)) indbs = np.all(fract > valid_fraction, axis=2) indt = np.any(indbs, axis=1) dphi = deltaphi*(deg + indbs[:, deg:-deg].sum(axis=1)) else: # 1d spectra if focus is False: fract = ind.sum(axis=-1) / ind.shape[1] indt = fract > valid_fraction else: fract = np.sum(indall, axis=1) / lambok.sum(axis=0)[None, :] indt = np.all(fract > valid_fraction, axis=1) # Optional debug if focus is not False and False: indt_debug, ifocus = 40, 1 if data2d is True: indall2 = indall.astype(int) indall2[:, lambok] = 1 indall2[ind[..., None] & lambok[None, ...]] = 2 plt.figure() plt.imshow(indall2[indt_debug, :, :, ifocus].T, origin='lower') else: plt.figure() plt.plot(lamb[~indall[indt_debug, :, ifocus]], data[indt_debug, ~indall[indt_debug, :, ifocus]], '.k', lamb[indall[indt_debug, :, ifocus]], data[indt_debug, indall[indt_debug, :, ifocus]], '.r') plt.axvline(focus[ifocus, 0], ls='--', c='k') if not np.any(indt): msg = ( "\nThere is no valid time step with the provided constraints:\n" + "\t- valid_nsigma = {}\n".format(valid_nsigma) + "\t- valid_fraction = {}\n".format(valid_fraction) + "\t- focus = {}\n".format(focus) + "\t- fract = {}\n".format(fract) ) raise Exception(msg) # return dvalid = { 'indt': indt, 'dphi': dphi, 'indbs': indbs, 'ind': ind, 'focus': focus, 'valid_fraction': valid_fraction, 'valid_nsigma': valid_nsigma, } if return_fract is True: dvalid['fract'] = fract return dvalid ########################################################### ########################################################### # # dlines dict (lines vs domain) # ########################################################### ########################################################### def _checkformat_dlines(dlines=None, domain=None): if dlines is None: dlines = False if not isinstance(dlines, dict): msg = "Arg dlines must be a dict!" raise Exception(msg) lc = [ (k0, type(v0)) for k0, v0 in dlines.items() if not ( isinstance(k0, str) and isinstance(v0, dict) and 'lambda0' in v0.keys() and ( type(v0['lambda0']) in _LTYPES or ( isinstance(v0['lambda0'], np.ndarray) and v0['lambda0'].size == 1 ) ) ) ] if len(lc) > 0: lc = ["\t- {}: {}".format(*cc) for cc in lc] msg = ( "Arg dlines must be a dict of the form:\n" + "\t{'line0': {'lambda0': float},\n" + "\t 'line1': {'lambda0': float},\n" + "\t ...\n" + "\t 'lineN': {'lambda0': float}}\n" + " You provided:\n{}".format('\n'.join(lc)) ) raise Exception(msg) # Select relevant lines (keys, lamb) lines_keys = np.array([k0 for k0 in dlines.keys()]) lines_lamb = np.array([float(dlines[k0]['lambda0']) for k0 in lines_keys]) if domain not in [None, False]: ind = ( (lines_lamb >= domain['lamb']['minmax'][0]) & (lines_lamb <= domain['lamb']['minmax'][1]) ) lines_keys = lines_keys[ind] lines_lamb = lines_lamb[ind] inds = np.argsort(lines_lamb) lines_keys, lines_lamb = lines_keys[inds], lines_lamb[inds] nlines = lines_lamb.size dlines = {k0: dict(dlines[k0]) for k0 in lines_keys} return dlines, lines_keys, lines_lamb ########################################################### ########################################################### # # dinput dict (lines + spectral constraints) # ########################################################### ########################################################### def fit1d_dinput( dlines=None, dconstraints=None, dconstants=None, dprepare=None, data=None, lamb=None, mask=None, domain=None, pos=None, subset=None, same_spectrum=None, nspect=None, same_spectrum_dlamb=None, focus=None, valid_fraction=None, valid_nsigma=None, focus_half_width=None, valid_return_fract=None, dscales=None, dx0=None, dbounds=None, defconst=_DCONSTRAINTS, ): """ Check and format a dict of inputs to be fed to fit1d() This dict will contain all information relevant for solving the fit: - dlines: dict of lines (with 'lambda0': wavelength at rest) - lamb: vector of wavelength of the experimental spectrum - data: experimental spectrum, possibly 2d (time-varying) - dconstraints: dict of constraints on lines (amp, width, shift) - pos: bool, consider only positive data (False => replace <0 with nan) - domain: - mask: - subset: - same_spectrum: - focus: """ # ------------------------ # Check / format dprepare # ------------------------ if dprepare is None: dprepare = multigausfit1d_from_dlines_prepare( data=data, lamb=lamb, mask=mask, domain=domain, pos=pos, subset=subset, ) # ------------------------ # Check / format dlines # ------------------------ dlines, lines_keys, lines_lamb = _checkformat_dlines( dlines=dlines, domain=dprepare['domain'], ) nlines = lines_lamb.size # Check same_spectrum if same_spectrum is None: same_spectrum = _SAME_SPECTRUM if same_spectrum is True: if type(nspect) not in [int, np.int]: msg = "Please provide nspect if same_spectrum = True" raise Exception(msg) if same_spectrum_dlamb is None: same_spectrum_dlamb = min( 2*np.diff(dprepare['domain']['lamb']['minmax']), dprepare['domain']['lamb']['minmax'][0], ) # ------------------------ # Check / format dconstraints # ------------------------ dconstraints = _checkformat_dconstraints( dconstraints=dconstraints, defconst=defconst, ) dinput = {} # ------------------------ # Check / format double # ------------------------ _dconstraints_double(dinput, dconstraints, defconst=defconst) # ------------------------ # Check / format width, shift, amp (groups with possible ratio) # ------------------------ for k0 in ['amp', 'width', 'shift']: dinput[k0] = _width_shift_amp( dconstraints.get(k0, defconst[k0]), dconstants=dconstants, keys=lines_keys, nlines=nlines, dlines=dlines, k0=k0, ) # ------------------------ # add mz, symb, ION, keys, lamb # ------------------------ mz = np.array([dlines[k0].get('m', np.nan) for k0 in lines_keys]) symb = np.array([dlines[k0].get('symbol', k0) for k0 in lines_keys]) ion = np.array([dlines[k0].get('ion', '?') for k0 in lines_keys]) # ------------------------ # same_spectrum # ------------------------ if same_spectrum is True: keysadd = np.array([[kk+'_bis{:04.0f}'.format(ii) for kk in keys] for ii in range(1, nspect)]).ravel() lines_lamb = ( same_spectrum_dlamb*np.arange(0, nspect)[:, None] + lines_lamb[None, :] ) keys = np.r_[keys, keysadd] for k0 in _DORDER: # Add other lines to original group keyk = dinput[k0]['keys'] offset = np.tile(dinput[k0]['offset'], nspect) if k0 == 'shift': ind = np.tile(dinput[k0]['ind'], (1, nspect)) coefs = ( dinput[k0]['coefs'] * lines_lamb[0, :] / lines_lamb ).ravel() else: coefs = np.tile(dinput[k0]['coefs'], nspect) keysadd = np.array([ [kk+'_bis{:04.0f}'.format(ii) for kk in keyk] for ii in range(1, nspect) ]).ravel() ind = np.zeros((keyk.size*nspect, nlines*nspect)) for ii in range(nspect): i0, i1 = ii*keyk.size, (ii+1)*keyk.size j0, j1 = ii*nlines, (ii+1)*nlines ind[i0:i1, j0:j1] = dinput[k0]['ind'] keyk = np.r_[keyk, keysadd] dinput[k0]['keys'] = keyk dinput[k0]['ind'] = ind dinput[k0]['coefs'] = coefs dinput[k0]['offset'] = offset nlines *= nspect lines_lamb = lines_lamb.ravel() # update mz, symb, ion mz = np.tile(mz, nspect) symb = np.tile(symb, nspect) ion = np.tile(ion, nspect) # ------------------------ # add lines and properties # ------------------------ dinput['keys'] = lines_keys dinput['lines'] = lines_lamb dinput['nlines'] = nlines dinput['mz'] = mz dinput['symb'] = symb dinput['ion'] = ion dinput['same_spectrum'] = same_spectrum if same_spectrum is True: dinput['same_spectrum_nspect'] = nspect dinput['same_spectrum_dlamb'] = same_spectrum_dlamb else: dinput['same_spectrum_nspect'] = False dinput['same_spectrum_dlamb'] = False # ------------------------ # S/N threshold indices # ------------------------ dinput['valid'] = fit12d_dvalid( data=dprepare['data'], lamb=dprepare['lamb'], indok=dprepare['indok'], valid_nsigma=valid_nsigma, valid_fraction=valid_fraction, focus=focus, focus_half_width=focus_half_width, lines_keys=lines_keys, lines_lamb=lines_lamb, return_fract=valid_return_fract, ) # Update with dprepare dinput['dprepare'] = dict(dprepare) # Add dind dinput['dind'] = multigausfit1d_from_dlines_ind(dinput) # Add dscales, dx0 and dbounds dinput['dscales'] = fit12d_dscales(dscales=dscales, dinput=dinput) dinput['dbounds'] = fit12d_dbounds(dbounds=dbounds, dinput=dinput) dinput['dx0'] = fit12d_dx0(dx0=dx0, dinput=dinput) dinput['dconstants'] = fit12d_dconstants( dconstants=dconstants, dinput=dinput, ) return dinput def fit2d_dinput( dlines=None, dconstraints=None, dconstants=None, dprepare=None, deg=None, nbsplines=None, knots=None, data=None, lamb=None, phi=None, mask=None, domain=None, pos=None, subset=None, binning=None, cent_fraction=None, focus=None, valid_fraction=None, valid_nsigma=None, focus_half_width=None, valid_return_fract=None, dscales=None, dx0=None, dbounds=None, nxi=None, nxj=None, lphi=None, lphi_tol=None, defconst=_DCONSTRAINTS, ): """ Check and format a dict of inputs to be fed to fit2d() This dict will contain all information relevant for solving the fit: - dlines: dict of lines (with 'lambda0': wavelength at rest) - lamb: vector of wavelength of the experimental spectrum - data: experimental spectrum, possibly 2d (time-varying) - dconstraints: dict of constraints on lines (amp, width, shift) - pos: bool, consider only positive data (False => replace <0 with nan) - domain: - mask: - subset: - same_spectrum: - focus: """ # ------------------------ # Check / format dprepare # ------------------------ if dprepare is None: dprepare = multigausfit2d_from_dlines_prepare( data=data, lamb=lamb, phi=phi, mask=mask, domain=domain, pos=pos, subset=subset, binning=binning, nbsplines=nbsplines, deg=deg, nxi=nxi, nxj=nxj, lphi=None, lphi_tol=None, ) # ------------------------ # Check / format dlines # ------------------------ dlines, lines_keys, lines_lamb = _checkformat_dlines( dlines=dlines, domain=dprepare['domain'], ) nlines = lines_lamb.size # ------------------------ # Check / format dconstraints # ------------------------ dconstraints = _checkformat_dconstraints( dconstraints=dconstraints, defconst=defconst, ) dinput = {} # ------------------------ # Check / format symmetry # ------------------------ _dconstraints_symmetry( dinput, dprepare=dprepare, symmetry=dconstraints.get('symmetry'), cent_fraction=cent_fraction, defconst=defconst, ) # ------------------------ # Check / format double (spectral line doubling) # ------------------------ _dconstraints_double(dinput, dconstraints, defconst=defconst) # ------------------------ # Check / format width, shift, amp (groups with posssible ratio) # ------------------------ for k0 in ['amp', 'width', 'shift']: dinput[k0] = _width_shift_amp( dconstraints.get(k0, defconst[k0]), dconstants=dconstants, keys=lines_keys, nlines=nlines, dlines=dlines, k0=k0, ) # ------------------------ # add mz, symb, ION, keys, lamb # ------------------------ mz = np.array([dlines[k0].get('m', np.nan) for k0 in lines_keys]) symb = np.array([dlines[k0].get('symbol', k0) for k0 in lines_keys]) ion = np.array([dlines[k0].get('ION', '?') for k0 in lines_keys]) # ------------------------ # add lines and properties # ------------------------ dinput['keys'] = lines_keys dinput['lines'] = lines_lamb dinput['nlines'] = nlines dinput['mz'] = mz dinput['symb'] = symb dinput['ion'] = ion # ------------------------ # Get dict of bsplines # ------------------------ dinput.update(multigausfit2d_from_dlines_dbsplines( knots=knots, deg=deg, nbsplines=nbsplines, phimin=dprepare['domain']['phi']['minmax'][0], phimax=dprepare['domain']['phi']['minmax'][1], symmetryaxis=dinput.get('symmetry_axis') )) # ------------------------ # S/N threshold indices # ------------------------ dinput['valid'] = fit12d_dvalid( data=dprepare['data'], lamb=dprepare['lamb'], phi=dprepare['phi'], binning=dprepare['binning'], indok=dprepare['indok'], valid_nsigma=valid_nsigma, valid_fraction=valid_fraction, focus=focus, focus_half_width=focus_half_width, lines_keys=lines_keys, lines_lamb=lines_lamb, nbs=dinput['nbs'], deg=dinput['deg'], knots_mult=dinput['knots_mult'], nknotsperbs=dinput['nknotsperbs'], return_fract=valid_return_fract, ) # Update with dprepare dinput['dprepare'] = dict(dprepare) # Add dind dinput['dind'] = multigausfit2d_from_dlines_ind(dinput) # Add dscales, dx0 and dbounds dinput['dscales'] = fit12d_dscales(dscales=dscales, dinput=dinput) dinput['dbounds'] = fit12d_dbounds(dbounds=dbounds, dinput=dinput) dinput['dx0'] = fit12d_dx0(dx0=dx0, dinput=dinput) dinput['dconstants'] = fit12d_dconstants( dconstants=dconstants, dinput=dinput, ) return dinput ########################################################### ########################################################### # # dind dict (indices storing for fast access) # ########################################################### ########################################################### def multigausfit1d_from_dlines_ind(dinput=None): """ Return the indices of quantities in x to compute y """ # indices # General shape: [bck, amp, widths, shifts] # If double [..., double_shift, double_ratio] # Except for bck, all indices should render nlines (2*nlines if double) dind = { 'bck_amp': {'x': np.r_[0]}, 'bck_rate': {'x': np.r_[1]}, 'dshift': None, 'dratio': None, } nn = dind['bck_amp']['x'].size + dind['bck_rate']['x'].size inddratio, inddshift = None, None for k0 in _DORDER: ind = dinput[k0]['ind'] lnl =
np.sum(ind, axis=1)
numpy.sum
#!/usr/bin/env python import numpy as np import pandas as pd from matplotlib import rcParams #rcParams['font.family'] = ['Nimbus Sans L'] import matplotlib.pyplot as plt import glob import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression import tushare as ts import datetime import argparse import math import ta import os, sys, random import smtplib import imghdr from email.message import EmailMessage from email.mime.multipart import MIMEMultipart from email.mime.application import MIMEApplication from email.mime.text import MIMEText import subprocess import mplfinance as mpf stock_index = ['000001.SH'] code2name = dict() predict_days = 5 api = ts.pro_api(token='<PASSWORD> t<PASSWORD> token') trading_note = """ 本邮件由程序自动发送,勿回复,谢谢! ### 结论 经过这段时间的测试,选出以下指标,其中close为收盘价 - rsi2: 即两日RSI,2周期RSI是一个比较敏感的指标,对短期阶段性的买点判断比较准确,但是对买点判断不准确,只依靠2周期RSI容易卖飞,遇到差行情很容易回撤 - boll_wband20: 20周期的bollinger bands,对于短期趋势的判定很准确,当价格线上穿boll_wband20并且与boll_wband20同趋势的时候,是很强的上升势 - vwap30: 30周期的volume weighted average price,当价格线上穿vwap30并且与vwap30同趋势的时候,是很强的上升势 - kc_wband15: 15周期的keltner channel,当价格线上穿kc_wband15并且与kc_wband15同趋势的时候,是很强的上升势 - macd: 快线5周期,慢线15周期,信号线7周期,当macd线上穿信号线的时候是上升趋势,但是有一定的延时性 - adx15: 15周期average directional movement index, 当+DMI > -DMI的时候是上升势 - trix2: 2周期trix,当trix2上穿价格线并且与价格线同趋势的时候,是很强的上升势 - mi: mass index,当价格线上穿mi并且与mi同趋势的时候,是很强的上升势 - cci5: 5周期的commodity channel index,非常敏感,当cci5 > close并且没有很明显的下降趋势的时候,是上升势 - kst: kst oscillator, 当kst上穿信号线并且同趋势的时候,是很强的上升势,有误判情况 - psar: parabolic stop and reverse,每次价格线上穿psar都是买点 - tsi: true strength index,tsi上穿价格线是很强的上升势 - wr15: 15周期williams percent range,当wr15上穿价格线并持续保持在价格线之上,是上升势 - roc15: 15周期rate of change,当roc15上穿价格线并保持在价格线之上,是上升势 - kama: kaufman's adaptive moving average, 当价格线上穿kama,是上升势 """ def check_stock_data(name): files = glob.glob(name) return (len(files) != 0) def get_stock_data(name, weekly): data = pd.DataFrame() end_date = api.daily().iloc[0]['trade_date'] while True: if weekly: tmp = api.weekly(ts_code=name, end_date=end_date) else: tmp = ts.pro_bar(ts_code=name, api=api, end_date=end_date, adj='qfq') print("get data length: %d, end_date: %s last trade day: %s" % (len(tmp), end_date, tmp.iloc[0].trade_date)) end_date = datetime.datetime.strptime(str(tmp.iloc[-1].trade_date), '%Y%m%d') delta = datetime.timedelta(days=1) end_date = (end_date - delta).strftime("%Y%m%d") data = data.append(tmp) if len(tmp) < 5000: break return data def get_index_data(name, weekly): today = datetime.date.today().strftime("%Y%m%d") data = api.index_daily(ts_code=name) if str(data.iloc[0].trade_date) != today: print("today's index data is not ready, last trading day is %s" % data.iloc[0].trade_date) return data def get_stock_candidates(): today = datetime.date.today().strftime("%Y%m%d") last_trading_day = api.daily().iloc[0]['trade_date'] if today != last_trading_day: print("today's stock data is not ready, get stock candidates of %s" % last_trading_day) df = api.daily_basic(trade_date=last_trading_day) # 选取量在20w以上的, 价格在5-50之间的 candidates = df[(df.float_share * df.turnover_rate_f > 200000.) & (df.close > 5.) & (df.close < 50.)]["ts_code"].tolist() return candidates def get_code_name_map(): global code2name global api df = api.stock_basic() for code, name in zip(df['ts_code'].to_list(), df['name'].to_list()): code2name[code] = name df = api.index_basic() for code, name in zip(df['ts_code'].to_list(), df['name'].to_list()): code2name[code] = name def calculate_index(days, K): global code2name # days 交易日,最近的在前 last_day = api.daily().iloc[0]['trade_date'] print('last trade day: %s' % last_day) open_cal = api.trade_cal(is_open='1', end_date=last_day)['cal_date'].to_list()[-1::-1][:days+20] data = pd.DataFrame() trade_date_ = [] open_ = [] high_ = [] low_ = [] close_ = [] vol_ = [] amount_ = [] top_K = [] r_top_K = [] w_top_K = [] for day in open_cal: df = api.daily(trade_date=day) df2 = api.daily_basic(trade_date=day) df = df[df.ts_code.isin(df2.ts_code.tolist())] df = df.sort_values('ts_code').reset_index() df2 = df2.sort_values('ts_code').reset_index() df['circ_mv'] = df2['circ_mv'] amount = df.circ_mv.sum() df['weight'] = df['circ_mv'] / amount * 100 df['open'] = df['open'] * df['weight'] df['high'] = df['high'] * df['weight'] df['low'] = df['low'] * df['weight'] df['close'] = df['close'] * df['weight'] trade_date_.append(day) open_.append(df.open.sum()) high_.append(df.high.sum()) low_.append(df.low.sum()) close_.append(df.close.sum()) vol_.append(df.vol.sum() / 10000.) amount_.append(df.amount.sum() / 100000.) cand = df.sort_values('weight', ascending=False).iloc[:K][['ts_code', 'weight']].to_numpy() top_ = ["%s%+.3f%%" % (code2name[item[0]], item[1]) for item in cand] w_top_K.append(top_) cand = df.sort_values('close', ascending=False).iloc[:K][['ts_code', 'pct_chg']].to_numpy() top_ = ["%s%+.2f%%" % (code2name[item[0]], item[1]) for item in cand] top_K.append(top_) cand = df.sort_values('close', ascending=True)[['ts_code', 'pct_chg']].to_numpy() temp = [] count = 0 for item in cand: if item[0] in code2name: temp.append("%s%+.2f%%" %(code2name[item[0]], item[1])) count += 1 if count >= K: break r_top_K.append(temp) #time.sleep(0.5) data['Date'] = trade_date_[-1::-1] data['Open'] = open_[-1::-1] data['High'] = high_[-1::-1] data['Low'] = low_[-1::-1] data['Close'] = close_[-1::-1] data['Volume'] = vol_[-1::-1] data['Amount'] = amount_[-1::-1] bb = ta.volatility.BollingerBands(close=data['Close'], n=20, ndev=2) data['BollHBand'] = bb.bollinger_hband() data['BollLBand'] = bb.bollinger_lband() data['BollMAvg'] = bb.bollinger_mavg() return data.iloc[20:], (top_K, r_top_K, w_top_K) def plot_index(df, top_K, savefile): df['Date'] = df['Date'].astype('datetime64[ns]') df = df.set_index('Date') mc = mpf.make_marketcolors(up='r', down='g', ohlc='white') style = mpf.make_mpf_style(base_mpf_style='nightclouds', marketcolors=mc) wconfig = dict() apdict = mpf.make_addplot(df[['BollHBand', 'BollLBand', 'BollMAvg']]) mpf.plot(df, type='ohlc', volume=True, style=style, title='Stock A Index', return_width_config=wconfig, ylabel='Index', figscale=1.5, tight_layout=True, addplot=apdict, scale_width_adjustment=dict(lines=0.7)) print(wconfig) plt.savefig(savefile) plt.close('all') today = datetime.date.today().strftime("%Y%m%d") trade_date = api.trade_cal(end_date=today, is_open='1') print('trade date: %s' % trade_date.iloc[-1]['cal_date']) print('open: %.2f' % df.iloc[-1]['Open']) print('high: %.2f' % df.iloc[-1]['High']) print('low: %.2f' % df.iloc[-1]['Low']) print('close: %.2f' % df.iloc[-1]['Close']) print('volume: %.2f万手' % df.iloc[-1]['Volume']) print('amount: %.2f亿' % df.iloc[-1]['Amount']) print('percent change: %+.2f%%' % ((df.iloc[-1]['Close'] - df.iloc[-2]['Close']) / df.iloc[-2]['Close'] * 100.)) print("权重占比前十: %s" % ' '.join(top_K[2][0])) print('指数占比前十: %s' % ' '.join(top_K[0][0])) print('指数占比倒数前十: %s' % ' '.join(top_K[1][0])) def add_preday_info(data): new_data = data.reset_index(drop=True) extend = pd.DataFrame() pre_open = [] pre_high = [] pre_low = [] pre_change = [] pre_pct_chg = [] pre_vol = [] pre_amount = [] for idx in range(len(new_data) - 1): pre_open.append(new_data.iloc[idx + 1].open) pre_high.append(new_data.iloc[idx + 1].high) pre_low.append(new_data.iloc[idx + 1].low) pre_change.append(new_data.iloc[idx + 1].change) pre_pct_chg.append(new_data.iloc[idx + 1].pct_chg) pre_vol.append(new_data.iloc[idx + 1].vol) pre_amount.append(new_data.iloc[idx + 1].amount) pre_open.append(0.) pre_high.append(0.) pre_low.append(0.) pre_change.append(0.) pre_pct_chg.append(0.) pre_vol.append(0.) pre_amount.append(0.) new_data['pre_open'] = pre_open new_data['pre_high'] = pre_high new_data['pre_low'] = pre_low new_data['pre_change'] = pre_change new_data['pre_pct_chg'] = pre_pct_chg new_data['pre_vol'] = pre_vol new_data['pre_amount'] = pre_amount # fill predicting target days = [[] for i in range(predict_days)] for idx in range(predict_days - 1, len(new_data)): for i in range(len(days)): days[i].append(new_data.iloc[idx - i].pct_chg) # fill invalid days with 0. for i in range(len(days)): for idx in range(predict_days - 1): days[i].insert(0, 0.) # extend pandas frame for i in range(len(days)): col = "pct_chg%d" % (i + 1) new_data[col] = days[i] return new_data def add_ma_info(data): new_data = data.reset_index(drop=True) days = [5, 10, 15, 20, 30, 50, 100, 200] # add simple ma info cols = ["sma%d" % d for d in days] for day, col in zip(days, cols): new_data[col] = ta.utils.sma(new_data.iloc[-1::-1].close, periods=day)[-1::-1] temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp # add exponential ma info # scaling = s / (1 + d), s is smoothing, typically 2, d is ma days # ema(t) = v * scaling + ema(t - 1) * (1 - scaling), v is time(t)'s price cols = ["ema%d" % d for d in days] for day, col in zip(days, cols): new_data[col] = ta.utils.ema(new_data.iloc[-1::-1].close, periods=day)[-1::-1] temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_rsi_info(data): new_data = data.reset_index(drop=True) ''' RSI = 100 - 100 / (1 + RS) RS = average up / average down average up = sum(up moves) / N average downn = sum(down moves) / N ''' # calculate ups and downs N = [2,3,4,5,6] cols = ["rsi%d" % n for n in N] for n, col in zip(N, cols): new_data[col] = ta.momentum.rsi(new_data.iloc[-1::-1].close, n=n)[-1::-1] temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_crossover_info(data): # this project is for short-swing trading, so I just # track 5-day period ema crossover with 10-day, 15-day, 20-day, # 30-day, 50-day, 100-day, 200-day, # -1 for breakdowns, 0 for normal, 1 for breakouts new_data = data.reset_index(drop=True) tracking_day = 'ema5' cross_day = ['ema10', 'ema15', 'ema20', 'ema30', 'ema50', 'ema100', 'ema200'] cross_cols = ['cross5-10', 'cross5-15', 'cross5-20', 'cross5-30', 'cross5-50', 'cross5-100', 'cross5-200'] for ema, cross_col in zip(cross_day, cross_cols): prestatus = 0 if new_data.iloc[-2][tracking_day] >= new_data.iloc[-2][ema]: prestatus = 1 else: prestatus = -1 crossover = [] crossover.append(prestatus) for idx in range(len(new_data) - 2, -1, -1): if prestatus == -1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(1) prestatus = 1 else: crossover.append(0) elif prestatus == 1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(0) else: crossover.append(-1) prestatus = -1 new_data[cross_col] = crossover[-1::-1] precross_cols = ['pre_cross5-10', 'pre_cross5-15', 'pre_cross5-20', 'pre_cross5-30', 'pre_cross5-50', 'pre_cross5-100', 'pre_cross5-200'] for cross_col, precross_col in zip(cross_cols, precross_cols): vals = new_data.iloc[1:][cross_col].tolist() vals.append(0) new_data[precross_col] = vals return new_data def add_long_crossover_info(data): # add 50-day 100-day crossover info, I think # it is not important for short-swing trading, # but sometimes it happens, just add this feature new_data = data.reset_index(drop=True) tracking_day = 'ema50' cross_day = ['ema100'] cross_cols = ['longcross'] for ema, cross_col in zip(cross_day, cross_cols): prestatus = 0 if new_data.iloc[-2][tracking_day] >= new_data.iloc[-2][ema]: prestatus = 1 else: prestatus = -1 crossover = [] crossover.append(prestatus) for idx in range(len(new_data) - 2, -1, -1): if prestatus == -1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(1) prestatus = 1 else: crossover.append(0) elif prestatus == 1: if new_data.iloc[idx][tracking_day] >= new_data.iloc[idx][ema]: crossover.append(0) else: crossover.append(-1) prestatus = -1 new_data[cross_col] = crossover[-1::-1] precross_cols = ['pre_longcross'] for cross_col, precross_col in zip(cross_cols, precross_cols): vals = new_data.iloc[1:][cross_col].tolist() vals.append(0) new_data[precross_col] = vals return new_data def add_bollinger_band_info(data): new_data = data.reset_index(drop=True) #N = [20, 14, 12, 10, 5, 4, 3, 2] N = [20, 10] for n in N: bb = ta.volatility.BollingerBands(close=new_data.iloc[-1::-1].close, n=n, ndev=2) col = 'boll_hband%d' % n new_data[col] = bb.bollinger_hband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_lband%d' % n new_data[col] = bb.bollinger_lband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_hband_ind%d' % n new_data[col] = bb.bollinger_hband_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_lband_ind%d' % n new_data[col] = bb.bollinger_lband_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_mavg%d' % n new_data[col] = bb.bollinger_mavg() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_pband%d' % n new_data[col] = bb.bollinger_pband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp col = 'boll_wband%d' % n new_data[col] = bb.bollinger_wband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data['pre_%s' % col] = temp return new_data def add_obv_info(data): new_data = data.reset_index(drop=True) obv = ta.volume.OnBalanceVolumeIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) new_data['obv'] = obv.on_balance_volume() temp = new_data.iloc[1:]['obv'].tolist() temp.append(np.nan) new_data['pre_obv'] = temp return new_data def add_adi_info(data): new_data = data.reset_index(drop=True) adi = ta.volume.AccDistIndexIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) new_data['adi'] = adi.acc_dist_index() temp = new_data.iloc[1:]['adi'].tolist() temp.append(np.nan) new_data['pre_adi'] = temp return new_data def add_cmf_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: cmf = ta.volume.ChaikinMoneyFlowIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol, n=day) col = "cmf%d" % day new_data[col] = cmf.chaikin_money_flow() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_fi_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: fi = ta.volume.ForceIndexIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol, n=day) col = "fi%d" % day new_data[col] = fi.force_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_eom_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: eom = ta.volume.EaseOfMovementIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, volume=new_data.iloc[-1::-1].vol, n=day) col = "eom%d" % day new_data[col] = eom.ease_of_movement() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "sma_eom%d" % day new_data[col] = eom.sma_ease_of_movement() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_vpt_info(data): new_data = data.reset_index(drop=True) vpt = ta.volume.VolumePriceTrendIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) col = "vpt" new_data[col] = vpt.volume_price_trend() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_nvi_info(data): new_data = data.reset_index(drop=True) nvi = ta.volume.NegativeVolumeIndexIndicator(close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol) col = "nvi" new_data[col] = nvi.negative_volume_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_vwap_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: vwap = ta.volume.VolumeWeightedAveragePrice(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, volume=new_data.iloc[-1::-1].vol, close=new_data.iloc[-1::-1].close, n=day) col = "vwap%d" % day new_data[col] = vwap.volume_weighted_average_price() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_atr_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30,14] for day in days: atr = ta.volatility.AverageTrueRange(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "atr%d" % day new_data[col] = atr.average_true_range() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_kc_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: kc = ta.volatility.KeltnerChannel(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "kc_mband%d" % day new_data[col] = kc.keltner_channel_mband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kc_pband%d" % day new_data[col] = kc.keltner_channel_pband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kc_wband%d" % day new_data[col] = kc.keltner_channel_wband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dc_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: dc = ta.volatility.DonchianChannel(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "dc_mband%d" % day new_data[col] = dc.donchian_channel_mband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "dc_pband%d" % day new_data[col] = dc.donchian_channel_pband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "dc_wband%d" % day new_data[col] = dc.donchian_channel_wband() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_macd_info(data): new_data = data.reset_index(drop=True) macd = ta.trend.MACD(close=new_data.iloc[-1::-1].close, n_slow=15, n_fast=5, n_sign=7) col = "macd" new_data[col] = macd.macd() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "macd_diff" new_data[col] = macd.macd_diff() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "macd_signal" new_data[col] = macd.macd_signal() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_adx_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30,14,10] for day in days: adx = ta.trend.ADXIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "adx%d" % day new_data[col] = adx.adx() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "adx_neg%d" % day new_data[col] = adx.adx_neg() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "adx_pos%d" % day new_data[col] = adx.adx_pos() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_vi_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: vi = ta.trend.VortexIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "vi_diff%d" % day new_data[col] = vi.vortex_indicator_diff() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "vi_neg%d" % day new_data[col] = vi.vortex_indicator_neg() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "vi_pos%d" % day new_data[col] = vi.vortex_indicator_pos() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_trix_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: trix = ta.trend.TRIXIndicator(close=new_data.iloc[-1::-1].close, n=day) col = "trix%d" % day new_data[col] = trix.trix() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_mi_info(data): new_data = data.reset_index(drop=True) mi = ta.trend.MassIndex(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low) col = "mi" new_data[col] = mi.mass_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_cci_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: cci = ta.trend.CCIIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "cci%d" % day new_data[col] = cci.cci() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dpo_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: dpo = ta.trend.DPOIndicator(close=new_data.iloc[-1::-1].close, n=day) col = "dpo%d" % day new_data[col] = dpo.dpo() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_kst_info(data): new_data = data.reset_index(drop=True) kst = ta.trend.KSTIndicator(close=new_data.iloc[-1::-1].close) col = "kst" new_data[col] = kst.kst() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kst_diff" new_data[col] = kst.kst_diff() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "kst_sig" new_data[col] = kst.kst_sig() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_ichimoku_info(data): new_data = data.reset_index(drop=True) ichimoku = ta.trend.IchimokuIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low) col = "ichimoku_a" new_data[col] = ichimoku.ichimoku_a() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "ichimoku_b" new_data[col] = ichimoku.ichimoku_b() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "ichimoku_base" new_data[col] = ichimoku.ichimoku_base_line() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "ichimoku_conv" new_data[col] = ichimoku.ichimoku_conversion_line() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_psar_info(data): new_data = data.reset_index(drop=True) psar = ta.trend.PSARIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close) col = "psar" new_data[col] = psar.psar() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_down" new_data[col] = psar.psar_down() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_down_idc" new_data[col] = psar.psar_down_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_up" new_data[col] = psar.psar_up() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "psar_up_idc" new_data[col] = psar.psar_up_indicator() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_tsi_info(data): new_data = data.reset_index(drop=True) tsi = ta.momentum.TSIIndicator(close=new_data.iloc[-1::-1].close) col = "tsi" new_data[col] = tsi.tsi() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_uo_info(data): new_data = data.reset_index(drop=True) uo = ta.momentum.UltimateOscillator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close) col = "uo" new_data[col] = uo.uo() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_so_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: so = ta.momentum.StochasticOscillator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, n=day) col = "stoch%d" % day new_data[col] = so.stoch() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp col = "stoch_signal%d" % day new_data[col] = so.stoch_signal() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_wr_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: wr = ta.momentum.WilliamsRIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, lbp=day) col = "wr%d" % day new_data[col] = wr.wr() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_ao_info(data): new_data = data.reset_index(drop=True) ao = ta.momentum.AwesomeOscillatorIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low) col = "ao" new_data[col] = ao.ao() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_kama_info(data): new_data = data.reset_index(drop=True) kama = ta.momentum.KAMAIndicator(close=new_data.iloc[-1::-1].close) col = "kama" new_data[col] = kama.kama() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_roc_info(data): new_data = data.reset_index(drop=True) days = [2,5,10,15,20,30] for day in days: roc = ta.momentum.ROCIndicator(close=new_data.iloc[-1::-1].close, n=day) col = "roc%d" % day new_data[col] = roc.roc() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dr_info(data): new_data = data.reset_index(drop=True) dr = ta.others.DailyReturnIndicator(close=new_data.iloc[-1::-1].close) col = "dr" new_data[col] = dr.daily_return() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_dlr_info(data): new_data = data.reset_index(drop=True) dlr = ta.others.DailyLogReturnIndicator(close=new_data.iloc[-1::-1].close) col = "dlr" new_data[col] = dlr.daily_log_return() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_cr_info(data): new_data = data.reset_index(drop=True) cr = ta.others.CumulativeReturnIndicator(close=new_data.iloc[-1::-1].close) col = "cr" new_data[col] = cr.cumulative_return() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data def add_mfi_info(data): new_data = data.reset_index(drop=True) mfi = ta.volume.MFIIndicator(high=new_data.iloc[-1::-1].high, low=new_data.iloc[-1::-1].low, close=new_data.iloc[-1::-1].close, volume=new_data.iloc[-1::-1].vol, n=5) col = "mfi" new_data[col] = mfi.money_flow_index() temp = new_data.iloc[1:][col].tolist() temp.append(np.nan) new_data["pre_%s" % col] = temp return new_data # support and resistance def add_sr_info(data): new_data = data.reset_index(drop=True) v = new_data['vol'].to_numpy() p = new_data['close'].to_numpy() h = new_data['high'].to_numpy() l = new_data['low'].to_numpy() avg = (p + h + l) / 3. sr = [v * p for v, p in zip(v, avg)] new_data['sup_res'] = sr boll = ta.volatility.BollingerBands(close=new_data.iloc[-1::-1]['sup_res']) new_data['sup_res_h'] = boll.bollinger_hband() new_data['sup_res_l'] = boll.bollinger_lband() new_data['sup_res_mavg'] = boll.bollinger_mavg() new_data['sup_res_p'] = boll.bollinger_pband() return new_data def add_features(data): new_data = data.reset_index(drop=True) # previous day info #new_data = add_preday_info(new_data) # moving average info new_data = add_ma_info(new_data) # rsi info new_data = add_rsi_info(new_data) # crossover of moving average #new_data = add_crossover_info(new_data) # long crossover of moving average #new_data = add_long_crossover_info(new_data) # bollinger bands new_data = add_bollinger_band_info(new_data) # on-balance volume #new_data = add_obv_info(new_data) # accumulation/distribution index #new_data = add_adi_info(new_data) # chaikin money flow #new_data = add_cmf_info(new_data) # force index #new_data = add_fi_info(new_data) # ease of movement #new_data = add_eom_info(new_data) # volume price trend #new_data = add_vpt_info(new_data) # negative volume index #new_data = add_nvi_info(new_data) # volume weighted average price #new_data = add_vwap_info(new_data) # average true range #new_data = add_atr_info(new_data) # keltner channel #new_data = add_kc_info(new_data) # donchian channel #new_data = add_dc_info(new_data) # moving average convergence divergence #new_data = add_macd_info(new_data) # average directional movement index new_data = add_adx_info(new_data) # vortex indicator #new_data = add_vi_info(new_data) # trix indicator #new_data = add_trix_info(new_data) # mass index #new_data = add_mi_info(new_data) # commodity channel index #new_data = add_cci_info(new_data) # detrended price oscillator #new_data = add_dpo_info(new_data) # kst oscillator #new_data = add_kst_info(new_data) # ichimoku kinko hyo #new_data = add_ichimoku_info(new_data) # parabolic stop and reverse new_data = add_psar_info(new_data) # true strength index #new_data = add_tsi_info(new_data) # ultimate oscillator #new_data = add_uo_info(new_data) # stochastic oscillator #new_data = add_so_info(new_data) # williams %R #new_data = add_wr_info(new_data) # awesome oscillator #new_data = add_ao_info(new_data) # kaufman's adaptive moving average #new_data = add_kama_info(new_data) # rate of change #new_data = add_roc_info(new_data) # daily return #new_data = add_dr_info(new_data) # daily log return #new_data = add_dlr_info(new_data) # cumulative return #new_data = add_cr_info(new_data) # money flow index #new_data = add_mfi_info(new_data) # support and resistance new_data = add_sr_info(new_data) return new_data def plot_data(data, days, close, cols, filename, stock): x = [i for i in range(days)] count = 0 plt.figure() fig, ax = plt.subplots(len(cols), figsize=[6.4 * 3, 4 * len(cols)]) if not isinstance(ax, np.ndarray): ax = [ax] for col in cols: if 'ema' in col or 'boll_band' in col or 'pct_chg' in col: vals2 = data.iloc[0:days].iloc[-1::-1][close].to_numpy() vals3 = data.iloc[0:days].iloc[-1::-1]['ema5'].to_numpy() sns.lineplot(x=x, y=vals3, ax=ax[count]) sns.lineplot(x=x, y=vals2, ax=ax[count]) elif 'vol' in col: vals = data.iloc[0:days].iloc[-1::-1]['vol'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) elif 'gap' in col: vals2 = data.iloc[0:days].iloc[-1::-1][close].to_numpy() vals2 = StandardScaler().fit_transform(vals2.reshape(-1, 1)).flatten() sns.lineplot(x=x, y=vals2, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['vol'].to_numpy() vals = StandardScaler().fit_transform(vals.reshape(-1, 1)).flatten() sns.lineplot(x=x, y=vals, ax=ax[count]) max_ = max([np.amax(vals2), np.amax(vals)]) min_ = min([np.amin(vals2), np.amin(vals)]) elif 'boll_pband' in col or 'adx' in col or 'sup_res' in col: vals1 = data.iloc[0:days].iloc[-1::-1][col].to_numpy() max_ = np.amax(vals1) min_ = np.amin(vals1) sns.lineplot(x=x, y=vals1, ax=ax[count]) else: vals1 = data.iloc[0:days].iloc[-1::-1][col].to_numpy() max_ = np.amax(vals1) min_ = np.amin(vals1) vals2 = data.iloc[0:days].iloc[-1::-1][close].to_numpy() vals3 = data.iloc[0:days].iloc[-1::-1]['ema5'].to_numpy() sns.lineplot(x=x, y=vals1, ax=ax[count]) sns.lineplot(x=x, y=vals2, ax=ax[count]) sns.lineplot(x=x, y=vals3, ax=ax[count]) if 'cmf' in col: vals = data.iloc[0:days].iloc[-1::-1]['adi'].to_numpy() sns.lineplot(x=x, y=StandardScaler().fit_transform(vals.reshape(-1,1)).flatten(), ax=ax[count]) ax[count].legend([col, close, 'ema5', 'adi'], loc='upper left') elif 'macd' in col: vals = data.iloc[0:days].iloc[-1::-1]['macd_signal'].to_numpy() sns.lineplot(x=x, y=StandardScaler().fit_transform(vals.reshape(-1,1)).flatten(), ax=ax[count]) ax[count].legend([col, close, 'ema5', 'macd_signal'], loc='upper left') elif 'adx' in col: day = col.replace('adx', '') pos_ = data.iloc[0:days].iloc[-1::-1]['adx_pos%s' % day].to_numpy() max_ = np.amax(pos_) sns.lineplot(x=x, y=pos_, ax=ax[count]) neg_ = data.iloc[0:days].iloc[-1::-1]['adx_neg%s' % day].to_numpy() min_ = np.amin(neg_) sns.lineplot(x=x, y=neg_, ax=ax[count]) # scatter plot y = [min_] for i in range(1, days): if pos_[i] > neg_[i] and pos_[i-1] < neg_[i-1]: y.append(max_) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) adx_ = data.iloc[0:days].iloc[-1::-1][col].to_numpy() adx_max = np.amax(adx_) adx_min = np.amin(adx_) adx_ = [(x - adx_min) / (adx_max - adx_min) for x in adx_] y = [] for i in range(days): if adx_[i] > 0.8: y.append(min_ + (max_ - min_) / 4. * 3) elif adx_[i] < 0.1: y.append(min_ + (max_ - min_) / 4. * 1) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend([col, '+DMI', '-DMI', 'buy', 'signal'], loc='upper left') elif 'vi_diff' in col: day = col.replace('vi_diff', '') pos_ = data.iloc[0:days].iloc[-1::-1]['vi_pos%s' % day].to_numpy() pos_ = StandardScaler().fit_transform(neg_.reshape(-1,1)).flatten() sns.lineplot(x=x, y=pos_, ax=ax[count]) neg_ = data.iloc[0:days].iloc[-1::-1]['vi_neg%s' % day].to_numpy() neg_ = StandardScaler().fit_transform(neg_.reshape(-1,1)).flatten() sns.lineplot(x=x, y=neg_, ax=ax[count]) ax[count].legend([col, close, 'ema5', '+VI', '-VI'], loc='upper left') elif 'kst' in col: vals = data.iloc[0:days].iloc[-1::-1]['kst_diff'].to_numpy() sns.lineplot(x=x, y=StandardScaler().fit_transform(vals.reshape(-1,1)).flatten(), ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['kst_sig'].to_numpy() sns.lineplot(x=x, y=StandardScaler().fit_transform(vals.reshape(-1,1)).flatten(), ax=ax[count]) ax[count].legend([col, close, 'ema5', 'kst_diff', 'kst_sig'], loc='upper left') elif 'stoch' in col: day = col.replace('stoch', '') vals = data.iloc[0:days].iloc[-1::-1]['stoch_signal%s' % day].to_numpy() sns.lineplot(x=x, y=StandardScaler().fit_transform(vals.reshape(-1,1)).flatten(), ax=ax[count]) ax[count].legend([col, close, 'ema5', 'stoch_signal'], loc='upper left') elif 'boll_wband' in col: day = col.replace('boll_wband', '') vals = data.iloc[0:days].iloc[-1::-1]['boll_mavg%s' % day].to_numpy() sns.lineplot(x=x, y=StandardScaler().fit_transform(vals.reshape(-1,1)).flatten(), ax=ax[count]) ax[count].legend([col, close, 'ema5', 'boll_mavg'], loc='upper left') elif 'boll_band' in col: day = col.replace('boll_band', '') vals = data.iloc[0:days].iloc[-1::-1]['boll_mavg%s' % day].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['boll_hband%s' % day].to_numpy() max_ = np.amax(vals) sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['boll_lband%s' % day].to_numpy() min_ = np.amin(vals) sns.lineplot(x=x, y=vals, ax=ax[count]) # gap close_ = data.iloc[0:days].iloc[-1::-1]['close'].to_numpy() high_ = data.iloc[0:days].iloc[-1::-1]['high'].to_numpy() low_ = data.iloc[0:days].iloc[-1::-1]['low'].to_numpy() # up gap y = [] for i in range(days): if (high_[i] - close_[i]) / (high_[i] - low_[i]) < 0.05: y.append(max_) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend(['ema5', close, 'boll_mavg', 'boll_hband', 'boll_lband', 'gap'], loc='upper left') elif 'sup_res' in col: vals = data.iloc[0:days].iloc[-1::-1]['sup_res_mavg'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['sup_res_h'].to_numpy() max_ = np.amax(vals) sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['sup_res_l'].to_numpy() min_ = np.amin(vals) sns.lineplot(x=x, y=vals, ax=ax[count]) pband = data.iloc[0:days].iloc[-1::-1]['sup_res_p'].to_numpy() y = [] for i in range(days): if pband[i] < 0.1: y.append(max_) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend([col, 'mavg', 'hband', 'lband', 'buy'], loc='upper left') elif 'boll_pband' in col: day = col.replace('boll_pband', '') vals = data.iloc[0:days].iloc[-1::-1]['boll_pband%s' % day].to_numpy() y = [] for i in range(days): if vals[i] > 0.8: y.append(max_) elif vals[i] < 0.1: y.append((max_ + min_) / 2.) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend([col, close, 'ema5', 'buy'], loc='upper left') elif 'rsi' in col: vals = data.iloc[0:days].iloc[-1::-1]['rsi2'].to_numpy() y = [] for v in vals: if v > 80.: y.append(max_) elif v < 10.: y.append((max_ + min_) / 2.) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend([col, close, 'ema5', 'buy'], loc='upper left') elif 'mfi' in col: vals = data.iloc[0:days].iloc[-1::-1]['mfi'].to_numpy() print("mfi:", vals) y = [] for v in vals: if v > 80.: y.append(1.) elif v < 20.: y.append(0.) else: y.append(-1.) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend([col, close, 'ema5', 'buy'], loc='upper left') elif 'ema' in col: vals = data.iloc[0:days].iloc[-1::-1]['ema10'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['ema15'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['ema20'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) vals = data.iloc[0:days].iloc[-1::-1]['ema30'].to_numpy() sns.lineplot(x=x, y=vals, ax=ax[count]) # scatter break through period = 10 ema_ = data.iloc[0:days].iloc[-1::-1]['ema%d' % period].to_numpy() close_ = data.iloc[0:days].iloc[-1::-1]['close'].to_numpy() min_ = np.amin(close_) max_ = np.amax(close_) y = [min_] * period for i in range(period, days): appended = False if close_[i] > ema_[i] and close_[i-1] < ema_[i-1]: y.append(max_) appended = True if not appended: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend(['ema5', close, 'ema10', 'ema15', 'ema20', 'ema30', 'break'], loc='upper left') elif 'vol' in col: vol_ = data.iloc[0:days].iloc[-1::-1]['vol'].to_numpy() close_ = data.iloc[0:days].iloc[-1::-1]['close'].to_numpy() max_ = np.amax(vol_) min_ = np.amin(vol_) y = [min_] for i in range(days - 1): if close_[i] > close_[i+1] and vol_[i] < vol_[i+1]: y.append(max_) elif close_[i] < close_[i+1] and vol_[i] > vol_[i+1]: y.append((max_ + min_) / 2.) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend(['vol', 'buy'], loc='upper left') elif 'test' in col: vol_ = data.iloc[0:days].iloc[-1::-1]['vol'].to_numpy() max_ = np.amax(vol_) min_ = np.amin(vol_) y = [] for i in range(days): if (vol_[i] - min_) / (max_ - min_) > 0.8: y.append(max_) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend(['vol', 'buy'], loc='upper left') elif 'gap' in col: close_ = data.iloc[0:days].iloc[-1::-1]['close'].to_numpy() high_ = data.iloc[0:days].iloc[-1::-1]['high'].to_numpy() low_ = data.iloc[0:days].iloc[-1::-1]['low'].to_numpy() # up gap y = [] for i in range(days): if (high_[i] - close_[i]) / (high_[i] - low_[i]) < 0.05: y.append(max_) elif (close_[i] - low_[i]) / (high_[i] - low_[i]) < 0.05: y.append((max_ + min_) / 2.) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend(['close', 'vol', 'gap'], loc='upper left') elif 'pct_chg' in col: close_ = data.iloc[0:days].iloc[-1::-1]['close'].to_numpy() change_ = data.iloc[0:days].iloc[-1::-1]['pct_chg'].to_numpy() high_ = data.iloc[0:days].iloc[-1::-1]['high'].to_numpy() low_ = data.iloc[0:days].iloc[-1::-1]['low'].to_numpy() open_ = data.iloc[0:days].iloc[-1::-1]['open'].to_numpy() max_ = np.amax(close_) min_ = np.amin(close_) y = [] for i in range(days): if change_[i] > 8.: y.append(max_) elif abs(close_[i] - open_[i]) / (high_[i] - low_[i]) < 0.05: y.append((max_ + min_) / 2.) else: y.append(min_) sns.scatterplot(x=x, y=y, ax=ax[count]) ax[count].legend(['ema5', 'close', 'change'], loc='upper left') else: ax[count].legend([col, close, 'ema5'], loc='upper left') count += 1 fig.suptitle(stock, fontsize=40, fontweight='normal') plt.savefig(filename) plt.close('all') def clear_directory(dirname): files = glob.glob("%s/*" % dirname) for fname in files: os.remove(fname) def send_mail(mail_to): clear_directory('mail') cmd = 'zip -r mail/stock_png.zip pattern' subprocess.call(cmd.split()) msg_from = "<EMAIL>" passwd = "<PASSWORD>" msg_to = mail_to print("sending mail to %s ..." % msg_to) today = datetime.datetime.today().strftime("%Y-%m-%d") msg = MIMEMultipart() msg['Subject'] = "%s stock trading plottings" % today msg['From'] = msg_from msg['To'] = msg_to msg.attach(MIMEText(trading_note)) files = glob.glob("mail/stock_png.*") for fname in files: with open(fname, 'rb') as fp: data = fp.read() msg.attach(MIMEApplication(data, Name='pattern.zip')) try: s = smtplib.SMTP('smtp.qq.com', 587) s.login(msg_from, passwd) s.sendmail(msg_from, msg_to, msg.as_string()) print("sending mail success!") except smtplib.SMTPException as e: print("sending failed:", e) finally: s.quit() ''' 过滤机制: 1. 五日内psar与close越来越近,close有上穿趋势 ''' def filter_by_strategy1(data, days): # normalize close temp_close = data.iloc[0:days].iloc[-1::-1]['close'].to_numpy() close = StandardScaler().fit_transform(temp_close.reshape(-1, 1)).flatten() flag = False temp = data.iloc[0:days].iloc[-1::-1]['psar'].to_numpy() psar = StandardScaler().fit_transform(temp.reshape(-1, 1)).flatten() close_ = close[-1:-6:-1] psar_ = psar[-1:-6:-1] # 1.当前psar大于close,五日psar与close递增取均值,当前差加上递增均值是否大于0,如果大于0,则可能上穿 if psar_[0] > close_[0]: dist = close_ - psar_ sum_ = 0. for i in range(4): sum_ += dist[i] - dist[i + 1] avg = sum_ / 4. if dist[0] + avg > 0.: flag = True # 2.当前psar小于close,是否是五日内发生的上穿现象,如果是,则趋势可能仍在 if psar_[0] < close_[0] and psar_[-1] > close_[-1]: flag = True if not flag: return False # 取五日adx_pos, adx_neg均值做为POS和NEG,取五日的距离,相比前一天差值变小大于1天,则 # 即使psar合格但是adx趋势还没有走到 temp_pos = data.iloc[0:days].iloc[-1::-1]['adx_pos14'].to_numpy() pos = StandardScaler().fit_transform(temp_pos.reshape(-1, 1)).flatten() pos = pos[-1::-1] temp_neg = data.iloc[0:days].iloc[-1::-1]['adx_neg14'].to_numpy() neg = StandardScaler().fit_transform(temp_neg.reshape(-1, 1)).flatten() neg = neg[-1::-1] # 取五日均值做平滑 new_pos = [] new_neg = [] for i in range(5): pos_ = np.sum(pos[i : i + 5]) / 5. neg_ = np.sum(neg[i : i + 5]) / 5. new_pos.append(pos_) new_neg.append(neg_) dist = np.array(new_pos) - np.array(new_neg) count = 0 for i in range(4): if dist[i] < dist[i + 1]: count += 1 if count > 1: return False return True ''' 1. 用2周期RSI过滤,看买点 ''' def filter_by_strategy2(data, days): flag = False rsi2 = data.iloc[0:days]['rsi2'].to_numpy() max_ = np.amax(rsi2) min_ = np.amin(rsi2) if (data.iloc[0]['rsi2'] - min_) / (max_ - min_) < 0.1: flag = True if not flag: return flag return True ''' 1. 取15日vwap 做整体趋势控制,再考虑kama和psar上穿情况 ''' def filter_by_strategy3(data, days): # filter price < 5.0. if data.iloc[0]['close'] < 5.: return False # filter volume < 200000. if data.iloc[0]['vol'] < 200000.: return False # 1. boll_wband < 0.3 boll_wd = data.iloc[0:days]['boll_wband20'].to_numpy() boll_max = np.amax(boll_wd) boll_min = np.amin(boll_wd) if (boll_wd[0] - boll_min) / (boll_max - boll_min) > 0.08: return False # normalize close temp_close = data.iloc[0:days].iloc[-1::-1]['ema5'].to_numpy() close = StandardScaler().fit_transform(temp_close.reshape(-1, 1)).flatten() vwap_flag = False temp = data.iloc[0:days].iloc[-1::-1]['vwap30'].to_numpy() vwap = StandardScaler().fit_transform(temp.reshape(-1, 1)).flatten() close_ = close[-1:-6:-1] vwap_ = vwap[-1:-6:-1] # 1.当前vwap大于close,五日psar与close递增取均值,当前差加上递增均值是否大于0,如果大于0,则可能上穿 if vwap_[0] > close_[0]: dist = close_ - vwap_ sum_ = 0. for i in range(4): sum_ += dist[i] - dist[i + 1] avg = sum_ / 4. if dist[0] + avg > 0.: vwap_flag = True # 2.当前vwap小于close,是否是五日内发生的上穿现象,如果是,则趋势可能仍在 if vwap_[0] < close_[0] and vwap_[-1] > close_[-1]: vwap_flag = True psar_flag = False temp = data.iloc[0:days].iloc[-1::-1]['psar'].to_numpy() psar = StandardScaler().fit_transform(temp.reshape(-1, 1)).flatten() close_ = close[-1:-6:-1] psar_ = psar[-1:-6:-1] # 1.当前psar大于close,五日psar与close递增取均值,当前差加上递增均值是否大于0,如果大于0,则可能上穿 if psar_[0] > close_[0]: dist = close_ - psar_ sum_ = 0. for i in range(4): sum_ += dist[i] - dist[i + 1] avg = sum_ / 4. if dist[0] + avg > 0.: psar_flag = True # 2.当前psar小于close,是否是五日内发生的上穿现象,如果是,则趋势可能仍在 if psar_[0] < close_[0] and psar_[-1] > close_[-1]: psar_flag = True kama_flag = False temp = data.iloc[0:days].iloc[-1::-1]['kama'].to_numpy() kama = StandardScaler().fit_transform(temp.reshape(-1, 1)).flatten() close_ = close[-1:-6:-1] kama_ = kama[-1:-6:-1] # 1.当前kama大于close,五日kama与close递增取均值,当前差加上递增均值是否大于0,如果大于0,则可能上穿 if kama_[0] > close_[0]: dist = close_ - kama_ sum_ = 0. for i in range(4): sum_ += dist[i] - dist[i + 1] avg = sum_ / 4. if dist[0] + avg > 0.: kama_flag = True # 2.当前kama小于close,是否是五日内发生的上穿现象,如果是,则趋势可能仍在 if kama_[0] < close_[0] and kama_[-1] > close_[-1]: kama_flag = True if (not psar_flag) and (not kama_flag) and (not vwap_flag): return False # 1. 5日内close上穿boll_mavg20 boll_flag = False temp = data.iloc[0:days].iloc[-1::-1]['boll_mavg20'].to_numpy() boll_mavg = StandardScaler().fit_transform(temp.reshape(-1, 1)).flatten() close_ = close[-1:-6:-1] boll_mavg_ = boll_mavg[-1:-6:-1] if boll_mavg_[0] < close_[0] and boll_mavg_[-1] > close_[-1]: boll_flag = True if not boll_flag: return False return True ''' 1. 取adx相交做为buy signal ''' def filter_by_strategy4(data, days): # filter by ADX adx_flag = False adx_pos = data.iloc[0:days]['adx_pos14'].to_numpy() adx_pos = StandardScaler().fit_transform(adx_pos.reshape(-1, 1)).flatten() adx_neg = data.iloc[0:days]['adx_neg14'].to_numpy() adx_neg = StandardScaler().fit_transform(adx_neg.reshape(-1, 1)).flatten() if adx_pos[0] > adx_neg[0] and adx_pos[1] < adx_neg[1]: adx_flag = True if not adx_flag: return False return True ''' 1. 取pband < 0.1 做为buy signal ''' def filter_by_strategy5(data, days): # filter by boll_pband20 pband = data.iloc[0:days]['boll_pband20'].to_numpy() if pband[0] > 0.1: return False return True ''' 1. 取adx < 0.1 做为buy signal ''' def filter_by_strategy6(data, days): # filter by adx14 adx = data.iloc[0:days]['adx14'].to_numpy() max_ = np.amax(adx) min_ = np.amin(adx) if (adx[0] - min_) / (max_ - min_) > 0.1: return False # filter by price, don't pick percent of price is high price = data.iloc[0:days]['close'].to_numpy() max_ = np.amax(price) min_ = np.amin(price) if (price[0] - min_) / (max_ - min_) > 0.1: return False return True ''' 1. 取adx < 0.1 和 psar上穿做为buy signal ''' def filter_by_strategy7(data, days): # filter by adx14 adx = data.iloc[0:days]['adx14'].to_numpy() max_ = np.amax(adx) min_ = np.amin(adx) if (adx[0] - min_) / (max_ - min_) > 0.1: return False # filter by psar psar_flag = False psar = data.iloc[0:days]['psar'].to_numpy() psar = StandardScaler().fit_transform(psar.reshape(-1, 1)).flatten() close = data.iloc[0:days]['close'].to_numpy() close = StandardScaler().fit_transform(close.reshape(-1, 1)).flatten() if close[0] > psar[0] and close[1] < psar[1]: psar_flag = True if not psar_flag: return False return True ''' 1. 取adx < 0.1 and pband < 0.1做为buy signal ''' def filter_by_strategy8(data, days): # filter by adx14 adx = data.iloc[0:days]['adx14'].to_numpy() max_ = np.amax(adx) min_ = np.amin(adx) if (adx[0] - min_) / (max_ - min_) > 0.1: return False # filter by boll_pband20 pband = data.iloc[0:days]['boll_pband20'].to_numpy() if pband[0] > 0.1: return False return True ''' 1. 取pband < 0.1 and vol < 0.1做为buy signal (短) ''' def filter_by_strategy9(data, days): # filter by vol vol = data.iloc[0:days]['vol'].to_numpy() max_ = np.amax(vol) min_ = np.amin(vol) if (vol[0] - min_) / (max_ - min_) > 0.1: return False # filter by boll_pband20 pband = data.iloc[0:days]['boll_pband20'].to_numpy() if pband[0] > 0.1: return False return True ''' 1. 取adx < 0.1 and vol < 0.1做为buy signal (中) ''' def filter_by_strategy10(data, days): # filter by vol vol = data.iloc[0:days]['vol'].to_numpy() max_ = np.amax(vol) min_ = np.amin(vol) if (vol[0] - min_) / (max_ - min_) > 0.1: return False # filter by adx14 adx = data.iloc[0:days]['adx14'].to_numpy() max_ = np.amax(adx) min_ = np.amin(adx) if (adx[0] - min_) / (max_ - min_) > 0.1: return False return True ''' 1. 取价跌、量涨为信号 ''' def filter_by_strategy11(data, days): # filter by vol vol = data.iloc[0:days]['vol'].to_numpy() close = data.iloc[0:days]['close'].to_numpy() if not (vol[0] > vol[1] and close[0] < close[1]): return False # filter by adx14 adx = data.iloc[0:days]['adx14'].to_numpy() max_ = np.amax(adx) min_ = np.amin(adx) if (adx[0] - min_) / (max_ - min_) > 0.1: return False return True ''' 1. 取价涨、量跌为信号 ''' def filter_by_strategy12(data, days): # filter by vol vol = data.iloc[0:days]['vol'].to_numpy() close = data.iloc[0:days]['close'].to_numpy() if not (vol[0] < vol[1] and close[0] > close[1]): return False # close 太高没有必要 max_ = np.amax(close) min_ = np.amin(close) if (close[0] - min_) / (max_ - min_) > 0.5: return False # normalize close temp_close = data.iloc[0:days]['close'].to_numpy() close_ = StandardScaler().fit_transform(temp_close.reshape(-1, 1)).flatten() temp = data.iloc[0:days]['psar'].to_numpy() psar_ = StandardScaler().fit_transform(temp.reshape(-1, 1)).flatten() if close_[0] < psar_[0]: return False return True ''' 1. 取价涨、量跌为信号 ''' def filter_by_strategy13(data, days): # filter by vol vol = data.iloc[0:days]['vol'].to_numpy() close = data.iloc[0:days]['close'].to_numpy() if not (vol[0] < vol[1] and close[0] > close[1]): return False # close 太高没有必要 max_ = np.amax(close) min_ =
np.amin(close)
numpy.amin
import h5py import numpy as np from shutil import copyfile copyfile("baseline_reg.h5", "pretrained_pruned.h5") # create pretrained.h5 using datastructure from dummy.h5 bl = h5py.File("baseline_reg.h5", 'r') #dummy = h5py.File("dummy.h5", 'r') pretrained = h5py.File("pretrained_pruned.h5", 'r+') normalisation="l2" channel_threshold=0.5 p_c1=-1 p_c2=1 p_c3=1.00 p_c4=1.00 p_c5=1.00 p_c6=1.00 p_d1=1.00 p_d2=1.00 p_d3=-1 # conv layer 1 bl_w1 = bl["model_weights"]["binary_conv_1"]["binary_conv_1"]["Variable_1:0"] #bl_rand_map = bl["model_weights"]["binary_conv_1"]["binary_conv_1"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_conv_1"]["binary_conv_1"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_conv_1"]["binary_conv_1"]["Variable:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_conv_1"]["binary_conv_1"]["Variable_1:0"] #pret_rand_map = pretrained["model_weights"]["binary_conv_1"]["binary_conv_1"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_conv_1"]["binary_conv_1"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_conv_1"]["binary_conv_1"]["Variable:0"] pret_w1[...] = np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) weight = np.array(bl_w1) TRC = 1 TM = 1 TN = 2 Tsize_RC = np.shape(weight)[0]/TRC Tsize_M = np.shape(weight)[2]/TM Tsize_N = np.shape(weight)[3]/TN one_tile = np.zeros([Tsize_RC,Tsize_RC,Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TRC*TRC*TM*TN) norm = np.sqrt(norm) norm=np.reshape(norm, [-1,np.shape(norm)[3]]) pruning_mask = np.greater(norm, p_c1) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # conv layer 2 bl_w1 = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_1"]["residual_sign_1"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_conv_2"]["binary_conv_2"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_1"]["residual_sign_1"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TRC = 1 TM = 8 TN = 8 Tsize_RC = np.shape(weight)[0]/TRC Tsize_M = np.shape(weight)[2]/TM Tsize_N = np.shape(weight)[3]/TN one_tile = np.zeros([Tsize_RC,Tsize_RC,Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TRC*TRC*TM*TN) norm = np.sqrt(norm) norm=np.reshape(norm, [-1,np.shape(norm)[3]]) pruning_mask = np.greater(norm, p_c2) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # conv layer 3 bl_w1 = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_2"]["residual_sign_2"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_conv_3"]["binary_conv_3"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_2"]["residual_sign_2"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TRC = 1 TM = 8 TN = 8 Tsize_RC = np.shape(weight)[0]/TRC Tsize_M = np.shape(weight)[2]/TM Tsize_N = np.shape(weight)[3]/TN one_tile = np.zeros([Tsize_RC,Tsize_RC,Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TRC*TRC*TM*TN) norm = np.sqrt(norm) norm=np.reshape(norm, [-1,np.shape(norm)[3]]) pruning_mask = np.greater(norm, p_c3) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # conv layer 4 bl_w1 = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_3"]["residual_sign_3"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_conv_4"]["binary_conv_4"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_3"]["residual_sign_3"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TRC = 1 TM = 8 TN = 8 Tsize_RC = np.shape(weight)[0]/TRC Tsize_M = np.shape(weight)[2]/TM Tsize_N = np.shape(weight)[3]/TN one_tile = np.zeros([Tsize_RC,Tsize_RC,Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TRC*TRC*TM*TN) norm = np.sqrt(norm) norm=np.reshape(norm, [-1,np.shape(norm)[3]]) pruning_mask = np.greater(norm, p_c4) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # conv layer 5 bl_w1 = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_4"]["residual_sign_4"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_conv_5"]["binary_conv_5"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_4"]["residual_sign_4"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TRC = 1 TM = 8 TN = 8 Tsize_RC = np.shape(weight)[0]/TRC Tsize_M = np.shape(weight)[2]/TM Tsize_N = np.shape(weight)[3]/TN one_tile = np.zeros([Tsize_RC,Tsize_RC,Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TRC*TRC*TM*TN) norm = np.sqrt(norm) norm=np.reshape(norm, [-1,np.shape(norm)[3]]) pruning_mask = np.greater(norm, p_c5) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # conv layer 6 bl_w1 = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_5"]["residual_sign_5"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_conv_6"]["binary_conv_6"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_5"]["residual_sign_5"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TRC = 1 TM = 8 TN = 8 Tsize_RC = np.shape(weight)[0]/TRC Tsize_M = np.shape(weight)[2]/TM Tsize_N = np.shape(weight)[3]/TN one_tile = np.zeros([Tsize_RC,Tsize_RC,Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): for rc in range(TRC): norm = norm + weight[(rc*Tsize_RC):((rc+1)*Tsize_RC),(rc*Tsize_RC):((rc+1)*Tsize_RC),(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TRC*TRC*TM*TN) norm = np.sqrt(norm) norm=np.reshape(norm, [-1,np.shape(norm)[3]]) pruning_mask = np.greater(norm, p_c6) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # dense layer 1 bl_w1 = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_6"]["residual_sign_6"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_1"]["binary_dense_1"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_6"]["residual_sign_6"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TM = 8 TN = 8 Tsize_M = np.shape(weight)[0]/TM Tsize_N = np.shape(weight)[1]/TN one_tile = np.zeros([Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): norm = norm + weight[(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): norm = norm + weight[(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TM*TN) norm = np.sqrt(norm) #l1_norm=np.reshape(l1_norm, [-1,np.shape(l1_norm)[3]]) pruning_mask = np.greater(norm, p_d1) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # dense layer 2 bl_w1 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_7"]["residual_sign_7"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_2"]["binary_dense_2"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_7"]["residual_sign_7"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TM = 8 TN = 8 Tsize_M = np.shape(weight)[0]/TM Tsize_N = np.shape(weight)[1]/TN one_tile = np.zeros([Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): norm = norm + weight[(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): norm = norm + weight[(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TM*TN) norm = np.sqrt(norm) #l1_norm=np.reshape(l1_norm, [-1,np.shape(l1_norm)[3]]) pruning_mask = np.greater(norm, p_d2) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # dense layer 3 bl_w1 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_1:0"] #bl_w2 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_2:0"] #bl_w3 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_3:0"] #bl_w4 = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_4:0"] #bl_rand_map = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map:0"] bl_pruning_mask = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["pruning_mask:0"] bl_gamma = bl["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable:0"] bl_means = bl["model_weights"]["residual_sign_8"]["residual_sign_8"]["means:0"] zero_fill = np.zeros(np.shape(np.array(bl_w1))) pret_w1 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_1:0"] #pret_w2 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_2:0"] #pret_w3 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_3:0"] #pret_w4 = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable_4:0"] #pret_rand_map = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["rand_map:0"] pret_pruning_mask = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["pruning_mask:0"] p_gamma = pretrained["model_weights"]["binary_dense_3"]["binary_dense_3"]["Variable:0"] pret_means = pretrained["model_weights"]["residual_sign_8"]["residual_sign_8"]["means:0"] pret_w1[...] = np.array(bl_w1) #pret_w2[...] = zero_fill #pret_w3[...] = zero_fill #pret_w4[...] = -np.array(bl_w1) #pret_rand_map[...] = np.array(bl_rand_map) p_gamma[...] = np.array(bl_gamma) pret_means[...] = np.array(bl_means) weight = np.array(bl_w1) TM = 8 TN = 10 Tsize_M = np.shape(weight)[0]/TM Tsize_N = np.shape(weight)[1]/TN one_tile = np.zeros([Tsize_M,Tsize_N]) # set up pruning_mask #mean=np.mean(abs(weight),axis=3) norm=one_tile if normalisation=="l1": for n in range(TN): for m in range(TM): norm = norm + weight[(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)] norm = norm / (TRC*TRC*TM*TN) elif normalisation=="l2": for n in range(TN): for m in range(TM): norm = norm + weight[(m*Tsize_M):((m+1)*Tsize_M),(n*Tsize_N):((n+1)*Tsize_N)]**2 norm = norm / (TM*TN) norm = np.sqrt(norm) #l1_norm=np.reshape(l1_norm, [-1,np.shape(l1_norm)[3]]) pruning_mask = np.greater(norm, p_d3) pret_pruning_mask[...] = np.array(pruning_mask,dtype=float) print(np.sum(np.array(pret_pruning_mask))) # bn 1 bl_beta = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_1"]["batch_normalization_1"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 2 bl_beta = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_2"]["batch_normalization_2"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 3 bl_beta = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_3"]["batch_normalization_3"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 4 bl_beta = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_4"]["batch_normalization_4"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 5 bl_beta = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_5"]["batch_normalization_5"]["moving_variance:0"] p_beta[...] = np.array(bl_beta) p_gamma[...] = np.array(bl_gamma) p_moving_mean[...] = np.array(bl_moving_mean) p_moving_variance[...] = np.array(bl_moving_variance) # bn 6 bl_beta = bl["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["beta:0"] bl_gamma = bl["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["gamma:0"] bl_moving_mean = bl["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["moving_mean:0"] bl_moving_variance = bl["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["moving_variance:0"] p_beta = pretrained["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["beta:0"] p_gamma = pretrained["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["gamma:0"] p_moving_mean = pretrained["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["moving_mean:0"] p_moving_variance = pretrained["model_weights"]["batch_normalization_6"]["batch_normalization_6"]["moving_variance:0"] p_beta[...] =
np.array(bl_beta)
numpy.array
# -*- coding: utf-8 -*- """ Author ------ <NAME> Email ----- <EMAIL> Created on ---------- - Sat Sep 03 16:00:00 2017 Modifications ------------- - Sat Sep 03 12:00:00 2017 Aims ---- - plotting tools """ import numpy as np import matplotlib.pyplot as plt from scipy.stats import binned_statistic_2d from matplotlib import cm from lmfit.models import GaussianModel from mpl_toolkits.mplot3d import Axes3D from .analysis import label_diff_lmfit def plot_mse(s): fig, ax = plt.subplots(1, 1, figsize=(8, 6), tight_layout=True) plt.hist(-s.nmse[s.nmse != 0], np.linspace(0, 1, 80), histtype='step', lw=2, label="MSE") plt.hist(-s.scores[s.nmse != 0], np.linspace(0, 1, 80), histtype='step', lw=2, label="CV MSE") ylim = plt.gca().get_ylim() plt.vlines(np.percentile(-s.nmse[s.nmse != 0], [14, 50, 86]), *ylim, linestyle='--', label="14, 50, 86 percentiles") plt.xlim(0, 1) plt.ylim(*ylim) plt.ylabel("Counts") plt.xlabel("MSE") fig.tight_layout() return fig # ################ # # image # ################ # def image(ax, x, y, xbins, ybins, log=True): plt.sca(ax) c, xe, ye, bn = binned_statistic_2d(x, y, x, statistic="count", bins=[xbins, ybins]) if log: c = np.log10(c) plt.imshow(c.T, origin="lower", extent=(*xbins[[0, -1]], *ybins[[0, -1]]), cmap=cm.viridis, aspect="auto") return def compare_labels(X_true, X_pred, xlabels=None, ylabels=None, reslabels=None, xlims=None, reslims=None, histlim=None, nxb=30, cornerlabel="", figsize=None): nlabel = X_true.shape[1] if xlabels is None: xlabels = ["$X_{{true}}:{}$".format(i) for i in range(nlabel)] if ylabels is None: ylabels = ["$X_{{pred}}:{}$".format(i) for i in range(nlabel)] if reslabels is None: reslabels = ["$X_{{res}}:{}$".format(i) for i in range(nlabel)] # default xlim if xlims is None: xlim1 = np.min(np.vstack((np.percentile(X_true, 1, axis=0), np.percentile(X_pred, 1, axis=0))), axis=0) xlim2 = np.min(np.vstack((np.percentile(X_true, 99, axis=0), np.percentile(X_pred, 99, axis=0))), axis=0) xlims = (xlim2 - xlim1).reshape(-1, 1) * 0.4 * np.array( [-1, 1]) + np.vstack((xlim1, xlim2)).T if reslims is None: reslims = np.repeat( np.max(np.abs(np.percentile(X_pred - X_true, [1, 99], axis=0).T), axis=1).reshape(-1, 1), 2, axis=1) * np.array([-1, 1]) reslims = np.abs(np.diff(reslims, axis=1)) * np.array( [-1, 1]) * 0.2 + reslims # run MCMC X_bias, X_scatter, frs, histdata = label_diff_lmfit( X_true, X_pred, bins="auto", plot=False, emcee=True) print("bias", X_bias) print("scatter", X_scatter) if histlim is None: histlim = (0, np.max([np.max(histdata_[0]) for histdata_ in histdata])) histlim = np.array(histlim) if figsize is None: figsize = (3 * nlabel, 3 * nlabel) # draw figure fig, axs2 = plt.subplots(nlabel+1, nlabel+1, figsize=figsize) # 1. Gaussian gm = GaussianModel() for i in range(nlabel): plt.sca(axs2[i + 1, -1]) fr = frs[i] hist_, bin_edge_, data_ = histdata[i] plt.hist(data_, bins=bin_edge_, histtype="step", orientation="horizontal") axs2[i + 1, -1].plot(gm.eval(fr.mcmc.params, x=bin_edge_), bin_edge_) axs2[i + 1, -1].tick_params(direction='in', pad=5) axs2[i + 1, -1].set_xlim(histlim) axs2[i + 1, -1].set_ylim(reslims[i]) axs2[i + 1, -1].set_ylim(reslims[i]) axs2[i + 1, -1].yaxis.tick_right() axs2[i + 1, -1].hlines(X_bias[i], *histlim, linestyle='--', color="k") pos_text_x = np.dot(np.array([[0.9, 0.1]]), histlim.reshape(-1, 1)) pos_text_y = np.dot(np.array([[0.15, 0.85]]), reslims[i].reshape(-1, 1)) axs2[i + 1, -1].text(pos_text_x, pos_text_y, "$bias={:.4f}$".format(X_bias[i])) pos_text_x = np.dot(np.array([[0.9, 0.1]]), histlim.reshape(-1, 1)) pos_text_y = np.dot(np.array([[0.30, 0.70]]), reslims[i].reshape(-1, 1)) axs2[i + 1, -1].text(pos_text_x, pos_text_y, "$\\sigma={:.4f}$".format(X_scatter[i])) axs2[i + 1, -1].yaxis.tick_right() if i < nlabel-1: axs2[i + 1, -1].set_xticklabels([]) axs2[-1, -1].set_xlabel("Counts") # 2. diagnal for i in range(nlabel): image(axs2[0, i], X_true[:, i], X_pred[:, i],
np.linspace(xlims[i][0], xlims[i][1], nxb)
numpy.linspace